WO2006027270A2 - Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen - Google Patents
Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen Download PDFInfo
- Publication number
- WO2006027270A2 WO2006027270A2 PCT/EP2005/009759 EP2005009759W WO2006027270A2 WO 2006027270 A2 WO2006027270 A2 WO 2006027270A2 EP 2005009759 W EP2005009759 W EP 2005009759W WO 2006027270 A2 WO2006027270 A2 WO 2006027270A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compounds
- metal oxide
- metal
- chnet
- metals
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/20—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
- C01B13/22—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides
- C01B13/24—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides in the presence of hot combustion gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/20—Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/34—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/04—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/043—Lithium aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/1242—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/125—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/125—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
- C01G45/1257—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
- C01G51/44—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
- C01G51/54—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]-, e.g. Li(CoxMn2-x)04, Li(MyCoxMn2-x-y)O4
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
- C01P2006/82—Compositional purity water content
Definitions
- the present invention relates to a process for the preparation of alkali metal-containing, multi-component metal oxide compounds in powder form.
- Multicomponent metal oxide compounds are used, for example, in chemistry as catalysts for the production of alcohols. Examples of this are given in US Pat. Nos. 4,291,126 and 4,659,742. Moreover, such metal oxide compounds find application in the ceramic industry and in the manufacture of electric batteries, such as the compounds LiAlO 2 , LiMn 2 O 4 , LiCoO 2 or Li 2 ZrO 3 . For improving the use properties it is also known to dope Such metal oxide additionally, as for example in the doped metal oxide La O1S sNa ⁇ 115 MnO 3, LiCo 0; y 8 Nio, 2 0 2, LiAl Co y 1-O 2 , and LiCo y Mn 2 -y O 4 is the case. In this case, a particularly homogeneous doping of the finished metal oxide powder is desired.
- WO 02/072471 A2 discloses a process for producing a multinary metal oxide powder which is suitable for use as precursor of high-temperature superconductors.
- the object of the present invention is to provide a process for preparing alkali metal-containing, that is to say lithium, sodium, potassium, rubidium and / or cesium, metal oxide compounds in powder form which have a homogeneous distribution of the components involved.
- precursor compounds of the components of the desired metal oxide compound in solid form or in the form of a solution or suspension into a pulsation reactor having a gas flow resulting from flameless combustion and reacting them partially or completely to the desired metal oxide compound, the precursor compounds a mixture of at least one first metal compound from the group of alkali metals with at least one second metal compound selected from the group consisting of the transition metals, the other main group metals, the lanthanides and the actinides, in the desired ratio.
- alkali-metal-containing metal oxide compounds are understood to mean at least two component compounds in which at least one of the compound-forming components is an alkali metal.
- examples of these are LiAlO 2 or LiMn 2 O 4 .
- This also includes those Verbindun ⁇ conditions in which an alkali metal and / or metal is partially substituted by another metal, such as in LiC ⁇ o , 8 Ni 0j2 0 2 .
- compounds having an alkali metal-type impurity for example, La 0; Nao 85, 15 Mn0 3
- an alkali metal ion in the host lattice is installed.
- metal oxide compounds are also to be understood as meaning materials in which two or more different compounds can be detected by suitable methods, for example by X-ray analysis.
- the metal oxide compound is separated from the hot gas stream by suitable filters and is then present in powder form with average particle sizes of up to 125 ⁇ m, preferably with average particle sizes of between 0.1 and 50 ⁇ m, or between 1 and 30 ⁇ m.
- nanopowder with average particle sizes between 10 and 100 nm are accessible with appropriate selection of the process parameters with this method, when the precursor compounds in the form of solutions in the pulsieren ⁇ the gas stream are abandoned.
- a particular advantage of the method according to the invention in comparison with rotary kilns and shuttle kilns is the extreme uniformity of the thermal treatment in the pulsating gas stream. This is also not the case with alternative methods such as downpipe treatment with external heating (hot-wall reactor), which lead to an inhomogeneous material due to different falling speeds and edge zone effects. The same applies to spray and flame pyrolysis processes.
- the calcination in the pulsating gas stream allows a very uniform treatment of the starting materials up to almost below the softening or melting temperatures of the starting materials or of the end product, without forming larger, agglomerated cakes.
