WO2006027853A1 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
WO2006027853A1
WO2006027853A1 PCT/JP2004/013472 JP2004013472W WO2006027853A1 WO 2006027853 A1 WO2006027853 A1 WO 2006027853A1 JP 2004013472 W JP2004013472 W JP 2004013472W WO 2006027853 A1 WO2006027853 A1 WO 2006027853A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection valve
air
injection
sub
Prior art date
Application number
PCT/JP2004/013472
Other languages
English (en)
French (fr)
Inventor
Takanobu Ichihara
Kozo Katogi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2004/013472 priority Critical patent/WO2006027853A1/ja
Priority to JP2006515491A priority patent/JPWO2006027853A1/ja
Publication of WO2006027853A1 publication Critical patent/WO2006027853A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder

Definitions

  • the present invention relates to an engine control device capable of performing optimal control in accordance with the nature (type) of fuel used.
  • the amount of fuel injected by an injection valve provided in an intake port is set so that the air-fuel ratio of the air-fuel mixture sucked into a cylinder (combustion chamber) becomes a predetermined target air-fuel ratio suitable for combustion. Control is performed.
  • the temperature of the wall of the intake passage is low, so the fuel adhering to the wall of the intake valve or intake port is less likely to evaporate. For this reason, in the cold state, the fuel sucked into the combustion chamber decreases with respect to the fuel injection amount. At this time, the fuel injection amount is normally corrected to increase so that combustion does not deteriorate.
  • the evaporation rate of the fuel adhering to the intake valve or intake port varies depending on the properties of the fuel used at that time even if the wall surface temperature is the same.
  • the fuel properties are estimated (determined) from the behavior of the engine, and the estimated (determined) fuel properties are obtained. In response to this, it is known to control the fuel injection amount at the start of the cold machine and after the start.
  • the fuel evaporation rate is 1 when the wall temperature rises. Since the difference in evaporation rate between heavy gasoline and light gasoline is less likely to appear, the fuel properties are judged when the engine is in a cold state where the difference in evaporation rate between heavy gasoline and light gasoline is likely to appear. I am doing so.
  • the fuel property is based on the responsiveness of the air-fuel ratio to the change in the fuel injection amount at the time of acceleration after the start. It is proposed to judge.
  • the air-fuel ratio sensor needs to be activated. After the start (after the cranking is started), until the air-fuel ratio sensor is activated (the air-fuel ratio is accurately determined). It takes about 10 seconds to reach the temperature level at which it can be detected).
  • the temperature of the intake valve to which the injected fuel from the injection valve provided in the intake port adheres and the surrounding temperature are Since the temperature rises rapidly (in about 5 seconds), when the air-fuel ratio sensor becomes active and the fuel property can be judged, the temperature of the intake valve and intake port has already increased. Since fuel vaporization is promoted even with high quality gasoline, the difference in evaporation rate from light gasoline is less likely to appear, so the fuel properties could not be determined accurately.
  • the present invention has been made to solve the conventional problems as described above.
  • the purpose of the present invention is to determine the fuel injection amount at the start and after the start according to the properties of the fuel used. It is an object of the present invention to provide an engine control device that can optimally perform control and thus improve exhaust emission characteristics and fuel consumption.
  • an engine control device basically includes a main injection valve configured to inject fuel into an intake port or a combustion chamber in an intake passage, and fuel to the intake passage.
  • a sub-injection valve configured to inject into a portion upstream of the intake port or a bypass passage that bypasses the main injection valve, an air-fuel ratio detection means provided in an exhaust passage, the main injection valve and the sub-injection And control means for controlling the fuel injection amount by the injection valve.
  • the control means temporarily executes the fuel injection by the sub-injection valve during the fuel injection by the main injection valve, and the air-fuel ratio detection means at that time detects the air-fuel ratio detected by the air-fuel ratio detection means. It is characterized by comprising a fuel property judging means for judging the property of the fuel used based on the response of the fuel ratio.
  • control means preferably changes control parameters such as the fuel injection amount and the ignition timing in accordance with the fuel property determined by the fuel property determination means.
  • a main injection valve configured to inject fuel into an intake port or a combustion chamber in the intake passage, and bypasses the fuel upstream of the intake port in the intake passage or the main injection valve.
  • a sub-injection valve configured to inject into the bypass passage; an air-fuel ratio detection means provided in the exhaust passage; and a control means for controlling the fuel injection amount by the main injection valve and the sub-injection valve.
  • the control means temporarily executes fuel injection by the sub-injection valve during fuel injection by the main injection valve, and by the air-fuel ratio detection means at that time Based on the detected responsiveness of the air-fuel ratio, the fuel injection amount by the main injection valve at the start or after the start, the ignition timing after the start, and the fuel injection amount by the main injection valve at the time of acceleration are small Both are made to change one.
  • the auxiliary injection valve has, in addition to the fuel injection port, a fuel introduction port into which fuel from a fuel tank is introduced, and a fuel outlet port for deriving fuel to the main injection valve. Then, the fuel is introduced into the main injection valve from the fuel outlet of the sub injection valve through the fuel piping.
  • the inner wall portion to which the fuel injected from the auxiliary injection valve in the intake passage or the bypass passage adheres is provided with unevenness.
  • a plate-like member is disposed on the inner wall portion of the intake passage or bypass passage located in the fuel injection direction of the sub-injection valve with a predetermined gap inward from the inner wall portion, Fuel injected from the sub-injection valve adheres to the surface of the plate-like member.
  • a heat insulating member is sandwiched between the inner wall portion and the plate member.
  • a shielding member for suppressing the flow rate of the intake air is arranged upstream of a portion of the intake passage or bypass passage where the fuel injected from the sub-injection valve adheres.
  • a wall surface portion to which fuel injected from the sub-injection valve in the intake passage or bypass passage adheres is recessed from the upstream wall surface.
  • the particle size of the fuel injected from the sub-injection valve is larger than the particle size of the fuel injected from the main injection valve.
  • the sub-injection valve is downstream of the throttle valve in the intake passage, substantially parallel to the support shaft of the valve body of the throttle valve, and includes a plane including the central axis of the intake passage and the intake passage Fuel is injected toward the vicinity of the line of intersection with the wall.
  • the sub-injection valve is configured to inject fuel toward a valve body of the throttle valve.
  • control means reduces the fuel injection amount by the main injection valve when performing fuel injection by the sub injection valve or immediately before starting fuel injection by the sub injection valve.
  • the control means preferably has an air-fuel ratio detected by the air-fuel ratio detection means. Based on this, feedback control of the fuel injection amount by the main injection valve is performed so that the actual air-fuel ratio becomes the target air-fuel ratio.
  • control means performs the preliminary fuel injection by the sub-injection valve, then again injects fuel by the sub-injection valve, and the response of the air-fuel ratio detected by the air-fuel ratio detection means at that time Based on the characteristics, at least one of the fuel injection amount by the main injection valve at the start or after the start, the ignition timing after the start, and the fuel injection amount by the main injection valve at the time of acceleration is changed. To be.
  • a sub-injection valve is provided in the upstream side portion of the intake passage where the temperature is low and the air flow velocity is low, and additional injection is performed by this sub-injection valve. Since the fuel property is determined based on the change in air-fuel ratio (responsiveness) at the time, the fuel property of the engine can be accurately determined.
  • the fuel injection amount at the start and after the start can be set to an optimum injection amount according to the fuel properties, and as a result, the exhaust emission characteristics and the fuel consumption can be improved.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a control device according to the present invention together with an engine to which the control device is applied.
  • FIG. 2 is a schematic configuration diagram showing another embodiment of the control device according to the present invention together with the engine to which it is applied.
  • Figure 3 is a time chart used to explain an example of the fuel property determination method.
  • Fig. 4 is a time chart used for comparison with the conventional fuel property determination method.
  • Figure 5 is a time chart used to explain another example of the fuel property determination method.
  • Fig. 6 is a time chart used to explain another example of the fuel property determination method.
  • Figure 7 is a graph showing the relationship between wall temperature and evaporation rate.
  • Figure 8 is a graph showing the relationship between air flow rate and evaporation rate.
  • Fig. 9 is a time chart used to explain the correction of the injection amount at start-up.
  • FIG. 10 is a diagram used for explaining the injection amount at the start with respect to the change in the air-fuel ratio.
  • Fig. 1 1 is a block diagram of the control unit.
  • Figure 12 shows an example of a fuel property determination routine executed by the control unit.
  • the flow chart The flow chart.
  • Fig. 13 is a flowchart showing an example of the start-up injection amount correction routine executed by the control unit.
  • Fig. 14 is a diagram showing an example in which the wall portion to which fuel sprayed from the sub-injection valve adheres is recessed from the upstream portion.
  • FIG. 15 is a diagram used for explaining an arrangement example of the auxiliary injection valve.
  • Figure 16 is a graph showing the relationship between the particle size of the injected fuel and the evaporation rate.
  • Fig. 17 is a time chart used to explain another example of the fuel property determination method.
  • FIG. 18 is a diagram for explaining another arrangement example of the auxiliary injection valve.
  • Fig. 19 is a cross-sectional view of the intake passage as seen from the direction A in Fig. 18.
  • FIG. 20 is a diagram for explaining an example of a method for improving the accuracy of fuel property determination.
  • Fig. 21 is a diagram used to explain another example of a method for improving the accuracy of fuel property determination.
  • Fig. 22 is a diagram used to explain another example of a method for improving the accuracy of fuel property determination.
  • Figure 23 is a diagram used to explain yet another example of a method for improving the accuracy of fuel property determination.
  • FIG. 24 is a diagram for explaining another arrangement example of the auxiliary injection valve.
  • Figure 25 shows an example of the spray shape of the sub-injection valve
  • Fig. 26 is a diagram used to explain the correction of the judgment level based on the wall surface temperature.
  • Fig. 27 is a diagram showing a configuration example of the auxiliary injection valve
  • Fig. 28 is a time chart used to explain another example of the fuel property determination method.
  • Fig. 29 is a diagram showing a configuration example of a refueling hatch switch.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an engine control apparatus according to the present invention.
  • an in-vehicle multi-cylinder (for example, V type 6 cylinder) engine 1 has, for example, six cylinders (# 1 to # 6) provided in a cylinder 1 A, and a piston 18 slides in each cylinder.
  • a combustion chamber 1 a that is freely fitted and is opened and closed by an intake valve 16 and an exhaust valve 9 is defined above the piston 18.
  • a spark plug 24 is provided in the combustion chamber la.
  • the intake valve 1 6 When the intake valve 1 6 opens by the downward movement of the piston 1 8 during the intake stroke, the external air is air cleaner 1 2, surge tank 1 3, intake hold (branch intake passage) 1 4, and intake air It is sucked into the combustion chamber through an intake passage 11 composed of ports 15 and the like.
  • a throttle valve 17 is provided in the upstream portion of the intake passage 11, and a main injection valve 20 that injects fuel toward the intake valve 16 and the intake port 15 in the downstream portion. Is provided.
  • a sub-injection valve 30 is provided between the throttle valve 21 and the surge tank 13 on the upstream side of the main injection valve 20 in the intake passage 11.
  • a mixture of intake air and fuel injected from the main injection valve 20 (and sub injection valve 30) is sucked into the combustion chamber 1a via the intake valve 16 and ignited by the spark plug 24.
  • the combustion exhaust gas (exhaust gas) is exhausted from the exhaust valve 9 through an exhaust passage 21 provided with an exhaust purification catalyst (not shown).
  • An air flow sensor 61 and an intake air temperature sensor 62 are provided upstream of the throttle valve 17 in the intake passage 20, and the cylinder 1 A detects the coolant temperature corresponding to the engine temperature.
  • a water temperature sensor 26 is provided, and an air-fuel ratio sensor 25 is provided in the exhaust passage 21.
  • the sub injection valve 30 is pressurized by the fuel pump 31 from the fuel tank 31 and adjusted to a predetermined pressure by the fuel pressure regulator.
  • the fuel inlet 3 7 introduced through the filter 3 4 (see FIG. 27) and the fuel outlet 3 8 for guiding the fuel to the main injection valve 20 (see FIG. 27)
  • the fuel is introduced into the main injection valve 20 from the fuel outlet of the sub injection valve 30 via the fuel pipe 32.
  • the control device 10 of the present embodiment is provided with a control unit 100 having a built-in microcomputer in order to perform various controls of the engine 11.
  • the control unit 10 0 has a known configuration. As shown in FIG. 11, the input circuit 5 1, A / D converter 5 2, CPU 5 3, read memory 5 4, write read memory 5 5, Output circuit 5 6 etc.
  • the control unit 100 is supplied with detection signals obtained from the air flow sensor 61, the intake air temperature sensor 62, the water temperature sensor 26, the air-fuel ratio sensor 25, etc.
  • the control unit 100 controls the fuel injection amount and the ignition timing by the main injection valve 20 and the sub injection valve 30 based on these signals.
  • the controller unit 100 0 temporarily performs fuel injection (additional injection) by the sub-injection valve 30 when performing fuel injection by the main injection valve 20. Based on the air-fuel ratio response detected by the air-fuel ratio sensor 25 at that time, the property of the fuel used is estimated (determined). In other words, the fuel property is determined based on the evaporation rate of the fuel injected by the sub injection valve 30.
  • the auxiliary injection valve 30 having a structure having a fuel inlet and a fuel outlet is used, and the auxiliary injection valve 30 supplies fuel to the main injection valve 20. It is arranged in the middle of the fuel pipe to be supplied.
  • Fuel injection port 3 A bottom-feed type injection valve that introduces fuel from the fuel introduction port 3 7 and discharges surplus fuel from the fuel outlet port 3 8. Residual fuel (fuel before refueling) is injected after refueling Since it is difficult to remain in the valve, it is possible to ensure the accuracy of fuel property determination.
  • a fuel level sensor that detects the fuel level (amount) in the fuel tank 3 1 is provided, and it is judged whether or not refueling has been performed based on the signal obtained from them. May be performed.
  • the fuel injected from the sub-injection valve 30 adheres to the wall surface of the intake passage 11, but the wall surface temperature of the upstream portion of the intake passage 11 is determined by the intake valve 16 and the intake air.
  • the fuel evaporation rate from the wall depends greatly on the wall temperature.
  • the upstream part is cooled by the intake air, and the heat transfer from the cylinder is small, so if the amount of intake air exceeds a certain level, the wall surface temperature almost matches the temperature of the intake air, and the temperature fluctuation is small. Therefore, by detecting the difference in evaporation rate from the wall surface of the upstream portion of the intake passage 11 with the air / fuel ratio change (responsiveness), the air / fuel ratio response when the injection amount of the conventional main injection valve 20 changes is detected. Compared with the case where it is judged in (1), it is less affected by disturbances such as load changes, and the accuracy of judgment of fuel properties can be improved.
