WO2006028268A1 - 顔料、顔料の製造方法、顔料分散体、顔料分散体の製造方法、記録用インク、記録方法及び記録画像 - Google Patents

顔料、顔料の製造方法、顔料分散体、顔料分散体の製造方法、記録用インク、記録方法及び記録画像 Download PDF

Info

Publication number
WO2006028268A1
WO2006028268A1 PCT/JP2005/016983 JP2005016983W WO2006028268A1 WO 2006028268 A1 WO2006028268 A1 WO 2006028268A1 JP 2005016983 W JP2005016983 W JP 2005016983W WO 2006028268 A1 WO2006028268 A1 WO 2006028268A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
dispersion
dye
precursor
colored pigment
Prior art date
Application number
PCT/JP2005/016983
Other languages
English (en)
French (fr)
Inventor
Minako Kawabe
Akira Nagashima
Takayuki Ishikawa
Sadayuki Sugama
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to EP05783551A priority Critical patent/EP1792960A1/en
Priority to JP2006535183A priority patent/JPWO2006028268A1/ja
Priority to US11/367,543 priority patent/US20060194897A1/en
Publication of WO2006028268A1 publication Critical patent/WO2006028268A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/009Non common dispersing agents polymeric dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks

Definitions

  • Pigment Method for producing pigment, pigment dispersion, method for producing pigment dispersion,
  • the present invention relates to a pigment, a method for producing a pigment, a pigment dispersion, a method for producing a pigment dispersion, a recording ink using the same, a recording method, and a recorded image. More specifically, the present invention relates to a pigment dispersion in which the particle diameter of the pigment is stable and dispersion is stable, a method for producing the pigment dispersion, a recording ink using the pigment dispersion, a recording method using the recording ink, and a recorded image. It is. Background art
  • dyes have been used as coloring materials for inkjet recording liquids (inks) that require high definition.
  • Dye-based inks can give images with characteristics such as high transparency, high definition, and excellent color rendering, but they have problems such as poor light fastness and water fastness.
  • pigment inks using organic pigments or carbon black as a color material instead of dyes have been manufactured.
  • the color material used in the ink has been shifted from a dye to a pigment.
  • various proposals have been made as follows.
  • a compound (dye) that undergoes reverse Diels-Alder reaction is imparted to a recording medium containing a metal compound, and the compound (dye) that undergoes reverse Diels-Alder reaction is allowed to undergo reverse Diels-Alder reaction.
  • proposals for pigmentation have been made.
  • the obtained pigment is converted to a pigment insolubilized in the solvent on the recording medium, but the color unevenness is not obtained.
  • Many images are recorded. When this recorded image was examined using various observation devices such as an X-ray diffractometer, it was found that it was in a non-uniform pigmented state, a mixed crystal state, and an agglomerated state. In order to obtain a good recorded image Has the problem of making the pigment into a single crystal. '
  • Some pigments have the same chemical formula, composition, and structure but take two or more crystal forms, which are called polymorphs.
  • polymorphs there are ⁇ - type, ⁇ -type, ⁇ -type, etc., which are the same as phthalocyanine bull, and these have different hue and hiding power because they have different absorption coefficient and refractive index.
  • Organic pigments are used not only as paints in the paint field, but also in the electronics field.
  • Phthalocyanines are widely studied as organic pigments that meet this requirement. Phthalocyanines are medium Depending on the type of core metal, the absorption spectrum differs not only in photoconductivity, but also in the physical properties of these crystals, there is a difference in their physical properties. Several examples have been selected for use.
  • Metal-free phthalocyanine has been reported to have high photoconductivity in the X-type crystal form and sensitivity to near-infrared light of more than 800 ⁇ ⁇ , m, and copper phthalocyanine. In, among the many crystal types, the ⁇ type is reported to be most sensitive to long wavelengths. However, X-type metal-free phthalocyanine is a metastable crystal type, and its production is difficult, and it is difficult to obtain a stable quality product. On the other hand, ⁇ -type copper phthalocyanine has 0 spectral sensitivity extending to a longer wavelength when compared to ⁇ -type and ⁇ -type copper phthalocyanine, but at 800 nm, it decreases sharply compared to 7800 nm.
  • Copper phthalocyanine is known to have large differences in chargeability, dark decay, sensitivity, etc. due to differences in crystal types such as ⁇ , ⁇ , ⁇ , and ⁇ types (eg dyes and chemicals, Vol. 24). No. 6, see ⁇ 1 2 2 (1 9 8 4)), and it has also been reported that the spectral sensitivity changes due to the difference in the absorption 5 spectrum depending on the crystal type (for example, Journal of Electrophotographic Society 2 Volume 2, Issue 2, pill (see 1 9 8 4)).
  • An object of the present invention is to provide a pigment, a pigment dispersion, and a pigment ink that have been provided by a conventional production method, a mixed crystal problem of the pigment and the pigment dispersion, a wide particle size distribution problem of the pigment dispersion, and Problems of color unevenness of recorded images obtained by the pigment ink using the pigment and the pigment dispersion, and coloring problems due to the lot of the pigment dispersion used. It is to solve the problem of unstable discharge.
  • a colored pigment that is substantially a primary particle maintaining type.
  • the colored pigment is obtained by converting the molecular structure of a dye monomolecular precursor.
  • the dye single molecule precursor has a structure represented by the following general formula (11A), (11B), (11C), (1-D), A colored pigment characterized in that the molecular structure conversion of is expressed by using a reverse Diels-Alder reaction.
  • Ri to R 4 each independently represents a hydrogen atom, or a solubility-imparting group for a liquid medium directly or indirectly bonded
  • R 5 to R 8 are a hydrogen atom or a direct Represents a substituent bonded to the target or indirectly.
  • a method for producing a colored pigment that is substantially of a primary particle maintaining type comprising a step of dissolving or dispersing a dye monomolecular precursor forming the organic pigment in a liquid, and the dye monomolecular precursor. And a step of obtaining the colored pigment by converting the molecular structure of the body.
  • the dye single molecule precursor has a structure represented by the following general formula (1—A), (1—B), (1 1 C), (1 1 D), A method for producing a colored pigment, characterized in that the molecular structure transformation of the above is expressed by using a reverse Diels-Alda reaction. (1 -A) -B)
  • Ri to R 4 each independently represents a hydrogen atom, or a solubility-imparting group for a liquid medium directly or indirectly bonded
  • R 5 to Rs represent a hydrogen atom or a direct Alternatively, it represents an indirectly bonded substituent.
  • a dispersion in which a colored pigment that is substantially a primary particle maintaining type is dispersed is dispersed.
  • the dye single molecule precursor has a structure represented by the following general formula (1-A), (1-B), (1 1 C), (1-D), Dispersion characterized in that the molecular structure conversion of is expressed by using a reverse Diels-Alder reaction. (1—A) (1 -B)
  • Ri to R 4 each independently represents a hydrogen atom, or a solubility-imparting group for a liquid medium directly or indirectly bonded
  • R 5 to R 8 are a hydrogen atom or a direct Or, it represents a substituent that is indirectly bound with itoyoshi.
  • a method for producing a dispersion of a colored pigment that is substantially a primary particle maintaining type comprising a step of dissolving or dispersing a dye monomolecular precursor in a liquid medium, and the dye monomolecular precursor; A step of converting the molecular structure of the dye monomolecular precursor to obtain the colored pigment in the presence of a dispersing agent for dispersing the colored pigment; and a step of converting the organic pigment into an organic pigment dispersion.
  • a method for producing a dispersion characterized by the following.
  • the dye single molecule precursor has a structure represented by the following general formula (11 A), (1-B), (1-C), (1-D), A method for producing a dispersion, characterized in that a structural molecular structure transformation is expressed by using a reverse Diels-Alder reaction. (1 -A) 1 B)
  • Ri to R 4 each independently represents a hydrogen atom, or a solubility-imparting group for a liquid medium directly or indirectly bonded
  • R 5 to R 8 are a hydrogen atom or a direct Alternatively, it represents an indirectly bonded substituent.
  • a recording ink characterized by containing a colored pigment substantially consisting of primary particle maintaining soot.
  • a recording method characterized in that recording is performed by applying a recording ink containing a colored pigment substantially comprising a primary particle maintaining type to a recording medium.
  • a primary pigment-maintained colored pigment and a method for producing the pigment are provided, and a pigment having a high purity can be obtained.
  • a pigment dispersion in which a primary particle-maintained colored pigment is substantially dispersed in a liquid medium, and a method for producing the dispersion.
  • the pigment has good temporal stability and a narrow particle size distribution. A dispersion can be obtained.
  • FIG. 1A, FIG. 1B, FIG. 1C, FIG. 1D, FIG. IE, and FIG. IF are diagrams schematically showing a colored pigment that is substantially composed of a primary particle maintaining type used in the present invention.
  • FIG. 2 is a diagram showing an example of a dispersion manufacturing method.
  • FIG. 3 is a diagram showing an example of a dispersion manufacturing method.
  • FIG. 4 is a diagram showing a method for producing a tetraazaporphyrin dye monomolecular precursor.
  • FIG. 5 is a diagram showing a method for producing a thioindigo dye monomolecular precursor.
  • FIG. 6 is a diagram showing a method for producing a quinacridone dye monomolecular precursor.
  • Figure 7 shows the X-ray diffraction (XRD) measurement results of tetraazaporphyrin, a substantially primary particle-retaining organic pigment, using CuXa rays.
  • XRD X-ray diffraction
  • Figure 8 shows X-ray diffraction (XRD) measurement results of tetraazaporphyrin, a substantially primary particle-retaining organic pigment, using CuXa rays.
  • XRD X-ray diffraction
  • FIG. 9 is a conceptual diagram illustrating the reverse Diels-Alder reaction, which is one of the molecular structure and conversion means of the present invention.
  • FIG. 10 is an image diagram for explaining a reverse Diels-Alder reaction which is one of the molecular structure conversion means of the present invention.
  • FIG. 11 is an image diagram illustrating the reverse Diels-Alder reaction of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION 16983
  • “Dye single molecule precursor” in the present invention means, for example, a polycyclic condensed structure ((3) in FIG. 1A) and a chromophore ((2) in FIG. 1A).
  • This is a compound (for example, Fig. 1A) that forms a cyclic structure ((4) in Fig. 1B) by leaving the moiety ((1) in Fig. 1A) and becomes a dye molecule (for example, Fig. IB).
  • the “primary particle maintenance type” used in the present invention is a single dye molecule that forms a stable ring obtained by subjecting a polycyclic condensed structure in the dye single molecule precursor to a molecular structure conversion reaction, Or, it is the one in which a plurality of single dye molecules are collected and crystallized.
  • this molecular structure conversion means it is particularly preferable to use a reverse Diels-Alder reaction.
  • the primary particle maintenance type of the present invention is a column (for example, Fig. 1C, Fig. 1D) having the same intermolecular distance or an assembly of the columns in the coaxial direction (for example, Fig. 1E). The particle size distribution exists within a very small range at a rate of 80% or more.
  • the same intermolecular distance here means that the tilt angles of the molecules composing the crystal with respect to the crystal axis are the same. It shows that it is a crystal form.
  • a method for determining the intermolecular distance it is possible to determine by measuring using, for example, an X-ray diffraction (XRD) apparatus using Cu Xa rays and comparing the obtained 20 diffraction peak shapes. I can do it.
  • XRD X-ray diffraction
  • a phthalocyanine crystal phthalocyanine pigment
  • XRD X-ray diffraction
  • the “colored pigment” used in the present invention is one that develops color by visible light or develops by excitation outside visible light.
  • a colored pigment that has at least the characteristics of the primary particle retention type and the colored pigment described above and is a small amount of a dye 'monomolecular precursor or an assembly of the above-mentioned columns assembled in a non-coaxial direction are referred to as “colored pigments substantially consisting of primary particles”.
  • the surface treatment may be performed by a conventional method. Since the colored pigment is composed of a kind of crystal, it has high purity and good color development. In addition, since the particle size distribution can be present at a ratio of 80% or more within a very small range without performing a pulverization step, reaggregation caused by crystal breakage does not occur and is stable.
  • the molecular structure conversion of the present invention refers to a compound in which the molecular structure of the compound changes when energy (stir mixing, thermal energy, light energy, or a combination thereof) is applied from the outside.
  • Organic compounds that are solvent-soluble can be replaced with organic compounds that do not have solvent-solubility by desorbing solvent-soluble groups by applying energy, and polycyclic structures can be stabilized by partial atom elimination. It is also possible to have a portion that becomes a single ring structure.
  • the “reverse Diels-Alder reaction” of the present invention is a reverse reaction of the Diels-Alder reaction, but a Diels-Alder reaction between a general gen compound and a dienophile compound, that is, Unlike the equilibrium reaction (reversible reaction) between the exothermic reaction (Diels-Alda reaction) and the endothermic reaction (reverse Diels-Alder reaction), the polycyclic fused ring structure is a part of the structure. This refers to the reaction of elimination and formation of an aromatic ring, which is preferable as the molecular structure conversion of the present invention. For example, as shown in FIG. 9 and FIG.
  • a bridging moiety of the condensed ring structure part Is eliminated as an ethylene compound, and an aromatic ring (irreversible) is constructed.
  • the reverse Diels-Alder reaction of the present invention means that the ethylene compound is released in a concerted reaction to construct an aromatic ring.
  • a concerted reaction is a reaction that does not form a reactive intermediate such as an ionic species or radical species.
  • the elimination reaction of the ethylene compound is completed using only the constituent elements in the molecule of the precursor compound. To do. Therefore, in the process of elimination of the ethylene compound from the precursor compound, there is no generation of impurities due to side reaction with the solvent of the reaction system, and the solid phase and liquid phase.
  • the aromatic ring can be constructed quantitatively. Based on the above characteristics, it is possible to synthesize extremely high-purity colored pigments by detaching the ethylene compound from the precursor compound and further crystallizing it. ⁇
  • Solvent solubility can be changed.
  • a reverse Diels-Alda reaction causes elimination of the elimination moiety having a solvent-solubilizing imparting group, resulting in conversion to a compound (solvent-insoluble compound) in which a pi-conjugated system is constructed.
  • the molecular structure is constructed (designed) so that the three-dimensional structure of the molecule changes from a bulky structure to a flat structure.
  • a compound (solvent insoluble compound) which is a molecular structure conversion product obtained by using the reverse Diels-Alder reaction for the precursor compound (solvent soluble compound) according to the present invention Associability and crystallinity can be changed to those having desired characteristics.
  • the structural site for reverse Diels-Alder reaction of the present invention can be constructed using Diels-Alder reaction as shown in FIG. This is because, unlike the general reverse Diels-Alda reaction, it is an irreversible reaction as shown in Fig. 9 and Fig. 10, so that a stable crystal state (preferably a homogenized crystal) is obtained. be able to.
  • Specific methods for inducing the reverse Diels-Alder reaction include external energy application and chemical perturbation (thermal energy, light energy, electromagnetic energy, chemical action).
  • the method of desorbing the target desorption site by causing reverse Diels-Alder reaction of the dye single molecule precursor used in the present invention and inducing molecular structure conversion is the general formula shown above.
  • the kind of substituents Ri ⁇ R 4 of changes Te cowpea energy level of around desorption molecule.
  • Ri to R 4 are all hydrogen, an ethylenic molecule is eliminated by a normal thermal reaction.
  • a ketone group is present at Ri to R 4, the reaction occurs by n- ⁇ * excitation by visible light.
  • the elimination reaction can be induced by various methods by examining the substituents and elimination mechanism of Ri to R 4 .
  • the electrical induction effect of the substituents of R 5 to R 8 in the general formula shown above on the reaction system is taken into consideration. It is preferable to do.
  • These elimination reactions may be completed with only one reactive species, or may be induced simultaneously by combining a plurality of reaction systems when heated under chemical reaction or when heated under photoexcitation. It is possible to construct a more advanced desorption reaction system using a complex process such as sequential (intermediate product desorbed by photoreaction is converted to the final product by heating).
  • the dye single molecule precursor include, for example, a tetraazaporphyrin compound represented by the following formula (I) or ( ⁇ ), a thioindigo compound represented by the following formula (III), IV) an acridone compound represented by the following formula (A), an aminoanthraquinone compound represented by the following formula (V), a condensed polycyclic compound represented by the following formula (VI), a formula represented by the following formula (W) Quinacridone compounds such as In the X part and ⁇ part of the dye single molecule precursor represented by these formulas, the structural parts represented by the general formulas (1—A), (1 1 B), (1 _C), (1—D) It is what has.
  • Ri to R4 are each independently a solubility that gives solubility to a liquid medium to a hydrogen atom or a dye monomolecular precursor bonded directly or indirectly.
  • R 5 to Rs each represents a hydrogen atom or a directly or indirectly bonded substituent, M represents a divalent to tetravalent coordination metal atom, and Z represents a halogen atom.
  • Ri to R 4 each independently represent a hydrogen atom or a solubility-imparting group that imparts solubility to a liquid medium to a dye monomolecular precursor bonded directly or indirectly.
  • R 5 to R 8 represent a hydrogen atom or a directly or indirectly bonded substituent.
  • Ri to R 4 represent a solubility-imparting group that is directly or indirectly bound to the leaving moiety
  • R 5 to R 8 represent a solubility-imparting group. It represents a hydrogen atom or a substituent that is not limited.
  • Ri to R 4 are bonded to the leaving portion, and are substituents that are removed together with the leaving portion, R 5 to 16983
  • R 8 is a substituent in a substituted form on the aromatic ring constructed by elimination of the leaving moiety.
  • each of the substituents i to R 4 and R 5 to R 8 is partially eliminated to form a “stable ring” from the precursor polycyclic structure. Any combination can be used.
  • the energy required for the desorption and the adduct catalyst may be arbitrarily used for the structure.
  • Specific examples of 1 to R 4 include a hydrogen atom or a polar substituent for imparting solubility to a hydrophilic medium composed of water and a water-soluble organic solvent. Group, alkylene oxide group, strong lpoxyl group, nitrogen-containing amino group, and sulfur-containing sulfone group.
  • examples include alkyl groups, aryl groups, alkoxy groups, mercapto groups, ester groups, halogen atoms, and the like. Furthermore, it is possible to make each ring like Ri and R 3 and R2 and R 4 as necessary.
  • the solubility-imparting group is directly added so that the solubility in water (25 5) is at least 1% by mass or more. Introduced indirectly or indirectly, the molecular structure is converted to insolubilize the elimination site containing this solubility-imparting group from the dye monomolecular precursor, thereby substantially maintaining the primary particles. It is possible to make a colored face consisting of a mold.
  • hydrophilic solvent examples include water and other polar solvents such as alcohol solvents, glycol solvents, and amine solvents that are soluble in water.
  • a hydrophilic solvent used in this field can be used.
  • the proportion of water in the aqueous medium used for ink jet ink is usually 30% by mass or more.
  • the colored pigment substantially consisting of the primary particle maintaining type of the present invention obtains the colored pigment by converting the molecular structure of a dye monomolecular precursor dissolved or dispersed in a liquid medium using a reverse Diels-Alder reaction. It is preferably produced by a method.
  • the molecular structure conversion of the dye molecule precursor can be expressed in the liquid state by using the reverse Diels-Alder reaction.
  • the dye precursor By liquefying, the dye precursor can be subjected to reverse Diels-Alder reaction in a small reaction field such as microdroplet formation or fog state, and a pigment having a narrow particle size distribution can be produced.
  • Conventional microreactor methods can also be used.
  • the surface-treated pigment can be prepared by allowing the surface treatment agent to coexist in the liquid medium. By coexisting, a colored pigment can be obtained, and at the same time, a surface treatment is applied to prevent aggregation of the pigments, and a colored pigment having a smaller particle diameter can be obtained.
  • a method for producing a colored pigment that is substantially primary particle-maintained with surface treatment is shown below.
  • the solution containing the dye single molecule precursor and the surface treatment agent, etc. is made into a mist state so that the droplets are smaller than 1 p 1. If the dye single-molecule precursor is given energy that causes a reverse Diels-Alder reaction, a colored pigment having a primary particle-maintaining type surface-treated in the fog state can be produced.
  • a pigment having a plurality of crystal forms which has been produced by producing a pigment in a huge reaction field such as a large pot, or a grinding process is required for dispersion. Aggregation of the pigment can be prevented.
  • the above-mentioned colored pigment substantially consisting of a primary particle maintaining type has the following formula (11 A), (1-B), (11 C), (1-D) It is preferable to have any of the structures shown, and that the colored pigment is obtained by subjecting the structure to a reverse Diels-Alder reaction. (1 -A) (1 -B)
  • Ri to R 4 each independently represents a hydrogen atom, or a solubility-imparting group for a liquid medium directly or indirectly bonded
  • R 5 to Rs represent a hydrogen atom or a direct Or represents an indirectly bonded substituent.
  • the above-described colored pigment having a primary particle maintaining type can be dispersed by a conventionally used pigment dispersion method to obtain a dispersion.
  • Examples include resin dispersion, activator dispersion, microencapsulation, and self-dispersion. Details of the dispersion method that can be used in the present invention will be described below.
  • JP-A No. 5002 and JP-A No. 1 1-26 9 4 18 discloses a method in which a dispersant such as a surfactant or a polymer is physically adsorbed on the surface of a pigment and dispersed in water. Can be mentioned.
  • dispersant used in this case examples include, for example, random polymerization or block polymerization of styrene-acrylic acid copolymer, styrene-maleic acid copolymer, etc .; using micelle state or emulsion state, Nonionic surface active agents that can be imparted can be used, such as styrene, styrene derivatives, pinylnaphthalene, vinylnaphthalene derivatives, fatty alcohol esters of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids, acrylic acid, acrylic acid derivatives, etc.
  • a block copolymer is particularly preferable for carrying out the present invention. This is because the water-dispersed pigment obtained from the block copolymer has little variation among individual water-dispersed pigments, and it is easy to provide a stable ink.
  • the block copolymer in the above has a structure represented by ⁇ ⁇ , ⁇ ⁇ ⁇ , and ABC type.
  • a block copolymer having a hydrophobic block and a hydrophilic block and having a balanced block size that contributes to dispersion stability is particularly advantageous in practicing the present invention.
  • Hydrophobic block on functional group (pigment binds P2005 / 016983
  • the weight average molecular weight of the polymer may be less than 30, 0 0, preferably less than 2 0, 0 0 0, more preferably in the range of 2, 0 0 0 to 1 0, 0 0 0. it can.
  • hydrophobic monomers that can be used in the block copolymer include, but are not limited to, the following monomers: benzyl acrylate, benzyl methacrylate, methyl methacrylate (MMA), X til. Methacrylate (E MA), propyl methacrylate, ⁇ -butyl methacrylate ( ⁇ ⁇ or ⁇ ⁇ ⁇ ), hexyl methacrylate, 2-ethyl hexyl methacrylate ( ⁇ ⁇ ⁇ ), octyl methacrylate, lauryl methacrylate (L MA), Stearyl methacrylate, Phenyl methacrylate, Hydroxyethyl methacrylate (HE MA), Hydroxypropyl methacrylate, 2-Ethoxyethyl methacrylate, Methacrylonitrile, 2-Trimethyl cisyl methacrylate, Glycidyl methacrylate (GMA), P-tolyl methacrylate, sorbyl me
  • Preferred hydrophobic monomers are benzyl acrylate, benzyl methacrylate, 2-phenylethyl methacrylate, methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, homopolymers and copolymers made therefrom, For example, it is preferable to produce a block copolymer using a copolymer of methyl methacrylate and butyl methacrylate.
  • Typical hydrophilic monomers that can be used in the block copolymer include, but are not limited to, the following monomers: methacrylic acid (MAA), acrylic acid, dimethylaminoethyl Methacrylate (DMA EMA), Jetylaminoethyl methacrylate, Tertiary butylaminoethyl methacrylate, Dimethylaminoethyl acrylate, Jetylaminoethyl acrylate, Dimethylaminopropyl methacrylamide, Methacryl Examples thereof include amide, acrylamide, and dimethylacrylamide. Among these, it is preferable to produce a block copolymer using a homopolymer or copolymer of methacrylic acid, acrylic acid or dimethyl / aminoethyl methacrylate.
