WO2006028169A1 - 潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物 - Google Patents

潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物 Download PDF

Info

Publication number
WO2006028169A1
WO2006028169A1 PCT/JP2005/016512 JP2005016512W WO2006028169A1 WO 2006028169 A1 WO2006028169 A1 WO 2006028169A1 JP 2005016512 W JP2005016512 W JP 2005016512W WO 2006028169 A1 WO2006028169 A1 WO 2006028169A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
ethylene
copolymer
olefin
structural unit
Prior art date
Application number
PCT/JP2005/016512
Other languages
English (en)
French (fr)
Inventor
Akihiro Matsuda
Ryousuke Kaneshige
Satoshi Ikeda
Keiji Okada
Original Assignee
Mitsui Chemicals, Inc.
The Lubrizol Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc., The Lubrizol Corporation filed Critical Mitsui Chemicals, Inc.
Priority to JP2006535813A priority Critical patent/JPWO2006028169A1/ja
Priority to EP05782285A priority patent/EP1795580B1/en
Priority to CA2579879A priority patent/CA2579879C/en
Priority to US11/662,139 priority patent/US7820607B2/en
Publication of WO2006028169A1 publication Critical patent/WO2006028169A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/06Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/08Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index

Definitions

  • Lubricating oil viscosity modifier lubricating oil additive composition
  • lubricating oil composition lubricating oil composition
  • the present invention relates to a viscosity modifier for lubricating oil, an additive composition for lubricating oil, and a lubricating oil composition. More specifically, the present invention is excellent in thickening oil, and has low temperature characteristics and low temperature.
  • the present invention relates to a viscosity modifier for lubricating oil, an additive composition for lubricating oil, and low temperature characteristics, low temperature handling! /, And a lubricating oil composition having excellent properties.
  • Lubricating oils for automobiles or the like preferably have a low temperature dependency of the viscosity. For this reason, for the purpose of reducing temperature dependence, lubricating oils are widely used as a compounding agent for ethylene'a-olefin copolymers having an effect of improving the viscosity index.
  • the wax content in the lubricating oil crystallizes and loses fluidity.
  • the lubricant also contains a pour point depressant. This pour point depressant forms a three-dimensional network by crystallization of the wax in the lubricant. To lower the pour point of the lubricating oil.
  • ethylen'a-olefin-based copolymers blended in lubricating oils particularly lubricating oils that are required to have excellent low-temperature properties, have an excellent viscosity index improving effect and a pour point depressant. It is required that the work of
  • a method for improving the low temperature characteristics of the lubricating oil there is a method in which an ethylene propylene copolymer having a high ethylene content is added as a viscosity index improver, but if the ethylene content is increased, the low temperature characteristics are improved.
  • the ethylene sequence in the viscosity index improver crystallized at a low temperature, and the lubricating oil composition itself became jelly-like, and the handleability sometimes deteriorated.
  • it can be a viscosity modifier for lubricating oils with excellent thickening properties against oil, and its compatibility with the lubricating oil base at low temperatures is adjusted, and it has excellent low-temperature characteristics in all shear rate ranges and is easy to handle at low temperatures.
  • the inventors have found that an excellent lubricating oil composition can be obtained, and have completed the present invention.
  • Patent Document 1 U.S. Pat.No. 3,697,429
  • Patent Document 2 U.S. Pat.No. 3,551,336
  • Patent Document 3 Japanese Patent Laid-Open No. 60-228600
  • the present invention is excellent in oil thickening, and has excellent low temperature characteristics and low temperature handling properties.
  • the viscosity modifier for lubricating oil according to the present invention is:
  • the ethylene 'a-olefin copolymer (B) force preferably has at least one of the following characteristics (3) to (5);
  • MwZMn weight average molecular weight, Mn: number average molecular weight
  • the heat of fusion ( ⁇ H) measured by DSC is 5. OjZg or less.
  • the intensity ratio D (S a j8 / S a ⁇ ) of S ⁇ ⁇ to S aa measured by 13 C-NMR is 0.5 or less.
  • the additive composition for lubricating oil according to the present invention comprises:
  • the viscosity adjusting agent for lubricating oil or the additive composition for lubricating oil according to the present invention is excellent in thickening to oil, and by using this, it is excellent in low temperature characteristics and low temperature handling properties.
  • a lubricating oil composition can be obtained.
  • the lubricating oil composition according to the present invention is excellent in low temperature characteristics, and is excellent in handleability without the lubricating oil composition itself becoming a jelly at low temperatures.
  • the viscosity modifier for lubricating oil according to the present invention has the following characteristics: (i) a structural unit derived from ethylene (hereinafter sometimes referred to as “structural unit (i)”), and (ii) carbon number.
  • a 3 to 19 ⁇ -olefin-derived structural unit hereinafter sometimes referred to as “structural unit (ii)”
  • a structural unit derived from higher ⁇ -olefins having 3 to 19 carbon atoms (a carbon number power S1 or more larger than a structural unit derived from X-olefins (hereinafter sometimes referred to as “structural unit (iii)”).
  • Containing ethylene 'a-olefin copolymer) hereinafter sometimes simply referred to as "copolymer (B)").
  • structural unit (ii) examples include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl 1-butene, 3-methyl 1-pentene, and 3-ethyl 1-pentene.
  • 4-methyl-1-pentene 4-methyl-1-hexene 4,4-dimethyl-1-hexene 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-
  • Examples include structural units derived from xene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1 eicosene.
  • propylene-derived structural units are preferred, especially among ⁇ -olefins-derived structural units with 3 to 7 carbon atoms, which are particularly preferred with structural units derived from a-olefins having 3 to 9 carbon atoms. is there.
  • the copolymer ( ⁇ ) contains the propylene-derived structural unit (ii)
  • the copolymer (B) is blended with a lubricating oil over a wide range of ethylene content, it is particularly excellent in low-temperature characteristics. Lubricating oil compositions can be made.
  • the structural unit (iii) specifically, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene 4-methyl-one hexene, 4,4 dimethyl-one hexene, 4,4-dimethyl- 1 pentene, 4-ethyl- 1 hexene, 3 ethyl-one hexene, 1 octene, 1-decene, 1-dodecene 1-tetradecene, 1-hexadecene, 1-octadecene and 1 eicosene.
  • a structural unit derived from ao-olefin having 4 to 10 carbon atoms is preferable, and a structural unit derived from a-olefin having 4 to 8 carbon atoms is more preferable 1-butene, 1 hexene or A structural unit derived from 1-otaten is particularly preferred. With such a carbon number, it is possible to produce a particularly excellent low-temperature characteristic when blended with a lubricating oil over a wide range of ethylene content.
  • the copolymer (B) has the following properties (1) to (2).
  • Copolymer (B) repeating the structural unit (i) a 25 to 49 mole 0/0 (ethylene force repeating unit derived), which is also derived structural unit) (a- Orefuinka of 3 to 19 carbon atoms units) 1 5-55 mole 0/0, a higher ⁇ - Orefin structural units (iii) (4 to 20 carbon atoms, the number of carbon atoms than the repeating units derived a one year old Refuinka of the 3 to 19 carbon atoms Is higher than 1 Class a-Olefinlinker is contained in a proportion of 9 to 40 mol% (however, the total of structural units (i), (ii) and (iii) is 100 mol%).
  • the copolymer ( ⁇ ) contains the structural unit (i) in a proportion of 25 to 49 mol%, preferably 29 to 49 mol%, more preferably 35 to 49 mol%, still more preferably 40 to 49 mol%. To do.
  • a lubricating oil composition particularly excellent in low-temperature characteristics for example, low-temperature viscosity, is prepared when the copolymer (B) is blended with the lubricating oil. You can.
  • the copolymer (B) contains the structural unit (ii) in a proportion of 15 to 55 mol%, preferably 18 to 42 mol%, more preferably 20 to 40 mol%.
  • the content ratio of the structural unit) is in such a range, a lubricating oil composition having particularly excellent low-temperature characteristics can be produced when the copolymer (B) is blended with the lubricating oil.
  • the copolymer (B) contains the structural unit (iii) in a proportion of 9 to 40 mol%, preferably 10 to 38 mol%, more preferably 10 to 35 mol%.
  • the copolymer (B) containing the structural unit (i), the structural unit (ii) and the structural unit (iii) used in the present invention has the above composition
  • the copolymer (B) has a sufficiently low temperature.
  • a lubricating oil composition having characteristics and excellent handleability at low temperatures can be obtained.
  • the copolymer (B) can be provided with a lubricating oil composition that satisfies the good low-temperature characteristics of (B). That is, the range of the ethylene content in (B) is wider than that of ethylene'- ⁇ -olefin binary copolymer having 3 or more carbon atoms.
  • This is, for example, a graph showing the relationship between the content of ethylene-derived constitutional units of the copolymer ( ⁇ ) that can be used in the present invention and MR viscosity, and the relationship between the content of ethylene-derived constitutional units and low-temperature storage stability. And examine the range (content ratio) of ethylene-derived constituent units that can be used for acceptable MR viscosity and low-temperature storage stability values.
  • Judgment can be made by comparing the range of ethylene-derived structural units that can be used when replaced with a 1-year-old refin binary copolymer.
  • the composition of the copolymer (B) is determined by 13 C-NMR according to the method described in "Polymer Analysis Knowbook” (published by Kinokuniya Shoten, Japan Analytical Chemical Society, Polymer Analysis Research Council). Can be measured.
  • the copolymer (B) has an intrinsic viscosity ([7?]) Measured in decalin at 135 ° C in the range of 0.5 to 5. Od lZg.
  • the intrinsic viscosity ([7?]) Is within the above range, the oil is excellent in thickening, and the amount of copolymer (B) required to obtain a specific lubricating oil viscosity can be reduced. Therefore, it is difficult for jelly formation to occur at low temperatures, and a lubricating oil composition having excellent lubricating oil viscosity shear stability can be obtained.
  • the copolymer (B) has an intrinsic viscosity ([7?]) Of 0.5 to 4. Odl / g, preferably 1.0 to 3. Odl / g, more preferably 1.5 to 2. When it is in the range of 5 dlZg, the viscosity index of the lubricating oil can be improved.
  • the copolymer (B) preferably has at least one of the following characteristics (3) to (5).
  • the copolymer (B) has an MwZMn (Mw: weight average molecular weight, Mn: number average molecular weight), which is an indicator of molecular weight distribution, preferably 2.4 or less, more preferably 2 2 or less is desirable.
  • MwZMn weight average molecular weight
  • Mn number average molecular weight
  • the copolymer (B) having MwZMn within the above range can be produced by using a meta-locene catalyst as described later.
  • the copolymer (B) preferably has a heat of fusion ( ⁇ H) of 5. OjZg or less as measured by a differential scanning calorimeter (DSC), more preferably from 0 to 5. Oj / g, more preferably 0 to 4. Oj / g, particularly preferably 0 to 3. OjZg.
  • DSC differential scanning calorimeter
  • the copolymer (B) having a heat of fusion ( ⁇ ) in the above range can be produced by using a meta-orthene-based catalyst as described later.
  • the heat of fusion ( ⁇ ) by changing the constituent unit content derived from ethylene or the constituent unit content derived from monoolefin, the heat of fusion ( ⁇ )
  • the copolymer (B) used in the present invention comprises (i) ethylene and (ii) a carbon number of 3 to 19 by a catalyst comprising a meta-mouth compound described later and an ionized ionic compound. a—Olehuin and (iii)