  • the intake wall temperature sensor 62 can accurately detect the wall surface temperature of the portion where the injected fuel from the sub-injection valve 30 adheres. Therefore, the accuracy of fuel property determination is improved by correcting the determination threshold when determining the fuel property based on the evaporation rate (air-fuel ratio response) using the temperature detected by the intake air temperature sensor 62. be able to.
  • the intake passage to which the injected fuel from the sub-injection valve 30 adheres is located away from the combustion chamber 1a, and the surge tank 13 has a large capacity so that the intake passage 11 has a large capacity.
  • the pressure change in the air also decreases, and the maximum flow velocity is lower than that of the intake port 15 part. Therefore, the difference in the evaporation rate between heavy gasoline and light gasoline is likely to appear due to the relationship between the air flow rate and the evaporation rate described above. Therefore, additional injection with the sub-injection valve makes the fuel property judgment accuracy more accurate. This is an improvement over the case of judging by air-fuel ratio response when the injection amount changes to zero.
  • the wall surface of the upstream side portion of the intake passage 11 1 is suitable for determining the fuel property because the air flow rate is suppressed with respect to the intake port 15 and there is an appropriate air flow rate.
  • the fuel injected from the sub-injection valve 30 evaporates while traveling and is sucked into the combustion chamber 1a and burned, so the fuel remaining in the intake passage 11 is reduced and released into the atmosphere. Almost no fuel is lost.
  • the passage is curved near the intake port 15 and the shaft portion of the intake valve 1 6 is arranged, so that the air flow is uneven, but the upstream of the intake passage 11 In the side portion, the air flow is uniform with respect to the wall surface, so that the fuel evaporation state is more stable than that of the intake port 15, and the fuel property determination accuracy can be improved.
  • the air flow velocity on the wall surface is further reduced to evaporate the fuel.
  • the difference in the evaporation rate between heavy gasoline and light gasoline can be made larger so that the determination accuracy can be further improved.
  • the fuel adhesion area on the wall surface varies, the amount of fuel evaporation will change and the accuracy of fuel property determination will decrease, so it is desirable that the fuel adhesion area on the wall surface be constant, but the conventional main injection valve 20 When determining the fuel properties based on the air-fuel ratio response when fuel is injected into the intake port 15, the air velocity at the intake port 15 is high, the spray is deflected by the air flow, and the fuel adhesion area fluctuates. The accuracy was not sufficiently obtained.
  • the fuel property determination is performed by injecting the fuel into the wall of the upstream portion of the intake passage 11 with the sub injection valve 30
  • the air flow velocity in the upstream portion of the intake passage 11 is Therefore, the fog is hard to be deflected and there is little fluctuation in the area where the fuel adheres, so the fuel property can be determined with high accuracy.
  • the injection amount of the main injection valve 20 varies depending on the operating condition such as the required torque of the engine, but when the injection amount is large-
  • the additional injection amount by the sub-injection valve 30 can be set to an injection amount suitable for the fuel property determination regardless of the operating state, so the accuracy of the fuel property determination can be improved.
  • an injection amount that can detect the difference in the amount of evaporation due to the fuel properties and an injection amount that has a constant adhesion area without being too much injection amount, and further has a minimal effect on exhaust emission characteristics.
  • the injection amount can be set as follows.
  • the fog angle 0 1 may be configured to be larger than the soot angle ⁇ 1 of the main injection valve 20.
  • the spray shape of the sub-injection valve 30 As shown in Fig. 25, even if spray is applied in one direction (one stream) to the wall surface of the intake passage 11, it is in two directions with respect to the wall surface. You may spray by spraying (2 streams). The painted area is the wall The fuel adhering part is shown.
  • the fuel property judgment method is a sub-injection valve for judgment during fuel injection using only the main injection valve 20 during idling with little fluctuation in the operating state during constant speed running. Additional injection is performed for a predetermined time by 30. When the judgment is not made, fuel injection by the secondary injection valve 30 is prohibited. Since light gasoline has a high evaporation rate, the fuel additionally injected by the auxiliary injection valve 30 rapidly evaporates from the wall surface and flows into the combustion chamber 1a, and the detected air-fuel ratio shifts to the rich side. On the other hand, because the evaporation rate of heavy gasoline is low, the fuel additionally injected by the secondary injection valve 30 gradually evaporates and flows into the combustion chamber 1a.
  • the delay in shifting is delayed, and the maximum rich shift is also reduced. Therefore, the rich deviation amount with respect to the air-fuel ratio before the additional injection is obtained after a predetermined delay time after the additional injection of the sub-injection valve 30 is performed by the air-fuel ratio sensor 25, and compared with the determination threshold SL 1 This makes it possible to determine the fuel properties.
  • the sub-injection valve 30 may perform fuel injection for determining fuel properties. It is also possible to perform pre-spraying as shown by the broken line before performing the above and discharge the residual fuel in the auxiliary injection valve 30.
  • the main injection is performed immediately before the additional injection is performed by the auxiliary injection valve 30.
  • the exhaust gas is made to be in an oxygen-excess state so that oxygen is occluded in the catalyst, and the additional injection of the sub-injection valve 30 causes the exhaust gas to run out of oxygen. Even when it becomes, the unburned gas may be purified on the catalyst by the adsorbed oxygen.
  • FIG. 4 compares the change in the air-fuel ratio and the HC concentration of the exhaust gas when the fuel increase for fuel property determination is performed with the sub-injection valve 30 and with the main injection valve 20.
  • the temperature of the intake valve 16 and intake port 15 and the air flow velocity are high, so the adhering fuel immediately evaporates and flows into the combustion chamber 1 a, so the air-fuel ratio is rich.
  • the amount of deviation increases and HC emissions increase.
  • the fuel is increased by the sub-injection valve 30 of the present embodiment, since the wall surface temperature of the upstream portion of the intake passage 11 is low, the fuel gradually evaporates. small Therefore, HC emissions are reduced compared to when fuel is increased with the main injection valve 20.
  • the HC in the exhaust gas by the additional injection at the time of fuel property judgment is different from the conventional fuel injection with the main injection valve 20. Can suppress the increase of CO.
  • the fuel injected from the sub-injection valve 30 (spray) as shown in FIG. ) Is attached to the wall surface portion 68 of the intake passage 11 to be recessed from its upstream portion to reduce the air flow velocity on the wall surface to which the fuel adheres, thereby suppressing fuel evaporation.
  • Judgment accuracy can also be improved by increasing the difference in evaporation rate between heavy and light gasoline.
  • Fig. 4 shows the comparison between the change in air-fuel ratio and the exhaust gas HC concentration (emission amount) when the fuel is increased by the main injection valve 20 and when the fuel is increased by the sub-injection valve 30. If the fuel increase is the same with the main injection valve 20 and the fuel increase is the same, the increased fuel immediately evaporates due to the high temperature of the intake valve 16 and intake port 15 to which the fuel adheres and the high air flow rate. Then, it is sucked into the combustion chamber 1a, the air-fuel ratio suddenly shifts to the rich side, and the maximum latch shift amount also increases. This greatly increases the HC concentration in the exhaust gas.
  • the increased amount of fuel is gradually increased due to the low temperature of the upstream wall of the intake passage 11 where the fuel adheres and the low air flow rate. 1 flows into a, and the maximum rich deviation of the air-fuel ratio is also reduced.
  • an increase in the HC concentration in the exhaust gas can be suppressed as compared with the case where the fuel is increased by the main injection valve 20.
  • the fuel increase by the auxiliary injection valve 30 for determining the fuel property is performed when the feedback control is being performed.
  • the injection amount of the main injection valve 20 is corrected to decrease by the air-fuel ratio feedback control, and the deviation amount of the air-fuel ratio to the rich side is reduced. Since it decreases, the increase in HC and CO concentration in the exhaust gas due to judgment can be suppressed.
  • the determination of the fuel property at this time is performed based on the feed pack correction amount of the air-fuel ratio, not the air-fuel ratio.
  • the fuel increase is immediately evaporated and flows into the combustion chamber 1a, so that the amount of change ⁇ ⁇ in the air-fuel ratio feedback correction amount (coefficient) increases.
  • the amount of fuel increase gradually evaporates and flows into the combustion chamber 1a, so the change ⁇ air in the air-fuel ratio feedback coefficient becomes smaller. Therefore, the fuel property can be determined by comparing the ⁇ threshold value S L 2.
  • the amount of injection by the main injection valve 20 is reduced, so that the air-fuel ratio shift due to the increase in fuel property determination is suppressed, and the HC, CO in the exhaust gas Can be suppressed.
  • the additional injection amount by the sub-injection valve 3 ⁇ can be finely controlled by the control unit 100, so that the fuel property judgment accuracy can be ensured, and in the exhaust gas by the additional injection (fuel increase)
  • the injection amount can be set so as to minimize the increase in unburned gas (HC).
  • the wall surface to which the spray of the sub-injection valve 30 adheres is upstream of the intake passage, so the wall surface temperature is low and the evaporation of fuel proceeds more slowly than the intake port.
  • the wall surface to which the spray of the sub-injection valve 30 adheres is upstream of the intake passage, so the wall surface temperature is low and the evaporation of fuel proceeds more slowly than the intake port.
  • the air-fuel ratio feedback control is stopped and the injection amount of the main injection valve 20 is a predetermined amount and a predetermined time. The amount may be reduced.
  • the change in the air-fuel ratio occurs when heavy gasoline is used, but in order to further reduce the bounce back to the exhaust gas due to the additional injection, as shown in FIG. It is acceptable to reduce the injection amount of the main injection valve 20 when performing additional injection and to continue the air-fuel ratio feedback control of the main injection valve 20.
  • the injection amount of the main injection valve 20 when additional injection of the sub-injection valve 30 is performed, the amount of fuel sprayed from the sub-injection valve 30 and sucked into the combustion chamber 1a quickly evaporates in light gasoline and burns into the combustion chamber. 1 Inhaled into a, but when light gasoline is used, the injection amount of the main injection valve 20 is corrected to decrease in a preset pattern so as to offset the change in the air-fuel ratio due to the increase by the auxiliary injection valve 30 .
  • the air-fuel ratio hardly fluctuates.
  • the evaporation of the injected fuel from the sub-injector valve 30 is slow. Since there is a delay in the increase in the amount of fuel sucked into a, the air-fuel ratio shifts to the lean side when the injection amount of the main injection valve 20 is reduced. At this time, by correcting the amount of fuel increased by air-fuel ratio feed pack control, fluctuations in the air-fuel ratio do not occur even when heavy gasoline is used, so that it is possible to prevent rebound to the exhaust gas at the time of determination.
  • the fuel property is determined by the change in the air-fuel ratio feed pack correction amount (coefficient). Compare the amount of change ⁇ a in the air-fuel ratio feed pack coefficient immediately before performing additional injection with the sub-injection valve 30 and after a predetermined time delay after the start of additional injection with the predetermined threshold value SL 3, and be smaller than SL 3. If it exceeds SL 3, it is judged as heavy gasoline.
  • the change in the air-fuel ratio or the air-fuel ratio feedback pack coefficient is small if the fuel is heavy. In this example, however, the change in the air-fuel ratio feedback coefficient changes as the fuel becomes heavier. growing.
  • the sub-injection valve 30 is arranged at a position where the wall surface temperature is relatively low upstream of the main injection valve 20 in the intake passage 11.
  • the fuel is injected toward the wall of the passageway (placement A), but the throttle valve 1 7 is placed on the wall near the throttle valve 1 7. Since the air flow rate increases due to the throttle of the fuel, the evaporation of fuel is promoted and the difference in the evaporation rate between heavy gasoline and light gasoline may be less likely to appear. It may be arranged at a position away from 7 (Arrangement A 2).
  • the throttle valve 17 in order to promote mixing of intake air and fuel, it may be arranged upstream of the throttle valve 17 and injected toward the wall surface (arrangement B).
  • the pressure in the intake passage is higher in the upstream of the throttle valve 17 than in the downstream of the throttle valve 17, so that the evaporation of fuel can be suppressed and a difference in the evaporation rate between heavy gasoline and quality gasoline tends to appear.
  • the accuracy of determination of fuel properties can be improved.
  • the heat received from the combustion chamber 1 a at a position away from the combustion chamber 1 a upstream from the throttle valve 17, for example, near the air cleaner 1 2, etc., the heat received from the combustion chamber 1 a is low and the wall surface temperature is low. Therefore, the difference in evaporation rate between heavy gasoline and light gasoline tends to appear.
  • the auxiliary injection valve 30 may be arranged upstream of the collection part (arrangement C 1) of one bank of the surge tank 13 and injected toward the wall surface.
  • the additional injection for determining the fuel property is performed only in the bank on the side where the auxiliary injection valve 30 is provided, the additional injection amount can be reduced as compared with the case where the additional injection is performed in both banks. The increase in unburned HC and co can be suppressed.
  • the additional injection is performed by the secondary injection valve 30
  • the additional injection is performed by reducing the injection amount of the main injection valve 20 on the bank side where the secondary injection valve 30 is provided.
  • the increase in HC and CO due to may be suppressed.
  • the sub-injection valve 30 may be arranged as in the arrangement C 2 and injected toward the upstream wall surface. Part of the injected fuel from the sub-injection valve 30 is not directly attached to the wall of the passage, but is directly sucked into the combustion chamber 1a. At this time, if the intake air and fuel are mixed poorly, combustion deteriorates and HC, CO In this configuration, the sub-injection valve 30 (in the fuel injection direction) is directed upstream so that mixing with air can be improved.
  • auxiliary injection valve 30 may be arranged so as to inject fuel toward the inner wall surface of the bent portion of the intake passage 11 as in arrangement C3. Inside wall of bent part of intake passage 1 1 Then, as indicated by the arrow, the fuel flow is reduced by reducing the flow velocity of air against the outer wall surface of the bend. The difference between the evaporation rates of light gasoline and light gasoline is likely to appear, and the fuel property judgment accuracy can be improved.
  • the fuel may be injected toward the outer wall surface of the bent portion of the intake passage where the wall surface temperature decreases.
  • FIG. 2 is a schematic configuration diagram showing an engine portion in another embodiment of the engine control apparatus according to the present invention.
  • the auxiliary injection valve 30 is provided in the bypass passage 19 that bypasses the slot valve 17 in the intake passage 11.
  • the bypass passage 19 is provided with an air control valve 19 a (which can be an ISC panoramic valve) that controls the amount of air flowing therethrough.
  • the opening of the air control valve 19 a and the throttle valve 17 By adjusting the opening, it is possible to adjust the air flow rate of the bypass passage 19 to which the fuel injected from the sub-injection valve 30 adheres. From the relationship between the air flow rate and the evaporation rate described above, heavy gasoline and light gasoline are adjusted.
  • bypass passage 19 is connected to the upstream of the surge tank 13