  • MAA methacrylic acid
  • DMA EMA dimethylaminoethyl Methacrylate
  • Jetylaminoethyl methacrylate Tertiary buty
  • Acid-containing polymers are either produced directly or removed after polymerization. They are made from blocked monomers with blocking groups.
  • blocked monomers that yield acrylic acid or methacrylic acid after removal of the blocking group include trimethylsilyl methacrylate (TMS-MAA), trimethylsilyl acrylate, 1-butoxychetyl methacrylate, 1-ethoxyethyl methacrylate 1-butoxy sheryl acrylate, 1-etoxy sheryl acrylate, 2-tetrahydropyranyl acrylate and 2-tetrahydro biranyl methacrylate.
  • a dispersion can be obtained by dispersing
  • a more desired dispersion can be obtained by using the following method for producing a dispersion of a colored pigment consisting essentially of a primary particle maintaining type of the present invention. it can.
  • the method for producing a pigment dispersion according to the present invention includes a method for producing a molecule of a dye monomolecular precursor in the presence of a dye monomolecular precursor dissolved or dispersed in a liquid medium and a dispersant for dispersing a colored pigment. It is characterized by being a dispersion using a colored pigment formed from a compound whose structure has been changed.
  • a reverse Diels-Alder reaction is preferably used as the molecular structure converting means, a favorable dispersion of a desired colored pigment can be obtained.
  • This method makes it possible to produce a colored pigment substantially composed of a primary particle maintaining type and to disperse the colored pigment in the same liquid layer, and uses a drying process in the pigment production process as in the past. Since there is no need, the pigments do not aggregate. Therefore, since it can be transferred to the dispersion process without requiring the powdering process, the adverse effect of the interaction between the active surfaces caused by the destruction of the primary particles generated by the pulverization process is eliminated. In addition, it is possible to control the speed of pigment formation and dispersion by controlling the molecular structure conversion speed (eg, progress of reverse Diels-Alder reaction). In the production of a colored pigment dispersion, a pigment dispersion having a narrow particle size distribution can be produced.
  • the dye single molecule precursor is dissolved in a liquid medium. Since the precursor is dissolved in the liquid medium, the molecular structure of the precursor can be efficiently converted and dispersed efficiently. Thereby, a pigment dispersion having a narrow particle size distribution can be obtained.
  • the means for converting the molecular structure of the dye single molecule precursor dissolved in the above liquid medium is preferably a reverse Diels-Alder reaction. It preferably has a solubility-imparting group that dissolves in the liquid medium only via This is because, by completely eliminating the solubilizing group of the dye single molecule produced by the reverse Diels-Alder reaction, the colored pigment consisting essentially of the primary particles can be made stable.
  • the portion causing the reverse Diels-Alder reaction has one of the structures represented by the following general formulas (11-A), (1-B), (1-C), (1-D) It is preferable.
  • Ri to R 4 each independently represents a hydrogen atom, or a solubility-imparting group for a liquid medium directly or indirectly bonded
  • R 5 to R 8 are a hydrogen atom or a direct Represents a substituent bonded to the target or indirectly.
  • FIG. 2 will be used to explain the production method for producing a microencapsulated colored pigment dispersion.
  • a dye compound precursor ((1) in FIG. 2), a capsule component ((2) in FIG. 2), and water are mixed to obtain a solution A.
  • This mixed liquid A is dropped into another liquid medium B through (6) in FIG. 2 under an atmosphere in which the above reaction occurs.
  • a reaction occurs during the dropping, and a colored pigment ((4) in FIG. 2) can be formed by removing a part ((3) in FIG. 2) from the polycyclic fused ring structure of the precursor.
  • a dispersion of the encapsulated pigment ((5) in FIG. 2) can be produced by evaporating water from the dropped mixture.
  • pigments have been studied to bring the particle size closer to the primary particles by surface treatment such as rosin treatment, surfactant treatment, resin dispersant treatment, and pigment aggregate treatment.
  • surface treatment such as rosin treatment, surfactant treatment, resin dispersant treatment, and pigment aggregate treatment.
  • the current pigments have an extremely wide particle size distribution centering on particle sizes close to secondary particles. Even in such a situation, when selling as a product, it is possible to sort pigments with a large particle size according to the application and make the particle size distribution relatively small, but the pigment production efficiency decreases. End up. As a result, pigments are expensive.
  • the colored pigment obtained by the production method according to the present invention is obtained by utilizing the reverse Diels-Alder reaction, so that the particle size can be made uniform and the primary particles A particle having 80% or more (preferably 90% or more) of particles in the following fine unit particle size range can be obtained. For example, 1 0 ⁇ ! A pigment having a uniform particle size at a high rate of 80% or more in a fine particle size range of ⁇ 12 nm can be obtained.
  • TlCC reaction temperature during reverse Diels-Alder reaction
  • a mixture of the surface treatment agent and the precursor referred to in the present invention is used.
  • the temperature is adjusted to (T 1 – 2 0) to form a preparation stage (where 1 2 0 is the difference for not reaching T 1 considering the temperature adjustment ripple) Rapid heating from the control zone to (T 1 + 30) causes a reverse Diels-Alder reaction. By doing this, you can make a sudden reaction.
  • a pigment suitable for the pigment dispersion according to the present invention can be obtained (even if the crystal is aggregated, (Because the bonding strength is very small, pigments with the desired particle size can be easily obtained.)
  • the dye single molecule precursor ((1) in Fig. 3) is dissolved in the solvent A in which the precursor is dissolved, and the environmental temperature of the solvent A is lower than t 1 (the temperature at which the reverse deal-sooder reaction does not occur). (1 in Fig. 3).
  • t 1 the temperature at which the reverse deal-sooder reaction does not occur.
  • Fig. 3 gradually raise the ambient temperature of this solution (Fig. 3]!). Therefore, point E is in a higher temperature environment than point D.
  • it is preferable to devise measures such as reducing the diameter of the flow path so that the solution can quickly reach a given environmental temperature state.
  • solvent B in which the surface treatment agent dissolves or disperses is coexisted, and the coexisting solution is dripped in an environment where the environmental temperature is rapidly increased to t 2 (temperature at which the reverse Diels-Alder reaction occurs) ( Figure 3 m).
  • a colored pigment ((3) in FIG. 3) that is substantially a primary particle maintaining type is produced by the reverse Diels-Alder reaction.
  • the surface-treated colored pigment can be produced ((4) in FIG. 3).
  • a dispersant for dispersing the colored pigment is applied to the solvent B, a colored pigment dispersion can be obtained. If there is no solvent B part, a colored pigment is obtained.
  • an ink using a dispersion of a colored pigment substantially composed of a primary particle maintaining type will be described in detail. The ink is formed by dispersing a colored pigment in an aqueous medium or the like. In the following, an ink in which a colored pigment is dispersed in an aqueous medium will be described.
  • the content of the pigment as the dispersed color material in the ink according to the present invention is not limited to this range, but the recording material type, for example, the sizing agent type, the internal addition amount, and the ink
  • the content of the dispersed color material in the ink varies depending on the type of solvent contained, but assuming a recording material and solvent type generally used, it is less than 10% by mass.
  • the range is preferably, and more preferably less than 4% by mass. In view of good stability as a dispersed color material, it is preferably less than 2.5% by mass.
  • the lower limit of the content of these pigments can be set according to the desired image density.
  • a dispersing agent such as resin dispersion or surfactant dispersion in a dispersed colorant by a method such as physical adsorption
  • one kind of resin dispersion tree or surfactant may be used alone or necessary.
  • a preferable amount of the dispersant is 0.5 to 10% by mass, preferably 0.8 to 8% by mass, and more preferably 1 to 6%. It is the range of mass%. If the dispersant content is higher than this range, it may be difficult to maintain the desired ink viscosity.
  • aqueous medium of the ink it is preferable to use a mixed medium of water and a water-soluble organic solvent.
  • the water-soluble organic solvent is not particularly limited as long as it shows water-solubility.
  • Alcohol, polyhydric alcohol, polydalicol, glycol ether, nitrogen-containing polar solvent, sulfur-containing polar solvent, ureas, saccharides, and these Any derivative or the like generally used as a solvent for ink jet ink can be used without any problem.
  • These solvents are used for purposes such as maintaining the moisture retention of the ink, dissolving the coloring material, and penetrating the ink into the recording paper. These solvents can be used alone or in combination.
  • the content of the water-soluble organic solvent is generally preferably in the range of 1 to 50% by mass, more preferably in the range of 3 to 40% by mass with respect to the total ink. Further, the water content in the ink is preferably in the range of 30 to 95% by mass in order to keep the solubility of the coloring material and the ejection stability of the ink good.
  • the ink according to the present invention includes a surfactant, a pH adjuster, an antifungal agent, an antiseptic, an antifungal agent, an antioxidant, an anti-reducing agent, and a vapor as necessary.
  • a surfactant such as sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium bicarbonate
  • surfactants include fatty acid salts, higher alcohol sulfates
  • Anionic surfactants such as liquid fatty oil sulfate esters, alkylaryl sulfonates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, polyoxyethylene sorbitan alkyl esters,
  • nonionic surfactants such as tylene alcohol and acetylene glycol, and one or more of these can be appropriately selected and used.
  • acetylene alcohols and acetylene glycols can be preferably used because they exhibit an effect of excellent permeability to plain paper.
  • the amount applied varies depending on the type of surfactant, but is preferably from 0.01 to 5% by mass based on the total amount of ink.
  • the surface tension of the ink in 25 t is preferably 10 mNZm (dyn / cm) or more, more preferably 2 O mNXm (dy nZ cm) or more, and the surface tension is It is preferable to determine the amount of the active agent to be added so that it is 60 mNZm (dyn / cm) or less. This is because, in the ink jet recording method used in the present invention, it is possible to effectively suppress the occurrence of print misalignment (deviation of landing point of ink droplets) due to wetting of the nozzle tip.
  • the ink is preferably adjusted to have a desired viscosity and pH in order to obtain good ejection characteristics in an ink jet recording apparatus.
  • colored pigment dispersions consisting of single dye crystals (molecules constituting crystals) or single crystals
  • other pigment dispersions dyes, reverse Diels-Alder You may use together the dye single molecule precursor etc. which react.
  • a special medium having a coating layer or an ink receiving layer on its surface such as plain paper, or glossy paper, coated paper, or glossy film.
  • Commonly used recording media can be used.
  • a special medium having a hydrophilic porous particle layer, a porous polymer layer, and the like on a substrate is exemplified. Can do.
  • a recording medium is preferably a so-called absorption type in which ink is absorbed by voids formed in the ink receiving layer on the support.
  • the absorption-type ink receiving layer is composed of a fine porous particle and a hydrophilic porous layer containing binder and other additives as required.
  • fine particles include silica, clay, talc, calcium carbonate, kaolin, aluminum oxide such as alumina or hydrated alumina, diatomaceous earth, titanium oxide, hydrotalcite, zinc oxide and other inorganic pigments, urea formalin resin, ethylene Colored pigments such as resins and styrene resins are listed, and one or more of these are used.
  • binders include water-soluble polymers and latex.
  • additives can also be used, such as dispersants, thickeners, pH adjusters, lubricants, fluidity modifiers, surfactants, antifoaming agents, mold release agents, fluorescence as necessary. Brighteners, UV absorbers, antioxidants, etc. are used.
  • the ink according to the present invention is used for an ink jet discharge type head, and is also effective as an ink storage container in which the ink is stored or as a filling ink.
  • the present invention relates to an ink jet recording system. Among them, excellent effects can be obtained in the Pulblate (registered trademark) type recording head and recording apparatus.
  • ink is ejected through the ejection openings to form at least one droplet.
  • this drive signal is pulse-shaped, the bubble growth and contraction is performed immediately and appropriately, so that it is possible to achieve ink discharge with particularly excellent responsiveness, which is more preferable.
  • this pulse-shaped drive signal those described in US Pat. Nos. 4,46,3,359 and 4,3,4,5,2622 are suitable. Yes. Further excellent recording can be performed by adopting the conditions described in US Pat. No. 4,3 1 3, 1 24 4 of the invention relating to the temperature rise rate of the heat acting surface.
  • the recording head is composed of a combination of a discharge port, a liquid passage, and an electrothermal transducer (linear liquid flow path or right-angle liquid flow path) as disclosed in the above specifications.
  • the present invention is effective.
  • a common configuration is such that the discharge hole serves as a discharge portion of the electrothermal transducer (Japanese Patent Laid-Open No. 59-13023, etc.). The present invention is effective.
  • a full-line type recording head having a length corresponding to the width of the maximum recording medium that can be recorded by the recording device.
  • a configuration satisfying the length or a configuration as a single recording head formed integrally may be used.
  • the present invention can exhibit the above-described effects more effectively.
  • a replaceable chip-type recording head that can be electrically connected to the main unit and supplied with ink from the main unit, or the recording head itself.
  • the present invention is also effective when a cartridge type recording head provided integrally with the recording head is used.
  • recovery means for the recording head, preliminary auxiliary means, etc. provided as a configuration of the recording apparatus to be applied, because the effect of the present invention can be further stabilized.
  • Specific examples thereof include a recording means for the recording head, a cleaning means, a pressure or suction means, an electrothermal converter, a heating element other than this, or a combination thereof. This is a preliminary discharge mode in which discharge is performed separately from the preheating means and recording.
  • a 20% ethyl acetate solution (25 ml) of 1,2-dihydroxycyclohexagen (compound 1) was prepared, and the solvent in the solution was concentrated under reduced pressure.
  • Acetone (30 ml), 2,2-dimethylpropane (69 ml) and a trace amount of p-toluenesulfonic acid were added thereto, and the mixture was stirred at room temperature for 4 hours.
  • 10% aqueous sodium hydroxide solution (30 ml) and saturated brine (30 ml) were added and stirred to stop the reaction, and then extraction operation was performed using jetyl ether (3 ⁇ 30 ml).
  • a thioindigo pigment composed of a crystal having the same orientation and composed of a thioindigo dye monomolecular precursor was synthesized.
  • compound 1 used in the synthesis was prepared according to Tetrahedr rn Letters, Vol. 22, No. 35, pp 3347-3350, 1981, thiophenylation of pyropyroic acid ester, oxidation with dimethyldioxysilane, It was synthesized by Diels-Alda reaction with dihydroxycyclohexagen. Next, using compound 1 shown in [1] in the following formula, [2] was synthesized as described below.
  • sodium hydride NaH, 0.062 g, 2.6 Ommo 1
  • I prepared a chilled one.
  • [1] (0, 200 g, 0.62 mmol) into a 25 ml pear-shaped flask and add dry-DMF under the condition of nitrogen substitution. 090ml, 1. 3 Ommo 1) and add this to the transfer tube Then, it was slowly dropped into the 50 ml eggplant-shaped flask prepared earlier and stirred for 1 hour.
  • [1] (0. 318 g, 2.6 Ommo 1) was placed in a 50 ml 1 eggplant-shaped flask, and after adding nitrogen-CH 2 C 1 2 (2 ml) under a nitrogen-substituted condition, What was cooled with the water bath was prepared. Separately, in a 25 ml pear-shaped flask, put ethyl chloroformate (0.284 g, 2.62 mmo 1), add dry-CH 2 C 1 2 under the condition of nitrogen substitution, and add this to the transfer tube. Therefore, it was slowly dropped into the 50 ml eggplant-shaped flask prepared earlier and stirred for 1 hour.
  • [4] was synthesized as described below.
  • [3] (0.921 g, 2.00 mm o 1) obtained above was dissolved in 1 Q 0m 1 eggplant type flask using 30 ml of DMSO (dimethyl sulfoxide) as a solvent. Thereto was added t-butoxypotassium, and the mixture was heated and stirred at 50 for 1 day. After the completion of the reaction T was confirmed by TLC, the reaction was stopped with water and extracted with ethyl acetate. The organic layer after the extraction operation was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Finally, purification by silica gel column chromatography (E tOH / He an e) yielded the desired product [4] (0.728 g, yield: 90%).
  • the tetraazaporphyrin dye monomolecular precursor obtained in Synthesis Example 1 was dissolved in jetylene glycol monobutyl ether to prepare a 30% sweet solution. This solution was dropped in an atmosphere of 200 ° C. to obtain a colored pigment of tetraazaporphyrin substantially composed of primary particles. This colored pigment is measured using an X-ray diffraction (XRD) apparatus with CuX a rays, and it is confirmed that the precursor of the dye single molecule is changed to the dye single molecule by the reverse Diels-Alder reaction and a colored pigment is formed. did.
  • XRD X-ray diffraction
  • a block-type block polymer having an acid value of 250 and a number average molecular weight of 3,000 is prepared by a conventional method, and further neutralized with an aqueous potassium hydroxide solution, and ion-exchanged water. To make a homogeneous 50% aqueous polymer solution.
  • the tetraazaporphyrin dye monomolecular precursor synthesized in Synthesis 1 was dissolved in diethylene glycol monobutyl ether to prepare a 30% solution. 20 g of this tetraazaporphyrin dye single molecule precursor 3 20 g and 180 g of the prepared polymer solution were mixed.
  • This mixed solution was dropped into an aqueous solution so as to pass through the atmosphere at 200 ° C. to obtain an organic pigment dispersion.
  • the pigment dispersion was measured using an X-ray diffraction (XRD) apparatus with Cu Xa rays, and it was confirmed that the precursor of the dye single molecule was changed to the dye single molecule by the reverse Diels-Alder reaction. did. The results are shown in FIG.
  • an AB-type block polymer having an acid value of 2500 and a number average molecular weight of 3,00 0 is prepared by a conventional method, and further neutralized with an aqueous potassium hydroxide solution. Diluted with exchange water to make a homogeneous 50% aqueous polymer solution.
  • the tetraazaporphyrin dye monomolecular precursor synthesized in Synthesis 1 was dissolved in 1,6-hexanediol heated to a liquid state to prepare a 30% solution. This tetraazaporphyrin dye single molecule precursor 30% solution 3020g and the prepared polymer solution 180g were mixed.
  • This mixed solution was dropped into an aqueous solution so as to pass through a 200 ° C. atmosphere to obtain an organic pigment dispersion.
  • This pigment dispersion was measured using an X-ray diffraction (XRD) apparatus with Cu Xa rays, and was the precursor of a 'single dye molecule (a molecule constituting a colored pigment consisting essentially of primary particles). Was confirmed to be changed to a single dye molecule by the reverse Diels-Alder reaction. The results are shown in Figure 11.
  • XRD X-ray diffraction
  • an AB type block polymer with an acid value of 2500 and a number average molecular weight of 3,00 0 is produced by a conventional method, and further neutralized with an aqueous potassium hydroxide solution to perform ion exchange. Diluted with water to make a homogeneous 50% polymer-water solution.
  • the tetraazaporphyrin dye monomolecular precursor synthesized in Synthesis 1 was dissolved in isopropyl alcohol to prepare a 30% solution. This The tetraazaporphyrin dye single molecule precursor 30 g of 320% and the prepared polymer solution 180 g were mixed. This mixed solution was dropped into an aqueous solution in a state of passing through the atmosphere at 200 to obtain an organic pigment dispersion.
  • the pigment dispersion was measured using an X-ray diffraction (XRD) device with CuXa rays, and the precursor of the dye single molecule (a molecule that constitutes a colored pigment consisting essentially of a primary particle) was reversed. It was confirmed that it changed to a dye single molecule by one-lose-alder reaction.
  • XRD X-ray diffraction
  • Dispersion 1 had a pigment concentration of 10% and a dispersant concentration of 10%.
  • the 25% solution was prepared by dissolving the thioindigo dye monomolecular precursor synthesized in Synthesis Example 2 in octanol. 400 g of this 25% solution of thioindigo dye monomolecular precursor and 100 g of the polymer solution used in Example 1- were mixed. This mixed solution was dropped into an aqueous solution in a state of passing through the atmosphere at 200 to obtain an organic pigment dispersion.
  • the pigment dispersion was measured using an X-ray diffraction (XRD) device with CuXa rays, and the precursor of a dye single molecule (a molecule that constitutes a colored pigment consisting essentially of a primary particle maintenance type) was reversed. It was confirmed that it changed to a dye single molecule by the Ruth-Alder reaction. The mixture was mechanically stirred for 0.5 hours.
  • XRD X-ray diffraction
  • Dispersion 2 had a pigment concentration of 10 %, Dispersant concentration was 5%.
  • a quinacridone dye monomolecular precursor synthesized in Synthesis Example 3 was dissolved in octanol to prepare a 25% solution. 400 g of the 25% solution of the thioindigo dye monomolecular precursor and 100 g of the polymer solution used in Example 1 were mixed. This mixed solution was dropped into an aqueous solution so as to pass through 200 atmospheres to obtain an organic pigment dispersion.
  • This pigment dispersion is measured using an X-ray diffraction (XRD) apparatus with CuXa rays.
  • XRD X-ray diffraction
  • the precursor of a dye single molecule (a molecule that constitutes a colored pigment consisting essentially of a primary particle maintenance type) is reversed. It was confirmed that it changed to a dye single molecule by the Ruth-Alder reaction. The mixture was mechanically stirred for 0.5 hours.
  • the dispersion was obtained by treatment by passing 5 times through the interaction chamber under 0, O 2 O p s i (about 7 OMpa). By centrifuging this dispersion (12,000 rpm for 20 minutes), the non-dispersion containing coarse particles is removed and the dispersion is removed.
  • the obtained Dispersion 3 had a pigment concentration of 10% and a dispersant concentration of 5%.
  • This pigment dispersion was measured using an X-ray diffraction (XRD) apparatus with CuXa rays, and the precursor of a dye single molecule (a molecule constituting a colored pigment consisting essentially of primary particles) was reversed. It was confirmed that it changed to a dye single molecule by the Ruth-Alder reaction. The mixture was mechanically stirred for 0.5 hours.
  • XRD X-ray diffraction
  • the mixture is then processed using a microfluidizer and passed through the interaction chamber five times under a liquid pressure of about 10 000 O psi (about 7 OMpa) to obtain a dispersion. It was. By centrifuging this dispersion (12,000 rpm, 20 minutes), the non-dispersion containing coarse particles was removed to obtain dispersion 4.
  • the obtained dispersion 4 had a pigment concentration of 10% and a dispersant concentration of 5%.
  • Example 8 Ink using the pigment dispersion of Example 2>
  • Example 2 Using the pigment dispersion obtained in Example 2 and a solvent containing at least glycerin, ethylene glycol and water, an ink having a pigment concentration of 3.5% was prepared.
  • the ink produced as described above was packed in an ink force cartridge for PIXUS95Oi manufactured by Canon Inc., and an image was formed using PIXUS95Oi, an inkjet image forming apparatus.
  • the media used is Canon's P R — 1 0 1. When the formed image was visually observed and judged to be vivid, the color was vivid.
  • Example 1 An ink having a pigment concentration of 3.5% was prepared using the pigment dispersion obtained in Example 5 and a solvent containing at least glycerin, ethylene glycol, and water. The obtained ink was evaluated in the same manner as in Example 8. As a result, it was confirmed that the stability, color developability, and light resistance were excellent as in the case of Example 8.
  • Example 1 0
  • Example 1 An ink having a pigment concentration of 3.5% was prepared using the pigment dispersion obtained in Example 6 and a solvent containing at least glycerin, ethylene glycol, and water. I got The evaluation was performed in the same manner as in Example 8. As a result, it was confirmed that the stability, color developability, and light resistance were excellent as in the case of Example 8.
  • Example 1 1
  • Example 8 An ink having a pigment concentration of 3.5% was prepared using the pigment dispersion obtained in Example 7 and a solvent containing at least glycerin, ethylene glycol, and water. The obtained ink was evaluated in the same manner as in Example 8. As a result, it was confirmed that the stability, color developability, and light resistance were excellent as in the case of Example 8. Industrial applicability
  • a precursor of a water-soluble dye single molecule (a molecule constituting a pigment crystal) is applied on a recording medium, and then heated, for example, to form an image as an insoluble pigment. Once formed, a new recording method can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Description

