WO2006032228A1 - Zündgerät - Google Patents

Zündgerät Download PDF

Info

Publication number
WO2006032228A1
WO2006032228A1 PCT/DE2005/001364 DE2005001364W WO2006032228A1 WO 2006032228 A1 WO2006032228 A1 WO 2006032228A1 DE 2005001364 W DE2005001364 W DE 2005001364W WO 2006032228 A1 WO2006032228 A1 WO 2006032228A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
lamp
voltage
circuit arrangement
pulse
Prior art date
Application number
PCT/DE2005/001364
Other languages
English (en)
French (fr)
Inventor
Ferdinand Mertens
Reinhard Schauerte
Tobias Schulte
Original Assignee
Bag Electronics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bag Electronics Gmbh filed Critical Bag Electronics Gmbh
Priority to US11/575,735 priority Critical patent/US8080944B2/en
Priority to EP20050776738 priority patent/EP1792523B1/de
Priority to CN2005800320259A priority patent/CN101027943B/zh
Publication of WO2006032228A1 publication Critical patent/WO2006032228A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention relates to an ignition circuit arrangement for igniting a gas discharge lamp, in particular a high-pressure gas discharge lamp with the features of the preamble of claim 1 and a method for igniting such a lamp.
  • High-pressure gas discharge lamps in particular require an ignition voltage when starting which is far above the supply voltage in order to maintain the discharge.
  • ignition voltage pulses on cold start have an ignition voltage of approximately 1 kV to 5 kV depending on the lamp used. Because of the increased pressure at elevated temperature, much higher ignition voltages are necessary for the hot ignition of high-pressure gas discharge lamps, they lie approximately in the range from ten to sixty kV, depending on the material to be ionized and the power of the lamp.
  • Conventional high-voltage ignition devices for high-pressure gas discharge lamps are generally designed as a superimposed ignition circuit.
  • Such an ignition circuit is disclosed, for example, in German published patent application DE 195 31 622.
  • This comprises a pulse transformer, the secondary side of which is connected to the lamp to be ignited and the primary side of which is connected to a circuit which triggers the ignition pulse.
  • the ignition pulses In order to ensure the safe ignition of high-pressure gas discharge lamps, the ignition pulses generally have a width of one to a few microseconds and are repeated over a number of network half-waves, which leads to a repetition frequency of approximately 100 Hz.
  • the entire ignition process lasts in the range of seconds, so that in particular the ignition transformer has a large inductance, which on the one hand negatively influences the space requirement of such an ignition circuit and on the other hand leads to acoustic loads when the core is remagnetized.
  • the high electrical energy to be used for the ignition is associated with a high heat loss.
  • a generic ignition circuit is disclosed in European patent application EP 0868115 A2. Under certain circumstances, this should also be suitable for hot ignitions, where an ignition voltage of up to over 20 kV is required.
  • the invention is based on the object of further improving the ignition of gas discharge lamps in generic ignition circuits, in particular when the lamp is hot-ignited.
  • the invention achieves this object in a surprisingly simple way with an ignition circuit arrangement with the features of claim 1 or with a method for igniting a gas discharge lamp with the features of claim 13.
  • the invention provides an ignition circuit arrangement for igniting a gas discharge lamp, in particular a high-pressure gas discharge lamp, to which a supply circuit for providing an AC supply voltage to the lamp is assigned.
  • the ignition circuit arrangement comprises an ignition transformer, which is connected on the primary side to a trigger circuit and on the secondary side to transmit an ignition pulse to the lamp; an input power source for the ignition trigger circuit; a first switch means in the trigger circuit and a control means which controls the first switch means.
  • the ignition circuit arrangement according to the invention is characterized in that, in order to support the ignition process in the supply circuit in series with the lamp, an energy store controllable by the control means, in particular a voltage source controllable by the control means, is arranged.
  • the controllable energy store serves to provide an additional electrical supply during the ignition process in addition to the actual AC power supply for the lamp.
  • This surprisingly simple measure ensures that the discharge in the lamp is generally more likely to be generated and maintained during the first attempt at ignition.
  • energy can be saved by the design of the ignition circuit arrangement according to the invention, since the ignition circuit arrangement according to the invention generally manages with fewer ignition pulses than conventional ignition circuit arrangements.
  • the same also applies to the hot ignition of high-pressure gas discharge lamps, which has hitherto been a major problem, particularly for lamps with high outputs.
  • the design of the ignition circuit arrangement according to the invention has the consequence that the electrical components for the ignition circuit device can be dimensioned smaller, which greatly reduces both the space requirement and the costs. This ultimately results in new uses for high-pressure gas discharge lamps, for example in the private sector.
  • the invention is based on the idea of ensuring, during the generation of the ignition pulse on the lamp, that an electrical supply beyond the conventional alternating current supply of the lamp is provided, so that the resulting plasma is additionally supported, which ultimately increases the probability that that an ignition attempt is successful.
  • This support of the plasma towards a stable discharge also has the advantage that in the ignition circuit arrangement according to the invention compared to conventional ones Circuits with lower ignition voltages can be worked, so that this also often reduces the demands on the electronic and electrical components.
  • the first switch means can be activated within at least one supply voltage half-wave after the control means has exceeded a predetermined instantaneous value of the supply voltage within a time interval for opening and closing, whereby at least one ignition pulse can be generated. This measure ensures that the ignition is started at times when the supply voltage is above the lamp operating voltage, which is necessary to maintain the discharge.
  • one or more primary-side pulses can be generated within the predetermined interval in a supply voltage half-wave by appropriately actuating the first switch means. For the reasons mentioned above, it is preferable to generate as few pulses as possible within the supply voltage half-wave. Depending on the lamp used, however, it can also be advantageous to generate a plurality of such primary-side pulses in quick succession to ensure that the lamp ignites.
  • the ignition circuit arrangement according to the invention can be designed without an ignition capacitor arranged parallel to the lamp. Due to the stray capacitance that is always present parallel to the lamp, a damping oscillation generally results in the case of a triggering pulse generated on the secondary side to the ignition transformer. It can therefore be advantageous if the drive frequency for the first switch means for generating ignition pulses changes within the time interval in a supply voltage half-wave, the drive frequency being greater than 290 kHz. This can prevent the excitation of plasma oscillations which hinder the ignition. Electronic switches which have switching times of less than 1 ⁇ s are particularly suitable as switch means.
  • a current path bridging the gas discharge lamp can preferably be provided for charging the energy store, said current path having a second switch means controlled by the control means.
  • the charging current path can e.g. directly or indirectly connected in parallel to the gas discharge lamp.
  • the provision of the charging current path ensures that the energy store for supporting the ignition process, depending on the application, can be provided with the required energy specifically for the respective requirement, which energy can be removed from the supply circuit before the lamp is ignited.
  • an electronically controllable switch such as a bipolar or a field-effect transistor, can be provided, via which the current path can be closed or opened.
  • the energy stored in the energy store to support the ignition process can be determined via the charging time.
  • the ignition circuit arrangement according to the invention can be used both with conventional ballasts (KVG) and with electronic ballasts (EVG).
  • KVG ballasts
  • EVG electronic ballasts
  • the choke coil arranged in series in the supply circuit in KVG's for the lamp for the purpose of current limitation can advantageously be used in the ignition circuit arrangement according to the invention as the mentioned energy store, which acts precharged and controlled to support the ignition.
  • the input energy source for the ignition trigger circuit in particular a voltage source assigned to the ignition trigger circuit
  • the control means can be variably adjusted by the control means.
  • the level of the ignition pulse can thus basically be adjusted to the lamp to be started and its operating state.
  • the ignition circuit arrangement according to the invention also permits the generation of a plurality of ignition pulses with different voltage levels within a single ignition process.
  • this can be meaningful if, after the plasma is ignited with a high ignition voltage, for example, one or more ignition pulses with a lower ignition voltage are generated in a subsequent supply voltage half-wave to support or fully develop the plasma formed in the previous half-wave.
  • a means for detecting the charge current and / or the charge voltage of the energy store is provided.
  • the energy content of the energy store supporting the ignition process can be determined directly, as a result of which the ignition process can be controlled very precisely.
  • the second switch means with which the current path for charging the energy store is closed or opened can respond, i.e. can be controlled depending on the state of charge of the energy store.
  • control frequency of the first switch means changes within the time interval from a predetermined lower frequency in the direction of higher frequencies. This change can advantageously take place up to a predetermined upper frequency, the change being able to be carried out in steps as well as continuously.
  • Particularly advantageous control frequencies for the first switch means with regard to the generation of a uniformly designed and stable arc is between 290 kHz and 700 kHz or between 800 kHz and 5 MHz.
  • the time interval within which the at least one ignition pulse is generated by the time period between the time of reaching a predetermined instantaneous value and the time of reaching a predetermined limit value of the supply voltage.
  • a limit value can be, for example, the peak voltage of the supply voltage.
  • the predetermined value is above the operating voltage necessary for maintaining the bottom discharge. This ensures that the lamp is only ignited at times at which the supply voltage is above the lamp's operating voltage and the supply voltage rises.
  • the time interval for the ignition pulses within a supply voltage half-wave can be extended by a factor of 2 in that the period between the peak voltage of the supply voltage reaching and the further drop in the voltage until the predetermined minimum value for the ignition process is reached is being used.
  • the invention solves the above problem with a method for igniting a gas discharge lamp which is supplied with electrical energy during operation by means of an AC supply circuit with the features of claim 13.
  • At least one ignition pulse is generated by means of an ignition circuit arrangement having an ignition transformer.
  • the method according to the invention is characterized in that, in order to support the ignition process before the generation of the at least one ignition pulse, a controllable energy store arranged in the supply circuit is charged and the energy stored in the controllable energy store is superimposed on the AC supply of the lamp during the ignition process.
  • the method according to the invention enables small, integrable ignition circuit arrangements to be designed both for cold ignition and for hot ignition of high-pressure gas discharge lamps. It can be expedient here if only a single ignition pulse is generated within a half-wave supply voltage, so that particularly little energy has to be used to ignite the lamps. Frequently, a single switching on and off of a trigger circuit such as an IGBT (insulated gate bipolar transistor) or a field effect transistor is sufficient to achieve the ignition of the lamp. In addition, it can also be useful for the structure and stability of the arc if, after the generation of the one ignition pulse within a half-wave of the supply voltage, subsequently at least one further ignition pulse is generated again within the subsequent half-wave when a predetermined instantaneous value of the supply voltage is reached. Under certain circumstances it can also be advantageous to generate one pulse each within a plurality of, for example successive, half-waves of the supply voltage in order to achieve reliable ignition of the lamp.
  • the ignition process can also be adjusted by varying the voltage of successive ignition pulses.