  • the bypass passage 19 is configured to branch downstream, and the branched bypass passage is connected to the intake hold 14 of each cylinder. It ’s okay.
  • an electric heater is provided downstream of the sub-injection valve and sub-injection valve, and the fuel injected from the sub-injection valve is forcibly vaporized by a heater and supplied to the combustion chamber during cold operation.
  • the fuel injected from the sub-injection valve is forcibly vaporized by a heater and supplied to the combustion chamber during cold operation.
  • bypass passage 19 may be branched from the downstream of the tor valve 17.
  • a guide 69 is preferably provided so that an appropriate amount of air that has passed through the throttle valve 17 flows into the bypass passage.
  • bypass in bypass passage 1 9 The point that the injection valve 30 is provided is the same as in FIG.
  • the auxiliary injection valve 30 may be arranged as shown in arrangement D 2. That is, in the intake passage 1 1 (throttle body 2 3), downstream of the throttle valve 17, substantially parallel to the support shaft 17 a of the valve body of the throttle valve 1 ⁇ , the intake passage 1 1 (2 3) You may arrange
  • FIG. 19 is a view of the intake passage 23 as viewed from the downstream side of the throttle valve 17.
  • the sub-injection valve 30 injects spray so that the spray adheres to the upper wall surface of the intake passage 23, whereas in arrangement D2, the sub-injection valve 30 has the throttle shaft 1 7 support shaft 1 7
  • the fuel spray from the sub-injector valve 30 adheres to a position away from the opening of the throttle valve 17, but at this position, the air flow rate is higher than that near the opening. Therefore, the accuracy of the fuel property determination can be improved as compared with the case where the fuel is injected onto the wall surface near the opening due to the relationship between the air flow rate and the evaporation rate.
  • a shielding plate 65 may be provided at an upstream position of the wall surface to which the fog of the sub-injection valve 30 adheres so as to reduce the air flow velocity on the wall surface.
  • the throttle valve 17, the auxiliary injection valve 30, and the passage portion may be configured as an integral throttle body 23.
  • Reference numeral 24 denotes a joint flange between the throttle body and the intake passage.
  • sub-injection valve 30 (with shielding plate 65) You may comprise as a sub-injection valve module which consists of minutes.
  • a joining flange (broken line) is provided between the throttle body and the injection valve module.
  • the wall surface of the portion to which the fuel spray from the sub-injection valve 30 adheres may be a flat surface.
  • FIG. Since the air flow is less likely to contact the fuel, the evaporation of the fuel is suppressed, and the accuracy of the fuel property determination can be improved from the relationship between the air flow rate and the evaporation rate described above. Further, as shown in FIG.
  • a plate-like member is provided on the inner wall portion of the intake passage 11 located in the fuel injection direction of the sub-injection valve 30 with a predetermined gap inward from the inner wall portion. 28 may be arranged so that the fuel injected from the sub-injection valve 30 adheres to the surface of the plate-like member 28.
  • Reference numeral 29 denotes a support portion for the plate-like member 28.
  • the plate-like member 28 to which the fuel adheres is insulated from the wall surface of the intake passage 11 and further cooled by the air flow, so that the fuel evaporation is further suppressed, and the relationship between the wall surface temperature and the evaporation rate described above. Therefore, the accuracy of fuel property determination can be improved.
  • a heat insulating member may be sandwiched between the inner wall portion and the plate member 28. Further, since the surface of the throttle valve 17 is cooled by the air flow and its surface temperature is low, as shown in FIG. 24, the sub-injection valve is attached so that fuel adheres to the surface of the throttle valve 17. 30 may be placed (placement E 1 or placement E 2). Thereby, the accuracy of fuel property determination can be improved from the relationship between the wall surface temperature and the evaporation rate.
  • fuel is attached to the back surface of the throttle valve 17 having a low air flow rate (the downstream side surface with respect to the air flow direction), thereby further suppressing fuel evaporation and improving the accuracy of the fuel property determination. Can be improved.
  • FIG. 9 shows an example in which the injection amount and the ignition timing of the main injection valve 20 after the start of the cold machine are changed.
  • the injection amount of the main injection valve 20 is indicated by the fuel-air ratio (injection fuel amount Z air amount).
  • injection fuel amount Z air amount the fuel-air ratio
  • the evaporation rate of gasoline is low when starting cold with heavy gasoline, and the combustion chamber is from start to start. 1 Since the gas phase fuel in a is insufficient, the fuel injection amount is increased to prevent deterioration of combustibility.
  • light fuel has a high evaporation rate, so if it is injected with the injection amount set for heavy gasoline, it becomes over-rich and HC and CO emissions increase.
  • the injection amount at the start and after the start is increased, and when it is determined as light, the injection amount at the start and after the start is decreased.
  • the air-fuel ratio does not become over-rich with light gasoline, which is easy to evaporate, and the increase in HC and C0 emissions due to this can be suppressed.
  • the ignition timing is delayed (retarded) with respect to the normal ignition timing in order to promote the temperature rise of the catalyst.
  • the gas phase fuel in the combustion chamber 1a is insufficient, and if the ignition timing is delayed at this time, the combustion deteriorates rapidly. The amount was set low. For this reason, even when light gasoline is used, the amount of retarded ignition timing is limited, the temperature of the catalyst becomes insufficient, and HC and N O x emissions may increase.
  • the retard amount at the ignition timing after start is set large to promote the temperature rise of the catalyst.
  • the ignition timing retard amount can be set small to suppress the deterioration of combustibility.
  • the air-fuel ratio change amount A AZ F and air-fuel ratio feedback correction amount (coefficient) ⁇ ⁇ calculated by the judgment method of this example are correlated with the fuel properties, and the fuel increase with the conventional main injection valve As shown in Fig. 10, if the injection amount at start or after start is a function of ⁇ ⁇ / F or air-fuel ratio feedback coefficient ⁇ , as shown in Fig. 10, it always depends on the fuel properties. Therefore, it is possible to further reduce the HC and CO emissions at start-up.
  • FIG. 12 shows an example of a fuel property determination routine executed by the control unit 100. This routine starts when the power is turned on. After the start, first, at step 1 0 1, it is determined whether the air-fuel ratio sensor 25 is active. If the air / fuel ratio sensor 25 is activated, it is determined in step 1 0 5 whether or not fuel has been supplied. The fuel property judgment is performed every time fueling is detected by detecting that fuel has been supplied. It is necessary to
  • detecting refueling such as providing a fuel level sensor in a fuel tank or a fuel tank provided with a switch (hatch switch) that detects the opening of the refueling hatch, and detecting the refueling by changing the fuel level.
  • a switch hatch switch
  • step 105 If refueling is detected in step 105, the data indicating that the fuel property judgment has been completed is reset (the judgment has not been completed).
  • Step 107 it is determined whether or not the vehicle has traveled for a predetermined time or more after refueling in Step 107. This is because there is a slight time delay before the fuel before refueling and the fuel that has remained in the fuel tank even after refueling, and the fuel in the fuel tank is mixed in the fuel property determination. This is because it needs to be done later.
  • it may be determined by the number of times of acceleration / deceleration after refueling in consideration of the fact that mixing is accelerated by acceleration / deceleration.
  • step 110 the temperature of the intake passage wall to which the fuel of the sub-injection valve 30 adheres is a low temperature suitable for determination.
  • the engine temperature and intake air temperature are lower than the predetermined values, or within a predetermined time after starting.
  • the wall surface temperature may be high.
  • the engine temperature rises after high speed and high load driving, and the engine room temperature also rises. Therefore, it is determined that the wall surface temperature is high after high speed and high load driving.
  • step 1 1 0 If it is determined in step 1 1 0 that the wall temperature is low, it is determined in step 1 2 0 whether or not it is a steady state in which there is little change in the operating state in order to improve the determination accuracy. To do.
  • An example is constant speed driving when idling.
  • the detected air-fuel ratio AZF is read into the memory AF1 as an initial value before the determination in step 130 if the determination is made while the air-fuel ratio feedback control is stopped.
  • the air-fuel ratio feedback coefficient ⁇ is read into the memory 1.
  • pre-injection for discharging the residual fuel in the auxiliary injection valve 30 may be performed.
  • pre-injection is performed.
  • the detected air-fuel ratio or air-fuel ratio feedback coefficient
  • step 140 additional injection by the auxiliary injection valve 30 is started at step 140.
  • the additional injection by the sub injection valve 30 continues for a predetermined amount of time and then stops (temporary injection).
  • the pattern of additional injection by the sub-injection valve 30 can be freely set by the control unit 100, so that in addition to increasing the additional injection stepwise, in order to prevent deterioration of exhaust emission characteristics, You may make it increase gradually with progress of time.
  • the main injection is started after additional injection is started at step 1 45 with sub injection valve 30.
  • the fuel injection amount by the injection valve 20 is corrected to decrease by a preset pattern.
  • step 15 Since there is a time lag between the start of additional injection by the sub-injection valve 30 and the change of the detected air-fuel ratio, in step 15 0, a predetermined time has elapsed since the start of additional injection by the sub-injection valve 30. It is determined whether or not elapses.
  • step 160 the detected air-fuel ratio A / F is read into the memory AF2, or the air-fuel ratio feedback coefficient ⁇ is read into the memory ⁇ 2.
  • the difference between the initial value of AZ F or ⁇ and the A / F or ⁇ after the additional injection ⁇ A / F ( ⁇ ⁇ ) Is calculated by the following formula (1).
  • Step 180 the fuel property is determined by comparing ⁇ A / F ( ⁇ ) calculated in Step 170 with the threshold value SL.
  • ⁇ A / F ( ⁇ ) calculated in Step 170
  • the threshold value SL if ⁇ / F ( ⁇ ⁇ ) exceeds the threshold SL, it is judged as light gasoline in step 190, and if it does not exceed the threshold SL.
  • step 200 it is determined as heavy gasoline.
  • the threshold value S L may be changed according to operating state parameters such as engine temperature (cooling water temperature) and intake air temperature.
  • the threshold value SL to be compared with ⁇ AZF is set as shown in FIG. 26 with respect to the wall surface temperature (detected by the intake air temperature sensor 62).
  • the fuel fuel property determination result the data indicating that the fuel property determination described above is completed, and ⁇ / Store the calculation result of F ( ⁇ ⁇ ) in the backup memory (R AM). These data are used to correct the fuel injection amount at the subsequent start-up.
  • step 105 of the flowchart shown in FIG. 12 There is a method to detect the opening of the refueling hatch as a means for detecting the refueling, but in general, refueling is performed when the engine is stopped, and the engine unit 100 that determines refueling when the engine is stopped is turned off. Since the refueling hatch is closed after refueling, the normal opening / closing switch may not be able to detect the refueling. Here, it is possible to determine whether the engine has been stopped.
  • FIG. 29 shows an example of a switch that can detect that the engine has been refueled.
  • hatch switch 40 is connected to wire 39 for opening the refueling hatch. They are connected by conductors via lever 41.
  • the power terminal 4 2 of the hatch switch 40 is electrically connected to a contact part 48 formed of a conductor via a power lead part 44.
  • the output terminal 43 of the hatch switch 40 is aerobically connected to a shaft 46 formed of a conductor via an output lead portion 45.
  • the lever 41 When the hatch opens, the lever 41 is in the position indicated by the broken line. At this time, the shaft 46 is pushed out to the position indicated by the broken line and contacts the contact part 48. At this time, if the power supply terminal 42 of the hatch switch 40 is energized, it contacts the power supply lead part 4 4 of the output terminal 43, so that the voltage of the output terminal 43 becomes high and the opening of the hatch can be detected.
  • the shaft 46 can be driven by a solenoid 47, and after detecting lubrication, the control unit 100 is energized to the solenoid 47. At this time, the shaft
  • Fig. 13 shows an example of a routine for correcting the fuel injection amount at start based on the fuel property determination in a flow chart.
  • step 300 it is determined from the engine temperature or the like whether or not the engine is in a cold state that requires injection amount correction at the start based on the fuel property determination result. If it is judged that the engine temperature is high and it is not necessary to correct the fuel injection amount at start-up, the fuel injection amount correction coefficient is set to 0 in step 3 30.
  • the fuel property determination is performed based on the data indicating that the above-described fuel property determination is completed in Step 3 10 It is determined whether or not.
  • the determination result of the fuel property is lost, for example, when the battery is removed, the determination is not completed.
  • the determination is not completed unless a fuel property determination is subsequently made. If the judgment is not completed, the injection correction coefficient K2 (large increase) for heavy gasoline is set in step 3500 so that the fuel does not become worse when starting with heavy gasoline and the combustion does not deteriorate.
  • step 3 20 If the fuel property determination is complete, read the determination result in step 3 20. If it is determined that the gasoline is heavy, set the injection correction coefficient for heavy gasoline in step 3500. If it is determined that the gasoline is light gasoline, set the injection correction coefficient K 1 (light increase small) for light gasoline in step 3 40.
  • the injection correction coefficients K l and ⁇ 2 are set as a function of the engine temperature, taking into account that the evaporation rate varies with the engine temperature.
  • the fuel injection amount of the main injection valve 20 after starting or after starting is calculated in step 36.
  • This injection amount is calculated as a value obtained by multiplying the base injection amount by the time correction amount and the fuel increase correction by the aforementioned injection correction coefficient.
  • the time correction amount is an increase value according to the elapsed time after cranking starts or after starting.
  • the injection correction coefficient is switched to two levels according to the result of the fuel property determination, but the ⁇ A / F calculated in step 1 70 of FIG.
  • the injection amount may be finely corrected in accordance with the fuel properties using the injection amount correction function (table) shown in FIG. 10 based on the calculated value of ( ⁇ ⁇ ).
  • ⁇ ⁇ / F (F a) decreases as the fuel properties become heavier, so the injection amount at start is reduced as ( ⁇ a) decreases. Correct the increase.
  • a AZ F ( ⁇ a) increases as the fuel properties become heavier, so that ⁇ ⁇ / F ( ⁇ a) increases accordingly. Catch the amount increased.
  • the main injection valve is provided in the intake port (boat injection type).
  • the present invention is applicable to an in-cylinder injection type engine in which the main injection valve is provided in the combustion chamber 1a.
  • the invention is equally applicable.
  • the present invention can be applied to a direct injection engine as it is.
  • a sub-injection valve is provided upstream of the intake passage, additional injection is performed by the sub-injection valve, and the fuel based on the response of the detected air-fuel ratio at that time The property can be determined.
  • the fuel property of the engine can be accurately determined, so that the fuel injection amount at the start or after the start can be set to an optimum injection amount according to the fuel property.
  • Exhaust emission characteristics can be improved (reducing HC and CO in the exhaust gas) and fuel efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 燃料を吸気通路における吸気ポート又は燃焼室内に噴射するようにされた主噴射弁と、燃料を前記吸気通路における前記吸気ポートより上流部分又は前記主噴射弁をバイパスするバイパス通路内に噴射するようにされた副噴射弁と、排気通路に設けられた空燃比検出手段と、前記主噴射弁及び前記副噴射弁による燃料噴射量等の制御を行う制御手段と、を有し、前記制御手段は、前記主噴射弁による燃料噴射を行っている際に、一時的に前記副噴射弁による燃料噴射を実行するとともに、そのときの前記空燃比検出手段により検出された空燃比の応答性に基づいて使用燃料の性状を判定し、この判定された燃料の性状に応じて、燃料噴射量、点火時期等の制御パラメータを変更するようにされる。