- the process can be used to prepare metal oxide compounds which contain the metals lithium, sodium, potassium, rubidium, cesium or mixtures thereof as the alkali metals.
- the second metal compounds are preferably selected from compounds of aluminum, manganese, cobalt, zirconium, iron, chromium, zinc, nickel and compounds of the lanthanides.
- Both the alkali metals and the metals from the group of transition metals, the remaining main grap metals, the lanthanides and actinides are fed to the process in the form of a mixture of suitable precursor compounds. Preference is given to introducing aqueous or nonaqueous solutions or suspensions of undissolved and optionally dissolved precursor compounds into the pulsation reactor.
- the precursor compounds may be any salts of inorganic or organic acids or inorganic or organic compounds of said metals, in particular nitrates, chlorides, sulfates, acetates, amines, hydroxides, carbonates, oxalates, citrates and tartrates.
- aqueous or non-aqueous solutions of the precursor compounds may additionally contain solid components in the form of hydroxides, oxides, carbonates, oxalates and / or other undissolved salts of the first and second metal compounds.
- particularly reactive starting materials or material compositions can also be introduced into the reactor as powder mixtures, for example via a powder injector. These may be intimate mixtures of solids in the form of finely divided hydroxides, oxides, carbonates, oxalates and / or undissolved salts of the first and second metal compounds.
- a pulsation reactor which can be used for the process according to the invention is described, for example, in WO 02/072471 A2. It contains a combustion chamber and a resonance tube. Combustion air and fuel are fed to the combustion chamber via so-called aerodynamic valves, which open at negative pressure in the combustion chamber and close at overpressure. The ignition of the fuel gas mixture in the combustion chamber generates an overpressure which leads to the closing of the aerodynamic valves, whereby a pressure wave propagates in the direction of the resonance tube. The gas flowing out of the resonance tube leads to a reduction of the pressure in the combustion chamber and thus to a reopening of the valves.
- a pulsation frequency between 10 and 130 Hz is set.
- the temperature of the hot combustion gases can be adjusted between about 650 and 1400 ° C.
- a temperature of the combustion exhaust gases between 700 and 1050 0 C is selected.
- the resonance tube of the pulsation reactor can be interrupted by an expansion space in front of which a secondary gas can be introduced for cooling the combustion exhaust gases.
- a secondary gas can be introduced for cooling the combustion exhaust gases.
- the temperature of the hot Verbrennungsabga- se in the resonance tube and expansion space can be set to values between 300 and 800 ° C. In this way, even low temperatures below 650 0 C can be realized in the resonance tube, which are not accessible with a conventional pulsation reactor.
- the precursor compounds can be introduced directly into the combustion chamber of the pulsation reactor, into the resonance tube or into the expansion space.
- the choice of the place of introduction into the pulsation reactor depends on which specific properties of the metal oxide compounds are to be achieved. By choosing the place of introduction, the duration of treatment and the effect of temperature in the reaction to the final product can be changed. Thus, certain characteristics how the specific surface area or completeness of the conversion of the starting material (eg the acid solubility) are influenced.
- the reaction temperature in combination with the duration of treatment specifies, for example, the formation of the crystal modification of the end product. In cases where the end product still contains traces of unwanted oxides, experience has shown that these can be eliminated by appropriate optimization of the process parameters. Suitable process parameters for these optimizations are, for example, the concentration of the dissolved precursor compounds, the precursor compounds themselves, the temperature of the hot gas flow and the residence times in the pulsation reactor.
- Another advantage to other processes that use carbonaceous fuels is also that hydrogen can be used as the sole fuel or in admixture with other fuels. This avoids that the alkali metal very stable, that is still stable at very high temperatures carbonates are formed from the carbonaceous fuel gases, so that the solid state reactions can proceed at an accelerated pace.
- the metal oxide powder obtained in the pulsation reactor may be subjected to a further treatment.
- another passage through the pulsation reactor or a multi-stage pulsation reactor can be provided.
- the usual thermal processes, such as treatment in an oven or in a fluidized bed reactor are open.
- the crucial step in the production of the metal oxide compound is given by the first treatment step. The following steps are only adaptations for application-specific optimization.
- metal oxide compounds can be prepared by the method in which a precursor compound of lithium with compounds of aluminum, manganese, cobalt or zirconium is completely or partially converted to the compounds LiAlO 2 , LiMn 2 O 4 , LiCoO 2 or Li 2 ZrO 3 .