明 細 書 顔料、 顔料の製造方法、 顔料分散体、 顔料分散体の製造方法、
記録用インク、 記録方法及び記録画像 技術分野
本発明は顔料、 顔料の製造方法、 顔料分散体、 顔料分散体の製造方法、 それ を用いた記録用インク、 記録方法、 記録画像に関する。 詳しくは分散安定で顔 料の粒子径が均一な顔料分散体、 該顔料分散体の製造方法、 該顔料分散体を用 いた記録用インク、 該記録用インクを用いた記録方法及び記録画像に関するも のである。 背景技術
これまで、 高精細度を要求されるインクジェット用記録液 (インク) の色材 には染料が用いられてきた。 染料を用いたインクは、 高透明度、 高精細度、 優 れた演色性等の特徴を有する画像を与えることができるが、 耐光性や耐水性等 の画像の堅牢性に劣るという問題を有する場合が多い。 近年、 画像堅牢性に劣 るという問題を解決するために、 染料に代えて、 有機顔料やカーボンブラック を色材として用いた顔料インクが製造されている。 このように、 画像の堅牢性 を高める観点から、 インクに使用される色材は、 染料から顔料へとシフトして きており、 例えば、 下記の如き種々の提案がなされている。
例えば、 所定の溶媒に対する親溶媒性の基を有する構造の化合物とすること によって、 該溶媒に可溶であり、 逆ディ一ルス一アルダー反応によって該親溶 媒性の基が脱離し、 該溶媒に対する溶解度が不可逆的に低下可能な化合物、 及 びかかる化合物を用いたィンクが提案されている (特開 2 0 0 3— 3 2 7 5 8 8号公報参照)。 この化合物が色材の場合には、 該色材は、 インク中では溶媒 T JP2005/016983
2
、 に溶解状態 (即ち、 染料状態) であるが、 該インクを被記録材上に付与し、 且 つ該色材を逆ディ一ルス―アルダー反応させると、 溶媒に不溶解状態 (即ち、 顔料状態である) にすることができ、 画像の堅牢性が良好になる。 しかしなが ら、 上記提案では、 溶媒に溶解した化合物 (即ち、 染料状態) を被記録材に付 与し、 該被記録材上で上記の反応を生じせしめるためには、 加熱や、 光、 電磁 波及び放射線の照射等といつた外的エネルギー付与手段が必要となる。
又、 熱的可逆性のディールス一アルダー反応する重合化反応化合物を、.イン クジェットインク ·キヤリァの粘度温度制御材として用いた相変化ィンクにつ いての提案がされている (特開平 1 1一 3 4 9 8 7 7号公報参照)。 この提案 では、 反応が可逆反応であるため、 溶解性が減少した状態で冷却すると、 環化 反応が誘発され、 溶解性が増加するという問題がある。
又、 金属化合物を含有した被記録媒体に逆ディ一ルス一アルダー反応する化 合物 (染料) を付与して、 前記逆ディールス一アルダー反応する化合物 (染料) を逆ディ一ルス一アルダー反応させて、顔料化させる提案が成されている。 (特 開 2 0 0 4— 2 6 2 8 0 7号公報参照) しかしながら、 得られた顔料は、 被記 録媒体上で、 溶媒に対して不溶化した顔料に変換されているが、 色ムラが多い 記録画像になづてしまう。 この記録画像を X線回折装置等の各種観察装置を用 いて調べたところ、 不均一な顔料化状態や、 混晶状態、 及び凝集状態に成って いることがわかり、 良好な記録画像を得るためには、 顔料を単結晶化にする問 題がある。 '
又、 トリアリルメタン系の化合物の紫外線、 熱による分解反応や、 フォトク 口ミック化合物のような光、熱可逆性化合物を使用した極性(溶解性、凝集性) の制御についての提案がされている (特開平 1 0— 3 1 2 7 5号公報参照)。 しかしながら、 該極性部は、 ラジカルイオン開裂的に分解する系であるため、 非可逆的な状態を形成することは可能であるが、 副生成物が極めて不安定であ るため、酸化劣化反応を誘発してしまう。又、 フォトクロミック反応は、可視、 紫外線及び熱に対し可逆反応であるため、 ある一定状態 維持する とが難し いといった問題がある。
更に、 インクが、 被記録材上に付与された時に、 ディールス一アルダー反応 を生じさせることで、 得られた記録画像の堅牢性を良好にすることについての 提案がある (特開平 7— 6 1 1 1 7号公報参照)。 又、 被記録媒体中の構成成 分による逆ディールス—アルダー反応に起因して生じる黄変現象を、 ディール スーアルダー反応を生じさせる成分として被記録媒体に強力なジエノフィル を含有させることで防止することが提案されている (特開昭 6 4— 2 6 4 4 4 号公報参照)。
顔料には、化学式や組成、構造が同じでも 2以上の結晶型をとるものがあり、 多形と呼ばれる。 例として挙げると、 フタロシアニンブル一の、 α型、 β型、 ε 型等があり、 これらは、 吸収係数や屈折率が異なるので、 色相や隠蔽力が異な つている。 有機顔料は、 色材として塗料分野で使用されるばかりでなく、 エレ クトロニクス分野においても、 例えば、 電子写真感光体の電荷発生剤、 C D— R、 D VD— R.等の被記録媒体用色素、 トナーやインクジェットプリンタ用ィ ンクの着色剤、 液晶表示素子用カラ一フィルター色素、 有機 E Lデバイス用発 光材等の様々 用途に用いられる。 ここで、 有機顔料を上記用途に使用するた めには、先ず、高純度であること、特定の吸収特性を持つこと、が必要である。 吸収特性は、顔料の化学構造、粒径、結晶型、純度等により支配されているが、 特に有機顔料は同一化学構造であっても、 幾つもの結晶型を持つものが多く存 在するため、 それらを制御しながら、 且つ、 いかに高純度に製造していくかが 新たな有機顔料を開発する上での重要なボイントとなる。'
例えば、 電子写真感光体の電荷発生材料としては様々な有機顔料が使用され ているが、 近年、 半導体レーザー光や L E D光の発振波長である近赤外光に対 し、 高感度な吸収を示す顔料が強く求められている。 この要求を満たす有機顔 料として、 フタロシアニン類が広く研究されている。 フタロシアニン類は、 中 心金属の種類により吸収スぺク卜ルゃ光導電性が異なるだけでなく、 結晶型に よってもこれらの物性には差があり、 同じ中心金属のフタロシアニンでも特定 の結晶型が電子写真感光体用に選択されている例が幾つか報告されている。 無金属フタロシアニンでは X型の結晶型が高い光導電性で、 且つ、 8 0 0 η ί, m以上の近赤外光に対しても感度が有るとの報告があり、 又、 銅フタロシア二 ンでは、 多くの結晶型のうちで、 ε型が最も長波長に感度を有していると報告 されている。 しかし、 X型無金属フタロシアニンは準安定型結晶型であって、 その製造が困難であり、又、安定した品質のものが得にくいという欠点がある。 一方で、 ε型銅フタロシアニンは、 α型や β型の銅フタロシアニンにtベれば0 分光感度は長波長に伸びているが、 8 0 0 nmでは 7 8 0 n mに比較し、 急激 に低下しており、 発振波長に変動のある半導体レーザ一用には使いにくい性能 となっている。銅フタロシアニンでは、 α、 β、 γ、 ε型等の結晶型の違いにより、 帯電性、 暗減衰、 感度等に大きな差があることが知られており (例えば、 染料 と薬品、 第 2 4巻 6号、 ρ 1 2 2 ( 1 9 8 4 ) 参照)、 又、 結晶型により吸収5 スペクトルが異なることより、 分光感度も変化することも報告されている (例 えば、 電子写真学会誌第 2 2巻、 第 2号、 p i l l ( 1 9 8 4 ) 参照)。
このように、 結晶型による電気特性の違いは、 無金属フタロシアニンや他の 多くの金属フタロシアニンに関してよく知られており、 電気特性の良好な結晶 型をいかに作るか、 という点に多くの努力がなされている。 更に、 多くの顔料0 は、 水の中で合成或いは後処理されていて、 ここで大きさや形を調整した一次 粒子がつくられるが、 その後の工程、 特に乾燥工程で粒子同士が凝集して二次 粒子を形成してしまうため、 これらの凝集した粒子を微細化することが分散ェ 程においては必要である。
これまで、 有機顔料の結晶型を制御 (又は微細化) する方法としては、 合成5 段階で制御する方法の他、 例えば、 アシッドペースティング法、 アシッドスラ - リー法等のいわゆる硫酸法 (特開平 5— 7 2 7 7 3号公報参照) ;ソルベント ミリング法、 ドライミリング法、 ソルトミリング法等の粉碎法により一旦溶解 或いは非晶質化した後、 所望の結晶型に転換させる方法 (色材協会他、 「第 4 1回顔料入門講座テキスト (1999)」 参照)、 加熱条件下、 有機顔料を溶媒 に加熱溶解した後、 徐冷却し結晶化させる方法 (特開 2003— 160738 号公報参照) が一般的である。 又、 有機薄膜において、 結晶型を制御する方法 では、 昇華温度を制御して所望の結晶型を得る方法 (特開 2003-0030 84号公報参照) が一般的である。
他に、 単結晶及び 1次粒子製造を目的とした新たな顔料として、 ラテント顔 料の技術 (例えば、 特開平 9— 048929号公報、 特開平 11一 09269 5号公報、 特公表 2001- 513119号公報、 特公表 2002- 5142 63号公報参照) が報告されている。 発明の開示
発明が解決'しょうとする課題
本発明の目的は、 従来製造方法により提供されている顔料、 顔料分散体、 及 び顔料インクに於いて、 顔料、 及び顔料分散体の混晶問題、 顔料分散体の広い 粒径分布問題、 及び前記顔料、 及び顔料分散体を用いた顔料インクによって得 られた記録画像の色ムラの発生問題、 及び使用される顔料分散体ロットごとの 発色^パラツキ問題、 インクジェット用インクでは、 目詰まりの発生や、 吐出 が不安定になる問題を解決することである。
一方、 従来の顔料分散体を作成する分散工程では、 一旦凝集した顔料を一次 粒子の状態にまで粉砕する粉碎工程が必要であった。 しかし、 メカニカルな粉 砕では、 粒径分布の狭い粒子、 及び一次粒子径の顔料得る事は難しい。 また、 粒径分布を狭くしたり、 粒径を 1次粒子に近づけるために、 さらに過剰のエネ ルギーを粉碎工程で加えると、 この過剰なエネルギーが一次粒子を破壊してし まっていた。 すなわち、 一次粒子は多くの場合結晶体であるので、 それが破壊 されると格子欠陥の生成等により、 その表面が活性になり、 活性表面同士の粒 子間相互作用が増加する。 よって、 この相互作用が強い場合には顔料粒子が再 び凝集してしまい、 光沢や着色力が低下してしまうことがあった。 又、 相互作 用が比較的弱い場合には、 顔料粒子がフロキュレートと呼ばれる構造を形成し、 分散系の流動性が低下してしまった。 更に、 活性表面が露出してしまった場合 は、 耐候性や耐水性が急激に低下してしまつていた。
このように、 従来の顔料を分散、 及び粉砕する工程では、 顔料本来の性能を 低下させるばかりか、 更顔料分散体を不安定なものにさせていた。 又、 粉砕ェ 程では粒子径を一定にすることは困難であり、 製造される分散体は、 幅の広い 度分布をもつものとなってしまっていた。 よって、 このような分散工程を経 て作製された顔料分散体は、 安定性が悪いばかりか、 幅の広い粒度分布をもつ ために、 該顔料分散体を用いて、 インクジェット のインクを作製した場合、 発色性や、 画像の堅牢性 (耐候性や耐水性等) に劣るといった問題や、 目詰ま りの発生や、 吐出が不安定になるという問題があった。
課題を解決するための手段
上記目的は、 以下の本発明によって達成される。
〔1〕 実質的に 1次粒子維持型であることを特徴とする有色顔料。
〔2〕 前記有色顔料は、 色素単分子前駆体の分子構造を変換させて得られる事 を特徴とする有色顔料。
〔 3〕前記色素単分子前駆体が、下記一般式( 1一 A)、 ( 1一 B)、 ( 1一 C)、 ( 1 -D) で示される何れかの構造を有し、 該構造の分子構造変換を逆ディ一ルス 一アルダー反応を用いることで発現させることを特徴とする有色顔料。 T JP2005/016983
Figure imgf000009_0001
Figure imgf000009_0002
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜R 8は水素原子、 又は直接的或いは間接的に結合された置換基を表す。)
〔4〕 実質的に 1次粒子維持型である有色顔料の製造方法であって、 前記有機 顔料を形成する色素単分子の前駆体を液 体に溶解または分散させる工程と、 該色素単分子前駆体の分子構造を変換させて前記有色顔料を得る工程とを有 することを特徴とする有色顔料製造方法。
〔5〕 前記色素単分子前駆体は、 液媒'体中に溶解しているものであることを特 徴とする有色顔料製造方法。
〔6〕前記色素単分子前駆体が、下記一般式(1— A)、 (1— B)、 (1一 C)、 ( 1 一 D) で示される何れかの構造を有し、 該構造の分子構造変換を逆ディ一ルス 一アルダ一反応を用いることで発現させることを特徴とする有色顔料製造方 法。 ( 1 -A) -B)
Figure imgf000010_0001
( 1— C) ( 1 -D)
Figure imgf000010_0002
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜Rsは水素原子、 又は直接的或いは間接的に結合された置換基を表す。)
〔 〕 実質的に 1次粒子維持型である有色顔料を分散していることを特徴とす る分散体。
〔8〕 前記有色顔料は、 色素単分子前駆体の分子構造を変換させて得られるこ とを特徴とする分散体。
〔9〕前記色素単分子前駆体が、下記一般式(1— A)、 (1— B)、 (1一 C)、 ( 1 -D) で示される何れかの構造を有し、 該構造の分子構造変換を逆ディ一ルス -アルダー反応を用いることで発現したことを特徴とする分散体。 ( 1—A) ( 1 -B)
Figure imgf000011_0001
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜R8は水素原子、 又は直接的或いは間接的に糸吉合された置換基を表す。)
〔1 0〕 実質的に 1次粒子維持型である有色顔料の分散体製造方法であって、 色素単分子前駆体を液媒体中に溶解または分散させる工程と、 該色素単分子前 駆体と有色顔料を分散させるための分散剤を共存させた状態で、 該色素単分子 前駆体の分子構造を変換させて前記有色顔料を得る工程と、 前記有機顔料を有 機顔料分散体にする工程と、 を特徴とする分散体製造方法。
〔1 1〕 前記色素単分子前駆体は、 液媒#に溶解しているものであることを特 徴とする分散体製造方法。
〔1 2〕前記色素単分子前駆体が、 下記一般式(1一 A)、 (1— B)、 (1—C)、 ( 1— D) で示される何れかの構造を有し、 該構造め分子構造変換を逆ディ一 ルス一アルダー反応を用いることで発現したことを特徴とする分散体製造方 法。 ( 1 -A) 一 B)
Figure imgf000012_0001
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜R8は水素原子、 又は直接的或いは間接的に結合された置換基を表す。)
〔1 3〕 実質的に 1次粒子維持犁からなる有色顔料を含有することを特徴とす る記録用インク .
〔1 4〕 実質的に 1次粒子維持型からなる有色顔料 含有する記録用インクを 被記録媒体に付与して記録を行うことを特徴とする記録方法
〔1 5〕 被記録媒体に実質的に 1次粒子維持型からなる有色顔料によって形成 されたことを特徴とする記録画像
発明の効果
1、 実質的に一次粒子維持型の有色顔料及び、 該顔料製造方法が提供され、 一 種類の結晶型からなり、 純度が高い顔料を得ることができる。
2、 実質的に一次粒子維持型の有色顔料が液媒体中に分散される顔料分散 体、 及び、 該分散体の製造方法の提供され、 経時安定性が良好で、 かつ、 粒度分布が狭い顔料分散体を得ることができる。
3、 発明の分散体により、 保存安定性の向上したインクを得ることができ る。 2005/016983
11
4、 本発明のインクにより、 吐出が安定に行え、 目詰まりのない記録方法を得 ることができる。
5、 本発明の記録方法により、 発色がよく、 光沢性の低下が生じず、 かつ、 耐 候性の良好な記録画像を得ることができる。 図面の簡単な説明
図 1A、 図 1B、 図 1C、 図 1D、 図 IEおよび図 IFは、 本発明で使用する 実質的に一次粒子維持型からなる有色顔料を模式的に示す図である。
図 2は、 分散体製造方法の一例を示す図である。
図 3は、 分散体製造方法の一例を示す図である。
図 4は、 テトラァザポルフィリン色素単分子前駆体の製造方法を示す図であ る。
図 5は、 チオインジゴ色素単分子前駆体の製造方法を示す図である。
図 6は、 キナクリドン色素単分子前駆体の製造方法を示す図である。
図 7は、 実質的に一次粒子維持型の有機顔料であるテトラァザポルフィリン の CuXa線による X線回折 (XRD) 測定結果。
図 8は、 実質的に一次粒子維持型の有機顔料であるテトラァザポルフィリン の CuXa線による X線回折 (XRD) 測定結果。
図 9は、 本発明の分子構造.変換手段の 1つである逆ディ一ルス ·アルダー反 応を説明するイメージ図である。
図 10は、 本発明の分子構造変換手段の 1つである逆ディ一ルス ·ァレダ一 反応を説明するイメージ図である。
図 11は、 本発明の逆ディールス ·アルダー反応を説明するイメージ図であ る。 発明を実施するための最良の形態 16983
12 以下に、 好ましい実施の形態を挙げて本発明を更に詳しく説明する。
本発明中の 「色素単分子前駆体」 とは、 例えば多環縮合構造 (図 1 Aの (3 )) と発色団(図 1 Aの(2 ))をもっていて、多環縮合構造中の 1部(図 1 Aの(1 )) が離脱することで環状構造 (図 1 B の (4 )) を形成し色素単分子 (例えば図 I B) となる化合物 (例えば図 1A) をいう。
本発明で用いられる 「1次粒子維持型」 とは、 前記色素単分子前駆体中の多 環縮合構造を、 分子構造変換反応させて得られる安定した環状体を形成してい る色素単分子、 または、 この色素単分子が複数集まり結晶化したものをいう。 この分子構造変換手段としては特に逆ディールス一アルダー反応を用いるこ とが好ましい。 また、 本発明の 1次粒子維持型は、 分子間距離が同じ分子配列 をしたカラム(例えば図 1 C、図 1 D)、または該カラムの同軸方向の集合体(例 えば図 1 E) を指し、 且つ粒子径分布は、 極めて微小な範囲内に 8 0 %以上の 割合で存在するものである。 (図中、 図 1 D、 図 1 Eに関しては発色団を省略 して記載) ここでいう分子間距離が同じとは、 結晶軸に対し結晶を構成する分 子の傾斜角度が同じつまり、 同じ結晶型であることを示す。 上記分子間距離を 判定する方法としては、'例えば C u Xa線による X線回折 (X.R D) 装置を用 いて測定を行い、 得られた 20の回折ピーク形状を比較する事で判別する事が 出来る。 例えば、 フタロシアニン結晶 (フタロシアニン顔料) の場合、 上記 X 線回折 (X R D) スペクトル測定により、 a型、 8型、 ε型等の結晶型の判別、 及び痕晶状態の判別を行う事が出来る。
本発明で用いられる 「有色顔料」 とは、 可視光で発色、 または、 可視光外の励 起により発色するものである。
上記説明をした 1次粒子維持型と有色顔料の特性を少なくとももち、 かつ、 微 量であれば色素'単分子前駆体や前記カラムの集合体が非同軸方向で集合した 有色顔料 (例えば図 1 F) を含有してもよいものを 「実質的に 1次粒子維持型 からなる有色顔料」 という。 また、 従来の方法で表面処理されていてもかまわない。 上記有色顔料は一種 類の結晶型からなるため、'純度が高く発色も良い。 また、 粉砕工程を行うこと なく粒子径分布を極めて微小な範囲内に 8 0 %以上の割合で存在させること ができるため、 結晶破壊により生じていた再凝集が生じず安定である。
ここで、 本発明の分子構造変換とは、 化合物が外部からエネルギー (攪拌混 合、 熱エネルギー、 光エネルギー或いはこれらの組み合わせ等) を付与させる と、 該化合物の分子構造が変わるものを指し、 例えば、 溶媒可溶性を有する有 機化合物が、 エネルギーの付与により、 溶媒可溶性基を脱離させて、 溶媒可溶 性を有さない有機化合物に替わることや、 部分原子脱離によって多環構造部が 安定した一つの環構造になる部分を有することでもよい。
ここで、 本発明の 「逆ディ一ルス—アルダー反応」 とは、 ディールス—アル ダー反応の逆反応の事であるが、 般的なジェン化合物とジエノフィル化合物 間でのディールス一アルダー反 系、 すなわち発熱反応 (ディ一ルス一アルダ 一反応) と、 吸熱反応 (逆ディ一ルス—アルダー反応) との平衡反応 (可逆性 反応) とは異なり、 多環縮合環構造が、 該構造中の一部分を脱離し、 芳香環を 形成する反応を言うこれは本発明の分子構造変換として好ましいものである。 例えば、 図 9及び図 1 0に示した様に、 ビシクロ [ 2, 2 , 2 ] ォク夕ジェン 骨格の縮合環構造部を有する化合物 (前駆体化合物) において、 該縮合環構造 部の架橋部分をエチレン化合物として脱離させ、 芳香環 (不可逆性) を構築す るものである。