Description

エンジンの制御装置 技術分野
本発明は、 使用される燃料の性状 (種類) に応じて最適な制御を行うことがで きるようにされたエンジンの制御装置に関する。 背景技術
一般に、 多気筒エンジンでは、 シリンダ (燃焼室) に吸入される混合気の空燃 比が燃焼に適した所定の目標空燃比となるように、 吸気ポートに設けられた噴射 弁による燃料噴射量の制御が行われる。 エンジンが冷機状態であるときには、 吸 気通路壁面の温度が低いことから、 吸気弁や吸気ポートの壁面に付着した燃料が 蒸発しにくい。 このため、 冷機状態では、 燃料噴射量に対して燃焼室に吸入され る燃料が減少する。 このとき、 燃焼が悪化しないように、 通常、 燃料噴射量を増 量補正している。
ここで、 吸気弁や吸気ポートに付着した燃料の蒸発率は、 壁面温度が同じであ つても、 そのときの使用燃料の性状によって異なる。
このため、 従来では、 最も蒸発しにくい重質燃料を使用したときでも、 空燃比 がリーン化して燃焼が悪化しないように、 燃科が付着している壁面の温度 (に対 応する例えば冷却水温) を考慮しつつ、 燃料増量割合を余裕を見込んで多めに設 定するようにしていた。
このため、 比較的蒸発し易い軽質及び通常燃料を使用したときには、 燃焼室に 吸入される燃料が過剰となって、 排気ェミッション特性の悪化 (H Cや C Oの排 出量が増加) したり、 燃費が悪化するという問題があった。
このような使用燃料の違いによる排気ェミッション特性や燃費の悪化を防止す るための技術として、 燃料の性状をエンジンの挙動から推定 (判定) して、 その 推定 (判定) された燃料性状に応じて、 冷機始動時や始動後の燃料噴射量を制御 することが知られている。
この場合、 図 7に示される如くに、 燃料の蒸発率は、 壁面温度が上昇すると 1 0 0 %に近くなり、 重質ガソリンと軽質ガソリンの蒸発率の差が現れにくくなる ので、 重質ガソリンと軽質ガソリンの蒸発率の差が現れやすい冷機状態にあると きに燃料性状を判定するようにしている。
例えば、 特許第 3 4 9 4 5 1 6号公報等には、 燃料の蒸発率の違いによるトル クの変化を冷機始動時の回転変化により検出して燃料性状を判定することが提案 されている。 しかし、 かかるトルク変化に基づく燃料性状判定方式では、 前回の 運転終了時に吸気通路内に残留する燃料や、 噴射弁のもれ燃料等に起因して、 同 一燃料を使用しても、 始動時においては回転数 (の変化率) 等が異なってしまう ので、 燃料性状を精度良く判定することができなかった。
また、 例えば、 特開 2 0 0 1— 1 9 3 5 4 4号公報には、 始動後の加速時等に おける、 燃料嘖射量の変化に対する空燃比の応答性に基づいて、 燃料性状を判定 することが提案されている。 しかしながら、 空燃比の応答性を検出するためには、 空燃比センサが活性していることが必要であり、 始動後 (クランキング開始後) 、 空燃比センサが活性化するまで (精度良く空燃比を検出できる温度レベルに達す るまで) には、 1 0秒程度を要し、 一方で、 吸気ポートに設けられる噴射弁から の噴射燃料が付着する吸気弁及びその周辺部の温度は、 始動後急速に (約 5秒程 度で) 上昇するため、 空燃比センサが活性状態となって燃料性状の判定が可能と なる時期には、 吸気弁や吸気ポートの温度が既に上昇しており、 重質ガソリンで も燃料の蒸発が促進されるので、 軽質ガソリンとの蒸発率の差が現れにくくなり、 そのため、 燃料性状を精度良く判定することができなかった。
また、 図 8に示される如くに、 吸入空気の流速が高くなると、 空気との衝突に より燃料の蒸発が促進されるため、 重質ガソリンと軽質ガソリンの蒸発率の差が (空燃比変化等に) 現れにくくなるが、 特に、 吸気ポートでは、 吸入行程におけ るビストンの下降動作により吸入空気の流速が急激に上昇するため、 燃料性状に よる空燃比変化等が現れにくくなつて、 燃料性状の判定精度が低下する。
また、 吸気ポートでは、 空気の偏流が生じやすく局所的に流速が高くなつたり、 さらに運転状態によって空気の流れが変動するため、 壁面付着燃料の蒸発率が変 動することも燃料性状判定の精度を低下させる要因となっていた。
さらに、 燃料性状の判定を始動後の加速時に行う場合、 ドライバーの加速の仕 方は一定ではないので、 空燃比の変化にばらつきを生じ、 これによつても、 燃料 性状を精度良く判定することができなかった。
本発明は、 前記した如くの従来の問題を解消すべくなされたもので、 その目的 とするところは、 使用されている燃料の性状に応じて、 始動時及ぴ始動後の燃料 噴射量等の制御を最適に行うことができ、 もって、 排気ェミッション特性や燃費 を向上させることができるようにされたエンジンの制御装置を提供することにあ る。
発明の開示
前記目的を達成すべく、 本発明に係るエンジンの制御装置は、 基本的には、 燃 料を吸気通路における吸気ポート又は燃焼室内に噴射するようにされた主噴射弁 と、 燃料を前記吸気通路における前記吸気ポートより上流部分又は前記主噴射弁 をバイパスするパイパス通路内に噴射するようにされた副噴射弁と、 排気通路に 設けられた空燃比検出手段と、 前記主噴射弁及ぴ前記副噴射弁による燃料噴射量 等の制御を行う制御手段と、 を有する。
そして、 前記制御手段は、 前記主噴射弁による燃料噴射を行っている際に、 一 時的に前記副噴射弁による燃料噴射を実行するとともに、 そのときの前記空燃比 検出手段により検出された空燃比の応答性に基づいて使用燃料の性状を判定する 燃料性状判定手段を備えていることを特徴としている。
この場合、 前記制御手段は、 好ましくは、 前記燃料性状判定手段により判定さ れた燃料の性状に応じて、 燃料噴射量、 点火時期等の制御パラメータを変更する ようにされる。
他の好ましい態様では、 燃料を吸気通路における吸気ポート又は燃焼室内に噴 射するようにされた主噴射弁と、 燃料を前記吸気通路における前記吸気ポートよ り上流部分又は前記主噴射弁をバイパスするバイパス通路内に噴射するようにさ れた副噴射弁と、 排気通路に設けられた空燃比検出手段と、 前記主噴射弁及び前 記副噴射弁による燃料噴射量等の制御を行う制御手段と、 を有し、 前記制御手段 は、 前記主噴射弁による燃料噴射を行っている際に、 一時的に前記副噴射弁によ る燃料噴射を実行するとともに、 そのときの前記空燃比検出手段により検出され た空燃比の応答性に基づいて、 始動時又は始動後の前記主噴射弁による燃料噴射 量、 始動後の点火時期、 及び、 加速時の前記主噴射弁による燃料噴射量のうちの 少なくとも一つを変更するようにされる。 前記副嘖射弁は、 好ましくは、 燃料噴射口の他に、 燃料タンクからの燃料が導 入される燃料導入口と、 前記主噴射弁に燃料を導出するための燃料導出口と、 を 有し、 前記主噴射弁には、 燃料を前記副噴射弁の燃料導出口から燃科配管を介し て導入するようにされる。
好ましい態様では、 前記吸気通路もしくはバイパス通路における前記副噴射弁 から噴射された燃料が付着する内壁部分に凹凸が設けられる。
他の好ましい態様では、 前記吸気通路もしくはバイパス通路における前記副噴 射弁の燃料噴射方向に位置する内壁部分に、 該内壁部分から内方に所定の間隙を おいて板状部材が配在され、 前記副噴射弁から噴射された燃料が前記板状部材の 表面に付着するようにされる。 。
この場合、 好ましい態様では、 前記内壁部分と前記板状部材との間に断熱部材 が挟み込まれる。
他の好ましい態様では、 前記吸気通路もしくはバイパス通路における前記副噴 射弁から噴射された燃料が付着する部分より上流に、 吸入空気の流速を抑制する 遮蔽部材が配在される。
他の別の好ましい態様では、 前記吸気通路もしくはバイパス通路における前記 副噴射弁から噴射された燃料が付着する壁面部分が、 それより上流の壁面より窪 ませられる。
また、 前記副噴射弁から噴射される燃料の粒径を、 前記主噴射弁から噴射され る燃料の粒径より大きくすることが好ましい。
前記副噴射弁は、 好ましくは、 前記吸気通路におけるスロットル弁より下流に おいて、 前記スロッ トル弁の弁体の支軸に略平行に、 吸気通路の中心軸線を含む 平面と前記吸気通路内の壁面との交線近傍に向けて、 燃料を噴射するようにされ る。
他の好ましい態様では、 前記副噴射弁は、 前記スロッ トル弁の弁体に向けて燃 料を噴射するようにされる。
前記制御手段は、 好ましくは、 前記副噴射弁による燃料噴射を行っているとき、 又は、 前記副噴射弁による燃料噴射を開始する直前に、 前記主噴射弁による燃料 噴射量を減少させるようにされる。
前記制御手段は、 好ましくは、 前記空燃比検出手段により検出された空燃比に 基づいて、 実空燃比が目標空燃比となるように前記主噴射弁による燃料噴射量の フィードバック制御を行うようにされる。
前記制御手段は、 好ましくは、 前記副噴射弁による予備燃料噴射を行った後、 再び前記副噴射弁による燃料噴射を行うとともに、 そのときの前記空燃比検出手 段により検出された空燃比の応答性に基づいて、 始動時又は始動後の前記主噴射 弁による燃料噴射量、 始動後の点火時期、 及び、 加速時の前記主噴射弁による燃 料噴射量のうちの少なくとも一つを変更するようにされる。
このような構成とされた本発明に係るエンジンの制御装置によれば、 温度が低 く空気流速の低い吸気通路上流側部分に副噴射弁を設け、 この副噴射弁で追加噴 射を行ったときの空燃比変化 (応答性) に基づいて燃料の性状を判定するように されるので、 ェンジンの燃料性状を精度良く判定できる。
これにより、 始動時及び始動後の燃料噴射量を燃料性状に応じた最適な噴射量 とすることができ、 その結果、 排気ェミッション特性や燃費を向上させることが できる。
図面の簡単な説明
図 1は、 本発明に係る制御装置の一実施形態をそれが適用されたエンジンと共 に示す概略構成図。
図 2は、 本発明に係る制御装置の他の実施形態をそれが適用されたェンジンと 共に示す概略構成図。
図 3は、 燃料性状判定方式の一例の説明に供されるタイムチヤ一ト。
図 4は、 従来の燃料性状判定方式との比較説明に供されるタイムチャート。 図 5は、 燃料性状判定方式の他の例の説明に供されるタイムチヤ一ト。
図 6は、 燃料性状判定方式の他の別の例の説明に供されるタイムチヤ一ト。 図 7は、 壁面温度と蒸発率の関係を示すグラフ。
図 8は、 空気流速と蒸発率の関係を示すグラフ。
図 9は、 始動時噴射量の補正についての説明に供されるタイムチヤ一ト。 図 1 0は、 空燃比変化に対する始動時噴射量の説明に供される図。 図 1 1は、 コントロールユニットの內部構成図。
図 1 2は、 コントロールュニットが実行する燃料性状判定ルーチンの一例を示 すフローチヤ一ト。
図 1 3は、 コントロールュニットが実行する始動時噴射量補正ルーチンの一例 を示すフローチヤ一ト
図 1 4は、 副噴射弁から嘖射された燃料が付着する壁面部分をその上流部分よ り窪ませた例を示す図。
図 1 5は、 副噴射弁の配置例の説明に供される図。
図 1 6は、 噴射燃料の粒径と蒸発率の関係を示すグラフ。
図 1 7は、 燃料性状判定方式の他の例の説明に供されるタイムチャート。
図 1 8は、 副噴射弁の他の配置例の説明に供される図。
図 1 9は、 図 1 8の A方向から見た吸気通路の断面図。
図 2 0は、 燃料性状判定の精度を向上させる手法の一例の説明に供される図。 図 2 1は、 燃料性状判定の精度を向上させる手法の他の例の説明に供される図。 図 2 2は、 燃料性状判定の精度を向上させる手法の他の別の例の説明に供され る図。
図 2 3は、 燃料性状判定の精度を向上させる手法のさらに別の例の説明に供さ れる図
図 2 4は、 副噴射弁のさらに別の配置例の説明に供される図。
図 2 5は、 副噴射弁の噴霧形状の例を示す図
図 2 6は、 壁面温度による判定レベルの捕正についての説明に供される図。 図 2 7は、 副噴射弁の構成例を示す図
図 2 8は、 燃料性状判定方式の他の別の例の説明に供されるタイムチャート。 図 2 9は、 給油ハッチスィツチの構成例を示す図。
発明を行うた :めの最良の形態
以下、 本発明の実施形態を図面を参照しながら説明する。
図 1は、 本発明に係るエンジンの制御装置の一実施形態を示す概略構成図であ る。 図 1において、 車載用多気筒 (例えば V形 6気筒) エンジン 1は、 シリンダ 1 Aに例えば 6つの気筒 (# 1〜# 6 ) が設けられ、 各気筒には、 ピス トン 1 8 が摺動自在に嵌揷され、 このピス トン 1 8上方に、 吸気弁 1 6及ぴ排気弁 9によ り開閉される燃焼室 1 aが画成されている。 燃焼室 l aには、 点火プラグ 2 4が 臨設されている。 外部の空気は、 ピス トン 1 8の下降動作により、 吸気弁 1 6が開く吸入行程時 に、 エアクリーナ 1 2、 サージタンク 1 3、 インテークマ二ホールド (分岐吸気 通路部) 1 4、 及ぴ吸気ポート 1 5等で構成される吸気通路 1 1を介して燃焼室 に吸入される。 吸気通路 1 1の上流側部分には、 スロッ トル弁 1 7が設けられ、 また、 下流側部分には、 燃料を吸気弁 1 6及び吸気ポート 1 5に向けて噴射する 主噴射弁 2 0が設けられている。 吸気通路 1 1における主噴射弁 2 0より上流側 で、 スロッ トル弁 2 1とサージタンク 1 3との間には、 副噴射弁 3 0が設けられ ている。
吸入空気と主噴射弁 2 0 (及び副噴射弁 3 0 ) から噴射された燃料との混合気 は、 吸気弁 1 6を介して燃焼室 1 aに吸入され、 そこで点火プラグ 2 4により点 火せしめられて爆発燃焼せしめられ、 燃焼廃ガス (排気ガス) は、 排気弁 9から 排気浄化用触媒 (図示せず) が設けられた排気通路 2 1を介して外部に排出され る。
また、 吸気通路 2 0におけるスロットル弁 1 7より上流には、 エアーフローセ ンサ 6 1や吸気温センサ 6 2が設けられ、 シリンダ 1 Aには、 エンジン温度に対 応する冷却水温を検出するための水温センサ 2 6が設けられ、 さらに、 排気通路 2 1には、 空燃比センサ 2 5が設けられている。
前記副噴射弁 3 0は、 燃料噴射口 3 6 (図 2 7参照) の他に、 燃料が燃料タン ク 3 1から燃料ポンプ 3 3により加圧されて燃料圧力レギュレータにより所定の 圧力に調圧されてフィルタ 3 4を介して導入される燃料導入口 3 7 (図 2 7参 照) と、 前記主噴射弁 2 0に燃料を導出するための燃料導出口 3 8 (図 2 7参 照) と、 を有し、 主噴射弁 2 0には、 燃料が前記副噴射弁 3 0の燃料導出口から 燃料配管 3 2を介して導入されるようになっている。