- compounds doped with the method can be wholly or partially obtained, such as La 0, 85 Nao , 15 Mn0 3 , LiCoo, 8 Ni 0) 2 0 2 , LiAl y Co 1 -y O 2 , and LiCo y Mn 2 -y O 4 .
- the invention will be further clarified by the following examples.
- La 0585 Na O115 MnO 3 produced.
- an aqueous solution of lanthanum nitrate, sodium nitrate and manganese (II) nitrate was calculated • 4 H 2 O in the appropriate stoichiometric ratio, and a 10 wt .-% of Automatoxidkonzentration (as La 2 O 3, Na 2 O and MnO 2 ) reacted in a pulsation reactor.
- the fuel gas amount was 2.8 kg natural gas / h and the amount of combustion air 66 kg / h.
- the product was separated from the hot gas stream through ceramic filter cartridges.
- the resulting black-gray powder had a specific surface area (BET) of 15 m 2 / g, an average particle size d 5 o (CILAS 920) of 14 ⁇ m and an ignition loss of 1.9%.
- BET specific surface area
- CILAS 920 average particle size
- X-ray diffraction analysis showed only the signals of lanthanum manganese oxide LaMnO 3, thus confirming the formation of the doped compound La O585 Na O515 Mn0 3 .
- the chemical analysis confirmed this conclusion.
- the alkali metal-containing compound LiMn 2 O 4 was prepared.
- the aqueous solution was introduced into the combustion chamber at 805 ° C. using a two-substance nozzle at 5.3 kg / h.
- the amount of fuel gas was 2.9 kg natural gas / h and the Verbrennungs Kunststoff ⁇ amount 66 kg / h.
- the product was separated from the hot gas stream through ceramic filter cartridges.
- the resulting black-gray powder had a mean particle size d 50 (CILAS 920) of 3.2 ⁇ m and an ignition loss of 1.9%. Transmission electron micrographs showed agglomerates with a primary particle size of about 60 nm. X-ray diffraction analysis showed the signals of lithium manganese oxide LiMn 2 O 4 in addition to traces of Mn 2 O 3 and thus proved the formation of the desired compound.
- the alkali metal-containing compound LiCoO 2 was prepared.
- an aqueous solution of lithium nitrate and cobalt nitrate 6H 2 O in the corresponding stoichiometric ratio and a total oxide concentration of 10% by weight (calculated as Li 2 O and CoO) were reacted in a pulsation reactor.
- the aqueous solution was introduced into the combustion chamber at 710 ° C. using a two-component nozzle at 5.3 kg / h.
- the fuel gas quantity was 2.9 kg natural gas / h and the combustion air volume 66 kg / h.
- the product was separated from the hot gas stream through ceramic filter cartridges.
- the resulting black-gray powder had a specific surface area (BET) of 18 m 2 / g and an average particle size d 50 (CILAS) of 16 ⁇ m.
- BET specific surface area
- CILAS average particle size
- the X-ray diffraction analysis showed the signals of lithium cobalt oxide LiCoO 2 in addition to traces of Co 3 O 4 and thus proved the formation of the desired compound.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007530662A JP2008512337A (ja) | 2004-09-10 | 2005-09-10 | アルカリ金属を含有する多成分金属酸化物化合物およびこれにより製造される金属酸化物化合物 |
AT05782915T ATE534608T1 (de) | 2004-09-10 | 2005-09-10 | Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen |
US11/662,125 US20080247931A1 (en) | 2004-09-10 | 2005-09-10 | Method for Producing Multi-Constituent, Metal Oxide Compounds Containing Alkali Metals,and thus Produced Metal Oxide Compounds |
EP05782915A EP1791785B1 (de) | 2004-09-10 | 2005-09-10 | Verfahren zur Herstellung alkalimetallhaltiger, mehrkomponentiger Metalloxidverbindungen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004044266.5 | 2004-09-10 | ||