  • a charge current path is switched for charging the energy store before the generation of the at least one ignition pulse, which is interrupted before the generation of the first ignition pulse, in particular after reaching a predetermined state of charge of the energy store and detected during the charging process.
  • the energy store is provided by a coil such as a choke coil in a KVG ignition device
  • a capacitor arranged parallel to the lamp
  • FIG. 1 is a schematic diagram of an ignition circuit arrangement according to the invention in a first embodiment
  • FIG. 2 shows a detailed view of the design of the first switch 40 of the ignition circuit arrangement shown in FIG. 1,
  • FIG. 3 shows the time course of an ignition process for the circuit shown in FIG. 1,
  • FIG. 5 is a detailed view of the design of the first switch 40 of the ignition circuit arrangement shown in FIG. 4,
  • Fig. 6 shows the time course of an ignition process for the circuit shown in Fig. 4
  • the 1 shows an ignition circuit arrangement 1 according to the invention together with the high-pressure gas discharge lamp 3 to be ignited.
  • the mains voltage U N is present at the input terminals L, N.
  • the lamp 3 is connected via a lamp choke 10 of a conventional CCG and the secondary-side coil winding 22 of an ignition transformer 20 supplied with electrical energy.
  • the main components of the ignition trigger circuit 2 include a surge capacitor 30, which can be charged via the parallel connection of a capacitor C2 and a resistor R1, and a primary-side coil winding 21 of the ignition transformer 20.
  • the primary-side coil winding 21 is coupled via the ignition transformer core 23 to the secondary-side coil winding 22 , which is connected in series with the lamp 3 for the transmission and transformation of the ignition pulse.
  • a first switch means with an assigned control is indicated in the trigger circuit 2 with the reference numeral 40.
  • the ignition circuit arrangement according to the invention has a current path bridging the lamp 3, by means of which the choke 10 can be charged with the mains voltage U N independently of the lamp and the trigger circuit by actuation of a further switch means.
  • the further switch means is indicated together with the control with reference number 60.
  • the ignition circuit arrangement shown in FIG. 1 is designed as a superimposed ignition device, by means of which the generated ignition voltages are superimposed on the electrical supply to the lamp 3.
  • the lamp current is denoted by I L and the voltage drop across the lamp is denoted by U L.
  • the charging current of the lamp choke 10 is indicated by IL VG .
  • FIG. 2 shows the switch means 40 (switch S1) in a detailed view.
  • An essential element is a field effect transistor 41, the gate voltage UDS1 of which is provided by a controller 51.
  • This controller is able, depending on the programming, to control the transistor to open and close once to generate a single primary-side pulse and also to control the transistor to generate a plurality of pulses with one or more frequencies over a predetermined time interval.
  • the four diodes V4 to V7 connected in pairs in parallel to the transistor enable this Mode of operation of the switch with both positive and negative half-wave of the supply network.
  • the lamp choke 10 Before the first attempt to ignite, the lamp choke 10 is charged for a predetermined period of time and thus with a predetermined electrical energy, in that the switch S2 in the second switch means 60 is actuated with an associated control for closing the charging current path.
  • the charging current IL VG flows into the lamp choke.
  • the switch S2 is constructed similarly to the switch S1 shown in FIG. 2, the control alone differs because the additional energy store in the form of the choke in the described embodiment is charged only once at the beginning of the ignition process.
  • the switch S2 After reaching the predetermined amount of energy in the choke 10, the switch S2 is opened again. In this respect, the surge capacitor C1 can subsequently be charged via the network and the energy previously stored in the choke 10.
  • the switch S1 is switched on and off again for a period of approximately one microsecond for opening and closing once.
  • the surge capacitor 30 serving as the input energy source for the trigger circuit is discharged via the primary-side coil winding 21 of the ignition transformer 20.
  • the magnetization of the primary-side coil winding is transformed via the ignition transformer core 23 onto the secondary-side coil winding 22 with the transmission ratio of the ignition transformer and superimposed on the mains voltage .
  • a secondary-side ignition pulse is thus present on the lamp 3 so that it can ignite.
  • UL denotes the lamp voltage
  • UGS1 the gate voltage of the field effect transistor V3
  • UGS2 the gate voltage of the field effect transistor of the second switch S2
  • L indicates whether the high-pressure gas discharge lamp is burning or not.
  • the lamp does not initially burn, ie UL corresponds to the profile of the mains voltage UN.
  • the switch S2 is closed, so that the inductor 10 can be charged, so that the lamp voltage UL collapses at T1.
  • switch S2 is opened again, the lamp voltage rises again. If the lamp voltage is greater than the operating voltage of the lamp, the switch S1 in the trigger circuit is closed at time T3, so that an ignition pulse generated on the supply side is superimposed on the supply voltage.
  • the energy previously stored in the choke 10 is at least partially released to the capacitor C1, so that it is now additionally available for generating the ignition pulse and for the supply, and ultimately with a high probability already at the first Ignition pulses, the lamp burns, see the last time diagram L in Fig. 3. After the lamp is ignited, the characteristic rectangular shape for the lamp operating voltage results.
  • Typical switching times or durations in the ignition circuit arrangement according to the invention are about a few tens to thousands of microseconds for the charging time of the inductor 10, a few to a few tens of microseconds for charging the capacitor C1 via the mains supply and the inductor 10, and about one microsecond for the switching duration of the Transistors in the trigger circuit.
  • the inductance of the lamp choke 10 is approximately 0.5 H
  • the capacitance of the capacitors C1 or C2 is approximately 220 nF or 10OnF
  • the inductance L1 or L2 of the ignition transformer is approximately 10 ⁇ H or 1 mH.
  • the ignition circuit arrangement shown in FIG. 1 is suitable for both cold ignition and hot ignition of high-pressure gas discharge lamps.
  • the control logic 51 can be activated after the choke 10 has been charged in order to generate ignition pulses several times within a single supply voltage half-wave or in several successive supply voltage half-waves.
  • the frequency of the switch in the trigger circuit in order to achieve optimal ignition conditions.
  • the control frequency for the switch S1 can be between 290 kHz and 700 kHz or between 800 kHz and 5 MHz.
  • a large number of ignition pulses are generated until the discharge is reached, which of course is associated with an increased expenditure of energy.
  • the electronic components must be designed accordingly.
  • FIG. 4 shows a further embodiment of an ignition circuit arrangement according to the invention. Functionally identical or similar components are provided with the same reference numbers as in FIG. 1.
  • the trigger circuit is coupled to the lamp via an ignition transformer 20, which has a primary-side winding 21 and a secondary-side winding 22.
  • the voltage supply to the trigger circuit is controlled by a controllable rectifier 31 provided. All essential control means are combined in a single controller 50, which controls the switch S1 in the trigger circuit and the field effect transistor 61 in the charging current path for the lamp inductor 10 via their gate lines.
  • the supply current and the instantaneous value of the mains voltage are detected via measuring devices 80, 70 and fed to the controller 50.
  • the charge state of the throttle 10 can be measured during charging, so that the energy additionally provided for the ignition can be set with high accuracy.
  • the components Cl, Rl, Vl, V2 and C2 serve to supply the controller.
  • the switch S1 is of a unipolar design, see FIG. 5, since the input voltage of the trigger switches is provided by the controlled rectifier 31.
  • the parallel connection of the capacitor C3 to the lamp 3 in turn serves as a high-frequency return capacitor device in order not to load the choke 10 with the high-voltage pulse.
  • some of the energy stored there is transferred to the capacitor C3 before the ignition and after charging the energy store 10, this additional energy being used according to the invention to support the build-up of the discharge in the lamp 3 during the ignition process.
  • the supply voltage for the controlled rectifier 31 and the controller 50 is tapped at the connection of the choke 10 which is remote from the lamp.
  • these supply voltages are tapped at the other connection of the choke, i.e. the connection which faces the lamp and which is marked with the letter "B" in FIG. 4. The number of connection cables required can thereby be reduced.
  • the ignition circuit arrangement shown in FIG. 4 operates essentially like that shown in FIG. 1. Make a difference is that the controller 50 controls the energy supply voltage for the trigger circuit and, in this respect, the level of the ignition pulse can be set very precisely. By closing the switch S1, a current flows from the rectifier 31 via the primary winding 21 of the ignition transformer 20 and the closed switch S1 to ground, as a result of which an ignition pulse is generated in the supply line via the secondary winding 22 in a manner similar to that described above.
  • the switch S1 can be used to generate a single primary-side pulse, but also to generate a pulse train with a predetermined and / or varying frequency.
  • the controller 50 can be used to set the energy which is additionally available for the discharge during the ignition process by adjusting the charging time for the controlled charging of the choke 10 depending on the dimensioning of the choke and the capacitor C3.
  • the various ignition parameters can be set very precisely as a function of the connected lamp, which in turn enables the lamp to be ignited safely with the least possible expenditure of energy and therefore circuitry, regardless of whether the lamp is to be ignited cold or hot.
  • the control recognizes when hot ignition is necessary and then sets the ignition parameters such as the switching times of the two switches, the number of primary-side pulses and, for example, the level of the input voltage of the trigger circuit.
  • FIG. 6 shows the time course of the ignition process in the ignition circuit arrangement according to the invention shown in FIG. 4.
  • the time profiles of the lamp voltage UL, the gate drive voltages UGS1, UGS2 and the state of the lamp L are given.
  • the store 10 has been charged within the time period (T2-T1) and the subsequent build-up of the mains voltage on the lamp, or the discharge of the additional energy store 10 into the Capacitor C3 generates a single primary-side pulse at time T3 within the mains voltage half-wave.
  • the circuit arrangement reacts on the secondary side on the supply line by generating a damped ignition pulse oscillation.
  • FIG. 1 shows the course shown in FIG.
  • the lamp does not yet burn after the first ignition pulse, which is shown in the subsequent sinusoidal course of the lamp voltage.
  • the first ignition pulse did not result in a complete discharge, partial ionization of the gas was achieved.
  • the discharge is only generated with a subsequent ignition pulse by appropriately actuating switch S1 at time T4.
  • the discharge starts after the second primary-side pulse, which is superimposed on the secondary side of the supply voltage as an ignition pulse.
  • U L shows that the second ignition pulse at time T4 is smaller than the first.
  • the controller 50 controls the controllable rectifier 31 for the second pulse in the second supply voltage half-wave in order to output an input voltage for the trigger circuit which is smaller than that of the first pulse, so that the two secondary-side voltage pulses as shown in FIG. 6 to differentiate the amount ⁇ U L.
  • the circuit for generating a secondary ignition pulse of one thousand volts at time T3 and an ignition pulse of 700 volts at time T4 can suffice, since it is known that the connected lamp still ignites under the specified conditions . In this way, the electronic components or the lamp can be protected, which increases their service life.
  • the trigger circuit can also be used to generate a plurality of ignition pulses of fixed or variable frequency.
  • the ignition circuit arrangement shown in FIG. 4 is set up to generate ignition pulses within a positive half-wave of the supply voltage. Accordingly, if ignition pulses are to be generated in successive half-waves, in the embodiment shown in FIG. 4 there is always a negative half-wave between half-waves with generated pulses, in which no ignition pulses can be generated.
  • the person skilled in the art knows without further design options with which this disadvantage can be avoided.
  • the bipolar nature of the trigger circuit makes it possible to generate ignition pulses in successive and adjacent half-waves of the supply voltage.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