そして、 本実施形態の制御装置 1 0においては、 エンジン 1 1の種々の制御を 行うため、 マイクロコンピュータを内蔵するコントロールュニット 1 0 0が備え られている。 コントロールユニット 1 0 0は、 既知の構成もので、 図 1 1に示さ れる如くに、 入力回路 5 1、 A/D変換器 5 2、 C P U 5 3、 読出し用メモリ 5 4、 書込みノ読出し用メモリ 5 5、 出力回路 5 6等を備えている。
コントローノレュニット 1 0 0には、 エアーフローセンサ 6 1、 吸気温センサ 6 2、 水温センサ 2 6、 空燃比センサ 2 5等から得られる検出信号が供給され、 コ ントロールュニット 1 0 0は、 それらの信号に基づいて、 主噴射弁 2 0及び副噴 射弁 3 0による燃料噴射量の制御、 点火時期の制御等を行う。
本実施形態では、 コント口一ルュニット 1 0 0は、 主噴射弁 2 0による燃料噴 射を行っている際に、 一時的に副噴射弁 3 0による燃料噴射 (追加噴射) を実行 するとともに、 そのときの空燃比センサ 2 5により検出された空燃比の応答性に 基づいて、 使用燃料の性状を推定 (判定) する。 言い換えれば、 副噴射弁 3 0で 噴射した燃料の蒸発率に基づいて燃料性状の判定を行う。
カかる燃料性状の判定を行うにあたり、 給油された後に副噴射弁 3 0内に残留 燃料 (前回給油された燃料) があると誤判定するので、 給油後に残留燃料が速や かに排出されるように、 副噴射弁 3 0としては、 前記した如くに、 燃料導入口と 燃料導出口を有する構造のものが用いられ、 また、 副嘖射弁 3 0は、 主噴射弁 2 0に燃料を供給する燃料配管の途中に配置されている。
ここで、 副噴射弁 3 0の構造例を図 2 7に示す。 燃料噴射口 3 6の近くの燃料 導入口 3 7から燃料を導入し、 余剰燃料を燃料導出口 3 8から排出するボトムフ イードタイプの噴射弁で、 給油後に残留燃料 (給油前の燃料) が噴射弁内に残り にくいため、 燃料性状判定の精度を確保することができる。
また、 本燃料性状判定は、 給油が行われたときに実行することが望ましいので、 例えば、 図 1に示される給油ハッチ 6 6の開口を検出する給油ハッチスィッチ 6 7や、 図示されていないが燃料タンク 3 1内の燃料レベル (量) を検出する燃料 レベルセンサを設け、 それらから得られる信号に基づいて給油が行われたかどう かを判定し、 給油が行われたときのみ、 燃料性状判定を行うようにしても良い。 前記燃料性状判定を行うにあたり、 副噴射弁 3 0から噴射された燃料は吸気通 路 1 1の壁面に付着するが、 吸気通路 1 1の上流側部分の壁面温度は、 吸気弁 1 6や吸気ポート 1 5の壁面に比べて上昇しにくく、 さらに吸入空気により冷却さ れるので、 燃料の蒸発が抑制される。 このため、 重質ガソリンと軽質ガソリンの 蒸発率の差が現れやすく、 副噴射弁 3 0による燃料噴射を行ったときの排気ガス の空燃比の応答性に基づいて燃料性状の判定を行うと、 従来の主噴射弁 2 0の燃 料噴射量変化時の空燃比応答性で判定するものに対して、 燃料性状の判定精度を 向上することができる。
また、 壁面からの燃料蒸発率は、 壁面温度に大きく依存するが、 吸気通路 1 1 の上流部は吸入空気により冷却され、 またシリンダからの伝熱が少ないので、 吸 入空気量がある程度以上あれば壁面温度はほぼ吸入空気の温度に一致し、 温度変 動も少ない。 よって、 吸気通路 1 1の上流側部分の壁面からの蒸発率の差を空燃 比変化 (応答性) で検出することにより、 従来の主噴射弁 2 0の噴射量変化時の 空燃比応答性で判定するものに比して、 負荷変化等の外乱に影響されにくくなり、 燃料性状の判定精度を向上できる。
また、 前記吸気温度センサ 6 2により副噴射弁 3 0からの噴射燃料が付着する 部分の壁面温度を精度良く検出することができる。 よって、 蒸発率 (空燃比応答 性) により燃料性状を判定するときの判定しきい値を吸気温センサ 6 2により検 出された温度を用いて補正することにより、 燃料性状判定の精度を向上すること ができる。
さらに、 副噴射弁 3 0の噴射燃料が付着する吸気通路 1 1上流側部分の壁面は、 燃焼室 1 aから離れており、 また、 サージタンク 1 3の容量が大きいので吸気通 路 1 1内の圧力変化も少なくなり、 吸気ポート 1 5部分に比べ最大流速が低くな る。 したがって、 前述した空気流速と蒸発率の関係により重質ガソリンと軽質ガ ソリンの蒸発率の差が現れやすくなるため副噴射弁で追加噴射を行うことで燃料 性状の判定精度が、 主噴射弁 2 0の噴射量変化時の空燃比応答性で判定する場合 に対し向上する。
ここで、 図 8に示される空気流速と蒸発率の関係から、 空気流速が高過ぎると 判定精度が低下するが、 逆に空気流速があまりに小さいと軽質ガソリンでも蒸発 率が低下し判定精度が低下する場合がある。 吸気通路 1 1の上流側部分の壁面は、 吸気ポート 1 5に対して空気流速が抑制され、 かつ適度の空気流速があるので燃 料性状判定を行うのに適している。 また、 副噴射弁 3 0からの噴射燃料は走行中 に空気流により蒸発し燃焼室 1 aに吸入されて燃焼せしめられるので、 吸気通路 1 1内に残留する燃料が減少し、 大気中に放出される燃料をほとんど無くすこと ができる。
さらに、 吸気ポート 1 5近くでは通路が曲っており、 また、 吸気弁 1 6のシャ フト部分が配在されているため、 空気の流れが不均一となるのに対し、 吸気通路 1 1の上流側部分では、 壁面に対し空気の流れが均一となるので、 吸気ポート 1 5に比べ燃料の蒸発状態が安定し、 燃料性状の判定精度を向上することができる。 また、 図 1に示される如くに、 副嘖射弁 3 0から噴射された燃料が付着する壁 面より上流に遮蔽部材 6 5を設けることで、 壁面の空気流速をさらに低下させて 燃料の蒸発を抑制し、 燃料性状判定に最適な空気流速となるようにして、 重質ガ ソリンと軽質ガソリンの蒸発率の差がより大きくなるようにし、 判定精度をさら に向上することもできる。
また、 壁面の燃料付着面積が変動すると燃料の蒸発量が変化して燃料性状判定 の精度が低下するので、 壁面の燃料付着面積が一定であることが望ましいが、 従 来の主噴射弁 2 0で吸気ポート 1 5に燃料を噴射したときの空燃比応答性で燃料 性状判定を行う場合は、 吸気ポート 1 5の空気流速が高く噴霧が気流により偏向 され、 燃料の付着面積が変動して判定精度が十分に得られなかった。 これに対し、 副噴射弁 3 0で吸気通路 1 1上流側部分の壁面に噴射して燃料性状判定を行うよ うにされた本実施形態の構成では、 吸気通路 1 1の上流側部分の空気流速が低い ため嘖霧が偏向されにくく燃料の付着面積の変動が少ないので、 燃料性状判定を 精度良く行うことができる。
さらに、 従来の主噴射弁 2 0の噴射量変化時の空燃比応答性で判定するもので は、 噴射量がエンジンの要求トルク等の運転状態により変動するが、 噴射量が多 いときはー且壁面に付着した燃料が周囲に流出することにより付着面積が変動し て燃料性状判定の精度が低下する。 これに対し、 本実施形態の構成では、 副噴射 弁 3 0による追加噴射量は運転状態によらず燃料性状判定に適した噴射量に設定 できるので燃料性状判定の精度を向上できる。 例としては、 燃料性状による蒸発 量の差を検出可能な噴射量で、 かつ、 噴射量が多過ぎず付着面積が一定となる噴 射量で、 さらに排気ェミッション特性への影響が最小限となるような噴射量に設 定することができる。
さらに、 副噴射弁 3 0による噴射燃料の壁面の付着面積が広いほうが燃料性状 の違いによるの蒸発量の差が現れやすくなるので、 図 1に示される如くに、 副噴 射弁 3 0の嘖霧角 0 1を主噴射弁 2 0の嘖霧角 θ 1に対して大きくするように構 成しても良い。
また、 副噴射弁 3 0の噴霧形状については、 図 2 5に示される如くに、 吸気通 路 1 1の壁面に対し 1方向の噴霧 (1ストリーム) で噴射しても、 壁面に対し 2 方向の噴霧 (2ストリーム) で噴射してもよい。 ここで塗りつぶした部分が壁面 の燃料付着部分を示す。
燃料性状判定の手法としては、 図 3に示される如くに、 運転状態の変動の少な いアイ ドリング時ゃ定速走行時に、 主噴射弁 2 0のみによる燃料噴射中に、 判定 のため副噴射弁 3 0により所定時間追加噴射を行う。 判定を行わないときは副嘖 射弁 3 0による燃料噴射は禁止する。 軽質ガソリンでは、 蒸発率が高いため副嘖 射弁 3 0により追加噴射した燃料は急速に壁面から蒸発して燃焼室 1 aに流入し、 検出空燃比はリッチ側にずれる。 これに対し、 重質ガソリンでは蒸発率が低いた め副噴射弁 3 0により追加噴射した燃料は少しずつ蒸発して燃焼室 1 aに流入す るので軽質ガソリンに対し、 検出空燃比がリッチ側にずれるのが遅れ、 また、 最 大リッチずれ量も小さくなる。 したがって、 空燃比センサ 2 5により副噴射弁 3 0の追加噴射を実行してから所定のディレイ時間後に追加噴射前の空燃比に対す るリッチずれ量を求め、 判定しきい値 S L 1と比較することにより、 燃料性状を 判定することができる。
ここで、 前述したように給油後に副噴射弁 3 0内に給油前からの残留燃料があ ると、 誤判定する場合があるので、 副噴射弁 3 0は、 燃料性状判定のための燃料 噴射を行う前に破線で示される如くのプレ嘖射を行い、 副噴射弁 3 0内の残留燃 料を排出するようにしても良い。
また、 副噴射弁 3 0の追加噴射で燃料増量したときに未燃ガスが排出されない ように、 図 2 8に示される如くに、 副噴射弁 3 0で追加噴射を行う直前に、 主嘖 射弁 2 0カゝらの燃料噴射量を減少させることにより、 排気ガスを酸素過剰状態と して触媒内に酸素を吸蔵させるようにし、 副噴射弁 3 0の追加噴射で排気ガスが 酸素不足となったときでも、 吸着された酸素により未燃ガスが触媒上で浄化され るようにしてもよい。
図 4は、 燃料性状判定のための燃料増量を副噴射弁 3 0で行った場合と主噴射 弁 2 0で行つた場合の空燃比の変化と排気ガスの H C濃度を比較したものである。 主噴射弁 2 0で燃料増量する場合では、 吸気弁 1 6、 吸気ポート 1 5の温度及 ぴ空気流速が高いために付着燃料は直ちに蒸発し、 燃焼室 1 aに流入するので空 燃比のリッチずれ量も大きくなり、 H C排出量が増加する。 これに対し、 本実施 形態の副噴射弁 3 0で燃料増量するものでは、 吸気通路 1 1の上流側部分の壁面 温度が低いため燃料は徐々に蒸発することから、 空燃比のリツチずれ量も小さく なり、 主噴射弁 2 0で燃料増量する場合に比べて H C排出量が減少する。
したがって、 副噴射弁 3 0で追加噴射 (燃料増量) を行うことにより、 従来の 主噴射弁 2 0で燃料增量を行うものに対し、 燃料性状判定時の追加噴射による排 気ガス中の H C、 C Oの増加を抑制できる。
また、 図 1に示される如くに、 遮蔽部材 6 5を設けて燃料の蒸発を抑制する構 成の他に、 図 1 4に示される如くに、 副噴射弁 3 0から噴射された燃料 (噴霧) が付着する壁面部分 6 8を、 吸気通路 1 1における前記壁面部分 6 8をその上流 部分より窪ませて、 燃料が付着する壁面の空気流速を低くすることにより、 燃料 の蒸発を抑制し、 重質ガソリンと軽質ガソリンの蒸発率の差が大きくなるように して判定精度を向上することもできる。
次に、 副噴射弁の粒径と蒸発率の関係を図 1 6を参照しながら説明する。 粒径 が大きくなると、 付着燃料の液膜厚さが厚くなって付着燃料と空気との接触比率 が減少するため、 蒸発率が低下する。 重質ガソリンと軽質ガソリンの蒸発率の差 は粒径が大きいほど現れやすいという発明者らの実験結果から、 主噴射弁 2 0か ら嘖射される燃料の流刑に対し、 副噴射弁 3 0から噴射される燃料の粒径を大き くすることで、 燃料性状判定の精度を向上することもできる。
図 4は、 主噴射弁 2 0で燃料増量する場合と副噴射弁 3 0で燃料増量する場合 の空燃比の変化と排気ガスの H C濃度 (排出量) で比較して示す。 燃料の増量は 同一として主噴射弁 2 0で燃料増量した場合では、 燃料が付着する吸気弁 1 6、 吸気ポート 1 5の温度が高いこと及び、 空気流速が高いことから増量した燃料が 直ちに蒸発して燃焼室 1 aに吸入され、 空燃比が急激にリッチ側にずれ、 最大リ ツチずれ量も大きくなる。 これにより、 排気ガス中の H C濃度も大きく増加して しまう。
これに対し、 副噴射弁 3 0で燃料増量した場合では、 燃料が付着する吸気通路 1 1の上流側部分の壁面の温度が低いこと及び空気流速が低いことから増量した 燃料が徐々に燃焼室 1 aに流入し、 空燃比の最大リッチずれ量も小さくなる。 こ れにより、 主噴射弁 2 0で燃料増量した場合に比べ排気ガス中の H C濃度の増加 を抑制できる。
次に、 燃料性状判定時の燃料増量による排気ガス (ェミッション特性) への跳 ねかえりをさらに抑制するための手法を図 5を参照しながら説明する。 一般に、 車载用エンジン 1においては、 排気ガス浄化のため、 空燃比センサ 2 5により検出された空燃比に基づいて、 実空燃比が目標空燃比 (例えば理論空燃 比) となるように、 主噴射弁 2 0による空燃比 (燃料嘖射量) のフィードバック 制御を行うようにされている。
本実施形態では、 燃料性状判定のための副嘖射弁 3 0による燃料増量を前記フ イードバック制御を行っているときに行うようにする。 これにより、 副噴射弁 3 0で燃料増量 (追加噴射) を行ったときに、 空燃比フィードバック制御により主 噴射弁 2 0の噴射量が減量補正されて、 空燃比のリツチ側へのずれ量が減少する ので、 判定による排気ガス中の H C、 C O濃度の増加を抑えることができる。 このときの燃料性状の判定は、 空燃比でなく、 空燃比のフィードパック補正量 に基づいて行う。 すなわち、 軽質ガソリンでは燃料増量分が直ちに蒸発して燃焼 室 1 aに流入するので空燃比フィードバック補正量 (係数) の変化量 Δひが大き くなる。 重質ガソリンでは燃料増量分が徐々に蒸発して燃焼室 1 aに流入するの で空燃比フィードバック係数の変化量 Δ気が小さくなる。 よって、 Δ ひとしきい 値 S L 2の比較により燃料性状を判定することができる。
すなわち、 副噴射弁 3 0で追加噴射を行うときに、 主噴射弁 2 0による噴射量 を減量することで、 燃料性状判定時の増量よる空燃比ずれを抑制し、 排気ガス中 の H C, C Oの増加を抑えることができる。