DE102004044266A DE102004044266A1 (de) | 2004-09-10 | 2004-09-10 | Verfahren zur Herstellung alkalimetallhaltiger, mehrkomponentiger Metalloxidverbindungen und damit hergestellte Metalloxidverbindungen |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006027270A2 true WO2006027270A2 (de) | 2006-03-16 |
WO2006027270A3 WO2006027270A3 (de) | 2007-01-04 |
Family
ID=35502596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/009759 WO2006027270A2 (de) | 2004-09-10 | 2005-09-10 | Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen |
Country Status (8)
Country | Link |
---|---|
US (1) | US20080247931A1 (de) |
EP (1) | EP1791785B1 (de) |
JP (1) | JP2008512337A (de) |
KR (1) | KR20070061861A (de) |
CN (1) | CN101056818A (de) |
AT (1) | ATE534608T1 (de) |
DE (1) | DE102004044266A1 (de) |
WO (1) | WO2006027270A2 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007144060A1 (de) * | 2006-06-12 | 2007-12-21 | Merck Patent Gmbh | Verfahren zur herstellung von granat-leuchtstoffen in einem pulsationsreaktor |
WO2008006565A1 (de) | 2006-07-13 | 2008-01-17 | Süd-Chemie AG | Verfahren zur herstellung nanokristalliner metalloxide |
WO2008028681A2 (de) * | 2006-09-07 | 2008-03-13 | Süd-Chemie AG | Verfahren zur herstellung nanokristalliner gemischter metalloxide und nanokristalline gemischte metalloxide, erhältlich durch das verfahren |
DE102008006607A1 (de) * | 2008-01-30 | 2009-08-06 | Ibu-Tec Advanced Materials Ag | Verfahren zur Herstellung feinteiliger Partikel |
GB2457771A (en) * | 2007-12-13 | 2009-09-02 | Sued Chemie Ag | Process for the preparation of nanocrystalline hydrotalcite compounds |
WO2009144034A1 (de) * | 2008-05-30 | 2009-12-03 | Süd-Chemie AG | Verfahren zur herstellung nanokristalliner nickeloxide |
WO2009144033A1 (de) * | 2008-05-30 | 2009-12-03 | Süd-Chemie AG | Verfahren zur herstellung nanokristalliner nickeloxide |
WO2019197147A1 (de) * | 2018-04-10 | 2019-10-17 | Glatt Ingenieurtechnik Gmbh | Verfahren zur herstellung von mischoxid-pulvern sowie ein mischoxid-pulver |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006046806B4 (de) * | 2006-06-14 | 2008-10-30 | Ibu-Tec Advanced Materials Gmbh | Verfahren zur Herstellung von beschichteten Partikeln und Verwendung eines thermischen Reaktors zur Durchführung des Verfahrens |
DE102006046803A1 (de) * | 2006-09-29 | 2008-04-03 | Ibu-Tec Gmbh & Co. Kg | Verfahren und thermischer Reaktor zur Herstellung von Partikeln |
DE102007003744A1 (de) | 2007-01-19 | 2008-07-31 | Ibu-Tec Advanced Materials Gmbh | Verfahren und thermischer Reaktor zur Herstellung von Partikeln |
DE102008017308B4 (de) * | 2008-04-04 | 2014-09-25 | Süd-Chemie Ip Gmbh & Co. Kg | Verfahren zur Herstellung von nanokristallinen Bismut-Molybdänmischoxidkatalysatoren |
US8333950B2 (en) * | 2009-08-27 | 2012-12-18 | Honeywell International Inc. | Process for the preparation of lithium metal oxides involving fluidized bed techniques |
KR102285150B1 (ko) | 2014-12-29 | 2021-08-04 | 삼성에스디아이 주식회사 | 복합양극활물질, 이를 채용한 양극과 리튬전지 |
EP3053571B1 (de) | 2015-02-05 | 2017-03-22 | Dentsply DeTrey GmbH | Verfahren zur Herstellung einer teilchenförmigen Dentalfüllstoffzusammensetzung |
DE102015003398B4 (de) | 2015-03-18 | 2018-11-22 | Dennert Poraver Gmbh | Verfahren und Anlage zur Herstellung von Mikrohohlkugeln aus Glas und Verwendung eines Pulsationsreaktors |
DE102017126365A1 (de) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur Herstellung eines Zeoliths |
DE102017126363A1 (de) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur Herstellung eines Zeoliths |
DE102018205152A1 (de) * | 2018-04-05 | 2019-10-10 | Glatt Ingenieurtechnik Gmbh | Verfahren und Reaktor zur Herstellung von Partikeln |