  • the copolymer ( ⁇ ) has an intensity ratio D (S o; ⁇ / a ⁇ ) of S ⁇ ⁇ to S aa determined by a 13 C—NMR ⁇ vector, preferably 0.5 or less More preferably, it is 0.3 or less.
  • the fluidity of the lubricating oil at low temperature can be improved.
  • the lubrication characteristics at high temperatures can be improved, and the balance between the two (low temperature fluidity and high temperature lubrication characteristics) is particularly excellent.
  • S ⁇ ⁇ and S aa obtained by 13 C-NMR ⁇ vector are the peak intensities of CH in the structural unit derived from ethylene or ao-olefin having 3 to 20 carbon atoms, respectively.
  • R independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the intensity ratio D is calculated by the integrated value (area) ratio of each peak portion.
  • the strength ratio D thus obtained is generally determined by the rate at which 2,1-addition reaction occurs following the 1,2-addition reaction of ⁇ -olefin, or 1,2-following the 1,1-addition reaction of ⁇ -olefin. It is considered as a measure of the rate at which 2-addition reactions occur. Therefore, the larger the intensity ratio D value, the more irregular the bonding direction of a-olefin. Conversely, the smaller the D value, the more regular the bonding direction of a —olephin.
  • the copolymer (B) having the intensity ratio D within the above range can be produced by using a meta-octacene catalyst as described later.
  • the intensity ratio D can be changed within the above range by changing the molecular structure of the meta-octacene catalyst.
  • the intensity ratio D can be changed by changing the polymerization temperature.
  • Such a copolymer (B) used as a viscosity modifier for lubricating oil according to the present invention is ethylene, a 3 to 19 carbon a-olefin, and 4 to 20 carbon a-olefin.
  • the ⁇ -olefin having a carbon number of 1 or more than the ⁇ -olefin having 3 to 19 carbon atoms (hereinafter simply referred to as “higher ⁇ -olefin having 4 to 20 carbon atoms”) may be used as required. It can be obtained by copolymerizing monomers in the presence of a catalyst for olefin polymerization.
  • Examples of such olefin polymerization catalysts include transition metal compounds such as zirconium, hafnium, and titanium, organoaluminum compounds (organoaluminum oxide compounds), and soot or ionized ionic compounds.
  • transition metal compounds such as zirconium, hafnium, and titanium
  • organoaluminum compounds organoaluminum oxide compounds
  • soot or ionized ionic compounds a transition metal meta-oxygen compound, an organoaluminum oxide compound, and an ionic or ionizable ionic compound.
  • the compound and the meta mouth A senic catalyst is particularly preferably used.
  • meta-mouth cene compounds of transition metals selected from Group 4 of the periodic table that form a meta-mouth catalyst include, for example, the meta described in WO 01Z85880 pamphlet, page 16, line 5 force, page 19, line 4
  • An example of the compound is a quinone compound. Specifically, the compound is represented by the following general formula (a).
  • M is a transition metal selected from Group 4 force of the periodic table, specifically zirconium, titanium or hafnium, and X is the valence of the transition metal.
  • L is a ligand coordinated to a transition metal, and at least one of these ligands L is a ligand having a cyclopentagel skeleton, and a coordination having this cyclopentagel skeleton.
  • the ligand may have a substituent.
  • the ligand having a cyclopentagel skeleton includes, for example, a cyclopentagel group, an alkyl or cycloalkyl-substituted cyclopentagel group, an indur group, 4,5,6,7-tetrahydro Indul group, fluorenyl group and the like can be mentioned. These groups may be substituted with a halogen atom, a trialkylsilyl group or the like.
  • the groups having two cyclopentagel skeletons are substituted with It may be bonded via an alkylene group or a (substituted) silylene group.
  • L other than the ligand having a cyclopentagel skeleton includes a hydrocarbon group having 1 to 12 carbon atoms, an alkoxy group, an aryloxy group, a sulfonic acid-containing group (one SO R a ), halo
  • R a is an alkyl group, an alkyl group substituted with a halogen atom, an aryl group or an aryl group substituted with a halogen atom or an alkyl group).
  • the compound represented by the following general formula (b) is used as a meta-mouth compound.
  • M 1 is a group 4 of the periodic table or a lanthanide series metal
  • L 1 is a derivative of a delocalized ⁇ bond group, and constrains the metal ⁇ 1 active site
  • X is independently a hydrogen, halogen or hydrocarbon group, silyl group or germyl group containing up to 20 carbons, silicon or germanium.
  • M 1 is titanium, zirconium or hafnium, and X is the same as described above.
  • Cp is a substituted cyclopentagel group having a ⁇ bond to M 1 and having a substituent ⁇ .
  • is oxygen, iow, boron, or an element of group 14 of the periodic table (for example, keyium, germanium or tin)
  • is a ligand containing nitrogen, phosphorus, oxygen or io
  • meta-mouth compounds can be used singly or in combination of two or more.
  • the meta-mouth compound represented by the general formula (a) has a central metal atom of zirconium and a ligand containing at least two cyclopentagel skeletons.
  • a zirconocene compound is preferably used.
  • the central metal atom is preferably titanium.
  • a compound represented by the general formula (c) and having a central metal atom of titanium is particularly preferable.
  • the force on line 21 and line 24 of the 5880 pamphlet is also described in line 22 to line 6 from the bottom of page 22 and may be a conventionally known aluminoxane, or a benzene-insoluble organoaluminum compound. May be.
  • Examples of the ionized ionic compound that forms the meta-octane catalyst include Lewis acids and ionic compounds.
  • BR is a substituent such as fluorine, methyl group, trifluoromethyl group, etc.
  • ionic compound examples include trialkyl-substituted ammonium salts, ⁇ , ⁇ -dialkylammonium salts, dialkylammonium salts, triarylphosphonium salts, and the like. be able to.
  • Lewis acids and ionic compounds are known, for example, the pamphlet of International Publication No. 01Z85880, page 23, first line force up to line 6, page 23, 10th line force, page 24, seventh line. By Each is illustrated.
  • ionic compounds triphenylcarbtetrakis (pentafluorophenol) borate, ⁇ , ⁇ -dimethylaureum tetrakis (pentafluorophenol) borate, ferroceum tetrakis (pentafluorophenol) B) Borate can also be mentioned.
  • an ionized ionic compound is preferably used from the viewpoint of controlling the composition distribution of the ethylene'a-olefin copolymer (B).
  • an organoaluminum compound when forming the metallocene catalyst, may be used together with an organoaluminum oxide compound and / or an ionized ionic compound.
  • organoaluminum compound examples include compounds represented by the following general formula (f).
  • R 1 is a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, X is a halogen atom or a hydrogen atom, and n is 1 to 3.
  • organoaluminum compounds are publicly known, and are exemplified, for example, on page 24, line 23 to page 26, line 5 of WO 01Z85880.
  • ethylene In the presence of the above-mentioned metalocene catalyst, ethylene, exoolefin having 3 to 19 carbon atoms, higher ⁇ -olefin having 4 to 20 carbon atoms, and other monomers as required are usually used. Copolymerize in the liquid phase.
  • a hydrocarbon solvent is generally used as a polymerization solvent, but a 1-year-old refin such as propylene may be used.
  • Hydrocarbon solvents used in the polymerization include aliphatic hydrocarbons such as pentane, hexane, heptane, otatan, decane, dodecane, kerosene and their halogen derivatives; cyclohexane, methylcyclopentane, Alicyclic hydrocarbons such as methylcyclohexane and halogen derivatives thereof; aromatic hydrocarbons such as benzene, toluene and xylene; and halogen derivatives such as black benzene are used. These solvents can be used alone or in combination of two or more.
  • Ethylene, ⁇ -olefin having 3 to 19 carbon atoms, higher a-olefin having 4 to 20 carbon atoms, and other monomers as necessary are copolymerized by either a batch method or a continuous method.
  • it is preferable to perform copolymerization by a continuous method and it is particularly preferable to perform copolymerization by a continuous method using a stirred tank reactor.
  • the mouth-opening catalyst is used at the following concentrations, for example.
  • the concentration of the metacene compound in the polymerization system is usually 0.0005 to 0.1 mmol Z liter (polymerization volume), preferably 0.0001 to 0.05 mmol / liter.
  • the organic aluminum-oxygen compound is a molar ratio of aluminum atom to transition metal (A1Z transition metal) in the meta-mouth compound in the polymerization system, and is in an amount of 1 to 10,000, preferably 10 to 5,000. Supplied.
  • the ionized ionic compound is expressed in terms of the molar ratio of the ionized ionic compound to the meta-chemical compound in the polymerization system (ionized ionic compound Z meta-mouth compound). 0.5-30, preferably 1-25.
  • organoaluminum compound When an organoaluminum compound is used, it is usually used in an amount of about 0 to 5 mmol Z liter (polymerization volume), preferably about 0 to 2 mmol Z liter.
  • the copolymerization reaction is usually performed at a temperature of 20 ° C to 150 ° C, preferably 0 ° C to 120 ° C, more preferably 0 ° C to 100 ° C.
  • the pressure is higher than 0 and not higher than 80 kgZcm 2 , preferably higher than 0 and not higher than 50 kgZcm 2 .
  • the polymerization conditions are preferably constant in the continuous polymerization method.
  • the reaction time (average residence time when copolymerization is carried out in a continuous process) varies depending on conditions such as catalyst concentration and polymerization temperature. Usually 5 minutes to 5 hours, preferably 10 minutes to 3 It's time.
  • a copolymer (B) having a specific composition as described above is obtained from ethylene, ao-olefin having 3 to 19 carbon atoms, higher a-olefin having 4 to 20 carbon atoms, and, if necessary, other monomers. To the polymerization system in such an amount. Furthermore, a molecular weight regulator such as hydrogen can be used for copolymerization.
  • the additive composition for lubricating oil according to the present invention is a composition containing oil (A) and the above-mentioned copolymer (B).
  • Examples of the oil (A) used in the present invention include mineral oil, diesters such as poly ⁇ -olefin, polyol ester, dioctyl phthalate and dioctyl sebacate, and synthetic oil such as polyalkylene glycol.
  • a blend of mineral oil or mineral oil and synthetic oil is preferably used.
  • Mineral oil is generally used after a refining process such as dewaxing, and there are several grades depending on the refining method. Generally, mineral oil containing 0.5 to 10% wax is used. For example, highly refined oils having a low pour point, a high viscosity index, and a composition mainly composed of isoparaffin produced by a hydrocracking refining method can be used. In addition, one having a kinematic viscosity at 40 ° C of 10 to 200 cSt is generally used.
  • mineral oil is generally used after a refining process such as dewaxing, and there are several grades depending on the refining method, and this grade is defined by API (American Petroleum Institute) classification.
  • API American Petroleum Institute classification. Table 1 shows the characteristics of lubricant bases classified into each group.
  • the poly ⁇ -olefins in Table 1 are hydrocarbon polymers obtained by polymerizing ⁇ -olefins having 10 or more carbon atoms at least as raw material monomers, and examples include polydecene obtained by polymerizing decene 1. Is done.
  • the oil ( ⁇ ) used in the present invention is preferably an oil belonging to group (i) to group (iv), particularly a mineral oil having a kinematic viscosity of 1 to 50 mm 2 Zs at 100 ° C, and Viscosity index of 80 or more, or poly (X-olefin is preferred.
  • oil (A) mineral oil belonging to group (ii) or group (iii), or poly ⁇ belonging to group (iv) It is preferred that group (ii) and group (iii) have a lower wax concentration than group (i), especially mineral oils with a kinematic viscosity at 100 ° C of l to Most preferred are poly ⁇ -olefins having 50 mm 2 Zs and a viscosity index of 80 or more, belonging to group (ii) or dulpe (iii), or belonging to group (iv).