Um das Zünden von Gasentladungslampen, insbesondere von Hochdruckgasentladungslampen weiter zu verbessern, wird eine Zündschaltungsanordnung vorgeschlagen für eine Entladungslampe, der eine Versorgungsschaltung zur Bereitstellung einer Wechselstrom-Versorgungsspannung an die Lampe zugeordnet ist. Die erfindungsgemässe Zündschaltungsanordnung (1) umfasst einen zündübertrager (20), der primärseitig mit einer Auslöseschaltung (2) und sekundärseitig zur Übertragung eines Zündimpulses mit der Lampe (3) verbunden ist; eine Eingangsenergiequelle (30) für die Zündauslöseschaltung; ein erstes Schaltermittel (40) in der Auslöseschaltung sowie ein Steuermittel, welches das erste Schaltermittel ansteuert. Die erfindungsgemässe Zündschaltungsanordnung zeichnet sich dadurch aus, dass zur Unterstützung des Zündvorganges in der Versorgungsschaltung in Reihe zur Gasentladungslampe (3) ein durch das Steuermittel steuerbarer Energiespeicher (10), insbesondere eine durch das Steuermittel steuerbare Spannungsquelle angeordnet ist. Dabei dient der steuerbare Energiespeicher dazu, über die eigentliche Wechselstromversorgung der Lampe hinaus eine zusätliche elektrische Versorgung während des Zündvorganges bereitzustellen. Darüber hinaus betrifft die Erfindung ein Verfahren zum Zünden einer Gasentadungslampe.