DE102018211645A1 (de) | 2018-07-12 | 2020-01-16 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur Herstellung von Partikeln |
DE102018211628A1 (de) | 2018-07-12 | 2020-01-16 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur Herstellung von Partikeln |
DE102018211641A1 (de) | 2018-07-12 | 2020-01-16 | Ibu-Tec Advanced Materials Ag | Vorrichtung und Verfahren zur Herstellung von Partikeln |
DE102019210282A1 (de) | 2018-07-12 | 2020-01-16 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur Herstellung von Partikeln |
DE102018211639A1 (de) | 2018-07-12 | 2020-01-16 | Ibu-Tec Advanced Materials Ag | Vorrichtung und Verfahren zur Herstellung von Partikeln |
DE102018211650A1 (de) | 2018-07-12 | 2020-01-16 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur Herstellung von Partikeln |
DE102018211635A1 (de) | 2018-07-12 | 2020-01-16 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur Herstellung von Partikeln |
DE102018211652A1 (de) | 2018-07-12 | 2020-01-16 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur Herstellung von Partikeln |
DE102019206727A1 (de) | 2019-05-09 | 2020-11-12 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur thermischen Behandlung eines Rohstoffs in einem pulsierenden Heißgasstrom |
CN110451571A (zh) * | 2019-09-11 | 2019-11-15 | 杨杭福 | 一种具有反常磁热效应的钙钛矿锰氧化物及其制备方法 |
TWI770603B (zh) * | 2019-09-13 | 2022-07-11 | 德商贏創運營有限公司 | 藉由噴霧熱解製備奈米結構的混合鋰鋯氧化物 |
DE102019218690A1 (de) * | 2019-12-02 | 2021-06-02 | Ibu-Tec Advanced Materials Ag | Vorrichtung zur Herstellung von Partikeln |
WO2021175849A1 (de) | 2020-03-02 | 2021-09-10 | Ibu-Tec Advanced Materials Ag | Verfahren zur thermischen behandlung eines batteriematerials in einem thermischen reaktor |
EP4327927A1 (de) | 2022-08-23 | 2024-02-28 | IBU-tec advanced materials AG | Verfahren und reaktor zur thermischen behandlung von batterievorläufermaterial |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5742070A (en) * | 1993-09-22 | 1998-04-21 | Nippondenso Co., Ltd. | Method for preparing an active substance of chemical cells |
US5958362A (en) * | 1996-03-28 | 1999-09-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of producing active material powder for lithium secondary battery |
WO2002072471A2 (de) * | 2001-03-13 | 2002-09-19 | Merck Patent Gmbh | Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW438721B (en) * | 1998-11-20 | 2001-06-07 | Fmc Corp | Multiple doped lithium manganese oxide compounds and methods of preparing same |
US7763386B2 (en) * | 2002-01-08 | 2010-07-27 | Sony Corporation | Cathode active material and non-aqueous electrolyte secondary cell using same |
-
2004
- 2004-09-10 DE DE102004044266A patent/DE102004044266A1/de not_active Ceased
-
2005
- 2005-09-10 US US11/662,125 patent/US20080247931A1/en not_active Abandoned
- 2005-09-10 CN CNA2005800385272A patent/CN101056818A/zh active Pending
- 2005-09-10 EP EP05782915A patent/EP1791785B1/de active Active
- 2005-09-10 AT AT05782915T patent/ATE534608T1/de active
- 2005-09-10 JP JP2007530662A patent/JP2008512337A/ja not_active Withdrawn
- 2005-09-10 KR KR1020077008130A patent/KR20070061861A/ko not_active Application Discontinuation
- 2005-09-10 WO PCT/EP2005/009759 patent/WO2006027270A2/de active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5742070A (en) * | 1993-09-22 | 1998-04-21 | Nippondenso Co., Ltd. | Method for preparing an active substance of chemical cells |
US5958362A (en) * | 1996-03-28 | 1999-09-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of producing active material powder for lithium secondary battery |
WO2002072471A2 (de) * | 2001-03-13 | 2002-09-19 | Merck Patent Gmbh | Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor |
Non-Patent Citations (3)
Title |
---|
DATABASE COMPENDEX [Online] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; AIKIYO H ET AL: "Effect of particle morphology on electrochemical property of LiMn2 O4" XP002404546 Database accession no. E2001366639187 & J CERAM SOC JPN; NIPPON SERAMIKKUSU KYOKAI GAKUJUTSU RONBUNSHI/JOURNAL OF THE CERAMIC SOCIETY OF JAPAN JUNE 2001, Bd. 109, Nr. 1270, Juni 2001 (2001-06), Seiten 506-510, * |
TANIGUCHI I ET AL: "Electrochemical properties of LiM1/6Mn11/6O4 (M = Mn, Co, Al and Ni) as cathode materials for Li-ion batteries prepared by ultrasonic spray pyrolysis method" JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, Bd. 109, Nr. 2, 1. Juli 2002 (2002-07-01), Seiten 333-339, XP004361546 ISSN: 0378-7753 * |
TANIGUCHI I ET AL: "Particle morphology and electrochemical performances of spinel LiMn2O4 powders synthesized using ultrasonic spray pyrolysis method" SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM, NL, Bd. 146, Nr. 3-4, 2. Februar 2002 (2002-02-02), Seiten 239-247, XP004335378 ISSN: 0167-2738 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007144060A1 (de) * | 2006-06-12 | 2007-12-21 | Merck Patent Gmbh | Verfahren zur herstellung von granat-leuchtstoffen in einem pulsationsreaktor |
JP2009540069A (ja) * | 2006-06-12 | 2009-11-19 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 脈動反応器におけるフレア用の発光物質の製造方法 |
EP2335821B1 (de) | 2006-07-13 | 2016-03-16 | IBU-tec advanced materials AG | Verfahren zur Herstellung nanokristalliner Metalloxide |
WO2008006565A1 (de) | 2006-07-13 | 2008-01-17 | Süd-Chemie AG | Verfahren zur herstellung nanokristalliner metalloxide |
EA016985B1 (ru) * | 2006-07-13 | 2012-08-30 | Зюд-Хеми Аг | Способ получения нанокристаллических частиц оксидов металлов |
DE102006032452B4 (de) * | 2006-07-13 | 2013-10-02 | Süd-Chemie Ip Gmbh & Co. Kg | Verfahren zur Herstellung nanokristalliner Metalloxide |
EP2335821A1 (de) | 2006-07-13 | 2011-06-22 | Süd-Chemie AG | Verfahren zur Herstellung nanokristalliner Metalloxide |
US9579631B2 (en) | 2006-07-13 | 2017-02-28 | Sued-Chemie Ip Gmbh & Co. Kg | Process for the preparation of nanocrystalline metal oxides |
WO2008028681A3 (de) * | 2006-09-07 | 2008-04-24 | Sued Chemie Ag | Verfahren zur herstellung nanokristalliner gemischter metalloxide und nanokristalline gemischte metalloxide, erhältlich durch das verfahren |
EP2059477B1 (de) | 2006-09-07 | 2015-11-18 | IBU-tec advanced materials AG | Verfahren zur herstellung nanokristalliner gemischter metalloxide |
WO2008028681A2 (de) * | 2006-09-07 | 2008-03-13 | Süd-Chemie AG | Verfahren zur herstellung nanokristalliner gemischter metalloxide und nanokristalline gemischte metalloxide, erhältlich durch das verfahren |
US8361619B2 (en) | 2006-09-07 | 2013-01-29 | Sud-Chemie Ag | Process for preparing nanocrystalline mixed metal oxides |
GB2457771A (en) * | 2007-12-13 | 2009-09-02 | Sued Chemie Ag | Process for the preparation of nanocrystalline hydrotalcite compounds |
DE102008006607A1 (de) * | 2008-01-30 | 2009-08-06 | Ibu-Tec Advanced Materials Ag | Verfahren zur Herstellung feinteiliger Partikel |
DE102008006607B4 (de) * | 2008-01-30 | 2011-03-03 | Ibu-Tec Advanced Materials Ag | Verfahren zur Herstellung feinteiliger Partikel |
US8759249B2 (en) | 2008-05-30 | 2014-06-24 | Sued-Chemie Ip Gmbh & Co. Kg | Method for the production of nanocrystalline nickel oxides |
WO2009144033A1 (de) * | 2008-05-30 | 2009-12-03 | Süd-Chemie AG | Verfahren zur herstellung nanokristalliner nickeloxide |
WO2009144034A1 (de) * | 2008-05-30 | 2009-12-03 | Süd-Chemie AG | Verfahren zur herstellung nanokristalliner nickeloxide |