ここで、 副噴射弁 3◦による追加噴射量は、 コントロールユニット 1 0 0によ りきめ細かく制御することが可能なので、 燃料性状の判定精度を確保でき、 かつ 追加噴射 (燃料増量) による排気ガス中の未燃ガス (H C ) の増加を最小限に抑 えるように噴射量を設定することができる。
また、 前述したように、 副噴射弁 3 0の噴霧が付着する壁面は吸気通路の上流 部なので壁面温度が低く、 吸気ポートに比べ燃料の蒸発が緩やかに進むため、 追 加噴射による空燃比の変動を空燃比フィ一ドバック制御により容易に吸収できる こと力ゝら、 排気ガスへの跳ねかえりを少なくできるという利点も得られる。
他に、 図 6に示される如くに、 副噴射弁 3 0で追加噴射を行う場合には、 空燃 比フィードバック制御を停止して、 主噴射弁 2 0の噴射量を所定量、 所定時間だ け減量するようにしてもよい。
この場合は、 使用頻度の高い軽質ガソリンで副嘖射弁 3 0の増量と主噴射弁 2 0の減量が相殺されるようにしておけば、 重質ガソリンで蒸発速度が遅くなった ときに空燃比に変化が現れるので、 空燃比変化量と所定のしきい値を比較するこ とで燃料性状を判定することができる。
上記実施形態では、 重質ガソリン使用時に空燃比に変化が発生するが、 追加噴 射による排気ガスへの跳ねかえりをさらに減少させるため、 図 1 7に示される如 くに、 副噴射弁 3 0で追加噴射を行うときに主噴射弁 2 0の噴射量を減量すると ともに、 主噴射弁 2 0の空燃比フィードバック制御を継続するようにしても良レ、。 この場合は、 副噴射弁 3 0の追加噴射を行ったときに、 副噴射弁 3 0から嘖射さ れて燃焼室 1 aに吸入される燃料量は軽質ガソリンでは速やかに蒸発して燃焼室 1 aに吸入されるが、 軽質ガソリン使用時には、 副噴射弁 3 0による増量分によ る空燃比変化を相殺するように予め設定されたパターンで主噴射弁 2 0の噴射量 を減量補正する。
このようにすると、 軽質ガソリンが使用されたときには空燃比の変動はほとん ど生じず、 一方重質ガソリンが使用されたときに副噴射弁 3 0からの噴射燃料の 蒸発が遅いため、 燃焼室 1 aに吸入される燃料量の増加には遅れを生ずるので、 主噴射弁 2 0の噴射量を減量したときに空燃比がリーン側にずれる。 このとき、 空燃比フィードパック制御により燃料を増量補正することにより、 重質ガソリン 使用時においても空燃比の変動を生じることないので判定時の排気ガスへの跳ね かえりを防止できる。
本実施形態では、 空燃比フィードバック制御中に判定を行うことから、 空燃比 フィードパック補正量 (係数) の変化により燃料性状の判定を行う。 副噴射弁 3 0で追加噴射を行う直前と追加噴射開始後所定の時間ディレイ後の空燃比フィー ドパック係数の変化量 Δ aを所定のしきい値 S L 3と比較し、 S L 3より小さけ れば軽質ガソリン、 S L 3を超えていれば重質ガソリンと判定する。
なお、 前述した図 3、 図 5では、 燃料が重質であれば空燃比又は空燃比フィー ドパック係数の変化は少ないが、 本例では燃料が重質になるにしたがって空燃比 フィードバック係数の変化が大きくなる。
次に、 図 1 5を参照しながら、 副噴射弁 3 0の取り付け位置の例について説明 する。 吸気通路 1 1における主噴射弁 2 0より上流で壁面温度が比較的低い位置 に副噴射弁 3 0を配置する。 前述した図 1に示される実施形態では、 サージタン ク 1 3とスロットル弁 1 Ίとの間の部位に配置して通路壁面に向けて噴射する構 成 (配置 A) としたが、 スロッ トル弁 1 7から近い位置の壁面ではスロッ トル弁 1 7の絞りにより空気の流速が上昇しているので燃料の蒸発が促進され重質ガソ リンと軽質ガソリンの蒸発率の差が現れにくくなる場合があるので、 副嘖射弁 3 0をスロッ トル弁 1 7から離れた位置に配置してもよい (配置 A 2 ) 。
他の配置として、 吸入空気と燃料の混合を促進するため、 スロッ トル弁 1 7の 上流に配置して壁面に向けて噴射するようにしても良い (配置 B ) 。 ここで、 ス ロッ トル弁 1 7の上流ではスロッ トル弁 1 7の下流に比べ吸気通路の圧力が高い ため、 燃料の蒸発を抑制でき、 重質ガソリンと 質ガソリンの蒸発率の差が現れ やすく、 燃料性状の判定精度を向上できるという利点もある。 また、 スロッ トル 弁 1 7より上流で燃焼室 1 aから離れた位置、 例えばエアクリーナ 1 2の近く等 では、 燃焼室 1 a等からの受熱が少なく壁面温度が低いことから燃料の蒸発が抑 制され、 重質ガソリンと軽質ガソリンの蒸発率の差が現れやすくなる。
また、 V型エンジンでは、 サージタンク 1 3の片方のバンクの集合部上流 (配 置 C 1 ) に副噴射弁 3 0を配置して壁面に向けて噴射するようにしても良い。 こ の構成では、 図のようにバンク別に空燃比を検出できるように、 空燃比センサ 2 5が左右バンク毎にに設けることが望ましい。 この構成では、 燃料性状判定のた めの追加噴射を副噴射弁 3 0が設けられる側のバンクのみに行うので、 両バンク に追加噴射を行う場合に比べて追加噴射量を少なくすることができ、 未燃 H C, c oの増加を抑制することができる。
このとき、 前述した例と同様に、 副噴射弁 3 0で追加噴射実行時に、 副噴射弁 3 0が設けられるバンク側の主嘖射弁 2 0の噴射量を減量するようにして追加嘖 射による H C, C Oの増加を抑制するようにしても良い。
また、 副噴射弁 3 0を配置 C 2のように配置して上流の壁面に向けて噴射する ようにしてもよい。 副噴射弁 3 0からの噴射燃料の一部は通路壁面に付着せずに 直接燃焼室 1 aに吸入されるが、 このとき、 吸入空気と燃料の混合が悪いと燃焼 が悪化し H C , C O等の排出量が増加するので、 この構成では副噴射弁 3 0 (の 燃料噴射方向) を上流側に向けることで、 空気との混合を改善することができる。
さらに、 副噴射弁 3 0を配置 C 3のように吸気通路 1 1の曲げ部の内側壁面に 向けて燃料を噴射するように配置してもよい。 吸気通路 1 1の曲げ部の内側壁面 では、 矢印で示される如くに、 曲げ部の外側壁面に対し空気の流速が減少するこ とで付着した燃料の気化が抑制されるので、 前述した空気流速と蒸発率の関係か ら重質ガソリンと軽質ガソリンの蒸発率の差が現れやすくなって燃料性状の判定 精度を向上できる。
また、 副嘖射弁 3 0からの噴射燃料が付着する壁面の温度は低いほど燃料の蒸 発が抑制されて燃料性状判定の精度が向上するので、 配置 C 4のように空気流が 集中して壁面温度が低くなる吸気通路の曲げ部の外側壁面に向けて燃料を噴射す るように配置してもよい。
図 2は、 本発明に係るエンジンの制御装置の他の実施形態におけるエンジン部 分を示す概略構成図である。 本実施形態では、 副噴射弁 3 0を、 吸気通路 1 1に おけるスロットノレ弁 1 7をパイパスするバイパス通路 1 9に設けている。 バイパ ス通路 1 9には、 そこを流れる空気量を制御する空気制御弁 1 9 a ( I S Cパノレ ブで可) が設けられており、 空気制御弁 1 9 aの開度とスロットル弁 1 7の開度 を調節することにより、 副噴射弁 3 0から噴射された燃料が付着するバイパス通 路 1 9の空気流速を調整でき、 前述した空気流速と蒸発率の関係から重質ガソリ ンと軽質ガソリンの蒸発率の差が最も現れやすい空気流速に設定できるので燃料 性状の判定精度を向上することができる。 ここで、 パイパス通路 1 9はサージタ ンク 1 3の上流に接続する構成の他に、 下流で分岐するように構成し、 分岐した バイパス通路を各気筒のインテークマ二ホールド 1 4に接続するようにしても良 レ、。
また、 冷機時の燃焼改善を目的として、 副噴射弁と副噴射弁の下流に電気ヒー タを設け、 冷機時に副噴射弁の噴射燃料をヒータで強制気化して燃焼室に供給す るものが一般に知られているが、 このような構成では、 電気ヒータへの通電が停 止中で壁面温度が低いときに副噴射弁で追加噴射を行うようにすれば、 前記した 燃料性状判定をそのまま適用することができる。
さらに、 バイパス通路 1 9内の空気流速を抑制して燃料性状判定の精度を向上 させるため、 スロットル弁 1 7をパイパスさせる構成 (図 2 ) の他に、 図 2 1に 示される如くに、 スロッ トル弁 1 7の下流からバイパス通路 1 9が分岐するよう に構成しても良い。 ここで、 スロッ トル弁 1 7を通過した空気がバイパス通路に 適当な量流入するようにガイ ド 6 9を設けるとよい。 バイパス通路 1 9内に副噴 射弁 3 0を設ける点は図 2と同様である。
また、 図 1 8に示される如くに、 吸気通路 1 1 (スロッ トルボディ 2 3 ) の左 方から空気が流入しスロッ トル弁 1 7が反時計回りに回転する場合には、 下側の スロッ トル開口部に空気流が集中する。 よって、 矢印のように上側の壁面では下 側の壁面に比べ空気流速が低いので、 上側の壁面に燃料噴霧が付着するように、 副噴射弁 3 0を図のように下側に配置するようにすれば (配置 D 1 ) 、 前述した 空気流速と蒸発率の関係から下側の壁面に向けて燃料を噴射する場合に比べて燃 料性状判定の精度を向上させることができる。
また、 図 1 8において、 副嘖射弁 3 0を配置 D 2のようにに配置してもよい。 すなわち、 吸気通路 1 1 (スロッ トルポディ 2 3 ) におけるスロッ トル弁 1 7よ り下流において、 スロットル弁 1 Ίの弁体の支軸 1 7 aに略平行に、 吸気通路 1 1 ( 2 3 ) の中心軸線 Oを含む平面と前記吸気通路 1 1 ( 2 3 ) 内の壁面との交 線周辺部に向けて、 燃料を噴射するように配置してもよい。
図 1 9は、 吸気通路 2 3をスロッ トル弁 1 7の下流から見た図である。 配置 D 1では、 副噴射弁 3 0は吸気通路 2 3の上方壁面に噴霧が付着するよう噴射する のに対し、 配置 D 2では、 副噴射弁 3 0はスロッ トル弁 1 7の支軸 1 7 aにほぼ 平行に配置され、 副噴射弁 3 0からの燃料噴霧は、 スロッ トル弁 1 7の開口部か ら離れた位置に付着するが、 この位置では、 開口部付近に比べ空気流速が低下す るので、 前述した空気流速と蒸発率の関係から開口部に近い位置の壁面に噴射す る場合に比べて燃料性状判定の精度を向上させることができる。
また、 図 1 8において、 副噴射弁 3 0の嘖霧が付着する壁面の上流位置に遮蔽 板 6 5を設け、 壁面の空気流速を減少させるようにしてもよい。 このとき、 空気 流速の低下により燃料が付着する壁面の温度が上昇すると、 蒸発率が上昇し燃料 性状判定の精度が低下することが考えられるので、 図 2 0に示される如くに、 遮 蔽板 6 5に切り欠きを設けて空気が切り欠きから流入するようにして壁面を冷却 するようにしても良い。
さらに、 図 1 8において、 スロッ トル弁 1 7、 副噴射弁 3 0、 及び (遮蔽板 6 5付き) 通路部分は、 一体のスロッ トルボディ 2 3として構成しても良い。 符号 2 4は、 スロットルボディと吸気通路の間の接合用フランジである。
また、 スロッ トルボディとは別に、 副噴射弁 3 0と (遮蔽板 6 5付き) 通路部 分とから成る副噴射弁モジュールとして構成してもよい。 この場合は、 スロッ ト ルボディと噴射弁モジュールの間に接合用フランジ (破線部) が設けられる。 ここで、 副噴射弁 3 0からの燃料噴霧が付着する部位の壁面は平坦面でも良い が、 図 2 2に示される如くに、 前記燃料噴霧が付着する部位の壁面 2 7に凹凸を 設けると、 空気流が燃料に接触しにくくなるので燃料の蒸発が抑制されて、 前述 した空気流速と蒸発率の関係から燃料性状判定の精度を向上させることができる。 また、 図 2 3に示される如くに、 前記吸気通路 1 1における副噴射弁 3 0の燃 料噴射方向に位置する内壁部分に、 該内壁部分から内方に所定の間隙をおいて板 状部材 2 8を配置し、 副噴射弁 3 0から噴射された燃料が前記板状部材 2 8の表 面に付着するようにしてもよい。 なお、 符号 2 9は板状部材 2 8の支持部である。 この構成では、 燃料が付着する板状部材 2 8が吸気通路 1 1の壁面から断熱され、 さらに空気流により冷却されるので、 燃料の蒸発がより抑制され、 前述した壁面 温度と蒸発率の関係から燃料性状判定の精度を向上させることができる。 なお、 前記内壁部分と前記板状部材 2 8との間に断熱部材を挟み込むようにしてもよい。 また、 スロットル弁 1 7の表面は、 空気流により冷却されてそ表面温度が低い ことから、 図 2 4に示される如くに、 スロットル弁 1 7の表面に燃料を付着させ るように副噴射弁 3 0を配置してもよい (配置 E 1又は配置 E 2 ) 。 これにより、 壁面温度と蒸発率の関係から燃料性状判定の精度を向上させることができる。 ここで、 配置 E 2では、 空気流速の低いスロットル弁 1 7の裏面 (空気の流れ 方向に対し下流側面) に燃料を付着させることで、 さらに燃料の蒸発を抑制し、 燃料性状判定の精度を向上させることができる。
次に、 燃料性状判定結果による始動時の燃料噴射量等の変更について、 図 9を 参照しながら説明する。
図 9は、 冷機始動から始動後の主噴射弁 2 0の噴射量、 及ぴ点火時期を変更す る例を示す。 主噴射弁 2 0の噴射量は燃空比 (噴射燃料量 Z空気量) で示したも ので、 一般には重質ガソリンでの冷機始動時にはガソリンの蒸発率が低く、 始動 から始動後では燃焼室 1 a内の気相燃料が不足するので、 燃料噴射量を増量して 燃焼性の悪化を防止している。 し力 し、 軽質燃料では蒸発率が高いため重質ガソ リンに合わせて設定した噴射量で噴射を行うとオーバーリツチとなり H C、 C O 排出量が増加してしまう。 前述した燃料性状判定で重質と判定したときには、 始動時及び始動後の噴射量 を多くし、 軽質と判定したときには、 始動時及ぴ始動後の噴射量を少なくする。 これにより、 蒸発し易い軽質ガソリンで空燃比がオーバーリツチ化することがな く、 これによる H C、 C〇排出量の増加を抑えることができる。
また、 一般に冷機始動後のアイドル時では、 触媒の昇温を促進するため点火時 期を通常点火時期に対し遅らせて (リタードさせて) いる。 ここで、 重質ガソリ ン使用時は燃焼室 1 a内の気相燃料が不足し、 このとき点火時期を遅らせると、 燃焼が急激に悪化するので従来は重質ガソリンに合わせて点火時期のリタード量 を少なく設定していた。 このため、 軽質ガソリン使用時でも点火時期のリタード 量が制限され触媒の昇温が不足となり H C, N O xの排出量が増加してしまう場 合があった。 これに対し、 本例では、 図のように前述の燃料性状判定結果により 燃料の蒸発率の高い軽質ガソリンと判定したときは、 始動後点火時期のリタード 量を大きく設定し触媒の昇温を促進するとともに、 燃料の蒸発率の低い重質ガソ リンと判定したときは点火時期のリタ一ド量を小さく設定して、 燃焼性の悪化を 抑えることができる。