Description

Zündgerät
Die Erfindung betrifft eine Zündschaltungsanordnung zum Zünden einer Gasentladungslampe, insbesondere einer Hochdruckgasentla¬ dungslampe mit den Merkmalen des Oberbegriffs von Anspruch 1 sowie ein Verfahren zum Zünden einer solchen Lampe.
Insbesondere Hochdruckgasentladungslampen benötigen beim Star¬ ten eine Zündspannung, die weit über der Versorgungsspannung zur Aufrechterhaltung der Entladung liegt. Typischerweise wei- sen Zündspannungsimpulse beim Kaltstarten eine Zündspannung von etwa 1 kV bis 5 kV je nach verwendeter Lampe auf. Aufgrund des erhöhten Druckes bei erhöhter Temperatur sind für die Heißzün¬ dung von Hochdruckgasentladungslampen sehr viel höhere Zünd¬ spannungen notwendig, sie liegen etwa im Bereich von zehn bis sechzig kV je nach verwendetem zu ionisierenden Material und Leistung der Lampe.
Herkömmliche Hochspannungs-Zündgeräte für Hochdruckgasentla¬ dungslampen sind in der Regel als Überlagerungszündschaltung ausgelegt. Eine solche Zündschaltung ist beispielsweise in der deutschen Offenlegungsschrift DE 195 31 622 offenbart. Diese umfasst einen Impulstransformator, dessen Sekundärseite mit der zu zündenden Lampe und dessen Primärseite mit einer den Zündim¬ puls auslösenden Schaltung verbunden ist. Um das sichere Zünden von Hochdruckgasentladungslampen zu ge¬ währleisten, weisen die Zündimpulse in der Regel eine Breite von einer bis wenigen Mikrosekunden auf und werden über eine Anzahl von Netzhalbwellen wiederholt, was zu einer Wiederho- lungsfrequenz von etwa 100 Hz führt. In der Regel dauert der gesamte Zündvorgang im Bereich von Sekunden, sodass insbesonde¬ re der Zündtransformator eine große Induktivität aufweist, was einerseits den Platzbedarf einer solchen Zündschaltung negativ beeinflusst und andererseits zu akustischen Belastungen bei der Ummagnetisierung des Kerns führt. Die für die Zündung aufzuwen¬ dende hohe elektrische Energie ist mit einer hohen Verlustwärme verbunden. In der europäischen Patentanmeldung EP 0868115 A2 ist eine gattungsgemäße Zündschaltung offenbart. Diese soll sich unter Umständen auch für Heißzündungen eignen, bei der ei- ne Zündspannung von bis über 20 kV benötigt wird.
Der Erfindung liegt die Aufgabe zugrunde, das Zünden von Gas¬ entladungslampen bei gattungsgemäßen Zündschaltungen weiter zu verbessern, insbesondere beim Heißzünden der Lampe.
Diese Aufgabe löst die Erfindung auf überraschend einfache Wei¬ se schon mit einer Zündschaltungsanordnung mit den Merkmalen von Anspruch 1 beziehungsweise mit einem Verfahren zum Zünden einer Gasentladungslampe mit den Merkmalen von Anspruch 13.
Vorrichtungsseitig stellt die Erfindung eine Zündschaltungsan¬ ordnung zum Zünden einer Gasentladungslampe, insbesondere einer Hochdruckgasentladungslampe bereit, der eine Versorgungsschal¬ tung zur Bereitstellung einer Wechselstrom-Versorgungsspannung an die Lampe zugeordnet ist. Die Zündschaltungsanordnung um- fasst einen Zündübertrager, der primärseitig mit einer Auslöse¬ schaltung und sekundärseitig zur Übertragung eines Zündimpulses mit der Lampe verbunden ist; eine Eingangsenergiequelle für die Zündauslöseschaltung; ein erstes Schaltermittel in der Auslöse- Schaltung und ein Steuermittel, welches das erste Schaltermit¬ tel ansteuert. Die erfindungsgemäße Zündschaltungsanordnung zeichnet sich dadurch aus, dass zur Unterstützung des Zündvor¬ ganges in der Versorgungsschaltung in Reihe zur Lampe ein durch das Steuermittel steuerbarer Energiespeicher, insbesondere eine durch das Steuermittel steuerbare Spannungsquelle angeordnet ist.
Dabei dient der steuerbare Energiespeicher dazu, über die ei¬ gentliche Wechselstromversorgung der Lampe hinaus eine zusätz¬ liche elektrische Versorgung während des Zündvorganges bereit- zustellen. Durch diese überraschend einfache Maßnahme wird er¬ reicht, dass die Entladung in der Lampe in der Regel schon beim ersten Zündversuch mit einer höheren Wahrscheinlichkeit erzeugt und aufrecht erhalten werden kann. Durch die erfindungsgemäße Gestaltung der Zündschaltungsanordnung kann darüber hinaus Energie eingespart werden, da die erfindungsgemäße Zündschal¬ tungsanordnung in der Regel mit weniger Zündimpulsen als her¬ kömmliche Zündschaltungsanordnungen auskommt. Gleiches gilt auch für das Heißzünden von Hochdruckgasentladungslampen, was bislang insbesondere bei Lampen mit hohen Leistungen ein großes Problem darstellte. Die erfindungsgemäße Gestaltung der Zünd¬ schaltungsanordnung hat zur Folge, dass die elektrischen Kompo¬ nenten für die Zündschaltungsvorrichtung kleiner dimensioniert werden können, was sowohl den Platzbedarf als auch die Kosten stark vermindert. Hierdurch ergeben sich letztlich neue Einsatzmöglichkeiten von Hochdruckgasentladungslampen, bei¬ spielsweise im privaten Bereich.
Der Erfindung liegt die Idee zugrunde, während der Erzeugung des Zündimpulses an der Lampe dafür zu sorgen, dass eine über die herkömmliche Wechselstromversorgung der Lampe hinausgehende elektrische Versorgung bereitgestellt wird, sodass das entste¬ hende Plasma zusätzlich unterstützt wird, wodurch letztlich sich die Wahrscheinlichkeit erhöht, dass ein Zündversuch Erfolg hat. Diese Unterstützung des Plasmas hin zu einer stabilen Ent- ladung hat darüber hinaus den Vorteil, dass bei der erfindungs¬ gemäßen Zündschaltungsanordnung im Vergleich zu herkömmlichen Schaltungen mit geringeren Zündspannungen gearbeitet werden kann, sodass sich auch hierdurch häufig die Anforderungen an die elektronischen und elektrischen Komponenten vermindern.
Vorteilhaft kann das erste Schaltermittel innerhalb zumindest einer Versorgungsspannungshalbwelle nach dem Überschreiten ei¬ nes vorgegebenen Momentanwertes der Versorgungsspannung durch das Steuermittel innerhalb eines Zeitintervalls zum Öffnen und Schließen angesteuert sein, wodurch zumindest ein Zündimpuls erzeugbar ist. Durch diese Maßnahme wird erreicht, dass die Zündung zu solchen Zeiten gestartet wird, bei welchen die Ver¬ sorgungsspannung oberhalb der Brennspannung der Lampe liegt, die notwendig ist um die Entladung aufrecht zu erhalten.
Je nach Ausführungsform kann innerhalb des vorgegebenen Inter¬ valls in einer Versorgungsspannungshalbwelle ein oder auch meh¬ rere primärseitigen Impulse durch entsprechendes Ansteuern des ersten Schaltermittels erzeugt werden. Dabei ist es aus den oben genannten Gründen zu bevorzugen, so wenig Impulse wie mög- lieh innerhalb der Versorgungsspannungshalbwelle zu erzeugen. Je nach verwendeter Lampe kann es jedoch auch vorteilhaft sein, mehrere solcher primärseitiger Impulse kurz hintereinander zu erzeugen um sicherzustellen, dass die Lampe zündet.
Grundsätzlich kann die erfindungsgemäße Zündschaltungsanord- nung ohne einen parallel zur Lampe angeordneten Zündkondensator ausgebildet sein. Aufgrund der in Wirklichkeit parallel zur Lampe immer vorhandenen Streukapazität ergibt sich bei einem primärseitig erzeugten Auslöseimpuls sekundärseitig zum Zünd- Übertrager in der Regel eine gedämpfte Schwingung. Deshalb kann es vorteilhaft sein, wenn sich die Ansteuerfrequenz für das erste Schaltermittel zur Erzeugung von Zündimpulsen innerhalb des Zeitintervalls in einer Versorgungsspannungshalbwelle ver¬ ändert, wobei die Ansteuerfrequenz größer 290 kHz ist. Damit lässt sich die Anregung von die Zündung behindernde Plas¬ maschwingungen verhindern. Als Schaltermittel eignen sich insbesondere elektronische Schalter, die Schaltzeiten von weniger als 1 μs aufweisen.
Bevorzugt kann ein die Gasentladungslampe überbrückender Strom¬ pfad zum Laden des Energiespeichers vorgesehen ist, welcher ein durch das Steuermittel angesteuertes zweites Schaltermittel aufweist. Der Ladestrompfad kann dabei z.B. zur Gasentladungs¬ lampe mittelbar oder unmittelbar parallel geschaltet sein. Durch das Vorsehen des Ladestrompfades wird erreicht, dass der Energiespeicher zur Stützung des Zündvorganges je nach Anwen¬ dung ganz speziell zum jeweiligen Bedarf mit der erforderlichen Energie versehen werden kann, die vor dem Zünden der Lampe aus der Versorgungsschaltung entnehmbar ist. Zur Steuerung des Auf- ladevorganges kann ein elektronischer steuerbarer Schalter wie ein bipolarer oder ein Feldeffekt-Transistor vorgesehen sein, über welchen der Strompfad geschlossen beziehungsweise geöffnet werden kann. Über die Ladezeit kann dabei die im Energiespei¬ cher zur Stützung des Zündvorganges abgelegte Energie festge- legt werden.
Grundsätzlich ist die erfindungsgemäße Zündschaltungsanordnung sowohl bei konventionellen Vorschaltgeräten (KVG) als auch bei elektronischen Vorschaltgeräten (EVG) einsetzbar. Die bei KVG' s in der Versorgungsschaltung seriell zur Lampe zum Zwecke der Strombegrenzung angeordnete Drosselspule kann vorteilhaft in der erfindungsgemäßen Zündschaltungsanordnung als der genannte Energiespeicher verwendet werden, welcher vorgeladen und ge¬ steuert zur Unterstützung der Zündung wirkt.
Um eine noch höhere Flexibilität bei dem Einstellen des Zünd¬ vorganges zur Verfügung zu stellen, kann vorgesehen sein, dass die Eingangsenergiequelle für die Zündauslöseschaltung, insbe¬ sondere eine der Zündauslöseschaltung zugeordnete Spannungs- quelle durch das Steuermittel variabel einstellbar ist. Inso¬ fern ergibt sich damit zusätzlich die Möglichkeit, bei Bedarf die Höhe des Zündimpulses einzustellen und zwar sowohl bei¬ spielsweise einheitlich bei einer Folge von Zündimpulsen als auch unterschiedlich. Die Höhe der Zündspannung ist damit grundsätzlich auf die jeweilige zu startende Lampe und deren Betriebszustand einstellbar. Ferner erlaubt die erfindungsgemä¬ ße Zündschaltungsanordnung auch das Erzeugen von mehreren Zünd¬ impulsen mit unterschiedlichen Spannungshöhen innerhalb eines einzelnen Zündvorganges. Dies kann unter Umständen dann sinn¬ voll sein, wenn nach dem Zünden des Plasmas mit einer hohen Zündspannung beispielsweise in einer nachfolgenden Versorgungs- spannungshalbwelle ein oder mehrere Zündimpulse mit geringerer Zündspannung zur Stützung oder Vollausbildung des in der vorhe¬ rigen Halbwelle gebildeten Plasmas erzeugt werden.
Es kann zweckmäßig sein, wenn ein Mittel zur Erfassung des La¬ destroms und/oder der Ladespannung des Energiespeichers vorge¬ sehen ist. Hierdurch ist insbesondere der Energiegehalt des den Zündvorgang unterstützenden Energiespeichers direkt ermittel¬ bar, wodurch der Zündvorgang sehr genau steuerbar ist. Bei- spielsweise kann das zweite Schaltermittel, mit welchem der Strompfad zur Ladung des Energiespeichers geschlossen bzw. ge¬ öffnet wird, im Ansprechen, d.h. abhängig von dem Ladezustand des Energiespeichers gesteuert werden.
Es kann ferner zweckmäßig sein, wenn sich die Ansteuerfrequenz des ersten Schaltermittels innerhalb des Zeitintervalls ausge¬ hend von einer vorgegebenen unteren Frequenz in Richtung zu hö¬ heren Frequenzen verändert. Diese Veränderung kann vorteilhaft bis zu einer vorgegebenen oberen Frequenz erfolgen, wobei die Änderung in Schritten als auch kontinuierlich durchgeführt wer¬ den kann. Besonders vorteilhafte Ansteuerfrequenzen für das erste Schaltermittel im Hinblick auf die Erzeugung eines gleichförmig gestalteten und stabilen Lichtbogens liegt zwi¬ schen 290 kHz und 700 kHz oder zwischen 800 kHz und 5 MHz.
Es ist zweckmäßig, wenn das Zeitintervall, innerhalb dessen der zumindest eine Zündimpuls erzeugt wird, durch den Zeitraum zwi¬ schen dem Zeitpunkt des Erreichens eines vorgegebenen Momentan- wertes und dem Zeitpunkt des Erreichens eines vorgegebenen Grenzwertes der Versorgungsspannung festgelegt ist. Ein solcher Grenzwert kann beispielsweise die Scheitelspannung der Versor¬ gungsspannung sein. Dabei liegt, wie obenstehend schon aufge¬ führt, der vorgegebene Wert über der für die Erhaltung der Bo¬ denentladung notwendigen Brennspannung. Somit ist sicherge¬ stellt, dass die Lampe nur zu solchen Zeitpunkten gezündet wird, an welchen die Versorgungsspannung über der Brennspannung der Lampe liegt und die Versorgungsspannung steigt. Je nach Ausführung kann das Zeitintervall für die Zündimpulse innerhalb einer Versorgungsspannungshalbwelle um den Faktor 2 dadurch verlängert werden, dass auch der Zeitraum zwischen dem Errei- chen der Scheitelspannung der Versorgungsspannung und der wei¬ tere Abfall der Spannung bis zum Erreichen des vorgegebenen Mindestwertes für den Zündvorgang genutzt wird.
Verfahrensseitig löst die Erfindung das obige Problem mit einem Verfahren zum Zünden einer Gasentladungslampe, die im Betrieb mittels einer Wechselstrom-Versorgungsschaltung mit elektri¬ scher Energie versorgt wird mit den Merkmalen von Anspruch 13. Dabei wird mittels einer einen Zündübertrager aufweisenden Zündschaltungsanordnung zumindest ein Zündimpuls erzeugt. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass zur Unterstützung des Zündvorganges vor der Erzeugung des zumindest einen Zündimpulses ein in der Versorgungsschaltung angeordne¬ ter, steuerbarer Energiespeicher aufgeladen wird und die im steuerbaren Energiespeicher gespeicherte Energie beim Zündvor- gang der Wechselstromversorgung der Lampe überlagert wird.
Das erfindungsgemäße Verfahren ermöglicht die Gestaltung von kleinen, integrierbaren Zündschaltungsanordnungen sowohl für die Kaltzündung als auch für die Heißzündung von Hochdruckgas- entladungslampen. Dabei kann es zweckmäßig sein, wenn innerhalb einer Halbwellen- versorgungsspannung nur ein einzelner Zündimpuls erzeugt wird, sodass besonders wenig Energie zum Zünden der Lampen aufgewen¬ det werden muss. Häufig reicht ein einzelnes Ein- und Ausschal- ten einer Auslöseschaltung wie z.B. eines IGBT (Insolated gate bipolar transistor) oder eines Feldeffekt-Transistors aus, um das Zünden der Lampe zu erreichen. Darüber hinaus kann es für den Aufbau und die Stabilität des Lichtbogens auch nützlich sein, wenn nach der Erzeugung des einen Zündimpulses innerhalb einer Halbwelle der Versorgungsspannung nachfolgend innerhalb der nachfolgenden Halbwelle wiederum beim Erreichen eines vor¬ gegebenen Momentanwertes der Versorgungsspannung zumindest ein weiterer Zündimpuls erzeugt wird. Unter Umständen kann es auch vorteilhaft sein, jeweils einen Impuls innerhalb mehrerer, bei- spielsweise hier aufeinanderfolgende Halbwellen der Versor¬ gungsspannung zu erzeugen um ein sicheres Zünden der Lampe zu erreichen.
Der Zündvorgang kann ferner durch Variieren der Spannung auf- einanderfolgender Zündimpulse eingestellt werden.
Es ist vorteilhaft, wenn für die Ladung des Energiespeichers vor der Erzeugung des zumindest einen Zündimpulses ein Lade¬ strompfad geschaltet wird, der vor der Erzeugung des ersten Zündimpulses, insbesondere nach Erreichen eines vorgegebenen und während des Ladevorganges erfassten Ladezustandes des Ener¬ giespeichers unterbrochen wird.
Insbesondere in solchen Fällen, bei denen der Energiespeicher durch eine Spule wie eine Drosselspule in einem KVG-Zündgerät bereitgestellt wird, kann es vorteilhaft sein, wenn nach Been¬ digung der Ladung des Energiespeichers und vor der Erzeugung des zumindest einen Zündimpulses durch Öffnen des Ladestrompfa¬ des eine parallel zur Lampe angeordnete Kapazität aufgeladen wird. Auf diese Weise kann erreicht werden, dass ein Großteil der vor dem Zündvorgang in der Spule gespeicherte Energie in einen Kondensator übergeführt wird, welcher zusätzlich zum an die Lampe angelegten Wechselstrom zur Versorgung der Lampe wäh¬ rend des Zündvorganges dient.
Die Erfindung wird im Folgenden durch die Beschreibung einiger Ausführungsformen der erfindungsgemäßen Zündschaltungsanordnung unter Zugrundelegen der beiliegenden Figuren beschrieben, wobei
Fig. 1 in einer Prinzipskizze eine erfindungsgemäß gestal- tete Zündschaltungsanordnung in einer ersten Ausfüh¬ rungsform,
Fig. 2 in einer Detailansicht die Gestaltung des ersten Schalters 40 der in Fig. 1 dargestellten Zündschal- tungsanordnung,
Fig. 3 den zeitlichen Verlauf eines Zündvorganges für die in Fig. 1 dargestellte Schaltung,
Fig. 4 eine erfindungsgemäß gestaltete Zündschaltungsanord¬ nung gemäß einer zweiten Ausführungsform,
Fig. 5 in einer Detailansicht die Gestaltung des ersten Schalters 40 der in Fig. 4 dargestellten Zündschal- tungsanordnung,
Fig. 6 den zeitlichen Verlauf eines Zündvorganges für die in Fig. 4 dargestellten Schaltung
zeigt.
Fig. 1 zeigt eine erfindungsgemäße Zündschaltungsanordnung 1 zusammen mit der zu zündenden Hochdruckgasentladungslampe 3. An den Eingangsklemmen L, N liegt die Netzspannung UN an. Die Lam- pe 3 wird über eine Lampendrossel 10 eines herkömmlichen KVG' s und die sekundärseitige Spulenwicklung 22 eines Zündübertragers 20 mit elektrischer Energie versorgt. Die Zündauslöseschaltung 2 umfasst als wesentliche Bauelemente einen Stoßkondensator 30, welcher über die Parallelschaltung eines Kondensators C2 und eines Widerstandes Rl aufladbar ist sowie eine primärseitige Spulenwicklung 21 des Zündübertragers 20. Die primärseitige Spulenwicklung 21 ist über den Zündübertragerkern 23 an die se- kundärseitige Spulenwicklung 22 gekoppelt, welche zur Übertra¬ gung und Transformation des Zündimpulses mit der Lampe 3 in Reihe geschaltet ist. Zum Auslösen des Zündimpulses ist in der Auslöseschaltung 2 ein erstes Schaltermittel mit zugeordneter Steuerung mit dem Bezugszeichen 40 angegeben. Darüber hinaus weist die erfindungsgemäße Zündschaltungsanordnung einen die Lampe 3 überbrückenden Strompfad auf, mit dem unabhängig von der Lampe und der Auslöseschaltung die Drossel 10 durch Betäti- gung eines weiteren Schaltermittels mit der Netzspannung UN aufladbar ist. In der Fig. 1 ist das weitere Schaltermittel zu¬ sammen mit der Steuerung mit dem Bezugszeichen 60 angegeben.
Wie der Fachmann erkennt, ist die in Fig. 1 dargestellte Zünd- Schaltungsanordnung als Überlagerungszündvorrichtung ausgebil¬ det, durch welche die erzeugten Zündspannungen der elektrischen Versorgung der Lampe 3 überlagert werden. In der Figur ist der Lampenstrom mit IL und die über die Lampe abfallende Spannung mit UL bezeichnet. Der Ladestrom der Lampendrossel 10 ist mit ILVG angegeben.
Fig. 2 zeigt in einer Detailansicht das Schaltermittel 40 (Schalter Sl) . Wesentliches Element ist ein Feldeffekttransis¬ tor 41, dessen Gatespannung UDSl durch eine Steuerung 51 be- reitgestellt ist. Diese Steuerung ist in der Lage, den Transis¬ tor je nach Programmierung zum einmaligen Öffnen und Schließen zur Erzeugung eines einzelnen primärseitigen Impulses und auch zum Ansteuern des Transistors zur Erzeugung von mehreren Impul¬ sen mit einer oder mehreren Frequenzen über ein vorbestimmtes Zeitintervall anzusteuern. Die vier jeweils paarweise dem Tran¬ sistor parallel geschalteten Dioden V4 bis V7 ermöglichen die Funktionsweise des Schalters sowohl bei positiver als auch bei negativer Halbwelle des Versorgungsnetzes.
Die Funktionsweise der in Fig. 1 dargestellten erfindungsgemä- ßen Zündschaltungsanordnung soll im Folgenden beschrieben wer¬ den. Vor dem ersten Zündversuch wird die Lampendrossel 10 über einen vorgegebenen Zeitraum und damit mit einer vorgegebenen elektrischen Energie aufgeladen, indem der Schalter S2 im zwei¬ ten Schaltermittel 60 mit zugeordneter Steuerung zum Schließen des Ladestrompfades angesteuert wird. Dabei fließt der Lade¬ strom ILVG in die Lampendrossel. Der Schalter S2 ist ähnlich dem in Fig. 2 dargestellten Schalter Sl aufgebaut, allein die Steuerung unterscheidet sich, da der zusätzliche Energiespei¬ cher in Form der Drossel in der beschriebenen Ausführungsform nur einmal zu Beginn des Zündvorganges aufgeladen wird. Nach dem Erreichen der vorgegebenen Energiemenge in der Drossel 10 wird der Schalter S2 wieder geöffnet. Insofern kann nachfolgend der Stoßkondensator Cl über das Netz und die vorher in der Drossel 10 gespeicherte Energie aufgeladen werden. Zu einem Zeitpunkt, bei welchem die Netzspannung oberhalb der Lampen- brennspannung liegt, wird der Schalter Sl zum einmaligen Öffnen und Schließen über einen Zeitraum von etwa einer μsec an- und wieder ausgeschaltet. Hierdurch entlädt sich der als Eingangs¬ energiequelle für die Auslöseschaltung dienende Stoßkondensator 30 über die primärseitige Spulenwicklung 21 des Zündübertragers 20. Die Magnetisierung der primärseitigen Spulenwicklung wird über den Zündübertragerkern 23 auf die sekundärseitige Spulen¬ wicklung 22 mit dem Übertragungsverhältnis des Zündübertragers transformiert und der Netzspannung überlagert. Ein sekundärsei- tiger Zündimpuls liegt somit an der Lampe 3 an, sodass diese zünden kann. Zündet diese nicht sofort, so ergibt sich auf der Versorgungsleitung aufgrund der immer vorhandenen parallel zur Lampe 3 angeordneten Streukapazität eine abklingende Schwin¬ gung, wobei der Schwingkreis über die Kondensatoren Cl und C2 geschlossen wird, sodass die Lampendrossel 10 nicht mit der Zündspannung belastet wird. Der zeitliche Verlauf der Zündung ist in Fig. 3 dargestellt. Dabei bezeichnet UL die Lampenspannung, UGSl die Gatespannung des Feldeffekttransistors V3, UGS2 die Gatespannung des Feldef- fekttransistors des zweiten Schalters S2 und L zeigt an, ob die Hochdruckgasentladungslampe brennt oder nicht. Wie aus den Fi¬ guren ersichtlich, brennt anfangs die Lampe nicht, d.h. UL ent¬ spricht dem Verlauf der Netzspannung UN. Zum Zeitpunkt Tl wird der Schalter S2 geschlossen, sodass die Drossel 10 aufgeladen werden kann, insofern bricht die Lampenspannung UL bei Tl zu¬ sammen. Zum Zeitpunkt T2 wird der Schalter S2 wieder geöffnet, die Lampenspannung steigt wieder an. Wenn die Lampenspannung größer als die Brennspannung der Lampe ist, wird zum Zeitpunkt T3 der Schalter Sl in der Auslöseschaltung geschlossen, sodass ein auf der Versorgerseite erzeugter Zündimpuls der Versor¬ gungsspannung überlagert wird. Im Zeitraum zwischen T3 und T2 wird die vorher in der Drossel 10 gespeicherte Energie an den Kondensator Cl zumindest teilweise abgegeben, sodass diese nun zur Erzeugung des Zündimpulses und für die Versorgung zusätz- lieh zur Verfügung steht und letztlich mit hoher Wahrschein¬ lichkeit schon beim ersten Zündimpulse die Lampe brennt, siehe das letzte Zeitdiagramm L in Fig. 3. Nach dem Zünden der Lampe ergibt sich die charakteristische Rechteckform für die Lampen- brennspannung.
Typische Schaltzeiten beziehungsweise Dauern bei der erfin¬ dungsgemäßen Zündschaltungsanordnung sind etwa einige zehn bis tausend Mikrosekünden für die Ladezeit der Drossel 10, einige bis einige zehn Mikrosekunden für die Ladung des Kondensators Cl über die Netzversorgung und die Drossel 10 sowie etwa eine Mikrosekunde für die Schaltdauer des Transistors in der Auslö¬ seschaltung. In der in Fig. 1 dargestellten Ausführungsform be¬ trägt die Induktivität der Lampendrossel 10 etwa 0,5 H, die Ka¬ pazität der Kondensatoren Cl bzw. C2 etwa 220 nF bzw. 10OnF so- wie die Induktivität Ll bzw. L2 des Zündübertragers etwa 10 μH bzw. 1 mH. Aufgrund der schon oben erwähnten Streukapazitäten wird durch den einzelnen primärseitigen Impuls versorgungssei- tig eine gedämpfte Zündimpulsschwingung erzeugt. Dies ist in Fig. 3 in der Darstellung von UL ersichtlich, wo nach dem Ent¬ stehen eines positiven Impulses ein negativer Zündpuls darge- stellt ist. Nach dem Anstoßen der Entladung wird diese gedämpf¬ te Schwingung abrupt beendet, was sich an dem nachfolgenden charakteristischen, rechteckförmigen Brennspannungsverlauf zeigt .
Die in Fig. 1 dargestellte Zündschaltungsanordnung ist sowohl zum Kaltzünden als auch zum Heißzünden von Hochdruckgasentla¬ dungslampen geeignet. Insbesondere bei besonders schwer heiß zündbaren Lampen kann die Steuerlogik 51 nach dem Laden der Drossel 10 zur mehrmaligen Erzeugung von Zündimpulsen innerhalb einer einzelnen Versorgungsspannungshalbwelle oder auch in meh¬ reren aufeinanderfolgenden Versorgungsspannungshalbwellen ange¬ steuert werden. Darüber hinaus ist es zur Unterstützung des Zündprozesses auch möglich, den Schalter in der Auslöseschal¬ tung in seiner Frequenz zu verändern um möglichst optimale Zündbedingungen zu erreichen. Beispielsweise kann die Ansteuer¬ frequenz für den Schalter Sl zwischen 290 kHz und 700 kHz oder zwischen 800 kHz und 5 MHz liegen. In diesem Fall werden im Un¬ terschied zu der bisher beschriebenen Ausführungsform eine Vielzahl von Zündimpulsen bis zum Erreichen der Entladung er- zeugt, was natürlich mit einem erhöhten Energieaufwand verbun¬ den ist. In diesem Fall sind die elektronischen Komponenten entsprechend auszulegen.
Fig. 4 zeigt eine weitere Ausführungsform einer erfindungsgemä- ßen Zündschaltungsanordnung. Funktionsgemäß gleiche oder ähnli¬ che Bauelemente sind mit den gleichen Bezugsziffern wie in Fig. 1 versehen. Auch bei dieser Zündschaltungsanordnung wird die Auslöseschaltung über einen Zündübertrager 20, welcher eine primärseitige Wicklung 21 und eine sekundärseitige Wicklung 22 aufweist, mit der Lampe gekoppelt. Die Spannungsversorgung des Auslöseschaltkreises wird durch einen steuerbaren Gleichrichter 31 bereitgestellt. Alle wesentlichen Steuermittel sind in einem einzelnen Controller 50 zusammengefasst, welcher den Schalter Sl in der Auslöseschaltung und den Feldeffekttransistor 61 im Ladestrompfad für die Lampendrossel 10 über deren Gate- Leitungen ansteuert. Über Messvorrichtungen 80, 70 wird der Versorgungsstrom und der Momentanwert der Netzspannung erfasst und dem Controller 50 zugeführt. Insofern ist beispielsweise während der Ladung der Drossel 10 deren Ladezustand messbar, sodass mit hoher Genauigkeit die für die Zündung zusätzlich be- reitgestellte Energie eingestellt werden kann. Die Bauteile Cl, Rl, Vl, V2 und C2 dienen der Versorgung des Controllers. Im Un¬ terschied zu der in Fig. 1 dargestellten Ausführungsform ist der Schalter Sl einpolar ausgebildet, siehe Fig. 5, da die Ein¬ gangsspannung der Auslöseschalter durch den gesteuerten Gleich- richter 31 bereitgestellt wird. Die Parallelschaltung des Kon¬ densators C3 zur Lampe 3 dient wiederum als Hochfrequenz- Rückschlusskondensatoreinrichtung um die Drossel 10 nicht mit dem Hochspannungsimpuls zu belasten. Darüber hinaus wird vor der Zündung und nach der Ladung des Energiespeichers 10 ein Teil der dort gespeicherten Energie in den Kondensator C3 umge¬ laden, wobei diese zusätzliche Energie erfindungsgemäß zur Un¬ terstützung des Aufbaus der Entladung in der Lampe 3 während des Zündvorganges dient.
Wie aus Fig. 4 hervorgeht, wird die Versorgungsspannung für den gesteuerten Gleichrichter 31 und die Steuerung 50 an dem An- schluss der Drossel 10 abgegriffen, welcher der Lampe abgewandt ist. In einer nicht dargestellten weiteren Ausführungsform der Erfindung werden diese Versorgungsspannungen an dem anderen An- Schluss der Drossel abgegriffen, d.h. dem Anschluss, welcher der Lampe zugewandt und in Figur 4 mit dem Buchstaben „B" ge¬ kennzeichnet ist. Hierdurch kann die Anzahl der notwendigen An¬ schlusskabel vermindert werden.
Die in Fig. 4 dargestellte Zündschaltungsanordnung arbeitet im wesentlichen wie die in Fig. 1 gezeigte. Ein Unterschied be- steht darin, dass durch den Controller 50 die Energieversor¬ gungsspannung für die Auslöseschaltung gesteuert und insofern die Höhe des Zündimpulses sehr genau einstellbar ist. Durch das Schließen des Schalters Sl fließt ein Strom vom Gleichrichter 31 über die Primärwicklung 21 des Zündübertragers 20 und den geschlossenen Schalter Sl nach Masse, wodurch über die Sekun¬ därwicklung 22 in der Versorgungsleitung ein Zündimpuls in ähn¬ licher Weise wie obenstehend beschrieben erzeugt wird.
Wie in der ersten Ausführungsform kann der Schalter Sl zur Er¬ zeugung eines einzelnen primärseitigen Impulses, jedoch auch zur Erzeugung einer Pulsfolge mit vorgegebener und/oder variie¬ render Frequenz verwendet werden. Darüber hinaus kann über den Controller 50 durch Einstellen der Ladezeit zum gesteuerten La- den der Drossel 10 abhängig von der Dimensionierung der Drossel und des Kondensators C3 die Energie festgelegt werden, welche zusätzlich beim Zündvorgang für die Entladung bereitsteht. In¬ sofern sind die verschiedenen Zündparameter in Abhängigkeit von der angeschlossenen Lampe sehr genau einstellbar, was wiederum ein sicheres Zünden der Lampe mit geringstmöglichem Energie- und damit Schaltungsaufwand ermöglicht, unabhängig davon, ob die Lampe kalt oder heiß zu zünden ist. In einer nicht darge¬ stellten Ausführungsform erkennt die Steuerung, wenn eine Hei߬ zündung notwendig ist und stellt daraufhin die Zündparameter wie die Schaltzeiten der beiden Schalter, die Anzahl der pri¬ märseitigen Pulse und beispielsweise die Höhe der Eingangsspan¬ nung der Auslöseschaltung ein.
Fig. 6 zeigt den Zeitverlauf des Zündvorganges bei der in Fig. 4 dargestellten erfindungsgemäßen Zündschaltungsanordnung. Wie¬ derum sind die zeitlichen Verläufe der Lampenspannung UL, der Gate-Ansteuerspannungen UGSl, UGS2 und der Zustand der Lampe L angegeben. Auch in dem dargestellten Beispiel wird nach dem La¬ den des Speichers 10 innerhalb des Zeitraums (T2 -Tl) und dem nachfolgenden Aufbau der Netzspannung an der Lampe beziehungs¬ weise der Entladung des zusätzlichen Energiespeichers 10 in den Kondensator C3 innerhalb der Netzspannungshalbwelle ein einzel¬ ner primärseitiger Impuls zum Zeitpunkt T3 erzeugt. Die Schal¬ tungsanordnung reagiert wie obenstehend beschrieben sekundär- seitig auf der Versorgungsleitung mit der Erzeugung einer ge- dämpften Zündimpulsschwingung. In dem in Fig. 6 gezeigten Ver¬ lauf brennt die Lampe jedoch nach dem ersten Zündimpuls noch nicht, was sich in dem nachfolgenden sinusförmigen Verlauf der Lampenspannung zeigt. Durch den ersten Zündpuls wurde zwar noch keine vollständige Entladung, jedoch eine Teilionisierung des Gases erreicht. Im dargestellten Beispiel wird die Entladung erst mit einem nachfolgenden Zündpuls durch entsprechendes An¬ steuern des Schalters Sl zum Zeitpunkt T4 erzeugt. Wie aus dem Zustandsverlauf der Lampe L und der Lampenspannung UL ersicht¬ lich, startet die Entladung nach dem zweiten primärseitigen Puls, der als Zündpuls sekundärseitig der Versorgungsspannung überlagert wird. Aus der Darstellung von UL geht hervor, dass der zweite Zündpuls zum Zeitpunkt T4 kleiner als der erste ist. Dies wird dadurch erreicht, dass der Controller 50 den steuer¬ baren Gleichrichter 31 für den zweiten Impuls in der zweiten Versorgungsspannungshalbwelle zur Ausgabe einer im Vergleich zum ersten Impuls kleineren Eingangsspannung für die Auslöse¬ schaltung ansteuert, sodass sich die beiden sekundärseitigen Spannungsimpulse wie in Fig. 6 gezeigt, um den Betrag ΔUL un¬ terscheiden. Beispielsweise kann zum Kaltstarten einer Hoch- druckgasentladungslampe die Schaltung zur Erzeugung eines se¬ kundärseitigen Zündimpulses von tausend Volt zum Zeitpunkt T3 und eines Zündimpulses von 700 Volt zum Zeitpunkt T4 ausrei¬ chen, da bekannt ist, dass die angeschlossene Lampe unter den angegebenen Bedingungen noch zündet. Auf diese Weise können die elektronischen Komponenten beziehungsweise die Lampe geschont werden, was deren Standzeit erhöht.
Der Fachmann erkennt, dass bei der in Fig. 4 dargestellten er¬ findungsgemäßen Zündschaltungsanordnung die Auslöseschaltung auch zu der Erzeugung einer Mehrzahl von Zündimpulsen fester oder veränderlicher Frequenz verwendet werden kann. Darüber hinaus sei darauf hingewiesen, dass die in Fig. 4 dargestellte Zündschaltungsanordnung eingerichtet ist, Zündimpulse innerhalb einer positiven Halbwelle der Versorgungsspannung zu erzeugen. Sollen demnach in nacheinanderfolgenden Halbwellen Zündpulse erzeugt werden, liegt bei der in Fig. 4 dargestellten Ausfüh¬ rungsform zwischen Halbwellen mit erzeugten Impulsen immer eine negative Halbwelle, bei welcher keine Zündpulse erzeugt werden können. Dem Fachmann sind jedoch ohne weiteres Gestaltungsmög¬ lichkeiten bekannt, mit welchen dieser Nachteil umgangen werden kann. Beispielsweise ist es mit der in Fig. 1 dargestellten Ausführungsform durch den bipolaren Charakter der Auslöseschal¬ tung möglich, Zündpulse in aufeinanderfolgenden und benachbar¬ ten Halbwellen der Versorgungsspannung zu erzeugen.
Zündgerät
Bezugszeichenliste
I Zündschaltungsanordnung 2 Auslöseschaltung
3 Hochdruckgasentladungslampe
10 Energiespeicher, Lampendrossel
20 Zündübertrager
21 Primärseitige Spulenwicklung/Spule 22 Sekundärseitige Spulenwicklung/Spule
23 Zündübertragerkern
30 Stoßkondensator
31 Steuerbarer Gleichrichter
40 Erstes Schaltmittel mit Steuerung 41 FET
50 Steuermittel, Controller
51 Steuerung für Schalter Sl
60 Zweites Schaltermittel mit Steuerung
61 Feldeffekttransistor (FET) 70 Erfassungsmittel für Momentanwert der Netzspannung
80 Erfassungsmittel für Ladestrom/Lampenstrom
II Lampenstrom
ILVG Ladestrom des Vorschaltgeräts (VG)
UG3I Gate-Ansteuerung des Schalters Sl UG32 Gate-Ansteuerung des Schalters S2 UN Netzspannung
UL Brennspannung
Sl,
S2 Schalter
(T2
-Tl) Ladezeit
T3 Erster Zündpulszeitpunkt
T4 Zweiter Zündpulszeitpunkt

Claims

ZündgerätPatentansprüche
1. Zündschaltungsanordnung (1) zum Zünden einer Gasentla¬ dungslampe, insbesondere eine Hochdruckgasentladungs- lampe (3), der eine Versorgungsschaltung zur Bereit¬ stellung einer Wechselstrom-Versorgungsspannung (UN) an die Lampe zugeordnet ist, umfassend
- einen Zündübertrager (20), welcher primärseitig mit einer Auslöseschaltung (2) und sekundärseitig zur Über- tragung eines Zündimpulses mit der Lampe (3) verbunden ist;
- eine Eingangsenergiequelle (30, 31) für die Zündaus¬ löseschaltung;
- ein erstes Schaltermittel (40) in der Auslöseschal- tung und;
- ein Steuermittel (50), welches das erste Schaltermit¬ tel (40) ansteuert, da du r ch g e ke nn z e i chn e t , da s s zur Unterstützung des Zündvorganges in der Ver¬ sorgungsschaltung in Reihe zur Gasentladungslampe (3) ein durch das Steuermittel (50) steuerbarer Energie¬ speicher (10), insbesondere eine durch das Steuermittel steuerbare Spannungsquelle angeordnet ist.
2. Zündschaltungsanordnung nach Anspruch 1, g e kenn - z e i ch ne t du r ch ein Mittel (70) zum Erfassen des Momentanwertes der Versorgungsspannung, wobei das erste Schaltermittel innerhalb zumindest einer Versorgungs- spannungshalbwelle nach dem Überschreiten eines vorge¬ gebenen Momentanwertes der Versorgungsspannung durch das Steuermittel innerhalb eines Zeitintervalls zum Öffnen und Schließen angesteuert ist.
3. Zündschaltungsanordnung nach Anspruch 2, dadu r ch g e ke nn z e i chn e t , da s s sich die Ansteuerfre- quenz für das erste Schaltermittel innerhalb des Zeit¬ intervalls verändert, wobei die Ansteuerfrequenz größer 290 KHz ist.
4. Zündschaltungsanordnung nach Anspruch 1, 2 oder 3, da - dur ch ge kenn z e i chne t , da s s ein die Gas¬ entladungslampe überbrückender Strompfad zum Laden des Energiespeichers vorgesehen ist, welcher ein durch das Steuermittel angesteuertes zweites Schaltermittel (60) umfasst.
5. Zündschaltungsanordnung nach einem der Ansprüche 1 bis
4, d a du r ch g e ke n n z e i c hn e t , da s s der E- nergiespeicher durch eine Drosselspule (10) in der Ver¬ sorgungsschaltung gebildet ist.
6. Zündschaltungsanordnung nach einem der Ansprüche 1 bis
5, da du r ch ge kenn z e i chn e t , da s s die Ein¬ gangsenergiequelle (30) für die Zündauslöseschaltung als Spannungsquelle ausgebildet ist und durch das Steu- ermittel (50) variabel einstellbar ist.
7. Zündschaltungsanordnung nach einem der Ansprüche 1 bis
6, g e ke nn z e i chn e t du r c h Mittel (80) zur Er¬ fassung des Ladestroms und/oder der Ladespannung des Energiespeichers.
8. Zündschaltungsanordnung nach einem der Ansprüche 3 bis 7, da du r ch g e kenn z e i chn e t , da s s sich die Ansteuerfrequenz des ersten Schaltermittels (41) inner¬ halb des Zeitintervall ausgehend von einer vorgegebenen unteren Frequenz in Richtung zu höheren Frequenzen ver¬ ändert.
9. Zündschaltungsanordnung nach Anspruch 8, dadur c h g e ke nn z e i chn e t , da s s sich die Ansteuerfre- quenz des ersten Schaltermittels (41) innerhalb des Zeitintervalls bis zu einer vorgegebenen oberen Fre¬ quenz erhöht.
10. Zündschaltungsanordnung nach einem der Ansprüche 3 bis 9, dadu r c h ge kenn z e i chn e t , da s s sich die
Ansteuerfrequenz des ersten Schaltermittels innerhalb des Zeitintervalls kontinuierlich verändert.
11. Zündschaltungsanordnung nach einem der Ansprüche 1 bis 10, da du rc h g e ke nn z e i chne t , da s s das
Zeitintervall durch den Zeitraum zwischen dem Zeitpunkt des Erreichens des vorgegebenen Wertes und dem Zeit¬ punkt des Erreichens eines vorgegebenen Grenzwertes, insbesondere der Scheitelspannung der Versorgungsspan- nung festgelegt ist.
12. Zündschaltungsanordnung nach einem der Ansprüche 1 bis 11, da du rc h g e ke nn z e i chne t , da s s die An¬ steuerfrequenz des ersten Schaltermittels (40, 41) zwi- sehen 290 kHz und 700 KHz oder zwischen 800 kHz und 5 MHz liegt.
13. Verfahren zum Zünden einer Gasentladungslampe, insbesonde¬ re einer Hochdruckgasentladungslampe die im Betrieb mit- tels einer Wechselstrom-Versorgungsschaltung mit elektri¬ scher Energie versorgt wird, wobei mittels einer einen Zündübertrager (20) aufweisende Zündschaltungsanordnung (1) zumindest ein Zündimpuls erzeugt wird, da du r c h g e k e n n z e i c h n e t , da s s zur Unterstützung des Zündvorganges vor der Erzeugung des zumindest einen Zünd- impulses ein in der Versorgungsschaltung angeordneter, steuerbarer Energiespeicher (10) aufgeladen wird, und zu¬ mindest ein Teil der im steuerbaren Energiespeicher ge¬ speicherten Energie beim Zündvorgang der Wechselstromver¬ sorgung der Lampe überlagert wird.
14. Verfahren nach Anspruch 13, d a du r ch g e k e n n ¬ z e i c h n e t , da s s innerhalb einer Halbwelle der Ver¬ sorgungsspannung ein einzelner Zündpuls erzeugt wird.
15. Verfahren nach Anspruch 13 oder 14, da dur c h ge ¬ ke n n z e i chn e t , da s s nach der Erzeugung zumindest eines Zündimpulses innerhalb einer Halbwelle der Versor¬ gungsspannung innerhalb einer nachfolgenden Halbwelle beim Erreichen eines vorgegebenen Momentanwertes der Versor- gungsspannung zumindest ein weiterer Zündimpuls erzeugt wird.
16. Verfahren nach Anspruch 15, d a du r c h g e k e n n ¬ z e i chne t , da s s die Eingangsspannung einer Auslöse- schaltung (2) für die Erzeugung des zumindest einen Zünd¬ impulses in der nachfolgenden Halbwelle im Vergleich zur Eingangsspannung für die Erzeugung des zumindest einen Zündimpulses in der vorherigen Halbwelle kleiner einge¬ stellt wird.
17. Verfahren nach einem der Ansprüche 13 bis 16, d a du rc h g e ke nn z e i chne t , da s s zur Ladung des aufladbaren Energiespeichers (10) vor der Erzeugung des zumindest ei¬ nen Zündimpulses ein Ladestrompfad geschaltet wird, der vor der Erzeugung des ersten Zündimpulses unterbrochen wird.
18. Verfahren nach Anspruch 17, da du r c h g e k e n n ¬ z e i c h n e t , da s s nach Beendigung der Ladung des Energiespeichers und vor der Erzeugung des zumindest einen Zündimpulses durch Öffnen des Ladestrompfades eine paral¬ lel zur Lampe angeordnete Kapazität (Cl; C3) aufgeladen wird.
19. Verfahren nach einem der Ansprüche 13 bis 18, da du r ch g e ke nn z e i c hn e t , da s s der Ladestrom und/oder die
Momentanspannung des Energiespeichers (10) erfasst wird.
20. Verfahren nach Anspruch 19, da du r c h g e ke nn ¬ z e i chne t , da s s die Eingangsspannung einer Zündaus- löseschaltung (2) für die Erzeugung des zumindest einen Zündimpulses im Ansprechen auf die Erfassung des Ladestro¬ mes und/oder auf die Erfassung der Momentanspannung des Energiespeichers (10) gesteuert wird.
PCT/DE2005/001364 2004-09-22 2005-08-03 Zündgerät WO2006032228A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/575,735 US8080944B2 (en) 2004-09-22 2005-08-03 Ignition device
EP20050776738 EP1792523B1 (de) 2004-09-22 2005-08-03 Zündgerät
CN2005800320259A CN101027943B (zh) 2004-09-22 2005-08-03 点燃装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004045834.0 2004-09-22
DE102004045834A DE102004045834A1 (de) 2004-09-22 2004-09-22 Zündgerät

Publications (1)

Publication Number Publication Date
WO2006032228A1 true WO2006032228A1 (de) 2006-03-30

Family

ID=35265733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/001364 WO2006032228A1 (de) 2004-09-22 2005-08-03 Zündgerät

Country Status (7)

Country Link
US (1) US8080944B2 (de)
EP (1) EP1792523B1 (de)
CN (1) CN101027943B (de)
DE (1) DE102004045834A1 (de)
RU (1) RU2403689C2 (de)
WO (1) WO2006032228A1 (de)
ZA (1) ZA200703086B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537354A (ja) * 2010-09-22 2013-09-30 オスラム ゲーエムベーハー 高圧放電ランプの始動方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016827A1 (de) * 2006-04-07 2007-10-11 Bag Electronics Gmbh Schaltungsanordnung für Hochdruck-Gasentladungslampen
DE102007009736A1 (de) * 2007-02-28 2008-09-04 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung und Verfahren zur Leistungsanpassung von Hochdruck-Entladungslampen
DE202007003032U1 (de) * 2007-03-01 2007-06-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Auswertevorrichtung für die Zündenergie einer Entladungslampe
DE102008004787A1 (de) * 2008-01-17 2009-07-23 Bag Electronics Gmbh Zündgerät mit zwei Eingangspolen
CA2713563A1 (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co., Ltd. High pressure discharge lamp lighting device and lighting fixture using the same
EP2230744B1 (de) * 2009-03-19 2012-05-16 Braun GmbH Schaltungsanordnung und Verfahren zur Ladeerkennung
TWI400136B (zh) * 2009-12-30 2013-07-01 Ind Tech Res Inst 放電電源控制方法與裝置
DE102010042776A1 (de) * 2010-10-21 2012-04-26 Bag Engineering Gmbh Vorrichtung und Verfahren zur Zündung von HID-Lampen mit CWA
DE102010043081A1 (de) * 2010-10-28 2012-05-03 Bag Engineering Gmbh Zündschaltungsanordnung zum Zünden einer Entladungslampe wie einer Hochdrucklampe
WO2013058963A1 (en) * 2011-10-20 2013-04-25 Xenon Corporation Circuit for flash lamp
DE102012204324A1 (de) * 2012-03-15 2013-09-19 Osram Gmbh Zündvorrichtung für eine Hochdruckentladungslampe und Betriebsvorrichtung mit einer derartigen Zündvorrichtung
CN110337167A (zh) * 2019-07-03 2019-10-15 昆山书豪仪器科技有限公司 一种电弧放电光源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0506543A1 (de) * 1991-03-29 1992-09-30 Valeo Vision Beleuchtungssystem mit Entladungslampe für ein Fahrzeug sowie Zündungsverfahren und elektrische Versorgung für die Entladungslampe
DE29806901U1 (de) * 1997-06-06 1998-10-08 Tridonic Bauelemente Ges.M.B.H., Dornbirn Zündschaltung für Hochdruck-Gasentladungslampen
US6323603B1 (en) * 1998-02-18 2001-11-27 Nicollet Technologies Corporation Resonant flyback ignitor circuit for a gas discharge lamp control circuit
US6323604B1 (en) * 1999-05-20 2001-11-27 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Circuit arrangement, an assigned electrical system and a discharge lamp with such a circuit arrangement, and a method for operating it

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886405A (en) * 1972-02-07 1975-05-27 Mamiya Camera Device for operating discharge lamps
US4234822A (en) * 1978-05-03 1980-11-18 Gte Products Corporation Control circuit providing constant power source
US4479076A (en) * 1980-10-15 1984-10-23 West Electric Co., Ltd. Power saving device for electronic flash
DE3438002A1 (de) * 1984-10-17 1986-04-17 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung zum zuenden und betrieb von gasentladungslampen
US5615093A (en) * 1994-08-05 1997-03-25 Linfinity Microelectronics Current synchronous zero voltage switching resonant topology
US5579197A (en) * 1995-01-24 1996-11-26 Best Power Technology, Incorporated Backup power system and method
US5530321A (en) * 1995-02-21 1996-06-25 Sears; Lawrence M. Power supply for a gas discharge lamp
DE19531622B4 (de) * 1995-08-28 2011-01-13 Tridonicatco Gmbh & Co. Kg Zündschaltung für eine Hochdruck-Gasentladungslampe
TW330369B (en) * 1995-10-09 1998-04-21 Philips Electronics Nv Circuit arrangement
DE19544838A1 (de) * 1995-12-01 1997-06-05 Bosch Gmbh Robert Zündvorrichtung für eine Hochdruck-Gasentladungslampe
DE19712258A1 (de) * 1997-03-24 1998-10-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltung zur Zündung einer Hochdruckentladungslampe
US6104147A (en) * 1997-10-28 2000-08-15 Matsushita Electric Works, Ltd. Pulse generator and discharge lamp lighting device using same
DE29806101U1 (de) * 1998-04-03 1998-07-16 Festa International Holding AG, 06449 Aschersleben Mechanischer Heber zur Fenstermontage
US6504313B1 (en) * 2000-10-13 2003-01-07 Koninklijke Philips Electronics N.V. Ignition scheme for electronic HID ballast
US6608451B2 (en) * 2001-10-26 2003-08-19 General Electric Company Ballast circuit with an ignitor for starting multiple HID lamps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0506543A1 (de) * 1991-03-29 1992-09-30 Valeo Vision Beleuchtungssystem mit Entladungslampe für ein Fahrzeug sowie Zündungsverfahren und elektrische Versorgung für die Entladungslampe
DE29806901U1 (de) * 1997-06-06 1998-10-08 Tridonic Bauelemente Ges.M.B.H., Dornbirn Zündschaltung für Hochdruck-Gasentladungslampen
US6323603B1 (en) * 1998-02-18 2001-11-27 Nicollet Technologies Corporation Resonant flyback ignitor circuit for a gas discharge lamp control circuit
US6323604B1 (en) * 1999-05-20 2001-11-27 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Circuit arrangement, an assigned electrical system and a discharge lamp with such a circuit arrangement, and a method for operating it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537354A (ja) * 2010-09-22 2013-09-30 オスラム ゲーエムベーハー 高圧放電ランプの始動方法

Also Published As

Publication number Publication date
RU2403689C2 (ru) 2010-11-10
EP1792523B1 (de) 2015-04-22
CN101027943A (zh) 2007-08-29
US8080944B2 (en) 2011-12-20
EP1792523A1 (de) 2007-06-06
US20080174252A1 (en) 2008-07-24
DE102004045834A1 (de) 2006-03-23
ZA200703086B (en) 2008-09-25
CN101027943B (zh) 2010-10-13
RU2007115068A (ru) 2008-10-27

Similar Documents

Publication Publication Date Title
EP1792523B1 (de) Zündgerät
EP1333707B1 (de) Elektronisches Vorschaltgerät für Gasentladungslampe
DE69820619T2 (de) Resonanzzündgerät für Entladungslampen
EP1114571A1 (de) Schaltungsanordnung zum betreiben von gasentladungslampen
DE4014391A1 (de) Lichtstellsystem fuer kompakt-leuchtstoffroehren
DE3881025T2 (de) Schaltung fuer eine hochleistungslampe mit starker entladung.
EP0740492B1 (de) Verfahren und Schaltungsanordnung zum Starten und Betreiben einer Entladungslampe
EP1705961A2 (de) Schaltungsanordnung und Verfahren zum Betreiben von Lampen
EP0868115B1 (de) Schaltung zur Zündung einer HID-Lampe
DE10138936A1 (de) Einschalteinrichtung für eine Gasentladungslampe
EP1869951A1 (de) Hochdruckgasentladungslampeimpulszündvorrichtung mit piezoelektrischem transformator
DE60122192T2 (de) Schaltungsanordnung
EP1124406B1 (de) Betriebsverfahren für eine Entladungslampe mit mindestens einer dielektrisch behinderten Elektrode
WO2005107339A1 (de) Vorrichtung zur erzeugung von elektrischen spannungsimpulsfolgen, insbesondere zum betrieb von kapazitiven entladungslampen
EP0471228B1 (de) Elektronisches Startgerät für Fluoreszenzlampen
EP2263423B1 (de) Schaltungsanordnung zum zünden von hid-gasentladungslampen
DE2029490A1 (de) Elektrische Einrichtung zum konti nuierhchen Impulsbetrieb einer Gasent ladung slampe sowie Verfahren zu deren Betrieb
DE3625499A1 (de) Zuendgeraet fuer netzunabhaengig versorgte hochdruck-entladungslampen
DE4108106A1 (de) Verfahren und vorrichtung zur reduzierung des einschaltstromstosses beim betreiben einer induktivitaetsbehafteten last
EP1238195B1 (de) Steuerbare zündschaltung
DE10100037A1 (de) Schaltungsanordnung zum Betrieb von elektrischen Lampen
DE69737056T2 (de) Schaltungsanordnung
EP2524580A2 (de) Verfahren zum zünden einer hochdruckentladungslampe
DE29806901U1 (de) Zündschaltung für Hochdruck-Gasentladungslampen
DE10124636A1 (de) Betriebsgerät für Entladungslampen mit sicherer Zündung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005776738

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1852/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580032025.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007115068

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005776738

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11575735

Country of ref document: US