WO2019197147A1 (de) * | 2018-04-10 | 2019-10-17 | Glatt Ingenieurtechnik Gmbh | Verfahren zur herstellung von mischoxid-pulvern sowie ein mischoxid-pulver |
Also Published As
Publication number | Publication date |
---|---|
JP2008512337A (ja) | 2008-04-24 |
EP1791785A2 (de) | 2007-06-06 |
EP1791785B1 (de) | 2011-11-23 |
ATE534608T1 (de) | 2011-12-15 |
WO2006027270A3 (de) | 2007-01-04 |
US20080247931A1 (en) | 2008-10-09 |
KR20070061861A (ko) | 2007-06-14 |
CN101056818A (zh) | 2007-10-17 |
DE102004044266A1 (de) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1791785B1 (de) | Verfahren zur Herstellung alkalimetallhaltiger, mehrkomponentiger Metalloxidverbindungen | |
DE69605952T2 (de) | Spinel-Lithium-Manganoxid-Material, Verfahren zu seiner Herstellung und seine Verwendung | |
EP2712010B1 (de) | Verfahren zur herstellung eines positiven elektrodenaktivmaterials für lithiumionenbatterien | |
EP1370486B1 (de) | Verfahren zur herstellung von multinären metalloxidpulvern in einem pulsationsreaktor | |
EP1912899B1 (de) | Anorganische verbindungen | |
EP3337764B1 (de) | Lithium-nickel-mangan-basierte übergangsmetalloxidpartikel, deren herstellung sowie deren verwendung als elektrodenmaterial | |
EP0783459B1 (de) | Ternäre lithium-mischoxide, verfahren zu deren herstellung sowie deren verwendung | |
EP2303780B1 (de) | Verfahren zur herstellung von lithiumtitan-spinell | |
DE69410378T2 (de) | VERFAHREN ZUR PRODUKTION VON LiM3+O2 ODER LiMn2O4 UND LiNi3+O2 ALS POSITIVES POLMATERIAL EINER SEKUNDÄREN ZELLE | |
EP0735004B1 (de) | Verfahren zur Herstellung von Lithium-Interkalationsverbindungen | |
WO2013093017A2 (de) | Metallphosphate und verfahren zu deren herstellung | |
DE102009001204A1 (de) | Herstellung von Eisenorthophosphat | |
EP2794472A1 (de) | Mangan enthaltende metallphosphate und verfahren zu deren herstellung | |
DE69737435T2 (de) | Positives aktives Material für nichtwässrige Sekundärzellen und Verfahren zur Herstellung von diesem activen Material | |
DE102004044557B3 (de) | Mischmetallhydroxide, deren Herstellung und Verwendung | |
DE19619235A1 (de) | Sphäroidisch agglomeriertes basisches Kobalt(II)carbonat und sphäroidisch agglomeriertes Kobalt(II)hydroxid, Verfahren zu ihrer Herstellung sowie deren Verwendung | |
DE4033417A1 (de) | Verfahren zur herstellung von mit metalloxiden dotierten zinkoxidpigmenten | |
WO2018024661A1 (de) | Verfahren zur herstellung eines kathodenmateriales mit niedriger bet-oberfläche und hoher stampfdichte und spezielles kathodenmaterial | |
WO1999000329A1 (de) | Verfahren zur herstellung von lithiummanganmischoxiden und deren verwendung | |
DE19630756A1 (de) | Verfahren zur Herstellung eisenhaltiger komplexer Oxidpulver | |
DE102018205398A1 (de) | Verfahren zur Herstellung von Mischoxid-Pulvern sowie ein Mischoxid-Pulver | |
WO2016169842A1 (de) | Verfahren zur herstellung eines kathodenmateriales mit niedriger bet-oberfläche und hoher stampfdichte | |
DE102023104776A1 (de) | Verfahren zur Herstellung eisenhaltiger Schichtoxide | |
WO2017037179A1 (de) | Mit einer hülle umgebenes lithium und mangan enthaltendes mischoxid | |
WO2014180821A1 (de) | Verfahren zur herstellung von suspensionen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005782915 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007530662 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077008130 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580038527.2 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2005782915 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11662125 Country of ref document: US |