さらに、 本例の判定方式で算出する、 空燃比の変化量 A AZ Fや空燃比のフィ ードバック補正量 (係数) Δ αは、 燃料性状との相関が従来の主噴射弁で燃料増 量を行うものに比べ高いので、 図 1 0に示される如くに、 始動時又は始動後の噴 射量を、 Δ Α/ Fや空燃比のフィードバック係数 αの関数とすれば、 常に燃料性 状に応じた適切な噴射量とすることができ、 始動時の H C、 C O排出量をさらに 低減することが可能となる。
また、 前述の燃料性状の判定結果により、 始動時の噴射量のみでなく、 加速時 の燃料噴射量を変更するようにしても良い。 この場合、 重質ガソリンでは蒸発率 が低く加速時において燃焼室に吸入される燃料量が不足するので、 重質ガソリン と判定したときは噴射量を軽質ガソリンと判定したときより増量するようにする。 図 1 2は、 コントロールュニッ ト 1 0 0が実行する燃料性状判定ルーチンの一 例を示す。 本ルーチンは、 電源投入時にスタートし、 スタート後、 まず、 ステツ プ 1 0 1において、 空燃比センサ 2 5が活性しているかどうかを判定する。 空燃 比センサ 2 5が活性していれば、 ステップ 1 0 5で、 給油されたか否かを判定す る。 燃料性状判定は給油されたことを検出して、 給油を検出する毎にに判定を行 うことが必要となる。
給油の検出は、 前述したように給油ハッチの開口を検出するスィッチ (ハッチ スィッチ) を設けるカ 又は燃料タンクに燃料レベルセンサを設け、 燃料レベル の変化で給油を検出する等の手法がある。
給油が検出されず燃料切り換わりでないときは以後の燃料性状判定は行わなレ、 ようにする。
ステップ 1 0 5で給油を検出した場合は、 燃料性状の判定が終了したことを示 すデータをリセット (判定未終了の状態と) する。
その後、 ステップ 1 0 7で給油後に所定時間以上走行したか否かを判断する。 これは給油された後でも燃料タンク内に残留していた給油前の燃料と給油された 燃料が混合するまでに多少の時間遅れがあり、 燃料性状判定は燃料タンク内の燃 料が混合された後に行う必要があるためである。 ここで、 燃料混合までの遅れを 給油後の走行時間で判定する方法の他に、 加減速により混合が促進されることを 考慮して給油後の加減速回数などにより判断しても良い。
ステップ 1 0 7で給油後に所定時間以上走行したと判断された場合は、 ステツ プ 1 1 0で副噴射弁 3 0の燃料が付着する吸気通路壁面の温度が判定に適した低 い温度状態であるか否かを判断する。 例としては、 エンジン温度、 吸気温度が所 定値より低い、 始動後所定時間以内であること等である。 ここで、 前回の運転で 暖機されており、 その後間もなく再始動した場合は壁面温度が高くなつている場 合があるので、 例えば前回ェンジン停止時のェンジン冷却水温度と今回始動時の ェンジン冷却水温度の差が小さいときは、 再始動と判定してその後エンジン停止 となるまで判定を行わないか、 又は始動後所定時間は判定を行わないようにして あよい。
この他に、 エンジン温度が上昇していても、 吸入空気により吸気通路が冷却さ れ壁面温度が下がっている状態では判定可能となるので吸入空気量が所定値以上 の状態が所定時間以上継続しているとき等を壁面温度が低いと判断する。
また、 高速、 高負荷走行後ではエンジン温度が上昇し、 エンジンルーム温度も 上昇するので高速、 高負荷走行後では壁面温度が高いと判定する。
ステップ 1 1 0で壁面温度が低いと判断された場合は、 ステップ 1 2 0で、 判 定精度を向上させるため、 運転状態の変化が少ない定常状態であるか否かを判断 する。 例としてはアイドリング時ゃ定速走行などが挙げられる。
また、 判定による排気ガスの悪化を防止するため、 前述したように空燃比フィ 一ドバック制御中に判定を行う場合には、 空燃比フィードバック制御中であるか 否かを判断する。
上記成立時はステップ 1 3 0で、 空燃比フィードバック制御停止中に判定する ものであれば、 判定前の初期値として検出空燃比 AZ Fをメモリ A F 1に読み込 む。 又は、 空燃比フィードバック制御中に判定するものであれば空燃比フィード バック係数 αをメモリひ 1に読み込むようにする。
ここで、 前述したように、 ステップ 1 2 0が成立後は副噴射弁 3 0内の残留燃 料を排出するためのプレ嘖射を行うようにしてもよく、 この場合はプレ噴射を実 行してからプレ噴射による空燃比変動が無くなつてから検出空燃比 (又は空燃比 フィードバック係数) をメモリひ 1に読み込むようにする。
その後、 ステップ 1 4 0で副噴射弁 3 0による追加噴射を開始する。 副噴射弁 3 0による追加噴射は所定量で所定時間継続しその後は停止する (一時的に噴 射) 。 ここで、 副噴射弁 3 0による追加噴射のパターンは、 コントロールュニッ ト 1 0 0で自由に設定できるので、 追加噴射をステップ的に増量するものの他、 排気エミッシヨン特性の悪化を防止するため、 時間の経過に対し徐々に増加させ るようにしても良い。
次に、 図 6、 図 1 7に示される例では、 追加噴射による排気ガス (エミッショ ン特性) への跳ねかえりを防止するため、 ステップ 1 4 5で副噴射弁 3 0で追加 噴射開始後に主噴射弁 2 0による燃料噴射量を予め設定されたパターンで減量補 正する。
副噴射弁 3 0による追加噴射を開始してから検出空燃比が変化するまでには、 時間遅れがあるので、 ステップ 1 5 0では副噴射弁 3 0による追加噴射を開始し てから所定の時間が経過したか否かを判断する。
前記所定時間が経過した場合、 ステップ 1 6 0で検出空燃比 A/ Fをメモリ A F 2に読み込むか又は空燃比フィードバック係数 αをメモリ α 2に読み込む。 上記読み込み後、 ステップ 1 7 0で前述した AZ F又は αの変化分を求めるた め、 AZ F又は αの初期値と追加噴射後の A/ F又は αとの差 Δ A/ F ( Δ α ) を下記の式 (1 ) で算出する。 △ A/F=AF 1— AF 2 ( Δ α = α 1— α 2 ) ( 1 )
ステップ 1 80では、 ステップ 1 70で算出された Δ A/F (Δ α) をしきい 値 SLと比較することにより、 燃料性状を判定する。 ここで、 図 3、 図 5の例で は、 ΔΑ/F (Δ α) がしきい値 S Lを超えていれば、 ステップ 190で軽質ガ ソリンと判定し、 しきい値 S Lを超えていなければ、 ステップ 200で重質ガソ リンと判定する。
図 6、 図 1 7の例では、 AAZF (Δ α) がしきい値 S Lを超えていればステ ップ 200で重質ガソリンと判定し、 しきい値 S Lを超えていなければステップ 1 90で軽質ガソリンと判定する。
なお、 しきい値 S Lはエンジン温度 (冷却水温) や吸気温等の運転状態パラメ ータにより変更するようにしてもい。
例として、 図 3に示される例では、 Δ AZFと比較するしきい値 S Lを壁面温 度 (吸気温センサ 62により検出される) に対し、 図 26に示される如くに設定 する。
ここで、 図 1 2のステップ 190及びステップ 200で燃料性状判定を行った 後は、 燃料燃料性状の判定結果と前述した燃料性状判定が終了したことを示すデ ータ及び必要に応じて ΔΑ/F (Δひ) の算出結果を、 バックアップメモリ (R AM) に記憶しておく。 これらのデータはその後の始動時で燃料噴射量の補正に 使用される。
次に、 図 1 2に示されるフローチヤ一トのステップ 105で行われる、 給油の 検出について説明する。 給油検出手段としては、 給油ハッチの開口を検出するス イッチを設ける方法があるが、 一般に給油はエンジン停止状態で行われ、 ェンジ ン停止状態では給油を判定するコント口一ルュニット 100の電源は O F F状態 とされ、 給油ハッチは給油後に閉じられるので、 通常の開閉スィッチでは給油を 検出できない場合がある。 ここで、 エンジンが停止されたかは判定可能なので、 エンジン停止状態から始動されたときは、 給油された可能性があるとして始動毎 に燃料性状判定を行う方法もあるが、 追加噴射 (燃料増量) による排気ガスへの 跳ね返りを最小限としたいので、 燃料性状判定は給油毎に行うことが望ましい。 ェンジン停止状態に給油されたことを検出できるスィッチの例を図 29に示す。 図において、 ハッチスィッチ 40は、 給油ハッチを開口するためのワイヤ 39に、 レバー 4 1を介して導体で接続されている。 ハッチスィツチ 4 0の電源端子 4 2 は、 電源リード部 4 4を介して導体で形成されるコンタク ト部 4 8と電気的に接 続されている。 ハッチスィツチ 4 0の出力端子 4 3は、 導体で形成されるシャフ ト 4 6に出力リード部 4 5を介して霞気的に接続されている。
ハツチ閉鎖時に、 レバー 4 1が実線の位置となり、 かつ、 シャフト 4 6が実線 の位置にあるとき、 シャフト 4 6は、 コンタク ト部 4 8に接していないので、 出 力端子の電圧はローレベルとなる。
ハッチが開口すると、 レバー 4 1が破線の位置となり、 このとき、 シャフト 4 6が破線の位置に押し出され、 コンタク ト部 4 8に接触する。 このとき、 ハッチ スィッチ 4 0の電源端子 4 2に通電されていれば、 出力端子 4 3の電源リード部 4 4に接触するので出力端子 4 3の電圧がハイレベルとなりハッチの開口を検出 できる。
ここで、 エンジン停止中 (コントローノレユニット 1 0 0及びハッチスィッチ 4 0の電源 O F F状態) にハッチが開口され、 その後ハッチが閉鎖されても、 シャ フト 4 6は、 コンタクト部 4 8に接した状態で保持されるので、 エンジン停止中 の給油を、 次回始動直前 (コントロールユニット 1 0 0及ぴハッチスィッチ 4 0 の電源 O N状態) に検出できる。
シャフト 4 6はソレノイド 4 7で駆動することができ、 給油を検出した後に、 コントローノレユニット 1 0 0がソレノイ ド 4 7に通電する。 このとき、 シャフト
4 6がコンタクト部 4 8から離れて出力端子 4 3の電圧がローレベルとなり、 ノヽ ツチ閉鎖状態にリセットされるので、 その後に給油された場合でも、 給油ハッチ の開口を検出することができる。
図 1 3は、 燃料性状判定に基づく始動時燃料噴射量の補正ルーチンの一例をフ ローチャートで示す。
このルーチンでは、 , ステップ 3 0 0で、 燃料性状の判定結果による始動時の 噴射量補正が必要な冷機状態であるか否かをエンジン温度等により判断する。 エンジン温度が高く始動時の燃料噴射量補正を行う必要の無い状態と判断され たときは、 ステップ 3 3 0で燃料噴射量の補正係数を 0に設定する。
エンジン温度が低く始動時の噴射量補正が必要と判定されたときは、 ステップ 3 1 0で前述した燃科性状判定が終了したことを示すデータにより燃料性状判定 が終了したかを判断する。 ここで、 ッテリが外された場合等で燃料性状の判定 結果が失われたときは判定未終了の状態とする。 また前述したように給油ハッチ の開口や燃料レベルの変化等を検出して給油されたと判断されたときは、 その後 に燃科性状判定が行われない限りは判定未終了とする。 判定未終了の場合は、 重 質ガソリンで始動時に燃料が不足となって燃焼悪化しないように、 ステップ 3 5 0で重質ガソリン用の噴射補正係数 K 2 (増量大) を設定する。
燃料性状判定が終了しているときは、 ステップ 3 2 0で、 判定結果を読みこむ。 ここで、 重質ガソリンと判定されている場合は、 ステップ 3 5 0で重質ガソリン 用の噴射捕正係数を設定する。 軽質ガソリンと判定されている場合は、 ステップ 3 4 0で軽質ガソリン用の噴射補正係数 K 1 (増量小) を設定する。
前記噴射補正係数 K l、 Κ 2は、 エンジン温度により蒸発率が変化することを 考慮してエンジン温度の関数として設定する。
噴射補正係数設定後に、 ステップ 3 6 0で始動又は始動後の主噴射弁 2 0の燃 料噴射量を算出する。 この噴射量は、 ベース噴射量に時間補正量と前述の噴射補 正係数による燃料増量補正を掛けた値として算出される。 なお、 時間補正量はク ランキング開始又は始動後の経過時間に応じた増量値である。
また、 ステップ 3 2 0、 3 4 0、 3 5 0では、 噴射補正係数を燃料性状判定の 結果により 2段階に切り換えているが、 図 1 2のステップ 1 7 0で算出された Δ A/ F ( Δ ひ) の算出値により図 1 0に示される噴射量の補正関数 (テーブル) を用い噴射量を燃料性状に応じきめ細かく補正するようにしても良い。 ここで、 図 3、 図 5に示される例では、 燃料性状が重質になるにしたがって Δ Α/ F (厶 a ) が小さくなるので、 ( Δ a ) が小さくなるにしたがって始動時噴射 量を増量補正する。 図 6、 図 1 7に示される例では、 燃料性状が重質になるにし たがって A AZ F ( Δ a ) が大きくなるので、 Δ Α/ F ( Δ a ) が大きくなるに したがって始動時噴射量を増量捕正する。
なお、 以上に説明した例は、 主噴射弁が吸気ポートに設けられるもの (ボート 噴射式) であったが、 主噴射弁が燃焼室 1 aに設けられる筒内噴射式のエンジン においても、 本発明は同様に適用できる。
筒内噴射式のエンジンにおいても、 冷機時には噴射された燃料が燃焼室内に多 く付着して燃焼室内の気相燃料が不足する。 このため、 冷機状態ではポート噴射 式エンジンと同様に燃料噴射量の増量を行う。 すなわち、 重質ガソリンでは筒内 の付着燃料が多いため増量を大きくする必要があり、 軽質ガソリンでは増量を少 なくする必要がある。 燃料性状の判定が可能となれば、 ポート噴射式エンジンと 同様に軽質ガソリンでは重質ガソリンに対し増量を小さくでき、 その分余剰燃料 が減少して H C排出量を少なくすることができる。
したがって、 本発明は、 筒内噴射式エンジンでもそのまま適用でき、 副噴射弁 を吸気通路上流に設け、 この副噴射弁により追加噴射を行って、 そのときの検出 空燃比の応答性に基づいて燃料性状を判定可能である。
以上説明したように、 本発明によれば、 エンジンの燃料性状を精度良く判定で きるので、 始動時又は始動後の燃料噴射量を燃料性状に応じた最適な噴射量とす ることができ、 排気ェミッション特性を向上 (排気ガス中の H Cや C Oを低減) することができるとともに、 燃費等を向上することができる。