  • the above-described copolymer ( ⁇ ) which is a viscosity modifier for lubricating oil is used. That is, (i) a structural unit derived from ethylene, (ii) a structural unit derived from hyolephine having 3 to 19 carbon atoms, and (iii) a structural unit derived from higher ⁇ -olefin having 4 to 20 carbon atoms, A higher-olefin-derived structural unit having 1 or more carbon atoms than the structural unit derived from a-olefin having 3 to 19 carbon atoms,
  • a copolymer (B) having the following characteristics (1) to (2) is used.
  • the structural unit (ii) constituting the copolymer (B) is preferably propylene! /.
  • the structural unit (iii) constituting the copolymer (B) is preferably 1-butene, 1-hexene or 1-octene.
  • the structural unit (i) is 29 to 49 mol% as described above, the structural unit (ii) force 0-40 mole 0/0, the structural unit (iii) from 10 to 35 mole 0 Those that are / 0 are preferred.
  • the copolymer (B) preferably has at least one of the following properties (3) to (5).
  • MwZMn is 2.4 or less.
  • the heat of fusion ( ⁇ H) measured by DSC is 5. OjZg or less.
  • the additive composition for lubricating oil according to the present invention comprises the copolymer (B) and the oil (A), wherein (B) is 1 to 30% by weight and the oil (A) is 99% by weight. ⁇ 70 wt% (the sum of (A) and (B) is 100 wt%), preferably (B) is 1 to 20 wt% and oil (A) is 99 wt% to 80 wt%, more preferably Consists of 5-10% by weight of (B) and 95-90% by weight of oil (A).
  • a small amount of other components such as a heat-resistant stabilizer may be included within the range not impairing the object of the present invention.
  • the additive composition for lubricating oil of the present invention is a composition containing the component (A) in the above amount, for example, in producing a lubricating oil composition, the composition is used in addition to the lubricating oil composition.
  • a specific lubricating oil viscosity can be achieved with a small addition amount of component (B).
  • component (B) sand That is, it is excellent in thickening to oil.
  • a lubricating oil additive composition a lubricating oil composition having excellent low-temperature characteristics and low-temperature handling properties can be obtained.
  • the additive composition for lubricating oil of the present invention is a composition with the oil (A) as described above, the workability when added is good and can be easily mixed with other components.
  • the lubricating oil composition according to the present invention is a composition containing a lubricating oil base (AA), the above-mentioned copolymer (B), and a pour point depressant (C).
  • Examples of the lubricating oil base (AA) used in the present invention include mineral oil and diesters such as polyocorephin, polyol ester, dioctyl phthalate and dioctyl sebacate, and synthetic oil such as polyalkylene glycol.
  • Mineral oil or a blend of mineral oil and synthetic oil is preferably used.
  • Mineral oils are generally used through a refining process such as dewaxing, and there are several grades depending on the refining method. Generally, mineral oils containing 0.5 to 10% nitrogen are used.
  • a highly refined oil having a low pour point, a high viscosity index, and a composition mainly composed of isoparaffin produced by a hydrocracking refining method can be used.
  • those having a kinematic viscosity at 40 ° C of 10 to 200 cSt are generally used.
  • mineral oil is generally used after a refining process such as dewaxing, and there are several grades depending on the refining method, and this grade is defined by API (American Petroleum Institute) classification.
  • API American Petroleum Institute classification
  • the characteristics of the lubricant bases classified into each group are as shown in Table 1 above.
  • the poly a-olefin in Table 1 is a hydrocarbon polymer obtained by polymerizing a-olefin having at least 10 carbon atoms as a raw material monomer, and examples thereof include polydecene obtained by polymerizing decene 1.
  • the lubricating oil base (AA) used in the present invention has a kinematic viscosity at 100 ° C among oils belonging to group (i) to group (iv), especially among mineral oils.
  • a material having a viscosity index of not less than 80 mm 2 Zs and a poly-a-olefin is preferred.
  • the lubricating oil base (AA) is preferably a mineral oil belonging to the group (ii) or the group (iii), or a polyolefin which belongs to the dulpe (iv).
  • Group (i) rather than group (i) i) and group (iii) direction The wax concentration tends to be low.
  • the poly aolefin that belongs is most preferred.
  • copolymer (B) used in the lubricating oil composition of the present invention the above-described copolymer (B) which is a viscosity adjusting agent for lubricating oil is used.
  • Pour point depressants used in the lubricating oil composition of the present invention include alkyl naphthalene, alkyl methacrylate (co) polymer, alkyl acrylate (co) polymer, alkyl fumarate and butyl acetate. Polymer, ⁇ -olefin polymer, copolymer of a-olefin and styrene, and the like. Among them, (co) polymer of alkyl methacrylate and (co) polymer of alkyl acrylate are preferably used. .
  • the lubricating oil composition according to the present invention contains a pour point depressant (C) together with the lubricating oil base (AA) and the copolymer (B) as described above.
  • a pour point depressant (C) together with the lubricating oil base (AA) and the copolymer (B) as described above.
  • the copolymer (B) is 0. 1 to 5 wt 0/0, preferably from 0.2 to 1 5 weight 0/0, more preferably 0.
  • L is contained in an amount of 5% by weight
  • the pour point depressant (C) is 0.05 to 5% by weight, preferably 0.1 to 3% by weight, More preferably, it is contained in an amount of 0.1 to 2% by weight, most preferably 0.2 to 1.5% by weight (the remainder is a lubricant base (AA) and a compounding agent described later.)
  • the amount of compounding ingredients other than (B) and (C) is not particularly limited V, but the total of the lubricant base (AA) and the ingredients other than (B) and (C) is 100 wt.
  • the upper limit of the ratio of (AA) Z (compounding agent other than (B) and (C)) is 100/0, preferably 99Zl, more preferably 97Z3, more preferably 95Z5. It is.
  • the lower limit of the ratio of (AA) / (compounding agent other than (B) and (C)) is not particularly limited, but is preferably 60 Z40 force S, more preferably 70Z30, and particularly preferably 85Z15.
  • a specific numerical range is 100Z0 to 60Z40, preferably 99Zl to 70Z30, more preferably 97 3 to 80 20 and even more preferably 95 5 to 85 15.
  • the amount of the copolymer ( ⁇ ) is 0.1% by weight or more. If the copolymer (B) has a composition distribution, it may contain a component that inhibits the effect of the pour point depressant (C). However, when the blending amount of the copolymer (B) is 5% by weight or less, the effect of the pour point depressant (C) is not hindered, so the amount of the copolymer (B) is preferably the above-mentioned amount. When it is in the range, it is possible to obtain a lubricating oil composition that is excellent in the viscosity improving effect and has good fluidity at low temperatures.
  • Such a lubricating oil composition has any shear rate in which the temperature dependency of the viscosity is small and the rise of the pour point due to the interaction between the copolymer (B) and the pour point depressant (C) is small.
  • the lubricating oil composition according to the present invention comprises a lubricant base (AA), a copolymer (B ) And pour point depressant (C), (meth) alkyl methacrylate (co) polymer, hydrogenated SBR, SEBS and other compounding agents that have an effect of improving the viscosity index, detergents, anti-wrinkle additives, dispersants, You may mix
  • the lubricating oil composition according to the present invention is prepared by a conventionally known method to the lubricating oil base (AA), the copolymer (B) and the pour point depressant (C), and, if necessary, other blends. It can be prepared by mixing or dissolving the agent.
  • the peak area of the endothermic curve was defined as the heat of fusion.
  • the sample is packed in an aluminum pan, heated to 200 ° C in 10 ° CZ minutes, held at 200 ° C for 5 minutes, then cooled to 150 ° C in 20 ° CZ minutes, then 10 ° C. It was obtained from the endothermic curve of the 2nd run when the temperature was raised in CZ.
  • the copolymerization reaction was carried out in the same manner as in Polymerization Example 1 except that the flow rate of propylene was changed to 0.23 lZh, the flow rate of otaten was changed to 0.78 lZh, and the flow rate of hydrogen was changed to 1. ONlZh.
  • Table 2 shows the properties of the polymer obtained.
  • the copolymerization reaction was carried out in the same manner as in Polymerization Example 1 except that the flow rate of propylene was changed to 0.35 lZh and 1-butene was supplied at a flow rate of 0.4 lZh instead of otaten.
  • Table 2 shows the properties of the obtained polymer.
  • the copolymerization reaction was carried out in the same manner as in Polymerization Example 1 except that the flow rate of propylene was changed to 0.38 lZh, and hexene was supplied at a flow rate of 0.41 / h instead of otaten.
  • Table 2 shows the properties of the polymer obtained.
  • a stainless steel autoclave with 2 liters of stirring blades with sufficient nitrogen substitution was charged with 900 ml of heptane at 23 ° C.
  • This autoclave was charged with propylene 50N1 while rotating a stirring blade and cooling with ice.
  • the autoclave was heated to 60 ° C., and further pressurized with ethylene so that the total pressure became 0.8 MPa.
  • the internal pressure of the autoclave reached 0.8 MPa, 1.
  • Oml / ml hexane solution of triisobutylaluminum was pressure-injected with nitrogen.
  • methylaluminoxane prepared in advance was replaced with A1.
  • Polymerization was initiated by press-fitting 3 ml of a toluene solution containing 0.2 mmol of bis (1,3 dimethylcyclopentagel) zirconium dichloride in an amount of 0.002 mmol into the autoclave with nitrogen. Thereafter, the temperature of the autoclave was adjusted to 60 ° C for 60 minutes, and ethylene was directly supplied so that the pressure was 0.8 MPa. Sixty minutes after the start of polymerization, 5 ml of methanol was charged into the autoclave by a pump to stop the polymerization, and the autoclave was depressurized to atmospheric pressure.
  • the obtained polymerization solution was poured into a large amount of methanol to precipitate an ethylene / propylene copolymer, and then dried under reduced pressure at 130 ° C for 24 hours.
  • Table 2 shows the properties of the obtained polymer.
  • decane was continuously supplied in an amount of 600 mlZh and pressurized so that the total pressure was 3.8 MPa. Then, a decane solution of triisobutylaluminum (TIBA) (0.2 mmol ZD was continuously fed in an amount of 300 mlZh, and then a decane solution of triphenylcarbene (tetrakispentafluorophenol) borate (0.006 mmol / l ) were continuously supplied at 200mlZh was further made adjusted to 0.
  • TIBA triisobutylaluminum
  • a copolymerization reaction was carried out in the same manner as in Polymerization Example 1 except that the flow rate of propylene was changed to 0.21 lZh.
  • Table 3 shows the properties of the obtained polymer.
  • the low-temperature characteristics such as CCS viscosity and MR viscosity as much as possible.
  • the CCS viscosity is measured, for example, about 10 .
  • Force that can reduce MR viscosity for example, by about 100 (improves low-temperature characteristics), which is costly.
  • the performance of the lubricating oil composition was evaluated in the same manner as in Example 1 except that the polymers obtained in Polymerization Examples 6 to 7 were used in the proportions shown in Table 5 as viscosity index improvers. The results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 油に対する増粘性に優れており、また、低温特性、低温での取扱い性に優れた潤滑油組成物を得ることができる潤滑油用粘度調整剤または潤滑油用添加剤組成物および低温特性、低温での取扱い性に優れた潤滑油組成物を提供する。  本発明の潤滑油用粘度調整剤は、(i)エチレン由来の構成単位と、(ii)炭素数3~19のα-オレフィン由来の構成単位と、(iii)炭素数4~20の高級α-オレフィン由来の構成単位であって、前記構成単位(ii)より炭素数が1以上大きい高級α-オレフィン由来の構成単位とを含有し、下記(1)~(2)の特性を有するエチレン・α-オレフィン共重合体(B)からなる; (1)構成単位(i)を25~49モル%、構成単位(ii)を15~55モル%、構成単位(iii)を9~40モル%の割合(構成単位(i)、(ii)および(iii)の合計で100モル%)で含有する、 (2)極限粘度[η]が0.5~5.0dl/gである。                                                                               

Description

明 細 書
潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物 技術分野
[0001] 本発明は、潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物に 関し、さらに詳しくは、油に対する増粘性に優れており、また、低温特性、低温での取 扱 、性に優れた潤滑油組成物を得ることができる潤滑油用粘度調整剤、潤滑油用 添加剤組成物および低温特性、低温での取扱!/、性に優れた潤滑油組成物に関する 背景技術
[0002] 石油製品は、一般に温度が変化すると粘度が大きく変化するが、例えば自動車用 などの潤滑油はこの粘度の温度依存性が小さいことが好ましい。このため潤滑油に は温度依存性を小さくする目的で、粘度指数向上効果を有するエチレン' aーォレ フィン系共重合体が配合剤として広く用いられて 、る。
また潤滑油は、低温になると潤滑油中のワックス分が結晶固化し流動性を失う。こ のような固化温度を下げるために潤滑油には流動点降下剤も含まれており、この流 動点降下剤は、潤滑油中のワックス分が結晶化することによる 3次元ネットワークの形 成を阻害し潤滑油の流動点を低下させる。
[0003] ところでエチレン' aーォレフイン系共重合体と流動点降下剤とを含む潤滑油の低 温特性の中で、高せん断速度下における粘度は、潤滑油基剤とエチレン' aーォレ フィン系共重合体との相溶性で決まるが、低せん断速度下における粘度は、流動点 降下剤の影響を強く受ける。また、特定の組成のエチレン' a—ォレフイン系共重合 体を用いると、流動点降下剤との相互作用により、流動点降下剤の効果が著しく低 下することが知られて ヽる (特許文献 1、特許文献 2参照)。
[0004] このため潤滑油、特に低温特性に優れることが要求される潤滑油に配合されるェチ レン' a—ォレフイン系共重合体には、粘度指数向上効果に優れるとともに、流動点 降下剤の働きを阻害しな 、ことが求められる。
このような、流動点降下剤とエチレン' aーォレフイン系共重合体との相互作用を防 止するために、特定の重合装置と重合条件により得られる、不均一な組成分布を有 するエチレン · a—ォレフイン系共重合体を粘度指数向上剤として用いることが提案 されている(特許文献 3参照)。し力しながら、せん断速度にかかわらず、優れた低温 特性を有する潤滑油は得られて ヽなかった。
[0005] また、潤滑油の低温特性を改良する方法として、エチレン含量の高いエチレン'プ ロピレン共重合体を粘度指数向上剤として添加する方法もあるが、エチレン含量を高 めると、低温特性は向上するものの、粘度指数向上剤中のエチレンシーケンスが低 温で結晶化してしまい、潤滑油組成物自体がゼリー状となり、取扱い性が低下するこ とがあった。
また高いエチレン含量の共重合体を潤滑油用粘度調整剤として使用するのが適当 である場合にも、分子量をある範囲以上大きくしたり、該エチレン共重合体にわずか な組成分布などの広がりがあると、低温でのゼリー化などを起こしたりすることもあった ため、使用する共重合体の物性の許容範囲が広いとはいえず、性質を厳密にコント ロールしておく必要があった。
[0006] 本発明者らは、このような状況において鋭意研究した結果、特定のエチレン由来の 構成単位、炭素数 3〜19の exーォレフイン由来の構成単位および炭素数 4〜20の a一才レフイン由来の構成単位を含む共重合体を使用することにより、上記のような 相互作用による流動点降下剤の効果の減少を生じることなぐまた分子量を大きくで きることから添加量を少なくすることができ、つまり油に対する増粘性に優れた潤滑油 用粘度調整剤となり得、しかも低温時の潤滑油基剤との相溶性が調整され、あらゆる せん断速度領域で低温特性に優れるとともに、低温での取扱い性にも優れた潤滑油 組成物が得られることを見出して、本発明を完成するに至った。
特許文献 1 :米国特許第 3,697,429号明細書
特許文献 2 :米国特許第 3,551,336号明細書
特許文献 3:特開昭 60— 228600号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、油に対する増粘性に優れており、低温特性、低温での取扱い性にも優 れた潤滑油組成物を得ることができる潤滑油用粘度調整剤または潤滑油用添加剤 組成物および低温特性、低温での取扱!/、性に優れた潤滑油用粘度組成物を提供 することを目的としている。
課題を解決するための手段
[0008] 本発明に係る潤滑油用粘度調整剤は、
(i)エチレン由来の構成単位と、
(ii)炭素数 3〜19の aーォレフイン由来の構成単位と、
(iii)炭素数 4〜20の高級 α—ォレフィン由来の構成単位であって、前記炭素数 3〜 19の α—ォレフィン由来の構成単位より炭素数が 1以上大きい高級 α—ォレフィン 由来の構成単位と
を含有し、下記(1)〜(2)の特性を有するエチレン' a一才レフイン共重合体 (B)から なることを特徴とする;
(1)前記エチレン由来の構成単位 (i)を 25〜49モル0 /0、前記炭素数 3〜19の a ォレフィン由来の構成単位 (ii)を 15〜55モル0 /0、前記炭素数 4〜20の高級 α ォ レフイン由来の構成単位 (iii)を 9〜40モル0 /0 (構成単位 (i)、 (ii)および (iii)の合計 で 100モル%)の割合で含有する、
(2)デカリン中 135°Cで測定した極限粘度(〔7?〕)が 0. 5〜5. OdlZgの範囲にある。
[0009] 本発明では、前記エチレン' aーォレフイン共重合体 (B)力 下記特性(3)〜(5) のうち少なくとも 1つを有することが好ましい;
(3) MwZMn (Mw:重量平均分子量、 Mn :数平均分子量)が 2. 4以下である。
(4) DSCで測定した融解熱 ( Δ H)が 5. OjZg以下である。
(5) 13C— NMRで測定した S a aに対する S α βの強度比 D (S a j8 /S a α )が 0. 5以下である。
[0010] 本発明に係る潤滑油用添加剤組成物は、
(Α)油と、
(Β)前記エチレン' (Xーォレフイン共重合体と
を含み、かつ前記エチレン' aーォレフイン共重合体 (B)を 1〜30重量0 /0の割合で 含有することを特徴とする (ただし、(A)と (B)の合計重量を 100重量%とする。 )0 [0011] 本発明の潤滑油組成物は、
(AA)潤滑油基剤と、
(B)前記エチレン' aーォレフイン共重合体と、
(C)流動点降下剤と
を含み、かつ前記エチレン · α—ォレフィン共重合体(B)を 0. 1〜5重量0 /0、(C)流 動点降下剤を 0. 05〜5重量%の割合で含有することを特徴とする (ただし、該潤滑 油組成物の重量を 100重量%とする。 )0
発明の効果
[0012] 本発明に係る潤滑油用粘度調整剤または潤滑油用添加剤組成物は、油に対する 増粘性に優れており、また、これを使用することによって低温特性、低温での取扱い 性に優れた潤滑油組成物を得ることができる。
本発明に係る潤滑油組成物は低温特性に優れるとともに、低温で潤滑油組成物自 体がゼリー状となることもなく取扱い性に優れている。
発明を実施するための最良の形態
[0013] 以下、本発明に係る粘潤滑油用粘度調整剤および潤滑油組成物について具体的 に説明する。
[潤滑油用粘度調整剤]
本発明に係る潤滑油用粘度調整剤は、以下のような特性を有する (i)エチレン由来 の構成単位 (以下、「構成単位 (i)」ということがある。)と、(ii)炭素数 3〜19の α—ォ レフイン由来の構成単位 (以下、「構成単位 (ii)」ということがある。)と、(iii)炭素数 4 〜20の高級 (Xーォレフイン由来の構成単位であって、前記炭素数 3〜19の (Xーォ レフイン由来の構成単位より炭素数力 S1以上大きい高級 α—ォレフィン由来の構成 単位 (以下、「構成単位 (iii)」ということがある。)とを含むエチレン' a—ォレフイン共 重合体 )(以後、単に「共重合体 (B)」ということもある。)からなる。
[0014] 構成単位 (ii)としては、具体的に、プロピレン、 1—ブテン、 1—ペンテン、 1—へキ セン、 3—メチル 1—ブテン、 3—メチル 1—ペンテン、 3 ェチル 1—ペンテン 、 4ーメチルー 1 ペンテン、 4ーメチルー 1一へキセン、 4,4 ジメチルー 1一へキセ ン、 4,4 ジメチルー 1—ペンテン、 4 ェチル—1—へキセン、 3 ェチル—1—へ キセン、 1—オタテン、 1—デセン、 1—ドデセン、 1—テトラデセン、 1—へキサデセン 、 1ーォクタデセンおよび 1 エイコセンなどに由来の構成単位が挙げられる。これら のうちでも、特に炭素数 3〜9の aーォレフイン由来の構成単位が好ましぐ炭素数 3 〜7の α—ォレフイン由来の構成単位がより好ましぐ中でもプロピレン由来の構成単 位が好適である。共重合体 (Β)がプロピレン由来の構成単位 (ii)を含んでいると、広 いエチレン含量の範囲にわたって、共重合体 (B)を潤滑油に配合したときに、特に 低温特性に優れた潤滑油組成物を作製することができる。
[0015] 構成単位 (iii)としては、具体的に、 1—ブテン、 1—ペンテン、 1—へキセン、 3—メ チルー 1ーブテン、 3—メチルー 1 ペンテン、 3 ェチルー 1 ペンテン、 4 メチル 1 ペンテン、 4ーメチルー 1一へキセン、 4,4 ジメチルー 1一へキセン、 4,4ージ メチルー 1 ペンテン、 4ーェチルー 1一へキセン、 3 ェチルー 1一へキセン、 1 オタテン、 1—デセン、 1—ドデセン、 1—テトラデセン、 1—へキサデセン、 1—ォクタ デセンおよび 1 エイコセンなどが挙げられる。これらのうち、本発明では、炭素数 4 〜10の aーォレフイン由来の構成単位が好ましぐ炭素数 4〜8の aーォレフイン由 来の構成単位がより好ましぐ 1ーブテン、 1一へキセンまたは 1—オタテン由来の構 成単位が特に好ましい。このような炭素数であると、広いエチレン含量の範囲にわた つて、潤滑油に配合したときに特に低温特性に優れたものを作製することができる。
[0016] なお、本発明の目的を損なわない範囲で、他のモノマー(炭素数 2〜20の α—ォレ フィン以外のモノマー)が構成単位 (i)、 (ii) , (iii)の合計 100モル0 /0に対して 10モル %程度まで共重合されていてもよいが、ポリェンィ匕合物は共重合成分として含まない ことが好ま 、。共重合体 (B)がポリェンィ匕合物を共重合成分として含まな 、場合、 共重合体 (B)は、耐熱性に優れており、特に酸化、着色などがなく、さらには潤滑油 に配合した場合の潤滑性能の点で特に優れている。
[0017] 共重合体 (B)は、下記(1)〜(2)の特性を有する。
(1)共重合体 (B)は、構成単位 (i) (エチレン力 導かれる繰返し単位)を 25〜49 モル0 /0、構成単位 )(炭素数 3〜19の a—ォレフインカも導かれる繰返し単位)を 1 5〜55モル0 /0、構成単位 (iii) (炭素数 4〜20の高級 α—ォレフィンであって、前記 炭素数 3〜19の a一才レフインカ 導かれる繰返し単位より炭素数が 1以上大きい高 級 a—ォレフインカ 導かれる繰返し単位)を 9〜40モル%の割合で含有する(ただ し、構成単位 (i)、 (ii)、 (iii)の合計を 100モル%とする。)。
[0018] 構成単位 (i)
共重合体(Β)は、構成単位 (i)を、 25〜49モル%、好ましくは 29〜49モル%、より 好ましくは 35〜49モル%、さらに好ましくは 40〜49モル%の割合で含有する。構成 単位 (i)の含有割合がこのような範囲にあると、共重合体 (B)を潤滑油に配合したとき に特に低温特性、例えば低温粘度などに優れた潤滑油組成物を作製することができ る。
[0019] 構成単位 (ii)
共重合体(B)は、構成単位 (ii)を、 15〜55モル%、好ましくは 18〜42モル%、より 好ましくは 20〜40モル%の割合で含有する。構成単位 )の含有割合力このような 範囲にあると、共重合体 (B)を潤滑油に配合したときに、特に低温特性に優れた潤 滑油組成物を作製することができる。
[0020] 構成単位 (iii)
共重合体(B)は、構成単位 (iii)を、 9〜40モル%、好ましくは 10〜38モル%、より 好ましくは 10〜 35モル%の割合で含有する。
本発明で使用される構成単位 (i)と構成単位 (ii)と構成単位 (iii)とを含有する共重 合体 (B)は、以上のような組成を有していると、充分な低温特性を有し、かつ低温で の取扱い性に優れた潤滑油組成物を得ることができる。
[0021] また共重合体 (B)にお 、ては、(B)の良好な低温特性を満足する潤滑油組成物を 与えることができる。すなわち、(B)のエチレン含量の範囲は、エチレン '炭素数 3以 上の α—ォレフイン 2元共重合体よりも広い。このことは、例えば本発明で使用できる 共重合体 (Β)のエチレン由来の構成単位の含量と MR粘度との関係、エチレン由来 の構成単位の含量と低温貯蔵安定性との関係を表すグラフを作り、許容しうる MR粘 度、低温貯蔵安定性の値に対する使用可能なエチレン由来の構成単位の範囲 (含 有割合)を調べ、前記共重合体 (B)をエチレン '炭素数 3以上の oc一才レフイン 2元 共重合体に代えた場合に使用可能なエチレン由来の構成単位の範囲と比較するこ とで、判断することが可能である。 [0022] 共重合体 (B)中の組成は、「高分子分析ノヽンドブック」 (日本分析化学会、高分子 分析研究懇談会編、紀伊国屋書店発行)に記載の方法に従って13 C— NMRで測定 することができる。
(2)共重合体 (B)は、デカリン中 135°Cで測定した極限粘度([ 7? ] )が 0. 5〜5. Od lZgの範囲にある。極限粘度([ 7? ])が上記範囲内にあると、油に対する増粘性に優 れており、このため特定の潤滑油粘度を得るための共重合体 (B)の必要量が少なく て済み、したがって低温時にゼリー化が起こりにくぐまた、潤滑油粘度のせん断安 定性にも優れた潤滑油組成物を得ることができる。なお、油に対する増粘性が優れ ているかどうかについては、実施例で述べるように、潤滑油組成物の 100°Cでの動粘 度を一定にする場合に、共重合体の添加量が少なくてょ 、ほど増粘性に優れて 、る と判断する。
[0023] 共重合体 (B)は、極限粘度([ 7? ])が 0. 5〜4. Odl/g,好ましくは 1. 0〜3. Odl/ g、より好ましくは 1. 5〜2. 5dlZgの範囲にある場合には、特に潤滑油の粘度指数 を向上させることができる。
共重合体 (B)は、下記特性(3)〜(5)のうち少なくとも 1つを有することが好ましい。
[0024] (3)共重合体 (B)は、分子量分布を示す指標である MwZMn(Mw:重量平均分 子量、 Mn:数平均分子量)が、好ましくは 2. 4以下、より好ましくは 2. 2以下であるこ とが望ましい。分子量分布が 2. 4以下であると、潤滑油粘度のせん断安定性が良好 であるので好ましい。
MwZMnが上記範囲内にある共重合体 (B)は、後述するようなメタ口セン系触媒 を用 、ることにより製造することができる。
[0025] (4)共重合体 (B)は、融解熱( Δ H)が、示差走査型熱量計 (DSC)による測定で、 5. OjZg以下であることが好ましぐより好ましくは 0〜5. Oj/g,さらに好ましくは 0〜 4. Oj/g,特に好ましくは、 0〜3. OjZgの範囲である。融解熱がこのような範囲にあ ると、低温でゼリー化が起こりにく!/、ため好適である。
融解熱は、示差走査型熱量計 (DSC)の吸熱曲線を求め、吸熱ピーク面積を融解 熱とした。すなわち、試料をアルミパンに詰め、 10°CZ分で 200°Cまで昇温し、 200 °Cで 5分間保持した後、 20°CZ分で 150°Cまで降温し、次いで 10°CZ分で昇温 する際の 2ndランの吸熱曲線より求めた。
[0026] 融解熱( Δ Η)が上記範囲内にある共重合体 (B)は、後述するようなメタ口セン系触 媒を用いることにより製造することができる。また、エチレン由来の構成単位含量ある いはひ一ォレフィン由来の構成単位含量を変えることにより上記範囲内で融解熱(Δ
H)を変化させることができる。
本発明で使用される共重合体 (B)は、後述するメタ口センィ匕合物と、イオン化イオン 性ィ匕合物とからなる触媒により(i)エチレンと (ii)炭素数 3〜19の a—ォレフインと (iii
)炭素数 4〜20の高級 α—ォレフインであって、前記炭素数 3〜19の α—ォレフイン
(ii)より炭素数が 1以上大きい α—才レフインとを共重合して得られたものが、潤滑油 組成物の低温特性の点から好ま 、。
[0027] (5)共重合体(Β)は、 13C— NMR ^ベクトルにより求められる S a aに対する S α β の強度比 D (S o; β / a α )が、好ましくは 0. 5以下であり、より好ましくは 0. 3以下 である。
この強度比 D (S A IS ZS Q; α )が 0. 5以下である共重合体 (B)を含んでいると、潤 滑油の低温での流動性を向上させることができる上に、高温における潤滑特性を向 上させることもでき、さらには両者 (低温流動性および高温潤滑特性)のバランスに特 に優れている。
[0028] 13C— NMR ^ベクトルにより求められる S α βおよび S a aは、それぞれエチレンま たは炭素数 3〜20の aーォレフインから導かれる構成単位中の CHのピーク強度で
2
あり、下記に示す位置にある 2種の CHを意味している。
2
[0029] [化 1]
R R R R 一 C一 C H「 C H2— C一 - C H 2- C - C H2- C -
H H H H
S a β S
(式中、 Rは独立に水素原子または炭素数 1〜6のアルキル基を示す。 )
[0030] 13C— NMRによって測定されたスペクトルは、 J.C.Randall (Review Macromolecular Chemistry Physics,C29, 201(1989))に記載された方法に従って、解析され、 S a j8お よび S a aが測定される。
強度比 Dは、それぞれのピーク部分の積分値 (面積)比で算出される。このようにし て求められた強度比 Dは、一般に α—ォレフィンの 1,2付加反応に続いて 2, 1付加反 応が起こる割合、または α—ォレフインの 2, 1付加反応に続いて 1, 2付加反応が起こ る割合を示す尺度と考えられている。したがって、この強度比 D値が大きいほど、 a —ォレフインの結合方向が不規則であること示している。逆に D値が小さいほど、 a —ォレフインの結合方向が規則的であることを示している。
[0031] このような共重合体 (B)は、潤滑油基剤に配合されたときに粘度指数の向上効果が 大きぐまた、流動点降下剤の効果が阻害されることもない。
強度比 Dが上記範囲内にある共重合体 (B)は、後述するようなメタ口セン系触媒を 用いることにより製造することができる。また、メタ口セン系触媒の分子構造を変えるこ とにより上記範囲内で強度比 Dを変化させることができる。また重合温度を変えること で強度比 Dを変化させることができる。
[0032] このような共重合体 (B)を粘度調整剤として用いると、次世代の北米潤滑油規格で ある GF— 4規格の低温特性の規格を満たしうるような潤滑油を得ることができる。な お、潤滑油が GF— 4規格を満たす力どうかは、後述する CCS粘度、 MR粘度を測定 することにより判断することが可能である。
このような本発明に係る潤滑油用粘度調整剤として使用される共重合体 (B)は、ェ チレンと、炭素数 3〜19の aーォレフインと、炭素数 4〜20の高級 aーォレフインで あって、前記炭素数 3〜19の α—ォレフインより炭素数が 1以上大きい α—ォレフィ ン(以下、単に「炭素数 4〜20の高級 α—ォレフィン」という。)と、必要に応じて他の モノマーをォレフイン重合用触媒の存在下に共重合させることにより得ることができる
[0033] このようなォレフィン重合用触媒としては、ジルコニウム、ハフニウム、チタニウムなど の遷移金属の化合物と、有機アルミニウム化合物(有機アルミニウムォキシィ匕合物) および Ζまたはイオン化イオン性ィ匕合物とからなる触媒が使用できるが、本発明では 、これらのうち、周期表第 4族など力も選ばれる遷移金属のメタ口センィ匕合物と、有機 アルミニウムォキシィ匕合物および Ζまたはイオン化イオン性ィ匕合物と、力らなるメタ口 セン系触媒が特に好ましく用いられる。
[0034] 次に、メタ口セン系触媒について説明する。
メタ口セン系触媒を形成する周期表第 4族から選ばれる遷移金属のメタ口セン化合 物としては、例えば国際公開第 01Z85880号パンフレットの 16頁 5行目力 19頁 4 行目までに記載のメタ口セン化合物を挙げることができ、具体的には、下記一般式 (a )で表される。
[0035] ML - -- (a)
式 (a)中、 Mは周期表第 4族力 選ばれる遷移金属であり、具体的にジルコニウム、 チタンまたはハフニウムであり、 Xは遷移金属の原子価である。
Lは遷移金属に配位する配位子であり、これらのうち少なくとも 1個の配位子 Lはシ クロペンタジェ-ル骨格を有する配位子であり、このシクロペンタジェ-ル骨格を有 する配位子は置換基を有して 、てもよ 、。
[0036] シクロペンタジェ-ル骨格を有する配位子としては、例えば、シクロペンタジェ-ル 基、アルキルまたはシクロアルキル置換シクロペンタジェ-ル基、インデュル基、 4,5, 6,7—テトラヒドロインデュル基、フルォレニル基などが挙げられる。これらの基は、ハ ロゲン原子、トリアルキルシリル基などで置換されて 、てもよ 、。
一般式 (a)で示される化合物が配位子 Lとしてシクロペンタジェニル骨格を有する 基を 2個以上有する場合には、そのうち 2個のシクロペンタジェ-ル骨格を有する基 同士は、(置換)アルキレン基または(置換)シリレン基などを介して結合されて ヽても よい。
[0037] シクロペンタジェ-ル骨格を有する配位子以外の Lとしては、炭素原子数が 1〜12 の炭化水素基、アルコキシ基、ァリーロキシ基、スルホン酸含有基(一 SO Ra)、ハロ
3 ゲン原子または水素原子 (ここで、 Raはアルキル基、ハロゲン原子で置換されたアル キル基、ァリール基またはハロゲン原子またはアルキル基で置換されたァリール基で ある。)などが挙げられる。
[0038] 以下に、 Mがジルコニウムであり、かつシクロペンタジェ-ル骨格を有する配位子を 少なくとも 2個含むメタ口センィ匕合物を例示する。
ビス(メチルシクロペンタジェ -ル)ジルコニウムジクロリド、 ビス(ェチルシクロペンタジェ -ル)ジノレコニゥムジクロリド、
ビス(n—プロビルシクロペンタジェ -ル)ジルコニウムジクロリド、
ビス(インデュル)ジルコニウムジクロリド、
ビス(4,5,6,7—テトラヒドロインデュル)ジルコニウムジクロリドなど。
[0039] また上記のような化合物においてジルコニウム金属を、チタニウム金属、ハフニウム 金属に置き換えた化合物を挙げることもできる。
また本発明では、メタ口センィ匕合物として下記一般式 (b)で表される化合物を用い ることちでさる。
L'M'X —(b)
2
(式中 M1は、周期表第 4族またはランタ-ド系列の金属であり、
L1は、非局在化 π結合基の誘導体であり、金属 Μ1活性サイトに拘束幾何形状を付 与しており、
Xは、それぞれ独立に水素、ハロゲンまたは 20以下の炭素、ケィ素またはゲルマ- ゥムを含有する炭化水素基、シリル基またはゲルミル基である。 )
このような一般式 (b)で示される化合物のうちでも、下記一般式 (c)で示される化合 物が好ましい。
[0040] [化 2]
Figure imgf000012_0001
… (c ) 式中、 M1はチタン、ジルコニウムまたはハフニウムであり、 Xは、上記と同様である。 Cpは M1に π結合しており、かつ置換基 Ζを有する置換シクロペンタジェ-ル基で ある。
Ζは酸素、ィォゥ、ホウ素または周期表第 14族の元素 (例えばケィ素、ゲルマニウム または錫)であり、
Υは窒素、リン、酸素またはィォゥを含む配位子であり、
Ζと Υとで縮合環を形成してもよ 、。 このような一般式 (c)で示される化合物としては、具体的に、
[ジメチル (t-ブチルアミド) (テトラメチル- 7? 5-シクロペンタジェ -ル)シラン]チタンジ クロリド、、
[(t-ブチルアミド) (テトラメチル- 7? 5-シクロペンタジェ -ル) -1,2-エタンジィル]チタ ンジクロリド、
[ジベンジル (t-ブチルアミド) (テトラメチル- 7? 5-シクロペンタジェ -ル)シラン]チタン ジクロリド、、
[ジメチル (t-ブチルアミド) (テトラメチル- 7} 5-シクロペンタジェ -ル)シラン]ジベンジ ノレチタン、
[ジメチル (t-ブチルアミド) (テトラメチル- 7} 5-シクロペンタジェ -ル)シラン]ジメチル チタン、
[(t-ブチルアミド) (テトラメチル- 5-シクロペンタジェ -ル) -1,2-エタンジィル]ジべ ンジノレチタン、
[(メチルアミド) (テトラメチル- 7} 5-シクロペンタジェ -ル) -1,2-エタンジィル]ジネオ ペンチルチタン、
[(フエ-ルホスフイド) (テトラメチル- 7} 5-シクロペンタジェ -ル)メチレン]ジフエ-ル チタン、
[ジベンジル (t-ブチルアミド) (テトラメチル- 7} 5-シクロペンタジェニル)シラン]ジベン ジルチタン、
[ジメチル (ベンジルアミド )( 7} シクロペンタジェ -ル)シラン]ジ (トリメチルシリル)チ タン、
[ジメチル (フエ-ルホスフイド) (テトラメチル- 7} 5-シクロペンタジェ -ル)シラン]ジべ ンジノレチタン、
[(テトラメチル- 7? 5-シクロペンタジェ -ル) -1,2-エタンジィル]ジベンジルチタン、
[2- 7? 5- (テトラメチル-シクロペンタジェ -ル) -1-メチル -エタノレート (2-)]ジベンジ ノレチタン、
[2- 7? 5- (テトラメチル-シクロペンタジェ -ル) -1-メチル -エタノレート (2-)]ジメチルチ タン、 [2-((4a,4b,8a,9,9a- η )-9H-フルオレン- 9-ィル)シクロへキサノレート (2-)]ジメチル チタン、
[2-((4a,4b,8a,9,9a- η )-9Η-フルオレン- 9-ィル)シクロへキサノレート (2-)]ジベン ジルジルチタンなどが挙げられる。
[0043] また上記のような化合物においてチタニウム金属を、ジルコニウム金属、ハフニウム 金属に置き換えた化合物を挙げることもできる。
これらのメタ口センィ匕合物は、 1種単独でまたは 2種以上組み合わせて用いることが できる。
本発明では、前記一般式 (a)で表されるメタ口センィ匕合物としては、中心の金属原 子がジルコニウムであり、少なくとも 2個のシクロペンタジェ-ル骨格を含む配位子を 有するジルコノセンィ匕合物が好ましく用いられる。また前記一般式 (b)または (c)で表 されるメタ口センィ匕合物としては、中心の金属原子がチタンであることが好ましい。上 記メタ口センィ匕合物のなかでは、一般式 (c)で表され、中心の金属原子がチタンであ る化合物が特に好ましい。
[0044] メタ口セン系触媒を形成する有機アルミニウムォキシィ匕合物は、国際公開第 01Z8
5880号パンフレットの 21頁 24行目力も 22頁下から 6行目に記載されて 、るような従 来公知のアルミノォキサンであってもよく、またベンゼン不溶性の有機アルミニウムォ キシィ匕合物であってもよ 、。
メタ口セン系触媒を形成するイオン化イオン性化合物としては、ルイス酸、イオン性 化合物などを例示することができる。
[0045] ルイス酸としては、 BR (Rは、フッ素、メチル基、トリフルォロメチル基などの置換基
3
を有して!/ヽてもよ ヽフエ-ル基またはフッ素である。 )で示される化合物が挙げられる イオン性化合物としては、トリアルキル置換アンモ-ゥム塩、 Ν,Ν—ジアルキルァ- リュウム塩、ジアルキルアンモ-ゥム塩、トリアリールホスフォ -ゥム塩などを挙げること ができる。
[0046] このようなルイス酸、イオン性ィ匕合物は公知であり、例えば国際公開第 01Z85880 号パンフレットの 23頁 1行目力も 6行目まで、 23頁 10行目力も 24頁 7行目までにそ れぞれ例示されている。
さらにイオン性化合物として、トリフエ-ルカルベ-ゥムテトラキス(ペンタフルオロフ ェ -ル)ボレート、 Ν,Ν—ジメチルァユリ-ゥムテトラキス(ペンタフルォロフエ-ル)ボ レート、フエロセ-ゥムテトラ(ペンタフルォロフエ-ル)ボレートなどを挙げることもでき る。特に、イオン化イオン性ィ匕合物がエチレン' a—ォレフイン共重合体 (B)の組成 分布を制御する点で好適に用いられる。
[0047] またメタ口セン系触媒を形成するに際しては、有機アルミニウムォキシィ匕合物および /またはイオン化イオン性ィ匕合物とともに、有機アルミニウム化合物を用いてもよい。 有機アルミニウム化合物としては、下記一般式 (f)で表される化合物が挙げられる。
R1 A1X … )
n 3- n
式中、 R1は炭素原子数が 1〜15、好ましくは 1〜4の炭化水素基であり、 Xはハロゲ ン原子または水素原子であり、 nは 1〜3である。
[0048] このような有機アルミニウム化合物は公知であり、例えば国際公開第 01Z85880 号パンフレットの 24頁 23行目から 26頁 5行目までに例示されて!、る。
上記のようなメタ口セン系触媒の存在下にエチレンと、炭素数 3〜19の exーォレフィ ンと、炭素数 4〜20の高級 α—ォレフィンと、必要に応じて他のモノマーとを、通常液 相で共重合させる。この際、重合溶媒として一般に炭化水素溶媒が用いられるが、プ ロピレンなどの a一才レフインを用いてもよい。
[0049] 重合の際に用いられる炭化水素溶媒としては、ペンタン、へキサン、ヘプタン、オタ タン、デカン、ドデカン、灯油などの脂肪族炭化水素およびそのハロゲン誘導体;シク 口へキサン、メチルシクロペンタン、メチルシクロへキサンなどの脂環式炭化水素およ びそのハロゲン誘導体;ベンゼン、トルエン、キシレンなどの芳香族炭化水素および クロ口ベンゼンなどのハロゲン誘導体などが用いられる。これらの溶媒は、 1種単独で または 2種以上組み合わせて用いることができる。
[0050] エチレンと、炭素数 3〜19の α—ォレフインと、炭素数 4〜20の高級 aーォレフイン と、必要に応じて他のモノマーとは、バッチ法、連続法のいずれの方法でも共重合す ることができるが、連続法で共重合することが好ましぐ特に攪拌槽型反応器を用い 連続法で共重合することが好ましい。共重合を連続法で実施するに際して、上記メタ 口セン系触媒は、例えば以下のような濃度で用いられる。
[0051] 重合系内のメタ口セン化合物の濃度は、通常、 0. 00005〜0. 1ミリモル Zリットル( 重合容積)、好ましくは 0. 0001〜0. 05ミリモル/リットルである。また有機アルミ-ゥ ムォキシィ匕合物は、重合系内のメタ口センィ匕合物中の遷移金属に対するアルミニウム 原子のモル比(A1Z遷移金属)で、 1〜10000、好ましくは 10〜5000の量で供給さ れる。
[0052] イオン化イオン性ィ匕合物は、重合系内のメタ口センィ匕合物に対するイオン化イオン 性ィ匕合物のモル比 (イオン化イオン性ィ匕合物 Zメタ口センィ匕合物)で、 0. 5〜30、好 ましくは 1〜25の量で供給される。
また有機アルミニウム化合物が用いられる場合には、通常、約 0〜5ミリモル Zリット ル (重合容積)、好ましくは約 0〜2ミリモル Zリットルとなるような量で用いられる。
[0053] 上記のようなメタ口セン系触媒の存在下に、エチレンと、炭素数 3〜19の α—ォレフ インと、炭素数 4〜8の高級 α—ォレフィンと、必要に応じて他のモノマーとを共重合 させる場合〖こは、共重合反応は、通常、温度が 20°C〜150°C、好ましくは 0°C〜1 20°C、さらに好ましくは 0°C〜100°Cで、圧力が 0を超えて 80kgZcm2以下、好ましく は 0を超えて 50kgZcm2以下の条件下に行われる。上記重合条件は、連続重合法 では一定であることが好まし 、。
[0054] 反応時間 (共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、 重合温度などの条件によっても異なる力 通常、 5分〜 5時間、好ましくは 10分〜 3時 間である。
エチレンと、炭素数 3〜19の aーォレフインと、炭素数 4〜20の高級 aーォレフイン と、必要に応じて他のモノマーとは、上述のような特定組成の共重合体 (B)が得られ るような量で重合系に供給される。さらに、共重合に際しては、水素などの分子量調 節剤を用いることもできる。
[0055] 上記のようにしてエチレンと、炭素数 3〜19の α—ォレフインと、炭素数 4〜20の高 級 α—ォレフィンと、必要に応じて他のモノマーとを共重合させると、共重合体 (Β)は 、通常これを含む重合液として得られる。この重合液は、常法により処理され、本発明 で用いられる共重合体 (Β)が得られる。 [潤滑油用添加剤組成物]
本発明に係る潤滑油用添加剤組成物は、油 (A)と前記した共重合体 (B)とを含有 する組成物である。
[0056] まず本発明に係る潤滑油用添加剤組成物を形成する各成分について説明する。
く (A)油〉
本発明で用いられる油(A)としては、鉱物油、およびポリ α—ォレフイン、ポリオ一 ルエステル、ジォクチルフタレート、ジォクチルセバケートなどのジエステル類、ポリア ルキレングリコールなどの合成油が挙げられ、鉱物油または鉱物油と合成油とのブレ ンドが好ましく用いられる。鉱物油は、一般に脱ワックスなどの精製工程を経て用いら れ、精製の仕方により幾つかの等級がある力 一般に 0. 5〜10%のワックス分を含 む鉱物油が使用される。例えば、水素分解精製法で製造された流動点の低い、粘度 指数の高い、イソパラフィンを主体とした組成の高度精製油を用いることもできる。ま た、 40°Cにおける動粘度が 10〜200cStのものが一般的に使用される。
[0057] 鉱物油は、前述のように一般に脱ワックスなどの精製工程を経て用いられ、精製の 仕方により幾つかの等級があり、本等級は API (米国石油協会)分類で規定される。 表 1に各グループに分類される潤滑油基剤の特性を示す。
[0058] [表 1]
表 1
Figure imgf000018_0001
*1 ; ASTM D445 (J I S Κ2283) に準じて測定
*2 ASTM D 3 238に準じて測定
*3: ASTM D4294 ( J I S K254 1) に準じて測定
*4:颇ロ炭 ί 素分が 90 (容量%) 未満で力 硫黄分が 0. 03 (重量%) 未满であ る鉱物油、 麵ロ炭ィは素分が 90 (容量%) 以上で力 硫黄分が 0. 03 (ΜΛ%) を超 える鉱物油および飽和炭ィは素分が 90 (容量%)未満で力 硫黄分が 0, 03 (Μ %) を超える鉱物油がグノ "プ ( i ) に含まれる。
[0059] 表 1におけるポリ α—ォレフインは、炭素数 10以上の α—ォレフインを少なくとも原 料モノマーとして重合して得られる炭化水素ポリマーであって、デセン 1を重合して 得られるポリデセンなどが例示される。
また、本発明で使用される油 (Α)は、グループ (i)〜グループ (iv)に属する油が好 ましぐ特に鉱物油の中でも 100°Cにおける動粘度が l〜50mm2Zsで、かつ粘度指 数が 80以上のもの、またはポリ (Xーォレフインが好ましい。また、油(A)としては、グ ループ (ii)またはグループ (iii)に属する鉱物油、またはグループ (iv)に属するポリ α ーォレフインが好ましい。なお、グループ(i)よりもグループ(ii)およびグループ(iii) の方が、ワックス濃度が少ない傾向にある。特に、鉱物油であって、 100°Cにおける 動粘度が l〜50mm2Zsで、かつ粘度指数が 80以上でありグループ (ii)またはダル ープ (iii)に属するもの、またはグループ (iv)に属するポリ α—ォレフインが最も好ま しい。
[0060] く (Β)共重合体〉
本発明で用いられる共重合体 (Β)として、上記した潤滑油用粘度調整剤である共 重合体 (Β)が使用される。 すなわち、(i)エチレン由来の構成単位と、(ii)炭素数 3〜19のひーォレフィン由来 の構成単位と、(iii)炭素数 4〜20の高級 α—ォレフィン由来の構成単位であって、 前記炭素数 3〜19の a—ォレフィン由来の構成単位より炭素数が 1以上大きい高級 ーォレフイン由来の構成単位とを含有し、
下記(1)〜(2)の特性を有する共重合体 (B)が使用される。
(1)構成単位(i)を 25〜49モル0 /0、構成単位(ii)を 15〜55モル0 /0、構成単位(iii) を 9〜40モル%の割合で含有する(合計で 100モル0 /0)。
(2)デカリン中 135°Cで測定した極限粘度([ 7? ] )が 0. 5〜5. 0である。
[0061] 前記共重合体 (B)を構成する構成単位 (ii)は、プロピレンが好まし!/、。また、前記 共重合体 (B)を構成する構成単位 (iii)は 1—ブテン、 1—へキセンまたは 1—ォクテ ンが好ましい。
特に共重合体 (B)として、前述のような構成単位 (i)が 29〜49モル%、構成単位 (i i)力 0〜40モル0 /0、構成単位 (iii)が 10〜35モル0 /0であるものが好適である。
[0062] 前記共重合体 (B)は、下記(3)〜(5)の特性のうち少なくとも 1つを有することが好 ましい。
(3) MwZMnが 2. 4以下である。
(4) DSCで測定した融解熱 ( Δ H)が 5. OjZg以下である。
(5) 13C— NMR^ぺクトルにょり求められるS Q; αに対する S a j8の強度比 D (S a β /S a α )力 0. 5以下である。
[0063] 本発明に係る潤滑油用添加剤組成物は、前記共重合体 (B)と油 (A)とからなり、 ( B)が 1〜30重量%と油(A)が 99重量%〜 70重量% ( (A)と(B)の合計を 100重量 %とする。)、好ましくは(B)が 1〜20重量%と油(A)が 99重量%〜80重量%、より 好ましくは(B)が 5〜10重量%と油(A)が 95重量%〜90重量%とからなるものであ る。本発明では、(A)および (B)成分に加えて、本発明の目的を損なわない範囲で 耐熱安定剤など少量の他の成分が含まれて 、てもよ 、。
[0064] 本発明の潤滑油用添加剤組成物は、(A)成分を上記量含む組成物であるので、 例えば、潤滑油組成物を製造するに当たり、本組成物を潤滑油組成物の他の成分と 混合することで、少ない(B)成分の添加量で特定の潤滑油粘度が達成できる。すな わち、油に対する増粘性に優れている。また、当該潤滑油用添加剤組成物を使用す ることで、低温特性、低温での取扱い性に優れた潤滑油組成物が得られる。本発明 の潤滑油用添加剤組成物は、上記のように油 (A)との組成物であるので、添加する 場合の作業性も良好であり、他成分と容易に混合することができる。
[0065] [潤滑油組成物]
本発明に係る潤滑油組成物は、潤滑油基剤 (AA)と前記した共重合体 (B)と流動 点降下剤 (C)とを含有する組成物である。
まず本発明に係る潤滑油組成物を形成する各成分につ 1ヽて説明する。 く (AA)潤滑油基剤〉
本発明で用いられる潤滑油基剤 (AA)としては、鉱物油、およびポリ ocーォレフイン 、ポリオールエステル、ジォクチルフタレート、ジォクチルセバケートなどのジエステル 類、ポリアルキレングリコールなどの合成油が挙げられ、鉱物油または鉱物油と合成 油とのブレンドが好ましく用いられる。鉱物油は、一般に脱ワックスなどの精製工程を 経て用いられ、精製の仕方により幾つかの等級がある力 一般に 0. 5〜10%のヮッ タス分を含む鉱物油が使用される。例えば、水素分解精製法で製造された流動点の 低い、粘度指数の高い、イソパラフィンを主体とした組成の高度精製油を用いることも できる。また、 40°Cにおける動粘度が 10〜200cStのものが一般的に使用される。
[0066] 鉱物油は、前述のように一般に脱ワックスなどの精製工程を経て用いられ、精製の 仕方により幾つかの等級があり、本等級は API (米国石油協会)分類で規定される。 各グループに分類される潤滑油基剤の特性は、前記表 1に示したとおりである。
表 1におけるポリ a—ォレフインは、炭素数 10以上の a—ォレフインを少なくとも原 料モノマーとして重合して得られる炭化水素ポリマーであって、デセン 1を重合して 得られるポリデセンなどが例示される。
[0067] また、本発明で使用される潤滑油基剤 (AA)は、グループ (i)〜グループ (iv)に属 する油が好ましぐ特に鉱物油の中でも 100°Cにおける動粘度が l〜50mm2Zsで、 かつ粘度指数が 80以上のもの、またはポリ a—ォレフインが好ましい。また、潤滑油 基剤 (AA)としては、グループ (ii)またはグループ (iii)に属する鉱物油、またはダル ープ(iv)に属するポリ aーォレフインが好ましい。なお、グループ(i)よりもグループ (i i)およびグループ (iii)の方力 ワックス濃度が少ない傾向にある。特に、鉱物油であ つて、 100°Cにおける動粘度が l〜50mm2Zsで、かつ粘度指数が 80以上でありグ ループ(ii)またはグループ (iii)に属するもの、またはグループ (iv)に属するポリ a ォレフィンが最も好ましい。
[0068] く (B)共重合体〉
本発明の潤滑油組成物で用いられる共重合体 (B)としては、上記した潤滑油用粘 度調整剤である共重合体 (B)が使用される。
〈(C)流動点降下剤〉
本発明の潤滑油組成物で用いられる流動点降下剤としては、アルキルィ匕ナフタレ ン、メタクリル酸アルキルの(共)重合体、アクリル酸アルキルの(共)重合体、フマル 酸アルキルと酢酸ビュルの共重合体、 α—ォレフイン重合体、 aーォレフインとスチ レンの共重合体などが挙げられ、中でも、メタクリル酸アルキルの(共)重合体、アタリ ル酸アルキルの(共)重合体が好適に用いられる。
[0069] 本発明に係る潤滑油組成物は、上述したような潤滑油基剤 (AA)と共重合体 (B)と ともに、流動点降下剤 (C)を含有している。このような潤滑油組成物中に、共重合体 ( B)は、 0. 1〜5重量0 /0、好ましくは 0. 2〜1. 5重量0 /0、さらに好ましくは 0. 25〜: L 5 重量%、特に好ましくは 0. 30〜: L 5重量%の量で含有され、流動点降下剤(C)は、 0. 05〜5重量%、好ましくは 0. 1〜3重量%、さらに好ましくは 0. 1〜2重量%、最も 好ましくは 0. 2〜1. 5重量%の量で含有される(残分は潤滑油基剤 (AA)および後 述の配合剤である。 ) oここで (B)および (C)以外の配合剤の量は、特に限定されな V、が潤滑油基剤 (AA)と (B)および (C)以外の配合剤との合計を 100重量%とした 場合に、例えば (AA)Z ( (B)および (C)以外の配合剤)の比の上限値は、 100/0 であり、好ましくは 99Zl、より好ましくは 97Z3、さらに好ましくは 95Z5である。また 、 (AA) / ( (B)および (C)以外の配合剤)の比の下限値は、特に制限はな 、が 60 Z40力 S好ましく、 70Z30がより好ましぐ 85Z15が特に好ましい。具体的な数値範 囲を例示すると、 100Z0〜60Z40、好ましくは 99Zl〜70Z30、より好ましくは 97 Ζ3〜80Ζ20、さらに好ましくは 95Ζ5〜85Ζ15である。
[0070] このような本発明の潤滑油組成物において、共重合体 (Β)の量が 0. 1重量%以上 であると、粘度向上の効果が得られ、また、共重合体 (B)が組成分布を有する場合に は、流動点降下剤 (C)の効果を阻害する成分を含むことがある場合もあるが、共重 合体 (B)の配合量が 5重量%以下であると、流動点性降下剤 (C)の効果を阻害する ことがないため好ましぐ共重合体 (B)の量が上述の範囲にある場合には、粘度向上 効果に優れ、かつ低温での流動性が良好な潤滑油組成物を得ることができる。
[0071] このような潤滑油組成物は、粘度の温度依存性が小さぐかつ共重合体 (B)と流動 点降下剤 (C)との相互作用による流動点の上昇が少なぐあらゆるせん断速度領域 で低温特性に優れており、低温での取扱い性も優れており、良好な潤滑性能を示す また、本発明に係る潤滑油組成物は、潤滑油基剤 (AA)、共重合体 (B)および流 動点降下剤(C)以外に、メタクリル酸アルキルの(共)重合体、水添 SBR、 SEBSなど の粘度指数向上効果を有する配合剤、清浄剤、鲭止め添加剤、分散剤、極圧剤、消 泡剤、酸化防止剤、金属不活性化剤などの配合剤を配合してもよい。
[0072] 本発明に係る潤滑油組成物は、従来公知の方法で、潤滑油基剤 (AA)に共重合 体 (B)および流動点降下剤 (C)、さらに必要に応じてその他の配合剤を混合または 溶解すること〖こより調製することができる。
[実施例]
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実 施例に限定されるものではない。
[0073] なお本実施例にぉ 、て各種物性は以下のようにして測定した。
《共重合体の組成》
日本電子 (株)製の LA500型核磁気共鳴装置を用い、オルトジクロルベンゼンとべ ンゼン d6との混合溶媒(オルトジクロルベンゼン Zベンゼン d6 = 3Z 1〜4Z 1 ( 体積比))中、 120°C、パルス幅 45° パルス、パルス繰返し時間 5. 5秒にて測定した
[0074] 《MwZMn》
GPC (ゲルパーミネーシヨンクロマトグラフィー)を用い、オルトジクロルベンゼン溶 媒で、 140°Cにて測定した。 極限粘度》
135°C、デカリン中にて測定した。
[0075] 《融解熱》
示差走査型熱量計 (DSC)を用い、吸熱曲線のピーク面積を融解熱とした。すなわ ち、試料をアルミパンに詰め、 10°CZ分で 200°Cまで昇温し、 200°Cで 5分間保持し た後、 20°CZ分で 150°Cまで降温し、次いで 10°CZ分で昇温する際の 2ndラン の吸熱曲線より求めた。
[0076] 《100°Cでの粘度 (K.V.)》
ASTM D 445に基づいて測定を行った。なお、本実施例では K.V. (動粘度)が 10mm2Z秒程度となるように調整した。
《Cold Cranking Simulator (CCS)粘度》
ASTM D 2602に基づいて測定を行った。 CCS粘度は、クランク軸における低 温での摺動性 (始動性)の評価に用いられ、値が小さい程、潤滑油の低温特性がよ いことを示す。
[0077] 《Mini- Rotary Viscometer (MR)粘度》
ASTM D 4684に基づいて測定を行った。 MR粘度は、オイルポンプが低温で ボンビングを行うための評価に用いられ、値が小さい程、潤滑油の低温特性がよいこ とを示す。
[重合例 1]
[ォレフイン系共重合体の合成]
充分窒素置換した容量 1リットルの攪拌翼付加圧連続重合反応容器に、脱水精製 したデカン 1リットルを装入した。デカンを 600ml/hの量で連続的に供給し、全圧が 3. 8MPaとなるように加圧した。次いでトリイソブチルアルミニウムのデカン溶液 (0. 2 mmol/1)を 300mlZhの量で連続的に供給し、次!、でトリフエ-ルカルベ-ゥム(テ トラキスペンタフルォロフエ-ル)ボレートのデカン溶液(0. 006mmol/l)を 200ml Zhの量で連続的に供給した。さらに、触媒として 0. 0015mmolZlに調製した [ジメ チル(t—ブチルアミド)(テトラメチルー 7? 5—シクロペンタジェ -ル)シラン]チタンジク 口リドのデカン溶液を lOOmlZhの量で気相部が存在しな ヽように連続的に供給した 。一方、重合器上部から、重合液器内の重合液が常に 1リットルとなるように重合液を 連続的に抜き出した。次に、重合器内にエチレンを 27NlZhの量で、プロピレンを 0 . 4lZhの量で、オタテンを 0. 42lZhの量で、水素を 0. 3NlZhの量で連続的に供 給した。共重合反応は、重合器外部に取り付けられたジャケットに冷媒およびスチー ムを循環させることにより 80°Cで行った。
[0078] 上記条件で共重合反応を行うと、エチレン'プロピレン'オタテン共重合体を含む重 合溶液が得られた。得られた重合溶液は、大量のメタノールに投入して、エチレン' プロピレン'オタテン共重合体を析出させた後、 130°Cで 24時間減圧乾燥を行った。 得られたポリマーの性状を表 2に示す。
[重合例 2]
プロピレンの流量を 0. 23lZhに変え、オタテンの流量を 0. 78lZhに変え、水素の 流量を 1. ONlZhに変えたこと以外は重合例 1と同様にして共重合反応を行った。得 られたポリマーの性状を表 2に示す。
[0079] [重合例 3]
プロピレンの流量を 0. 35lZhに変え、オタテンに代えて 1ーブテンを 0. 4lZhの流 量で供給したこと以外は重合例 1と同様にして共重合反応を行った。得られたポリマ 一の性状を表 2に示す。
[重合例 4]
プロピレンの流量を 0. 38lZhに変え、オタテンに代えて 1一へキセンを 0. 41/hの 流量で供給したこと以外は重合例 1と同様にして共重合反応を行った。得られたポリ マーの性状を表 2に示す。
[0080] [重合例 5]
充分窒素置換した容量 2リットルの攪拌翼付ステンレススチール製オートクレープに 、 23°Cでヘプタン 900mlを装入した。このオートクレーブに、攪拌翼を回転し、かつ 氷冷しながらプロピレン 50N1を装入した。次にオートクレーブを 60°Cまで加熱し、さ らに、全圧が 0. 8MPaとなるようにエチレンで加圧した。オートクレーブの内圧が 0. 8 MPaになったところで、トリイソブチルアルミニウムの 1. Ommol/mlへキサン溶液 1 . Omlを窒素で圧入した。続いて、予め調製しておいた、メチルアルミノキサンを A1換 算で 0. 2mmol、ビス(1,3 ジメチルシクロペンタジェ -ル)ジルコニウムジクロリドを 0. 002mmolの量で含むトルエン溶液 3mlを、窒素でオートクレーブに圧入し重合を 開始した。その後、 60分間、オートクレープを内温が 60°Cになるように温度調整し、 かつ圧力が 0. 8MPaとなるように直接的にエチレンの供給を行った。重合開始 60分 後、オートクレーブにポンプでメタノール 5mlを装入し重合を停止し、オートクレーブ を大気圧まで脱圧した。
[0081] 得られた重合溶液は、大量のメタノールに投入して、エチレン 'プロピレン共重合体 を析出させた後、 130°Cで 24時間減圧乾燥を行った。得られたポリマーの性状を表 2に示す。
[0082] [表 2]
表 2
Figure imgf000025_0001
[重合例 6]
[ォレフイン系共重合体の合成]
充分窒素置換した容量 1リットルの攪拌翼付加圧連続重合反応容器に、脱水精製 したデカン 1リットルを挿入した。デカンを 600mlZhの量で連続的に供給し、全圧が 3. 8MPaとなるように加圧した。次いでトリイソブチルアルミニウム(TIBA)のデカン 溶液(0. 2mmolZDを 300mlZhの量で連続的に供給し、次いでトリフエ-ルカル ベニゥム (テトラキスペンタフルォロフエ-ル)ボレートのデカン溶液(0. 006mmol/l )を 200mlZhの量で連続的に供給した。さらに、触媒として 0. 0015mmolZlに調 製した [ジメチル (t ブチルアミド)(テトラメチルー 5 シクロペンタジェ -ル)シラン ]チタンジクロリドのデカン溶液を lOOmlZhの量で気相部が存在しないように連続的 に供給した。一方、重合器上部から、重合器内の重合液が常に 1リットルとなるように 重合液を連続的に抜き出した。次に、重合器内にエチレンを 27NlZhの量で、プロ ピレンを 0. 6lZhの量で、オタテンを 0. 42lZhの量で、水素を 0. 3NlZhの量で連 続的に供給した。共重合反応は、重合器外部に取り付けられたジャケットに冷媒およ びスチームを循環させることにより 80°Cで行った。
[0084] 上記条件で行うと、エチレン'プロピレン ·オタテン共重合体を含む重合溶液が得ら れた。得られた重合溶液は、大量のメタノールに投入して、エチレン 'プロピレン'オタ テン共重合体を析出させた後、 130°Cで 24時間減圧乾燥を行った。得られたポリマ 一の性状を表 3に示す。
[重合例 7]
プロピレンの流量を 0. 21lZhに変えたこと以外は、重合例 1と同様にして共重合 反応を行った。得られたポリマーの性状を表 3に示す。
[0085] [表 3] 表 3
Figure imgf000026_0001
[0086] [実施例 1]
潤滑油基剤として、表 1のグループ (ii)に分類される 100°C動粘度が 4. 60mmV sの鉱物油 120-ユートラル (商品名、 Esso社製)を 87. 18重量%、粘度指数向上剤 として重合例 1で得られたポリマーを 0. 82重量%、流動点降下剤としてァクルーブ 1 46 (商品名、三洋化成社製)を 0. 6重量%、清浄分散剤として LZ20003C (商品名 、ルブリゾール社製)を 11. 4重量%用いて、潤滑油組成物の性能評価を行った。結 果を表 4に示す。
[0087] [実施例 2〜4、比較例 1]
粘度指数向上剤として重合例 2〜5で得られたポリマーを表 4に示した割合で使用 したこと以外は、実施例 1と同様にして潤滑油組成物の性能評価を行った。結果を表
4に示す。
[0088] [表 4]
表 4
Figure imgf000027_0001
[0089] 表 4から明らかなように、潤滑油用粘度調整剤として特定のエチレンとプロピレンと 炭素数 4〜20の高級 α—ォレフインとの共重合体を使用した組成物は、エチレンと プロピレンとの共重合体を潤滑油用粘度調整剤として使用した組成物と比較して、 C CS粘度、 MR粘度と ヽつた低温特性にぉ ヽて良好な結果が得られて ヽる。
潤滑油組成物においては、 CCS粘度、 MR粘度といった低温特性をできる限りよく することが望まれており、例えば潤滑油用基油の精製度を上げることで、 CCS粘度を 例えば測定値で 10程度、 MR粘度を例えば測定値で 100程度低くする(低温特性を よくする)ことも可能である力 このためにはコストがかかる。
[0090] これに対して、本発明によれば、このような CCS粘度、 MR粘度の向上をコストのか 力る手法を用いずに達成することが可能であり、非常に意味がある。
[比較例 2〜3]
粘度指数向上剤として重合例 6〜7で得られたポリマーを表 5に示した割合で使用 したこと以外は、実施例 1と同様にして潤滑油組成物の性能評価を行った。結果を表 5に示す。
[0091] [表 5] 表 5
比麵 2 i麵 3 配合した重合ポリマー 重 6
配合
潤 m¾MJ 87. 12 87. 31
11. 4 11. 4 灘点降 J 0. 6 0. 6 重合ポリマー 0. 88 0. 69 潤 miws^
難度 @100 (mm s) 10. 94 10. 89
CCS職(mPa · s)@-30°C 6410 5654
MR¾¾ (mPa - s) @— 35 29931 48869

Claims

請求の範囲 [1] (i) エチレン由来の構成単位と、 (ii)炭素数 3〜19の aーォレフイン由来の構成単位と、 (iii)炭素数 4〜20の高級 α—ォレフィン由来の構成単位であって、前記炭素数 3〜 19の α—ォレフィン由来の構成単位より炭素数が 1以上大きい高級 α—ォレフィン 由来の構成単位と を含有し、下記(1)〜(2)の特性を有するエチレン' a一才レフイン共重合体 (B)から なることを特徴とする潤滑油用粘度調整剤;
(1)前記エチレン由来の構成単位 (i)を 25〜49モル0 /0、前記炭素数 3〜19の a ォレフィン由来の構成単位 (ii)を 15〜55モル0 /0、前記炭素数 4〜20の高級 α ォ レフイン由来の構成単位 (iii)を 9〜40モル0 /0 (構成単位 (i)、 (ii)および (iii)の合計 で 100モル%)の割合で含有する、
(2)デカリン中 135°Cで測定した極限粘度(〔7?〕)が 0. 5〜5. OdlZgの範囲にある。
[2] 前記エチレン' a—ォレフイン共重合体 (B)が、下記特性 (3)を有することを特徴と する請求項 1に記載の潤滑油用粘度調整剤;
(3) MwZMn (Mw:重量平均分子量、 Mn :数平均分子量)が 2. 4以下である。
[3] 前記エチレン' a—ォレフイン共重合体 (B)が、下記特性 (4)を有することを特徴と する請求項 1または 2に記載の潤滑油用粘度調整剤;
(4) DSCで測定した融解熱 ( Δ H)が 5. OjZg以下である。
[4] 前記エチレン' a—ォレフイン共重合体 (B)が、下記特性 (5)を有することを特徴と する請求項 1〜3のいずれか 1項に記載の潤滑油用粘度調整剤;
(5) 13C— NMRで測定した S a aに対する S α βの強度比 D (S a j8 /S a α )が 0. 5以下である。
[5] (Α)油と、
(Β)請求項 1〜4のいずれ力 1項に記載のエチレン' exーォレフイン共重合体と を含み、かつ前記エチレン' aーォレフイン共重合体 (B)を 1〜30重量0 /0の割合で 含有することを特徴とする潤滑油用添加剤組成物(ただし、 (A)との合計重量を 100 重量%とする。)。 [6] (AA)潤滑油基剤と、
(B)請求項 1〜4のいずれ力 1項に記載のエチレン. α—ォレフイン共重合体と、
(C)流動点降下剤と
を含み、かつ前記エチレン'ーォレフイン共重合体 (Β)を 0. 1〜5重量0 /0、(C)流動 点降下剤を 0. 05〜5重量%の割合で含有することを特徴とする潤滑油組成物(ただ し、該潤滑油組成物の重量を 100重量%とする。 )。
PCT/JP2005/016512 2004-09-10 2005-09-08 潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物 WO2006028169A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006535813A JPWO2006028169A1 (ja) 2004-09-10 2005-09-08 潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物
EP05782285A EP1795580B1 (en) 2004-09-10 2005-09-08 Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil compositions
CA2579879A CA2579879C (en) 2004-09-10 2005-09-08 Ethylene/.alpha.- olefin copolymer for use as viscosity modifier
US11/662,139 US7820607B2 (en) 2004-09-10 2005-09-08 Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-263953 2004-09-10
JP2004263953 2004-09-10

Publications (1)

Publication Number Publication Date
WO2006028169A1 true WO2006028169A1 (ja) 2006-03-16

Family

ID=36036450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016512 WO2006028169A1 (ja) 2004-09-10 2005-09-08 潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物

Country Status (5)

Country Link
US (1) US7820607B2 (ja)
EP (1) EP1795580B1 (ja)
JP (1) JPWO2006028169A1 (ja)
CA (1) CA2579879C (ja)
WO (1) WO2006028169A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248110A (ja) * 2007-03-30 2008-10-16 Mitsui Chemicals Inc 潤滑油組成物、ミスト発生抑制剤
WO2011038331A1 (en) 2009-09-28 2011-03-31 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
JP2013544948A (ja) * 2010-12-10 2013-12-19 ザ ルブリゾル コーポレイション 粘度指数向上剤を含む潤滑剤組成物
WO2015148889A1 (en) 2014-03-28 2015-10-01 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283419B2 (en) 2008-06-20 2012-10-09 Exxonmobil Chemical Patents Inc. Olefin functionalization by metathesis reaction
US8802797B2 (en) 2008-06-20 2014-08-12 Exxonmobil Chemical Patents Inc. Vinyl-terminated macromonomer oligomerization
US8372930B2 (en) 2008-06-20 2013-02-12 Exxonmobil Chemical Patents Inc. High vinyl terminated propylene based oligomers
US8399725B2 (en) 2008-06-20 2013-03-19 Exxonmobil Chemical Patents Inc. Functionalized high vinyl terminated propylene based oligomers
US8283428B2 (en) 2008-06-20 2012-10-09 Exxonmobil Chemical Patents Inc. Polymacromonomer and process for production thereof
US8415284B2 (en) 2009-11-05 2013-04-09 Afton Chemical Corporation Olefin copolymer VI improvers and lubricant compositions and uses thereof
US8835563B2 (en) 2011-03-25 2014-09-16 Exxonmobil Chemical Patents Inc. Block copolymers from silylated vinyl terminated macromers
US8841397B2 (en) 2011-03-25 2014-09-23 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin polymers and methods to produce thereof
US8940839B2 (en) 2011-03-25 2015-01-27 Exxonmobil Chemical Patents Inc. Diblock copolymers prepared by cross metathesis
JP5826913B2 (ja) * 2011-03-25 2015-12-02 エクソンモービル ケミカル パテンツ インコーポレイテッド ビニル末端高級オレフィンポリマー及びその製造方法
US8785562B2 (en) 2011-03-25 2014-07-22 Exxonmobil Chemical Patents Inc. Amphiphilic block polymers prepared by alkene metathesis
US8623974B2 (en) 2011-03-25 2014-01-07 Exxonmobil Chemical Patents Inc. Branched vinyl terminated polymers and methods for production thereof
US8669326B2 (en) 2011-03-25 2014-03-11 Exxonmobil Chemical Patents Inc. Amine functionalized polyolefin and methods for preparation thereof
US8669330B2 (en) 2011-03-25 2014-03-11 Exxonmobil Chemical Patents Inc. Olefin triblock polymers via ring-opening metathesis polymerization
US8455597B2 (en) 2011-03-25 2013-06-04 Exxonmobil Chemical Patents Inc. Catalysts and methods of use thereof to produce vinyl terminated polymers
US8399724B2 (en) * 2011-03-25 2013-03-19 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin copolymers and methods to produce thereof
US8426659B2 (en) 2011-03-25 2013-04-23 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin polymers and methods to produce thereof
US8501894B2 (en) 2011-03-25 2013-08-06 Exxonmobil Chemical Patents Inc. Hydrosilyation of vinyl macromers with metallocenes
US8604148B2 (en) 2011-11-29 2013-12-10 Exxonmobil Chemical Patents Inc. Functionalization of vinyl terminated polymers by ring opening cross metathesis
EP2607463A1 (en) * 2011-12-21 2013-06-26 Infineum International Limited Marine Engine Lubrication
US8796376B2 (en) 2012-03-26 2014-08-05 Exxonmobil Chemical Patents Inc. Functionalized polymers and oligomers
JP6339936B2 (ja) * 2012-04-12 2018-06-06 三井化学株式会社 潤滑油組成物
WO2018124070A1 (ja) 2016-12-27 2018-07-05 三井化学株式会社 潤滑油組成物、潤滑油用粘度調整剤、および潤滑油用添加剤組成物
JP7223862B2 (ja) 2019-08-29 2023-02-16 三井化学株式会社 潤滑油組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316147A (ja) 1996-06-03 1997-12-09 Sumitomo Chem Co Ltd プロピレン/エチレン−α−オレフィン系ブロック共重合体及びその製造方法
WO2001085880A1 (fr) * 2000-05-10 2001-11-15 Mitsui Chemicals, Inc. Modificateur de viscosite pour huile lubrifiante et composition d'huile lubrifiante
EP1300045A2 (en) 2000-06-30 2003-04-09 Motorola, Inc. Radio access traffic management
WO2003038017A1 (fr) * 2001-11-01 2003-05-08 Mitsui Chemicals, Inc. Additif pour huile lubrifiante et composition d'huile lubrifiante
WO2004031250A1 (en) * 2002-10-02 2004-04-15 Dow Global Technologies Inc. Liquid and gel-like low molecular weight ethylene polymers
JP2004315830A (ja) 2004-08-11 2004-11-11 Mitsui Chemicals Inc プロピレン系エラストマー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551336A (en) * 1969-06-30 1970-12-29 Exxon Research Engineering Co Lubricant containing ethylene-alpha-olefin polymer
NL170019C (nl) * 1970-06-02 Exxon Research Engineering Co Werkwijze ter bereiding van een smeeroliemengsel.
DE2966681D1 (en) * 1978-11-14 1984-03-22 Mitsui Petrochemical Ind Lubricating oil composition and process for producing same
US4507515A (en) * 1983-12-21 1985-03-26 Exxon Research & Engineering Co. Lubricating oil compositions containing ethylene-alpha-olefin polymers of controlled sequence distribution and molecular heterogeneity
KR100615474B1 (ko) 1998-12-09 2006-08-25 미쓰이 가가쿠 가부시키가이샤 윤활유용 점도 조정제 및 윤활유 조성물
CN100358988C (zh) 1999-03-30 2008-01-02 三井化学株式会社 用于润滑油和润滑油组合物的粘度改性剂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316147A (ja) 1996-06-03 1997-12-09 Sumitomo Chem Co Ltd プロピレン/エチレン−α−オレフィン系ブロック共重合体及びその製造方法
WO2001085880A1 (fr) * 2000-05-10 2001-11-15 Mitsui Chemicals, Inc. Modificateur de viscosite pour huile lubrifiante et composition d'huile lubrifiante
EP1300458A1 (en) 2000-05-10 2003-04-09 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oil and lubricating oil composition
EP1300045A2 (en) 2000-06-30 2003-04-09 Motorola, Inc. Radio access traffic management
WO2003038017A1 (fr) * 2001-11-01 2003-05-08 Mitsui Chemicals, Inc. Additif pour huile lubrifiante et composition d'huile lubrifiante
EP1441023A1 (en) 2001-11-01 2004-07-28 Mitsui Chemicals, Inc. Additive for lubricating oil and lubricating oil composition
WO2004031250A1 (en) * 2002-10-02 2004-04-15 Dow Global Technologies Inc. Liquid and gel-like low molecular weight ethylene polymers
JP2004315830A (ja) 2004-08-11 2004-11-11 Mitsui Chemicals Inc プロピレン系エラストマー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795580A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248110A (ja) * 2007-03-30 2008-10-16 Mitsui Chemicals Inc 潤滑油組成物、ミスト発生抑制剤
WO2011038331A1 (en) 2009-09-28 2011-03-31 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
JP2013544948A (ja) * 2010-12-10 2013-12-19 ザ ルブリゾル コーポレイション 粘度指数向上剤を含む潤滑剤組成物
WO2015148889A1 (en) 2014-03-28 2015-10-01 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
US10077412B2 (en) 2014-03-28 2018-09-18 Mitsui Chemicals, Inc. Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil composition
JP2019157140A (ja) * 2014-03-28 2019-09-19 三井化学株式会社 潤滑油用粘度調整剤、潤滑油用添加剤組成物、および潤滑油組成物

Also Published As

Publication number Publication date
CA2579879A1 (en) 2006-03-16
EP1795580A1 (en) 2007-06-13
US7820607B2 (en) 2010-10-26
JPWO2006028169A1 (ja) 2008-05-08
EP1795580A4 (en) 2010-06-02
US20070249508A1 (en) 2007-10-25
EP1795580B1 (en) 2013-02-13
CA2579879C (en) 2011-04-12

Similar Documents

Publication Publication Date Title
WO2006028169A1 (ja) 潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物
JP4558951B2 (ja) 潤滑油用粘度調整剤および潤滑油組成物
JP4427669B2 (ja) 潤滑油用粘度調整剤および潤滑油組成物
JP5498588B2 (ja) コポリマー、その組成物及びそれらの製造方法
JP6386134B2 (ja) 粘度調整剤としてのエチレンベースコポリマー組成物及びその製造方法
JP6740427B2 (ja) 潤滑油用粘度調整剤、潤滑油用添加剤組成物、および潤滑油組成物
KR101530137B1 (ko) 에틸렌계 공중합체의 블렌드를 포함하는 점도 개질제
JP4634300B2 (ja) 潤滑油組成物および内燃機関用潤滑油
JP4359807B2 (ja) 潤滑油用粘度調整剤および潤滑油組成物
JPWO2009101936A1 (ja) 共重合体、その共重合体の製造方法、潤滑油粘度調整剤および潤滑油組成物
US20080125561A1 (en) Copolymer, lubricating oil viscosity modifier, and lubricating oil composition
US10316176B2 (en) Polymer compositions and methods of making them
KR101442434B1 (ko) 에틸렌계 공중합체의 블렌드를 포함하는 점도 개질제
JP4540963B2 (ja) 潤滑油用粘度調整剤および潤滑油組成物
JP4606644B2 (ja) 潤滑油用粘度調整剤および潤滑油組成物
JP2009029983A (ja) 粘度調整剤
JP4749747B2 (ja) 潤滑油用粘度調整剤
JP2012172013A (ja) 潤滑油粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物
JP4694039B2 (ja) 潤滑油用粘度指数向上剤およびこれを含む潤滑油組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006535813

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11662139

Country of ref document: US

Ref document number: 2579879

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005782285

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005782285

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11662139

Country of ref document: US