また、 本発明の逆ディ一ルス—アルダー反応は、 上記エチレン化合物が協奏 反応的に脱離し、 芳香環を構築することを意味している。 協奏反応とはイオン 種やラジカル種のような反応性中間体を形成することのない反応のことであ り、 エチレン化合物の脱離反応は前駆体化合物の分子内の構成元素のみを用い て完結する。 故に、 前駆体化合物からエチレン化合物脱離の過程において反応 系の溶媒等と副反応に伴った不純物を発生させることがなく、 固体相と液体相 P2005/016983
14 のどちらにおいても定量的に芳香環を構築できることが特徴である。 以上の特 性を元に、 前駆体化合物からエチレン化合物を脱離、 更に結晶化させる事で、 極めて高純度な有色顔料を合成する事が出来る。 ·
更に、 該脱離部位 (図 9中及び図 1 0中の ΚΛ R2、 R3、 R4) に直接的或いは 間接的に溶媒溶解性を良好にする置換基を導入する事で、 化合物の溶媒溶解性 を変化させることが出来る。 この場合、 逆ディールス一アルダ 反応させるこ とによって溶媒可溶性付与基を有する脱離部分を脱離し、 その結果、 パイ共役 系が構築される化合物 (溶媒不溶性化合物) へと変換されるが、 この場合に、 更に、 パイ共役系の構築の結果として、 分子の立体構造が嵩高い構造から、 平 坦な構造に変化するように分子構造を構築 (設計) しておくことは、 好ましい 態様である。 即ち、 このようにすることで、 本発明にかかる前駆体化合物 (溶 媒可溶性化合物) を逆ディ一ルス一アルダー反応を用いることで得られた分子 構造変換物である化合物 (溶媒不溶性化合物) の会合性や結晶性を、 所望の特' 性のものに変化させることができる。
また、 本発明の色素前駆体化合物の分子構造変換を逆ディールス一アルダー 反応を用いることで該化合物から脱離される部分 (脱離部分) を、 極めて安定 で安全性の高いものにすることが可能であり、 系に悪影響を与えるような可逆 的な反応や、 副次的な反応は起こさないような反応を構築することも可能であ る。 ,
また、 本発明の逆ディ一ルス一アルダー反応をする構造部位は、 図 1 1の様 なディールス一アルダー反応を用いて構築することができる。 この理由は、 一 般の逆ディールス—アルダ一反応とは異なり、 図 9や図 1 0に記載の様に不可 逆反応であるため、 安定した結晶状態 (好ましくは均一化された結晶) を得る ことができる。
上記好ましい態搽を実現するためには、 逆ディールス一アルダー反応によつ て分子構造変換させた後に分子間で、 水素結合や、 ファンデルワールス力、 静 電相互作用、 極性による相互作用が大きくなる系を設計することがより好まし い。 このようにすれば、 従来の構造であれば会合状態が大きくなつているため 制御が困難であった系においても、 反応前後の化合物の 質を上記したように 設計することによって、 効果的に、 逆ディ一ルス一アルダー反応後によって得 られる分子構造変換物によって形成される顔料の、 結晶性や会合' 1¾を変化させ ることが可能となる。
また、 逆ディールス—アルダー反応を誘起する具体的な方法としては、 外部 エネルギーの付与、 及び化学的摂動 (熱エネルギー、 光エネルギー、 電磁波ェ ネルギー、 化学的作用) が挙げられる。
本発明で使用する色素単分子前駆体を逆ディールス一アルダー反応させ、 分 子構造変換を誘起して目的の脱離部位を脱離する方法は、 先に示した一般式
( 1 ) の Ri〜R4の置換基の種類と、 脱離前後の分子のエネルギー準位によつ て変化する。 例えば、 Ri〜R4が何れも水素であると通常の熱的反応でェチレ ン分子が脱離する。 更に脱離後に構築される単結晶を構成する色素単分子 (実 質的に一次粒子維持型からなる有色顔料を構成する分子) の芳香環の共鳴安定 化工ネルギ一が大きいほど、 活性化エネルギーが大きくなり、 加熱に必要な温 度は高くなつていくことが知られている。 又、 Ri〜R4の部分にケトン基があ る場合には、 その可視光による n— π*励起によって反応が起こることが知られ ている。 更には、 Ri〜R4に水酸基がある場合、 金属化合物 (塩基性化合物) により電子引き抜きが生じる状態になることによって化学的作用により反応 が起こることが知られている。 この場合、 脱離基と金属が電気的な相互作用を するための物理的パラメ一夕や、 原子半径等のこのようなパラメ一夕を考慮に 入れる必要がある。
以上のように、 Ri〜R4の置換基と脱離機構を検討することによって、 種々 の方法によって脱離反応を誘起することが可能である。 これらの検討の際には、 先に示した一般式の R5〜R8の置換基が反応系に及ぼす電気的誘起効果を考慮 することが好ましい。 これらの脱離反応は 1つの反応種のみで完結されてもよ いし、 化学的反応下で加熱する、 或いは光励起下加熱するといつた複数の反応 系を組み合わせて同時に誘起してもよいし、 更には、 逐次的 (光反応で脱離さ せた中間生成物を加熱により最終生成物に変換する) といった複雑な工程を用 いてより高度な脱離反応系を構築することが可能である。
次に、 本発明の色素単分子前駆体について さらに詳細に説明する。
色素単分子前駆体の具体例としては、 例えば、 下記式 (I ) 或いは (Π) で示 されるようなテトラァザポルフィリン化合物、 下記式 (III) で示されるような チォインジゴ化合物、 下記式 (IV) で表されるようなァクリドン化合物、 下記 式 (V) で表されるようなアミノアントラキノン化合物、 下記式 (VI) で表さ れるような縮合多環系化合物、 下記式 (W) で表されるようなキナクリドン化 合物が挙げられる。これらの式で表した色素単分子前駆体の X部分、 γ部分に、 上記した 般式 (1—A)、 (1一 B)、 (1 _C)、 (1— D) で示される構造部分 を有しているものである。
Figure imgf000018_0001
(X部分) (Y部分)
Figure imgf000019_0001
(上記式 (I ) 及び (II) 中、 Ri~ R4は、 それぞれ独立に、 水素原子、 又 は直接的或いは間接的に結合された色素単分子前駆体に液媒体に対する可溶 性を与える可溶性付与基を表し、 R5〜Rsは、 水素原子、 又は直接的或いは間 接的に結合された置換基を表す。 Mは、 2価〜 4価の配位金属原子であり、 Z は、 ハロゲン原子.、 酸素原子及び水酸基の何れかであり、 nは 0〜2の整数を 表す。) 式 (III)
式 (IV)
Figure imgf000019_0002
Figure imgf000020_0001
Figure imgf000020_0002
(上記式(III) 〜(VI) 中、 Ri〜R4は、それぞれ独立に、 水素原子、 又は、 直接 或いは間接的に結合された色素単分子前駆体に液媒体に対する可溶性 を与える可溶性付与基を表し、 R5〜R 8は、 水素原子、 又は直接的或いは間接 的に結合された置換基を表す。)
ここで具体的に、 Ri〜R 4は、 脱離部分に直接的に結合しているか、 間接的 に結合している可溶性付与基を表しており、 R5〜R8は、 可溶性付与基に限定 されない水素原子、 又は置換基を表している。 ここで Ri〜R4は、 脱離部分に 結合しているもので、 脱離部分と一緒に脱離してしまう置換基であり、 R5〜 16983
19
R 8は、 脱離部分の脱離によって構築された芳香環上に置換された形になる置 換基である。
本発明の目的を損なわない範囲、 即ち、 i〜R4、 R5〜R8の各置換基はそ の一部が脱離して前駆体の多環構造体から 「安定した環状体」 を形成するもの であれば任意の組み合わせが用いられる。 その脱離に必要とされるエネルギー や付加物'触媒も、 その構造に対して任意に用いればよい。 具体的には 1〜 R 4に関しては、 水素原子又は、 水と水溶性有機溶媒からなる親水性媒体に可 溶性を付与するための極性置換基が挙げられ、 含酸素原子系の水酸基、 アルコ ール基類、 アルキレンオキサイド基類、 力ルポキシル基類、 含窒素原子系のァ ミノ基類、 含硫黄原子系のスルホン基類が例示される。 又、 極性基のほか、 ァ ルキル基、 ァリール基、 アルコキシ基、 メルカプト基、 エステル基、 ハロゲン 原子等が挙げられる。 更に、 Riと R3、 R2と R4のように各々互いに環状とな ることも必要に応じて可能である。
所定の液媒体が、 水若しくは水と親水性溶媒からなる水系媒体である場合に おいては、 水に対する溶解度 (2 5 Τ ) が少なくとも 1質量%以上となるよう に、 上記可溶性付与基を直接的或いは間接的に導入しておき、 分子構造の変換 により、 この可溶性付与基を含む脱離部位を色素単分子前駆体から脱離させる ことにより不溶化させ、 これによつて実質的に一次粒子維持型からなる有色顔 料とすることが可能となる。
尚、 親水性溶媒としては、 例えば、 水をはじめとして、 アルコール系溶媒、 グリコール系、 ァミン系に代表されるような水に溶解可能な極性を有する溶媒 を挙げることができる。 色素単分子前駆体を含有させてインクジエツト用の液 体組成物 (インク) として用いる場合には、 この分野で使用されている親水性 溶媒を用いることができる。 又、 インクジェット用のインクに用いる水系媒体 中の水の割合は、 通常 3 0質量%以上とされる。 本発明の実質的に 1次粒子維持型からなる有色顔料は、 液媒体に溶解または 分散させた色素単分子前駆体を逆ディールス一アルダー反応を用いて分子構 造変換させて前記有色顔料を得る方法により製造されることが好ましい。 上記方法において、 色素単分子前駆体を液媒体に溶解または分散させること により、 液体状態で色素分子前駆体の分子構造変換を逆ディールス—アルダー 反応を用いることで発現させることができる。 液体化することで、 微小液滴化 や霧状態等の小さい反応場において色素前駆体に逆ディールス—アルダー反 応をさせることができ、 微小かつ粒径分布の狭い顔料を作成できる。 また、 従 来からあるマイクロリアクターの手法も採用できる。 この時、 液媒体中に表面 処理剤も共存させておくと表面処理された顔料を作成することができる。 共存 させておくことで、 有色顔料が得られると同時に表面処理が施され顔料同士の 凝集が防がれてより粒子径の小さい有色顔料を得ることができる。
表面処理を施した実質的に 1次粒子維持型である有色顔料の製造方法の例 を以下に示す。 色素単分子前駆体と表面処理剤等が混合された溶液を 1 p 1よ り微小の液滴になるように霧状態にし、 生じた前記霧状態で色素単分子前駆体 の分子構造変換のために色素単分子前駆体が逆ディールス ·アルダー反応を生 じるエネルギーを与えてやれば、 前記霧状態内で表面処理された実質的に一次 粒子維持型からなる有色顔料が製造できる。
この方法を用いることで、 従来大きな釜等の巨大な反応場において顔料を製 造していたことにより生じていた複数の結晶型を有する顔料や分散の際に粉 砕工程を必要としていたような顔料の凝集を防ぐことができる。
上記、 実質的に一次粒子維持型からなる有色顔料は、 前記色素単分子前駆体 が、 下記一般式 (1一 A )、 (1— B)、 (1一 C)、 ( 1 -D) で示される何れかの 構造を有し、 且つ前記有色顔料は該構造を逆ディ一ルス―アルダー反応したも のであることが好ましい。 ( 1 -A) ( 1 -B)
Figure imgf000023_0001
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜Rsは水素原子、 又は直接的或いは.間接的に結合された置換基を表す。 )
上記構造部分を逆ディ一ルス一アルダー反応させることにより、 反応過程に おいて反応系の溶媒等と副反応に伴った不純物を発生させることがなく、 固体 相と液体相のどちらにおいても定量的に芳香環を構築でき、 得られた色素単分 子が可逆反応をおこすことなく安定に存在することができる。 これにより、 さ らに化合物の単結晶を容易に得ることができる。
上記した実質的に一次粒子維持型からなる有色顔料は従来から用いられて いる顔料の分散方法により分散し、 分散体を得ることができる。
例えば、 樹脂分散、 活性剤分散、 マイクロカプセル化、 自己分散等がある。 以下に、 本発明において利用することのできる分散方法の詳細を示す。
分散方法としては、特開昭 4 6— 5 2 9 5 0号公報、米国特許第 5, 2 0 0 , 1 6 4号明細書、同 5, 5 5 4, 7 3 9号明細書、特開平 8— 3 4 9 8号公報、 米国特許第 5 , 5 7 1 , 3 1 1号明細書に記載されているように、 顔料 (単結 晶を構成する色素単分子、 単結晶からなる有色顔料) の表面に、 親水基をジァ ゾニゥム基を介して結合させて自己分散型の顔料として水分散させる方法や、 次亜塩素酸等で色材表面を酸化させ親水基を反応させ、 水に分散させる方法が 挙げられる。
又、 界面活性剤やポリマ一に内包し、 ェマルジヨンンゃカプセル状態で水に 分散させる方法、 特開平 0 5— 1 7 9 1 8 3号公報、 特開平 0 6— 1 3 6 3 1 1号公報、特開平 0 7— 0 5 3 8 4 1号公報、特開平 1 0— 8 7 7 6 8号公報、 特開平 1 1— 0 4 3 6 3 9号公報、 特開平 1 1— 2 3 6 5 0 2号公報、 特開平 1 1 - 2 6 9 4 1 8号公報において開示されている、 界面活性剤やポリマー等 の分散剤を顔料の表面に物理吸着させて水に分散させる方法、 が挙げられる。 この場合に使用する分散剤としては、 例えば、 ランダム重合やプロック重合 されたスチレンァクリル酸共重合体、 スチレンマレイン酸共重合体等の樹脂; ミセル状態ゃェマルジョン状態を用い,て水分散状態を付与できるノニオン界 面活性剤ゃァニオン界面活性剤;或いはスチレン、 スチレン誘導体、 ピニルナ フタレン、 ビニルナフタレン誘導体、 α, β—エチレン性不飽和カルボン酸の脂 肪族アルコールエステル等、 アクリル酸、 アクリル酸誘導体、 マレイン酸、 マ レイン酸誘導体、 ィタコン酸、 ィタコン酸誘導体、 フマール酸、 フマール酸誘 導体、 酢酸ビエル、 ビニルピロリドン、 アクリルアミド、 及びその誘導体等か ら選ばれた少なくとも 2つ以上の単量体 (このうち少なくとも 1つは親水性単 量体) からなるブロック共重合体、 或いはランダム共重合体、 グラフト共重合 体、 又はこれらの塩;等が挙げられる。 中でも、 本発明を実施する上で特に好 ましい分散剤は、 ブロック共重合体である。 ブロック共重合体で得られた水分 散顔料は、 個々の水分散顔料間にばらつきが少なく、 安定なインクを提供し易 いからである。
上記におけるブロック共重合体は、 Α Β、 Β Α Β、 及び A B C型等で示され る構造を有する。 疎水性のブロックと親水性のブロックとを有し、 又、 分散安 定性に貢献する均衡のとれたブロックサイズを有するブロック共重合体は、 本 発明を実施する上で特に有利である。 官能基を疎水性ブロック (顔料が結合す P2005/016983
23 るブロック) に組み込むことができ、 それによつて分散安定性を向上させるた めの分散剤と顔料との間の特異的相互作用をよりいっそう強化することがで きる。 又、 重合体の重量平均分子量は、 3 0, 0 0 0未満、 好ましくは 2 0 , 0 0 0未満、 より好ましくは 2, 0 0 0〜1 0, 0 0 0の範囲内とすることが できる。
又、 これらの重合体についての製造方法は、 特開平 0 5— 1 7 9 1 8 3号公 報、 特開平 0 6— 1 3 6 3 1 1号公報、 特開平 0 7— 0 5 3 8 4 1号公報、 特 開平 1 0— 8 7 7 6 8号公報、 特開平 1 1— 0 4 3 6 3 9号公報、 特開平 1 1 - 2 3 6 5 0 2号公報、'特開平 1 1一 2 6 9 4 1 8号公報において開示されて いる。
上記ブロック共重合体に用いることができる代表的な疎水性モノマーとし ては、 次のモノマーがあるが、 これらに限定されるものではない:ベンジルァ クリレート、 ベンジルメタクリレート、 メチルメタクリレート (MMA)、 X チルメタクリレート (E MA)、 プロピルメタクリレート、 η—プチルメタク リレート (Β ΜΑ又は Ν Β ΜΑ)、 へキシルメタクリレート、 2ーェチルへキ シルメタクリレート (Ε ΗΜΑ)、 ォクチルメ夕クリレート、 ラウリルメ夕ク リレート (L MA)、 ステアリルメタクリレート、 フエニルメタクリレート、 ヒドロキシルェチルメタクリレート (H E MA)、 ヒドロキシプロピルメタク リレート、 2—エトキシェチルメタクリレート、 メタクリロニトリル、 2—ト リメチルシ口キシェチルメ夕クリレート、グリシジルメタクリレート(GMA)、 P—トリルメタクリレート、 ソルビルメタクリレート、 メチルァクリレート、 ェチルァクリレート、 プロピルァクリレート、 プチルァクリレ一ト、 へキシル ァクリレート、 2—ェチルへキシルァクリレート、 ォクチルァクリレート、 ラ ゥリルァクリレート、 ステアリルァクリレート、 フエニルァクリレート、 2— フエニルェチルメ夕クリレート、 ヒドロキシェチルァクリレート、 ヒドロキシ プロピルァクリレート、 アクリロニトリル、 2—トリメチルシロキシェチルァ 3
24 クリレート、 グリシジルァクリレ一ト、 P—トリルァクリレ一ト及びソルビル ァクリレート等である。 好ましい疎水モノマーは、 ベンジルァクリレート、 ベ ンジルメタクリレート、 2—フエニルェチルメタクリレート、 メチルメタクリ レート、 プチルメ夕クリレート、 2—ェチルへキシルメタクリレートであり、 これらから製造されたホモポリマ一及びコポリマー、 例えば、 メチルメタクリ レートとブチルメタクリレートとのコポリマ一を用いてブロック共重合体を 製造することが好ましい。
又、 プロック共重合体に用いることができる代表的な親水性モノマーとして は、 次のモノマーがあるが、 これらに限定されるものではない:メ夕クリル酸 (MAA)、 アクリル酸、 ジメチルアミノエチルメ夕クリレ一ト (DMA E M A)、 ジェチルアミノエチルメタクリレート、 第 3—ブチルアミノエチルメ夕 クリレート、 ジメチルアミノエチルァクリレート、. ジェチルアミノエチルァク リレート、 ジメチルァミノプロピルメタクリルアミド、 メタクリルアミド、 ァ クリルアミド及びジメチルアクリルアミド等が挙げられる。 これらの中でも、 メタクリル酸、 アクリル酸又はジメチ^/アミノエチルメタァクリレートのホモ ポリマー又はコポリマ一を用いてブロック共重合体を製造することが好まし い。
酸を含有するポリマーは、 直接製造されるか又は重合後除去される.プロツキ ング基を有するブロックされ モノマーから製造される。 ブロッキング基の除 去後に、 アクリル酸又はメタクリル酸を生ずるブロックされたモノマ一の例と しては、 トリメチルシリルメタクリレート (TM S— MAA)、 トリメチルシ リルァクリレート、 1一ブトキシェチルメタクリレート、 1一エトキシェチル メタクリレート、 1一ブトキシェチルァクリレート、 1ーェトキシェチルァク リレート、 2—テトラヒドロピラニルァクリレート及び 2—テトラヒドロビラ ニルメタクリレートが挙げられる。
これまで示したように、 実質的に一次粒子維持型からなる有色顔料を得た後、 分散させることで分散体を得ることもできるが、 下記示す本発明の実質的に一 次粒子維持型からなる有色顔料の分散体製造方法を用いることにより、 より所 望の分散体を得ることができる。
本発明の実質的に一次粒子維持型からなる有色顔料の分散体製造方法に関 して詳細に説明する。
本発明にかかる顔料分散体の製造方法は、 液媒体中に溶解または分散してい る色素単分子前駆体と有色顔料を分散させるための分散剤の存在下、 該色素単 分子前駆体をの分子構造を変換させた化合物により形成された有色顔料を用 いた分散体であることが特徴である。 特に、 好ましくは分子構造変換手段とし て逆ディ一ルス一アルダー反応を用いると、 良好な所望の有色顔料の分散体を 得ることができる。
この方法により、 実質的に一次粒子維持型からなる有色顔料の製造と、 該有 色顔料の分散を同じ液層で行うことが可能となり、 従来のように、 顔料製造過 程における乾燥工程を用いる必要がないため、 顔料カ凝集してしまうことがな い。 従って、 粉碎工程を必要とせずに分散工程に移れるため、 粉砕工程により 生じてしまっていた一次粒子の破壊によって生じる活性表面同士の相互作用 の悪影響がなくなる。 又、 分子構造変換速度 (例え 逆ディ一ルス—アルダー 反応の進行) を制御することで、 顔料の生成と分散のスピードを制御すること が可能であるので、 実質的に一次粒子維持型からなる有色顔料の分散体の作製 において、 粒度分布の幅の狭い顔料分散体を作製できるようになる。
上記色素単分子前駆体は液媒体で溶解していること.が好ましい。 該前駆体が 液媒体に溶解していることで、 該前駆体の分子構造変換を効率よく行え効率よ い分散を行うことができる。 これにより、 粒度分布の狭い顔料分散体を得るこ とができる。
上記液媒体に溶解した色素単分子前駆体の分子構造変換手段は逆ディール ス一アルダー反応が好ましく、 故に逆ディ ^"ルス一アルダー反応を生じる部分 を介してのみ液媒体に溶解する可溶性付与基を有することが好ましい。 これは、 逆ディ一ルス一アルダー反応により生成した色素単分子の可溶化基を完全に なくすことで、 実質的に一次粒チ維持型からなる有色顔料を安定な状態にでき るためである。
上記、逆ディ一ルス—アルダー反応を生じる部分、が下記一般式(1一 A )、 ( 1— B)、 (1—C)、 (1—D) で示される何れかの構造を有していることが 好ましい。
( 1— A) ( 1一 B)
Figure imgf000028_0001
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜R8は水素原子、 又は直接的或いは間接的に結合された置換基を表す。)
上記構造部分を逆ディ一ルス一アルダー反応させることにより、 ベンゼン環 が構築され不可逆反応が生じないため、 得られた色素単分子が安定に存在する ことができる。これにより、 さらに化合物の単結晶を容易に得ることができる。 以下に該顔料分散体製造方法を例を挙げて詳細に説明する。 しかし、 本製造 方法はこれに限られたものではなく、 作製したい分散形態や粒子径等によって、 適宜選択することができる。 P2005/016983
27 例えば、 図 2を用いてマイクロカプセル化した有色顔料分散体を作成する製 造方法を説明する。 色素化合物前駆体 (図 2の (1 ))、 カプセル成分 (図 2の ( 2 ))、水を混合し溶液 Aとする。 この混合液 Aを前記反応が生じるような雰 囲気下図 2の (6 ) を通るようにして別の液媒体 B中へと滴下させる。滴下中 に反応が生じ、 該前駆体の多環縮合環構造のから一部分 (図 2の (3 )) が脱 離することで有色顔料 (図 2の (4 )) ができる。 滴下された混合液から水分 が蒸発することでカプセル化された顔料 (図 2の (5 )) の分散体が製造でき る。
また、 別の例を示す。 従来から、 顔料では、 ロジン処理、 界面活性剤処理、 樹脂系分散剤処理、 顔料凝集体処理等の表面処理によって、 粒径を一次粒子に 近づけるべく研究されている。 しかし、 現状の顔料は、 せいぜい二次粒子に近 い粒径を中心として極めて広い粒径分布のものとなっている。 このような状況 においても、 製品として販売する場合に、 用途に応じて大粒径の顔料を分別し て、 比較的粒径分布を小さくすることは可能であるが、 顔料生産効率は低下し てしまう。 その結果、 顔料は、 コスト高となる。
これに対して、 上記した本発明にかかる製造方法によって得られた有色顔料 は、 逆ディ一ルス一アルダー反応を利用レて得たものであるため、 粒径を均一 化でき、 且つ、 一次粒子以下の微小単位の粒径範囲に 8 0 %以上 (好ましくは 9 0 %以上) の粒子が存在するものが得られる。 例えば、 1 0 ηπ!〜 1 2 nm の微小粒径範囲に、 8 0 %以上の高割合で、 粒径を均一化してなる顔料を得る ことができる。 具体的事例を示すと、 逆ディールス一アルダー反応時の反応温 度が T l CC) である前駆体を用いてなる場合は、 表面処理剤と、 本発明で言 う前駆体の混合液を第一工程として (T 1— 2 0 ) に温調して、 準備段階を 形成し (ここで、 一 2 0 は、 温調リップルを考慮して T 1に達しないための 差分である)、 温調域から (T 1 + 3 0 ) に急速に加熱して逆ディ一ルス一 アルダー反応を生じせしめる。 このようにすることで、 急激な反応を^じさせ ると共に、 微小単位の顔料に対して表面処理剤で確実に表面処理されるので、 本発明にかかる顔料分散体用に好適な顔料を得ることができる (仮に結晶体が 凝集しても、 その結合力は僅かなものなので、 所望の粒径の顔料を容易に得る ことができる。)
図 3を用いて詳細に説明する。 色素単分子前駆体 (図 3の (1 ) ) をこの前 駆体が溶解する溶媒 Aに溶解させ、 この溶媒 Aの環境温度を t 1 (逆ディール スーアルダー反応が生じない温度)より低い温度状態にしておく (図 3の 1 )。 次に、 この溶液の環境温度を徐々にあげていく (図 3の]!)。 したがって D点 より E点が高温環境下である。 この時、 この溶液が与えられた環境渾度状態に 素早くなるように、流路の径を小さくする等の工夫をするのが好ましい。途中、 表面処理剤が溶解又は分散する溶媒 Bを共存させ、 環境温度を t 2 (逆ディー ルス一アルダー反応が生じる温度) 以上に急激にあげた環境下で共存させた溶 液を滴下させる (図 3の m)。 ここで、 逆ディールス—アルダー反応により実 質的に一次粒子維持型である有色顔料 (図 3の (3 )) が製造される。
その後環境温度が t 2以下の状態で、 製造された液滴を溶媒 Cで受ければ、 表 面処理された有色顔料が製造できる (図 3の (4 ))。
この例において、 溶媒 Bに有色顔料を分散させるための分散剤をあてはめれ ば、 有色顔料の分散体が得られる。 また、 溶媒 B部分がない場合は有色顔料が 得られる。 . 次に、 実質的に一次粒子維持型からなる有色顔料の分散体を用いたインクに ついて詳細に述べる。 該インクは、 有色顔料を水系媒体等に分散してなる。 以 下、 水系媒体に有色顔料が分散されてなるィンクについて説明する。
本発明にかかるインク中での分散色材としての顔料の含有量は、 この範囲に 限定されるものではないが、 被記録材種、 例えば、 サイズ剤種、 内添量、 又、 インク中に含有される溶媒種によってインク中の分散色材の含有量は変わる が、 一般的に使用されている被記録材、 溶媒種を想定すると、 1 0質量%未満 の範囲が好ましく、 より好ましくは 4質量%未満である。 又、 分散色材として の良好な安定性を重要視すると、 2 . 5質量%未満であるのが好ましい。 これ らの顔料の含有量の下限は、 所望とする画像濃度に応じて設定できる。
又、 分散色材に、 樹脂分散、 界面活性剤分散等の、 分散剤を物理吸着等の方 法で分散させる場合は、 樹脂分散樹、 界面活性剤等は、 1種を単独で、 或いは 必要に応じて 2種以上を組み合わせて用いることができ、 好ましい分散剤量は インク全量に対して 0 . 5〜1 0質量%、 好ましくは 0 . 8〜8質量%、 より 好ましくは、 1〜6質量%の範囲である。 もし、 分散剤の含有量がこの範囲よ りも高い場合、 所望のィンク粘度を維持するのが困難となる場合がある。
本発明にかかるインクの水系媒体としては、 水と水溶性有機溶剤との混合媒 体を用いることが好ましい。 水溶性有機溶剤としては、 水溶性を示すものであ れば特に限定はなく、 アルコール、 多価アルコール、 ポリダリコール、 グリコ ールエーテル、 含窒素極性溶媒、 含硫黄極性溶媒、 尿素類、 糖類、 及びこれら の誘導体等、 一般的にインクジエツト用インクの溶剤として用いられているも のであれば、 問題なく使用することができる。 これらの溶剤は、 インクの保湿 性維持や色材の溶解性、 インクの記録紙への浸透剤等の用途として用いられる。 又、 これらの溶剤は単独でも複数を組み合わせて用いることもできる。
水溶性有機溶剤の含有量は、 一般的にはインク全体の 1〜5 0質量%の範囲 が好ましく、 より好ましくは 3〜4 0質量%の範囲である。 又、 インク中の水 の含有量は、 色材の溶解性やインクの吐出安定性を良好に保っために、 3 0〜 9 5質量%の範囲が好ましい。
更に、 本発明にかかるインクには、 上記成分以外にも必要に応じて、 界面活 性剤、 P H調整剤、 防鲭剤、 防腐剤、 防カビ剤、 酸化防止剤、 還元防止剤、 蒸 発促進剤、 キレ一ト化剤、 水溶性ポリマー等、 種々の添加剤を含有させてもよ い。
例えば、 界面活性剤としては、 脂肪酸塩類、 高級アルコール硫酸エステル塩 類、 液体脂肪油硫酸エステル塩類、 アルキルァリルスルホン酸塩類等の陰ィォ ン界面活性剤、 ポリエキシエチレンアルキルエーテル類、 ポリオキシエチレン アルキルエステル類、 ポリエキシエチレンソルピタンアルキルエステル類、 ァ セチレンアルコール、 アセチレングリコール等の非イオン性界面活性剤があり、 これらの 1種又は 2種以上を適宜選択して使用できる。 上記したなかでも、 特 に、 アセチレンアルコ一ル類や、 アセチレングリコール類が普通紙への浸透性 に優れた効果を発揮するために好適に用いることができる。 その適用量は、 界 面活性剤の種類によっても異なるが、インク全量に対して、 0 . 0 1〜5質量% が望ましい。 この際、 ィンクの2 5 t にぉける表面張カは1 0 mNZm (d y n/ c m) 以上が好ましく、 より好ましくは 2 O mNXm ( d y nZ c m) 以 上となるように、 又、 表面張力が 6 0 mNZm (d y n / c m) 以下となるよ うに活性剤の添加する量を決定することが好ましい。 なぜなら、 本発明で使用 するインクジエツト記録方式においては、 ノズル先端の濡れによる印字ョレ (インク滴の着弹点のズレ) 等の発生を有効に抑えることができるからである。 又、 インクは、 インクジェット記録装置で良好な吐出特性を得るために、 所 望の粘度や p Hを有するように調整することが好ましい。 インク中には、 単結 晶を構成する色素単分 (結晶を構成する分子) 子、 又は、 単結晶からなる有色 顔料の分散体のほかに、 その他顔料の分散体、 染料、 逆ディールス一アルダー 反応をする色素単分子前駆体等を併用させてもよい。
本発明にかかる記録画像を形成するための被記録媒体としては、 普通紙、 或 いは光沢紙、 コート紙、 光沢フィルムと呼ばれるような、 表面にコート層或い はィンク受容層を有する特殊媒体等、 一般的に用いられている被記録媒体を用 いることができる。 これらの中でも、 より鮮やかさ、 コントラスト、 透明感の 高い画像が得られる被記録媒体の一例として、 基材上に親水性の多孔質粒子層、 多孔質高分子層等を有する特殊媒体を挙げることができる。
本発明で用いられる被記録媒体としての特殊媒体の一例を更に詳述すると、 染料や顔料等の色材をインク受容層内の親水性多孔質構造を形成する微粒子 に吸着させて、 少なくともこの吸着した色材によって画像が形成される被記録 媒体であり、 インク〕ジェット法を利用する場合には特に好適である。 このよう な被記録媒体としては支持体上のインク受容層に形成された空隙によりイン クを吸収するいわゆる吸収タイプであることが好ましい。
吸収タイプのインク受容層は、 微粒子を主体とし、 必要に応じて、 バイ.ンダ —やその他の添加剤を含有する親水性多孔質層として構成される。 微粒子の例 としては、 シリカ、 クレー、 タルク、 炭酸カルシウム、 カオリン、 アルミナ或 いはアルミナ水和物等の酸化アルミニウム、 珪藻土、 酸化チタン、 ハイドロタ ルサイト、 酸化亜鉛等の無機顔料や尿素ホルマリン樹脂、 エチレン樹脂、 スチ レン樹脂等の有色顔料が挙げられ、 これらの 1種以上が使用される。
バインダ一として好適に使用されているものには、 水溶性高分子やラテック スを挙げることができる。 例えば、 ポリビエルアルコール又はその変性体、 澱 粉又はその変性体、 ゼラチン又はその変性体、 アラビアゴム、 カルポキシメチ ルセルロ一ス、 ヒドロキシェチルセルロース、 ヒドロキシプロオイルメチルセ ルロース等のセルロース誘導体、 S B Rラテックス、 N B Rラテックス、 メチ ルメタクリレート—ブタジエン共重合体ラテックス、 官能基変性重合体ラテツ クス、 エチレン酢酸ビニル共重合体等のビニル系共重合体ラテックス、 ポリピ ニルピロリドン、 無水マレイン酸又はその共重合体、 アクリル酸エステル共重 合体等が使用され、 必要に応じて 2種以上を組み合わせて用いることができる。 その他、添加剤を使用することもでき、例えば、必要に応じて分散剤、増粘剤、 p H調整剤、 潤滑剤、 流動性変性剤、 界面活性剤、 消泡剤、 離型剤、 蛍光増白 剤、 紫外線吸収剤、 酸化防止剤等が使用される。
本発明にかかるインクは、 インクジエツト吐出方式のへッドにもちいられ、 又、 そのインクが収納されているインク収納容器としても、 或いは、 その充填 用のインキとしても有効である'。 特に、 本発明は、 インクジェット記録方式の 中でもパブルジェヅト (登録商標) 方式の記録ヘッド、 記録装置において、 優 れた効果をもたらすものである。
その代表的な構成や原理については、 例えば、 米国特許第 4 ; 7 2 3 , 1 2 9号明細書、 同第 4, 7 4 0 , 7 9 6号明細書に開示されている基本的な原理 を用いて行うものが好ましい。 この方式は所謂オンデマンド型、 コンティニュ ァス型の何れにも適用可能であるが、 特に、 オンデマンド型の場合には、 イン クが保持されているシ一トゃ波路に対応して配置された電気熱変換体に、 記録 情報に対応していて核沸騰を超える急速な温度上昇を与える少なくとも一つ の駆動信号.を印加することによって、 電気熱変換体に熱エネル乎ーを発生せし め、 記録ヘッドの熱作用面に膜沸騰させて、 結果的にこの駆動信号に一対一対 応し、 インク内の気泡を形成できるので有効である。 この気泡の成長、 収縮に より吐出用開口を介してインクを吐出させて、 少なくとも一つの滴を形成する。 この駆動信号をパルス形 とすると、 即時適切に気泡の成長収縮が行われるの で、 特に応答性に優れたインクの吐出が達成でき、 より好ましい。 このパルス 形状の駆動信号としては、 米国特許第 4, 4 6 3 , 3 5 9号明細書、 同第 4 , 3 4 5 , 2 6 2号明細書に記載されているようなものが適している。 尚、 上記 熱作用面の温度上昇率に関する発明の米国特許第 4, 3 1 3 , 1 2 4号明細書 に記載されている条件を採用すると、 更に優れた記録を行うことができる。 記録へッドの構成としては、 上述の各明細書に開示されているような吐出口、 液路、 電気熱変換体の組み合わせ構成 (直線状液流路又は直角液流路) の他に 熱作用部が屈曲する領域に配置されている構成を開示する米国特許第 4 , 5 5 8 , 3 3 3号明細書、 米国特許第 4 , 4 5 9 , 6 0 0号明細書を用いた構成に も本発明は有効である。 加えて、 複数の電気熱変換体に対して、 共通すると吐 出孔を電気熱変換体の吐出部とする構成 (特開昭 5 9 - 1 2 3 6 7 0号公報 等) に対しても、 本発明は有効である。 更に、 記録装置が記録できる最大被記 録媒体の幅に対応した長さを有するフルラインタイプの記録へッドとしては、 上述した明細書に開示されているような複数記録へッドの組み合わせによつ て、 その長さを満たす構成や一体的に形成された一個の記録へッドとしての構 成の何れでも良いが、 本発明は、 上述した効果を一層有効に発揮することがで きる。
加えて、 装置本体に装着されることで、 装置本体との電気的な接続や装置本 体からのインクの供給が可能になる交換自在のチップタイプの記録ヘッド、 或 いは記録へッド自体に一体的に設けられたカー卜リッジタイプの記録へッド を用いた場合にも本発明は有効である。 又、 本発明は、 適用される記録装置の 構成として設けられる、 記録ヘッドに対しての回復手段、 予備的な補助手段等 を付加することは本発明の効果を一層安定できるので好ましいものである。 こ れらを具体的に挙げれば、 記録ヘッドに対してのキヤピング手段、 クリーニン グ手段、 加圧或は吸引手段、 電気熱変換体或はこれとは別の加熱素子或はこれ らの組み合わせによる予備加熱手段、 記録とは別の吐出を行う予備吐出モ一ド である。
実施例
次に、 本発明に基づく実施例を示し、 本発明の効果をより明らかにするが、 本発明はこの実施例 限定されるものではない。 又、 文中 「部」 及び 「%」 と あるのは、 特に断りのない限り質量基準を意味する。 尚、 下記において次の略 語を使用する。
· TH F:テトラヒドロフラン
• D B U : 1, 8—ジァザビシクロ— [ 5 . 4. 0 ] ゥンデセン一 7
• DM F:ジメチルホルムアミド
• L DA: リチウムジィソプロピルァミド
[合成例 1 ] <テトラァザポルフィリン色素単分子前駆体の合成〉
図 4に記載のスキームに従って、 テトラァザポルフィリン色素単分子前駆体の 合成をした。 (化合物 2の合成)
先ず、'原料として、 1, 2—ジヒドロキシシクロへキサジェン (化合物 1) の 20%酢酸ェチル溶液 (25ml) を用意し、 '該溶液中の溶媒を減圧下で濃 縮した。 そこに、 アセトン (30ml )、 2, 2—ジメ卜キシプロパン (69 ml), 痕跡量の p—トルエンスルホン酸を加えて、 室温で 4時間攪拌した。 次に、 10%水酸化ナトリウム水溶液 (30ml)、 飽和食塩水 (30ml) を加えて攪拌し、 反応を停止し、 その後、 ジェチルエーテル (3x30ml) を用いて抽出操作を行った。そして、抽出操作後に得た有機層を飽和食塩水 ( 3 x30ml) で洗浄した後、 無水硫酸ナトリウムで乾燥させ、 減圧下で濃縮し た。 この結果、 上記化合物 1の水酸基を保護した化合物 2が、 8. 33 g得ら れた。
(化合物 3の合成)
反応容器に、 上記で得た化合物 2 (158mg) と、 ジシァノアセチレン (2 3 Omg) を入れ、 トルエン (2. 00ml) を加えて、 90°Cで 3時間攪拌 した。反応終了後、反応溶液を減圧濃縮し、カラムクロマトグラフィ (充填材: シリカゲル、 展開溶媒: 20— 30容量%の間で極性勾配を有する酢酸ェチル ノへキサン) で分離し、 反応物は 2種類のジァステレオマーの混合物であるた め、 2種類の異性体の、 R f==0. 24 (20容量% 酢酸ェチル Zへキサン) .と、 R f = 0. 18 (20容量% 酢酸ェチル /へキサン) のフラクションを 混合して濃縮した。 これらを再結晶することにより、 化合物 3が 184mg得 られた。 得られた化合物 3について、 融点 (mp) の測定、 NMR及び赤外吸 光分析 (I R) を行い、 目的の化合物であることを確認した。
• mp : 151. 9-152. QX
•iHNMR [溶媒: CDC 13、 単位: δρρπι] 7. 87 (m、 2H)、 7. 71 (m、 1H)、 7. 59 (m、 2H)、 6. 16 (m、 2H)、 4. 81 (d d、 J = 5. 6、 2. 4Hz、 1H)、 4. 33 (dd、 J = 6. 8、 2. 9 Hz、 1H)、 4. 19 (dd、 J = 6. 8、 2. 9Hz、 1H)、 4. 04 (d d、 J = 5. 6、 1. 5Hz、 1H)、 3. 70 (m、 1H)、 3. 48 (m、 1H) 1. 28 (s、 3H)、 1. 22 (s、 3 H)
• I R [KB r法、 単位: Zcm-i] 2981w、 1552 s、 1313 s、 1151 s、 1056 s, 727. 0m、 601. 7m
(化合物 4の合成)
反応容器に、 上記で得た化合物 3 (365mg) を入れて、 容器内を窒素置換 した条件下で、 d ry— THF.(5. 00ml) に溶解させた。 そこに、 n— ブトシキマグネシウムの n—ブタノール溶液を加え、 150 の温度で加熱撹 拌し、 4量環化、 金属錯体化を行った。 反応終了後、 酢酸ェチル (3x20. 0ml)で抽出操作 行った。抽出操作後の有機層を飽和食塩水で洗浄した後、 無水硫酸ナトリウムで乾燥し、 減圧下で濃縮し、 シリカゲルカラムクロマトグ ラフィ (展開溶媒: 5容量%酢酸ェチルノクロ口ホルム)で分離し、 R f = 0. 41 (5容量%酢酸ェチル Zクロ口ホルム) 'のフラクションを濃縮し、 再結晶 することによって化合物 4を 283mgの収率で得た。 得られた化合物 4につ いて、 融点 (mp) の測定、 NMR及び赤外吸光分析 (I R) を行い、 目的の 化合物であることを確認した。
(化合物 5の合成)
反応容器に化合物 4 (289mg) を入れ、 容器内を窒素置換した条件下で、 THF (5. 00ml) に溶解させた。 ここに、 1 N塩酸 (114mg) を加 えて室温で 1時間攪拌した。 反応終了後、 飽和食塩水 (20ml) を加えて反 応を停止し、 反応溶液を、 1%チォ硫酸ナトリウム水溶液 (50. 0ml), 及び飽和食塩水 (50. 0ml) でそれぞれ洗浄した。 得られた液を、 無水硫 酸ナトリウムで乾燥後、 減圧下で濃縮し、 これをカラムクロマトグラフィ (充 填材:シリカゲル) で精製し、 再結晶することで、 水酸基が脱保護されたテト ラァザポルフィリン前駆体である水溶性を示すテトラァザポルフィリン化合 物 5 (収率 39. 8%) を得た。
[合成例 2]
<チォインジゴ色素単分子前駆体からなる配向性が同じ結晶からなるチオイ ンジゴ顔料の合成〉
図 5に記載したスキームに従って、 チオインジゴ色素単分子前駆体からなる、 配向性が同じ結晶からなるチォインジゴ顔料を合成した。
先ず、合成に使用した化合物 1は、 Te t r ahe d rn Le t t e r s, Vo l. 22, No. 35, pp 3347— 3350, 1981に従ってピロ ピオール酸エステルのチオフェニル化、 ジメチルジォキシランでの酸化、 ジヒ ドロキシシクロへキサジェンとのディ一ルス—アルダ一反応により合成した。 次に、 下記の式において [1] で示した化合物 1を用いて、 下記に述べるよう にして [2] を合成した。
Figure imgf000038_0001
[1] [2]
先ず、 50mlナス型フラスコに、 水素化ナトリウム (NaH、 0. 062 g, 2. 6 Ommo 1) を入れ、 窒素置換した条件下で、 d ry— DMF (2 ml) を加えた後、 水浴で冷やしたものを用意した。 これとは別に、 25ml ナシ型フラスコに、 前記した [1] (0, 200 g, 0. 62mmo l) を入 れ、.窒素置換した条件下で、 d r y— DMFを加え、 チォグリコール酸 (0. 090ml, 1. 3 Ommo 1) を入れ、 これをトランスファーチューブによ つて、 先程用意した 50mlのナス型フラスコ内にゆっくりと滴下し、 1時間 攪拌した。 反応の終了を TLC (薄層クロマトグラフィー) によって確認して から、 反応容器に 0. 1Mクェン酸水溶液を pH 3になるまで加え、 酢酸ェチ ルで抽出操作を行った。 抽出操作後の有機層を 5 %HC 1で洗浄し、 無水硫酸 ナトリウムで乾燥させ、 その後、 減圧下で濃縮した。 得られた濃縮物を、 シリ 力ゲルカラムクロマトグラフィー (展開溶媒:酢酸ェチル Zへキサン) により 精製することで、 目的物である [2]を得た(0. 29 g, 収率: 87. 8%)。 次に、 上記で得た下記 [2] で示した化合物 2を用いて、 下記に述べるように して [3] を合成した。
Figure imgf000039_0001
[2] [3] 先ず、 25mlナス型フラスコに、 窒素置換した条件下で、 d ry— THF (5. 5ml ) とジイソプロピルアミド (0. 68ml, 4. 84mmo 1 ) を加えたあとで、 0口まで冷やし、 この中に n—ブチルリチウムをゆっくり滴 下した。 そして、 反応容器を— 78口まで冷やしたものを用意した。 これとは 別に、 25mlナシ型フラスコに [2] (0. 325 g, 1. 2 lmmo 1 ) を入れ、 窒素置換した条件下で、 d ry— THF (2ml) を加えたものを用 意し、 これを先程の容器にトランスファーチューブにより滴下し、 1時間攪拌 した。 反応終了を TLCにより確認してから、 反応容器に 5%HC 1を pH2 になるまで加え、 酢酸ェチル Vで抽出し、 有機層を無水硫酸ナトリウムで乾燥 させて、 濃縮した。 次に、 濃縮したものをジクロロェタンに溶かし、 濃塩酸を '2〜 3滴加え、 5時間攪拌し、 水で洗浄し、 無水硫酸ナトリウムで乾燥させて 濃縮した。 更に、 シリカゲルカラムクロマトグラフィー (酢酸ェチルズへキサ ン) により精製することで、 目的物である [3] を得た (0. 16g, 収率: 74%)。
次に、 上記で得た下記 [3] で示した化合物 3を用いて、 下記に述べるよう にして [4] を合成した。
Figure imgf000040_0001
先ず、 5 Om 1ナス型フラスコに、 上記で得た [3] (0. 120 g, 0. 67mmo 1 ) を入れて、 窒素置換した条件下で、 dry— THFを加え > 反 応容器を一 78 まで冷やしたものを用意した。 そして、 これとは別に、 25 mlナス型フラスコに、 窒素置換した条件下で、 dry— THF (5. 5 ml) とジイソプロピルアミド (0. 68ml, 4. 84mmo 1 ) を加えたあと、 0 まで冷やし、 n—ブチルリチウムをゆっくり滴下したものを用意した。 こ れを先程の 5 Omlナス型フラスコに、 トランスファーチューブにより加え、 更にヨウ素 (0. 102g, 0. 8 Ommo 1) を加えて、 3時間攪拌した。 反応を水により停止し、 酢酸ェチルで抽出操作を行った。 抽出操作後の有機層 を、 無水硫酸ナトリウムで乾燥させ、 減圧下で濃縮した。 最後に、 シリカゲル カラムクロマトグラフィー (酢酸ェチル /へキサン) により精製することで、 目的物であるチォインジゴの色素単分子前駆体 [4] を得た (0. 027 g, 収率: 23%)。 〔合成例 3〕 (キナクリドン顔料の前駆体合成)
色素単分子 (結晶を構成する分子) の前駆体の合成〉
図 6に記載したスキームに従って、 本発明にかかる製造方法を実施する際に使 用するキナクリドン顔料前駆体化合物を合成した。 '
(化合物 1の合成)
J . Or g. Chem., Vo l. 61, No. 11. 1996, p p 379
4- 3798に従って合成した。
(化合物 2の合成)
下記の式において [1] で示した化合物 1を用いて、 下記に述べるようにして
[2] を合成した。
Figure imgf000041_0001
先ず、 50m 1ナス型フラスコに、 [1] (0. 318 g, 2. 6 Ommo 1) を入れ、 窒素置換した条件下で、 d ry— CH2C 12 (2ml) を加えた後、 水浴で冷やしたものを用意した。 これとは別に、 25mlナシ型フラスコに、 クロロギ酸ェチル (0. 284 g, 2. 62mmo 1 ) を入れ、 窒素置換した 条件下で、 d r y— CH2C 12を加え、 これをトランスファーチューブによつ て、 先程用意した 50mlのナス型フラスコ内にゆっくりと滴下し、 1時間攪 拌した。 反応の終了を TLC (薄層クロマトグラフィー) によって確認してか ら、 反応を終了させ、 酢酸ェチルで抽出操作を行った。 抽出操作後の有機層を 5%HC 1で洗浄し、 無水硫酸ナトリウムで乾燥させ、 その後、 減圧下で濃縮 した。 得られた濃縮物を、 シリカゲルカラムクロマトグラフィー (展開溶媒: E t OAc/He X an e) により精製することで、 目的物である [2] を得 た (0. 408 g, 収率: 80. 8%)。 (化合物 3の合成)
次に、 上記で得た下記 [2] で示した化合物 2を用いて、 下記に述べるように して [3] を合成した。
Figure imgf000042_0001
先ず、 25mlナス型フラスコに、 窒素置換した条件下で、 dry— E t20 (5. 5ml) と [2] (0. 777 g, 4. 0 Ommo 1 ) とを冷やしたもの を用意しだ。 これとは別に、 25mlナシ型フラスコに 1, 4—フエ二レンジ ァミン (0. 216g, 2. 0 Ommo 1) を入れ、 窒素置換した条件下で、 dry— E t2〇 (2ml ) を加えたものを用意し、 これを先程の容器にトラ ンスフアーチュ ブにより滴下し、 1時間攪拌した。 反応終了を TLCにより 確認してから、 反応を終了し、 酢酸ェチルで抽出し、 有機層を無水硫酸ナトリ ゥムで乾燥させて、濃縮した。更に、シリカゲルカラムクロマトグラフィー(E tOAc/Hexane) により精製することで、 目的物である [3] を得た (0. 690 g, 収率: 75%)ο·
(化合物 4の合成)
次に、 上記で得た下記 [3] で示した化合物 3を用いて、 下記に述べるように して [4] を合成した。
Figure imgf000043_0001
先ず、 1 Q 0m 1ナス型フラスコに、 上記で得た [3] (0. 921 g, 2. 00 mm o 1 ) を DM SO (ジメチルスルホキサイド) 30mlを溶媒として 溶解した。そこに t—ブトキシカリウムを加え、 50 で 1昼夜加熱攪拌した。 反応終 Tを TLCにより確認してから、 反応を水により停止し、 酢酸ェチルで 抽出操作を行った。 抽出操作後の有機層を、 無水硫酸ナトリウムで乾燥させ、 減圧下で濃縮した。 最後に、 シリカゲルカラムクロマトグラフィー (E tOH /He an e) により精製することで、 目的物である [4] を得た (0. 7 28 g, 収率: 90%)。
(化合物 5の合成)
次に、 上記で得た下記 [4] で示した化合物 4を用いて、 下記に述べるように して [5] を合成した。
Figure imgf000043_0002
先ず、 100mlナス型フラスコに、 上記で得た [4] (0. 808 g, 2. 00 mm o 1 ) を d r y-DMSO (ジメチルスルホキサイド) 30m 1を溶 媒として溶解した。 そこにポリリン酸を加え、 50 で 1昼夜加熱攪拌した。 脱水閉環反応終了を TLCにより確認してから、 反応を水により停止し、 酢酸 ェチルで抽出操作を行った。 抽出操作後の有機層を、 無水硫酸ナトリウムで乾 燥させ、減圧下で濃縮した。最後に、シリカゲルカラムクロマトグラフィー(E tOAc/Hexane) により精製することで、 目的物であるキナクリドン 色素単分子前駆体 [5] を得た (0. 331 g, 収率: 45%)。
〔合成例 4〕 〈キナクリドン色素単分子前駆体一 2の合成〉
合成例 3中のキナクリドン色素単分子前駆体 (化合物 5) において、 逆ディー ルス一アルダー反応によって脱離する架橋部分の可溶性付与基 (R1〜; R4) が 全てカルボン酸である化合物を合成した。
実施例 1
〈合成例 1で得られたテトラテトラァザポルフィリン色素単分子前駆体を用 いた有色顔料の製造〉
合成例 1で得られたテトラァザポルフイリン色素単分子前駆体をジェチレン グリコールモノブチルエーテルに溶解さ甘 30%溶液を作製した。 この溶液を 200°Cの雰囲気下滴下させ実質的 1次粒子維持型からなるテトラァザポルフィ リンの有色顔料を得た。 この有色顔料を CuXa線による X線回折 (XRD) 装置を用いて測定を行い、 色素単分子の前駆体が逆ディールス一アルダー反応 により色素単分子に変化し有色顔料ができていることを確認した。
.実施例 2
<合成例 1で得たテトラァザポルフィリン色素単分子前駆体を用いた顔料分 散体の製造一 Φ> .
' 先ず、 ベンジルメタクリレートとメ夕クリル酸を原料として、 常法により、 酸 価 250、 数平均分子量 3, 000の ΑΒ型ブロックポリマーを作り、 更に、 水酸化カリウム水溶液で中和し、 イオン交換水で希釈して均質な 50%ポリマ 一水溶液を作成した。 次に上記合成 1で合成したテトラァザポルフィリン色素 単分子前駆体をジエチレングリコールモノブチルエーテルに溶解させ 30 % 溶液を作製した。 このテトラァザポルフィリン色素単分子前駆体 30%溶液 3 20 gと作製したポリマ一溶液 180 gとを混合した。 この混合溶液を 20 0で雰囲気を通るような状態で水溶液中に滴下させ有機顔料分散体を得た。 この顔料分散体の C u Xa線による X線回折 (X R D) 装置を用いて測定を 行い、 色素単分子の前駆体が逆ディ一ルス一アルダー反応により色素単分子に 変化していることを確認した。 結果を図 8に示す。
実施例 3
く合成例 1で得たテトラァザポルフィリン色素単分子前駆体を用いた顔料分 散体の製造ー②〉
先ず、 ベンジルメタクリレートとメタクリル酸を原料として、 常法により、 酸 価 2 5 0、 数平均分子量 3, 0 0 0の A B型ブロックポリマ一を作り、 更に, 水酸化カリウム水溶液で中和し、 イオン交換水で希釈して均質な 5 0 %ポリマ 一水溶液を作成した。 次に上記合成 1で合成したテトラァザポルフィリン色素 単分子前駆体を加温して液体状態にした 1,6—へキサンジオールに溶解させ 3 0 %溶液を作製した。 このテトラァザポルフィリン色素単分子前駆体 3 0 %溶 液 3 2 0 gと作製したポリマー溶液 1 8 0 gとを混合した。 この混合溶液を 2 0 0 °C雰囲気を通るような状態で水溶液に滴下させ有機顔料分散体を得た。 この顔料分散体の C u Xa線による X線回折 (X R D) 装置を用いて測定を行 い、 '色素単分子 (実質的に 1次粒子維持型からなる有色顔料を構成する分子) の前駆体が逆ディ一ルス一アルダー反応により色素単分子に変化しているこ とを確認した。 結果を図 1 1に示す。
実施例 4
ぐ合成例 1で得たテトラァザポルフィリン色素単分子前駆体を用いた顔料分 散体の製造—③〉
先ず、 ベンジルメタクリレートとメタクリル酸を原料として、 常法により、 酸 価 2 5 0、 数平均分子量 3, 0 0 0の A B型ブロックポリマーを作り、 更に、 水酸化カリウム水溶液で中和し、 イオン交換水で希釈して均質な 5 0 %ポリマ —水溶液を作成した。 次に上記合成 1で合成したテトラァザポルフィリン色素 単分子前駆体をイソプロピルアルコールに溶解させ 3 0 %溶液を作製した。 こ のテトラァザポルフィリン色素単分子前駆体 30 %溶液 320 gと作製した ポリマー溶液 180 gとを混合した。 この混合溶液を 200で雰囲気を通るよ うな状態で水溶液中に滴下させ有機顔料分散体を得た。
この顔料分散体の CuXa線による X線回折 (XRD) 装置を用いて測定を行 い、 色素単分子 (実質的に 1次粒子維持型からなる有色顔料を構成する分子) の前駆体が逆ディ一ルス一アルダー反応により色素単分子に変化しているこ とを確認した。
この後機械的に 0. 5時間撹拌した。 ついで、 マイクロフリュイダイザ一を 使用し、 この混合物を、 液体圧力約 10, 00 Op s i (約 70 Mp a) 下で 相互作用チャンバ内に 5回通すことによって処理し、 分散液を得た。 更に、 こ の分散液を遠 分離処理( 12, 000 r pm、 20分間)することによって、 粗大粒子を含む非分散物を除去して分散液 1とした。 得られた分散液 1は、 そ の顔料濃度が 10%、 分散剤濃度が 10 %であった。
実施例 5
<合成例 2で得たチオインジゴ色素単分子前駆体を用いた顔料分散体の製造 >
上記合成例 2で合成したチオインジゴ色素単分子前駆体をォク夕ノ一ルに溶 解させ 25%溶液を作製した。 このチォインジゴ色素単分子前駆体 25%溶液 400 gと実施例 1-で使用したポリマー溶液 100 gを混合した。 この混合溶 液を 200で雰囲気を通るような状態で水溶液中に滴下させ有機顔料分散体 を得た。
この顔料分散体の CuXa線による X線回折 (XRD) 装置を用いて測定を 行い、色素単分子(実質的に 1次粒子維持型からなる有色顔料を構成する分子) の前駆体が逆ディ一ルス一アルダー反応により色素単分子に変化しているこ とを確認した。 そして機械的に 0. 5時間撹拌した。
ついで、 マイクロフリュイダイザ一を使用し、 この混合物を、 液体圧力約 1 0, O O O p s i (約 7 OMp a) 下で相互作用チャンパ内に 5回通すことに よって処理し、 分散液を得た。 この分散液を遠心分離処理 (12, 000 r p m、 2.0分間) することによって、 粗大粒子を含む非分散物を除去して分散液 2とした, 得られた分散液 2は、 その顔料濃度が 10%、 分散剤濃度が 5%で めった。
実施例 6
<合成例 3.で得たキナクリ .ドン色素単分子前駆体を用いた顔料分散体の製造 、 >
上記合成例 3で合成したキナクリドン色素単分子前駆体をォク夕ノ一ルに溶 解させ 25%溶液を作製した。 このチォインジゴ色素単分子前駆体 25%溶液 400 gと実施例 1で使用したポリマー溶液 100 gを混合した。 この混合溶 液を 200 雰囲気を通るような状態で水溶液中に滴下させ有機顔料分散体 を得た。
この顔料分散体の CuXa線による X線回折 (XRD) 装置を用いて測定を行 レ 色素単分子 (実質的に 1次粒子維持型からなる有色顔料を構成する分子) の前駆体が逆ディ一ルス一アルダー反応により色素単分子に変化しているこ とを確認した。 そして機械的に 0. 5時間撹拌した。
ついで、 マイクロフリュイダイザ一を使用し、 この混合物を、 液体圧力約 1
0, O O O p s i (約 7 OMp a) 下で相互作用チャンバ内に 5回通すことに よって処理し、 分散液を得た。 この分散液を遠心分離処理 (12, 000 r p m、 20分間) することによって、 粗大粒子を含む非分散物を除去して分散液
3とした。 得られた分散液 3は、 その顔料濃度が 10%、 分散剤濃度が 5%で あった。
実施例 7
<合成例 4で得たキナクリドン色素単分子前駆体一 2を用いた顔料分散体の 製造 > 上記合成例 4で合成したキナクリドン色素単分子前駆体を水に溶解させ 2 5%水溶液を作製した。 このチォインジゴ色素単分子前駆体 25%溶液 400 gと実施例 1で使用したポリマー溶液 100 gを混合した。 この混合溶液を 2 0 o°c雰囲気を通るような状態で水溶液中に滴下させ有機顔料分散体を得た。 この顔料分散 の CuXa線による X線回折 (XRD) 装置を用いて測定を行 い、 色素単分子 (実質的に 1次粒子維持型からなる有色顔料を構成する分子) の前駆体が逆ディ一ルス一アルダー反応により色素単分子に変化しているこ とを確認した。 そして機械的に 0. 5時間撹拌した。
ついで、 マイクロフリュイダイザ一を使用し、 この混合物を、 液体圧力約 1 0, 00 O p s i (約 7 OMp a) 下で相互作用チャンバ内に 5回通すことに よって処理し、 分散液を得た。 この分散液を遠心分離処理 (12, 000 r p m、 20分間) することによって、 粗大粒子を含む非分散物を除去して分散液 4とした。 得られた分散液 4は、 その顔料濃度が 10%、 分散剤濃度が 5%で あった。
ぐ評価 >
(分散安定性)
上記実施例 2〜7で作製した顔料分散体の安定性を確認するために、 100m 1容のガラス容器 (ショット社製) にこの分散体を 10 Oml入れ、 ねじ蓋に より密閉した状態で、 6 Ot:の恒温のオーブン中に 2ヶ月間保存した。 試験終 了前及び試験終了後に粘度測定及び粒径測定を行つたところ、 試験前後で変化 はなかった。 よって、 安定な分散体が作製されていることが確認された。 (粒 径)
上記実施例 2〜 7で作製した顔料分散体の粒径を測定したところ、 従来と比 較して粒径分布は狭ぐ極めて微小な範囲内に 80%以上の割合で存在してる分 散体が作製できていることが確認された。
実施例 8 <実施例 2の顔料分散体を用いたィンク >
実施例 2で得た顔料の分散体と、少なくともグリセリン、エチレングリコール、 水とを含む溶剤を用いて、 顔料濃度 3. 5 %のインクを作製した。
<評価 >
(保存性)
上記作製したインクの安定性を確認するために、 1 0 0 m 1容のガラス容器 (ショット社製) にこの分散体を 1 0 O m l入れ、 ねじ蓋により密閉した状態 で 6 0 T:のオーブン中に 2ヶ月保存した。 試験終了前及び試験終了後に粘度測 定及び粒径測定を行ったところ、 試験前後で変化はなかった。 よって、 安定な 分散体が作製されていることが確認された。
(発色性)
上記で作製したインクをキャノン (株) 製 P I XU S 9 5 0 i用のインク力 ートリッジに詰め、 インクジェット式画像形成装置である P I XU S 9 5 0 i を用いて画像形成をした。 使用メディアはキャノン (株) 製 P R— 1 0 1であ る。 形成された画像について目視により観察し、 色の鮮やかさを判断したとこ ろ、 鮮やかであった。
実施例 9
<実施例 5の顔料分散体を用いたィンク >
実施例 5で得た顔料の分散体と、少なくともグリセリン、エチレングリコール、 水とを含む溶剤を用いて、 顔料濃度 3 . 5 %のインクを作製した。 得られたィ ンクについて、実施例 8の場合と同様にして評価を行った。その結果、安定性、 発色性、 耐光性は、 実施例 8の場合と同様に、 優れていることが確認された。 実施例 1 0
<実施例 6の顔料分散体を用いたィンク >
実施例 6で得た顔料の分散体と、少なくノともグリセリン、エチレングリコール、 水とも含む溶剤を用いて、 顔料濃度 3 . 5 %のインクを作製した。 得られたィ ンクについて、実施例 8の場合と同様にして評価を行った。その結果、安定性、 発色性、 耐光性は、 実施例 8の場合と同様に、 優れていることが確認された。 実施例 1 1
ぐ実施例 7の顔料分散体を用いたィンク >
実施例 7で得た顔料の分散体と、少なくともグリセリン、エチレングリコール、 水とを含む溶剤を用いて、 顔料濃度 3 . 5 %のインクを作製した。 得られたィ ンクについて、実施例 8の場合と同様にして評価を行った。その結果、安定性、 発色性、 耐光性は、 実施例 8の場合と同様に、 優れていることが確認された。 産業上の利用可能性
本発明の活用例としては、 例えば、 水溶性の色素単分子 (顔料結晶を構成す る分子) の前駆体を被記録媒体上に付与し、 その後に加熱等することで不溶性 の顔料として画像を形成するといつた、 新たな記録方法の実現が可能となる。
この出願は 2 0 0 4年 9月 8日に出願された日本国特許出願第 2 0 0 4 - 2 6 1 7 1 0号からの優先権を主張するものであり、 その内容を引用してこの 出願の一部とするものである。

Claims

請求の範囲
1 . 実質的に 1次粒子維持型であることを特徴とする有色顔料。
• 2 . 前記有色顔料は、 色素単分子前駆体の分子構造を変換させて得ら れる事を特徴とする請求項 1に記載の有色顔料。
3 . 前記色素単分子前駆体が、 下記一般式 (1— A)、 (1— B)、 ( 1 - C)、 (1一 D) で示される何れかの構造を有し、 該構造の分子構造変換を逆デ ィ一ルス一アルダー反応を用いることで発現させることを特徴とする請求項 2に記載の有色顔料。
( 1 -A) ( 1 -B)
Figure imgf000051_0001
( 1一 D)
Figure imgf000051_0002
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜R8は水素原子、 又は直接的或いは間接的に結合された置換基を表す。)
4. 実質的に 1次粒子維持型である有色顔料の製造方法であって、 前記 有機顔料を形成する色素単分子の前駆体を液媒体に溶解または分散させるェ 程と、 該色素単分子前駆体の分子構造を変換させて前記有色顔料を得る工程と を有することを特徴とする有色顔料製造方法。
5 . 前記色素単分子前駆体は、 液媒体中に溶解しているものであるこ とを特徴とする請求項 4に記載の有色顔料製造方法。
6 . 前記色素単分子前駆体が、 下記一般式 (1— A)、 (1— B)、 (1一 C)、 ( 1 -D) で示される何れかの構造を有し、 該構造の分子構造変換を逆デ ィ一ルス—アルダー反応を用いることで発現させることを特徴とする請求項 5に記載の有色顔料製造方法。
Figure imgf000052_0001
Figure imgf000052_0002
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜R8は水素原子、 又は直接的或いは間接的に結合された置換基を表す。)
7 . 実質的に 1次粒子維持型である有色顔料を分散していることを特 徴とする分散体。
8 . 前記有色顔料は、 色素単分子前駆体の分子構造を変換させて得ら れることを特徴とする請求項 7に記載の分散体。
9 . 前記色素単分子前駆体が、 下記一般式 (1— A)、 (1—B)、 l - C)、 ( 1 -D) で示される何れかの構造を有じ、 該構造の分子構造変換を逆デ ィ一ルス一アルダ一反応を用いることで発現したことを特徴とする請求項 8 に記載の分散体。
Figure imgf000053_0001
Figure imgf000053_0002
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜R8は水素原子、 又は直接的或いは間接的に結合された置換基を表す。)
5 1 0 . 実質的に 1次粒子維持型である有色顔料の分散体製造方法であ つて、 色素単分子前駆体を液媒体中に溶解または分散させる工程と、 該色素単 分子前駆体と有色顔料を分散させるための分散剤を共存させた状態で、 該色素 単分子前駆体の分子構造を変換させて前記有色顔料を得る工程と、 前記有機顔 料を有機顔料分散体にする工程と、 を特徴とする分散体製造方法。
0 1 1 . 前記色素単分子前駆体は、 液媒体に溶解しているものであるこ とを特徴とする請求項 1 0に記載の分散体製造方法。
1 2 . 前記色素単分子前駆体が、 下記一般式 (1— A)、 (1— B)、 ( 1 ' 一 C)、 ( 1 -D) で示される何れかの構造を有し、 該構造の分子構造変換を逆 ディ一ルス一アルダ一反応を用いることで発現したことを特徴とする請求項5 1 1に記載の分散体製造方法。 ( 1一 A) ( 1— B)
Figure imgf000054_0001
Figure imgf000054_0002
(上記式中の Ri〜R4は、 それぞれ独立に、 水素原子、 又は、 直接的或いは間 接的に結合された液媒体に対する可溶性付与基を表し、 R5〜R8は水素原子、 又は直接的或いは間接的に結合された置換基を表す。)
1 3 . 実質的に 1次粒子維持型からなる有色顔料を含有することを特 徴とする記録用インク。
1 4 . 前記請求項 1 3に記載のインクを用いてインクジエツト記録方 法で画像を形成することを特徴とする記録方法。
1 5 . 請求項 1 4に記載の記録方法によって形成されたことを特徴と する記録画像。
PCT/JP2005/016983 2004-09-08 2005-09-08 顔料、顔料の製造方法、顔料分散体、顔料分散体の製造方法、記録用インク、記録方法及び記録画像 WO2006028268A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05783551A EP1792960A1 (en) 2004-09-08 2005-09-08 Pigment, method for producing pigment, pigment dispersion, method for producing pigment dispersion, recording ink, recording method, and recorded image
JP2006535183A JPWO2006028268A1 (ja) 2004-09-08 2005-09-08 顔料、顔料の製造方法、顔料分散体、顔料分散体の製造方法、記録用インク、記録方法及び記録画像
US11/367,543 US20060194897A1 (en) 2004-09-08 2006-03-06 Pigment, process for producing pigment, pigment dispersion, process for producing pigment dispersion, recording ink, recording method, and recorded image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-261710 2004-09-08
JP2004261710 2004-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/367,543 Continuation US20060194897A1 (en) 2004-09-08 2006-03-06 Pigment, process for producing pigment, pigment dispersion, process for producing pigment dispersion, recording ink, recording method, and recorded image

Publications (1)

Publication Number Publication Date
WO2006028268A1 true WO2006028268A1 (ja) 2006-03-16

Family

ID=36036544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016983 WO2006028268A1 (ja) 2004-09-08 2005-09-08 顔料、顔料の製造方法、顔料分散体、顔料分散体の製造方法、記録用インク、記録方法及び記録画像

Country Status (5)

Country Link
US (1) US20060194897A1 (ja)
EP (1) EP1792960A1 (ja)
JP (1) JPWO2006028268A1 (ja)
CN (1) CN101014671A (ja)
WO (1) WO2006028268A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074161A (ja) * 2009-09-29 2011-04-14 Mitsubishi Chemicals Corp ジアザポルフィリン化合物又はその塩、半導体材料、膜、電子デバイス、電界効果トランジスタ、及び光電変換素子

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003243978B2 (en) * 2003-05-02 2010-04-22 Canon Kabushiki Kaisha Water based fluorescent ink, record imaging method and record image
JP3958325B2 (ja) * 2004-03-16 2007-08-15 キヤノン株式会社 プリント媒体用塗布液、インクジェット用インク、画像形成方法、プリント媒体用塗布液とインクジェット用インクとのセット、及びインクジェット記録装置
EP1728836B1 (en) * 2004-03-16 2017-05-10 Canon Kabushiki Kaisha Ink-jet ink and method for inkjet recording
ATE483772T1 (de) * 2004-04-08 2010-10-15 Canon Kk Tinte für tintenstrahlaufzeichnung, tintenstrahlaufzeichnungsverafhren; tintenpatrone sowie tintenstrahlaufzeichnungsvorrichtung
WO2005097922A1 (ja) * 2004-04-08 2005-10-20 Canon Kabushiki Kaisha インク、インクジェット記録方法、インクカートリッジ、及びインクジェット記録装置
WO2006001513A1 (ja) * 2004-06-25 2006-01-05 Canon Kabushiki Kaisha 水性インク、インクタンク、インクジェット記録装置、インクジェット記録方法、及びインクジェット記録画像
WO2006001540A1 (ja) * 2004-06-28 2006-01-05 Canon Kabushiki Kaisha シアンインク、インクセット、インクと反応液のセット、及び画像形成方法
DE602005024397D1 (de) 2004-06-28 2010-12-09 Canon Kk Wässrige tinte, wässriger tintensatz, tintenpatrone, tintenstrahlaufzeichner, tintenstrahlaufzeichnungsverfahren und bilderzeugungsverfahren
WO2006001543A1 (ja) * 2004-06-28 2006-01-05 Canon Kabushiki Kaisha 記録方法、インクカートリッジ及び画像形成方法
AU2005257530B2 (en) * 2004-06-28 2011-03-31 Canon Kabushiki Kaisha Aqueous ink, inkjet recording method, ink cartridge, recording unit, inkjet recorder, and image forming method
ATE474026T1 (de) * 2004-06-28 2010-07-15 Canon Kk Wässrige tinte, tintensatz und bilderzeugungsverfahren
DE602005021785D1 (de) * 2004-06-28 2010-07-22 Canon Kk Cyantinte und tintenkombination
JP4794940B2 (ja) * 2004-08-04 2011-10-19 キヤノン株式会社 インクタンク、インクジェット記録方法及びインクタンクの再生方法
JP2006096995A (ja) 2004-08-31 2006-04-13 Canon Inc インクジェット用インク、インクジェット用インクの作製方法、インクジェット記録方法及び前記インクを用いたインクカートリッジ
JP4574498B2 (ja) * 2004-08-31 2010-11-04 キヤノン株式会社 インクカートリッジ及びインクジェット記録方法
WO2006028267A1 (ja) 2004-09-08 2006-03-16 Canon Kabushiki Kaisha 被覆微粒子、分散微粒子、被覆微粒子の製造方法、インク、記録方法及び記録画像
WO2006028285A1 (ja) * 2004-09-08 2006-03-16 Canon Kabushiki Kaisha 顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体
WO2006049305A1 (ja) * 2004-11-02 2006-05-11 Canon Kabushiki Kaisha 蛍光画像形成方法及びその画像とインクジェット記録方法
US7654662B2 (en) * 2004-11-19 2010-02-02 Canon Kabushiki Kaisha Ink jet printing method and ink jet printing apparatus
US7988276B2 (en) * 2004-11-19 2011-08-02 Canon Kabushiki Kaisha Ink jet printing method and ink jet printing apparatus
EP1845138B1 (en) * 2005-01-18 2014-12-24 Canon Kabushiki Kaisha Ink, ink set, ink jet recording method, ink cartridge, and ink jet recording apparatus
CN101341221B (zh) * 2006-03-09 2011-07-27 佳能株式会社 颜料墨、成套墨、喷墨记录法、墨盒、记录单元、喷墨记录设备和图像形成方法
WO2007102620A1 (ja) * 2006-03-09 2007-09-13 Canon Kabushiki Kaisha インクジェット用インク、インクジェット記録方法、インクカートリッジ、インクセット、及び画像形成方法
WO2007111384A1 (ja) 2006-03-24 2007-10-04 Canon Kabushiki Kaisha 水性インク、インクジェット記録方法、インクカートリッジ、記録ユニット、及びインクジェット記録装置
JP2008018711A (ja) * 2006-06-14 2008-01-31 Canon Inc インクジェット記録装置、データ生成装置および記録物
US7618484B2 (en) * 2007-05-01 2009-11-17 Canon Kabushiki Kaisha Ink jet ink, ink jet recording method, ink cartridge, recording unit and ink jet recording apparatus
US8163360B2 (en) * 2007-12-28 2012-04-24 Canon Kabushiki Kaisha Pigment dispersion and inkjet recording medium using the same
CN101910326A (zh) * 2007-12-28 2010-12-08 佳能株式会社 表面改性无机颜料、着色的表面改性无机颜料、记录介质及它们的制备方法以及图像形成方法和记录的图像
JP5268696B2 (ja) * 2008-03-19 2013-08-21 キヤノン株式会社 インクジェット用インク、インクジェット記録方法、インクカートリッジ、記録ユニット、及びインクジェット記録装置
JP5383238B2 (ja) * 2008-03-19 2014-01-08 キヤノン株式会社 インクジェット用インク、インクジェット記録方法、インクカートリッジ、及びインクジェット記録装置
US7563318B1 (en) 2008-07-02 2009-07-21 Xerox Corporation Method of making nanoscale particles of AZO pigments in a microreactor or micromixer
EP3097159B1 (en) 2014-01-22 2019-07-03 Hewlett-Packard Development Company, L.P. Ink composition
US10253200B2 (en) 2015-01-23 2019-04-09 Canon Kabushiki Kaisha Aqueous ink, ink cartridge, and ink jet recording method
US9574099B2 (en) 2015-01-26 2017-02-21 Canon Kabushiki Kaisha Ink set and ink jet recording method
JP6702818B2 (ja) 2015-08-07 2020-06-03 キヤノン株式会社 水性インク、インクカートリッジ、及びインクジェット記録方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327588A (ja) * 2002-03-08 2003-11-19 Canon Inc 新規化合物とその合成方法、インク、インクカートリッジ、記録ユニット、インクジェット記録装置、記録方法、液体組成物、パターン形成方法、物品、環境履歴検知方法及び記録媒体
JP2004262807A (ja) * 2003-02-28 2004-09-24 Canon Inc 物質変換方法及び記録方法

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005058B2 (ja) * 1990-02-09 2000-01-31 キヤノン株式会社 インク、これを用いたインクジェット記録方法及び機器
JP3005057B2 (ja) * 1990-02-09 2000-01-31 キヤノン株式会社 インク、これを用いたインクジェット記録方法及び機器
US5131949A (en) * 1990-02-09 1992-07-21 Canon Kabushiki Kaisha Ink, ink-jet recording process, and instrument making use of the ink
US5221334A (en) * 1990-04-11 1993-06-22 E. I. Du Pont De Nemours And Company Aqueous pigmented inks for ink jet printers
US5272201A (en) * 1990-04-11 1993-12-21 E. I. Du Pont De Nemours And Company Amine-containing block polymers for pigmented ink jet inks
EP0466093B1 (en) * 1990-07-10 1997-01-22 Canon Kabushiki Kaisha Recording method, recording apparatus for conducting the recording method and ink jet cartridge for use in the recording apparatus
US5258066A (en) * 1990-11-29 1993-11-02 Canon Kabushiki Kaisha Ink containing halogenated alkanol with 2 to 4 carbon atoms, recording method and apparatus using the same
JP3147948B2 (ja) * 1991-09-26 2001-03-19 キヤノン株式会社 インクジェット記録に用いるインク、インクジェット記録方法、記録ユニット、インクカートリッジ及びインクジェット記録装置
DE69325401T2 (de) * 1992-02-20 1999-11-25 Du Pont Dreiblock-Polymer Dispersionsmittel enthaltende Wasserdispersionen
JP3406923B2 (ja) * 1992-09-01 2003-05-19 キヤノン株式会社 インクジェット用インク
US5451251A (en) * 1993-02-26 1995-09-19 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
US5478383A (en) * 1993-10-14 1995-12-26 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
US5482545A (en) * 1993-12-28 1996-01-09 Canon Kabushiki Kaisha Ink, and ink-jet recording method and instrument using the same
EP0669381B1 (en) * 1994-02-28 2002-09-11 Canon Kabushiki Kaisha Dye, ink containing the same, and ink-jet recording method and instrument using the ink
US5609671A (en) * 1994-06-20 1997-03-11 Orient Chemical Industries, Ltd. Water-based pigment ink and process for producing the same
EP0699723A3 (en) * 1994-08-31 1997-07-02 Canon Kk Ink for inkjet printing
TW473518B (en) * 1995-07-28 2002-01-21 Ciba Sc Holding Ag Soluble chromophores containing solubilising groups which can be easily removed
DE59604654D1 (de) * 1995-07-28 2000-04-20 Ciba Sc Holding Ag Lösliche Chromophore mit leicht abspaltbaren löslichmachenden Gruppen
US5865883A (en) * 1996-03-14 1999-02-02 Canon Kabushiki Kaisha Ink, ink cartridge and recording unit, ink-jet recording method and ink-jet recording apparatus
US6117921A (en) * 1996-08-30 2000-09-12 E. I. Du Pont De Nemours And Company Process for making printed images using pigmented ink jet compositions
US5852075A (en) * 1997-06-02 1998-12-22 E. I. Du Pont De Nemours And Company Surfactant system for ink jet inks for printing on hydrophobic surfaces
US6160037A (en) * 1997-07-10 2000-12-12 Ciba Specialty Chemicals Corporation Reactive extrusion of latent pigments
US5854331A (en) * 1997-11-04 1998-12-29 E. I. Du Pont De Nemours And Company Block copolymers of oxazolines and oxazines as pigment dispersants and their use in ink jet inks
US6387168B1 (en) * 1998-12-22 2002-05-14 Canon Kabushiki Kaisha Ink, ink container, ink set, ink-jet printing apparatus and ink-jet printing process
US6676254B2 (en) * 2000-12-21 2004-01-13 Canon Kabushiki Kaisha Recording method, ink cartridge, printing device and information recording apparatus
US7008671B2 (en) * 2000-12-28 2006-03-07 Canon Kabushiki Kaisha Recorded matter, method of producing recorded matter, method for improving image fastness, image fastness-improving agent, image fastness improving kit, dispenser, and applicator
US6833158B2 (en) * 2001-08-09 2004-12-21 Canon Kabushiki Kaisha Coating apparatus and coating method of liquid for protection of recorded product, and protection process of recorded product
US20040141036A1 (en) * 2002-11-07 2004-07-22 Canon Kabushiki Kaisha Process and apparatus for weatherability test of image
WO2004059083A1 (ja) * 2002-12-26 2004-07-15 Canon Kabushiki Kaisha カール低減剤、インクジェット用インク、インクジェット記録方法及びカール低減方法
AU2003246202A1 (en) * 2003-02-20 2004-09-09 Canon Kabushiki Kaisha Aqueous ink, image recorded using said aqueous ink and method for forming said image
DK1624035T3 (da) * 2003-05-02 2013-02-11 Canon Kk Printfarve indeholdende fluorescerende farvestoffer og fremgangsmåde til inkjet-registrering
DK1624034T3 (da) * 2003-05-02 2011-07-25 Canon Kk Vandigt fluorescerende blæk, billede optaget under anvendelse deraf samt evalueringsfremgangsmåde
JP4771529B2 (ja) * 2003-05-02 2011-09-14 キヤノン株式会社 水性インクと該インクを用いた画像形成方法及び記録画像
AU2003243978B2 (en) * 2003-05-02 2010-04-22 Canon Kabushiki Kaisha Water based fluorescent ink, record imaging method and record image
WO2004096932A1 (ja) * 2003-05-02 2004-11-11 Canon Kabushiki Kaisha インク及び該インクを用いたインクジェット記録方法
US7374606B2 (en) * 2003-06-27 2008-05-20 Canon Kabushiki Kaisha Water-based ink and ink recording method
RU2361896C2 (ru) * 2003-12-11 2009-07-20 Кэнон Кабусики Кайся Водные чернила, использующий их картридж с чернилами, способ струйной печати и зарегистрированный материал
US7195340B2 (en) * 2003-12-26 2007-03-27 Canon Kabushiki Kaisha Ink-jet recording method and ink-jet ink
EP1728836B1 (en) * 2004-03-16 2017-05-10 Canon Kabushiki Kaisha Ink-jet ink and method for inkjet recording
JP4981260B2 (ja) * 2004-03-16 2012-07-18 キヤノン株式会社 水性インク、反応液と水性インクのセット及び画像形成方法
ATE483772T1 (de) * 2004-04-08 2010-10-15 Canon Kk Tinte für tintenstrahlaufzeichnung, tintenstrahlaufzeichnungsverafhren; tintenpatrone sowie tintenstrahlaufzeichnungsvorrichtung
WO2005097922A1 (ja) * 2004-04-08 2005-10-20 Canon Kabushiki Kaisha インク、インクジェット記録方法、インクカートリッジ、及びインクジェット記録装置
WO2006001513A1 (ja) * 2004-06-25 2006-01-05 Canon Kabushiki Kaisha 水性インク、インクタンク、インクジェット記録装置、インクジェット記録方法、及びインクジェット記録画像
DE602005021785D1 (de) * 2004-06-28 2010-07-22 Canon Kk Cyantinte und tintenkombination
ATE474026T1 (de) * 2004-06-28 2010-07-15 Canon Kk Wässrige tinte, tintensatz und bilderzeugungsverfahren
AU2005257530B2 (en) * 2004-06-28 2011-03-31 Canon Kabushiki Kaisha Aqueous ink, inkjet recording method, ink cartridge, recording unit, inkjet recorder, and image forming method
WO2006001543A1 (ja) * 2004-06-28 2006-01-05 Canon Kabushiki Kaisha 記録方法、インクカートリッジ及び画像形成方法
DE602005024397D1 (de) * 2004-06-28 2010-12-09 Canon Kk Wässrige tinte, wässriger tintensatz, tintenpatrone, tintenstrahlaufzeichner, tintenstrahlaufzeichnungsverfahren und bilderzeugungsverfahren
WO2006001540A1 (ja) * 2004-06-28 2006-01-05 Canon Kabushiki Kaisha シアンインク、インクセット、インクと反応液のセット、及び画像形成方法
JP4794940B2 (ja) * 2004-08-04 2011-10-19 キヤノン株式会社 インクタンク、インクジェット記録方法及びインクタンクの再生方法
JP2006096995A (ja) * 2004-08-31 2006-04-13 Canon Inc インクジェット用インク、インクジェット用インクの作製方法、インクジェット記録方法及び前記インクを用いたインクカートリッジ
JP4574498B2 (ja) * 2004-08-31 2010-11-04 キヤノン株式会社 インクカートリッジ及びインクジェット記録方法
JP3907672B2 (ja) * 2004-08-31 2007-04-18 キヤノン株式会社 インクジェット用インク、インクジェット用インクの作製方法、インクジェット記録方法及びインクカートリッジ
JP3907671B2 (ja) * 2004-08-31 2007-04-18 キヤノン株式会社 インクジェット用インク、インクジェット用インクの作製方法、インクジェット記録方法及びインクカートリッジ
WO2006028285A1 (ja) * 2004-09-08 2006-03-16 Canon Kabushiki Kaisha 顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体
WO2006028267A1 (ja) * 2004-09-08 2006-03-16 Canon Kabushiki Kaisha 被覆微粒子、分散微粒子、被覆微粒子の製造方法、インク、記録方法及び記録画像
US7654662B2 (en) * 2004-11-19 2010-02-02 Canon Kabushiki Kaisha Ink jet printing method and ink jet printing apparatus
US7988276B2 (en) * 2004-11-19 2011-08-02 Canon Kabushiki Kaisha Ink jet printing method and ink jet printing apparatus
EP1845138B1 (en) * 2005-01-18 2014-12-24 Canon Kabushiki Kaisha Ink, ink set, ink jet recording method, ink cartridge, and ink jet recording apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327588A (ja) * 2002-03-08 2003-11-19 Canon Inc 新規化合物とその合成方法、インク、インクカートリッジ、記録ユニット、インクジェット記録装置、記録方法、液体組成物、パターン形成方法、物品、環境履歴検知方法及び記録媒体
JP2004262807A (ja) * 2003-02-28 2004-09-24 Canon Inc 物質変換方法及び記録方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074161A (ja) * 2009-09-29 2011-04-14 Mitsubishi Chemicals Corp ジアザポルフィリン化合物又はその塩、半導体材料、膜、電子デバイス、電界効果トランジスタ、及び光電変換素子

Also Published As

Publication number Publication date
EP1792960A1 (en) 2007-06-06
JPWO2006028268A1 (ja) 2008-05-08
US20060194897A1 (en) 2006-08-31
CN101014671A (zh) 2007-08-08

Similar Documents

Publication Publication Date Title
WO2006028268A1 (ja) 顔料、顔料の製造方法、顔料分散体、顔料分散体の製造方法、記録用インク、記録方法及び記録画像
JP5031369B2 (ja) 被覆微粒子、分散微粒子、被覆微粒子の製造方法、インク、記録方法及び記録画像
WO2006028285A1 (ja) 顔料結晶製造段階における中間化学物質、それを用いた顔料結晶製造方法、顔料結晶体
JP5481177B2 (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、及び着色組成物
US7211120B2 (en) Method for forming a pattern of an organic semiconductor film
TWI529220B (zh) 偶氮顏料或其互變異構物、其製造方法、顏料分散液、著色組成物、噴墨記錄墨水、用於彩色濾光片的著色組成物及彩色濾光片
JP2010031215A (ja) アゾ顔料組成物、アゾ顔料組成物の製造方法、アゾ顔料組成物を含む分散物、着色組成物及びインクジェット記録用インク
JP2010031221A (ja) アゾ顔料組成物、アゾ顔料組成物の製造方法、アゾ顔料組成物を含む分散物、着色組成物及びインクジェット記録用インク
JP5481062B2 (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、及び着色組成物
CN1330645C (zh) 作为有机材料着色剂的苯并呋喃-2-酮类化合物
JP2009235354A (ja) 顔料組成物
JP2011132275A (ja) インク、インクカートリッジ及びインクジェット記録方法
JP2011127042A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、及び着色組成物
JP2011252044A (ja) アゾ顔料又はその互変異性体、その製造方法、顔料分散物、着色組成物、インクジェット記録用インク、カラーフィルター用着色組成物及びカラーフィルター
JP2006077102A (ja) 金属保護層形成用液媒体及び金属保護層の形成方法
JP2010083926A (ja) 新規な有機顔料前駆化合物およびその製造方法、ならびにそれを用いた顔料分散体およびその製造方法
JP2003286427A (ja) 有機顔料インクおよび有機顔料水分散物の製造方法
JP2013032410A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP4702949B2 (ja) パターン形成方法
JP5464789B2 (ja) 粒子化合物分散体の製造方法
JP5544220B2 (ja) アゾ顔料又はその互変異性体、その製造方法、顔料分散物、着色組成物、インクジェット記録用インク、カラーフィルター用着色組成物及びカラーフィルター
JP2013032412A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2013032414A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2013032413A (ja) アゾ顔料、アゾ顔料の製造方法、アゾ顔料を含む分散物、着色組成物及びインクジェット記録用インク
JP2011252046A (ja) アゾ顔料組成物、アゾ顔料組成物の製造方法、アゾ顔料組成物を含む分散物、着色組成物及びインクジェット記録用インク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11367543

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 11367543

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535183

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005783551

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580029963.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005783551

Country of ref document: EP