Claims

請 求 の 範 囲
1 . 燃料を吸気通路における吸気ポート又は燃焼室内に噴射するようにされた 主噴射弁と、 燃料を前記吸気通路における前記吸気ポートより上流部分又は前記 主噴射弁をバイパスするバイパス通路内に噴射するようにされた副嘖射弁と、 排 気通路に設けられた空燃比検出手段と、 前記主噴射弁及び前記副噴射弁による燃 料噴射量等の制御を行う制御手段と、 を有し、
前記制御手段は、 前記主噴射弁による燃料噴射を行っている際に、 一時的に前 記副噴射弁による燃料噴射を実行するとともに、 そのときの前記空燃比検出手段 により検出された空燃比の応答性に基づいて使用燃料の性状を判定する燃料性状 判定手段を備えていることを特徴とするエンジンの制御装置。
2 . 前記制御手段は、 前記燃料性状判定手段により判定された燃料の性状に応 じて、 燃料噴射量、 点火時期等の制御パラメータを変更することを特徴とする請 求項 1に記載の制御装置。
3 . 燃料を吸気通路における吸気ポート又は燃焼室内に噴射するようにされた 主噴射弁と、 燃料を前記吸気通路における前記吸気ポートより上流部分又は前記 主噴射弁をバイパスするバイパス通路内に噴射するようにされた副噴射弁と、 排 気通路に設けられた空燃比検出手段と、 前記主噴射弁及び前記副噴射弁による燃 料噴射量等の制御を行う制御手段と、 を有し、
前記制御手段は、 前記主噴射弁による燃料噴射を行っている際に、 一時的に前 記副噴射弁による燃料噴射を実行するとともに、 そのときの前記空燃比検出手段 により検出された空燃比の応答性に基づいて、 始動時又は始動後の前記主噴射弁 による燃料噴射量、 始動後の点火時期、 及び、 加速時の前記主噴射弁による燃料 噴射量のうちの少なくとも一つを変更することを特徴とするエンジンの制御装置。
4 . 前記副噴射弁は、 燃料噴射口の他に、 燃料タンクからの燃料が導入される 燃料導入口と、 前記主噴射弁に燃料を導出するための燃料導出口と、 を有し、 前 記主噴射弁には、 燃料が前記副噴射弁の燃料導出口から燃料配管を介して導入さ れるようになっていることを特徴とする請求項 3に記載のエンジンの制御装置。
5 . 前記吸気通路もしくはバイパス通路における前記副噴射弁から噴射された 燃料が付着する内壁部分に凹凸が設けられていることを特徴とする請求項 3に記 載のエンジンの制御装置。
6 . 前記吸気通路もしくはバイパス通路における前記副噴射弁の燃料噴射方向 に位置する内壁部分に、 該内壁部分から内方に所定の間隙をおいて板状部材が配 在され、 前記副噴射弁から噴射された燃料が前記板状部材の表面に付着するよう にされていることを特徴とする請求項 3に記載のエンジンの制御装置。
7 . 前記内壁部分と前記板状部材との間に断熱部材が挟み込まれていることを 特徴とする請求項 6に記載のエンジンの制御装置。 、
8 . 前記吸気通路もしくはバイパス通路における前記副噴射弁から噴射された 燃料が付着する部分より上流に、 吸入空気の流速を抑制する遮蔽部材が配在され ていることを特徴とする請求項 3に記載のエンジンの制御装置。
9 . 前記吸気通路もしくはバイパス通路における前記副噴射弁から噴射された 燃料が付着する壁面部分が、 それより上流の壁面より窪ませられていることを特 徴とする請求項 3に記載のエンジンの制御装置。
1 0 . 前記副噴射弁から噴射される燃料の粒径が、 前記主噴射弁から噴射され る燃料の粒径より大きくされていることを特徴とする請求項 3に記載のエンジン の制御装置。
1 1 . 前記副噴射弁は、 前記吸気通路におけるスロットル弁より下流において、 前記スロットル弁の弁体の支軸に略平行に、 吸気通路の中心軸線を含む平面と前 記吸気通路内の壁面との交線周辺部に向けて、 燃料を噴射するようにされている ことを特徴とする請求項 3に記載のエンジンの制御装置。
1 2 . 前記副噴射弁は、 前記スロットル弁の弁体に向けて燃料を噴射するよう にされていることを特徴とする請求項 3に記載のエンジンの制御装置。
1 3 . 前記制御手段は、 前記副噴射弁による燃料噴射を行っているとき、 又は、 前記副噴射弁による燃料噴射を開始する直前に、 前記主噴射弁による燃料噴射量 を減少させることを特徴とする請求項 3に記載のエンジンの制御装置。
1 4 . 前記制御手段は、 前記空燃比検出手段により検出された空燃比に基づい て、 実空燃比が目標空燃比となるように前記主噴射弁による燃料噴射量のフィー ドパック制御を行うようにされていることを特徴とする請求項 3に記載のェンジ ンの制御装置。
1 5 . 前記制御手段は、 前記副噴射弁による予備燃料噴射を行った後、 再び前 記副噴射弁による燃料噴射を行うとともに、 そのときの前記空燃比検出手段によ り検出された空燃比の応答性に基づいて、 始動時又は始動後の前記主嘖射弁によ る燃料噴射量、 始動後の点火時期、 及び、 加速時の前記主嘖射弁による燃料噴射 量のうちの少なくとも一つを変更するようにされていることを特徴とする請求項
3に記載のエンジンの制御装置。
PCT/JP2004/013472 2004-09-09 2004-09-09 エンジンの制御装置 WO2006027853A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/013472 WO2006027853A1 (ja) 2004-09-09 2004-09-09 エンジンの制御装置
JP2006515491A JPWO2006027853A1 (ja) 2004-09-09 2004-09-09 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013472 WO2006027853A1 (ja) 2004-09-09 2004-09-09 エンジンの制御装置

Publications (1)

Publication Number Publication Date
WO2006027853A1 true WO2006027853A1 (ja) 2006-03-16

Family

ID=36036150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013472 WO2006027853A1 (ja) 2004-09-09 2004-09-09 エンジンの制御装置

Country Status (2)

Country Link
JP (1) JPWO2006027853A1 (ja)
WO (1) WO2006027853A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208773A (ja) * 2007-02-26 2008-09-11 Toyota Motor Corp セタン価検出制御装置
CN105121818A (zh) * 2013-04-12 2015-12-02 罗伯特·博世有限公司 用于识别燃料混合物的方法
JP2016035223A (ja) * 2014-08-01 2016-03-17 トヨタ自動車株式会社 内燃機関の燃料性状判定装置
JP2016514800A (ja) * 2013-04-12 2016-05-23 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 過渡補正を適合させるための方法
JP2017066867A (ja) * 2015-09-28 2017-04-06 スズキ株式会社 燃料噴射制御装置
JP2022150185A (ja) * 2021-03-26 2022-10-07 いすゞ自動車株式会社 推定装置および内燃機関制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191433A (ja) * 1990-11-22 1992-07-09 Mazda Motor Corp エンジンの燃焼制御装置
JPH05340286A (ja) * 1992-06-11 1993-12-21 Toyota Motor Corp 内燃機関の燃料制御装置
JP2001193544A (ja) * 1999-11-05 2001-07-17 Hitachi Ltd エンジンの燃料性状判別方法及び燃料噴射制御方法
JP2002309995A (ja) * 2001-04-16 2002-10-23 Denso Corp 内燃機関の燃料性状判定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191433A (ja) * 1990-11-22 1992-07-09 Mazda Motor Corp エンジンの燃焼制御装置
JPH05340286A (ja) * 1992-06-11 1993-12-21 Toyota Motor Corp 内燃機関の燃料制御装置
JP2001193544A (ja) * 1999-11-05 2001-07-17 Hitachi Ltd エンジンの燃料性状判別方法及び燃料噴射制御方法
JP2002309995A (ja) * 2001-04-16 2002-10-23 Denso Corp 内燃機関の燃料性状判定装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208773A (ja) * 2007-02-26 2008-09-11 Toyota Motor Corp セタン価検出制御装置
CN105121818A (zh) * 2013-04-12 2015-12-02 罗伯特·博世有限公司 用于识别燃料混合物的方法
JP2016514800A (ja) * 2013-04-12 2016-05-23 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 過渡補正を適合させるための方法
JP2016515678A (ja) * 2013-04-12 2016-05-30 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 燃料混合気を識別するための方法
US9677483B2 (en) 2013-04-12 2017-06-13 Robert Bosch Gmbh Method for identifying fuel mixtures
US9926869B2 (en) 2013-04-12 2018-03-27 Robert Bosch Gmbh Method for adapting transition compensation
RU2653642C2 (ru) * 2013-04-12 2018-05-11 Роберт Бош Гмбх Способ идентификации топливных смесей
JP2016035223A (ja) * 2014-08-01 2016-03-17 トヨタ自動車株式会社 内燃機関の燃料性状判定装置
US9541015B2 (en) 2014-08-01 2017-01-10 Toyota Jidosha Kabushiki Kaisha Fuel property determination apparatus for internal combustion engine
JP2017066867A (ja) * 2015-09-28 2017-04-06 スズキ株式会社 燃料噴射制御装置
JP2022150185A (ja) * 2021-03-26 2022-10-07 いすゞ自動車株式会社 推定装置および内燃機関制御装置
JP7302619B2 (ja) 2021-03-26 2023-07-04 いすゞ自動車株式会社 推定装置および内燃機関制御装置

Also Published As

Publication number Publication date
JPWO2006027853A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP3211677B2 (ja) 筒内噴射式内燃機関の点火時期制御装置
JP4513615B2 (ja) 内燃機関の制御装置
US6561158B2 (en) Enhanced engine response to torque demand during cold-start and catalyst warm-up
KR100336549B1 (ko) 희박연소내연기관의증발연료공급제어장치
WO1996018814A1 (fr) Systeme de controle de l'evaporation de carburant
JP7147377B2 (ja) 蒸発燃料処理装置
KR19980018551A (ko) 기통내분사형 내연기관의 제어장치
JPH1162728A (ja) 内燃機関の蒸発燃料濃度判定装置
JPH1068351A (ja) 内燃エンジンの制御装置
EP1083321B1 (en) Combustion control apparatus and method engines
WO2006027853A1 (ja) エンジンの制御装置
JP2001107789A (ja) 筒内燃料噴射エンジンの燃料噴射制御装置
JP2004132241A (ja) 内燃機関の燃料供給装置
JP3186599B2 (ja) 筒内噴射型火花点火式内燃エンジン
JPH08200166A (ja) 空燃比制御装置
JPH10141115A (ja) 筒内噴射内燃機関の制御装置
JP2015169164A (ja) 内燃機関の制御装置
JP3748629B2 (ja) 内燃機関の制御装置
JP2005351120A (ja) 内燃機関の制御装置
JP4269279B2 (ja) 内燃機関の制御装置
JP3937702B2 (ja) 内燃機関のエバポパージ制御装置
JP3336080B2 (ja) エンジンの制御装置
JPH08200127A (ja) 空燃比制御装置
JP2002180943A (ja) 内燃機関の制御装置
JP3233032B2 (ja) 筒内噴射型火花点火式内燃エンジン

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006515491

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase