WO2006025383A1 - 光ディスク - Google Patents

光ディスク Download PDF

Info

Publication number
WO2006025383A1
WO2006025383A1 PCT/JP2005/015761 JP2005015761W WO2006025383A1 WO 2006025383 A1 WO2006025383 A1 WO 2006025383A1 JP 2005015761 W JP2005015761 W JP 2005015761W WO 2006025383 A1 WO2006025383 A1 WO 2006025383A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
image
optical disc
recording layer
substituted
Prior art date
Application number
PCT/JP2005/015761
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kubo
Hisashi Mikoshiba
Michihiro Shibata
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2006025383A1 publication Critical patent/WO2006025383A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/38Visual features other than those contained in record tracks or represented by sprocket holes the visual signals being auxiliary signals
    • G11B23/40Identifying or analogous means applied to or incorporated in the record carrier and not intended for visual display simultaneously with the playing-back of the record carrier, e.g. label, leader, photograph
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00455Recording involving reflectivity, absorption or colour changes

Definitions

  • the present invention relates to an optical disc, and more particularly, to an optical disc having an image recording layer capable of recording a visible image.
  • optical recording medium capable of recording information only once with a laser beam
  • This optical disc is also referred to as a recordable CD (so-called CD-R)
  • CD-R recordable CD
  • its typical structure is a recording layer made of organic dye power on a transparent disk-like substrate, a light reflecting layer made of metal such as gold, and the like.
  • a protective layer made of resin is provided in this order in a laminated state.
  • Information is recorded on the CD-R by irradiating the CD-R with near-infrared laser light (usually laser light having a wavelength of around 780 nm). The information is recorded by absorbing the water and raising the temperature locally, causing physical or chemical changes (eg pit formation) and changing its optical properties.
  • reading (reproduction) of information is also performed by irradiating laser light with the same wavelength as the recording laser light, and it does not change from the part (recording part) where the optical characteristics of the recording layer have changed.
  • Information is reproduced by detecting the difference in reflectance from the part (unrecorded part).
  • DVD-R write-once digital versatile disc
  • This DVD-R has a transparent disk shape with a guide groove (pre-doop) for tracking the irradiated laser light that is narrower than half of the CD-R (0.74-0.8 m).
  • Two discs each having a recording layer made of a dye on a substrate, and usually a light reflecting layer on the recording layer, and further a protective layer if necessary, or a disc-like protective substrate having the same shape as the disc Has a structure in which the recording layer is bonded inside with an adhesive.
  • the optical disc has a music title recorded on the recording surface, a title for identifying the recorded data, etc. on the surface opposite to the recording surface on which the music data is recorded.
  • a label with visible information printed on it is manufactured by printing a title or the like on a circular label sheet in advance with a printer or the like, and sticking the label sheet on a surface opposite to the recording surface of the optical disk.
  • an optical recording medium in which a laser marker is used on the surface opposite to the recording surface to change the surface and background contrast for display (for example, Patent Document 1). See) o
  • a high-capacity gas laser such as a carbon dioxide laser with low sensitivity must be used, and the visible image formed by the laser light as described above has low contrast and visibility. It was inferior.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 66617
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-272240
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-103180
  • the present invention has been made in view of the above conventional problems, and an object thereof is to achieve the following objects. That is,
  • An object of the present invention is to provide an optical disc capable of recording a visible image with good visibility on the image recording layer in an optical disc having an image recording layer capable of recording a visible image using a laser beam. There is to do.
  • An optical disc comprising a substrate having a groove and an image recording layer formed on the substrate and capable of recording a visible image by irradiation with laser light, wherein the image recording layer has a reflectance before recording. It is 7 to 45% at a wavelength of 660 nm, 35% or less at a wavelength of 500 nm, and the reflectivity at a wavelength of 660 nm after recording is reduced by 50% or more compared to that before recording, and reflection in the wavelength range of 450 to 550 nm.
  • the optical disk is characterized in that the reflectance change at the wavelength at which the rate of increase is maximum increases by 30% or more with respect to the reflectance before recording.
  • An optical disc having a substrate having a groove and an image recording layer formed on the substrate and capable of recording a visible image by irradiation with a laser beam, wherein the image recording layer is a layer before recording.
  • the reflectance is 7 to 50% at a wavelength of 780 nm, 45% or less at a wavelength of 500 nm, and the reflectance at a wavelength of 780 nm after recording is reduced by 30% or more compared to before recording, and the wavelength is in the range of 450 to 600 nm.
  • the optical disc is characterized in that the change in reflectance at the wavelength where the reflectance increase at the maximum is increased by 30% or more with respect to the reflectance before recording.
  • An optical disc having a substrate having no groove and an image recording layer formed on the substrate and capable of recording a visible image by laser light irradiation, wherein the image recording layer is a recording layer.
  • the reflectivity before recording is 5-25% at a wavelength of 660 nm and 25% or less at a wavelength of 550 nm, and the reflectivity at a wavelength of 660 nm after recording is increased by 30% or more compared to before recording, and the wavelength of 450-550 nm Reflectance at the wavelength where the reflectance increase in the range is maximum
  • An optical disc characterized in that the change increases by 70% or more with respect to the reflectance before recording.
  • the reflectance can be measured using a spectrophotometer.
  • ⁇ 5> The optical disc according to any one of ⁇ 1>, force ⁇ 3>, wherein the image recording layer contains a phthalocyanine dye.
  • ⁇ 7> The optical disc according to any one of ⁇ 1> to ⁇ 3>, wherein the image recording layer strength includes a cyanine dye and a phthalocyanine dye.
  • ⁇ 8> The optical disc according to any one of ⁇ 1> to ⁇ 3>, wherein the image recording layer strength includes a cyanine dye and an oxonol dye.
  • An optical disc having a substrate and an image recording layer formed on the substrate and capable of recording a visible image by laser light irradiation, wherein the image recording layer contains a cyanine dye.
  • An optical disc characterized by the following.
  • An optical disc having a substrate and an image recording layer formed on the substrate and capable of recording a visible image by irradiation with a laser beam, wherein the image recording layer contains an oxonol dye
  • An optical disc having a substrate and an image recording layer formed on the substrate and capable of recording a visible image by irradiation with a laser beam, the image recording layer comprising a cyanine dye and an oxonol dye
  • An optical disc characterized by including:
  • An optical disc having a substrate and an image recording layer formed on the substrate and capable of recording a visible image by laser irradiation, wherein the image recording layer contains a cyanine dye and a phthalocyanine dye
  • An optical disc characterized by the above.
  • an optical disc having an image recording layer capable of recording a visible image using laser light a visible image with good visibility can be recorded on the image recording layer.
  • Capable optical discs can be provided.
  • the optical disc of the present invention is an optical disc having a substrate having a groove and an image recording layer formed on the substrate and capable of recording a visible image by irradiation with a laser beam.
  • the reflectance of the image recording layer before recording is 7 to 45% at a wavelength of 660 nm, 35% or less at a wavelength of 500 nm, and the reflectance at a wavelength of 660 nm after recording is 50% compared to before recording.
  • the reflectance change at the wavelength where the increase in reflectance in the wavelength range of 450 to 550 nm is maximized is increased by 30% or more with respect to the reflectance before recording.
  • the first aspect is an optical disk that has a groove in a substrate on which an image recording layer is formed and records an image with a laser beam having a wavelength of 650 to 670 nm, and specifically includes an optical disk having a DVD structure. Furthermore, the optical disc of this embodiment can be configured as a blue ray disc (BD) t.
  • BD blue ray disc
  • the optical disc of the present invention is an optical disc having a substrate having a groove and an image recording layer formed on the substrate and capable of recording a visible image by irradiation with a laser beam.
  • the reflectance of the image recording layer before recording is 7 to 50% at a wavelength of 780 nm, 45% or less at a wavelength of 500 nm, and the reflectance at a wavelength of 780 nm after recording is 30% as compared to before recording. It is characterized by a change in reflectance at a wavelength where the increase in reflectance in the wavelength range of 450 to 600 nm is maximized and by more than 30% of the reflectance before recording.
  • the second aspect is an optical disk that records an image with a laser beam having a wavelength of 770 to 790 nm, and specifically includes an optical disk having a CD-R configuration.
  • an information recording layer, an image recording layer, a protective layer, or a cover layer are formed in this order on a substrate.
  • the optical disc of the present invention includes a substrate having no groove, and an image recording layer formed on the substrate and capable of recording a visible image by laser light irradiation.
  • the reflectance of the image recording layer before recording is 5 to 25% at a wavelength of 660 nm and 25% or less at a wavelength of 550 nm, and the reflectance at a wavelength of 660 nm after recording is higher than that before recording.
  • the reflectance change at the wavelength where the increase in reflectance in the wavelength range of 450 to 550 nm is maximum is 70% or less of the reflectance before recording. It is characterized by an increase.
  • the third aspect differs from the first aspect in that the substrate on which the image recording layer is formed does not have a groove. In other words, when the substrate on which the image recording layer is formed does not have a groove, a visible image with good visibility can be recorded by the third aspect.
  • optical disk of the present invention will be described below.
  • the type of the optical disk of the present invention may be any of a read-only type, a write-once type, a rewritable type, etc., but is preferably a write-once type.
  • the recording format is not particularly limited, such as phase change type, magneto-optical type, and dye type, but is preferably a dye type.
  • Examples of the layer configuration of the optical disc of the present invention include the following configurations.
  • each layer may be composed of one layer or a plurality of layers.
  • the information recording layer is a layer in which code information (encoded information) such as digital information is recorded.
  • code information encoded information
  • Examples of the information recording layer include a dye type, a write-once type, a phase change type, and a magneto-optical type. A mold is preferred.
  • Specific examples of the dye contained in the dye-type information recording layer include cyanine dyes, oxonol dyes, metal complex dyes, azo dyes, and phthalocyanine dyes.
  • the dyes described in JP-A No. 334207, JP-A Nos. 2000-43423, 2000-108513, 2000-158818 and the like are preferably used.
  • the recording material is not limited to a dye, but a triazole compound, a triazine compound, a cyanine compound, a merocyanine compound, an aminobutadiene compound, a phthalocyanine compound, a cinnamic acid compound, a piorogen compound, an azo compound, an oxonol compound.
  • Organic compounds such as compounds, benzoxazole compounds, and benzotriazole compounds are also preferably used. Of these compounds, cyanine compounds, aminobutadiene compounds, oxonol compounds, benzotriazole compounds, and phthalocyanine compounds are particularly preferable.
  • the dye for the recording layer it is preferable to use a dye or a combination of dyes used in the image recording layer described later.
  • the information recording layer is prepared by dissolving a recording material such as a dye in a suitable solvent together with a binder or the like to prepare a coating solution, and then coating the coating solution on a substrate to form a coating film. It is formed by drying.
  • concentration of the recording substance in the coating solution is generally in the range of 0.01 to 15% by mass, preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.5 to 5% by mass, and most preferably Preferably it is the range of 0.5-3 mass%.
  • the formation of the information recording layer is preferably force solvent coating which can be performed by a method such as vapor deposition, sputtering, CVD, or solvent coating.
  • Solvents for the coating solution include esters such as butyl acetate, lactic acid ethyl, and cellosolve acetate; ketones such as methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone; dichloromethane, 1,2-dichloroethane, and black mouth.
  • Chlorinated hydrocarbons such as form; Amides such as dimethylformamide; Hydrocarbons such as methylcyclohexane; Dibutyl ether, Ethers such as tilether, tetrahydrofuran and dioxane; alcohols such as ethanol, n-propanol, isopropanol, n-butanol and diacetone alcohol; fluorine-based solvents such as 2, 2, 3, 3-tetrafluoropropanol; ethylene glycol Mention may be made of Daricol ethers such as monomethinoreethenole, ethyleneglycololemonoretinoatere, and propyleneglycololemonomethylether.
  • Daricol ethers such as monomethinoreethenole, ethyleneglycololemonoretinoatere, and propyleneglycololemonomethylether.
  • the above solvents can be used alone or in combination of two or more in consideration of the solubility of the dye used.
  • Various additives such as anti-oxidation agents, UV absorbers, plasticizers and lubricants may be added to the coating solution depending on the purpose.
  • binder examples include natural organic polymer substances such as gelatin, cellulose derivatives, dextran, rosin and rubber; and carbonized substances such as polyethylene, polypropylene, polystyrene and polyisobutylene.
  • Hydrogen-based resin Poly-salt-bule, poly-salt-vinylidene, poly-salt-bule-polyacetate copolymer, etc .; Acrylics such as polymethyl methacrylate, polymethyl methacrylate
  • the amount of binder used is generally in the range of 0.01 to 50 times the mass of the dye, preferably 0.1 to It is in the range of 5 times the amount.
  • Examples of the solvent application method include a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, and a screen printing method.
  • the information recording layer may be a single layer or a multilayer.
  • the thickness of the information recording layer is generally in the range of 10 to 5 OOnm, preferably in the range of 15 to 300 nm, more preferably in the range of 20 to 150 nm.
  • the information recording layer may contain various anti-fading agents in order to improve the light resistance of the information recording layer.
  • anti-fading agent singlet oxygen quencher is generally used.
  • singlet oxygen quencher those already described in publications such as known patent specifications can be used. Specific examples thereof include JP-A-58-1756. 93, 59-31194, 60-18387, 60-19586, 60-19587, 60-35054, 60-36190, 60-36191, 60-44554 60-44555, 60-44389, 60-44390, 60-54892, 60-47069, 68-209995, JP 4-25492, JP 1-38680 And JP-A-6-26028, German Patent No. 350399, and the Journal of the Japan Society for Acupuncture, October 1992, page 1141, and the like.
  • the amount of the antifading agent such as the singlet oxygen quencher used is usually in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 45% by mass, based on the mass of the dye. More preferably, it is in the range of 3 to 40% by mass, particularly preferably in the range of 5 to 25% by mass.
  • phase change type information recording layer examples include Sb—Te alloys, Ge—S b—Te alloys, Pd—Ge—Sb—Te alloys, Nb—Ge—Sb—Te alloys. , Pd—Nb—Ge—S b—Te alloy, Pt—Ge—Sb—Te alloy, Co—Ge—Sb—Te alloy, In—Sb—Te alloy ⁇ Ag—In—Sb—Te alloy, Ag—V — In—Sb—Te alloy, Ag—Ge—In—Sb—Te alloy, and the like.
  • Ge-Sb-Te alloy and Ag-In-Sb-Te alloy are preferable because they can be rewritten many times.
  • the thickness of the phase change information recording layer is preferably 10 to 50 nm, more preferably 15 to 30 nm.
  • phase change type information recording layer can be formed by a vapor phase thin film deposition method such as a sputtering method or a vacuum evaporation method.
  • the substrate of the optical disk of the present invention can be arbitrarily selected from various materials used as a substrate for conventional optical disks, even for the information recording layer and the image recording layer.
  • the substrate material examples include acrylic resin such as glass, polycarbonate, and polymethylmethalylate, salted resin resin such as polychlorinated bulle and salted resin copolymer, epoxy resin, and triacetic acid.
  • acrylic resin such as glass, polycarbonate, and polymethylmethalylate
  • salted resin resin such as polychlorinated bulle and salted resin copolymer
  • epoxy resin and triacetic acid.
  • examples thereof include cellulose (TAC), amorphous polyolefin, and polyester, and these may be used in combination as desired.
  • These materials can be used as a film or as a rigid substrate. .
  • point polycarbonate such as moisture resistance, dimensional stability and price is preferable.
  • the thickness of the substrate is preferably 5 to 1200 m, and more preferably 10 to 600 m, more than force S.
  • 0.1 to 1.2 mm is preferable, and 0.2 to 1.1 mm is more preferable.
  • the substrate on the side on which the information recording layer is provided has a rack pitch of 700 to 800 nm, a group depth of 100 to 200 nm, and a groove width of 250 when laser light having a wavelength of about 660 nm is used for information recording or reproduction. ⁇ 400 nm, group tilt angle: preferably 30 to 70 degrees.
  • track pitch 300 to 400 nm
  • group depth 20 to: LOOnm
  • groove width 100 to 200 nm
  • group inclination angle 30 to 70
  • track pitch 1.5 to 1.7 m
  • group depth 100 to 220 nm
  • groove width 400 to 800 nm
  • group tilt Angle 30 to 70 degrees is preferable.
  • An undercoat layer is provided on the substrate surface side (the surface on which the group is formed) on the side where the information recording layer is provided for the purpose of improving flatness, improving adhesion, and preventing deterioration of the information recording layer. May be provided.
  • the material for the undercoat layer examples include polymethyl methacrylate, acrylic acid 'methacrylic acid copolymer, styrene' maleic anhydride copolymer, polybulal alcohol, N-methylol acrylamide, styrene 'bulutoluene copolymer, Polymeric substances such as chlorosulfonated polyethylene, nitrocellulose, polychlorinated butyl, chlorinated polyolefin, polyester, polyimide, butyl acetate, butyl chloride copolymer, ethylene, butyl acetate copolymer, polyethylene, polypropylene, polycarbonate; And surface modifiers such as silane coupling agents.
  • the undercoat layer is prepared by dissolving or dispersing the above substances in an appropriate solvent to prepare a coating solution, and then applying this coating solution to the substrate surface by a coating method such as spin coating, dip coating, or extrusion coating. Can be formed.
  • the thickness of the undercoat layer is generally in the range of 0.005 to 20 111, and preferably in the range of 0.01 to 10 / ⁇ ⁇ .
  • a tracking group (groove) is also provided on the substrate on which the image recording layer is provided. It is provided.
  • the group track pitch is in the range of 0.7 to 200 / ⁇ ⁇ .
  • a range of ⁇ ⁇ is more preferable.
  • a range of 1.5 to 50 / ⁇ ⁇ is more preferable.
  • the depth of the groove should be 50 to 300 nm, preferably 80 to 250 nm. It is more preferable than the force S, and more preferably 100 to 200 nm.
  • the width of the groove is preferably 100 to 500 nm, more preferably 200 to 400 nm, and even more preferably 250 to 350 nm.
  • the inclination angle of the group is preferably 30 to 70 degrees.
  • the group track pitch is preferably in the range of 1 to 200 / ⁇ ⁇ 1.6 to: More preferably, it is in the range of 3 to 50 m.
  • the depth of the groove is preferably 100 to 300 nm, 130 to 250 nm. More preferably, it is more preferably 150 to 200 nm.
  • the width of the groove is preferably 100 to: LOOOnm, more preferably 200 to 700 nm, more preferably 300 to 60 Onm.
  • the inclination angle of the group is preferably 30 to 70 degrees.
  • the optimum range of the groove shape may differ depending on the wavelength of the laser beam, NA, and substrate thickness.
  • a reflective layer may be provided adjacent to the information recording layer.
  • the light-reflective material that is the material of the reflective layer is a material that has a high reflectivity for laser light. Examples include Mg, Se, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. , Mn, Re, Fe, Co, Ni ⁇ Ru, Rh, Pd, Ir, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi Metals and metalloids such as stainless steel Can be mentioned. These substances may be used alone or in combination of two or more or as an alloy.
  • the reflective layer can be formed on the substrate or the information recording layer, for example, by vapor deposition, sputtering or ion plating of the light reflective material.
  • the thickness of the reflective layer is generally in the range of 10 to 300 nm, and preferably in the range of 50 to 200 nm.
  • the adhesive layer is an arbitrary layer formed to improve the adhesion between the reflective layer or protective layer on the information recording layer side and the substrate or protective layer on the image recording layer side.
  • a material constituting the adhesive layer As a material constituting the adhesive layer, a material having a small curing shrinkage rate is preferable in order to prevent warping of the disk even when a photocurable resin is preferred.
  • a photocurable resin examples include 11 SD curable resin (UV curable adhesive) such as “SD-640” and “30-347” manufactured by Dainippon Ink and Chemicals, Inc. Can be mentioned.
  • the thickness of the adhesive layer is preferably in the range of 1 to 1000 m, more preferably in the range of 5 to 500 m, and particularly preferably in the range of 10 to 100 / ⁇ ⁇ in order to provide elasticity.
  • visible images desired by the user such as characters, figures, and patterns are recorded.
  • visible images include disc titles, content information, content thumbnails, related patterns, design patterns, copyright information, recording date / time, recording method, recording format, barcodes, and the like.
  • the visible image recorded in the image recording layer means a visually recognizable image, and a character
  • the dye described in the above-described information recording layer is preferably used as a constituent material of the image recording layer as long as it can record image information such as characters, images, and patterns by laser irradiation. Can be used.
  • the image recording layer has a reflectance power before recording of 7 to 45% at a S wavelength of 660 nm, 35% or less at a wavelength of 500 nm, and a wavelength after recording.
  • the reflectance at 660 nm is reduced by 50% or more compared to before recording, and the reflectance change at the wavelength where the reflectance increase in the wavelength range of 450 to 550 nm is maximum is 30% or more with respect to the reflectance before recording. To increase.
  • the image recording layer has a reflectance before recording of 7 to 50% at a wavelength of 780 nm and 45% or less at a wavelength of 500 nm, and a reflectance at a wavelength of 780 nm after recording is before the recording.
  • the reflectivity change at the wavelength where the increase in reflectivity is maximum in the wavelength range of 450 to 600 nm is increased by 30% or more.
  • the image recording layer has a reflectance before recording of 5 to 25% at a wavelength of 660 nm, 25% or less at a wavelength of 550 ⁇ m, and a reflectance at a wavelength of 660 nm after recording of
  • the change in reflectance at the wavelength where the increase in reflectance in the wavelength range of 450 to 550 nm is maximum increases by more than 70% of the reflectance before recording.
  • FIG. 1 is a graph showing the change in reflectance with respect to the laser wavelength of the image recording layer of the optical disk of Example 1 to be described later.
  • the solid line indicates before image recording, and the broken line indicates after image recording (recording power 5 mW).
  • the one-dot chain line shows after image recording (recording power 8 mW).
  • the reflectance is 14% at a wavelength of 500 nm
  • the reflectance after recording at 8 mW is 28% at a wavelength of 660 nm
  • the increase in reflectance in the wavelength range of 450 to 60 Onm is the largest.
  • the reflectance change at a certain wavelength increases by about 60% with respect to the reflectance before recording.
  • the reflectance increases before and after a wavelength of 510 to 630 nm, but decreases at a wavelength of 630 nm or more.
  • the color tone has a tendency of yellowish green to green and qualitatively corresponds to the shift of the spectral maximum.
  • the image recording layer is set as described above, even when an image is recorded with a single laser beam having a wavelength of 650 to 670 nm, the image recording layer can be recorded for a wavelength of 500 to 550 nm. A difference in reflectance occurs between the area and the unrecorded area, and a visible image with good visibility is recorded.
  • the reflectance with respect to light in the wavelength region of 450 to 550 nm increases before and after image recording, compared to the reflectance with respect to light with the wavelength before image recording. Specifically, an increase of 20% or more is preferable, and an increase of 50% is more preferable.
  • image recording was performed by irradiating a laser beam having a wavelength of 660 nm.
  • setting the image recording layer whose reflectance changes as described above before and after image recording can be realized by, for example, appropriately selecting a dye used for the image recording layer. Then, these dyes are dissolved in a suitable solvent together with a binder or the like to prepare a coating solution. Then, the coating solution is applied onto a substrate to form a coating film, and then dried to form an image recording layer. It is formed.
  • the concentration of the recording substance in the coating liquid is generally in the range of 0.01 to 15 wt%, preferably from 0.1 to 10 wt%, more preferably in the range of 0.5 to 5 mass 0/0 The most preferable range is 0.5 to 3% by mass.
  • the dye include cyanine dyes, imidazoquinoxaline dyes, pyrylium-thiopyrylium dyes, azurenium dyes, sillilium dyes, azo dyes, Ni, Cr metal complex salt dyes (phthalocyanine dyes) Azo metal chelate dyes, pyromethene metal chelate dyes), naphthoquinone dyes, anthraquinone dyes, indophenol dyes, indo-phosphorus dyes, triphenylmethane dyes, merocyanine dyes, oxonol dyes, amino Um dyes, UV absorbers, among them cyanine dyes, phthalocyanine dyes, azo dyes (including metal chelate dyes), merocyanine dyes, o Xonol dyes and ultraviolet absorbers are preferably used.
  • the combinations of the dyes are as follows: oxonol dye and cyanine dye; oxonol dye and azo dye; oxonol dye and another oxonol dye; oxonol dye and phthalocyanine dye; oxonol dye and pyromethene dye; Preferred examples of cyanine dyes; cyanine dyes and azo dyes; cyanine dyes and phthalocyanine dyes; cyanine dyes and pyromethene dyes; azo dyes and phthalocyanine dyes; azo dyes and pyromethene dyes; phthalocyanine dyes and pyromethene dyes Can do.
  • cyanine dyes or phthalocyanine dyes are preferred, and the combination of both is preferred.
  • a cyanine dye and a phthalocyanine dye are mixed or used, or when a cyanine dye and an oxonol dye are mixed, an optical disk satisfying the requirements of the first aspect of the present invention can be obtained.
  • the content (mass basis) of cyanine dye is preferably 10 to 45%, and preferably 20 to 40%. More preferred is 25 to 35%.
  • the image recording layer can also be an information recording layer by appropriately selecting the type of dye.
  • the content ratio (mass ratio) between the dyes is 99, except when the dyes are used in combination, when the cyanine dye and the phthalocyanine dye are used in combination, or when the cyanine dye and the oxonol dye are mixed. : 1-1: 99 is preferred 95: 5-30: 70 is more preferred 90: 10-40: 60 is more preferred!
  • the cyanine dye represented by the following general formula (1) It is preferable that
  • Za and Za each independently represents a group of atoms forming a heterocycle.
  • Ma 21 , Ma 22 and Ma 23 each independently represent a substituted or unsubstituted methine group.
  • ka2 represents an integer of 0 force 3, and when ka2 is 2 or more, multiple Ma 21 and Ma 22 may be the same or different.
  • R 1Q1 and R 1Q2 each independently represent a substituent.
  • Q2 represents an ion that neutralizes the charge, and y2 represents a number necessary for neutralizing the charge.
  • Ma 21 , Ma 22 and Ma 23 each independently represents a substituted or unsubstituted methine group.
  • the substituent includes a halogen atom, a substituted or unsubstituted alkyl group (including a cycloalkyl group and a bicycloalkyl group), a substituted or unsubstituted alkenyl group (a cycloalkenyl group, a bicycloalkenyl group).
  • the substituent represents a halogen atom (for example, a chlorine atom, a bromine atom, an iodine atom), an alkyl group [a linear, branched, cyclic substituted or unsubstituted alkyl group.
  • a halogen atom for example, a chlorine atom, a bromine atom, an iodine atom
  • an alkyl group [a linear, branched, cyclic substituted or unsubstituted alkyl group.
  • alkyl groups preferably alkyl groups having 1 to 30 carbon atoms such as methyl, ethyl, n propyl, isopropyl, t-butyl, n-octyl, eicosyl, 2-chloroethyl, 2 cyanoethyl, 2 ethylhexyl), cyclo An alkyl group (preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl), a bicycloalkyl group (preferably having a carbon number) 5 to 30 substituted or unsubstituted bicycloalkyl groups, that is, monovalent groups in which one hydrogen atom is removed from a bicycloalkane having 5 to 30 carbon atoms, for example, bicyclo [1,2,2] heptane 2-yl,
  • alkyl group for example, an alkyl group of an alkylthio group
  • a alkenyl group [represents a linear, branched or cyclic substituted or unsubstituted alkenyl group. They include alkenyl groups (preferably substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms, such as bur, allyl, prenyl, galle, oleyl), cycloalkenyl groups (preferably carbon number).
  • 3 to 30 substituted or unsubstituted cycloalkenyl groups that is, monovalent groups in which one hydrogen atom of a cycloalkene having 3 to 30 carbon atoms has been removed.
  • Pentene-1-yl, 2-cyclohexene-1-yl), bicycloalkenyl group substituted or unsubstituted bicycloalkenyl group, preferably substituted or unsubstituted having 5 to 30 carbon atoms
  • This is a monovalent group in which one hydrogen atom of a bicycloalkene having one double bond is removed for example, bicyclo [2,2,1] hepto-2-en-1-yl, bicyclo It includes [2, 2, 2] oct.
  • alkynyl group preferably a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, such as ethynyl, propargyl, or trimethylsilylethyl group
  • aryl group preferably a substituted or unsubstituted group having 6 to 30 carbon atoms.
  • Substituted aryl groups such as phenyl, p-tolyl, naphthyl, m-chloroform, o-hexadecanolaminophenol, heterocyclic groups (preferably 5- or 6-membered substitution) Or a monovalent group obtained by removing one hydrogen atom from an unsubstituted aromatic or non-aromatic heterocyclic compound, and more preferably a 5- or 6-membered aromatic having 3 to 30 carbon atoms.
  • Heterocyclic ring groups such as acetyl, bivaloyl, 2-chloroacetyl, stearyl benzyl, benzoyl, ⁇ - ⁇ -octyloxyphenylcarbonyl, 2-pyridylcarbonyl, 2 furylcarbyl), aryloxycarbonyl group (preferably carbon A substituted or unsubstituted aryloxycarbonyl group of the number 7 to 30 such as phenoxycarbol, ⁇ chlorophenoxycarbonyl, m-nitrophenoxy Carbonyl, p-t Buchinore Fuenokishikarubo - Le), alkoxycarbonyl - Le group (preferably, substitution or unsubstituted alkoxycarbonyl of 2 to 30 carbon atoms carbo - group, for example, methoxycarbonyl - le, Etokishika Rubonyl, t-butoxycarbol, n-octadecyloxycarbole), force ruber
  • the substituent is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group.
  • the substituted or unsubstituted alkyl group an alkyl group having 1 to 20 carbon atoms (for example, methinole, ethinole, propinole, petitnole, i-butinole, t-butinole, i aminole, cyclopropyl, cyclohexyl, benzyl, phenethyl) ).
  • an alkyl group In the case of representing an alkyl group, they are connected to each other to form a carbocyclic ring (for example, cyclopropyl, cyclobutyl, cyclopentinole, cyclohexenole, 2-methylenocyclohexinole, cycloheptinole, cyclooctyl, etc.) or a heterocyclic ring ( For example, piperidyl, chromal, morpholyl, etc.) may be formed.
  • the substituent is an alkyl group, it is preferably a linear alkyl group or a cyclic alkyl group having 1 to 8 carbon atoms, and most preferably a linear (linear or linear) group having 1 to 5 carbon atoms.
  • (Branched) alkyl group or a cyclic alkyl group having 1 to 8 carbon atoms (preferably a cyclohexyl ring) in which the alkyl groups are bonded to each other to form a ring, or a substituted alkyl group having 1 to 20 carbon atoms (for example, , Benzyl, phenethyl).
  • Ma 21 , Ma 22 and Ma 23 are preferably unsubstituted rather than substituted.
  • R 1M and R 1Q2 each independently represent a substituent, but a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkke- Preferred is a alkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted heterocyclic group.
  • substituents which may be further substituted in these groups include the substituents in the case where the above-mentioned Ma 21 , Ma 22 and Ma 23 are substituted.
  • R 1M and R 1Q2 are preferably a substituted or unsubstituted alkyl group, further a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, and further having 18 carbon atoms. It is an unsubstituted alkyl group.
  • R 1M and R 1Q2 may be the same or different, but are preferably the same.
  • Q2 represents the ion that neutralizes the charge, and y2 represents the number necessary for neutralizing the charge.
  • the ion represented by Q2 represents an anion depending on the charge of the dye molecule, and the ion represented by Q2 is an ion composed of an organic compound even if it is composed of an inorganic compound with no particular restriction.
  • the charge of the ion represented as Q2 may be monovalent or polyvalent.
  • Anions represented as Q2 include, for example, halogen anions such as salt silicate ions, bromide ions, fluoride ions, heteropolyacid ions such as sulfate ions, phosphate ions, hydrogen phosphate ions, and oxalates. Examples thereof include organic polyvalent anions such as ions, maleate ions, fumarate ions, and aromatic disulfonate ions, tetrafluoroborate ions, and hexafluorophosphate ions.
  • y2 represents a number necessary for neutralization of electric charge.
  • Q2 is a divalent anion
  • y2 is 1Z2
  • the whole Q2y2 can be considered as a monovalent anion.
  • ka2 represents an integer from 0 to 3
  • ka2 is 2 or more, a plurality of Ma 21 and Ma 22 may be the same or different.
  • cyanine dyes represented by the general formula (1) cyanine dyes represented by the following general formula (2) are preferable.
  • [Za ⁇ Za each independently represents an atomic group forming a carbocyclic or heterocyclic ring.
  • R m, R 122, R, R, R 125, R 126, R m are each independently or hydrogen atom or a substituent.
  • ka3 represents an integer from 0 to 3, and when ka3 is 2 or more, a plurality of R m and R 122 may be the same or different.
  • Q3 represents an ion that neutralizes the charge, and y3 represents a number necessary for neutralizing the charge. ]
  • R m , R 122 , and R 123 are a hydrogen atom or a substituent, and the substituent is Ma 21 in the general formula (1), It has the same meaning as the substituent group for substituting ma 23, and preferred examples are also the same.
  • R 1, R 125 , R 126 , and R m are a hydrogen atom or a substituent, and the substituent is synonymous with the substituent when M 21 , M 2 2 , and M 23 are substituted, and is preferable.
  • the example is similar.
  • R la and R 2a have the same meanings as R 1Q1 and R 1Q2 in formula (1), and preferred examples thereof are also the same.
  • ka 3 is synonymous with ka 2 in the general formula (1), and preferred examples are also the same.
  • Q3 represents an ion for neutralizing the charge
  • y3 represents a number necessary for neutralizing the charge.
  • the ion represented by Q3 represents an anion depending on the charge of the dye molecule, and the ion represented by Q3 is an ion composed of an organic compound, even if it is composed of an inorganic compound with no particular restriction. It does not matter. Further, the charge of the ion represented as Q3 may be monovalent or polyvalent.
  • Anions represented as Q3 include, for example, salt anions, bromide ions, halogen anions such as fluoride ions, heteropolyacid ions such as sulfate ions, phosphate ions, and hydrogen phosphate ions.
  • organic polyvalent anions such as oxalate ion, maleate ion, fumarate ion and aromatic disulfonate ion, tetrafluoroborate ion and hexafluorophosphate ion.
  • y3 represents a number necessary for charge neutralization. When Q3 is a divalent anion, if y3 is 1Z 2, the entire Q3y3 can be considered as a monovalent anion.
  • the cyanine dye represented by the general formula (1) used in the present invention is Ma 21 , It is preferable that Ma 23 is an unsubstituted methine group, and R 1Q1 and R 1Q2 are preferably each independently an unsubstituted alkyl group having 1 to 8 carbon atoms. Za Za 22 is independently In addition, Ka2 which preferably forms an indylene ring is 1 or 2, Q2 is a monovalent anion, and Y2 is 1.
  • R, R 125 , R 126 and R m are each independently a substituted or unsubstituted alkyl group, and R m , R 122 and R m are hydrogen.
  • Za 31 and Za 32 which are preferred by atoms, preferably each independently form a benzene ring or a naphthalene ring.
  • Ka3 is preferably 1 or 2
  • Q3 is preferably an inorganic or organic anion.
  • Y3 is preferably 1.
  • the cyanine dye according to the present invention (preferably the dye compound represented by the above general formula (2)) has a complex refractive index coefficient n (real part: refractive index) at the recording laser wavelength due to the optical characteristics of the amorphous film, k (Imaginary part: extinction coefficient) is preferably 1.50 ⁇ n ⁇ 3.0, 0.9 ⁇ k ⁇ 3.00. More preferably, 1.50 ⁇ n ⁇ 2.00, 0.90 ⁇ k ⁇ 2.00. most Preferably, 1.60 ⁇ n ⁇ l.90, 1.20 ⁇ k ⁇ l.50.
  • thermal decomposition temperature in the range of 100 ° C to 350 ° C are preferred. Furthermore, the thing in the range of 150 degreeC-300 degreeC is preferable. Furthermore, those in the range of 200 ° C to 300 ° C are preferred.
  • the phthalocyanine dye is preferably a phthalocyanine dye represented by the following general formula (3).
  • R ai to R a 8 and R ⁇ ⁇ 8 each independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, a formyl group, a carboxyl group, a sulfo group, or a carbon atom number of 1 Alkyl group having 20 to 20 carbon atoms, aryl group having 6 to 14 carbon atoms, heterocyclic group having 1 to 10 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 14 carbon atoms, carbon atom An acyl group having 2 to 21 carbon atoms, an alkylsulfone having 1 to 20 carbon atoms Group, 6 to 20 carbon atoms, carbamoyl group having 1 to 25 carbon atoms, sulfamoyl group having 0 to 32 carbon atoms, alkoxycarbonyl group having 2 to 21 carbon atoms, carbon atom Represents an aryloxy
  • M is 2 Hydrogen field Represents a metal having a metal, metal Sani ⁇ or ligands.
  • R o all of 1 to R 8 are not hydrogen atoms at the same time.
  • R a 1 and R a 2 either R a 3 And R a 4 , either R a 5 and R a 6 ! While either displacement,! Of R a 7 and R a 8, this is particularly preferred instrument not when in displacement or the other four substituents are hydrogen atom at the same time, all the R j8 i R jS 8 simultaneously It is preferably a hydrogen atom.
  • examples of R ai ⁇ R a 8 and R ⁇ i ⁇ R ⁇ 8 is a hydrogen atom, a halogen atom, a carboxyl group, a sulfo group, a carbon An alkyl group having 1 to 16 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkoxy group having 1 to 16 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and an alkyl sulfone having 1 to 16 carbon atoms.
  • aryl group having 6 to 16 carbon atoms, sulfamoyl group having 2 to 20 carbon atoms, alkoxycarbonyl group having 2 to 17 carbon atoms, aryl having 7 to 11 carbon atoms More preferable are the ability to mention an oxycarbonyl group, an acylamino group having 2 to 18 carbon atoms, and a sulfo-lumino group having 1 to 18 carbon atoms, more preferably a hydrogen atom, a halogen atom, a carboxyl group, a sulfo group, An alkoxy group having 1 to 16 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, an alkylsulfonyl group having 1 to 14 carbon atoms, an arylsulfol group having 6 to 14 carbon atoms, and 2 carbon atoms.
  • R ai to R a 8 and R ⁇ i to R ⁇ 8 further have a substituent! Examples of such substituents are listed below.
  • a linear or cyclic alkyl group having 1 to 20 carbon atoms for example, methyl group, ethyl group, isopropyl group, cyclohexyl group), aryl group having 6 to 18 carbon atoms (for example, a phenyl group, a chloro group) Mouth phenyl group, 2, 4 di-amyl benzyl group, 1 naphthyl group), alkenyl group having 2 to 20 carbon atoms (for example, bur group, 2-methylvinyl group), 2 carbon atoms ⁇ 20 alkyl groups (eg, ethur, 2-methylethyl, 2-feature), halogen atoms (eg, F, Cl, Br, I), cyan groups, hydroxyl groups, carboxyl groups,
  • a C2-C20 isacyl group (for example, acet
  • R ai to R a 8 and R ⁇ i to R ⁇ 8 are preferred as substituents, which are linear or cyclic having 1 to 16 carbon atoms Alkyl groups having 6 to 14 carbon atoms, alkoxy groups having 1 to 16 carbon atoms, aryloxy groups having 6 to 14 carbon atoms, halogen atoms, and alkoxycarbonyl groups having 2 to 17 carbon atoms. , A rubamoyl group having 1 to 10 carbon atoms, and an amide group having 1 to 10 carbon atoms. Among them, preferred are linear or cyclic alkyl groups having 1 to 10 carbon atoms, and 7 to 13 carbon atoms.
  • zinc is preferably a metal, but zinc, magnesium, copper, nickel or palladium is preferred, and copper, zinc or magnesium is particularly preferred. Copper is preferred.
  • phthalocyanine dye In the molecule of the phthalocyanine dye, it may have a substituted mouth-selling group. [0090] Specific examples of phthalocyanine dyes are shown below, [0091] [Table 1]
  • the phthalocyanine derivatives used in the present invention are, for example, co-authored by Shirai and Kobayashi, published by IBS Corporation, "Phthalocyanine-Chemistry and Function" (p. 1-62), CC Leznoff-ABP Lever, VCH-derived fT'Phthalocyanines—Properties and Applications (p. 1 to 54), etc., can be synthesized by citation or similar methods.
  • the oxonol dye is a compound represented by the following general formula (A), preferably a dye having a chain acidic nucleus or a cyclic acidic nucleus having a methine number of 1 and 7.
  • n is preferably an integer of 1 to 4.
  • Rs can form a ring. More preferred are oxonol dyes represented by the general formula (II), more preferred are dyes represented by the general formula (I), and still more preferred are dyes represented by the general formula (III).
  • dyes represented by the general formulas (IV), (V) ⁇ (VI), (VII), ( ⁇ '), (1) are also used.
  • R hydrogen or substituent, an integer greater than ⁇ ⁇ [0099] [Chemical 12]
  • the compound represented by the general formula (1) includes a compound example represented by the following general formula (III).
  • R U , R 12 , R 13 , and R 14 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted group.
  • R 21 and R 3 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted Substituted aryloxy group, substituted or unsubstituted hetero ring group, halogen atom, carboxyl group, substituted or unsubstituted alkoxycarbonyl group, cyano group, substituted or unsubstituted acyl group, substituted or unsubstituted force rubermoyl group , Amino group, substituted amino group, sulfo group, hydroxyl group, nitro group, substituted or unsubstituted alkyl sulfo-lamino group, substituted or unsubstituted arylsulfo-lamino group, substituted or unsubstituted force ruberamoylamino group,
  • R U , R 12 , R 13 , and R 14 in the general formula (1) are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted helium. Represents one of the terror ring groups.
  • Examples of the substituted or unsubstituted alkyl group represented by R u , R 12 , R 13 , and R 14 include alkyl groups having 1 to 20 carbon atoms (for example, methyl, ethyl, propyl, ptyl, i-butyl, t -Butyl, i-amyl, cyclopropyl, cyclohexyl, benzyl, phenethyl).
  • R u , R 12 , R 13 , and R 14 each represent an alkyl group, they are connected to each other to form a carbocycle (eg, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-methylcyclohexyl). , Cycloheptyl, cyclooctyl, etc.) or a heterocyclic ring (eg piperidyl, chromal, morpholyl, etc.).
  • a carbocycle eg, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-methylcyclohexyl.
  • Cycloheptyl, cyclooctyl, etc. or a heterocyclic ring (eg piperidyl, chromal, morpholyl, etc.).
  • the alkyl group represented by R U , R 12 , R 13 , or R 14 is preferably a chain alkyl group or a cyclic alkyl group having 1 to 8 carbon atoms, and most preferably a chain having 1 to 5 carbon atoms. (Straight chain or branched chain) alkyl group, R 11 and R 12 and R 13 and R "are combined to form a cyclic alkyl group having 1 to 8 carbon atoms (preferably cyclohexyl) Ring), a substituted alkyl group having 1 to 20 carbon atoms (for example, benzyl, phenethyl).
  • substituted or unsubstituted aryl group represented by R u , R 12 , R 13 , R "in the general formula (1) an aryl group having 6 to 20 carbon atoms (for example, phenyl, naphthyl)
  • the aryl group represented by R u , R 12 , R 13 , and R ′′ is preferably an aryl group having 6 to 10 carbon atoms.
  • the substituted or unsubstituted heterocyclic group represented by R U , R 12 , R 13 , R 14 in the general formula (1) is carbon.
  • a 5- or 6-membered saturated or unsaturated heterocyclic group that also constitutes an atom, nitrogen atom, oxygen atom, or sulfur nuclear power such as pyridyl group, pyrimidyl group, pyridazyl group, piperidyl group, triazyl group, Examples include pyrrolyl, imidazolyl, triazolyl, furanyl, thiophenyl, thiazolyl, oxazolyl, isothiazolyl, isoxazolyl and the like. In addition, these may be benzo-fused (eg, quinolyl group, benzimidazolyl group, benzothiazolyl group, benzoxazolyl group).
  • the substituted or unsubstituted heterocyclic group represented by R u , R 12 , R 13 and R 14 is preferably a substituted or unsubstituted heterocyclic group having 6 to carbon atoms: LO.
  • substituted or unsubstituted alkyl group the substituted or unsubstituted aryl group, and the substituted or unsubstituted heterocyclic group represented by R U , R 12 , R 13 , R ′′ in the general formula (1)
  • substituent include the substituent group S described later.
  • Examples of the substituent represented by S include an alkyl group having 1 to 20 carbon atoms (eg, methyl, ethyl, propyl, carboxymethyl, ethoxycarboromethyl), an aralkyl group having 7 to 20 carbon atoms (eg, benzyl, phenethyl).
  • An alkoxy group having 1 to 8 carbon atoms for example, methoxy, ethoxy
  • an aryl group having 6 to 20 carbon atoms for example, phenyl, naphthyl
  • an aryloxy group having 6 to 20 carbon atoms for example, phenoxy, Naphthoxy
  • heterocyclic groups eg, pyridyl, pyrimidyl, pyridazyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, 2 pyrrolidinone 1-yl, 2 piperidone 1-yl, 2, 4 dioxy Imidazolidine 3-yl, 2,4-dioxoxazolidine 3-yl, succinimide, phthalimide, maleimide), halogen atoms (eg fluorine , Chlorine, bromine, iodine), carboxyl group, C2-C10 alkoxycarbonyl group (e.g., methoxycarbol, e
  • Methanesulfamoyl In the case of a carboxyl group and a sulfo group, they may be in a salt state.
  • R 21 , R 22 , and R 3 in formula (1) are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, and a substituted group.
  • R 21 , R 22 and R 3 are preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 20 carbon atoms, substituted or unsubstituted An unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and a halogen atom, more preferably a hydrogen atom, a substituted or unsubstituted carbon atom having 1 to 10 carbon atoms.
  • Alkyl group substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted carbon number 2 to: L0 heterocyclic group, halogen atom is most preferred, hydrogen atom, unsubstituted carbon number 1
  • R 21 , R 3 may further have a substituent, and examples of the substituent that may have a substituent include the substituent group S described above.
  • n is 0, and R 21 and R 22 are both hydrogen atoms. Further, m is preferably 1, and R 21 , R 22 and R 3 are all hydrogen atoms.
  • M in the general formula (1) represents an integer of 0 or more, preferably an integer of 0 to 5 (0 or more and 5 or less), more preferably an integer of 0 to 3, particularly preferably 0 to 2. It is an integer.
  • a plurality of R 3 may be the same or different and each independently represents a hydrogen atom or the above substituent.
  • Z x + represents a cation
  • X represents an integer of 1 or more.
  • the cation represented by Z x + is preferably a quaternary ammonium ion, and more preferably 4, 4′— represented by the general formula (1-4) of JP-A-2000-52658. Bibilidium cations and 4,4′-bilibium cations disclosed in JP 2002-59652.
  • X is preferably 1 or 2.
  • the oxonol dye is preferably a compound represented by the general formula (II).
  • Za 25 and Za 26 are each independently selected from
  • Acid nuclei are represented by the general formula (I) Za 21 , Za 22 , Za 2 ⁇ Za 2 ⁇ Are the same as those formed, and the specific examples thereof are also the same.
  • the acidic nucleus formed by Za 5 and Za b is preferably indandione, pyrazolone, virazolinedione, or benzothiophene dioxide. Of these, pyrazolone is most preferred.
  • Ma 27 , Ma 28 , and Ma 29 are each independently a substituted or unsubstituted methine group, and Ma 21 in the general formula (I), It is synonymous with Ma 25 and Ma 26 , and specific examples and preferred examples are also the same.
  • Ma 27 , Ma 28 and Ma 3 ⁇ 4 are preferably unsubstituted methine groups.
  • Ka 23 represents an integer from 0 to 3.
  • Ka 3 ⁇ 4 is preferably both 2.
  • Q represents a monovalent cation that neutralizes the charge.
  • Ma 3 ⁇ 4 may be the same or different.
  • the dye having the structure represented by the general formula (II) is preferably one represented by the general formula (IV), (V), (VI), or (VII).
  • Substituents are halogen atoms, substituted or unsubstituted alkyl groups (including cycloalkyl groups and bicycloalkyl groups), substituted or unsubstituted alkyl groups (including cycloalkenyl groups and bicycloalkenyl groups), Replacement or nothing Substituted alkynyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, cyano group, hydroxyl group, nitro group, carboxyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group Group, substituted or unsubstituted silyloxy group, substituted or unsubstituted heterocyclicoxy group, substituted or unsubstituted acyloxy group, substituted or unsubstituted rubamoyloxy group, substituted or unsubstituted alkoxycarboxoxy group Substituted or
  • R represents a halogen atom (for example, a chlorine atom, a bromine atom, an iodine atom), an alkyl group [a linear, branched, or cyclic substituted or unsubstituted alkyl group.
  • a halogen atom for example, a chlorine atom, a bromine atom, an iodine atom
  • an alkyl group [a linear, branched, or cyclic substituted or unsubstituted alkyl group.
  • alkyl groups preferably alkyl groups having 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, t-butyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanethyl, 2- Ethylhexyl
  • a cycloalkyl group preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl
  • a bicycloalkyl group preferably Is a substituted or unsubstituted bicycloalkyl group having 5 to 30 carbon atoms, that is, a bicycloalkyl group having 5 to 30 carbon atoms.
  • Kang force is also a monovalent group with one hydrogen atom removed.
  • bicyclo [1,2,2] heptane-2-yl, bicyclo [2,2,2] octane-1-yl), and tricyclo structures having more ring structures are also included.
  • An alkyl group (for example, an alkyl group of an alkylthio group) in a substituent described below also represents such an alkyl group.
  • a alkenyl group [represents a linear, branched or cyclic substituted or unsubstituted alkenyl group.
  • alkenyl groups preferably substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms, such as beryl, aryl, prenyl, geryl, oleyl
  • cycloalkenyl groups preferably A substituted or unsubstituted cycloalkenyl group having 3 to 30 carbon atoms, that is, a monovalent group obtained by removing one hydrogen atom of a cycloalkene having 3 to 30 carbon atoms, for example, 2-cyclopentene 1— , 2-cyclohexene 1-yl
  • bicycloalkenyl groups substituted or unsubstituted bicycloalkenyl groups, preferably substituted or unsubstituted bicycloalkenyl groups having 5 to 30 carbon atoms
  • it is a monovalent group in which one hydrogen atom of a bicycloalkene having one double bond has been removed, for example, bicyclo [2, 2, 1] hepto
  • An alkyl group preferably a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, such as ethyl, propargyl, or trimethylsilylethyl group
  • an aryl group preferably having 6 to 30 carbon atoms
  • Substituted or unsubstituted aryl groups such as phenol, p-tolyl, naphthyl, m-cyclophenyl, o-hexadecanolaminophenol, heterocyclic groups (preferably 5- or 6-membered substituted or Unsubstituted, aromatic or non-aromatic heterocyclic compound A monovalent group obtained by removing one hydrogen atom, and more preferably a 5- or 6-membered aromatic group having 3 to 30 carbon atoms.
  • a heterocyclic group for example, 2 furyl, 2 chael, 2 pyrimidyl, 2-benzothiazolyl), cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group (preferably from 1 carbon atom) 30's Substituted or unsubstituted alkoxy groups such as methoxy, ethoxy, isopropoxy, t-butoxy, n-octyloxy, 2-methoxyoxy, and aryloxy groups (preferably substituted or unsubstituted aryloxy groups having 6 to 30 carbon atoms) For example, phenoxy, 2-methylphenoxy, 4 t-butylphenoxy, 3-trophenoxy, 2-tetradecanoylaminophenoxy), a silyloxy group (preferably a silyloxy group having 3 to 20 carbon atoms, for example, trimethylsilyloxy Kishi, t-Buchi Dimethylsilyloxy), a heterocyclic oxy group (preferably a
  • Substituted alkylcarbol amino group substituted or unsubstituted allylcarbonylamino group having 6 to 30 carbon atoms, such as formylamino, acetylamino-containing bivalloylamino-containing lauroylamino, benzoylamino-containing 3, 4, 5-tree n —Octyloxyphenylcarbonylamino), aminocarbonyl amino group (preferably substituted or unsubstituted amino carbonate containing 1 to 30 carbon atoms, for example, N, N dimethylaminocarboxyl In N, N jetylaminocarbonylamino, morpholinocarbonylamino), alkoxycarbo Nylamino group (preferably a substituted or unsubstituted alkoxycarbolamino group having 2 to 30 carbon atoms, for example, methoxycarbolamylated ethoxycarbolamido tbutoxycarbole N-octadecy
  • phosphier groups preferably substituted or unsubstituted phosphier groups having 2 to 30 carbon atoms, such as phosphier, dioctylthio.
  • phosphier diethoxyphosphier
  • phosphiroxy group preferably a substituted or unsubstituted phosphioxy group having 2 to 30 carbon atoms, such as diphenoxy phosphieroxy, dioctylo Xyphosphieroxy
  • phosphieramino group preferably a substituted or unsubstituted phosphieamino group having 2 to 30 carbon atoms, such as dimethylaminophosphieramino containing dimethoxyphosphierami
  • silyl group preferably Is a substituted or unsubstituted silyl group having 3 to 30 carbon atoms, such as trimethylsilyl, t Butyldimethylsilyl, Hue - represents Le dimethylsilyl).
  • R U , R 12 , R 13 , R ", R 15 , R 16 , R", R 18 , R 21 , R 22 , R 28 is water Elemental atoms are most preferred.
  • R 31 , R 34 , R “, R 42 , R 43 , R” may be the same as the above R as the substituent, but a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted group Or an unsubstituted aryl group is preferred. Of these, a substituted or unsubstituted aryl group is more preferable.
  • Ma 27 , Ma 28 , and Ma 29 are each independently a substituted or unsubstituted methine group.
  • Ka 2 3 each independently represents an integer from 0 to 3.
  • Ka 23 is preferably 2.
  • Q represents a monovalent cation that neutralizes the charge. When ka 23 is more, Ma 27, Ma 2 8 there are a plurality may be the same or different.
  • the dye having the structure represented by the general formula (II) is preferably a dye having a structure represented by the following general formula (VIII).
  • R 51 , R 52 , R 53 , R 54 , R 55 , R 56 , R 59 and R 6 ° each independently represents a hydrogen atom or a substituent.
  • a substituent a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a halogen atom, a substituted or unsubstituted carbamoyl group, or a substituted or unsubstituted acylamino group is preferable.
  • R 51 , R 53 , R 55 , R 56 , R 58 , R 6 ° are substituted with halogen atoms, and 2 , R 54 , R 57 , R Those in which 59 is a hydrogen atom are preferred.
  • R 61 and R 67 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a cyano group, a substituted or unsubstituted strength rubamoyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Represents an unsubstituted alkoxy carbo yl group, a substituted or unsubstituted ar roxy carboxy group, or a substituted or unsubstituted acylamino group. Of these, an unsubstituted alkoxycarbo- yl group is preferred, with a substituted or unsubstituted alkoxycarbo- yl group being preferred.
  • R 62 , R 63 , R 64 , R 65 and R 66 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted acylamino group, Or represents a substituted or unsubstituted heterocyclic group.
  • R 62 , R 63 , R 65 and R 66 are all preferably hydrogen atoms.
  • R 64 is preferably a hydrogen atom or a substituted or unsubstituted aryl group.
  • R 71 , R 72 , R 73 , R 74 , R 75 , R 76 , R 8 8 each independently represents a hydrogen atom or a substituent. When it is a substituent, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a hydroxyl group, or a substituted or unsubstituted acylamino group is preferred.
  • R 71 , R 72 , R 75 , R 76 , R 77 and R 8 ° are all preferably hydrogen atoms.
  • R 73 and R 78 are each preferably a hydroxyl group.
  • R 74 and R 79 are each preferably a phenyl group.
  • R 88 is preferably all hydrogen atoms.
  • Za 24 is each independently an atomic group forming an acidic nucleus. Examples of this are described in James, The Theory of the Photographic Process, 4th edition, McMillan, 1977, p. 198. Yes. Specifically, each optionally substituted pyrazol-5-one, virazolidin-3,5-dione, imidazolin-5-one, hydantoin, 2 or 4-thiohydantoin, 2-iminooxazolidine -4-one, 2-oxazoline-5-one, 2-thioxazoline-2, 4-dione, isorhodanine, rhodanine, thiophen-3-one, thiophen-3-one-1, 1, -dioxide, 3, 3 dixo [ 1,3] oxathiolane 5one, indoline-2-one, indoline-3-one, 2-oxoindazolium, 5,7-dioxo-6,7-dihydrothiazolo [3,2-a] Pyrim
  • Za 21 , Za 22 and Za Za 24 are most preferably 1,3-dioxane-4,6-dione, which may be substituted.
  • Substituents for substituting acidic nuclei include halogen atoms, alkyl groups (including cycloalkyl groups and bicyclic alkyl groups), alkenyl groups (including cycloalkenyl groups and bicycloalkenyl groups), and alkyl groups.
  • the acidic nucleus is unsubstituted, substituted with a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted with a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. preferable.
  • the acidic nucleus formed by Za 21 , Za 22 , Za 23 , Za 24 is preferably indandione, pyrazolone, virazolinedione, benzothiophene ondioxide. Of these, pyrazolone is most preferred.
  • Ma 26 is each independently a substituted or unsubstituted methine group.
  • an alkyl group having 1 to 20 carbon atoms for example, methyl, ethyl, isopropyl
  • a halogen atom for example, chlorine, bromine, iodine, fluorine
  • an alkoxy group having 1 to 20 carbon atoms for example, methoxy
  • isopropoxy aryl groups having 6 to 26 carbon atoms (eg, phenol, 2-naphthyl), heterocyclic groups having 0 to 20 carbon atoms (eg, 2-pyridyl, 3-pyridyl), 6 to 20 carbonyl aryloxy groups (eg, phenoxy, 1-naphthoxy, 2-naphthoxy), 1 to 20 carbonylamino groups (eg, acetylamino, benzoylamino), 1 to 20 carbon rubamoyl groups ( For example, N, N-dimethylcarbamoyl), sulfo group, hydroxy group, carb
  • Ma 21 , Ma 22 , Ma 26 is each independently any of a methine group which is preferably unsubstituted, substituted with an ethyl group, a methyl group or a phenyl group. Most preferred is an unsubstituted methine group.
  • L is a divalent linking group that does not form a ⁇ -conjugated system with two bonds.
  • the divalent linking group is not particularly limited except that it does not form a ⁇ -conjugated system between the chromophores to which they are bonded.
  • Arylene groups having 6 to 26 carbon atoms, such as phenylene, naphthylene
  • alkellene groups having 2 to 20 carbon atoms, such as etylene, probelene
  • alkylene groups having 2 to 20 carbon atoms, such as Ethylene, propylene
  • R 1M , R 1Q2 , R 103 , R 1M and R 1Q5 each independently represent any of a hydrogen atom, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted aryl group.
  • one or more linking groups represented by L exist between two chromophores to which they are linked. V may be used, and a plurality (preferably two) may be combined to form a ring! /.
  • Each L is preferably one in which two alkylene groups (preferably ethylene) are bonded to form a ring. Among them, the case where a 5- or 6-membered ring (preferably a cyclohexyl ring) is formed is more preferable.
  • Ka 21 and Ka 22 each independently represents an integer of 0 to 3.
  • a plurality of Ma 21 and Ma 26 may be the same or different.
  • Ka 21 and Ka 22 are preferably both 2.
  • Q represents a monovalent cation that neutralizes charge. Therefore, 2Q represents a divalent cation.
  • the ion represented by Q is not particularly limited and may be an ion composed of an inorganic compound or an ion composed of an organic compound. Examples of the cation represented as Q include metal ions such as sodium ion and potassium ion, quaternary ammonium ion, oxo-muon ion, snorephonium ion, phospho-muon ion, seleno-muum ion, and jordan ion. The form ion.
  • the cation represented by Q is preferably a quaternary ammonium ion, more preferably an ionic ion. Particularly preferred among the quaternary ammonium ions are the 4,4′-bibilidium cation represented by the general formula (1-4) in JP-A-2000-52658 and JP-A-2002-59652. The 4,4 and bibilidium cation are disclosed. In the case of a dicationic compound such as 4,4'-bibium-mu-ion, Q corresponds to 1Z2 (a dicationic compound).
  • the general formula (I) is preferably Za 21 ,
  • the acidic nuclei formed by Za 24 are each independently unsubstituted, substituted with a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted having 6 to 20 carbon atoms.
  • R 5 is each independently a hydrogen atom or a substituent.
  • R 1 and R 2 may be bonded to each other to form a ring structure.
  • Each R 6 is independently a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
  • L 1 is a divalent linking group.
  • Two R 6 may combine to form a divalent linking group.
  • n and m each independently represents an integer of 0 to 2.
  • Q represents a monovalent cation that neutralizes the charge. When n and m are plural, a plurality of R 3 and R 4 may be the same or different.
  • R 2 independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
  • R 1 and R 2 may be bonded to each other to form a ring structure.
  • R 2 is preferably each independently or a substituted or unsubstituted alkyl group. More preferably, R 2 is a different unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 5 is each independently a hydrogen atom or a substituent.
  • R 5 is preferably a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. More preferably, they are a hydrogen atom, an ethyl group, a methyl group, or a phenyl group. Most preferably, R 3 , R 4 and R 5 are all hydrogen atoms.
  • R 6 is a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group. inside that Also preferred are those in which two R 6 are bonded to form a divalent linking group.
  • L 1 is a divalent linking group.
  • L 1 is a substituted or unsubstituted alkylene group.
  • ⁇ R 6 is most preferably one in which L 1 and two R 6 form a ring structure.
  • the ring structure is preferably a 5- or 6-membered ring (more preferably a 6-membered ring).
  • n and m each independently represents an integer from 0 to 2.
  • n and m are both preferably 2.
  • Q represents a monovalent cation that neutralizes the charge. Therefore, 2Q represents a divalent cation.
  • a plurality of R 3 and R 4 may be the same or different.
  • a general oxonol dye can be synthesized by a condensation reaction between a corresponding active methylene compound and a methine source (a compound used for introducing a methine group into a methine dye).
  • a methine source a compound used for introducing a methine group into a methine dye.
  • the details of this kind of compound are JPK 39-22069, 43-3504, 52-38056, 54-38129, 55-10059, 58-35544. 49-99620, 52-92716, 59-16834, 63-316853, 64-40827, British Patent 1133986, US Pat. Refer to the specifications of 4042397, 4181225, 5213956, and 5260179. Also described in JP-A-63-209995, JP-A-10-309871, and JP-A-2002 249674.
  • leuco dyes can also be used. Specifically, Crystal Biolettra Thaton; 3, 3 Bis (1-ethyl-2-methylindole-3-yl) phthalide, 3- (4-Demethylamino-2-ethoxyphenyl) -3— (1-Ethyl-2-methylindole-3-yl ) — Phthalide compounds such as 4-azaphthalide; 3 -cyclohexylmethylamino 6-methyl —7-linofluorane, 2— (2 chloroanilino) 6 dibutylaminofluorane, 3 jetylamino 6-methyl 7—a Nilinofluorane, 3—Jetylamino 6—Methyloo 7 Xylidinofluorane, 2— (2 Chloroalino) 6 Jetylaminofluorane, 2-Allino 3-Methyl 6 (N-ethylisopentyl Amino) Fluorane, 3 Jet
  • the component (dye or phase change recording material) of the information recording layer described above and the component of the image recording layer may be the same or different. Since the required characteristics are different between the recording layer and the image recording layer, it is preferable to make the constituent components different. Specifically, the constituent components of the information recording layer are preferably excellent in recording / reproducing characteristics, and the constituent components of the image recording layer are preferably those in which the contrast of the recorded image is high. In particular, when a dye is used, a cyanine dye, a phthalocyanine dye, an azo dye, an azo metal complex, or an oxonol dye is used in the image recording layer from the viewpoint of improving the contrast of a recorded image. It is preferable.
  • the image recording layer can be formed by preparing a coating solution by dissolving the above-described dye in a solvent and coating the coating solution.
  • a solvent the same solvents as those used for the preparation of the coating solution for the information recording layer described above can be used.
  • Other additives and coating methods are the same as the information recording layer described above.
  • the thickness of the image recording layer is preferably 0.01 to 200 ⁇ m, more preferably 0.05 to 20 ⁇ m, and 0.1 to 5 m. Is more preferable.
  • a protective layer may be provided for the purpose of physically and chemically protecting the reflective layer and the information recording layer. Note that a protective layer is not necessarily required if the configuration is the same as that for DVD-R type optical disc manufacturing, that is, the two substrates are bonded together with the information recording layer and the image recording layer inside. Well then.
  • Examples of materials used for the protective layer include ZnS, ZnS-SiO, SiO, SiO, MgF, S
  • Inorganic materials such as nO and Si N, thermoplastic resin, thermosetting resin, UV curable resin, etc.
  • the protective layer can be formed, for example, by laminating a film obtained by extrusion of plastic on the reflective layer via an adhesive. Or you may provide by methods, such as vacuum evaporation, sputtering, and application
  • a coating solution is prepared by dissolving these in a suitable solvent, and then the coating solution is applied and dried. Can be formed.
  • UV curable resin it can also be formed by applying this coating solution and curing it by irradiation with UV light.
  • various additives such as an antistatic agent, an antioxidant and a UV absorber may be added according to the purpose.
  • the thickness of the protective layer is generally in the range of 0.1 ⁇ m to lmm.
  • a reflective layer, an information recording layer, and a cover layer may be sequentially formed on a substrate.
  • the cover layer is preferably formed on the information recording layer via an adhesive layer.
  • the configuration other than the cover layer is as described above.
  • the cover layer is formed in order to prevent the inside of the optical disk from impact such as impact, and is not particularly limited as long as it is a transparent material.
  • the material has a moisture absorption rate of 5% or less.
  • Transparent means that the recording light and the reproduction light are so transparent that the light is transmitted (transmittance: 90% or more).
  • the cover layer is prepared by dissolving a photocurable resin constituting the adhesive layer in an appropriate solvent to prepare a coating solution, and then coating the coating solution on the information recording layer at a predetermined temperature to form a coating film.
  • a cellulose triacetate film obtained by, for example, plastic extrusion is laminated on the coating film, and the upper force of the laminated TAC film is also irradiated with light. It is formed by curing the film.
  • the TAC film preferably contains an ultraviolet absorber.
  • the thickness of the cover layer is in the range of 0.01 to 0.2 mm, preferably in the range of 0.03 to 0.1 mm, and more preferably in the range of 0.05 to 0.095 mm.
  • a polycarbonate sheet etc. can also be used as a cover sheet.
  • a polycarbonate sheet or the like may be used as the cover layer.
  • the above adhesive is not necessary when a pressure-sensitive adhesive is applied to the bonding surface of the transparent sheet.
  • a light transmission layer made of ultraviolet curable resin or the like may be formed instead of the cover layer.
  • a hard coat layer may be formed on the cover layer.
  • the hard coat layer can be formed on the substrate by forming a reflective layer, an information recording layer or the like, forming a cover layer thereon, and then applying the cover layer on the cover layer.
  • the cover layer is a transparent sheet
  • a hard coat layer is formed on the transparent sheet so that the hard coat layer is the outermost surface, and the transparent sheet is formed.
  • the optical disk of the present invention may be produced by laminating a ridge on the information recording layer.
  • the optical disc of the present invention can be applied to a so-called read-only optical disc having a recording portion (pit) in which information reproducible by laser light is recorded. .
  • Image recording on the image recording layer of the optical disk of the present invention is performed using the optical disk of the present invention and at least a recording apparatus capable of recording image information on the image recording layer of the optical disk.
  • a recording apparatus used for recording on the optical disc will be described.
  • recording of an image on the image recording layer and recording of optical information on the information recording layer can be performed by, for example, one optical disc drive (recording device) having a recording function on both layers. it can.
  • one optical disk drive recording device
  • recording device having a recording function on both layers. it can.
  • optical disc of the present invention can be used particularly suitably for the following apparatus and method.
  • an optical disc recording apparatus in which the above-described optical disc of the present invention is suitably used is
  • An optical disc recording apparatus for recording information by irradiating a laser beam onto a recording surface (for example, a dye recording layer (recording layer)) of an optical disc, and an optical pickup for irradiating the optical disc with a laser beam;
  • An irradiation position adjusting means for adjusting an irradiation position of the laser beam on the optical disk by the optical pickup; and an optical disk in which the recording surface is formed on one surface and the image recording layer is formed on the other surface.
  • Image formation control for controlling the optical pickup and the irradiation position adjusting means so that a visible image corresponding to image information is formed on the image recording layer of the optical disc when set so as to face the optical pickup.
  • a beam spot control means for controlling the optical pickup so that a beam spot diameter of a laser beam irradiated by the optical pickup on the recording surface when recording is increased.
  • the reflectance changes like an image with the change in absorbance of the image recording layer, and the image data is converted into image data.
  • a corresponding visible image can be formed.
  • the optical disc is rotated one time, and the laser beam is applied to the region larger and longer. Irradiation can be performed, and the time required for forming a visible image can be shortened.
  • the above-described optical disk of the present invention can record a good visible image by such a method.
  • optical disc recording apparatus [0192] Further, another aspect of the optical disc recording apparatus is:
  • An optical disk recording apparatus that records information by irradiating a recording surface of an optical disk with laser light, the optical pickup for irradiating the optical disk with laser light, and the laser light for the optical disk by the optical pickup Adjusting the irradiation position And an optical disc in which the recording surface is formed on one surface and an image recording layer is formed on the other surface.
  • the image recording layer is set so as to face the optical pickup, visible light corresponding to image information is displayed.
  • Information on the laser beam irradiated to the optical disc by the optical pickup and the desired laser based on the detection result Servo means for controlling the optical pickup such that the intensity of the laser beam emitted by the optical pickup is continuously controlled according to the control based on the image information.
  • the servo means controls the optical pickup based on a detection result of information relating to the laser beam irradiated with the first intensity.
  • the reflectance changes like an image with the change in absorbance of the image recording layer, and the image data is converted into image data.
  • a corresponding visible image can be formed.
  • the laser is used regardless of the image data. Since the first intensity laser beam that hardly changes the image recording layer is irradiated for the light control, the laser beam control based on the irradiation result can be performed.
  • the above-described optical disk of the present invention can record a good visible image by such a method.
  • optical disc recording apparatus [0194] Further, another aspect of the optical disc recording apparatus is:
  • An optical disc recording apparatus that records information by irradiating a recording surface of an optical disc with laser light, the optical pickup for irradiating the optical disc with laser light, and the laser light for the optical disc by the optical pickup Adjusting the irradiation position And an optical disc in which the recording surface is formed on one surface and an image recording layer is formed on the other surface.
  • the image recording layer is set so as to face the optical pickup, visible light corresponding to image information is displayed.
  • Image forming control means for controlling the optical pickup and the irradiation position adjusting means so that an image is formed on the image recording layer of the optical disk; and when the optical disk is set in the optical disk recording apparatus, Based on whether the surface facing the optical pickup is the image recording layer or the recording surface, the relative positional relationship between the optical pickup and the surface of the optical disc facing the optical pickup is adjusted. And a position adjusting means.
  • the reflectance changes in an image-like manner with the change in absorbance of the image recording layer, and the image data is converted into image data.
  • a corresponding visible image can be formed.
  • the positional relationship between the optical pickup and the surface facing the optical pickup is adjusted according to whether the image recording layer or the recording surface is set to face the optical pickup. can do. Therefore, when the recording surface is set to face the optical pickup and when the image recording layer is set to face the optical pickup, the distance between the optical pickup and the surface facing this is different.
  • various controls such as focus control cannot be performed due to the difference in distance can be suppressed.
  • the above-described optical disk of the present invention can record a good visible image by such a method.
  • optical disc recording apparatus [0196] Further, another aspect of the optical disc recording apparatus is:
  • An optical disc recording apparatus for recording information by irradiating a recording surface of an optical disc with laser light, an optical pickup for irradiating the optical disc with laser light, and laser light for the optical disc by the optical pickup And an irradiation position adjusting means for adjusting the irradiation position, and an optical disc in which the recording surface is formed on one surface and an image recording layer is formed on the other surface, and a guide groove is spirally formed on the recording surface.
  • Servo means for controlling the irradiation position adjusting means so as to be irradiated, and the servo While the irradiation position of the laser beam is moved along the guide groove by the boss means, a visible image corresponding to image information is irradiated from the optical pickup so as to be formed on the image recording layer of the optical disc.
  • image forming control means for controlling the laser beam.
  • optical disc recording apparatus [0198] Further, another aspect of the optical disc recording apparatus is:
  • An optical disc recording apparatus for recording information by irradiating a recording surface of an optical disc with laser light, an optical pickup for irradiating the optical disc with laser light, and a rotation driving means for rotating the optical disc And a clock signal output means for outputting a clock signal having a frequency corresponding to the rotational speed of the optical disk by the rotation driving means, and an optical disc force in which the recording surface is formed on one surface and the image recording layer is formed on the other surface.
  • Means for controlling the optical pickup so that a visible image corresponding to image information is formed on the image recording layer of the optical disc when the image recording layer is set to face the optical pickup; The laser beam emitted from the optical pickup is controlled on the basis of the image information for each cycle of the clock signal by the signal output means.
  • Image forming control means for detecting that the optical disk has been rotated once from a predetermined reference position by the rotation driving means; and forming the visible image on the image recording layer of the optical disk.
  • the rotation detecting means detects that the optical disk has been rotated once from the predetermined reference position while being irradiated with the laser beam by the optical pickup, the irradiation position of the laser beam by the optical pickup is determined.
  • an irradiation position adjusting means for moving a predetermined amount in a predetermined radial direction of the optical disk set in the optical disk recording apparatus.
  • the reflectance changes like an image with the change in absorbance of the image recording layer, and the image data is converted into image data.
  • a corresponding visible image can be formed.
  • laser light irradiation control for visible image formation is performed every period of the clock signal having a frequency corresponding to the rotation speed of the optical disk, that is, every time the optical disk rotates by a certain angle.
  • a visible image having contents (for example, density) according to image data can be formed at a position at a certain angle.
  • the above-described optical disc of the present invention can record a good visible image even by such a method.
  • optical disc recording apparatus [0200] Further, another aspect of the optical disc recording apparatus is:
  • An optical disc recording apparatus for recording information by irradiating a recording surface of an optical disc with laser light, an optical pickup for irradiating the optical disc with laser light, and a rotation driving means for rotating the optical disc Rotation detecting means for detecting that the optical disk has been rotated once from a predetermined reference position by the rotation driving means, and the recording surface is formed on one surface and the image recording layer is formed on the other surface.
  • Optical disc force Image forming control for controlling the optical pickup so that a visible image corresponding to image information is formed on the image recording layer of the optical disc when the image recording layer is set to face the optical pickup. And a laser beam irradiated by the optical pickup to form the visible image on the image recording layer of the optical disc.
  • the rotation detecting means detects that the optical disk has been rotated once from the predetermined reference position
  • the position of the laser beam irradiated by the optical pickup is set in the optical disk recording device.
  • Irradiation position adjusting means for moving a predetermined amount in a predetermined radial direction of the optical disk
  • the image formation control means is configured to move from the predetermined reference position of the image recording layer of the optical disc rotated by the rotation driving means.
  • the optical pickup is irradiated with a laser beam, while the irradiation force of the laser beam is a position force ahead of the predetermined reference position of the optical disc by a predetermined amount.
  • the optical pickup is controlled so that the laser beam for forming the visible image is not irradiated to the region up to the reference position. It is characterized by this.
  • the optical pickup by irradiating the image recording layer of the optical disc with laser light according to the image data, the reflectance changes like an image with the change in absorbance of the image recording layer, and the image data is converted into image data. A corresponding visible image can be formed.
  • a visible image is formed by irradiating a reference position force laser beam of the optical disc while rotating the optical disc, and a region immediately before the laser beam irradiation position returns to the reference position. The laser beam irradiation for forming a visible image is not performed.
  • the laser beam irradiation position control is disturbed for some reason, such as the rotation of the optical disk becoming unstable, and the optical disk is rotated once by continuously irradiating the laser beam from the reference position. Even if the laser beam irradiation position moves to a position that passes through the position, that is, the position that overlaps with the position where the laser beam has already been irradiated later, the laser beam for forming a visible image is at that position. Irradiation can be suppressed and the quality of the visible image formed as a result can be prevented from deteriorating.
  • optical disk recording apparatus according to another aspect is provided:
  • An optical disc recording apparatus for recording information by irradiating a recording surface of an optical disc with a laser beam, an optical pickup for irradiating the optical disc with a laser beam, and a laser beam for the optical disc by the optical pickup
  • An irradiation position adjusting means for adjusting the irradiation position of the optical disc
  • a disc identification means for acquiring disc identification information for identifying the type of the optical disc set in the optical disc recording apparatus, and the recording surface on the other side.
  • a means for controlling the optical pickup and the irradiation position adjusting means so as to be formed; Ru is characterized by including an image forming control unit for controlling the optical pickup and the irradiation position adjusting means according to the type of light Dace click that is.
  • An optical pickup that irradiates the optical disk with laser light, a modulation unit that modulates information supplied from the outside, and a laser that is irradiated from the optical pickup in accordance with the information supplied from the modulation unit
  • an optical disk recording apparatus comprising a laser beam control means for controlling light
  • a visible image is displayed on the image recording layer of an optical disk in which the recording surface is formed on one surface and the image recording layer is formed on the other surface
  • the laser light control means so that a visible image corresponding to the image information is formed on the image recording layer of the optical disc after being modulated by the modulation means.
  • image forming control means for controlling the image forming apparatus.
  • the reflectance changes like an image with the change in absorbance of the image recording layer, and the image data is converted into image data.
  • a corresponding visible image can be formed.
  • the image data is not modulated because the modulation by the modulation means for modulating the recording data is prohibited when information is recorded on the recording surface. . Therefore, it is possible to use a data transfer configuration for recording information on a recording surface without providing a special data transfer configuration for forming a visible image corresponding to the image data.
  • An optical disc recording apparatus for recording information by irradiating a recording surface of an optical disc with laser light, an optical pickup for irradiating the optical disc with laser light, and laser light for the optical disc by the optical pickup
  • An irradiation position adjusting means for adjusting the irradiation position of the optical disk, and an optical disc having the recording surface formed on one surface and an image recording layer formed on the other surface.
  • the image recording layer was set to face the optical pickup.
  • the image pickup control means for controlling the optical pickup and the irradiation position adjusting means so that a visible image corresponding to the image information is formed on the image recording layer of the optical disc.
  • the image formation control means controls the laser light emitted from the optical pickup in accordance with the gradation level indicated in the image information.
  • the reflectance changes like an image in accordance with the change in absorbance of the image recording layer, and the image data is converted into image data.
  • a corresponding visible image can be formed.
  • laser light control can be performed according to the gradation of each position (coordinate) on the image recording layer indicated by the image data, and a visible image with gradation expression can be formed. can do.
  • optical disc recording apparatus Another aspect of the optical disc recording apparatus is:
  • An optical disk recording apparatus that records information by irradiating a recording surface of an optical disk with laser light, the rotating means for rotating the optical disk, and the one surface with respect to the optical disk rotated by the rotating means And a means for adjusting the level of the laser beam emitted from the optical pickup when forming a visible image on the image recording layer.
  • the first intensity that hardly changes the recording layer and the image recording layer of the optical disc, or almost no change to the recording layer.
  • the level of the laser light emitted from the optical pickup so that the second intensity changes to change the color of the image recording layer.
  • a laser beam level control means for adjusting the laser beam.
  • information can be recorded on the optical disc of the present invention by irradiating the recording layer with laser light in the same manner as before, and a visible image can be formed on the image recording layer. Can do. Furthermore, since information recording and visible image formation can be performed by irradiating laser light with the same surface force of the optical disc, the user has to bother to turn the optical disc over and set it again. No need to work ⁇
  • the image forming method on the image recording layer of the optical disc of the present invention uses an optical disc recording apparatus having an optical pickup that records information by irradiating a recording surface of the optical disc with a laser beam.
  • the optical pickup is configured so that a visible image corresponding to image information is formed on the image recording layer of the optical disc while moving the shooting position along the predetermined spiral or concentric circumferential path to the image recording layer.
  • a region including a predetermined number (a plurality) of adjacent paths belonging to each of the fan-shaped portions obtained by dividing the optical disk into a plurality of unit regions is used as a unit region.
  • the irradiation timing of the laser light irradiated to each of the paths belonging to the unit area is controlled so that the density of the unit area is expressed.
  • the reflectance changes like an image with the change in absorbance of the image recording layer, and the image data is converted into image data.
  • a corresponding visible image can be formed.
  • laser light irradiation timing control according to the gradation level of each position (coordinate) on the image recording layer indicated in the image data can be performed, and the visible image in which gradation expression is made. Can be formed.
  • the optical disk recording apparatus is an optical disk recording apparatus that records information by irradiating a laser beam onto a recording surface of an optical disk, and image recording is performed on a surface opposite to the recording surface, not just information recording on such a recording surface. It has a function of forming a visible image corresponding to image data by irradiating the image recording layer of the optical disc on which the layer is formed with laser light. In such an apparatus, a visible image can be recorded not only on an image recording layer but also on a recording layer for recording ordinary digital data on an optical disk using a predetermined dye.
  • FIG. 2 is a block diagram showing the configuration of the optical disk recording apparatus.
  • this optical disk recording apparatus 100 is connected to a host personal computer (PC) 110, and includes an optical pickup 10, a spindle motor 11, an RF (Radio Frequency) amplifier 12, and a servo circuit 13.
  • 32 and PLL (Phase Locked Lo op) A circuit 33, a FIFO (First In First Out) memory 34, a drive pulse generation unit 35, and a buffer memory 36 are provided.
  • the spindle motor 11 is a motor that rotationally drives the optical disk D that is the target of data recording, and the rotation speed is controlled by the servo circuit 13.
  • recording or the like is performed by the CAV (Constant Angular Velocity) method, and therefore the spindle motor 11 has a constant angular velocity set by an instruction from the control unit 16 or the like. It starts to rotate.
  • the optical pickup 10 is a unit that irradiates a laser beam onto the optical disk D rotated by the spindle motor 11, and the configuration thereof is shown in FIG. As shown in the figure, the optical pickup 10 receives reflected light from a laser diode 53 that emits a laser beam B, a diffraction grating 58, an optical system 55 that focuses the laser beam B on the surface of the optical disc D, and the like. And a light receiving element 56.
  • the laser diode 53 emits a laser beam B having an intensity corresponding to the drive current when supplied with a drive current from the laser driver 19 (see FIG. 2).
  • the optical pickup 10 separates the laser beam B emitted from the laser diode 53 into a main beam, a preceding beam, and a following beam by a diffraction grating 58, and these three laser beams are polarized beam splitter 59, collimator lens 60, 1Z4
  • the light is condensed on the surface of the optical disc D through the wave plate 61 and the object lens 62.
  • the three laser beams reflected on the surface of the optical disc D are transmitted again through the objective lens 62, the 1Z4 wavelength plate 61, and the collimator lens 60, reflected by the polarizing beam splitter 59, and passed through the cylindrical lens 63.
  • the light is incident on the light receiving element 56.
  • the light receiving element 56 outputs a received signal to the RF amplifier 12 (see FIG. 2), and the received light signal is supplied to the control circuit 16 through the RF amplifier 12 to the servo circuit 13.
  • the objective lens 62 is held by the focus actuator 64 and the tracking actuator 65, and can move in the optical axis direction of the laser beam B and the radial direction of the optical disc D! /,
  • the Each of the focus actuator 64 and the tracking actuator 65 moves the objective lens 62 in the optical axis direction and the radial direction according to the focus error signal and tracking error signal supplied from the servo circuit 13 (see FIG. 2).
  • the servo circuit 13 generates a focus error signal and a tracking error signal based on the received light signal supplied via the light receiving element 56 and the RF amplifier 12, and moves the objective lens 62 as described above. Focus control and tracking control with
  • the optical pickup 10 has a front motor diode (not shown).
  • a current is supplied to the front monitor diode that has received the emitted light. This current is supplied from the optical pickup 10 to the laser power control circuit 20 shown in FIG.
  • the RF amplifier 12 amplifies the EFM (Eight to Fourteen Modulation) modulated RF signal supplied from the optical pickup 10, and outputs the amplified RF signal to the servo circuit 13 and the decoder 15.
  • the decoder 15 performs EFM demodulation on the EFM-modulated RF signal supplied from the RF amplifier 12 during reproduction to generate reproduction data.
  • the servo circuit 13 is supplied with an instruction signal from the control unit 16, an FG pulse signal with a frequency corresponding to the number of revolutions of the spindle motor 11 supplied from the frequency generator 21, and an RF signal of RF amplifier 12 power Is done.
  • the servo circuit 13 performs rotation control of the spindle motor 11 and focus control and tracking control of the optical pickup 10 based on these supplied signals.
  • the spindle motor 11 When recording information on the recording surface of the optical disk D or forming a visible image on the image recording layer of the optical disk D, the spindle motor 11 is driven by a method of driving the optical disk D at a constant angular velocity (CAV: (Constant Angular Velocity) or a method of rotating the optical disk D (CLV: Constant Linear Velocity) so that the recording linear velocity is constant.
  • CAV Constant Angular Velocity
  • CLV Constant Linear Velocity
  • the noffer memory 36 is information supplied from the host PC 110 to be recorded on the recording surface of the optical disc D (hereinafter referred to as recording data ⁇ ) and information corresponding to the visible image to be formed on the image recording layer of the optical disc D. (Hereinafter referred to as image data) is accumulated.
  • the recording data stored in the buffer memory 36 is output to the encoder 17 and the image data is output to the control unit 16.
  • the encoder 17 performs EFM modulation on the recording data supplied from the nother memory 36, and outputs it to the strategy circuit 18.
  • the strategy circuit 18 performs time axis correction processing on the EFM signal supplied from the encoder 17 and outputs the result to the laser driver 19.
  • the laser driver 19 supplies a signal modulated according to the recording data supplied from the strategy circuit 18 and the laser diode 53 of the optical pickup 10 according to the control of the laser power control circuit 20 (see FIG. 3). To drive.
  • the laser power control circuit 20 controls the laser power to which the laser diode 53 (see FIG. 3) force of the optical pickup 10 is also irradiated. Specifically, the laser power control circuit 20 controls the laser driver 19 so that a laser beam having a value that matches the target value of the optimum laser power instructed by the control unit 16 is emitted from the optical pickup 10.
  • the laser power control by the laser power control circuit 20 performed here uses the current value supplied from the front monitor diode of the optical pickup 10 so that the laser light of the target intensity is emitted from the optical pickup 10. It is feedback control to control to.
  • the image data supplied from the host PC 110 and stored in the buffer memory 36 is supplied via the control unit 16 and sequentially stored.
  • the image data stored in the FIFO memory 34 that is, the image data supplied from the host PC 110 to the optical disc recording apparatus 100 includes the following information.
  • This image data is data for forming a visible image on the surface of the disk-shaped optical disc D. As shown in FIG. 4, n on a number of concentric circles centering on the center O of the optical disc D. Information indicating the gradation (shading) is described for each coordinate (indicated by black dots in the figure).
  • the image data includes coordinate points Pl l, P12...
  • P2n is data that describes the gradation of each coordinate point up to the coordinate Pmn of the outermost circle in the order of the coordinates belonging to P1n and one of the outer circles.
  • Information indicating the gradation of each coordinate on the polar coordinates is supplied in the above order.
  • Fig. 4 is a diagram schematically showing the positional relationship of each coordinate, and actual coordinates are arranged more densely than what is shown.
  • image data to be formed on the photosensitive surface of the optical disc D was created on the host PC 110 in a commonly used bitmap format or the like.
  • the bitmap data may be converted into polar coordinate format data as described above, and the converted image data may be transmitted from the host PC 110 to the optical disc recording apparatus 100.
  • the FIFO memory 34 When a visible image is formed on the image recording layer of the optical disc D based on the image data supplied as described above, the FIFO memory 34 is supplied with an image recording image from the PLL circuit 33. Clock signal is supplied. Each time the clock pulse of the image recording clock signal is supplied, the FIFO memory 34 outputs to the drive pulse generation unit 35 information indicating the gradation degree of one of the coordinates accumulated first. Yes.
  • the drive noise generation unit 35 generates a drive pulse for controlling the irradiation timing of the laser light emitted from the optical pickup 10.
  • the drive pulse generation unit 35 generates a drive pulse having a pulse width corresponding to information indicating the gradation for each coordinate supplied from the FIFO memory 34. For example, when the gradation of a certain coordinate is relatively large (when the density is high), a drive pulse with a larger light level (second intensity) pulse width is generated as shown in the upper part of FIG. For coordinates with relatively small furniture, a drive pulse with a reduced write-level pulse width is generated as shown in the lower part of Fig. 5.
  • the light level is a power level at which a change occurs in the image recording layer when the image recording layer of the optical disc D is irradiated with the laser power at that level, and the reflectivity changes clearly.
  • the laser driver 19 When a simple driving pulse is supplied to the laser driver 19, the laser light at the light level is emitted from the optical pickup 10 for a time corresponding to the pulse width. Therefore, when the gradation is large, the light level laser beam is irradiated for a longer time, and the reflectance changes in a larger area in the unit area of the image recording layer of the optical disc D. This area is visually recognized as a dark area.
  • the gradation shown in the image data is expressed by varying the length of the region whose reflectance is changed per unit region (unit length) in this way.
  • the servo level (first intensity) is a power level at which the image recording layer hardly changes when the image recording layer of the optical disc D is irradiated with the laser power of that level, and it is necessary to change the reflectance. If you don't irradiate the light level laser light to the unexposed area, irradiate the servo level laser light.
  • the drive pulse generation unit 35 generates a powerful drive pulse with information indicating the gradation for each coordinate as described above, and controls the laser power control by the laser power control circuit 20 and the servo circuit 13.
  • a light level pulse or a servo level pulse for a very short period is inserted, regardless of the information indicating the above gradation levels.
  • a light level pulse or a servo level pulse for a very short period is inserted, regardless of the information indicating the above gradation levels.
  • the time T1 is longer than the predetermined servo cycle ST for controlling the laser power, the time t is very short when the servo cycle ST has elapsed since the write level pulse was generated. Insert the servo off pulse (SSP1).
  • SSP1 servo off pulse
  • the laser power control by the laser power control circuit 20 is based on the current (irradiation) supplied from the front monitor diode that has received the laser diode 53 (see Fig. 3) force of the optical pickup 10. This is based on the current of a value corresponding to the intensity of the laser beam. More specifically, as shown in FIG. 7, the laser power control circuit 20 samples and holds a value corresponding to the intensity of the irradiated laser beam received by the front motor diode 53a as described above ( S201, S202). Then, when the light level is irradiated as a target value, that is, when a light level drive pulse (see FIGS.
  • the light is supplied from the control unit 16 based on the result of sample and hold.
  • Laser power control is performed so that the laser light of the light level target value is irradiated (S203). Also, when irradiation is performed with the servo level as the target value, that is, when the servo level drive pulse (see FIGS. 5 and 6) is generated, it is supplied from the control unit 16 based on the result of sample and hold. Laser power control is performed so that the laser beam with the target servo level value is irradiated (S204). Therefore, write level or servo level pulses are not continuously output for longer than the predetermined servo cycle ST (sample cycle).
  • the servo off-pulse SSP1 and the servo on-pulse SSP2 are forcibly inserted regardless of the contents of the image data so that the laser power control can be performed for each level as described above. It is.
  • the servo off-pulse SSP1 is inserted not only for controlling the laser power but also for performing focus control and tracking control by the servo circuit 13.
  • tracking control and focus control are performed by the RF signal received by the light receiving element 56 (see FIG. 3) of the optical pickup 10, that is, the laser beam emitted from the laser diode 53 and the return light (reflected light) from the optical disc D
  • FIG. 8 shows an example of a signal received by the light receiving element 56 when the laser beam is irradiated.
  • the reflected light when irradiated with light level laser light includes the peak part Kl at the rise of the laser light, and the shoulder part ⁇ 2 where the level becomes constant thereafter, and is indicated by the diagonal line in the figure.
  • the portion shown is considered to be the energy used for image formation of the image recording layer.
  • the energy used for image formation of such an image recording layer is not always a stable value, and may vary depending on various situations. Therefore, it is conceivable that the shape of the shaded area in the figure changes each time, that is, the reflected light of the light level laser beam is not always stable and has a lot of noise, and this reflected light is used. This may hinder accurate focus control and tracking control. Therefore, as described above, when the light level laser beam is continuously irradiated for a long time, the reflected laser beam cannot be obtained, and accurate focus control and tracking control cannot be performed. It will end.
  • the reflected light of the servo level laser light can be periodically acquired, and focus control and tracking control are performed based on the acquired reflected light. Is executed.
  • the target value for tracking control is a fixed value (a constant offset voltage is set).
  • such a control method is used for image information in the image recording layer. The present invention can be applied not only when forming the image information but also when forming image information on the recording surface.
  • the recording surface if a material that changes not only the reflectance but also the coloration when irradiated with laser light is used for the recording surface (recording layer), an image can be formed on the recording surface as well as the image recording layer. is there.
  • the original data cannot be recorded on the portion where the visible image is formed. Therefore, the area where data is recorded and the area where the visible image is formed are separated in advance. It is preferable to leave.
  • the time for inserting the servo off-pulse SSP1 and servo off-pulse SSP2 as described above is the minimum time that does not interfere with the execution of various servos such as laser power control, tracking control, and focus control.
  • various servos such as laser power control, tracking control, and focus control.
  • the PLL circuit (signal output means) 33 multiplies the FG pulse signal having a frequency corresponding to the rotational speed of the spindle motor 11 supplied from the frequency generator 21, and a visible image to be described later.
  • a clock signal used for forming is output.
  • the frequency generator 21 outputs a FG pulse signal having a frequency corresponding to the spindle rotational speed by using the back electromotive current obtained by the motor driver of the spindle motor 11. For example, as shown in the upper part of FIG. 9, the frequency generator 21 generates eight FG pulses while the spindle motor 11 rotates once, that is, the optical disk D rotates once.
  • the PLL circuit 33 outputs a clock signal obtained by multiplying the FG pulse (for example, the frequency of the FG pulse signal is 5 times, and the optical disk D has one H level pulse force during one rotation). That is, a clock signal having a frequency corresponding to the rotational speed of the optical disk D rotated by the spindle motor 11 is output.
  • the clock signal power PLL circuit 33 multiplied by the FG pulse signal is output to the FIFO memory 34, and the clock signal is output to the clock signal every cycle, that is, every time the disk D rotates by a certain angle.
  • Data indicating the furniture is output from the FIFO memory 34 to the drive pulse generator 35.
  • the PLL circuit 33 may be used to generate a clock signal multiplied by the FG pulse as described above, a motor with sufficiently stable rotational drive capability is used as the spindle motor 11.
  • a crystal oscillator is provided in place of the PLL circuit 33, and a clock signal obtained by multiplying the FG pulse as described above, that is, an optical A clock signal having a frequency corresponding to the rotational speed of the disk D may be generated.
  • the stepping motor 30 is a motor for moving the optical pickup 10 in the radial direction of the optical disc D set on the optical disc D.
  • the motor driver 31 drives the stepping motor 30 to rotate by an amount corresponding to the pulse signal supplied from the motor controller 32.
  • the motor controller 32 generates a pulse signal corresponding to the movement amount and the movement direction in accordance with the movement start instruction including the movement direction and movement amount of the optical pickup 10 in the radial direction, which is instructed by the control unit 16, and Output to driver 31.
  • the stepping motor 30 moves the optical pickup 10 in the radial direction of the optical disk D, and the optical disk D rotates the optical disk D by the spindle motor 11. As a result, the laser light irradiation position of the optical pickup 10 is changed to various positions on the optical disk D.
  • These components constitute the irradiation position adjusting means.
  • the control unit 16 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and the optical disc recording apparatus 100 according to a program stored in the ROM. Each unit of the apparatus is controlled to centrally control the recording process on the recording surface of the optical disc D and the image forming process on the image recording layer of the optical disc D. What has been described above is the configuration of the optical disk recording apparatus 100 according to the present embodiment.
  • the optical disc recording apparatus 100 can record information such as music data supplied from the host PC 110 on the recording surface of the optical disc D, and can also record information on the image recording layer of the optical disc D. A visible image corresponding to the image data supplied from the PC 110 can be formed.
  • the operation of the optical disc recording apparatus 100 capable of performing processing such as information recording and visible image formation will be described with reference to FIG. 10 and FIG.
  • the control unit 16 controls the optical pickup 10 and the like, and the format of the surface facing the optical pickup 10 of the set optical disc D is Detect if it is an optical disc.
  • DVD-R Detects the presence or absence of ADIP (Address in Pregroove) in the case of a land pre-pit signal, pre-record signal, or DVD + R. If this information is not recorded, it is not recognized as an optical disc.
  • ADIP Address in Pregroove
  • the recording surface is optical. It is determined that the optical disk D is set so as to face the pickup 10, and the control unit 16 performs control for recording the recording data supplied from the host PC 110 on the recording surface (step Sa2). Since the control for recording the recording data performed here is the same as that of the conventional optical disk recording device (DVD-R or DVD + R drive device), description thereof is omitted.
  • the optical disk D is set so that the image recording layer faces the optical pickup 10.
  • the control unit 16 determines whether it is possible to acquire the disk ID of the set optical disk D (step Sa3).
  • the disk ID of optical disk D can be installed in the pre-pit signal. For example, as shown in FIG. 12, a visible image corresponding to information obtained by encoding a disc ID is described along the circumference of the outermost peripheral portion on the image recording layer side of the optical disc D. In FIG.
  • a disc ID is assigned to the image recording layer of the optical disc D by forming a reflective region 301a and a non-reflective region 301b having a length corresponding to the code along the circumference of the outermost peripheral portion. Described in The control unit 16 traces the irradiation position of the laser beam of the optical pickup 10 along the outermost circumference of the optical disc D, and the reflected light power also acquires the disc ID.
  • the optical disk D does not have the image recording layer. It can be discriminated as a general optical disc (CD-R, DVD-R, etc.).
  • the control unit 16 determines that the optical disk D is incapable of forming a visible image (step Sa4), and performs processing for notifying the user of that fact.
  • Step Sa5 if the disk ID can be obtained from the optical disk D, the host PC 110 (Step Sa5), and when there is an image formation instruction, the control unit 16 performs initialization control for forming a visible image on the image recording layer of the optical disc D. Perform (Step Sa6). More specifically, the control unit 16 controls the servo circuit 13 so that the spindle motor 11 is rotated at a predetermined angular velocity, or the optical pickup 10 is moved to the initial position on the innermost peripheral side in the radial direction of the optical disc D. An instruction to move to is sent to the motor controller 32, and the stepping motor 30 is driven.
  • control unit 16 irradiates the image recording layer of the optical disc D with a laser beam having a larger beam spot diameter than when recording information on the recording surface. It is possible to instruct the servo circuit 13 of a target value for focus control.
  • the focus control by the servo circuit 13 is performed based on the signal output from the light receiving element 56 of the optical pickup 10.
  • the recording surface of the optical disc D [in contrast to the blueprint recording]
  • Figure 13 [Circular return light (A in the figure) at the center of the four edges 56a, 56b, 56c, 56d of the light receiving element 56 shown in this figure
  • the servo circuit 13 drives the focus actuator 64 (see Fig. 3) so that is received.
  • the image recording layer of the optical disc D is irradiated with laser light having a larger diameter than that when recording information on the recording surface. Focus control is performed.
  • the shape of the return light received by the light receiving element 56 shown in FIG. 13 is an elliptical shape (B or C in the figure)
  • the control unit 16 performs ⁇ ( By setting the servo circuit 13 to be instructed (not 0), it is possible to irradiate the image recording layer of the optical disc D with a laser beam having a spot diameter larger than that during information recording on the recording surface.
  • the following effects can be obtained by irradiating laser light having a larger spot diameter than when recording information on the recording surface. That is, in this embodiment, when forming a visible image, the laser beam is irradiated while rotating the optical disc D, as in the case of recording information on the recording surface.
  • a visible image can be formed on the entire area of the image recording layer of the optical disc D in a shorter time by increasing the beam spot diameter of the laser beam.
  • the reason for this will be described with reference to FIG.
  • the beam spot diameter BS of the laser beam to be irradiated is large and small! /, Comparing the case with the case of image formation when the optical disk D is rotated once. The area of the region becomes larger when the beam spot diameter BS is larger. For this reason, when the beam spot diameter BS is small, the optical disk D has to be rotated more in order to target the entire area for image formation (in the example shown, 4 rotations are large and 6 rotations are small). ), It takes a lot of time for image formation.
  • the optical disc recording apparatus 100 is configured to irradiate a laser beam having a larger spot diameter than that at the time of information recording when forming a visible image.
  • the control unit 16 sets the target value of each level so that the optical pickup 10 emits the laser light of the write level and the servo level corresponding to the acquired disk ID.
  • the ROM of the control unit 16 stores the write level and the target value to be set as the servo level for each of the plurality of types of disk IDs.
  • the control unit 16 stores the write level corresponding to the acquired disk ID. Then, the servo level target values are read out, and these target values are instructed to the laser power control circuit 20.
  • the power target value is set according to the disk ID as described above for the following reason.
  • the characteristics of the dye in the image recording layer may differ depending on the type of optical disc D. If the characteristics differ, when the laser beam is irradiated to what power level, the reflectivity changes and the characteristics change naturally. It will be. For this reason, certain optical When the image recording layer of disk D is irradiated with laser light at a certain light level, and the reflectivity of the irradiated area can be changed sufficiently, the image recording layer of other optical discs D Therefore, when the laser light of the same light level is irradiated, the reflectance of the irradiated region cannot always be changed.
  • the target values of the write level and the servo level that allow accurate image formation are obtained in advance by experiment for each optical disk corresponding to each of various disk IDs as described above. Then, by storing the calculated target value in the ROM in association with each disk ID, optimal power control can be performed according to the characteristics of the image recording layers of various optical disks D as described above. I can do it.
  • step Sa7 the control unit 16 transfers the image data supplied from the host PC 110 via the buffer memory 36 to the FIFO memory 34. Then, the control unit 16 determines whether the force passed through the laser beam irradiation position of the optical pickup 10 from the predetermined reference position force of the optical disk D rotated by the spindle motor 11 from the FG pulse signal supplied from the frequency generator 21. (Step Sa8).
  • FIG. 15 As shown in FIG. 15, the frequency generator 21 outputs a predetermined number of FG pulses (eight in the illustrated example) while the spindle motor 11 rotates once, that is, while the optical disk D rotates once. Therefore, the control unit 16 outputs a reference position detection pulse by synchronizing one of the FG pulses supplied from the frequency generator 21 with the reference pulse and the rising timing, and thereafter, the reference position detection pulse.
  • the reference position detection pulse signal that outputs the reference position detection pulse is generated in synchronization with the rising timing of the number of pulses for the first rotation (eighth in the example shown). By generating such a reference position detection pulse, it is possible to detect that the time when the pulse is generated is the timing when the laser light irradiation position of the optical pickup 10 has passed the reference position of the optical disc D. That is, as shown in FIG. 16, the laser beam irradiation position of the optical pickup 10 at the timing when the first reference position detection pulse is generated.
  • the optical pickup 10 is movable in the radial direction, the position that the irradiation position can take is represented by a line
  • the reference position generated after one rotation Even when the detection pulse is generated, the laser light irradiation position of the optical pickup 10 is naturally at the position indicated by the thick line in the figure.
  • the radial line to which the laser beam irradiation position belongs is set as the reference position to the timing at which the reference position detection pulse is first generated, and the control unit 16 generates the optical disk D every rotation as described above. Based on the reference position detection pulse signal, it is possible to detect that the irradiation position of the laser beam has passed the reference position of the optical disc D.
  • the alternate long and short dash line in the figure shows an example of the movement locus of the irradiation position of the laser beam from the generation of a reference position detection pulse to the generation of the next reference position detection pulse.
  • step Sa9 After receiving the image formation instruction from the host PC 110, when it is detected that the reference position of the optical disc D has passed the irradiation position of the laser beam by the above-described method, the control unit 16 sets a variable indicating the number of rotations. After incrementing R by 1 (step Sa9), it is determined whether R is an odd number (step SalO).
  • R is set at step SalO. Is determined to be an odd number.
  • the control unit 16 performs control to form a visible image by irradiating the image recording layer of the optical disc D with the laser beam from the optical pickup 10 (step Sal 1 ). More specifically, the control unit 16 sequentially outputs the image data from the FIFO memory 34 in synchronization with the clock signal output from the PLL circuit 33 from the time when the reference position detection pulse is received. Control each part. With this control, as shown in FIG.
  • the FIFO memory 34 outputs information indicating the gradation level of one coordinate to the drive pulse generation unit 35, and drives it.
  • the noise generation unit 35 generates a drive pulse having a pulse width according to the gradation shown in the information and outputs the drive pulse to the laser driver 19.
  • the optical pickup 10 irradiates the image recording layer of the optical disc D with the laser beam at the light level for a time corresponding to the gradation of each coordinate, and the reflectivity of the irradiated region changes.
  • a visible image as shown can be formed.
  • the irradiation position of the laser beam of the optical pickup 10 is one period of the clock signal (the pulse rising timing force).
  • the region moves along the circumference by the area indicated by C in the figure.
  • the gradation level varies depending on the region C as shown in the figure.
  • the reflectance of different areas can be changed accordingly. In this way, by controlling the irradiation time of the light level laser light when passing through each region C according to the gradation of each coordinate, a visible image corresponding to the image data is formed on the image recording layer of the optical disc D. It can be done.
  • Step Sa7 when the control for executing the formation of the visible image by the laser light irradiation controlled according to the image data is executed, the process of the control unit 16 returns to Step Sa7 and is supplied from the buffer memory 36.
  • the processed image data is transferred to the FIFO memory 34.
  • whether or not the laser beam irradiation position of the optical pickup 10 has passed through the reference position of the optical disk D is detected. If it is detected that the reference position has passed, 1 is incremented to R.
  • the control unit 16 controls each unit of the apparatus so as to stop the visible image formation by the laser light irradiation control as described above (step Sal2).
  • the FIFO memory 34 is controlled not to output information indicating the gradation of each coordinate to the drive pulse generation unit 35 in synchronization with the clock signal supplied from the PLL circuit 33. That is, the control unit 16 irradiates the image recording layer of the optical disc D with a light level laser beam to form a visible image, and then reflects the image recording layer while the optical disc D rotates once. This is because the laser beam is not irradiated to change the rate.
  • the control unit 16 instructs the motor controller 32 to move the optical pickup 10 to the outer peripheral side in the radial direction by a predetermined amount.
  • the motor controller 32 drives the stepping motor 30 via the motor driver 31, and the optical pickup 10 is moved to the outer peripheral side by a predetermined amount.
  • the predetermined amount by which the optical pickup 10 is moved in the radial direction of the optical disc D is the same as described above.
  • it may be determined appropriately according to the beam spot diameter BS (see FIG. 14) irradiated from the optical pickup 10. That is, when a visible image is formed on the image recording layer of the disk-shaped optical disc D, the laser beam irradiation position of the optical pickup 10 can be moved on the surface of the optical disc D with almost no gap to form a higher quality image. It is necessary to realize.
  • the unit movement amount of the optical pickup 10 in the radial direction as described above is substantially the same as the beam spot diameter BS of the laser beam irradiated onto the optical disc D, the laser beam can be almost completely spaced on the surface of the optical disc D. Irradiation is possible, and higher-quality image formation is possible.
  • an area larger than the irradiated beam spot diameter may be colored due to various factors such as the properties of the image recording layer. In such a case, considering the width of the colored area, adjacent colored areas If the unit movement amount is determined so that they overlap, then.
  • the control unit 16 optically picks up the optical spot by approximately the same length as the beam spot diameter BS.
  • the motor controller 32 is controlled to move the cup 10 in the radial direction, and the stepping motor 30 is driven.
  • the stepping motor 30 in recent years can control the amount of movement in units of 10 m by using step technology. As described above, the optical pickup 10 can be moved to 20 ⁇ m using the stepping motor 30. Moving in the radial direction in units is sufficiently feasible.
  • the control unit 16 irradiates the laser beam at a light level that changes the light level value of the target laser beam.
  • the laser power control circuit 20 is instructed of the light level value after the change to be targeted (step Sal4).
  • a CAV method is employed in which the optical disc D is irradiated with laser light while rotating the optical disk D while maintaining a constant angular velocity as a method for forming a visible image. When moved to the side, the linear velocity increases.
  • the control unit 16 performs unprocessed image data, that is, for forming a visible image. It is determined whether or not there is image data not supplied to the drive pulse generator 35. If there is no image data, the process ends.
  • step Sa7 the process returns to step Sa7 to continue the process for visible image formation. That is, the image data is transferred from the control unit 16 to the FIFO memory 34 (step Sa7), and it is determined whether or not the irradiation position of the laser beam has passed through the reference position of the optical disc D (step Sa8). When the reference position is passed, the variable R indicating the number of revolutions is incremented by 1 (step Sa9), and it is determined whether or not the force after incrementing R is an odd number (step SalO).
  • the control unit 16 controls each part of the apparatus so that the laser light irradiation for forming a visible image as described above is performed.
  • R is an even number
  • the visible image is displayed.
  • the laser beam irradiation to form the beam is stopped (servo-level laser beam is irradiated), and control such as the radial movement control of the optical pickup 10 and the change of the light level target value as described above are performed. That is, when the control unit 16 performs laser light irradiation (including the light level) for image formation on the optical disc D during a certain round, the laser beam irradiation for image formation is performed during the next round.
  • the optical pickup 10 is controlled so that the optical pickup 10 moves in the radial direction during the lap.
  • the irradiation position and the power value of the laser light irradiated with the control are performed.
  • the laser beam irradiation for image formation can be executed after the irradiation position where the image is not formed while the intensity of the laser beam is stabilized and the intensity of the laser beam is stabilized. Therefore, it is possible to suppress degradation of the quality of the visible image formed due to the radial movement control of the optical pickup 10 as described above.
  • the optical disk recording apparatus 100 in order to record information on a recording surface without newly installing printing means or the like.
  • the image recording layer of the optical disc D on which the image recording layer is formed is irradiated with a laser beam to display an image.
  • a visible image corresponding to the image data can be formed.
  • the laser beam irradiation timing is controlled, so that the laser beam irradiation position can be grasped in the optical disk recording apparatus 100 without acquiring position information or the like from the optical disk D side. Therefore, according to the optical disc recording apparatus 100, when the pre-group (guide groove) is formed in the image recording layer, it is necessary to use the optical disc D that has been subjected to special processing or the like! A visible image corresponding to the image data can be formed even on the image recording layer in which the group and position information are previously formed.
  • image recording on the optical disc D is performed by controlling the irradiation time of the laser light according to the gradation for each coordinate included in the image data corresponding to the visible image supplied from the host PC 110.
  • the shade of the visible image formed on the layer is expressed! / ⁇
  • the light level of the laser power to be irradiated is changed according to the information indicating the gradation for each coordinate to express the shade of the visible image. You may make it do. For example, as shown in FIG.
  • the image recording layer of the optical disc D has a characteristic that the degree of change in reflectivity changes gradually according to the amount of energy applied, the energy El, E2, By applying different energy such as E3, the degree of change in the reflectance of the image recording layer also changes as Dl, D2, and D3. Therefore, for the optical disc D on which the image recording layer having the above characteristics is formed, the light level value of the laser beam to be irradiated is changed according to the gradation for each coordinate indicated in the image data. Thus, each coordinate position on the optical disc D can be changed according to the gradation, thereby expressing the light and shade.
  • the following By taking such multiple adjacent coordinates as one unit area for expressing the gradation, and controlling the irradiation time of the laser light for each of the multiple coordinates included in the unit area in association with the difference.
  • the shade of the visible image formed on the image recording layer of the optical disc D may be expressed. More specifically, as schematically shown in FIG. 20, in the optical disc recording apparatus 100, the laser beam irradiation position of the optical pickup 10 is set to a plurality of rounds along a circular path TR (shown by a dashed line in the figure). Visible image formation is performed by making relative movement and appropriately switching the power value of the laser beam irradiated during the movement between the light level and the servo level according to the image data.
  • a sector area including a predetermined number (three in the illustrated example) of circumferential paths TR belonging to each of the sector portions obtained by dividing the optical disc D into a plurality of sector portions is defined as a unit area TA (
  • the irradiation timing of the laser light applied to each of the three circumferential paths TR belonging to the unit area TA is controlled so that the density is expressed for each unit area TA in the visible image.
  • the laser beam irradiation time is controlled so as to change only the reflectance of a small portion of the circumferential path TR. That is, as shown in the lower part of FIG. 22, the laser beam irradiation position passes through the inner circumferential path TR.
  • Image data is generated so that the drive pulse generation unit 35 generates a drive pulse that is irradiated with a light level laser beam only during a part of the remaining time.
  • the density of the unit area TA is set to an intermediate density, it is shown in the upper part of FIG.
  • the reflectance of all portions of the innermost circumferential path TR changes, and half of the intermediate circumferential path TR changes color.
  • Control the laser light irradiation time That is, as shown in the lower part of FIG. 23, the irradiation position of the laser beam passes through the circumferential path TR on the inner circumference side of the circumferential path TR, and the laser beam irradiation position passes through the circumferential path TR in the middle and the intermediate period TR.
  • Image data is generated so that the drive pulse generating unit 35 generates a drive pulse that is irradiated with the laser light at the light level for a part of the passing time.
  • image data that can be expressed in gradation for each unit area TA as described above is generated in advance, and the image data is supplied to the optical disc recording apparatus 100, as described above. It is possible to form a visible image in which gradation is expressed for each unit area TA in the image recording layer of the optical disk D.
  • the optical pickup 10 when a visible image is formed by irradiating the laser beam while the optical disk D is rotated once from the reference position, the optical pickup 10 is moved by a predetermined amount to the outer peripheral side in the radial direction.
  • the laser beam irradiation position was moved so that there was almost no gap on the entire surface of the optical disc D.
  • the drive amount cannot be controlled in units of 20 m for the mechanism that drives the optical pickup 10 in the radial direction.
  • the gap area in the optical disk D where the laser beam cannot be irradiated becomes large. As a result, the quality of the visible image formed on the image recording layer of the optical disk D is reduced. Will end up.
  • the movement control of the optical pickup 10 in the radial direction by the driving means and the tracking control of the optical pickup 10 are used in combination.
  • the irradiation position in the radial direction of the laser beam may be controlled in a smaller unit, for example, 20 / zm! More specifically, as shown in FIG. 24, the optical pickup 10 is first moved to the position A by a radial driving means such as a stepping motor. Then, with the optical pickup 10 fixed at this position A, tracking control is performed so that the irradiation position in the radial direction of the laser light becomes A1.
  • the laser beam is controlled while rotating the optical disc D with the irradiation position set to A1.
  • a visible image is formed.
  • the optical pickup 10 is fixed at the position A, and the irradiation position of the laser beam is moved to the outer circumference side by the distance a by tracking control. Set to position A2.
  • a visible image is formed by irradiating a laser beam while rotating the optical disk D once.
  • the optical pickup 10 is fixed at the position A, and image formation is performed while moving the irradiation position of the laser light in the order of A3, A4, A5 by tracking control.
  • the driving means moves the optical pickup 10 to the outer peripheral side by the distance A and moves the optical pickup 10 to the position B.
  • the irradiation position of the laser light is sequentially moved to the outer peripheral side by a distance a, such as positions Bl, B2, B3, B4, B5. Perform image formation.
  • the laser The light irradiation position can be moved by a finer distance unit.
  • the CAV method is employed in which a visible image is formed by irradiating a laser beam while rotating the optical disc D at a constant angular velocity. Even if you adopt the CLV method, where is constant. As described above, when the CAV method is adopted, the light level value of the laser beam irradiated as the laser beam irradiation position moves to the outer peripheral side of the optical disc D in order to form a high-quality visible image. It is not necessary to change the light level value for the CLV method. Therefore, if the image quality of the image formed on the image recording layer of the optical disc D deteriorates due to fluctuations in the target laser power value!
  • the laser power control circuit 20 is based on the light reception result of the front motor diode 53a of the optical pickup 10 and the light level target value or the support level. Laser power control was performed so that the laser beam with the target value of the robot level was irradiated (see Fig. 7).
  • the front motor diode when the laser diode 53 emits the light level as a target is used. The light reception result of 53a is used.
  • the light reception result of the front motor diode 53a when the laser diode 53 emits with the servo level as a target is obtained. I used it.
  • the servo level when performing laser power control using each of the write level and servo level as target values, the servo level can be set in addition to using the light reception result of the laser beam irradiated with each level as the target value.
  • Laser power control may be performed using laser light control not only with a servo level but also with a light level as a target value based on a result of receiving laser light irradiated as a target value. More specifically, the laser power control circuit 20 determines the intensity of the laser light with the servo level target value SM as shown in the upper part of FIG. 25 from the light reception result (current value) of the laser light emitted with the servo level as the target value.
  • the current value SI to be supplied to the laser diode 53 in order to emit light from the laser diode 53 is obtained.
  • the relationship between the current value SI and the supply current value obtained in advance through experiments or the like and the emitted laser power is obtained.
  • the relationship (primary function) between the supply current value and the emitted laser power is derived for the laser diode 53 from the inclination ⁇ to be expressed by a linear function.
  • the laser power control circuit 20 determines the current to be supplied to the laser diode 53 in order to emit light level laser light from the derived relationship and the light level target value WM set by the control unit 16.
  • the laser power control circuit 20 controls the laser driver 19 so as to supply the laser diode 53 with the current value WI obtained as described above. In this way, it is possible to perform control for emitting laser light at a light level without using the light reception result of the laser light emitted with the light level as a target value.
  • the type of the disc set in the optical disc recording apparatus 100 is identified by reading the disc ID recorded on the outermost peripheral portion of the image recording layer of the optical disc D, and the disc type identified
  • the laser power control according to the optical disc was performed (see Fig. 12), but the disc ID recorded on the lead-in on the recording surface of the optical disc D was read, and a visible image was formed on the image recording layer of the optical disc D.
  • Laser power control or the like according to the disc type identified by the disc ID read at times may be performed.
  • the user first sets the optical disc D so that the recording surface faces the optical pickup 10, and the optical disc recording device 100 sets the optical disc D.
  • the read-in area force of the optical disk D is also read the disk ID. Then, the optical disc recording apparatus 100 prompts the user to turn the disc over and reinsert it, and when the optical disc D is set so that the image recording layer faces the optical pickup 10, the optical disc recording device 100
  • the visible image can be formed by controlling the laser power according to the disc ID read by the lead-in area!
  • the optical disc recording apparatus 100 is formed on the surface opposite to the recording surface, using each part of the apparatus such as the optical pickup 10 for performing information recording on the recording surface. Make it possible to form a visible image on the image recording layer.
  • the thickness of the protective layer provided on the upper layer of the recording layer is 1.2 mm, whereas the thickness of the protective layer provided on the opposite surface is very small. Therefore, as shown in FIG. 26, the distance dl, d2 (relative positional relationship) between the position of the layer to be irradiated with the laser beam on the optical disc D and the position of the optical pickup 10 depends on the recording surface. Depending on whether the optical disk D is set so that either of the image recording layer and the image recording layer faces the optical pickup 10, the difference is about 1.2 mm.
  • the focus actuator 64 of the optical pickup 10 (see Fig. 3) designed on the assumption that the distance dl from the recording surface of the optical disc D is the focal length. If the distance becomes d2, sufficient focus control may not be possible. Therefore, when the optical disc D is set so that the image recording layer faces the optical pickup 10, the distance between the image recording layer and the optical pickup 10 is approximately 1.2 mm so that the distance is substantially equal to dl. However, a mechanism that holds the optical disc D at a position moved away from the optical pickup 10 may be provided.
  • an adapter pair position adjusting means 271 that can be attached to the chucking portion 270 at the center of the optical disk D is used, and the optical disk D as described above is used.
  • the adapter 271 may be attached to the optical disc D.
  • optical disc recording apparatus 100 is provided with a mechanism for moving the optical disc D in the vicinity of the setting position only when the image recording layer of the optical disc D is set so as to face the optical pickup 10. You may make adjustments.
  • focus control is performed according to the return light from the optical disc D received by the light receiving element 56 (see FIG. 3) of the optical pickup 10, and in this focus control, recording is performed on the recording surface.
  • the image recording layer of the optical disc D was irradiated with a laser beam having a larger spot diameter than when performing the above.
  • the focus actuator 64 is driven so that the light reception result of the light receiving element 56 becomes the elliptical shapes B and C shown in FIG.
  • the four areas 56a and 56b of the light receiving element 56 are used. , 56c, and 56d, focus control according to the total light reception amount of all areas of the light receiving element 56 may be performed instead of focus control according to the light reception amount. That is, if the spot diameter of the laser beam irradiated onto the image recording layer of the optical disc D is increased, all of the return light cannot be received by the light receiving element 56, and the light receiving element 56 as shown by a circular Z in FIG. Return light in an area larger than the light receiving area can be obtained.
  • the servo circuit 13 is designed so that the total received light amount of the light receiving element 56 is smaller than the total received light amount when the light receiving results such as circle A, ellipse B, and C shown in FIG. 13 are obtained.
  • the image recording layer of the optical disc D can be irradiated with a laser beam having a larger spot diameter.
  • the optical disk recording apparatus 100 uses the optical disk D from the optical disk D.
  • the pre-group (guide groove) formed on the recording surface of the optical disc D can be detected from the return light (reflected light). More specifically, contrary to the case of irradiating the recording surface with laser light, when irradiating a land portion where the return light level is high when irradiating the pre-group with laser light. The return light is small. Therefore, the pre-group can be detected by detecting the return light level. As a result, tracking control can be performed along the pregroup.
  • the optical disc D when the optical disc D is set so that the image recording layer faces the optical pickup 10, tracking control along the pregroup formed on the recording surface on the opposite side is possible.
  • the laser beam irradiation control for visible image formation may be performed while moving the laser beam irradiation position along the pregroup.
  • the rotation direction of the spindle motor 11 Rotate the optical disc D in the reverse direction. The reason for reverse rotation in this way will be described with reference to FIG.
  • the pregroove PB is From the image recording layer side, which is the opposite surface, it appears to be formed in a counterclockwise spiral shape. Therefore, when the optical disc D is rotated in the same rotation direction as that during recording, such as the innermost position of the position along the pre-group PB, the PBS force is moved along the pre-group PB. I can't let you. Therefore, when forming the visible image by irradiating the image recording layer of the optical disc D with the laser beam, if the laser beam irradiation position is moved along the pre-group PB, the recording surface is recorded. This is because the optical disk D is rotated in the direction opposite to the time when the process is executed.
  • control unit 16 instructs the servo circuit 13 to rotate the spindle motor 11 in the direction opposite to the direction of recording with respect to the recording surface.
  • the laser beam irradiation start position is set. If the outermost position PBE of the pre-group PB is used, the laser beam irradiation position can be moved along the pre-group PB even if the rotation direction of the optical disc D is the same as that during recording.
  • the control unit 16 irradiates a predetermined prohibited area KA in the image recording layer of the optical disc D shown in FIG. 31 with laser light (light level laser light) for image formation. Don't do it, let's control it.
  • the prohibition area KA has a predetermined angle ⁇ in the counterclockwise direction. This is a fan-shaped area.
  • the control unit 16 determines the gradation of the coordinates belonging to the prohibited area KA in the image data supplied from the host PC 110. When it is changed to “0”, data conversion may be performed. If such data conversion is performed, even if the drive pulse generation unit 35 faithfully generates the drive pulse according to the data, the light level laser beam is irradiated when the laser beam irradiation position passes through the prohibited area KA. As a result, no visible image is formed in the prohibited area KA.
  • the following effects can be obtained by preventing laser light irradiation for forming a visible image from being performed on the prohibited area KA. That is, even when image formation is performed in synchronization with the clock signal supplied from the PLL circuit 33 as described above, the rotational speed during one rotation of the spindle motor 11 slightly fluctuates. The period of the clock signal output from circuit 33 may fluctuate. Due to the fluctuation of the clock signal that is the synchronization signal for image formation in this way, as shown in FIG.
  • the trajectory of the irradiation position (indicated by the alternate long and short dash line in the figure) rotates once, and the laser beam irradiated to display the image of the position KC immediately before the reference position is irradiated to the position KT that has passed the reference position. Then things can happen.
  • the laser beam power that is originally irradiated to represent the image at the position KC immediately before the reference position.
  • Overlapping laser beam irradiation is performed, resulting in this There may be a problem with the formed visible image.
  • an optical disc recording apparatus 100 ′ configured as shown in FIG. 32 may be used instead of the optical disc recording apparatus 100 according to the above-described embodiment. As shown in the figure, the difference between this optical disc recording apparatus 100 ′ and the optical disc recording apparatus 100 in the above embodiment is that it does not have the FIFO memory 34 and the drive pulse generation unit 35, and is replaced by the encoder 17.
  • the encoder 320 is provided.
  • the encoder 320 is a circuit that performs E FM modulation, CIRC (Cross Interleave Reed-Solomon Code) conversion, etc. on the supplied data, similar to the encoder 17 shown in Fig. 2, and temporarily supplies the supplied data. Then, the data is stored in the memory, and the stored data is subjected to the modulation processing as described above and output to the strategy circuit 18 '. In addition, the encoder 320 performs a process such as EFM modulation on the data supplied from the buffer memory 36 based on the modulation ON Z OFF signal supplied from the control unit 16, and performs an EFM modulation or the like. It is configured so that it can be switched whether to output data without.
  • CIRC Cross Interleave Reed-Solomon Code
  • the encoder 320 When a signal indicating modulation on is supplied from the control unit 16, the encoder 320 performs EFM modulation or the like on the data supplied from the buffer memory 36 and outputs the data to the strategy circuit 18. On the other hand, when the modulation off signal is supplied from the control unit 16, the encoder 320 does not modulate the data supplied from the buffer memory 36, and synchronizes with the clock signal supplied from the PLL circuit 33. Output the data.
  • the control unit 16 outputs a modulation on Z off signal to the encoder 320 in accordance with an instruction from a user who is input via a user interface (not shown) or the like. More specifically, when receiving an instruction from the user to form a visible image on the image recording layer, a modulation off signal is output, and the user instructs to record information on the recording surface. When the signal is received, a modulation on signal is output. As described above, the control unit 16 may output the modulation on Z off signal in accordance with an instruction from the user. Depending on which side of the disk D is set to face the optical pickup 10, the modulation on Z off signal may be output.
  • a modulation off signal is output when the optical disc D is set so that the image recording layer faces the optical pickup 10
  • a modulation on signal is output when the recording surface is set on the optical disc D so that the recording surface faces the optical pickup 10. If you want to output the issue.
  • the control unit 16 when the user instructs to record information on the recording surface, the control unit 16 outputs a modulation ON signal to the encoder 320. Then, recording data to be recorded on the recording surface of the optical disk D is supplied from the host PC 110 to the buffer memory 36 and transferred from the nother memory 36 to the encoder 320. Receiving the modulation ON signal, the encoder 320 performs EFM modulation or the like on the recording data supplied from the buffer memory 36 and outputs it to the strategy circuit 18.
  • the strategy circuit 18 ′ corrects the time axis of the EFM-modulated data, generates a drive pulse for driving the laser driver 19, and outputs it to the laser driver 19. In response to this drive pulse, the laser driver 19 supplies a drive current to the laser diode 53 (see FIG. 3) of the optical pickup 10 to irradiate the optical pickup 10 with the laser beam, Recording data supplied from the host PC 110 is recorded.
  • the control unit 16 when the user instructs to form a visible image on the image recording layer, the control unit 16 outputs a modulation off signal to the encoder 320. Then, image data corresponding to a visible image to be formed on the image recording layer of the optical disc D is supplied from the host PC 110 to the buffer memory 36 and transferred from the buffer memory 36 to a memory built in the encoder 320. Receiving the modulation off signal, the encoder 320 does not perform modulation or the like on the image data transferred from the nother memory 36, and synchronizes with the clock signal supplied from the PLL circuit 33. Information indicating the gradation is sequentially output to the strategy circuit 18.
  • the strategy circuit 18 ′ like the drive pulse generation unit 35 in the above-described embodiment, generates a drive pulse based on the data indicating the gradation for each coordinate that is sequentially supplied, and the generated drive pulse is the laser driver 19 Output to.
  • the laser driver 19 supplies a drive current to the laser diode 53 (see FIG. 3) of the optical pickup 10 to irradiate laser light from the optical pickup 10, thereby Visible image formation corresponding to the image data supplied from the host PC 110 is performed on the image recording layer.
  • the encoder 320 performs modulation between the case of forming a visible image and the case of recording information, it is used only for the formation of a visible image.
  • the configuration such as the FIFO memory 34 and the drive nors generating unit 35 can be omitted, and the optical disc recording apparatus 100 ′ can have a visible image forming function and an information recording function while having a simpler configuration.
  • Data (image data) to be recorded for forming a visible image may be stored in advance in a memory (not shown) of the optical disc recording apparatus 100.
  • a memory not shown
  • data to be recorded in order to form the numbers 0 to 9 as a visible image is prepared in a memory.
  • the recording data relating to the designated number may be read from the memory and recorded on the optical disc D to form a visible image.
  • the original data is recorded over the outer periphery of the disc, and after the data recording is finished, the time stamp information related to the recording time and time according to the user's instruction is automatically formed as a visible image. May be.
  • the time stamp information may be supplied to the optical disc recording apparatus 100 by an external device (host PC 110).
  • the signature information indicating the user name and the contents of the recorded data may be formed as a visible image.
  • the signature information may be supplied to the optical disc recording apparatus 100 by the user operating the host PC 110. Alternatively, the user can directly operate (record) the signature information by operating the optical disk recording device 100.
  • the information recording layer is a dye type
  • the laser pickup force laser light is irradiated while rotating the above-mentioned unrecorded optical disk at a predetermined recording linear velocity.
  • the dye of the information recording layer absorbs the light and the temperature rises locally, and a desired pit is generated and its optical characteristics are changed to record information.
  • the recording waveform of the laser beam is one pulse even in the pulse train when one pit is formed. Does not help.
  • the ratio to the actual recording length (pit length) is important.
  • the pulse width of the laser beam is preferably 20 to 95% of the actual recording length. 30 A range of ⁇ 90% is more preferred. A range of 35-85% is even more preferred.
  • the recording waveform is a pulse train, the sum is in the above range.
  • the power of the laser beam varies depending on the recording linear velocity.
  • the recording linear velocity is 3.5m Zs, 1 ⁇ : LOOmW range is preferred 3-50mW range is more preferred 5-4 A range of 5 mW is more preferred.
  • the preferable range of the laser beam power is 21 ⁇ 2 times the power or slightly larger, respectively.
  • NA of the objective lens used for the pickup is preferably 0.55 or more, more preferably 0.60 or more.
  • a semiconductor laser having an oscillation wavelength in the range of 350 to 850 nm can be used as the recording light.
  • the information recording layer is a phase change type.
  • the phase change type it is composed of the above-described materials, and the phase change between the crystalline phase and the amorphous phase can be repeated by irradiation with laser light.
  • a focused laser light pulse is irradiated for a short time to partially melt the phase change recording layer.
  • the melted portion is rapidly cooled by thermal diffusion and solidifies to form an amorphous recording mark.
  • the recording mark portion is irradiated with laser light, heated to a temperature below the melting point of the information recording layer and above the crystallization temperature, and then cooled to crystallize the amorphous recording mark. Return to the unrecorded state.
  • This embodiment is a DVD-R type optical disc in which two discs are bonded together.
  • the method for producing the optical disc will be described below.
  • the dye (1) 1.lg and the following dye (2) 0.4g were added to 2, 2, 3, 3-tetrafluoro-mouth 1-propanol 100ml.
  • a dissolved coating solution (2) which has a thickness (depth: 140 nm, width: 3 OOnm, pitch: 0.74 m) in the shape of a snail (spiral) tracking groove. It was formed on a substrate having a diameter of 0.6 mm and a diameter of 120 mm by spin coating.
  • the image recording layer had a reflectance before recording of 28% at a wavelength of 660 nm, 13% at a wavelength of 500 nm, and a reflectance at a wavelength of 660 nm after recording was reduced by 60% compared to before recording.
  • a 1 mm thick grooved substrate (groove depth 170 nm, width 500 nm, diameter 12 cm) was prepared by injection molding and coated with a coating solution (cyanine dye (the following structure Spin coat the pigment (3)), Ciba Orazol Blue and Nippon Kayaku IRG023 dissolved in 100 ml of tetrafluoropropanol.
  • a coating solution cyanine dye (the following structure Spin coat the pigment (3)), Ciba Orazol Blue and Nippon Kayaku IRG023 dissolved in 100 ml of tetrafluoropropanol.
  • An information recording layer was formed by coating. Further, an ANC silver alloy (200 nm thick) was sputtered as a reflective layer on the information recording layer.
  • D640 was spin-coated with a thickness of 5 ⁇ m, and a 95 ⁇ m polycarbonate base was bonded to it by UV curing.
  • the image recording layer has a reflectance before recording in the range of 7 to 50% at a wavelength of 780 nm, 45% at a wavelength of 500 nm, and has a reflectance at a wavelength of 780 nm after recording as compared with that before recording.
  • the dye used for forming the image recording layer of Example 1 was changed to one obtained by mixing the following dye A (cyanine dye) and dye B (phthalocyanine dye) at a mixing ratio (mass ratio) of 30:70.
  • the substrate on which the image recording layer is formed is a substrate on which no groove is formed.
  • the optical disc of Example 3 in the same manner as in Example 1 except that the thickness of the image recording layer was formed so that the optical density (OD) as an index of thickness was 036. Was made.
  • FIG. 33 shows the reflectance spectrum before and after image recording in Example 3.
  • the dye used in the formation of the image recording layer of Example 1 was changed to a mixture of the following dye A (cyanine dye) and dye B (phthalocyanine dye) at a mixing ratio (mass ratio) of 30:70.
  • the optical disc of Example 4 was prepared in the same manner as in Example 1 except that the thickness of the image recording layer was formed so that the optical density (OD) as an index of thickness was 0.40. Produced.
  • FIG. 34 shows the reflectance spectrum before and after image recording in Example 4.
  • An optical disk was produced in the same manner as in Example 3 except that the dye used in the image recording layer of Example 3 was changed to the dye shown in Table 5 below.
  • Example 5 shows the blending ratio (mass ratio) in an example in which two kinds of pigments are combined.
  • Dye ratio Example 5 Dye C---Example 6 Dye E---Example 7 Dye D 1--Example 8 Dye G 1--Example 9 Dye C Dye E 30 70
  • Example 10 Dye C Dye D 30 F
  • Example 1 Dye C Dye G 30 70
  • Example 12 Dye E Dye D 50 50
  • Example 13 Dye E Dye G 30 70
  • Example 14 Dye C C-42 20
  • Example 15 Dye C C-43 20
  • Example 16 Dye C C-12 30 0
  • Example 20 Dye E C- 12 80 20
  • Example 21 Dye E C- 12 80
  • Example 21 Dye E C- 12 80
  • Example 21 Dye E C-28 70
  • Example 22 Dye DC-42 80
  • Example 23 Dye D C-43 70
  • Example 24 Dye D C-12 70
  • Example 25 Dye D C-28 70
  • Example 1 In the production of the second disk of Example 1, the same procedure as in Example 1 was conducted except that the dye (1) and the dye (2) in the coating liquid (2) were changed to 0.9 g of the dye (4) having the structure shown below. Thus, an optical disk of Comparative Example 1 was produced.
  • the image recording layer has a reflectance before recording of 49% at a wavelength of 660 nm and 38% at a wavelength of 500 nm, and the reflectance at a wavelength of 660 nm after recording is 43% lower than that before recording.
  • DVD Records images at the R recording and playback wavelength (660 nm).
  • Example 1 For the optical disk of Example 1 and Comparative Example 1, a semiconductor laser with a wavelength of 660 nm used for DVD R recording and reproduction was used under the conditions of a linear velocity of 3.5 m / s and a recording power of 8 mW. Recording was performed on the image recording layer in a focused state. In order to evaluate the difference in contrast before and after recording, the reflectance (wavelength 530 nm) before and after recording was measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV3100-PC). Table 6 shows the measurement results.
  • Example 2 a semiconductor laser with a wavelength of 780 nm used for CD-R recording / reproduction was used, and the focus was applied under the conditions of a linear velocity of 2.4 mZs and a recording power of 22 mW. Then, recording on the image recording layer was performed. In order to numerically determine the difference in contrast before and after recording, the reflectance (wavelength 530 nm) before and after recording was measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV3100-PC). Table 6 shows the measurement results.
  • FIG. 1 is a graph showing a change in reflectance with respect to the wavelength of a laser beam in an image recording layer of an optical disc of the present invention.
  • FIG. 2 shows an example of the configuration of an optical disk recording apparatus that can handle the optical disk of the present invention.
  • FIG. 3 is a diagram showing a configuration of an optical pickup that is a component of the optical disc recording apparatus.
  • FIG. 4 is a diagram for explaining the contents of image data used for forming a visible image on an image recording layer of the optical disc by the optical disc recording apparatus.
  • FIG. 5 is a diagram for explaining the contents of laser light irradiation control for expressing the density of an image when the optical disc recording apparatus forms a visible image on the image recording layer of the optical disc of the present invention. is there.
  • FIG. 6 is a diagram for explaining a laser light control method when the optical disc recording apparatus forms a visible image on the image recording layer of the optical disc.
  • FIG. 7 is a diagram for explaining the contents of laser power control by a laser power control circuit that is a component of the optical disk recording apparatus.
  • FIG. 8 is a diagram showing the return light of the laser light irradiated on the image recording layer of the optical disc from the optical pickup of the optical disc recording apparatus.
  • FIG. 9 is a diagram showing an FG pulse generated according to the amount of rotation of the spindle motor by the frequency generator 21 which is a component of the optical disc recording apparatus, and a clock signal generated based on the FG pulse! It is.
  • FIG. 10 is a flowchart for explaining the operation of the optical disk recording apparatus.
  • FIG. 11 is a flowchart for explaining the operation of the optical disc recording apparatus.
  • FIG. 12 is a diagram showing a disc ID recorded on an image recording layer of the optical disc.
  • FIG. 13 is a diagram showing the shape of the return light of the laser beam received by the light receiving element of the optical pickup of the optical disc recording apparatus.
  • FIG. 14 is a diagram for explaining the size of the beam spot diameter of laser light that the optical pickup of the optical disc recording apparatus irradiates the image recording layer of the optical disc.
  • FIG. 15 is a diagram for explaining a method for detecting that a laser beam irradiation position of the optical disk recording apparatus has passed a reference position of the optical disk.
  • FIG. 16 is a diagram for explaining a method of detecting that the laser beam irradiation position of the optical disk recording apparatus has passed the reference position of the optical disk.
  • FIG. 17 is a timing chart for explaining the operation of the optical disc recording apparatus when a visible image is formed by irradiating the image recording layer of the optical disc with laser light.
  • FIG. 18 is a view showing an image recording layer of the optical disc irradiated with laser light from the optical disc recording apparatus.
  • FIG. 19 is a diagram for explaining a method of expressing the density of a visible image formed on the image recording layer of the optical disc by the optical disc recording apparatus.
  • FIG. 20 is a diagram for explaining a method of expressing the density of a visible image formed on the image recording layer of the optical disc by the optical disc recording apparatus.
  • FIG. 21 is a diagram for explaining a method of expressing the density of a visible image formed on the image recording layer of the optical disc by the optical disc recording apparatus.
  • FIG. 22 is a diagram for explaining a method of expressing the density of a visible image formed on the image recording layer of the optical disc by the optical disc recording apparatus.
  • FIG. 23 is a diagram for explaining a method of expressing the density of a visible image formed on the image recording layer of the optical disc by the optical disc recording apparatus.
  • FIG. 24 is a diagram for explaining a method of moving the irradiation position of laser light in the radial direction of the optical disc when a visible image is formed on the image recording layer of the optical disc by the optical disc recording apparatus.
  • FIG. 25 is a diagram for explaining the contents of laser power control performed by the optical disc recording apparatus.
  • FIG. 26 shows a case where the optical disc is set in the optical disc recording apparatus so that the image recording layer faces the optical pickup, and a surface opposite to the image recording layer faces the optical pickup.
  • FIG. 4 is a diagram showing a positional relationship between the optical disc and the optical pickup when an optical disc is set.
  • FIG. 27 is an external view showing an adapter for adjusting the positional relationship between the optical disc and the optical pickup.
  • FIG. 29 Increasing the beam spot diameter of the laser beam applied to the image recording layer of the optical disc. It is a figure for demonstrating the method for doing.
  • FIG. 30 is a diagram for explaining a method of forming the visible image by moving the irradiation position of the laser beam along a pre-deb on the recording surface formed on the surface opposite to the image recording layer of the optical disc.
  • FIG. 31 is a diagram for explaining a prohibited area of the optical disc in which laser light irradiation for forming a visible image by the optical disc recording apparatus is prohibited.
  • FIG. 32 is a block diagram showing a configuration of a modified example of the optical disc recording apparatus.
  • FIG. 33 is a graph showing the reflectance spectrum before and after image recording in Example 3.
  • FIG. 34 is a graph showing the reflectance spectrum before and after image recording in Example 4.

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

【課題】 レーザー光を使用して可視画像を記録することができる画像記録層を有する光ディスクにおいて、画像記録層に視認性が良好な可視画像を記録可能な光ディスクを提供する。 【解決手段】 溝を有する基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可能な画像記録層とを有する光ディスクであって、前記画像記録層が、記録前の反射率が波長660nmにおいて7~45%、波長500nmにおいて35%以下であり、かつ記録後の波長660nmにおける反射率が記録前に比べて50%以上低下するとともに、波長450~550nmの範囲での反射率増加が最大となる波長の反射率変化が記録前の反射率に対して30%以上増加することを特徴とする光ディスクである。                                                                                 

Description

光ディスク
技術分野
[0001] 本発明は、光ディスクに関し、特に、可視画像を記録可能な画像記録層を有する光 ディスクに関する。
背景技術
[0002] 従来から、レーザー光により一回限りの情報の記録が可能な光記録媒体 (光デイス ク)が知られている。この光ディスクは、追記型 CD (所謂 CD— R)とも称され、その代 表的な構造は、透明な円盤状基板上に有機色素力 なる記録層、金等の金属から なる光反射層、さらに榭脂製の保護層がこの順に積層状態で設けられている。そして この CD— Rへの情報の記録は、近赤外域のレーザー光(通常は 780nm付近の波 長のレーザー光)を CD— Rに照射することにより行われ、記録層の照射部分がその 光を吸収して局所的に温度上昇し、物理的あるいは化学的変化 (例えば、ピットの生 成)が生じてその光学的特性を変えることにより、情報が記録される。一方、情報の読 み取り(再生)もまた記録用のレーザー光と同じ波長のレーザー光を照射することによ り行われ、記録層の光学的特性が変化した部位 (記録部分)と変化しない部位 (未記 録部分)との反射率の違いを検出することにより情報が再生される。
[0003] 近年、記録密度のより高い光記録媒体が求められている。このような要望に対して、 追記型デジタル ·ヴアサタイル ·ディスク (所謂 DVD—R)と称される光ディスクが提案 されている。この DVD— Rは、照射されるレーザー光のトラッキングのための案内溝( プレダループ)が CD— Rに比べて半分以下(0. 74-0. 8 m)と狭く形成された透 明な円盤状基板上に、色素からなる記録層、そして通常は該記録層の上に光反射 層、そしてさらに必要により保護層を設けてなるディスクを二枚、あるいは該ディスクと 同じ形状の円盤状保護基板とを該記録層を内側にして接着剤で貼り合わせた構造 を有している。 DVD—Rへの情報の記録再生は、可視レーザー光(通常は、 630nm 〜680nmの範囲の波長のレーザー光)を照射することにより行われ、 CD— Rより高 密度の記録が可能であるとされて 、る。 [0004] ところで、前記光ディスクには、音楽データ等が記録される記録面とは反対側の面 に、記録面に記録した音楽データの楽曲タイトルや、記録したデータを識別するため のタイトル等の可視情報を印刷したラベルを貼付したものが知られて 、る。このような 光ディスクは、プリンタ一等によって円形のラベルシート上にタイトル等を予め印刷し 、当該ラベルシートを光ディスクの記録面とは反対側の面に貼付することにより作製さ れる。
[0005] しかし、上述のようにタイトル等の所望の可視画像をレーベル面に記録した光デイス クを作製する場合には、光ディスクドライブとは別にプリンターが必要となる。従って、 光ディスクドライブを用いて、ある光ディスクの記録面に記録を行った後、該光デイス クを光ディスクドライブから取り出して、別に用意したプリンターによって印刷されたラ ベルシートを貼付するなどといった煩雑な作業を行う必要がある。
[0006] そこで、前記記録面と反対側の面にレーザーマーカを使用して表面と背景のコント ラストを変化させて表示をさせることができる光記録媒体が提案されている (例えば、 特許文献 1参照。 ) oこのような方法を採用することで、プリンタ一等を別途用意するこ となぐ光ディスクドライブによって光ディスクのレーベル面に所望の画像記録を行うこ とができる。しかしながら、この方法では、感度が低ぐ炭酸ガスレーザーなどの高パ ヮ一のガスレーザーを使用せざるを得ず、前述のようなレーザー光により形成された 可視画像は、コントラストが低く視認性に劣っていた。
[0007] また別の例として、異なる特性のレーザー光が照射された場合に、異なる色に発色 する発色層を有する光記録媒体が提案されている (例えば、特許文献 2参照。 ) 0し かし、この光記録媒体は、層構成や記録装置が複雑である上、細かい階調がつけら れな!ヽと!ヽぅ問題があった。
[0008] 一方、主情報の再生 (記録)に用いるレーザー光と同じレーザー光を用い、レーザ 一光の照射部分と非照射部分との反射率の違いに起因するコントラストにより可視情 報を記録し得る可視情報記録層を有する光情報記録媒体が提案されて!、る (例えば 、特許文献 3参照。 ) 0しかし、従来においては、可視情報の視認性の向上について の追究はなされておらず改善の余地が残されて 、た。
特許文献 1 :特開平 11 66617号公報 特許文献 2:特開 2003 - 272240号公報
特許文献 3 :特開 2004— 103180号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、以上の従来の問題点に鑑みなされたものであり、以下の目的を達成す ることを課題とする。即ち、
本発明の目的は、レーザー光を使用して可視画像を記録することができる画像記 録層を有する光ディスクにお ヽて、画像記録層に視認性が良好な可視画像を記録 可能な光ディスクを提供することにある。
課題を解決するための手段
[0010] 前記課題を解決する手段は以下の通りである。即ち、
< 1 > 溝を有する基板と、該基板上に形成され、レーザー光の照射により可視画像 を記録可能な画像記録層とを有する光ディスクであって、前記画像記録層が、記録 前の反射率が波長 660nmにおいて 7〜45%、波長 500nmにおいて 35%以下であ り、かつ記録後の波長 660nmにおける反射率が記録前に比べて 50%以上低下す るとともに、波長 450〜550nmの範囲での反射率増加が最大となる波長の反射率変 化が記録前の反射率に対して 30%以上増加することを特徴とする光ディスクである。
[0011] < 2> 溝を有する基板と、該基板上に形成され、レーザー光の照射により可視画像 を記録可能な画像記録層とを有する光ディスクであって、前記画像記録層が、記録 前の反射率が波長 780nmにおいて 7〜50%、波長 500nmにおいて 45%以下であ り、かつ記録後の波長 780nmにおける反射率が記録前に比べて 30%以上低下す るとともに、波長 450〜600nmの範囲での反射率増加が最大となる波長の反射率変 化が記録前の反射率に対して 30%以上増加することを特徴とする光ディスクである。
[0012] < 3 > 溝を有しない基板と、該基板上に形成され、レーザー光の照射により可視画 像を記録可能な画像記録層とを有する光ディスクであって、前記画像記録層が、記 録前の反射率が波長 660nmにおいて 5〜25%、波長 550nmにおいて 25%以下で あり、かつ記録後の波長 660nmにおける反射率が記録前に比べて 30%以上増加 するとともに、波長 450〜550nmの範囲での反射率増加が最大となる波長の反射率 変化が記録前の反射率に対して 70%以上増加することを特徴とする光ディスクであ る。
なお、上記反射率は分光光度計を用いて測定できる。
[0013] <4> 前記画像記録層が、シァニン色素を含むことを特徴とする前記 <1>から <
3 >の!、ずれかに記載の光ディスクである。
[0014] <5> 前記画像記録層が、フタロシアニン色素を含むことを特徴とする前記 < 1 > 力 < 3 >のいずれかに記載の光ディスクである。
[0015] <6> 前記画像記録層が、ォキソノール色素を含むことを特徴とする前記 <1>か ら < 3 >の!、ずれかに記載の光ディスクである。
[0016] <7> 前記画像記録層力 シァニン色素とフタロシアニン色素とを含むことを特徴と する前記 <1>から <3>の!、ずれかに記載の光ディスクである。
[0017] <8> 前記画像記録層力 シァニン色素とォキソノール色素とを含むことを特徴と する前記 <1>から <3>の!、ずれかに記載の光ディスクである。
[0018] <9> 基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可 能な画像記録層とを有する光ディスクであって、前記画像記録層が、シァニン色素を 含むことを特徴とする光ディスクである。
[0019] <10> 基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可 能な画像記録層とを有する光ディスクであって、前記画像記録層が、ォキソノール色 素を含むことを特徴とする光ディスクである。
[0020] <11> 基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可 能な画像記録層とを有する光ディスクであって、前記画像記録層が、シァニン色素と ォキソノール色素とを含むことを特徴とする光ディスクである。
<12> 基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可 能な画像記録層とを有する光ディスクであって、前記画像記録層が、シァニン色素と フタロシアニン色素とを含むことを特徴とする光ディスクである。 発明の効果
[0021] 本発明によれば、レーザー光を使用して可視画像を記録することができる画像記録 層を有する光ディスクにお ヽて、画像記録層に視認性が良好な可視画像を記録可 能な光ディスクを提供することができる。
発明を実施するための最良の形態
[0022] 本発明の光ディスクは、第 1の態様によると、溝を有する基板と、該基板上に形成さ れ、レーザー光の照射により可視画像を記録可能な画像記録層とを有する光デイス クであって、前記画像記録層が、記録前の反射率が波長 660nmにおいて 7〜45% 、波長 500nmにおいて 35%以下であり、かつ記録後の波長 660nmにおける反射 率が記録前に比べて 50%以上低下するとともに、波長 450〜550nmの範囲での反 射率増加が最大となる波長の反射率変化が記録前の反射率に対して 30%以上増 加することを特徴としている。第 1の態様は、画像記録層を形成する基板に溝を有し 、 650〜670nmの波長のレーザー光によって画像を記録する光ディスクであり、具 体的には、 DVD構成の光ディスクが挙げられる。さら〖こ、本態様の光ディスクは、ブ ルーレイディスク(BD) t 、つた構成とすることもできる。
[0023] また、本発明の光ディスクは、第 2の態様によると、溝を有する基板と、該基板上に 形成され、レーザー光の照射により可視画像を記録可能な画像記録層とを有する光 ディスクであって、前記画像記録層が、記録前の反射率が波長 780nmにおいて 7〜 50%、波長 500nmにおいて 45%以下であり、かつ記録後の波長 780nmにおける 反射率が記録前に比べて 30%以上低下するとともに、波長 450〜600nmの範囲で の反射率増加が最大となる波長の反射率変化が記録前の反射率に対して 30%以 上増加することを特徴としている。第 2の態様は、 770〜790nmの波長のレーザー 光によって画像を記録する光ディスクであり、具体的には、 CD— R構成の光ディスク が挙げられる。当該構成としては、基板上に、情報記録層と画像記録層と保護層もし くはカバー層とがこの順に形成されてなる構成である。
[0024] さらに、本発明の光ディスクは、第 3の態様によると、溝を有しない基板と、該基板上 に形成され、レーザー光の照射により可視画像を記録可能な画像記録層とを有する 光ディスクであって、前記画像記録層が、記録前の反射率が波長 660nmにおいて 5 〜25%、波長 550nmにおいて 25%以下であり、かつ記録後の波長 660nmにおけ る反射率が記録前に比べて 30%以上増加するとともに、波長 450〜550nmの範囲 での反射率増加が最大となる波長の反射率変化が記録前の反射率に対して 70%以 上増加することを特徴としている。第 3の態様は、画像記録層を形成する基板に溝を 有しない点において第 1の態様とは異なる。つまり、画像記録層を形成する基板に溝 を有しない場合は、第 3の態様により、視認性が良好な可視画像の記録を行うことが できる。
以下、本発明の光ディスクについて説明する。
[0025] 本発明の光ディスクの種類としては、読出し専用型、追記型、書換え可能型等のい ずれでもよいが、追記型であることが好ましい。また、記録形式としては、相変化型、 光磁気型、色素型等、特に制限されないが、色素型であることが好ましい。
[0026] 本発明の光ディスクの層構成としては、例えば、以下の構成が挙げられる。
(1)基板、情報記録層、反射層、接着層、画像記録層、基板
(2)基板、情報記録層、反射層、保護層、接着層、画像記録層、基板
(3)基板、情報記録層、反射層、保護層、接着層、保護層、画像記録層、基板
(4)基板、情報記録層、反射層、保護層、接着層、保護層、反射層、画像記録層、基 板
(5)基板、情報記録層、反射層、接着層、反射層、画像記録層、基板
(6)カバー層、接着層、情報記録層、反射層、基板、反射層、画像記録層、保護層
(7)カバー層、情報記録層、反射層、基板、反射層、画像記録層、保護層
(8)カバー層、接着層、情報記録層、反射層、基板、反射層、画像記録層、誘電体 層、保護層
(9)カバー層、情報記録層、反射層、基板、反射層、画像記録層、誘電体層、保護 層
(10)基板、情報記録層、反射層、保護層、反射層、画像記録層、保護層
(11)基板、情報記録層、反射層、保護層、反射層、画像記録層、誘電体層、保護層 [0027] なお、上記(1)〜(11)の層構成は単なる例示であり、当該層構成は上述の順番の みでなぐ一部を入れ替えてもよい。また、一部を省略してもかまわない。さらに、各 層は 1層で構成されても複数層で構成されてもよい。
以下、基板及び各層について説明する。
[0028] [情報記録層] 情報記録層は、デジタル情報などの符号情報 (コード化情報)が記録される層であ り、色素型、追記型、相変化型、光磁気型等が挙げられ、特に制限はないが、色素 型であることが好ましい。
[0029] 色素型の情報記録層に含有される色素の具体例としては、シァニン色素、ォキソノ ール色素、金属錯体系色素、ァゾ色素、フタロシアニン色素等が挙げられる。
また、特開平 4— 74690号公報、特開平 8— 127174号公報、同 11— 53758号公 報、同 11— 334204号公報、同 11— 334205号公報、同 11— 334206号公報、同 11— 334207号公報、特開 2000— 43423号公報、同 2000— 108513号公報、お よび同 2000— 158818号公報等に記載されている色素が好適に用いられる。
さらに、記録物質は色素には限定されず、トリァゾール化合物、トリアジンィ匕合物、 シァニン化合物、メロシアニン化合物、ァミノブタジエン化合物、フタロシアニン化合 物、桂皮酸化合物、ピオロゲン化合物、ァゾィ匕合物、ォキソノールイ匕合物、ベンゾォ キサゾール化合物、ベンゾトリァゾールイ匕合物等の有機化合物も好適に用いられる。 これらの化合物の中では、シァニン化合物、ァミノブタジエン化合物、ォキソノール化 合物、ベンゾトリアゾール化合物、フタロシアニン化合物が特に好ましい。
記録層の色素として、後述する画像記録層に用いる色素又は色素の組合せを用い ることが好ましい。
[0030] 情報記録層は、色素等の記録物質を、結合剤等と共に適当な溶剤に溶解して塗布 液を調製し、次いでこの塗布液を基板上に塗布して塗膜を形成した後、乾燥すること により形成される。塗布液中の記録物質の濃度は、一般に 0. 01〜15質量%の範囲 であり、好ましくは 0. 1〜10質量%の範囲、より好ましくは 0. 5〜5質量%の範囲、最 も好ましくは 0. 5〜3質量%の範囲である。
[0031] 情報記録層の形成は、蒸着、スパッタリング、 CVD、又は溶剤塗布等の方法によつ て行うことができる力 溶剤塗布が好ましい。
[0032] 塗布液の溶剤としては、酢酸ブチル、乳酸ェチル、セロソルブアセテートなどのエス テル;メチルェチルケトン、シクロへキサノン、メチルイソブチルケトンなどのケトン;ジク ロルメタン、 1, 2—ジクロルェタン、クロ口ホルムなどの塩素化炭化水素;ジメチルホル ムアミドなどのアミド;メチルシクロへキサンなどの炭化水素;ジブチルエーテル、ジェ チルエーテル、テトラヒドロフラン、ジォキサンなどのエーテル;エタノール、 n—プロパ ノール、イソプロパノール、 n—ブタノール、ジアセトンアルコールなどのアルコール; 2 , 2, 3, 3—テトラフルォロプロパノールなどのフッ素系溶剤;エチレングリコールモノ メチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノメ チルエーテルなどのダリコールエーテル類などを挙げることができる。
上記溶剤は使用する色素の溶解性を考慮して単独で、あるいは二種以上を組み 合わせて使用することができる。塗布液中にはさらに酸ィ匕防止剤、 UV吸収剤、可塑 剤、潤滑剤など各種の添加剤を目的に応じて添加してもよい。
[0033] 結合剤を使用する場合、該結合剤の例としては、ゼラチン、セルロース誘導体、デ キストラン、ロジン、ゴムなどの天然有機高分子物質;およびポリエチレン、ポリプロピ レン、ポリスチレン、ポリイソブチレン等の炭化水素系榭脂;ポリ塩ィ匕ビュル、ポリ塩ィ匕 ビ-リデン、ポリ塩ィ匕ビュル ·ポリ酢酸ビュル共重合体等のビュル系榭脂;ポリアクリル 酸メチル、ポリメタクリル酸メチル等のアクリル榭脂;ポリビュルアルコール、塩素化ポ リエチレン、エポキシ榭脂、ブチラール榭脂、ゴム誘導体、フエノール'ホルムアルデ ヒド榭脂等の熱硬化性榭脂の初期縮合物などの合成有機高分子を挙げることができ る。
[0034] 情報記録層の材料として結合剤を併用する場合、結合剤の使用量は、一般に色素 の質量の 0. 01倍量〜 50倍量の範囲にあり、好ましくは 0. 1倍量〜 5倍量の範囲に ある。
[0035] 前記溶剤塗布の塗布方法としては、スプレー法、スピンコート法、ディップ法、ロー ルコート法、ブレードコート法、ドクターロール法、スクリーン印刷法などを挙げること ができる。情報記録層は単層でも重層でもよい。情報記録層の層厚は一般に 10〜5 OOnmの範囲【こあり、好ましく ίま 15〜300nmの範囲【こあり、より好ましく ίま 20〜150 nmの範囲にある。
[0036] 情報記録層には、該情報記録層の耐光性を向上させるために、種々の褪色防止 剤を含有させることができる。褪色防止剤としては、一般的に、一重項酸素クェンチヤ 一が用いられる。一重項酸素クェンチヤ一としては、既に公知の特許明細書等の刊 行物に記載のものを利用することができる。その具体例としては、特開昭 58— 1756 93号、同 59— 31194号、同 60— 18387号、同 60— 19586号、同 60— 19587号、 同 60— 35054号、同 60— 36190号、同 60— 36191号、同 60— 44554号、同 60 —44555号、同 60— 44389号、同 60— 44390号、同 60— 54892号、同 60— 470 69号、同 68— 209995号、特開平 4— 25492号、特公平 1— 38680号、及び同 6— 26028号等の各公報、ドイツ特許 350399号明細書、そして日本ィ匕学会誌 1992年 10月号第 1141頁などに記載のものを挙げることができる。
[0037] 前記一重項酸素クェンチヤ一などの褪色防止剤の使用量は、通常、色素の質量の 0. 1〜50質量%の範囲であり、好ましくは、 0. 5〜45質量%の範囲、更に好ましく は、 3〜40質量%の範囲、特に好ましくは 5〜25質量%の範囲である。
[0038] 相変化型の情報記録層を構成する材料の具体例としては、 Sb— Te合金、 Ge-S b— Te合金、 Pd— Ge— Sb— Te合金、 Nb— Ge— Sb— Te合金、 Pd— Nb— Ge— S b— Te合金、 Pt— Ge— Sb— Te合金、 Co— Ge— Sb— Te合金、 In— Sb— Te合金 ゝ Ag— In— Sb— Te合金、 Ag— V— In— Sb— Te合金、 Ag— Ge— In— Sb— Te合 金、等が挙げられる。なかでも、多数回の書き換えが可能であることから、 Ge-Sb- Te合金、 Ag— In— Sb— Te合金が好ましい。
相変化型の情報記録層の層厚としては、 10〜50nmとすることが好ましぐ 15〜30 nmとすることがより好ましい
[0039] 以上の相変化型の情報記録層は、スパッタ法、真空蒸着法などの気相薄膜堆積法 、等によって形成することができる。
[0040] [基板]
本発明の光ディスクの基板は、情報記録層及び画像記録層の!、ずれの側の基板 においても、従来の光ディスクの基板として用いられている各種の材料から任意に選 択することができる。
基板材料としては、例えば、ガラス、ポリカーボネート、ポリメチルメタタリレート等の アクリル榭脂、ポリ塩化ビュル、塩ィ匕ビュル共重合体等の塩ィ匕ビュル系榭脂、ェポキ シ榭脂、三酢酸セルロース(TAC)、アモルファスポリオレフインおよびポリエステルな どを挙げることができ、所望によりそれらを併用してもよい。
なお、これらの材料はフィルム状としてまたは剛性のある基板として使うことができる 。上記材料の中では、耐湿性、寸法安定性および価格などの点力 ポリカーボネート が好ましい。
[0041] 基板の厚さは、第 1の態様及び第 3の態様では、 5〜 1200 mとすることが好ましく 、 10〜600 mとすること力 Sより好ましい。第 2の態様では、 0. 1〜1. 2mmとすること が好ましぐ 0. 2〜1. 1mmとすることがより好ましい。また、情報記録層が設けられる 側の基板は、情報記録又は再生に波長 660nm近辺のレーザー光を用いる場合に は、卜ラックピッチ: 700〜800nm、グループ深さ: 100〜200nm、溝幅: 250〜400 nm、グループ傾斜角: 30〜70度であることが好ましい。また、情報記録又は再生に 波長 405nm近辺のレーザー光を用いる場合には、トラックピッチ: 300〜400nm、グ ループ深さ: 20〜: LOOnm、溝幅: 100〜200nm、グループ傾斜角: 30〜70度であ ることが好ましい。また、情報記録又は再生に波長 780nm近辺のレーザー光を用い る場合には、トラックピッチ: 1. 5〜1. 7 m、グループ深さ: 100〜220nm、溝幅: 4 00〜800nm、グループ傾斜角: 30〜70度であることが好ましい。
[0042] 情報記録層が設けられる側の基板表面側(グループが形成された面側)には、平 面性の改善、接着力の向上および情報記録層の変質防止の目的で、下塗層が設け られてちよい。
下塗層の材料としては例えば、ポリメチルメタタリレート、アクリル酸 'メタクリル酸共 重合体、スチレン '無水マレイン酸共重合体、ポリビュルアルコール、 N—メチロール アクリルアミド、スチレン 'ビュルトルエン共重合体、クロルスルホン化ポリエチレン、二 トロセルロース、ポリ塩化ビュル、塩素化ポリオレフイン、ポリエステル、ポリイミド、酢酸 ビュル.塩化ビュル共重合体、エチレン.酢酸ビュル共重合体、ポリエチレン、ポリプ ロピレン、ポリカーボネート等の高分子物質;およびシランカップリング剤などの表面 改質剤などを挙げることができる。下塗層は、上記物質を適当な溶剤に溶解または 分散して塗布液を調製した後、この塗布液をスピンコート、ディップコート、ェクストル 一ジョンコートなどの塗布法により基板表面に塗布することにより形成することができ る。
下塗層の層厚 ίま一般に 0. 005〜20 111の範囲にぁり、好ましく【ま0. 01〜10 /ζ πι の範囲である。 [0043] また、画像記録層に高精彩な画像を記録するために、第 1の態様と第 2の態様では 、画像記録層が設けられる側の基板にも、トラッキング用のグループ (溝)が設けられ る。この場合、第 1の態様では、波長 660nm近辺のレーザー光を用いる場合におい ては、グループのトラックピッチは、 0. 7〜200 /ζ πιの範囲にとすることが好ましぐ 1 〜100 /ζ πιの範囲とすることがより好ましぐ 1. 5〜50 /ζ πιの範囲とすることがさらに 好ましい。また、画像記録時にトラッキングをかけて、かつ、レーザー光を入射する側 の基板厚さが 0. 6mmの場合の溝の深さは、 50〜300nmとすること力 子ましく、 80 〜250nmとすること力 Sより好ましく、 100〜200nmとすることがさらに好ましい。溝の 幅は、 100〜500nmとすることが好ましぐ 200〜400nmとすること力より好ましく、 2 50〜350nmとすることがさらに好ましい。グループの傾斜角は 30〜70度とすること が好ましい。
[0044] 一方、第 2の態様では、波長 780nm近辺のレーザー光を用いる場合においては、 グループのトラックピッチは、 1〜200 /ζ πιの範囲にとすることが好ましぐ 1. 6〜: LOO mの範囲とすることがより好ましぐ 3〜50 mの範囲とすることがさらに好ましい。 また、画像記録時にトラッキングをかけて、かつ、レーザー光を入射する側の基板厚 さが 0. 6mmの場合の溝の深さは、 100〜300nmとすることが好ましぐ 130〜250n mとすることがより好ましぐ 150〜200nmとすることがさらに好ましい。溝の幅は、 10 0〜: LOOOnmとすること力 子ましく、 200〜700nmとすること力 ^より好ましく、 300〜60 Onmとすることがさらに好ましい。グループの傾斜角は 30〜70度とすることが好まし い。
なお、溝形状は、レーザー光の波長、 NA、基板厚などでその最適範囲が異なるこ とがある。
[0045] [反射層]
情報の再生時における反射率の向上の目的で、情報記録層に隣接して反射層が 設けられることある。反射層の材料である光反射性物質はレーザー光に対する反射 率が高い物質であり、その例としては、 Mg、 Se、 Y、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 Mo、 W、 Mn、 Re、 Fe、 Co、 Niゝ Ru、 Rh、 Pd、 Ir、 Pt、 Cu、 Ag、 Au、 Zn、 Cd、 Al、 Ga、 In、 Si、 Ge、 Te、 Pb、 Po、 Sn、 Biなどの金属及び半金属あるいはステンレス鋼 を挙げることができる。これらの物質は単独で用いてもよいし、あるいは二種以上の組 合せで、または合金として用いてもよい。これらのうちで好ましいものは、 Cr、 Ni、 Pt、 Cu、 Ag、 Au、 Al及びステンレス鋼である。特に好ましくは、 Au金属、 Ag金属、 A1金 属あるいはこれらの合金であり、最も好ましくは、 Ag金属、 A1金属あるいはそれらの 合金である。反射層は、例えば、上記光反射性物質を蒸着、スパッタリングまたはィ オンプレーティングすることにより基板もしくは情報記録層の上に形成することができ る。反射層の層厚は、一般的には 10〜300nmの範囲にあり、 50〜200nmの範囲 にあることが好ましい。
[0046] [接着層]
接着層は、情報記録層側の反射層又は保護層と、画像記録層側の基板又は保護 層との密着性を向上させるために形成される任意の層である。
接着層を構成する材料としては、光硬化性榭脂が好ましぐなかでもディスクの反り を防止するため、硬化収縮率の小さいものが好ましい。このような光硬化性榭脂とし ては、例えば、大日本インキ化学工業 (株)製の「SD— 640」、「30— 347」等の11¥ 硬化性榭脂 (UV硬化性接着剤)を挙げることができる。また、接着層の厚さは、弾力 性を持たせるため、 1〜1000 mの範囲が好ましぐ 5〜500 mの範囲がより好ま しぐ 10〜100 /ζ πιの範囲が特に好ましい。
[0047] [画像記録層]
画像記録層には、文字、図形、絵柄など、ユーザーが所望する可視画像 (可視情 報)が記録される。可視画像としては、例えば、ディスクのタイトル、内容情報、内容の サムネール、関連した絵柄、デザイン的な絵柄、著作権情報、記録日時、記録方法、 記録フォーマット、バーコード等が挙げられる。
[0048] 画像記録層に記録される可視画像とは、視覚的に認識可能な画像を意味し、文字
(列)、絵柄、図形などあらゆる視認可能な情報を含む。また、文字情報としては、使 用可能者指定情報、使用期間指定情報、使用可能回数指定情報、レンタル情報、 分解能指定情報、レイヤー指定情報、ユーザ指定情報、著作権者情報、著作権番 号情報、製造者情報、製造日情報、販売日情報、販売店または販売者情報、使用セ ット番号情報、地域指定情報、言語指定情報、用途指定情報、製品使用者情報、使 用番号情報等が挙げられる。
[0049] 画像記録層は、レーザー光の照射により、文字、画像、絵柄などの画像情報を視認 可能に記録できればよぐその構成材料としては、既述の情報記録層において説明 した色素を好適に用いることができる。
[0050] 本発明の光ディスクにおいては、第 1の態様では、画像記録層は、記録前の反射 率力 S波長 660nmにおいて 7〜45%、波長 500nmにおいて 35%以下であり、かつ 記録後の波長 660nmにおける反射率が記録前に比べて 50%以上低下するとともに 、波長 450〜550nmの範囲での反射率増加が最大となる波長の反射率変化が記 録前の反射率に対して 30%以上増加する。また、第 2の態様では、画像記録層は、 記録前の反射率が波長 780nmにおいて 7〜50%、波長 500nmにおいて 45%以 下であり、かつ記録後の波長 780nmにおける反射率が記録前に比べて 30%以上 低下するとともに、波長 450〜600nmの範囲での反射率増加が最大となる波長の反 射率変化が記録前の反射率に対して 30%以上増加する。さらに、第 3の態様では、 前記画像記録層は、記録前の反射率が波長 660nmにおいて 5〜25%、波長 550η mにおいて 25%以下であり、かつ記録後の波長 660nmにおける反射率が記録前に 比べて 30%以上増加するとともに、波長 450〜550nmの範囲での反射率増加が最 大となる波長の反射率変化が記録前の反射率に対して 70%以上増加する。
[0051] 前記第 1の態様における画像記録前後における反射率の変化について図面を参 照して説明する。図 1は、後述する実施例 1の光ディスクの画像記録層のレーザー波 長に対する反射率の変化をグラフで示す図であり、実線が画像記録前を示し、破線 が画像記録後(記録パワー 5mW)を示し、一点鎖線が画像記録後(記録パワー 8m W)を示す。図 1のグラフでは、画像記録前においては、波長 500nmにおいて 14% であり、かつ 8mWで記録後の反射率が波長 660nmにおいて 28%、波長 450〜60 Onmの範囲における反射率の増加が最大となる波長での反射率変化が記録前の反 射率に対して約 60%増加して 、る。
[0052] また、図 1のグラフから次のようなことも分かる。即ち、波長 600nm以上においては 、画像記録前後で反射率低下が見られ、長波長域で顕著である。一方、人が目視で 画像記録部を明るく視認できるのは、人の視感度が 500〜600nmの間にピークをも ち、画像記録部の反射率も波長 450〜600nmの光に対して画像記録前後で大きく 変化しているためと推察される。
一方、 5mWから 8mWへ記録パワーがアップすることにより、波長 510〜630nm前 後で反射率が増加するが、波長 630nm以上では低下する。このとき、色調は黄緑〜 緑色の傾向でスペクトル極大のシフトと定性的に対応している。
[0053] 画像記録層が以上のように設定されていることにより、波長 650〜670nmのレーザ 一光で画像記録しても、人が視認しゃすい光波長 500〜550nmに対して、画像記 録部と画像未記録部とで反射率に差が生じ、視認性が良好な可視画像が記録され る。
[0054] 前述のように、本発明の光ディスクにおいては、画像記録前後において、波長 450 〜550nmの領域の光に対する反射率が画像記録前の当該波長の光に対する反射 率よりも増加するが、具体的には、 20%以上増加することが好ましぐ 50%増加する ことがより好ましい。なお、図 1では、波長 660nmのレーザー光を照射して画像記録 を行った。
[0055] 以上のように、画像記録前後において上記の通り反射率が変化する画像記録層を 設定するには、例えば、画像記録層に用いる色素を適宜選択することにより実現する ことができる。そして、それらの色素を、結合剤等と共に適当な溶剤に溶解して塗布 液を調製し、次いでこの塗布液を基板上に塗布して塗膜を形成した後、乾燥すること により画像記録層が形成される。塗布液中の記録物質の濃度は、一般に 0. 01〜15 質量%の範囲であり、好ましくは 0. 1〜10質量%の範囲、より好ましくは 0. 5〜5質 量0 /0の範囲、最も好ましくは 0. 5〜3質量%の範囲である。
[0056] 色素の具体例としては、シァニン色素、イミダゾキノキサリン系色素、ピリリウム系 -チ ォピリリウム系色素、ァズレニウム系色素、スクヮリリウム系色素、ァゾ色素、 Ni、 Crな どの金属錯塩系色素(フタロシアニン色素、ァゾ金属キレート色素、ピロメテン金属キ レート色素)、ナフトキノン系色素、アントラキノン系色素、インドフエノール系色素、ィ ンドア-リン系色素、トリフエ-ルメタン系色素、メロシアニン系色素、ォキソノール系 色素、アミ-ゥム系色素、紫外線吸収剤が挙げられ、中でも特に、シァニン系色素、 フタロシアニン系色素、ァゾ色素(金属キレート色素を含む)、メロシアニン系色素、ォ キソノール系色素、紫外線吸収剤が好適に用いられる。
[0057] 色素の組み合わせとしては、それぞれ、ォキソノール色素とシァニン色素;ォキソノ ール色素とァゾ色素;ォキソノール色素と別のォキソノール色素;ォキソノール色素と フタロシアニン色素;ォキソノール色素とピロメテン色素;シァニン色素と別のシァニン 色素;シァニン色素とァゾ色素;シァニン色素とフタロシアニン色素;シァニン色素とピ ロメテン色素;ァゾ色素とフタロシアニン色素;ァゾ色素とピロメテン色素;フタロシア- ン色素とピロメテン色素を好適に挙げることができる。
上述した色素中でも、シァニン色素又はフタロシアニン色素が好ましぐ更には、そ の両者の併用が好ましい。特に、シァニン色素とフタロシアニン色素とを混合して用 いる場合、又はシァニン色素とォキソノール色素とを混合する場合に本発明の第 1の 態様の要件を満足する光ディスクが得られる。なお、これらの場合には、シァニン色 素を少なめに使用することが好ましぐシァニン色素の含有量 (質量基準)力 10〜45 %であることが好ましぐ 20〜40%であることがより好ましぐ 25〜35%であることが さらに好ましいい。
なお、画像記録層は、色素の種類を適宜選択することにより情報記録層にもなり得 る。
[0058] 色素を組合せて用いる場合、シァニン色素とフタロシアニン色素とを混合して用い る場合、又はシァニン色素とォキソノール色素とを混合する場合以外では、色素同士 の含有比(質量比)は、 99 : 1〜1 : 99が好ましぐ 95 : 5〜30 : 70がより好ましぐ 90 : 10〜40: 60がさらに好まし!/、。
[0059] 以上の色素について、シァニン、フタロシアニン、ォキソノール色素について順に 詳述する。
[0060] ーシァニン色素
一般的なシァニン色素については、ヘテロサイクル化合物の化学 (The Chemist ry of Heterocycic Compound)シリーズの、シァニン色素とその周辺化合物(C yanine Dyes and Related Compounds. John Wjley & Sons. New York, London, 1964年発売)【こ記載されて!ヽる。
[0061] 本発明において、シァニン色素としては、下記一般式(1)で表されるシァニン色素 であることが好ましい。
[0062] [化 1] 般式
Figure imgf000018_0001
[一般式(1)中、 Za 及び Za ま各々独立にヘテロ環を形成する原子群を表わす。 Ma21、 Ma22、 Ma23は各々独立に、置換または無置換のメチン基を表わす。 ka2は 0 力 3までの整数を表わし、 ka2が 2以上の時、複数存在する Ma21、 Ma22は同じでも 異なってもよい。 R1Q1、 R1Q2は、各々独立に、置換基を表す。 Q2は電荷を中和するィ オンを表わし、 y2は電荷の中和に必要な数を表わす。 ]
[0063] 一般式(1)中、 Ma21、 Ma22、 Ma23は、各々独立に、置換または無置換のメチン基を 表わす。置換基を有する場合の置換基としては、ハロゲン原子、置換もしくは無置換 のアルキル基 (シクロアルキル基、ビシクロアルキル基を含む)、置換もしくは無置換 のァルケ-ル基(シクロアルケ-ル基、ビシクロアルケ-ル基を含む)、置換もしくは無 置換のアルキニル基、置換もしくは無置換のァリール基、置換もしくは無置換のへテ 口環基、シァノ基、ヒドロキシル基、ニトロ基、カルボキシル基、置換もしくは無置換の アルコキシ基、置換もしくは無置換のァリールォキシ基、置換もしくは無置換のシリル ォキシ基、置換もしくは無置換のへテロ環ォキシ基、置換もしくは無置換のァシルォ キシ基、置換もしくは無置換の力ルバモイルォキシ基、置換もしくは無置換のアルコ キシカルボ-ルォキシ基、置換もしくは無置換のァリールォキシカルボ-ルォキシ、 置換もしくは無置換のアミノ基 (ァ-リノ基を含む)、置換もしくは無置換のァシルアミ ノ基、置換もしくは無置換のァミノカルボニルァミノ基、置換もしくは無置換のアルコキ シカルボ-ルァミノ基、置換もしくは無置換のァリールォキシカルボ-ルァミノ基、置 換もしくは無置換のスルファモイルァミノ基、置換もしくは無置換のアルキル及びァリ 一ルスルホニルァミノ基、置換もしくは無置換のメルカプト基、置換もしくは無置換の アルキルチオ基、置換もしくは無置換のァリールチオ基、置換または無置換のへテロ 環チォ基、置換または無置換のスルファモイル基、スルホ基、置換もしくは無置換の アルキル及びァリールスルフィエル基、置換もしくは無置換のアルキル及びァリール スルホニル基、置換もしくは無置換のァシル基、置換もしくは無置換のァリールォキ シカルボニル基、置換もしくは無置換のアルコキシカルボ-ル基、置換または無置換 の力ルバモイル基、置換または無置換のァリール及びへテロ環ァゾ基、置換もしくは 無置換のイミド基、置換もしくは無置換のホスフイノ基、置換もしくは無置換のホスフィ -ル基、置換もしくは無置換のホスフィエルォキシ基、置換もしくは無置換のホスフィ -ルァミノ基、または置換もしくは無置換のシリル基が例として挙げられる。
更に詳しくは、置換基は、ハロゲン原子 (例えば、塩素原子、臭素原子、ヨウ素原子 )、アルキル基 [直鎖、分岐、環状の置換もしくは無置換のアルキル基を表す。それら は、アルキル基 (好ましくは炭素数 1から 30のアルキル基、例えばメチル、ェチル、 n プロピル、イソプロピル、 tーブチル、 n—ォクチル、エイコシル、 2—クロロェチル、 2 シァノエチル、 2 ェチルへキシル)、シクロアルキル基 (好ましくは、炭素数 3か ら 30の置換または無置換のシクロアルキル基、例えば、シクロへキシル、シクロペン チル、 4—n—ドデシルシクロへキシル)、ビシクロアルキル基(好ましくは、炭素数 5か ら 30の置換もしくは無置換のビシクロアルキル基、つまり、炭素数 5から 30のビシクロ アルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ [1, 2, 2] ヘプタン一 2—ィル、ビシクロ [2, 2, 2]オクタン一 3—ィル)、更に環構造が多いトリシ クロ構造なども包含するものである。以下に説明する置換基の中のアルキル基 (例え ばアルキルチオ基のアルキル基)もこのような概念のアルキル基を表す。 ]、ァルケ- ル基 [直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。それらは、ァ ルケニル基 (好ましくは炭素数 2から 30の置換または無置換のァルケ-ル基、例えば 、ビュル、ァリル、プレニル、ゲラ -ル、ォレイル)、シクロアルケ-ル基(好ましくは、炭 素数 3から 30の置換もしくは無置換のシクロアルケ-ル基、つまり、炭素数 3から 30 のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、 2—シクロ ペンテン— 1—ィル、 2—シクロへキセン— 1—ィル)、ビシクロアルケ-ル基(置換もし くは無置換のビシクロアルケニル基、好ましくは、炭素数 5から 30の置換もしくは無置 換のビシクロアルケ-ル基、つまり二重結合を一個持つビシクロアルケンの水素原子 を一個取り去った一価の基である。例えば、ビシクロ [2, 2, 1]ヘプトー 2—ェンー 1 —ィル、ビシクロ [2, 2, 2]ォクト 2 ェン一 4—ィル)を包含するものである。 ]、ァ ルキニル基 (好ましくは、炭素数 2から 30の置換または無置換のアルキニル基、例え ば、ェチニル、プロパルギル、トリメチルシリルェチュル基)、ァリール基 (好ましくは炭 素数 6から 30の置換もしくは無置換のァリール基、例えばフエ-ル、 p トリル、ナフ チル、 m—クロ口フエ-ル、 o へキサデカノィルァミノフエ-ル)、ヘテロ環基(好まし くは 5または 6員の置換もしくは無置換の、芳香族もしくは非芳香族のへテロ環化合 物から一個の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数 3から 3 0の 5もしくは 6員の芳香族のへテロ環基である。例えば、 2 フリル、 2 チェ-ル、 2 —ピリミジ -ル、 2—ベンゾチアゾリル)、シァノ基、ヒドロキシル基、ニトロ基、カルボキ シル基、アルコキシ基 (好ましくは、炭素数 1から 30の置換もしくは無置換のアルコキ シ基、例えば、メトキシ、エトキシ、イソプロポキシ、 t ブトキシ、 n—ォクチルォキシ、 2—メトキシェトキシ)、ァリールォキシ基 (好ましくは、炭素数 6から 30の置換もしくは 無置換のァリールォキシ基、例えば、フエノキシ、 2—メチルフエノキシ、 4—tーブチ ルフエノキシ、 3 -トロフエノキシ、 2—テトラデカノィルァミノフエノキシ)、シリルォキ シ基 (好ましくは、炭素数 3から 20のシリルォキシ基、例えば、トリメチルシリルォキシ、 t—プチルジメチルシリルォキシ)、ヘテロ環ォキシ基 (好ましくは、炭素数 2から 30の 置換もしくは無置換のへテロ環ォキシ基、 1 フエ-ルテトラゾールー 5—ォキシ、 2 ーテトラヒドロビラ-ルォキシ)、ァシルォキシ基 (好ましくはホルミルォキシ基、炭素数 2から 30の置換もしくは無置換のアルキルカルボ-ルォキシ基、炭素数 6から 30の置 換もしくは無置換のァリールカルボ-ルォキシ基、例えば、ホルミルォキシ、ァセチル ォキシ、ビバロイルォキシ、ステアロイルォキシ、ベンゾィルォキシ、 p—メトキシフエ二 ルカルボニルォキシ)、力ルバモイルォキシ基 (好ましくは、炭素数 1から 30の置換も しくは無置換の力ルバモイルォキシ基、例えば、 N, N ジメチルカルバモイルォキシ 、 N, N ジェチルカルバモイルォキシ、モルホリノカルボニルォキシ、 N, N ジー n ーォクチルァミノカルボニルォキシ、 N— n—ォクチルカルバモイルォキシ)、アルコキ シカルボニルォキシ基 (好ましくは、炭素数 2から 30の置換もしくは無置換アルコキシ カルボ-ルォキシ基、例えばメトキシカルボ-ルォキシ、エトキシカルボ-ルォキシ、 t ブトキシカルボニルォキシ、 n—ォクチルカルボ二ルォキシ)、ァリールォキシカル ボニルォキシ基 (好ましくは、炭素数 7から 30の置換もしくは無置換のァリールォキシ カルボ-ルォキシ基、例えば、フエノキシカルボ-ルォキシ、 p—メトキシフエノキシカ ルポ-ルォキシ、 p—n—へキサデシルォキシフエノキシカルボ-ルォキシ)、ァミノ基 (好ましくは、アミノ基、炭素数 1から 30の置換もしくは無置換のアルキルアミノ基、炭 素数 6から 30の置換もしくは無置換のァリールアミノ基、例えば、アミ入メチルアミ入 ジメチルアミ入ァ-リノ、 N-メチルーァ-リ入ジフエ-ルァミノ)、ァシルァミノ基 (好 ましくは、ホルミルアミノ基、炭素数 1から 30の置換もしくは無置換のアルキルカルボ -ルァミノ基、炭素数 6から 30の置換もしくは無置換のァリールカルボ-ルァミノ基、 例えば、ホルミルァミノ、ァセチルアミ入ビバロイルアミ入ラウロイルァミノ、ベンゾィ ルァミノ、 3, 4, 5—トリー n—ォクチルォキシフエニルカルボニルァミノ)、ァミノカルボ -ルァミノ基 (好ましくは、炭素数 1から 30の置換もしくは無置換のァミノカルボニルァ ミ入例えば、力ルバモイルアミ入 N, N ジメチルァミノカルボ-ルアミ入 N, N ジ ェチルァミノカルボニルアミ入モルホリノカルボニルァミノ)、アルコキシカルボニルァ ミノ基 (好ましくは炭素数 2から 30の置換もしくは無置換アルコキシカルボニルァミノ 基、例えば、メトキシカルボ-ルアミ入エトキシカルボ-ルアミ入 t ブトキシカルボ ニルァミノ、 n—ォクタデシルォキシカルボニルアミ入 N—メチルーメトキシカルボ二 ルァミノ)、ァリールォキシカルボ-ルァミノ基 (好ましくは、炭素数 7から 30の置換もし くは無置換のァリールォキシカルボ-ルァミノ基、例えば、フエノキシカルボ-ルァミノ 、 p-クロ口フエノキシカルボニルァミノ、 m-n—ォクチルォキシフエノキシカルボニルァ ミノ)、スルファモイルァミノ基 (好ましくは、炭素数 0から 30の置換もしくは無置換のス ルファモイルァミノ基、例えば、スルファモイルアミ入 N, N ジメチルアミノスルホ- ルァミノ、 N—n—ォクチルアミノスルホ -ルァミノ)、アルキル及びァリールスルホ-ル アミノ基 (好ましくは炭素数 1から 30の置換もしくは無置換のアルキルスルホ-ルアミ 入炭素数 6から 30の置換もしくは無置換のァリールスルホニルアミ入例えば、メチ ルスルホニルァミノ、ブチルスルホ -ルアミ入フエ-ルスルホ-ルアミ入 2, 3, 5 ト リクロロフエ-ルスルホ-ルアミ入 p メチルフエ-ルスルホ -ルァミノ)、メルカプト基 、アルキルチオ基 (好ましくは、炭素数 1から 30の置換もしくは無置換のアルキルチオ 基、例えばメチルチオ、ェチルチオ、 n—へキサデシルチオ)、ァリールチオ基 (好ま しくは炭素数 6から 30の置換もしくは無置換のァリールチオ、例えば、フエ-ルチオ、 p—クロ口フエ-ルチオ、 m—メトキシフエ-ルチオ)、ヘテロ環チォ基 (好ましくは炭素 数 2から 30の置換または無置換のへテロ環チォ基、例えば、 2 ベンゾチアゾリルチ ォ、 1 フエ-ルテトラゾールー 5—ィルチオ)、スルファモイル基 (好ましくは炭素数 0 から 30の置換もしくは無置換のスルファモイル基、例えば、 N ェチルスルファモイ ル、 N— (3—ドデシルォキシプロピル)スルファモイル、 N, N ジメチルスルファモイ ル、 N ァセチルスルファモイル、 N ベンゾィルスルファモイル、 N— (Ν' フエ- ルカルバモイル)スルファモイル)、スルホ基、アルキル及びァリールスルフィ -ル基( 好ましくは、炭素数 1から 30の置換または無置換のアルキルスルフィエル基、 6から 3 0の置換または無置換のァリールスルフィエル基、例えば、メチルスルフィエル、ェチ ノレスノレフィ-ノレ、フエ-ノレスノレフィ-ノレ、 ρ—メチノレフエ-ノレスノレフィ-ノレ)、ァノレキノレ 及びァリールスルホ -ル基 (好ましくは、炭素数 1から 30の置換または無置換のアル キルスルホ-ル基、 6から 30の置換または無置換のァリールスルホ-ル基、例えば、 メチノレスノレホニノレ、ェチノレスノレホニノレ、フエニノレスノレホニノレ、 ρ—メチノレフエニノレスノレ ホニル)、ァシル基 (好ましくはホルミル基、炭素数 2から 30の置換または無置換のァ ルキルカルボ-ル基、炭素数 7から 30の置換もしくは無置換のァリールカルボ-ル基 、炭素数 4から 30の置換もしくは無置換の炭素原子でカルボニル基と結合して!/、る ヘテロ環カルボ-ル基、例えば、ァセチル、ビバロイル、 2—クロロアセチル、ステア口 ィル、ベンゾィル、 ρ— η—ォクチルォキシフエニルカルボニル、 2—ピリジルカルボ二 ル、 2 フリルカルボ-ル)、ァリールォキシカルボ-ル基 (好ましくは、炭素数 7から 3 0の置換もしくは無置換のァリールォキシカルボ-ル基、例えば、フエノキシカルボ- ル、 ο クロロフエノキシカルボニル、 m—二トロフエノキシカルボニル、 p— tーブチノレ フエノキシカルボ-ル)、アルコキシカルボ-ル基 (好ましくは、炭素数 2から 30の置 換もしくは無置換アルコキシカルボ-ル基、例えば、メトキシカルボ-ル、エトキシカ ルボニル、 t—ブトキシカルボ-ル、 n—ォクタデシルォキシカルボ-ル)、力ルバモイ ル基 (好ましくは、炭素数 1から 30の置換もしくは無置換の力ルバモイル、例えば、力 ルバモイル、 N—メチルカルバモイル、 N, N ジメチルカルバモイル、 N, N ジー n ーォクチルカルバモイル、 N (メチルスルホ -ル)力ルバモイル)、ァリール及びへテ 口環ァゾ基 (好ましくは炭素数 6から 30の置換もしくは無置換のァリールァゾ基、炭素 数 3から 30の置換もしくは無置換のへテロ環ァゾ基、例えば、フエ-ルァゾ、 p クロ 口フエニルァゾ、 5 ェチルチオ 1, 3, 4ーチアジアゾールー 2—ィルァゾ)、イミド 基 (好ましくは、 N—スクシンイミド、 N—フタルイミド)、ホスフイノ基 (好ましくは、炭素 数 2から 30の置換もしくは無置換のホスフイノ基、例えば、ジメチルホスフィ入ジフエ -ルホスフィ入メチルフエノキシホスフイノ)、ホスフィエル基(好ましくは、炭素数 2か ら 30の置換もしくは無置換のホスフィエル基、例えば、ホスフィエル、ジォクチルォキ シホスフィエル、ジエトキシホスフィエル)、ホスフィエルォキシ基(好ましくは、炭素数 2から 30の置換もしくは無置換のホスフィエルォキシ基、例えば、ジフエノキシホスフィ -ルォキシ、ジォクチルォキシホスフィエルォキシ)、ホスフィエルアミノ基(好ましくは 、炭素数 2から 30の置換もしくは無置換のホスフィエルアミノ基、例えば、ジメトキシホ スフィ-ルアミ入ジメチルァミノホスフィエルァミノ)、シリル基 (好ましくは、炭素数 3か ら 30の置換もしくは無置換のシリル基、例えば、トリメチルシリル、 t—ブチルジメチル シリル、フエ-ルジメチルシリル)を表わす。
M21、 M22、 M23が置換されて 、る場合の置換基は、置換または無置換のアルキル 基、置換または無置換のァリール基、および置換または無置換のへテロ環基が好ま しい。置換または無置換のアルキル基としては、炭素数が 1〜20のアルキル基 (例え ば、メチノレ、ェチノレ、プロピノレ、プチノレ、 iーブチノレ、 tーブチノレ、 i アミノレ、シクロプロ ピル、シクロへキシル、ベンジル、フエネチル)が挙げられる。また、アルキル基を表す 場合には、それらが互いに連結して炭素環(例えばシクロプロピル、シクロブチル、シ クロペンチノレ、シクロへキシノレ、 2—メチノレシクロへキシノレ、シクロへプチノレ、シクロォ クチルなど)または複素環 (例えばピペリジル、クロマ-ル、モルホリルなど)を形成し ていてもよい。置換基がアルキル基の場合、好ましくは、炭素数 1〜8の、鎖状アルキ ル基または環状アルキル基であり、最も好ましくは炭素数 1〜5の鎖状 (直鎖状または 分岐鎖状)アルキル基、または、該アルキル基が互いに結合して環をなした炭素数 1 〜8の環状アルキル基 (好ましくはシクロへキシル環)、炭素数 1〜20の置換アルキル 基(例えば、ベンジル、フエネチル)である。
Ma21、 Ma22, Ma23は、置換されているよりも、無置換の方が好ましい。
[0066] 一般式(1)中、 R1M、 R1Q2は、各々独立に、置換基を表すが、置換もしくは無置換の アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換のァルケ-ル基 、置換もしくは無置換のアルキ-ル基、または置換もしくは無置換のへテロ環基が好 ましい。これらの基は、更に置換されていてもよぐ置換する置換基としては、上述の Ma21、 Ma22, Ma23の置換されている場合の置換基が例として挙げられる。
[0067] 前記 R1M、 R1Q2は好ましくは、置換又は無置換のアルキル基であり、更には、炭素数 1〜8の置換又は無置換のアルキル基であり、更には、炭素数 1 8の無置換のアル キル基である。 R1M、 R1Q2は互いに異なっていても同じでも良いが、同じであることが 好ましい。 Q2は電荷を中和するイオンを表わし、 y2は電荷の中和に必要な数を表 わす。 Q2で表されるイオンは、対する色素分子の電荷に応じて陰イオンを表し、 Q2 として表されるイオンには特に制限は無ぐ無機化合物よりなるイオンであっても、有 機化合物よりなるイオンであっても構わない。また、 Q2として表されるイオンの電荷は 1価であっても多価であっても構わない。 Q2として表される陰イオンとしては、例えば 塩ィ匕物イオン、臭化物イオン、フッ化物イオンのようなハロゲン陰イオン、硫酸イオン、 リン酸イオン、リン酸水素イオンなどのへテロポリ酸イオン、琥珀酸イオン、マレイン酸 イオン、フマル酸イオン、芳香族ジスルホン酸イオンのような有機多価陰イオン、四フ ッ化ホウ酸イオン、六フッ化リン酸イオンが挙げられる。
[0068] 一般式(1)中、 y2は電荷の中和に必要な数を表わす。 Q2が 2価の陰イオンである 場合、 y2が 1Z2であれば、 Q2y2全体で一価の陰イオンとして考えられる。 ka2は、 0から 3までの整数を表わし、 ka2が 2以上の時、複数存在する Ma21、 Ma22は同じでも 異なってもよい。
[0069] 前記一般式(1)で表されるシァニン色素の中でも、下記一般式(2)で表されるシァ ニン色素が好ましい。
[0070] [化 2]
Figure imgf000025_0001
[Za \ Za ま、各々独立に、炭素環、ヘテロ環を形成する原子団を表す。 Rla、 ま 、各々独立に置換基を表す。 Rm、 R122、 R 、 R 、 R125、 R126、 Rmは、各々独立に水 素原子または、置換基を表す。 ka3は 0から 3までの整数を表わし、 ka3が 2以上の時 、複数存在する Rm、 R122は同じでも異なってもよい。 Q3は電荷を中和するイオンを 表わし、 y3は電荷の中和に必要な数を表わす。 ]
[0071] 一般式 (2)中、 Rm、 R122、 R123は、水素原子または置換基であり、該置換基は一般 式(1)の Ma21
Figure imgf000025_0002
Ma23を置換する置換基と同義であり、好ましい例も同様である 。 R 、 R125、 R126、 Rmは、水素原子または置換基であり、該置換基は上述の M21、 M 22、 M23が置換されている場合の置換基と同義であり、好ましい例も同様である。 Rla、 R2aは、一般式(1)における R1Q1、 R1Q2と同義であり、好ましい例も同様である。 ka 3は、一般式(1)の ka2と同義であり、好ましい例も同様である。
[0072] 一般式(2)中、 Q3は電荷を中和するイオンを表わし、 y3は電荷の中和に必要な数 を表わす。 Q3で表されるイオンは、対する色素分子の電荷に応じて陰イオンを表し、 Q3として表されるイオンには特に制限は無ぐ無機化合物よりなるイオンであっても、 有機化合物よりなるイオンであっても構わない。また、 Q3として表されるイオンの電荷 は 1価であっても多価であっても構わない。 Q3として表される陰イオンとしては、例え ば塩ィ匕物イオン、臭化物イオン、フッ化物イオンのようなハロゲン陰イオン、硫酸ィォ ン、リン酸イオン、リン酸水素イオンなどのへテロポリ酸イオン、琥珀酸イオン、マレイ ン酸イオン、フマル酸イオン、芳香族ジスルホン酸イオンのような有機多価陰イオン、 四フッ化ホウ酸イオン、六フッ化リン酸イオンが挙げられる。 y3は電荷の中和に必要な数を表わす。 Q3が 2価の陰イオンである場合、 y3が 1Z 2であれば、 Q3y3全体で一価の陰イオンとして考えられる。
[0073] 本発明に使用する上記一般式(1)で示されるシァニン色素は、 Ma21
Figure imgf000026_0001
Ma23 が無置換のメチン基であることが好ましぐまた R1Q1、 R1Q2が各々独立に炭素数 1〜8 の無置換のアルキル基であることが好ましぐ Za Za22は、各々独立に、インドレ- ン環を形成するものが好ましぐ Ka2は、 1または 2であり、 Q2は一価の陰イオンであ り、 Y2は 1である。
また一般式(2)で表されるシァニン色素では、 R 、 R125、 R126、 Rmは各々独立に置 換もしくは無置換のアルキル基であり、 Rm、 R122、 Rmは、水素原子が好ましぐ Za31 、 Za32は、各々独立に、ベンゼン環、または、ナフタレン環を形成するものが好ましい 。 Ka3は 1又は 2であることが好ましぐまた Q3は無機および有機の陰イオンであるこ とが好ましぐ y3は 1であるものが好ましい。
[0074] 以下に、一般式(1)で表される構造のシァニンィ匕合物の具体例を挙げる。本発明 は、この具体例によって、制限されるものではない。
[0075] [化 3]
Figure imgf000027_0001
Figure imgf000028_0001
S〕〔 〔≤ O 匿
C
C
C22-
C9PH I
Figure imgf000029_0001
Figure imgf000030_0001
C-25 — C4H9 -C2H5 — CH3 -C2H5 — CH3 — CH3 C104"
Figure imgf000030_0002
(n)
C-27 ■C3H7 ― CH3 —CHg -CH3 C104"
(n) (
― C^H^ 一 )Η$ — CHg 一 CH3 CH^ 一 CH3
(n)
C-29 -C4H9 ' -CH3 -CH3 — CH3 — CH3 -CH3 H3C— ¾ > -so.
(n) (0)
C-30 -CH3 一 CH3 -CH3 -C3H7 -CH3 — C3H7
C (n)
-31 — CH3 -C4H9 一 CH3 -CH3 - CH3 - CH3 H3C— (TV- SO;
C-32 -CH l;3CH3 一。 - CI 3 H3C— (Q>— SO3-
Figure imgf000030_0003
] 置 §§
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000032_0002
Figure imgf000032_0003
R1 R2 R24 R25 R26 R27 Q3y3
C-43 -CH3 -CH3 -CH3 -CH3 -CH3 -CH3 BF4"
C-44 -C2H5 -C2H5 -CH3 -CH3 -CH3 -CH3 BF4"
C-45 3H7(n) -C3H7 (n) -CH3 -€H3 -CH3 -CH3 CI04
C - 46 -€4H9 (n) -€4H9 (n) -CH3 -CH3 -CH3 -CH3 Cl—
本発明に係わるシァニン色素 (好ましくは上記一般式 (2)で示される色素化合物) は、アモルファス膜の光学特性上、記録レーザー波長における複素屈折率の係数 n (実部:屈性率)、 k (虚部:消衰係数)が、好ましくは、 1. 50≤n≤3. 0、 0. 9≤k≤ 3. 00である。更に好ましくは、 1. 50≤n≤2. 00、 0. 90≤k≤2. 00である。最も 好ましくは、 1. 60≤n≤l . 90、 1. 20≤k≤l . 50である。
熱分解温度が 100°C〜350°Cの範囲にあるものが好ましい。更には、 150°C〜300 °Cの範囲にあるものが好ましい。更には、 200°Cから 300°Cの範囲にあるものが好ま しい。
[0082] フタロシアニン色素
次に、フタロシアニン色素について説明する。
特に、フタロシアニン色素としては、下記一般式(3)で表されるフタロシアニン色素 であることが好ましい。
[0083] [化 9] 一般式 (3)
Figure imgf000033_0001
[一般式(3)中、 R a i〜R a 8および R β β 8は、それぞれ独立に水素原子、ハロ ゲン原子、シァノ基、ニトロ基、ホルミル基、カルボキシル基、スルホ基、炭素原子数 1 乃至 20のアルキル基、炭素原子数 6乃至 14のァリール基、炭素原子数 1乃至 10の ヘテロ環基、炭素原子数 1乃至 20のアルコキシ基、炭素原子数 6乃至 14のァリール ォキシ基、炭素原子数 2乃至 21のァシル基、炭素原子数 1乃至 20アルキルスルホ二 ル基、炭素原子数 6乃至 20ァリールスルホ-ル基、炭素原子数 1乃至 25のカルバモ ィル基、炭素原子数 0乃至 32のスルファモイル基、炭素原子数 2乃至 21のアルコキ シカルボニル基、炭素原子数 7乃至 15のァリールォキシカルボニル基、炭素原子数 2乃至 21のァシルァミノ基、炭素原子数 1乃至 20のスルホニルァミノ基、炭素原子数 0乃至 36のアミノ基を表し、 Mは 2個の水素原子、金属、金属酸ィ匕物または配位子を 有する金属を表す。 ]
[0084] ー般式 ;!中ゝ!^ ^〜!^ ぉょび!^ ^〜!^ は、それぞれ独立に水素原子、ハロ ゲン原子、シァノ基、ニトロ基、ホルミル基、カルボキシル基、スルホ基、炭素原子数 1 乃至 20のアルキル基、炭素原子数 6乃至 14のァリール基、炭素原子数 1乃至 10の ヘテロ環基、炭素原子数 1乃至 20のアルコキシ基、炭素原子数 6乃至 14のァリール ォキシ基、炭素原子数 2乃至 21のァシル基、炭素原子数 1乃至 20アルキルスルホ二 ル基、炭素原子数 6乃至 20ァリールスルホ-ル基、炭素原子数 1乃至 25のカルバモ ィル基、炭素原子数 0乃至 32のスルファモイル基、炭素原子数 2乃至 21のアルコキ シカルボニル基、炭素原子数 7乃至 15のァリールォキシカルボニル基、炭素原子数 2乃至 21のァシルァミノ基、炭素原子数 1乃至 20のスルホニルァミノ基、炭素原子数 0乃至 36のアミノ基を表し、 Mは 2個の水素原子、金属、金属酸ィ匕物または配位子を 有する金属を表す。
[0085] 一般式(3)中、 R o;1〜 Rひ 8のすべてが同時に水素原子ではないことが好ましぐ更 に、 R a 1及び R a 2の 、ずれか一方、 R a 3及び R a 4の 、ずれか一方、 R a 5及び R a 6 の!、ずれか一方、 R a 7及び R a 8の!、ずれか一方の計 4つの置換基が同時に水素原 子ではないことが好ましぐ特にこのとき、 R j8 i R jS 8のすべてが同時に水素原子で あることが好ましい。
[0086] 一般式(3)にお!/、て、 R a i〜R a 8および R β i〜R β 8の好ま U、例としては、水素 原子、ハロゲン原子、カルボキシル基、スルホ基、炭素数 1乃至 16のアルキル基、炭 素原子数 6乃至 10のァリール基、炭素原子数 1乃至 16のアルコキシ基、炭素原子数 6乃至 10のァリールォキシ基、炭素原子数 1乃至 16のアルキルスルホ-ル基、炭素 原子数 6乃至 16のァリールスルホ-ル基、炭素原子数 2乃至 20のスルファモイル基 、炭素原子数 2乃至 17のアルコキシカルボ-ル基、炭素原子数 7乃至 11のァリール ォキシカルボ-ル基、炭素原子数 2乃至 18のァシルァミノ基、炭素原子数 1乃至 18 のスルホ -ルァミノ基を挙げることができる力 より好ましいものは、水素原子、ハロゲ ン原子、カルボキシル基、スルホ基、炭素原子数 1乃至 16のアルコキシ基、炭素原 子数 6乃至 10のァリールォキシ基、炭素原子数 1乃至 14のアルキルスルホ-ル基、 炭素原子数 6乃至 14のァリールスルホ-ル基、炭素原子数 2乃至 16のスルファモイ ル基、炭素原子数 2乃至 13のアルコキシカルボ-ル基、炭素原子数 2乃至 14のァシ ルァミノ基、炭素原子数 1乃至 14のスルホ -ルァミノ基であり、さらに好ましくは、 R a 1 〜R a 8が水素原子、ハロゲン原子、スルホ基、炭素原子数 8乃至 16のアルコキシ基 、炭素原子数 1乃至 12のスルホ-ル基、炭素原子数 1乃至 12のスルファモイル基、 炭素原子数 2乃至 12のァシルァミノ基、炭素原子数 1乃至 12のスルホニルァミノ基、 R β i〜R β 8が水素原子またはハロゲン原子であり、特に好ましくは、 R a i〜R a 8の 少なくとも 1つ力 炭素原子数 1乃至 10のアルキルスルホ-ル基、炭素数 6乃至 14の ァリールスルホ-ル基、炭素原子数 1乃至 10のスルファモイル基、 R β i〜R β 8が水 素原子である。
一般式(3)にお!/、て、 R a i〜R a 8および R β i〜R β 8はさらに置換基を有して!/、て もよぐ該置換基の例としては、以下に記載のものを挙げることができる。炭素原子数 1〜20の鎖状または環状のアルキル基(例えば、メチル基、ェチル基、イソプロピル 基、シクロへキシル基)、炭素原子数 6〜18のァリール基 (例えば、フエ-ル基、クロ口 フエ-ル基、 2, 4 ジー tーァミルフエ-ル基、 1 ナフチル基)、炭素原子数 2〜20 のァルケ-ル基(例えば、ビュル基、 2—メチルビ-ル基)、炭素原子数 2〜20のアル キ-ル基(例えば、ェチュル基、 2—メチルェチュル基、 2—フエ-ルェチュル基)、 ハロゲン原子(例えば、 F、 Cl、 Br、 I)、シァノ基、ヒドロキシル基、カルボキシル基、炭 素原子数 2〜20のァシル基 (例えば、ァセチル基、ベンゾィル基、サリチロイル基、ピ ノ ロイル基)、炭素原子数 1〜20のアルコキシ基 (例えば、メトキシ基、ブトキシ基、シ クロへキシルォキシ基)、炭素原子数 6〜20のァリールォキシ基(例えば、フエノキシ 基、 1 ナフトキシ基、トルオイル基)、炭素原子数 1〜20のアルキルチオ基 (例えば 、メチルチオ基、プチルチオ基、ベンジルチオ基、 3—メトキシプロピルチオ基)、炭素 原子数 6〜20のァリールチオ基(例えば、フエ-ルチオ基、 4 クロ口フエ-ルチオ基 )、炭素原子数 1〜20のアルキルスルホ -ル基(例えば、メタンスルホ-ル基、ブタン スルホ-ル基)、炭素原子数 6〜20のァリールスルホ -ル基(例えば、ベンゼンスル ホ-ル基、パラトルエンスルホ-ル基)、炭素原子数 1〜17の力ルバモイル基(例え ば、無置換の力ルバモイル基、メチルカルバモイル基、ェチルカルバモイル基、 n— ブチルカルバモイル基、ジメチルカルバモイル基)、炭素原子数 1〜16のアミド基 (例 えば、ァセトアミド基、ベンズアミド基)、炭素原子数 2〜: L0のァシルォキシ基 (例えば 、ァセトキシ基、ベンゾィルォキシ基)、炭素原子数 2〜 10のアルコキシカルボ-ル基 (例えば、メトキシカルボ-ル基、エトキシカルボ-ル基)、 5もしくは 6員のへテロ環基 (例えば、ピリジル基、チェニル基、フリル基、チアゾリル基、イミダゾリル基、ビラゾリ ル基等の芳香族へテロ環基;ピロリジン環基、ピぺリジン環基、モルホリン環基、ビラ ン環基、チォピラン環基、ジォキサン環基、ジチオラン環基等のへテロ環基)。
[0088] 一般式(3)にお!/、て、 R a i〜R a 8および R β i〜R β 8の置換基として好まし 、もの は、炭素原子数 1〜16の鎖状または環状のアルキル基、炭素原子数 6〜14のァリー ル基、炭素原子数 1〜16のアルコキシ基、炭素原子数 6〜14のァリールォキシ基、 ハロゲン原子、炭素原子数 2〜 17のアルコキシカルボ-ル基、炭素原子数 1〜10の 力ルバモイル基、炭素数 1〜10のアミド基であり、中でも好ましいものは、炭素原子数 1〜10の鎖状または環状のアルキル基、炭素原子数 7〜 13のァラルキル基、炭素原 子数 6〜10のァリール基、炭素原子数 1〜10のアルコキシ基、炭素原子数 6〜10の ァリールォキシ基、塩素原子、炭素原子数 2〜: L 1のアルコキシカルボニル基、炭素 原子数 1〜7の力ルバモイル基、炭素数 1〜8のアミド基であり、特に好ましいものは、 炭素原子数 1〜8の鎖状分岐または環状のアルキル基、炭素原子数 7〜11のァラル キル基、炭素原子数 1〜8のアルコキシ基、炭素原子数 3〜9のアルコキシカルボ- ル基、フエ-ル基および塩素原子であり、さらに優れて好ましいものは炭素原子数 1 〜6のアルコキシ基である。
[0089] 一般式(3)にお 、て、 Μは金属であることが好ましぐなかでも、亜鉛、マグネシウム 、銅、ニッケルまたはパラジウムが好ましぐさらに銅、亜鉛またはマグネシウムが好ま しぐ特に銅が好ましい。
フタロシアニン色素の分子内に、置換されてもよい、フエ口セ-ル基を有しても良い [0090] フタロシアニン色素の具体例を下記に示す, [0091] [表 1]
Figure imgf000037_0001
[0092] [表 2] N o. 置換基位置及び置換基 M
Ra l/Rn 2、 Ra 3/Ra R"5/R"6、 Ra 7ZRQ f¾
(1-15) - S 0 (CHJ 40 (2 - c h l o r o - 4 C u 一 t — amy ] p h e n y l )
R"】/Ra 2、 Ra 3/Ra 4、 R"5/R('6、 R "7/R a S
(1-16) P d 一 S〇2 (CH2) 2C〇2C4H9 - i
R p R " ノ R a '
(1-17) C u
- S O , ( c y c 1 o h e x y 1 )
Ru l Ra 2、 Rtt 3/R"4、 R。 5/Ra 6、 R" R"8
(1-18) — S 02 { 4 - (2 - s - b u t o N i
— b e n z o y 1 am i n o) p h e n y 1 }
Ra l/R"2、 R α V ° 4 , R 5/Ra 6
(1-19) 一 S 02 (2, 6— d i c h l o r o P d — 4— me t h o y h e n y 1 )
Rn l/Ra 2、 Ra ;VR。4、 Ru 5/ "6
(1-20) S02CH (Me) CO,CH2 Mg -CH ( C , H s ) C4H9 - n
R'- "2, Ra 3/R"4、 R"。/R', 6、 Ra 7/ "s
S 02 { 2 - (2 - e t h o x y e t h o x y)
(卜 21) — p h e 11 y 1 } Z n
R'31/Rfl 2、 R^/R04, R05/Rfl\ R"/Re8
-C ,H5
R - /R"' Ra 2/Ra R"s/R"6、 R。7 R。'8
(1-22) C u — S 02N (CH2 CH2OMe) 2
尺'11/!?。2、 R /R。 R"5/R"6、 Ra 7/Ra 8
(1-23) N i -OCH CH (C2H5) C4H9- n
RB l/R "2、 Ra 3/Ra 4、 R n 5 / R a 6 , Ra 7/Ra 8
(1-24) Z n -OCHMe (p h e n y 1 )
R。'/R"2、 Ra 3/Ra 4, R " 5 / R " 6 , Ra 7/Ra 8
(1-25) C u — OCH2 ( s b u t y l )
R"]/R。2、 Ra 3/R" Ra 5/Ra 6、 R"7/R 1, 8
(1-26) SiCl2 -OCH,CH2OC3H7- i
Ra l/R "2, Ra 3/Ru-4、 R。5/R 6、 R"7/Ra 8
t — a m y 1
(1-27) K i
Re l/ 02, Re R*54, RS 5/RS 6> R a 7 / R s 8
一 C 1
[0094]
Figure imgf000039_0001
Figure imgf000039_0002
[0095] [化 10] 1-46
Figure imgf000040_0001
n =1 -3の混合物
[0096] 本発明に用いられるフタロシアニン誘導体は、例えば白井一小林共著、(株)アイビ ーシ一発行「フタロシアニン—化学と機能—」(p. 1〜62)、 C. C. Leznoff-A. B. P. Lever共奢、 VCH発 fT'Phthalocyanines— Properties and Applications (p . 1〜54)等に記載、引用もしくはこれらに類似の方法により合成することができる。
[0097] ォキソノール色素
次に、ォキソノール色素について説明する。該ォキソノール色素としては、下記一 般式 (A)で表される化合物であり、好ましくはメチン数が 1な 、し 7である鎖状酸性核 もしくは環状酸性核を有する色素である。式中、 nは 1〜4の整数が好ましい。 R同士 は環を形成しうる。より好ましくは前記一般式 (II)で表されるォキソノール色素であり、 より好ましくは一般式 (I)で表される色素であり、更に好ましくは一般式 (III)で表され る色素である。また、一般式 (IV)、 (V)ゝ (VI) , (VII) , (ΙΙ') 、(1)で表される色素も用 いられる。
[0098] [化 11]
0 一般式(Α )
Figure imgf000040_0002
R :水素または 換基、 Γ Ο以上の整数 [0099] [化 12]
Figure imgf000041_0001
Q
[0100] [化 13]
( I )
Figure imgf000041_0002
2 Q
[0101] 一般式(1)で表される化合物には、後述の一般式 (III)で表される化合物例も含まれ る。
[0102] [化 14]
Figure imgf000041_0003
[0103] [一般式(1)中、 RU、 R12、 R13、 R14はそれぞれ独立に水素原子、置換または無置換 のアルキル基、置換または無置換のァリール基、および置換または無置換のへテロ 環基のいずれかを表し、 R21、 R3は水素原子、置換または無置換のアルキル基、 置換または無置換のアルコキシ基、置換または無置換のァリール基、置換または無 置換のァリールォキシ基、置換または無置換のへテロ環基、ハロゲン原子、カルボキ シル基、置換または無置換のアルコキシカルボニル基、シァノ基、置換または無置換 のァシル基、置換または無置換の力ルバモイル基、アミノ基、置換アミノ基、スルホ基 、ヒドロキシル基、ニトロ基、置換または無置換のアルキルスルホ -ルァミノ基、置換ま たは無置換のァリールスルホ -ルァミノ基、置換または無置換の力ルバモイルァミノ 基、置換または無置換のアルキルスルホ-ル基、置換または無置換のァリールスホ ニル基、置換または無置換のアルキルスルフィニル基、置換または無置換のァリール スルフィエル基および置換または無置換のスルファモイル基の 、ずれかを表す。 mは 0以上の整数を表し、 mが 2以上の場合は複数の R3は同じでも異なってもよい。 Zx+は 陽イオンを表し、 Xは 1以上の整数を表す。 ]
[0104] 一般式(1)の RU、 R12、 R13、 R14はそれぞれ独立に水素原子、置換または無置換の アルキル基、置換または無置換のァリール基、および置換または無置換のへテロ環 基のいずれかを表す。 Ru、 R12、 R13、 R14で表される置換または無置換のアルキル基 としては、炭素数が 1〜20のアルキル基(例えば、メチル、ェチル、プロピル、プチル 、 i—ブチル、 t—ブチル、 i—ァミル、シクロプロピル、シクロへキシル、ベンジル、フエ ネチル)が挙げられる。また、 Ru、 R12、 R13、 R14が各々アルキル基を表す場合には、 それらが互いに連結して炭素環(例えばシクロプロピル、シクロブチル、シクロペンチ ル、シクロへキシル、 2—メチルシクロへキシル、シクロへプチル、シクロォクチルなど) または複素環(例えばピペリジル、クロマ-ル、モルホリルなど)を形成していてもよい 。 RU、 R12、 R13、 R14で表されるアルキル基として好ましくは、炭素数 1〜8の、鎖状ァ ルキル基または環状アルキル基であり、最も好ましくは炭素数 1〜5の鎖状 (直鎖状ま たは分岐鎖状)アルキル基、 R11と R12および R13と R"がそれぞれ結合して環をなした 炭素数 1〜8の環状アルキル基 (好ましくはシクロへキシル環)、炭素数 1〜20の置換 アルキル基(例えば、ベンジル、フエネチル)である。
[0105] 一般式(1)の Ru、 R12、 R13、 R"で表される置換または無置換のァリール基としては 、炭素数 6〜20のァリール基 (例えば、フエ-ル、ナフチル)が挙げられる。 Ru、 R12、 R13、 R"で表されるァリール基として好ましくは、炭素数 6〜10のァリール基である。 一般式(1)の RU、 R12、 R13、 R14で表される置換または無置換のへテロ環基は炭素 原子、窒素原子、酸素原子、あるいは硫黄原子力も構成される 5〜6員環の飽和又 は不飽和のヘテロ環基であり、例えばピリジル基、ピリミジル基、ピリダジル基、ピペリ ジル基、トリアジル基、ピロリル基、イミダゾリル基、トリァゾリル基、フラニル基、チオフ ニル基、チアゾリル基、ォキサゾリル基、イソチアゾリル基、イソォキサゾリル基など が挙げられる。またこれらがベンゾ縮環したもの(例えばキノリル基、ベンゾイミダゾリ ル基、ベンゾチアゾリル基、ベンゾキサゾリル基など)でもよい。 Ru、 R12、 R13、 R14で表 される置換または無置換のへテロ環基として好ましくは、炭素数 6〜: LOの置換または 無置換のへテロ環基である。
一般式(1)の RU、 R12、 R13、 R"で表される置換または無置換のアルキル基、置換ま たは無置換のァリール基、および置換または無置換のへテロ環基の置換基としては 後述の置換基群 Sが挙げられる。
Sで示される置換基としては、炭素数 1〜20のアルキル基 (例えば、メチル、ェチル 、プロピル、カルボキシメチル、エトキシカルボ-ルメチル)、炭素数 7〜20のァラルキ ル基(例えば、ベンジル、フエネチル)、炭素数 1〜8のアルコキシ基(例えば、メトキシ 、エトキシ)、炭業数 6〜20のァリール基(例えば、フ ニル、ナフチル)、炭素数 6〜2 0のァリールォキシ基 (例えば、フエノキシ、ナフトキシ)、ヘテロ環基 (例えば、ピリジ ル、ピリミジル、ピリダジル、ベンゾイミダゾリル、ベンゾチアゾリル、ベンゾォキサゾリル 、 2 ピロリジノン一 1—ィル、 2 ピぺリドン一 1—ィル、 2, 4 ジォキシイミダゾリジン 3 ィル、 2, 4ージォキシォキサゾリジン 3 ィル、スクシンイミド、フタルイミド、 マレイミド)、ハロゲン原子 (例えば、フッ素、塩素、臭素、沃素)、カルボキシル基、炭 素数 2〜10のアルコキシカルボ-ル基(例えば、メトキシカルボ-ル、エトキシカルボ -ル)、シァノ基、炭素教 2〜10のァシル基 (例えば、ァセチル、ビバロイル)、炭素数 1〜10の力ルバモイル(例えば、力ルバモイル、メチルカルバモイル、モルホリノカル バモイル)、アミノ基、炭素数 1〜20の置換アミノ基 (例えば、ジメチルアミ入ジェチル アミ入ビス(メチルスルホ -ルェチル)アミ入 N ェチルー N'—スルホェチルァミノ) 、スルホ基、ヒドロキシル基、ニトロ基、炭業数 1〜10のアルキルスルホ -ルァミノ基( 例えば、メチルスルホ -ルァミノ)、炭素数 1〜10の力ルバモイルァミノ基(例えば、力 ルバモイルアミ入メチルカルバモイルァミノ)、炭素数 1〜10のスルホ -ル基(例えば 、メタンスルホ -ル、エタンスルホ -ル)、炭素数 1〜10のスルフィエル基(例えば、メ タンスルフィエル)、および炭素数 0〜10のスルファモイル基(例えば、スルファモイル
、メタンスルファモイル)が含まれる。カルボキシル基およびスルホ基の場合にはそれ らは塩の状態であってもよい。
[0107] 一般式(1)の R21、 R22、 R3はそれぞれ独立に水素原子、置換または無置換のアル キル基、置換または無置換のアルコキシ基、置換または無置換のァリール基、置換ま たは無置換のァリールォキシ基、置換または無置換のへテロ環基、ハロゲン原子、力 ルボキシル基、置換または無置換のアルコキシカルボ-ル基、シァノ基、置換または 無置換のァシル基、置換または無置換の力ルバモイル基、アミノ基、置換アミノ基、ス ルホ基、ヒドロキシル基、ニトロ基、置換または無置換のアルキルスルホ -ルァミノ基、 置換または無置換の力ルバモイルァミノ基、置換または無置換のアルキルスルホ二 ル基、置換または無置換のァリールスルホニル基、置換または無置換のスルフィニル 基および置換または無置換のスルファモイル基のいずれかを表す。 R21、 R22、 R3とし て好ましくは、水素原子、置換または無置換の炭素数 1〜20のアルキル基、置換ま たは無置換の炭素数 2〜20のへテロ環基、置換または無置換の炭素数 1〜20のァ ルコキシ基、置換または無置換の炭素数 6〜20のァリール基、ハロゲン原子であり、 更に好ましくは、水素原子、置換または無置換の炭素数 1〜 10のアルキル基、置換 または無置換の炭素数 1〜10のアルコキシ基、置換または無置換の炭素数 2〜: L0 ヘテロ環基、ハロゲン原子が好ましぐ最も好ましくは水素原子、無置換の炭素数 1 〜5のアルキル基、無置換の炭素数 1〜5のアルコキシ基、置換または無置換の炭素 数 2〜6のへテロ環基およびハロゲン原子のいずれかである。 R21
Figure imgf000044_0001
R3は更に置 換基を有しても良ぐ置換基としては前述の置換基群 Sが挙げられる。
[0108] mが 0であり、 R21、 R22が両方とも水素原子であることが好ましい。また、 mが 1であり 、 R21、 R22、 R3がいずれも水素原子であることが好ましい。
一般式(1)の mは 0以上の整数を表し、好ましくは 0〜5 (0以上 5以下)の整数であ り、更に好ましくは 0〜3の整数であり、特に好ましくは 0〜2の整数である。
一般式(1)において、上記 mが 2以上の場合、複数の R3は同じでも異なってもよぐ それぞれ独立に水素原子又は前記の置換基を表す。 一般式(1)において Zx+は陽イオンを表し、 Xは 1以上の整数を表す。
Zx+で表される陽イオンとして好ましくは、第 4級アンモ-ゥムイオンであり、更に好ま しくは、特開 2000— 52658号公報の一般式 (1—4)で表される 4, 4'—ビビリジ-ゥ ム陽イオンおよび特 2002— 59652号公報に開示されている 4, 4'—ビビリジ-ゥム 陽イオンである。一般式(1)において Xは 1または 2が好ましい。
以下に、前記一般式(1)で表される化合物の好ましい具体例を挙げるが、本発明 はこれらに限定されるものではない。
[0109] [化 15]
Figure imgf000045_0001
[0110] [化 16]
[ ΐ^ ] [ΐΐΐθ]
Figure imgf000046_0001
T9.SlO/SOOZdf/X3d C8CSZ0/900Z OAV
[8θ] [mo]
Figure imgf000047_0001
St
T9 .SlO/SOOZdf/X3d C8CSZ0/900Z OAV
Figure imgf000048_0001
Figure imgf000048_0002
[0113] [化 19]
Figure imgf000049_0001
Figure imgf000049_0002
[0114] [化 20]
Figure imgf000050_0001
Figure imgf000050_0002
[0115] [化 21]
Figure imgf000051_0001
[0116] [化 22]
Figure imgf000052_0001
Figure imgf000052_0002
[0117] [化 23]
Figure imgf000053_0001
]
Figure imgf000054_0001
[0119] [化 25]
Figure imgf000055_0001
Figure imgf000055_0002
Figure imgf000055_0003
[0120] [化 26]
Figure imgf000056_0001
§星ΐ
Figure imgf000057_0001
l9.SlO/SOOZdT/X3d C8£SJ0/900 OAV
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000058_0003
[0123] [化 29]
Figure imgf000059_0001
[0124] [化 30]
Figure imgf000060_0001
Figure imgf000060_0002
Figure imgf000060_0003
[0125] [化 31]
Figure imgf000061_0001
Figure imgf000061_0002
[0126] [化 32]
Figure imgf000062_0001
[0127] [化 33] ,、o o
Figure imgf000063_0001
H
OCH3
Figure imgf000063_0002
Figure imgf000064_0001
[0129] [化 35] [9£^ [οετο]
Figure imgf000065_0001
£9
.ST0/S00idf/X3d C8CSiO/900Z OM
Figure imgf000066_0001
( II ')-24
Figure imgf000066_0002
[0131] 本発明において、ォキソノール色素は、前記一般式 (II)で表される化合物が好まし い。
[0132] 次に、一般式 (II)について、詳細に説明する。式 (II)中、 Za25、 Za26は、各々独立に
、酸性核を形成する原子群である。酸性核は、一般式 (I)の Za21、 Za22、 Za2\ Za2\ が形成するものと同義であり、その具体例も同様である。 Za 5、 Za bが形成する酸性 核は、好ましくは、インダンジオン、ピラゾロン、ビラゾリンジオン、ベンゾチォフェンォ ンジォキシドである。その中でも、ピラゾロンが最も好ましい。
Ma27, Ma28, Ma29は、各々独立に、置換または無置換のメチン基であり、一般式 (I )の Ma21
Figure imgf000067_0001
Ma25、 Ma26と同義であり、具体例も、好ましい例も同 様である。 Ma27, Ma28, Ma¾は、無置換のメチン基が好ましい。
Ka23は、 0から 3までの整数を表す。一般式 (I)の Ka21
Figure imgf000067_0002
と同義である。 Ka¾は 、共に 2であるものが好ましい。 Qは、電荷を中和する一価の陽イオンを表す。
Ka23が複数であるとき、複数存在する Ma27
Figure imgf000067_0003
Ma¾は、同じでも異なっていて も良い。
[0133] 一般式 (II)で表される構造の色素は、一般式 (IV)、 (V)、 (VI)、 (VII)で表されるも のが好ましい。
[0134] [化 37]
Figure imgf000068_0001
[0135] 一般式 (IV)、 (V)、 (VI)、 (VII)中、 RU、 R12、 R13、 R14、 R15、 R16、 R17、 R18、 R21、 R22 、 R23、 R24、 R25、 R26、 R27、 R28、 R31、 R32、 R33、 R34、 R41、 R42、 R43、 R44は各々独立に、 水素原子または置換基である。
Figure imgf000068_0002
Ma29は、各々独立に、置換または無置 換のメチン基である。 Ka23は、 0から 3までの整数を表す。 Qは、電荷を中和する一価 の陽イオンを表す。 Ka21、 Ka22が複数であるとき、複数存在する Ma27、 Ma28は、同じ でも異なっていても良い。
[0136] 一般式 (IV)、 (V)、 (VI)、 (VII)中、 RU、 R12、 R13、 R14、 R15、 R16、 R17、 R18、 R21、 R22 、 R23、 R24、 R25、 R26
Figure imgf000068_0003
R32、 R33 (以上を「R」と表示することあり)は、各々独立 に、水素原子または、置換基を表す。置換基は、ハロゲン原子、置換もしくは無置換 のアルキル基 (シクロアルキル基、ビシクロアルキル基を含む)、置換もしくは無置換 のァルケ-ル基(シクロアルケ-ル基、ビシクロアルケ-ル基を含む)、置換もしくは無 置換のアルキニル基、置換もしくは無置換のァリール基、置換もしくは無置換のへテ 口環基、シァノ基、ヒドロキシル基、ニトロ基、カルボキシル基、置換もしくは無置換の アルコキシ基、置換もしくは無置換のァリールォキシ基、置換もしくは無置換のシリル ォキシ基、置換もしくは無置換のへテロ環ォキシ基、置換もしくは無置換のァシルォ キシ基、置換もしくは無置換の力ルバモイルォキシ基、置換もしくは無置換のアルコ キシカルボ-ルォキシ基、置換もしくは無置換のァリールォキシカルボ-ルォキシ、 置換もしくは無置換のアミノ基 (ァ-リノ基を含む)、置換もしくは無置換のァシルアミ ノ基、置換もしくは無置換のァミノカルボニルァミノ基、置換もしくは無置換のアルコキ シカルボ-ルァミノ基、置換もしくは無置換のァリールォキシカルボ-ルァミノ基、置 換もしくは無置換のスルファモイルァミノ基、置換もしくは無置換のアルキル及びァリ 一ルスルホニルァミノ基、置換もしくは無置換のメルカプト基、置換もしくは無置換の アルキルチオ基、置換もしくは無置換のァリールチオ基、置換または無置換のへテロ 環チォ基、置換または無置換のスルファモイル基、スルホ基、置換もしくは無置換の アルキル及びァリールスルフィエル基、置換もしくは無置換のアルキル及びァリール スルホニル基、置換もしくは無置換のァシル基、置換もしくは無置換のァリールォキ シカルボニル基、置換もしくは無置換のアルコキシカルボ-ル基、置換または無置換 の力ルバモイル基、置換または無置換のァリール及びへテロ環ァゾ基、置換もしくは 無置換のイミド基、置換もしくは無置換のホスフイノ基、置換もしくは無置換のホスフィ -ル基、置換もしくは無置換のホスフィエルォキシ基、置換もしくは無置換のホスフィ -ルァミノ基、または置換もしくは無置換のシリル基が例として挙げられる。
更に詳しくは、 Rは、ハロゲン原子 (例えば、塩素原子、臭素原子、ヨウ素原子)、ァ ルキル基 [直鎖、分岐、環状の置換もしくは無置換のアルキル基を表す。それらは、 アルキル基 (好ましくは炭素数 1から 30のアルキル基、例えばメチル、ェチル、 n—プ 口ピル、イソプロピル、 t—ブチル、 n—ォクチル、エイコシル、 2—クロロェチル、 2— シァノエチル、 2—ェチルへキシル)、シクロアルキル基(好ましくは、炭素数 3から 30 の置換または無置換のシクロアルキル基、例えば、シクロへキシル、シクロペンチル、 4—n—ドデシルシクロへキシル)、ビシクロアルキル基(好ましくは、炭素数 5から 30 の置換もしくは無置換のビシクロアルキル基、つまり、炭素数 5から 30のビシクロアル カン力も水素原子を一個取り去った一価の基である。例えば、ビシクロ [1, 2, 2]ヘプ タン一 2—ィル、ビシクロ [2, 2, 2]オクタン一 3—ィル)、更に環構造が多いトリシクロ 構造なども包含するものである。以下に説明する置換基の中のアルキル基 (例えばァ ルキルチオ基のアルキル基)もこのような概念のアルキル基を表す。 ]、ァルケ-ル基 [直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。それらは、ァルケ -ル基 (好ましくは炭素数 2から 30の置換または無置換のァルケ-ル基、例えば、ビ -ル、ァリル、プレニル、ゲラ -ル、ォレイル)、シクロアルケ-ル基 (好ましくは、炭素 数 3から 30の置換もしくは無置換のシクロアルケ-ル基、つまり、炭素数 3から 30のシ クロアルケンの水素原子を一個取り去った一価の基である。例えば、 2—シクロペンテ ン一 1—ィル、 2—シクロへキセン一 1—ィル)、ビシクロアルケ-ル基(置換もしくは無 置換のビシクロアルケニル基、好ましくは、炭素数 5から 30の置換もしくは無置換のビ シクロアルケ-ル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個 取り去った一価の基である。例えば、ビシクロ [2, 2, 1]ヘプトー 2—ェンー1 ィル、 ビシクロ [2, 2, 2]オタトー 2 ェンー4 ィル)を包含するものである。]、アルキ-ル 基 (好ましくは、炭素数 2から 30の置換または無置換のアルキニル基、例えば、ェチ -ル、プロパルギル、トリメチルシリルェチュル基)、ァリール基 (好ましくは炭素数 6か ら 30の置換もしくは無置換のァリール基、例えばフエ-ル、 p トリル、ナフチル、 m クロ口フエニル、 o へキサデカノィルァミノフエ-ル)、ヘテロ環基 (好ましくは 5また は 6員の置換もしくは無置換の、芳香族もしくは非芳香族のへテロ環化合物力 一個 の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数 3から 30の 5もしく は 6員の芳香族のへテロ環基である。例えば、 2 フリル、 2 チェ-ル、 2 ピリミジ -ル、 2—べンゾチアゾリル)、シァノ基、ヒドロキシル基、ニトロ基、カルボキシル基、 アルコキシ基 (好ましくは、炭素数 1から 30の置換もしくは無置換のアルコキシ基、例 えば、メトキシ、エトキシ、イソプロポキシ、 t ブトキシ、 n—ォクチルォキシ、 2—メトキ シェトキシ)、ァリールォキシ基 (好ましくは、炭素数 6から 30の置換もしくは無置換の ァリールォキシ基、例えば、フエノキシ、 2—メチルフエノキシ、 4 t—ブチルフエノキ シ、 3 -トロフエノキシ、 2—テトラデカノィルァミノフエノキシ)、シリルォキシ基 (好ま しくは、炭素数 3から 20のシリルォキシ基、例えば、トリメチルシリルォキシ、 t—ブチ ルジメチルシリルォキシ)、ヘテロ環ォキシ基 (好ましくは、炭素数 2から 30の置換もし くは無置換のへテロ環ォキシ基、 1 フエ-ルテトラゾールー 5—ォキシ、 2—テトラヒ ドロビラ二ルォキシ)、ァシルォキシ基 (好ましくはホルミルォキシ基、炭素数 2から 30 の置換もしくは無置換のアルキルカルボ-ルォキシ基、炭素数 6から 30の置換もしく は無置換のァリールカルボ-ルォキシ基、例えば、ホルミルォキシ、ァセチルォキシ 、ピバロィルォキシ、ステアロイルォキシ、ベンゾィルォキシ、 p—メトキシフエ二ルカル ボニルォキシ)、力ルバモイルォキシ基 (好ましくは、炭素数 1から 30の置換もしくは 無置換の力ルバモイルォキシ基、例えば、 N, N ジメチルカルバモイルォキシ、 N, N ジェチルカルバモイルォキシ、モルホリノカルボニルォキシ、 N, N ジー n—ォ クチルァミノカルボニルォキシ、 N— n—ォクチルカルバモイルォキシ)、アルコキシ力 ルポニルォキシ基 (好ましくは、炭素数 2から 30の置換もしくは無置換アルコキシカル ボニルォキシ基、例えばメトキシカルボニルォキシ、エトキシカルボニルォキシ、 t ブトキシカルボニルォキシ、 n—ォクチルカルボ二ルォキシ)、ァリールォキシカルボ -ルォキシ基 (好ましくは、炭素数 7から 30の置換もしくは無置換のァリールォキシ力 ルボニルォキシ基、例えば、フエノキシカルボ-ルォキシ、 p—メトキシフエノキシカル ボ -ルォキシ、 p—n キサデシルォキシフエノキシカルボ-ルォキシ)、ァミノ基( 好ましくは、アミノ基、炭素数 1から 30の置換もしくは無置換のアルキルアミノ基、炭素 数 6から 30の置換もしくは無置換のァリールアミノ基、例えば、アミ入メチルアミ入ジ メチルァミノ、ァ-リノ、 N-メチル一ァユリ入ジフエ-ルァミノ)、ァシルァミノ基 (好まし くは、ホルミルアミノ基、炭素数 1から 30の置換もしくは無置換のアルキルカルボ-ル アミノ基、炭素数 6から 30の置換もしくは無置換のァリールカルボニルァミノ基、例え ば、ホルミルァミノ、ァセチルアミ入ビバロイルアミ入ラウロイルァミノ、ベンゾィルアミ 入 3, 4, 5—トリー n—ォクチルォキシフエニルカルボニルァミノ)、ァミノカルボニル アミノ基 (好ましくは、炭素数 1から 30の置換もしくは無置換のァミノカルボ-ルアミ入 例えば、力ルバモイルアミ入 N, N ジメチルァミノカルボ-ルアミ入 N, N ジェチ ルァミノカルボニルァミノ、モルホリノカルボニルァミノ)、アルコキシカルボニルァミノ 基 (好ましくは炭素数 2から 30の置換もしくは無置換アルコキシカルボ-ルァミノ基、 例えば、メトキシカルボ-ルアミ入エトキシカルボ-ルアミ入 t ブトキシカルボ-ル アミ入 n—ォクタデシルォキシカルボニルアミ入 N—メチルーメトキシカルボニルアミ ノ)、ァリールォキシカルボ-ルァミノ基 (好ましくは、炭素数 7から 30の置換もしくは 無置換のァリールォキシカルボ-ルァミノ基、例えば、フエノキシカルボ-ルアミ入 P- クロ口フエノキシカルボニルァミノ、 m-n—ォクチルォキシフエノキシカルボニルァミノ) 、スルファモイルァミノ基 (好ましくは、炭素数 0から 30の置換もしくは無置換のスルフ ァモイルァミノ基、例えば、スルファモイルアミ入 N, N—ジメチルアミノスルホ -ルアミ 入 N—n—ォクチルアミノスルホ -ルァミノ)、アルキル及びァリールスルホ -ルァミノ 基 (好ましくは炭素数 1から 30の置換もしくは無置換のアルキルスルホ-ルアミ入炭 素数 6から 30の置換もしくは無置換のァリールスルホ-ルアミ入例えば、メチルスル ホニルアミ入ブチルスルホニルァミノ、フエニルスルホニルアミ入 2, 3, 5—トリクロ口 フエ-ルスルホ-ルアミ入 p—メチルフエ-ルスルホ -ルァミノ)、メルカプト基、アル キルチオ基 (好ましくは、炭素数 1から 30の置換もしくは無置換のアルキルチオ基、 例えばメチルチオ、ェチルチオ、 n—へキサデシルチオ)、ァリールチオ基 (好ましく は炭素数 6から 30の置換もしくは無置換のァリールチオ、例えば、フエ-ルチオ、 p— クロ口フエ-ルチオ、 m—メトキシフエ-ルチオ)、ヘテロ環チォ基 (好ましくは炭素数 2 から 30の置換または無置換のへテロ環チォ基、例えば、 2—べンゾチアゾリルチオ、 1—フエ-ルテトラゾール— 5—ィルチオ)、スルファモイル基 (好ましくは炭素数 0から 30の置換もしくは無置換のスルファモイル基、例えば、 N—ェチルスルファモイル、 N 一(3—ドデシルォキシプロピル)スルファモイル、 N, N—ジメチルスルファモイル、 N —ァセチルスルファモイル、 N—ベンゾィルスルファモイル、 N— (Ν'—フエ-ルカル バモイル)スルファモイル)、スルホ基、アルキル及びァリールスルフィエル基(好ましく は、炭素数 1から 30の置換または無置換のアルキルスルフィエル基、 6から 30の置換 または無置換のァリールスルフィエル基、例えば、メチルスルフィエル、ェチルスルフ ィニル、フエ-ルスルフィ -ル、 ρ—メチルフエ-ルスルフィ -ル)、アルキル及びァリー ルスルホニル基 (好ましくは、炭素数 1から 30の置換または無置換のアルキルスルホ -ル基、 6から 30の置換または無置換のァリールスルホ-ル基、例えば、メチルスル ホニノレ、ェチノレスノレホニノレ、フエニノレスノレホニノレ、 ρ—メチノレフエニノレスノレホニノレ)、ァ シル基 (好ましくはホルミル基、炭素数 2から 30の置換または無置換のアルキルカル ボニル基、炭素数 7から 30の置換もしくは無置換のァリールカルボ-ル基、炭素数 4 から 30の置換もしくは無置換の炭素原子でカルボニル基と結合して 、るへテロ環力 ルポ-ル基、例えば、ァセチル、ビバロイル、 2—クロロアセチル、ステアロイル、ベン ゾィル、 p—n—ォクチルォキシフエニルカルボニル、 2—ピリジルカルボニル、 2—フ リルカルボ-ル)、ァリールォキシカルボ-ル基 (好ましくは、炭素数 7から 30の置換も しくは無置換のァリールォキシカルボ-ル基、例えば、フエノキシカルボ-ル、 o ク ロロフエノキシカノレボニル、 m—二トロフエノキシカノレボニル、 p— t ブチルフエノキシ カルボ-ル)、アルコキシカルボ-ル基 (好ましくは、炭素数 2から 30の置換もしくは 無置換アルコキシカルボ-ル基、例えば、メトキシカルボ-ル、エトキシカルボ-ル、 t ブトキシカルボ-ル、 n—ォクタデシルォキシカルボ-ル)、力ルバモイル基(好まし くは、炭素数 1から 30の置換もしくは無置換の力ルバモイル、例えば、力ルバモイル、 N—メチルカルバモイル、 N, N ジメチルカルバモイル、 N, N ジー n—ォクチル 力ルバモイル、 N (メチルスルホ -ル)力ルバモイル)、ァリール及びへテロ環ァゾ基 (好ましくは炭素数 6から 30の置換もしくは無置換のァリールァゾ基、炭素数 3から 30 の置換もしくは無置換のへテロ環ァゾ基、例えば、フエ-ノレァゾ、 p—クロ口フエ二ノレ ァゾ、 5 ェチルチオ 1, 3, 4ーチアジアゾールー 2—ィルァゾ)、イミド基 (好ましく は、 N—スクシンイミド、 N フタルイミド)、ホスフイノ基 (好ましくは、炭素数 2から 30 の置換もしくは無置換のホスフイノ基、例えば、ジメチルホスフィ入ジフエ-ルホスフィ 入メチルフエノキシホスフイノ)、ホスフィエル基 (好ましくは、炭素数 2から 30の置換も しくは無置換のホスフィエル基、例えば、ホスフィエル、ジォクチルォキシホスフィエル 、ジエトキシホスフィエル)、ホスフィエルォキシ基 (好ましくは、炭素数 2から 30の置換 もしくは無置換のホスフィエルォキシ基、例えば、ジフエノキシホスフィエルォキシ、ジ ォクチルォキシホスフィエルォキシ)、ホスフィエルアミノ基 (好ましくは、炭素数 2から 30の置換もしくは無置換のホスフィエルアミノ基、例えば、ジメトキシホスフィエルアミ 入ジメチルァミノホスフィエルアミノ)、シリル基 (好ましくは、炭素数 3から 30の置換も しくは無置換のシリル基、例えば、トリメチルシリル、 t—ブチルジメチルシリル、フエ- ルジメチルシリル)を表わす。
RU、 R12、 R13、 R"、 R15、 R16、 R"、 R18、 R21、 R22
Figure imgf000073_0001
R28は、水 素原子が最も好ましい。
[0139] R31、 R34、 R"、 R42、 R43、 R"は、置換基としては前記 Rと同じものが挙げられるが、水 素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のァリール基 が好ましい。その中でも、置換または無置換のァリール基が更に好ましい。
Ma27, Ma28, Ma29は、各々独立に、置換または無置換のメチン基である。一般式 (I I)の Ma27
Figure imgf000074_0001
Ma¾と同義であり、その具体例及び好ましいものも同様である。 Ka 23は、各々独立に、 0から 3までの整数を表す。 Ka23は好ましくは 2である。 Qは、電荷 を中和する一価の陽イオンを表す。 Ka23が複数であるとき、複数存在する Ma27、 Ma2 8は、同じでも異なっていても良い。
一般式 (II)で表される構造の色素は、下記の一般式 (VIII)で表される構造の色素 が好ましい。
[0140] [化 38]
Figure imgf000074_0002
[0141] 一般式 (VIII)で表される色素について、詳細に説明する。
前記一般式 (VIII)で表される構造の化合物につ 、て、詳しく説明する。
一般式 (VIII)中、 R51、 R52、 R53、 R54、 R55、 R56
Figure imgf000074_0003
R59、 R6°は、各々独立に、 水素原子または、置換基を表す。置換基の場合は、置換もしくは無置換のアルキル 基、置換もしくは無置換のアルコキシ基、ハロゲン原子、置換もしくは無置換のカル バモイル基、または置換もしくは無置換のァシルァミノ基が好ましい。その中でも、全 てが水素原子であるもの、及び、 R51、 R53、 R55、 R56、 R58、 R6°がハロゲン原子で置換さ れ、かつ 2、 R54、 R57、 R59が水素原子であるものが好ましい。 R61、 R67は、水素原子、 置換もしくは無置換のアルキル基、置換もしくは無置換のァリール基、シァノ基、置換 もしくは無置換の力ルバモイル基、置換もしくは無置換のアルコシキシ基、置換もしく は無置換のアルコキシカルボ-ル基、置換もしくは無置換のァリールォキシカルボ- ル基、または置換もしくは無置換のァシルアミノ基を表しす。その中での、置換または 無置換のアルコキシカルボ-ル基が好ましぐ無置換のアルコキシカルボ-ル基が最 も好ましい。
[0142] R62、 R63、 R64、 R65、 R66は、各々独立に、水素原子、置換もしくは無置換のアルキル 基、置換もしくは無置換のァリール基、置換もしくは無置換のァシルァミノ基、または 置換もしくは無置換のへテロ環基を表す。 R62、 R63、 R65、 R66は、全て水素原子が好ま しい。 R64は、水素原子、または置換もしくは無置換のァリール基が好ましい。
[0143] R71、 R72、 R73、 R74、 R75、 R76
Figure imgf000075_0001
R 88は、各々独立に、水素原子または、置換基を表す。置換基であるときは、置換もしく は無置換のアルキル基、置換もしくは無置換のァリール基、ヒドロキシル基、または置 換もしくは無置換のァシルァミノ基が好ましい。 R71、 R72、 R75、 R76、 R77、 R8°は、全て水 素原子が好ましい。 R73、 R78は、各々ヒドロキシル基が好ましい。 R74、 R79は、各々フエ ニル基が好ましい。
[0144]
Figure imgf000075_0002
R88は、全て水素原子が好ま 、。
[0145] 一般式 (I)で表される構造の色素について、詳しく説明する。式 (I)中、 Za Za
Za24は、各々独立に、酸性核を形成する原子群であり、その例としては、 James 編、 The Theory of the Photographic Process,第 4版、マクミラン社、 1977年、第 198 頁に記載されている。具体的には、各々、置換されてもいてもよいピラゾール -5-オン 、ビラゾリジン- 3, 5-ジオン、イミダゾリン- 5-オン、ヒダントイン、 2または 4-チォヒダン トイン、 2-イミノォキサゾリジン- 4-オン、 2-ォキサゾリン- 5-オン、 2-チォォキサゾリン -2, 4-ジオン、イソローダニン、ローダニン、チォフェン- 3-オン、チォフェン- 3-オン- 1, 1-ジォキシド、 3, 3 ジォキソ [1 , 3]ォキサチオラン 5 オン、インドリン- 2-ォ ン、インドリン- 3-オン、 2-ォキソインダゾリゥム、 5, 7-ジォキソ- 6, 7-ジヒドロチアゾロ 〔3,2-a〕ピリミジン、 3, 4-ジヒドロイソキノリン- 4-オン、 1, 3-ジォキサン- 4, 6-ジオン( 例えば、メルドラム酸など)、バルビツール酸、 2-チォバルビツール酸、クマリン一 2, 4-ジオン、インダゾリン- 2-オン、ピリド [1,2- a]ピリミジン- 1, 3-ジオン、ピラゾ口〔1, 5- b〕キナゾロン、ピラゾ口ピリドン、 5または 6員の炭素環 (例えば、へキサン- 1, 3-ジォ ン、ペンタン- 1 , 3-ジオン、インダン- 1 , 3-ジオン)などの核が挙げられ、好ましくは、 ピラゾール- 5-オン、ピラゾリジン- 3, 5-ジオン、バルビツール酸、 2-チォバルビツー ル酸、 1 , 3-ジォキサン- 4, 6-ジオン、または 3, 3 ジォキソ [ 1 , 3]ォキサチオラン 5—オンである。
[0146] Za21、 Za22、 Za Za24は、各々、置換されていてもよい 1 , 3-ジォキサン- 4, 6-ジォ ンが最も好ましい。
酸性核を置換する置換基は、ハロゲン原子、アルキル基 (シクロアルキル基、ビシク 口アルキル基を含む)、ァルケ-ル基(シクロアルケ-ル基、ビシクロアルケ-ル基を 含む)、アルキ-ル基、ァリール基、ヘテロ環基、シァノ基、ヒドロキシル基、ニトロ基、 カルボキシル基、アルコキシ基、ァリールォキシ基、シリルォキシ基、ヘテロ環ォキシ 基、ァシルォキシ基、力ルバモイルォキシ基、アルコキシカルボ-ルォキシ基、ァリー ルォキシカルボ-ルォキシ、アミノ基 (ァ-リノ基を含む)、ァシルァミノ基、ァミノカル ボ-ルァミノ基、アルコキシカルボ-ルァミノ基、ァリールォキシカルボ-ルァミノ基、 スノレ
ファモイルァミノ基、アルキル及びァリールスルホ -ルァミノ基、メルカプト基、アルキ ルチオ基、ァリールチオ基、ヘテロ環チォ基、スルファモイル基、スルホ基、アルキル 及びァリールスルフィエル基、アルキル及びァリールスルホ-ル基、ァシル基、ァリー ルォキシカルボ-ル基、アルコキシカルボ-ル基、力ルバモイル基、ァリール及びへ テロ環ァゾ基、イミド基、ホスフイノ基、ホスフィエル基、ホスフィエルォキシ基、ホスフィ -ルァミノ基、またはシリル基が例として挙げられる。その中でも、炭素数 1から 20の 置換もしくは無置換のアルキル基、または炭素数 6から 20の置換もしくは無置換のァ リール基が好ましい。
[0147] 酸性核は、無置換または、炭素数 1から 20の置換もしくは無置換のアルキル基で置 換されたもの、炭素数 6から 20の置換もしくは無置換のァリール基で置換されたもの が好ましい。
Za21、 Za22、 Za23、 Za24が形成する酸性核は、好ましくは、インダンジオン、ピラゾロン 、ビラゾリンジオン、ベンゾチオフ ンオンジォキシドである。その中でも、ピラゾロンが 最も好ましい。
Figure imgf000077_0001
Ma26は、各々独立に、置換または無置換のメチ ン基である。置換基として好ましくは、炭素数 1から 20のアルキル基 (例えば、メチル 、ェチル、イソプロピル)、ハロゲン原子 (例えば、塩素、臭素、ヨウ素、フッ素)、炭素 数 1から 20のアルコキシ基(例えば、メトキシ、エトキシ、イソプロポキシ)、炭素数 6か ら 26のァリール基(例えば、フエ-ル、 2-ナフチル)、炭素数 0から 20のへテロ環基( 例えば、 2-ピリジル、 3-ピリジル)、炭素数 6から 20のァリールォキシ基 (例えば、フエ ノキシ、 1-ナフトキシ、 2-ナフトキシ)、炭素数 1から 20のァシルァミノ基 (例えばァセ チルァミノ、ベンゾィルァミノ)、炭素数 1から 20の力ルバモイル基(例えば N, N-ジメ チルカルバモイル)、スルホ基、ヒドロキシ基、カルボキシ基、炭素数 1から 20のアル キルチオ基 (例えばメチルチオ)、シァノ基などが挙げられる。また、他のメチン基と結 合して環構造を形成してもよぐ Za21から Za24で表される原子団と結合して環構造を 形成してちょい。
Ma21、 Ma22
Figure imgf000077_0002
Ma26は、各々独立に、好ましくは無置換、ェチル 基、メチル基、フエ-ル基で置換されたメチン基のいずれかである。最も好ましくは、 無置換のメチン基である。
Lは、 2つの結合とともに π共役系を形成しない 2価の連結基である。 2価の連結基 については、それらが結合したクロモフォア間で π共役系を形成しない以外に特に 限定は無いが、好ましくはアルキレン基 (炭素数 1から 20、例えばメチレン、エチレン 、プロピレン、ブチレン、ペンチレン)、ァリーレン基(炭素数 6から 26、例えばフエ-レ ン、ナフチレン)、ァルケ-レン基(炭素数 2から 20、例えばエテュレン、プロべ-レン )、アルキュンレン基(炭素数 2から 20、例えばェチ-レン、プロピ-レン)、- CO- NO?1 01)—、— CO— 0—、—SO -N(R102)-, -SO— 0—、 -N(R103 )— CO— N(R1<)4)—、—SO―、— SO—、— S
2 2 2
-、 - 0- 、 -CO-, - N(R105)-、 へテリレン基 (炭素数 1から 26、例えば 6-クロ口- 1, 3, 5- トリアジル -2, 4-ジィル基、ピリミジン- 2, 4-ジィル基)を 1つまたはそれ以上組み合 わせて構成される炭素数 0以上 100以下、好ましくは 1以上 20以下の連結基を表す 。上記、 R1M、 R1Q2、 R103 、 R1M、 R1Q5は、各々独立に、水素原子、置換または無置換の アルキル基、および置換または無置換のァリール基のいずれかを表す。また、 Lで表 される連結基は、それらが連結する 2つのクロモフォア間で 1つ以上複数個存在して V、てもよく、複数個(好ましくは 2つ)が結合して環を形成してもよ!/、。
Lとして、各々好ましくは 2つのアルキレン基 (好ましくは、エチレン)が結合して環を 形成したものである。その中でも、 5または 6員環 (好ましくはシクロへキシル環)を形 成した場合が更に好ましい。
[0149] 一般式 (I)にお 、て、 Ka21、 Ka22は、各々独立に、 0から 3までの整数を表す。
Figure imgf000078_0001
Ka22が複数であるとき、複数存在する Ma21、 Ma26は、同じでも 異なっていても良い。
Ka21、 Ka22は、共に 2であるものが好ましい。
[0150] Qは、電荷を中和する一価の陽イオンを表す。従って、 2Qで、 2価の陽イオンを表 す。 Qで表されるイオンには特に制限は無ぐ無機化合物よりなるイオンであっても、 有機化合物よりなるイオンであっても構わない。 Qとして表される陽イオンとしては、例 えばナトリウムイオン、カリウムイオンのような金属イオン、 4級アンモ-ゥムイオン、ォ キソ -ゥムイオン、スノレホニゥムイオン、ホスホ-ゥムイオン、セレノ -ゥムイオン、ョー ドニゥムイオンなどのォ-ゥムイオンが挙げられる。
Qで表される陽イオンは、ォニゥムイオンが好ましぐ更に好ましくは 4級アンモニゥ ムイオンである。 4級アンモニゥムイオンの中でも特に好ましくは、特開 2000-52658号 公報の一般式 (1-4)で表される 4,4 '-ビビリジ-ゥム陽イオンおよび特開 2002-59652 号公報に開示されて 、る 4,4しビビリジ-ゥム陽イオンである。 4,4'-ビビリジ-ゥム陽ィ オンの様にジカチオンィ匕合物の場合には、 Qは 1Z2 (ジカチオンィ匕合物)に相当す る。
[0151] 一般式 (I)は好ましくは、 Za21
Figure imgf000078_0002
Za24が形成する酸性核が、各々独立に、 無置換または、炭素数 1から 20の置換もしくは無置換のアルキル基で置換された、ま たは、炭素数 6から 20の置換もしくは無置換のァリール基で置換されたピラゾール -5 -オン、ピラゾリジン- 3, 5-ジオン、バルビツール酸、 2-チォバルビツール酸、 1, 3- ジォキサン- 4, 6-ジオン、 3, 3 ジォキソ [1, 3]ォキサチオラン 5 オンであり、 Ma21、 Ma22、 Ma23、 Ma24、 Ma25、 Ma26は、各々独立に、無置換、または、ェチル基、 メチル基、もしくはフエ-ル基で置換されたメチン基のいずれかであり、 Lは、 2つのァ ルキレン基 (好ましくは、エチレン)が結合して 5または 6員環を形成したものであり、 K a Ka ま、共に 2であり、かつ 2Qで表される陽イオンは、特開 2000— 52658号公 報の一般式 (1—4)で表される 4, 4'—ビビリジ-ゥム陽イオンおよび特開 2002— 59 652号公報に開示されている 4, 4 '—ビビリジ-ゥム陽イオンである場合である。一般 式 (I)で表される色素のうち、一般式 (III)で表される色素が好ま 、。
[0152] [化 39]
Figure imgf000079_0001
[0153] 式 (III)中、
Figure imgf000079_0002
ま、各々独立に、水素原子、置換もしくは無置換のアルキル基、 または置換もしくは無置換のァリール基を表す。
Figure imgf000079_0003
R5は、各々独立に、水素原 子または置換基である。 R1と R2は互いに結合して環構造を形成してもよい。 R6は、各 々独立に、水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換 のァリール基である。 L1は、 2価の連結基である。 2つの R6が結合して 2価の連結基を 形成してもよい。 n、 mは、各々独立に、 0から 2までの整数を表す。 Qは、電荷を中和 する一価の陽イオンを表す。 n、 mが複数であるとき、複数存在する R3、 R4は、同じで も異なっていても良い。
[0154] 式 (III)について、詳細に説明する。
Figure imgf000079_0004
R2は、各々独立に、水素原子、置換もしく は無置換のアルキル基、または置換もしくは無置換のァリール基を表す。 R1と R2は互 いに結合して環構造を形成しても良い。
Figure imgf000079_0005
R2は、好ましくは、各々独立に、または 置換もしくは無置換のアルキル基である。更に好ましくは、
Figure imgf000079_0006
R2はそれぞれ異なつ た炭素数 1から 6の無置換アルキル基である。
Figure imgf000079_0007
R5は、各々独立に、水素原子 または置換基である。
Figure imgf000079_0008
R5は、好ましくは、水素原子、置換もしくは無置換のァ ルキル基、置換もしくは無置換のァリール基、または置換もしくは無置換のへテロ環 基である。更に好ましくは、水素原子、ェチル基、メチル基、またはフエ-ル基である 。 R3、 R4、 R5は、全て水素原子であることが最も好ましい。 R6は、水素原子、置換もし くは無置換のアルキル基、または置換もしくは無置換のァリール基である。その中で も 2つの R6が結合して 2価の連結基を形成したものが好ましい。 L1は、 2価の連結基 である。好ましくは、 L1は、置換または無置換のアルキレン基である。 ΐΛ R6は、 L1と 2 つの R6で環構造を形成したものが最も好ましい。その場合の環構造は、 5または 6員 環 (より好ましくは 6員環)が好ましい。 n、 mは、各々独立に、 0から 2までの整数を表 す。 n、 mは共に 2が好ましい。 Qは、電荷を中和する一価の陽イオンを表す。従って 、 2Qで、 2価の陽イオンを表す。 n、 mが複数であるとき、複数存在する R3、 R4は、同 じでも異なっていても良い。
[0155] 以下に、本発明の一般式 (1)、(II)または (III)で表される化合物の好ましい具体例 を挙げるが、本発明はこれらに限定されるものではない。
[0156] [化 40]
Figure imgf000081_0001
[0157] [化 41]
Figure imgf000082_0001
Figure imgf000082_0002
[0158] [化 42]
Figure imgf000083_0001
[0159] [化 43] [ο9ΐο]
Figure imgf000084_0001
T9.SlO/SOOZdf/X3d C8CSZ0/900Z OAV
Figure imgf000085_0001
Figure imgf000085_0002
Figure imgf000085_0003
[0161] [化 45]
Figure imgf000086_0001
]
Figure imgf000087_0001
Figure imgf000087_0002
Figure imgf000087_0003
5761
86
(Π) 一 6
(Π)一 7
Figure imgf000088_0001
Figure imgf000089_0001
(Π)一 1 2
Figure imgf000089_0002
(Π) - 1 3
Figure imgf000089_0003
49]
Figure imgf000090_0001
Figure imgf000090_0002
[0166] [化 50] 3〔016
Figure imgf000091_0001
[2S^ ] [8910]
Figure imgf000092_0001
06
T9.Sl0/S00Zdf/X3d C8CSZ0/900Z OAV
Figure imgf000093_0001
[0169] [化 53]
Figure imgf000094_0001
[0170] [化 54] /v:/ OS00ifcl£ ε8ε£Ν0900ίAV
Figure imgf000095_0001
u〔 ΐοs
Figure imgf000096_0001
[0172] 一般的なォキソノール色素は、該当する活性メチレンィ匕合物とメチン源 (メチン染料 にメチン基を導入するために用いられる化合物)との縮合反応によって合成すること 力 Sできる。この種のィ匕合物についての詳糸田は、特公日召 39— 22069号、同 43— 3504 号、同 52— 38056号、同 54— 38129号、同 55— 10059号、同 58— 35544号、特 開昭 49— 99620号、同 52— 92716号、同 59— 16834号、同 63— 316853号、同 64— 40827号各公報、ならびに英国特許第 1133986号、米国特許第 3247127 号、同 4042397号、同 4181225号、同 5213956号、同 5260179号各明細書を参 照すること力 Sできる。特開日召 63— 209995号、特開平 10— 309871号、特開 2002 249674号にも記載されて ヽる。
[0173] ビス型ォキソノール色素の合成法は、欧州特許 EP1424691A2に開示されている
[0174] また、ロイコ系の染料も使用することができる。具体的には、クリスタルバイオレツトラ タトン; 3, 3 ビス(1—ェチル 2—メチルインドール— 3—ィル)フタリド、 3— (4—ジェ チルァミノ 2 エトキシフエ-ル)—3— (1—ェチル 2—メチルインドール— 3—ィル )— 4—ァザフタリド等のフタリド化合物; 3 -シクロへキシルメチルァミノ 6—メチル —7 ァ-リノフルオラン、 2— (2 クロロア二リノ) 6 ジブチルァミノフルオラン、 3 ジェチルァミノ 6—メチル 7—ァニリノフルオラン、 3—ジェチルァミノ 6—メチ ルー 7 キシリジノフルオラン、 2— (2 クロロア二リノ) 6 ジェチルァミノフルオラ ン、 2 ァ-リノ一 3—メチル 6 (N ェチルイソペンチルァミノ)フルオラン、 3 ジェ チルァミノ 6—クロ口一 7—ァ-リノフルオラン、 3 -ベンジルェチルァミノ 6—メチ ルー 7—ァ-リノフルオラン、 3—メチルプロピルアミノ 6—メチル - 7-ァ-リノフル オランなどのフルオランィ匕合物;等が好ま 、。
[0175] また、本発明の光ディスクにおいては、既述の情報記録層の構成成分 (色素又は 相変化記録材料)と画像記録層の構成成分とを同じとしても異ならせてもよいが、情 報記録層と画像記録層とでそれぞれ要求される特性が相違するため、構成成分は異 ならせることが好ましい。具体的には、情報記録層の構成成分は記録'再生特性に 優れるものとし、画像記録層の構成成分は記録画像のコントラストが高くなるものとす ることが好ましい。特に、色素を用いる場合、画像記録層には、記録画像のコントラス ト向上の観点から、既述の色素の中でも特に、シァニン色素、フタロシアニン色素、ァ ゾ色素、ァゾ金属錯体、ォキソノール色素を用いることが好ましい。
[0176] 画像記録層は、前述の色素を溶剤に溶解して塗布液を調製し、該塗布液を塗布す ることによって形成することができる。溶剤としては既述の情報記録層の塗布液の調 製に使用する溶剤と同じ溶剤を使用することができる。その他の添加剤、塗布方法な どは、既述の情報記録層と同様である。
[0177] 画像記録層の層厚としては、 0. 01〜200 μ mとすることが好ましぐ 0. 05〜20 μ mとすることがより好ましぐ 0. 1〜5 mとすることがさらに好ましい。
[0178] 以下に、他の層について説明する。
(保護層)
反射層や情報記録層などを物理的および化学的に保護する目的で保護層が設け られることある。 なお、 DVD— R型の光ディスクの製造の場合と同様の形態、すなわち二枚の基板 を情報記録層、画像記録層を内側にして貼り合わせる構成をとる場合は、必ずしも保 護層の付設は必要ではな 、。
[0179] 保護層に用いられる材料の例としては、 ZnS、 ZnS-SiO、 SiO、 SiO、 MgF、 S
2 2 2 nO、 Si N等の無機物質、熱可塑性榭脂、熱硬化性榭脂、 UV硬化性榭脂等の有
2 3 4
機物質を挙げることができる。保護層は、例えば、プラスチックの押出加工で得られた フィルムを接着剤を介して反射層上にラミネートすることにより形成することができる。 あるいは真空蒸着、スパッタリング、塗布等の方法により設けられてもよい。
[0180] また、熱可塑性榭脂、熱硬化性榭脂の場合には、これらを適当な溶剤に溶解して 塗布液を調製した後、この塗布液を塗布し、乾燥すること〖こよっても形成することがで きる。 UV硬化性榭脂の場合には、この塗布液を塗布し、 UV光を照射して硬化させ ることによつても形成することができる。これらの塗布液中には、更に帯電防止剤、酸 化防止剤、 UV吸収剤等の各種添加剤を目的に応じて添加してもよい。保護層の層 厚は一般には 0. 1 μ m〜lmmの範囲にある。
[0181] また、その他の構成として、例えば、基板上に、反射層、情報記録層、カバー層が 順次形成された構成としてもよい。前記カバー層は、接着層を介して情報記録層上 に形成されていることが好ましい。この場合、カバー層以外の構成については、既述 の通りである。
[0182] (カバー層)
カバー層は、光ディスク内部を衝撃など力 防ぐために形成され、透明な材質であ れば特に限定されないが、好ましくはポリカーボネート、三酢酸セルロース等であり、 より好ましくは、 23°C 50%RHでの吸湿率が 5 %以下の材料である。
なお、「透明」とは、記録光および再生光の光に対して、該光を透過する(透過率: 9 0%以上)ほどに透明であることを意味する。
[0183] カバー層は、接着層を構成する光硬化性榭脂を適当な溶剤に溶解して塗布液を 調製した後、この塗布液を所定温度で情報記録層上に塗布して塗布膜を形成し、該 塗布膜上に、例えばプラスチックの押出加工で得られた三酢酸セルロースフィルム( TACフィルム)をラミネートし、ラミネートした TACフィルムの上力も光を照射して塗布 膜を硬化させて形成される。前記 TACフィルムとしては、紫外線吸収剤を含むものが 好ましい。カバー層の厚さは、 0. 01〜0. 2mmの範囲であり、好ましくは 0. 03〜0. lmmの範囲、より好ましくは 0. 05〜0. 095mmの範囲である。
また、カバーシートとして、ポリカーボネートシート等を使用することもできる。
[0184] なお、カバー層として、ポリカーボネートシート等を使用することもできる。透明シー トの貼り合わせ面に粘着剤が付与されている場合は、上記接着剤は必要ない。 また、カバー層の代わりに、紫外線硬化榭脂等からなる光透過層を形成してもよい
[0185] また、カバー層の上にハードコート層を形成してもよい。ハードコート層は、基板上 に、反射層、情報記録層等を形成し、その上にカバー層を形成した後、当該カバー 層上に塗布などの手段により形成することができる。また、カバー層が透明シートの 場合、透明シートを情報記録層上に貼り合わせる前に、当該透明シート上にハードコ 一ト層を形成し、ハードコート層が最表面になるようにして、透明シー卜を情報記録 層上に貼り合わせて、本発明の光ディスクを作製してもよい。
[0186] また、本発明の光ディスクは、レーザー光により再生可能な情報が記録された記録 部(ピット)を有する、いわゆる再生専用型の光ディスクに適用することができるのは既 述の通りである。
[0187] [画像記録方法]
本発明の光ディスクの画像記録層への画像記録は、本発明の光ディスクと、少なく とも該光ディスクの画像記録層への画像情報の記録が可能な記録装置とを用いて行 以下、先ず、本発明の光ディスクへの記録に用いられる記録装置について説明す る。
[0188] (光ディスク記録装置)
本発明の光ディスクにおいて、画像記録層への画像の記録、及び情報記録層への 光情報の記録は、例えば、両層への記録機能を有する 1つの光ディスクドライブ (記 録装置)で行うことができる。このように 1つの光ディスクドライブを使用する場合、画 像記録層及び情報記録層の!、ずれか一方の層への記録を行った後、裏返して他方 の層に記録を行うことができる。
[0189] 上述した本発明の光ディスクは、以下のような装置及び方法に対して特に好適に使 用することができる。
[0190] 例えば、上述した本発明の光ディスクが好適に使用される光ディスク記録装置は、
(1)光ディスクの記録面 (例えば、色素記録層(記録層) )に対してレーザ光を照射し て情報記録を行う光ディスク記録装置であって、光ディスクに対してレーザ光を照射 する光ピックアップと、前記光ピックアップによる前記光ディスクに対するレーザ光の 照射位置を調整する照射位置調整手段と、一方の面に前記記録面が他方の面に画 像記録層が形成された光ディスクが、当該画像記録層が前記光ピックアップと対向 するようにセットされた場合に、画像情報に対応する可視画像が前記光ディスクの前 記画像記録層に形成されるよう前記光ピックアップおよび前記照射位置調整手段を 制御する画像形成制御手段と、前記可視画像を形成する際に前記画像記録層に対 して前記光ピックアップが照射するレーザ光のビームスポット径カ 情報記録を行う際 に前記記録面に対して前記光ピックアップが照射するレーザ光のビームスポット径ょ りも大きくなるように前記光ピックアップを制御するビームスポット制御手段とを具備す ることを特徴としている。
[0191] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。このような可視画像形成の際 に、光ディスクの画像記録層に照射するレーザ光のビームスポット径を大きくすること により、光ディスクが 1回転させられて 、る間により大き 、領域に対してレーザ光を照 射することができ、可視画像形成のために要する時間を短縮することができる。また、 上述した本発明の光ディスクはこのような方法でも良好な可視画像を記録することが できる。
[0192] また、別態様の光ディスク記録装置は、
(2)光ディスクの記録面に対してレーザ光を照射して情報記録を行う光ディスク記録 装置であって、光ディスクに対してレーザ光を照射する光ピックアップと、前記光ピッ クアップによる前記光ディスクに対するレーザ光の照射位置を調整する照射位置調 整手段と、一方の面に前記記録面が他方の面に画像記録層が形成された光ディスク 力 当該画像記録層が前記光ピックアップと対向するようにセットされた場合に、画像 情報に対応する可視画像が前記光ディスクの前記画像記録層に形成されるよう前記 光ピックアップおよび前記照射位置調整手段を制御する手段であって、前記光ピック アップが前記画像記録層に対して照射するレーザ光の強度が、前記画像情報に基 づいて前記画像記録層がほとんど変化しない第 1の強度、もしくは該第 1の強度より も大きく前記画像記録層が変化する第 2の強度のいずれかとなるよう制御する画像形 成制御手段と、前記光ディスクに対して前記光ピックアップによって照射されるレーザ 光に関する情報を検出し、当該検出結果に基づいて、所望のレーザ光が照射される よう前記光ピックアップを制御するサーボ手段とを具備し、前記画像形成制御手段は 、前記画像情報に基づく制御にしたがって前記光ピックアップが照射するレーザ光 の強度が連続して第 2の強度となっている時間が一定の時間を超えた場合に当該画 像情報の内容に関わらず、前記光ピックアップから照射されるレーザ光の強度が所 定の時間だけ第 1の強度となるよう制御し、前記サーボ手段は、前記第 1の強度で照 射されたレーザ光に関する情報の検出結果に基づいて前記光ピックアップを制御す ることを特徴としている。
[0193] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。このような可視画像形成の際 に、画像データに応じたレーザ光の強度が画像記録層を変化させる第 2の強度であ る時間が長く続いた場合にも、その画像データに拘わらず、レーザ光制御のために 画像記録層がほとんど変化しない第 1の強度のレーザ光を照射するようにしたので、 その照射結果に基づいたレーザ光制御を行うことができる。また、上述した本発明の 光ディスクはこのような方法でも良好な可視画像を記録することができる。
[0194] また、別態様の光ディスク記録装置は、
(3)光ディスクの記録面に対してレーザ光を照射して情報記録を行う光ディスク記録 装置であって、光ディスクに対してレーザ光を照射する光ピックアップと、前記光ピッ クアップによる前記光ディスクに対するレーザ光の照射位置を調整する照射位置調 整手段と、一方の面に前記記録面が他方の面に画像記録層が形成された光ディスク 力 当該画像記録層が前記光ピックアップと対向するようにセットされた場合に、画像 情報に対応する可視画像が前記光ディスクの前記画像記録層に形成されるよう前記 光ピックアップおよび前記照射位置調整手段を制御する画像形成制御手段と、前記 光ディスクが当該光ディスク記録装置にセットされた際に、前記光ディスクにおける前 記光ピックアップと対向する面が前記画像記録層であるか前記記録面であるかに基 づ 、て、前記光ディスクの前記光ピックアップと対向する面と前記光ピックアップとの 相対位置関係を調整する相対位置調整手段とを具備することを特徴としている。
[0195] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。そして、光ディスクがセットさ れた場合、画像記録層もしくは記録面のいずれが光ピックアップと対向するようにセッ トされたかに応じて光ピックアップと、これに対向する面との間の位置関係を調整する ことができる。したがって、記録面を光ピックアップに対向するようにセットした場合と、 画像記録層を光ピックアップに対向するようにセットした場合とで光ピックアップとこれ に対向する面との距離が異なる場合であっても、その距離の差に起因して種々の制 御、例えばフォーカス制御等ができなくなってしまうといった問題を抑制できる。また、 上述した本発明の光ディスクはこのような方法でも良好な可視画像を記録することが できる。
[0196] また、別態様の光ディスク記録装置は、
(4)光ディスクの記録面に対してレーザ光を照射して情報記録を行う光ディスク記録 装置であって、光ディスクに対してレーザ光を照射する光ピックアップと、前記光ピッ クアップによる前記光ディスクに対するレーザ光の照射位置を調整する照射位置調 整手段と、一方の面に前記記録面が他方の面に画像記録層が形成された光ディスク であって、前記記録面に案内溝が螺旋状に形成された光ディスクが、当該画像記録 層が前記光ピックアップと対向するようにセットされた場合に、前記光ピックアップが 照射したレーザ光の前記光ディスクからの反射光に基づいて前記案内溝に沿ってレ 一ザ光が照射されるよう前記照射位置調整手段を制御するサーボ手段と、前記サー ボ手段によって前記案内溝に沿って前記レーザ光の照射位置が移動させられている 間に、画像情報に対応する可視画像が前記光ディスクの前記画像記録層に形成さ れるよう前記光ピックアップから照射されるレーザ光を制御する画像形成制御手段と を具備することを特徴としている。また、上述した本発明の光ディスクはこのような方 法でも良好な可視画像を記録することができる。
[0197] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。この際、記録面に形成された 案内溝を検出し、該検出した案内溝に沿ってレーザ光照射位置を移動させるといつ た記録面に対して記録を実施するときと比して複雑なレーザ光照射位置制御を行う ことなぐ可視画像形成を行うことができる。
[0198] また、別態様の光ディスク記録装置は、
(5)光ディスクの記録面に対してレーザ光を照射して情報記録を行う光ディスク記録 装置であって、光ディスクに対してレーザ光を照射する光ピックアップと、前記光ディ スクを回転させる回転駆動手段と、前記回転駆動手段による前記光ディスクの回転 速度に応じた周波数のクロック信号を出力するクロック信号出力手段と、一方の面に 前記記録面が他方の面に画像記録層が形成された光ディスク力 当該画像記録層 が前記光ピックアップと対向するようにセットされた場合に、画像情報に対応する可視 画像が前記光ディスクの前記画像記録層に形成されるよう前記光ピックアップを制御 する手段であって、前記信号出力手段によってクロック信号の周期毎に前記画像情 報に基づいて前記光ピックアップから照射されるレーザ光を制御する画像形成制御 手段と、前記回転駆動手段によって前記光ディスクが所定の基準位置から 1回転さ せられたことを検出する回転検出手段と、前記可視画像を前記光ディスクの前記画 像記録層に形成するために前記光ピックアップによってレーザ光が照射された状態 で前記光ディスクが前記所定の基準位置から 1回転させられたことが前記回転検出 手段によって検出された場合に、前記光ピックアップによるレーザ光の照射位置を当 該光ディスク記録装置にセットされた前記光ディスクの所定の径方向に所定量移動さ せる照射位置調整手段とを具備することを特徴として!ヽる。 [0199] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。この可視画像形成の際に、 光ディスクの回転速度に応じた周波数のクロック信号の周期毎、つまり光ディスクが 一定角度回転する毎に可視画像形成のためのレーザ光照射制御を行っているので 、光ディスクの一定の角度毎の位置に画像データに応じた内容 (例えば、濃度)の可 視画像を形成することができる。また、上述した本発明の光ディスクはこのような方法 でも良好な可視画像を記録することができる。
[0200] また、別態様の光ディスク記録装置は、
(6)光ディスクの記録面に対してレーザ光を照射して情報記録を行う光ディスク記録 装置であって、光ディスクに対してレーザ光を照射する光ピックアップと、前記光ディ スクを回転させる回転駆動手段と、前記回転駆動手段によって前記光ディスクが所 定の基準位置から 1回転させられたことを検出する回転検出手段と、一方の面に前 記記録面が他方の面に画像記録層が形成された光ディスク力 当該画像記録層が 前記光ピックアップと対向するようにセットされた場合に、画像情報に対応する可視 画像が前記光ディスクの前記画像記録層に形成されるよう前記光ピックアップを制御 する画像形成制御手段と、前記可視画像を前記光ディスクの前記画像記録層に形 成するために前記光ピックアップによってレーザ光が照射された状態で前記光デイス クが前記所定の基準位置から 1回転させられたことが前記回転検出手段によって検 出された場合に、前記光ピックアップによるレーザ光の照射位置を当該光ディスク記 録装置にセットされた前記光ディスクの所定の径方向に所定量移動させる照射位置 調整手段とを具備しており、前記画像形成制御手段は、前記回転駆動手段によって 回転させられる前記光ディスクの前記画像記録層の前記所定の基準位置から前記 可視画像を形成するために前記光ピックアップにレーザ光を照射させる一方で、当 該レーザ光の照射位置が前記光ディスクの前記所定の基準位置に達するよりも所定 量だけ前方の位置力 前記所定の基準の位置までの領域に対して前記可視画像形 成のためのレーザ光が照射されないよう前記光ピックアップを制御することを特徴とし ている。 [0201] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。このような可視画像形成の際 に、光ディスクを回転させながら、当該光ディスクの基準位置力 レーザ光を照射して 可視画像を形成し、レーザ光照射位置がその基準位置に戻る直前の領域に対して は可視画像形成のためのレーザ光照射を行わないようにしている。したがって、光デ イスクの回転が不安定になる等の何らかの理由でレーザ光照射位置制御が乱れ、基 準位置からレーザ光を照射し続けて光ディスクが 1回転させられ、その照射位置が再 度基準位置を通過する、つまり後に既にレーザ光を照射した位置とに重なる位置に レーザ光の照射位置が移動するといつたことがあった場合にも、その位置に可視画 像形成のためのレーザ光が照射されることを抑制でき、この結果形成される可視画 像の品位が劣化することを防止できる。
[0202] また、別態様の光ディスク記録装置は、
(7)光ディスクの記録面に対してレーザ光を照射して情報記録を行う光ディスク記録 装置であって、光ディスクに対してレーザ光を照射する光ピックアップと、前記光ピッ クアップによる前記光ディスクに対するレーザ光の照射位置を調整する照射位置調 整手段と、当該光ディスク記録装置にセットされた光ディスクの種類を識別するため のディスク識別情報を取得するディスク識別手段と、一方の面に前記記録面が他方 の面に画像記録層が形成された光ディスクが、当該画像記録層が前記光ピックアツ プと対向するようにセットされた場合に、画像情報に対応する可視画像が前記光ディ スクの前記画像記録層に形成されるよう前記光ピックアップおよび前記照射位置調 整手段を制御する手段であって、前記ディスク識別手段によって識別された光デイス クの種類に応じて前記光ピックアップおよび前記照射位置調整手段を制御する画像 形成制御手段とを具備することを特徴として ヽる。
[0203] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。このような可視画像形成の際 に、セットされたディスクの種類に応じた可視画像形成のための制御を行うことができ る。
[0204] また、別態様の光ディスク記録装置は、
(8)光ディスクに対してレーザ光を照射する光ピックアップと、外部から供給される情 報を変調する変調手段と、前記変調手段から供給される情報に応じて前記光ピック アップから照射されるレーザ光を制御するレーザ光制御手段とを備えた光ディスク記 録装置において、一方の面に前記記録面が他方の面に画像記録層が形成された光 ディスクの前記画像記録層に対して可視画像を形成する場合に、外部から供給され る画像情報に対する前記変調手段による変調を禁止する禁止手段と、前記光デイス クの前記画像記録層が前記光ピックアップと対向するようにセットされた場合に、前記 変調手段から供給される変調がなされて ヽな ヽ画像情報に対応する可視画像が前 記光ディスクの前記画像記録層に形成されるよう前記レーザ光制御手段を制御する 画像形成制御手段とを具備することを特徴として ヽる。
[0205] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。このような可視画像形成の際 には、記録面に対して情報を記録する時に記録データに対して変調を施す変調手 段による変調を禁止しているので、画像データが変調されることがない。したがって、 当該画像データに応じた可視画像を形成するために特別のデータ転送構成を設け ることなぐ記録面に対して情報記録をする際のデータ転送構成を併用することがで きる。
[0206] 別態様の光ディスク記録装置は、
(9)光ディスクの記録面に対してレーザ光を照射して情報記録を行う光ディスク記録 装置であって、光ディスクに対してレーザ光を照射する光ピックアップと、前記光ピッ クアップによる前記光ディスクに対するレーザ光の照射位置を調整する照射位置調 整手段と、一方の面に前記記録面が他方の面に画像記録層が形成された光ディスク 力 当該画像記録層が前記光ピックアップと対向するようにセットされた場合に、画像 情報に対応する可視画像が前記光ディスクの前記画像記録層に形成されるよう前記 光ピックアップおよび前記照射位置調整手段を制御する画像形成制御手段とを具備 しており、前記画像形成制御手段は、前記画像情報に示される階調度合いに応じて 前記光ピックアップから照射されるレーザ光を制御することを特徴としている。
[0207] この構成によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。このような可視画像形成の際 に、画像データに示される画像記録層上の各位置 (座標)の階調度に応じたレーザ 光制御を行うことができ、階調表現がなされた可視画像を形成することができる。
[0208] 別態様の光ディスク記録装置は、
(10)光ディスクの記録面に対してレーザ光を照射して情報記録を行う光ディスク記 録装置であって、光ディスクを回転させる回転手段と、前記回転手段により回転する 光ディスクに対し、前記一方の面からレーザ光を照射するとともに、当該光ディスクの 略半径方向に移動可能な光ピックアップと、画像記録層に可視画像を形成する際に 前記光ピックアップから出射されるレーザ光のレベルを調整する手段であって、形成 すべき可視画像を表す画像データに基づ ヽて、前記光ディスクの前記記録層および 前記画像記録層をほとんど変化させない第 1の強度、あるいは、前記記録層をほとん ど変化させな ヽとともに前記画像記録層の発色を変化させる第 2の強度の ヽずれか になるように前記光ピックアップから出射されるレーザ光のレベルを調整するレーザ 光レベル制御手段とを有することを特徴とする。
この装置によれば、上記本発明の光ディスクに対して、従来と同様にして記録層に 対してレーザ光を照射して情報記録をすることができるとともに、画像記録層に対し て可視画像の形成をすることができる。さら〖こ、情報記録も、可視画像の形成も、光 ディスクの同一面力 レーザ光を照射することにより実行することが可能であることか ら、ユーザは光ディスクを裏返して再セットするなどの煩わ 、作業をする必要がな ヽ
[0209] また、本発明の光ディスクの画像記録層への画像形成方法は、光ディスクの記録面 に対してレーザ光を照射して情報記録を行う光ピックアップを有する光ディスク記録 装置を用い、光ディスクにおける前記記録面と反対側の面に形成された画像記録層 に対して可視画像を形成する方法であって、前記光ピックアップによるレーザ光の照 射位置を前記画像記録層に所定の螺旋状もしくは同心円周状の経路に沿って移動 させながら、画像情報に対応する可視画像が前記光ディスクの前記画像記録層に形 成されるよう前記光ピックアップが照射するレーザ光を制御し、当該レーザ光の制御 では、前記光ディスクを複数に分割した扇形部分の各々に属する隣接する所定数( 複数)の前記経路を含む領域を単位領域とし、前記可視画像における当該単位領域 の濃淡が表現されるように当該単位領域に属する前記経路の各々に照射するレー ザ光の照射タイミングを制御することを特徴としている。
[0210] この方法によれば、画像データに応じてレーザ光を光ディスクの画像記録層に照射 することによって、該画像記録層の吸光度変化に伴い反射率が画像様に変化し、画 像データに対応する可視画像を形成することができる。このような可視画像形成の際 に、画像データに示される画像記録層上の各位置 (座標)の階調度に応じたレーザ 光照射タイミング制御を行うことができ、階調表現がなされた可視画像を形成すること ができる。
[0211] A.上記光ディスク記録装置の具体的構成
前記光ディスク記録装置は、光ディスクの記録面に対してレーザ光を照射して情報 を記録する光ディスク記録装置であり、このような記録面に対する情報記録だけでは なぐ記録面と反対側の面に画像記録層が形成された光ディスクの当該画像記録層 にレーザ光を照射することにより画像データに対応する可視画像を形成する機能を 有している。なお、かかる装置では、所定の色素を使用する光ディスクに対しては、 画像記録層のみならず、通常のデジタルデータを記録する記録層に対しても可視画 像を記録できる。
[0212] 一光ディスク記録装置の構成
図 2は光ディスク記録装置の構成を示すブロック図である。同図に示すように、この 光ディスク記録装置 100は、ホストパーソナルコンピュータ(PC) 110に接続されてお り、光ピックアップ 10と、スピンドルモータ 11と、 RF (Radio Frequency)アンプ 12と、 サーボ回路 13と、デコーダ 15と、制御部 16と、エンコーダ 17と、ストラテジ回路 18と 、レーザドライバ 19と、レーザパワー制御回路 20と、周波数発生器 21と、ステツピン グモータ 30と、モータドライバ 31と、モータコントローラ 32と、 PLL (Phase Locked Lo op)回路 33と、 FIFO (First In FirstOut)メモリ 34と、駆動パルス生成部 35と、バッフ ァメモリ 36とを備えている。
[0213] スピンドルモータ 11は、データを記録する対象となる光ディスク Dを回転駆動するモ ータであり、サーボ回路 13によりその回転数が制御される。本実施形態における光 ディスク記録装置 100では、 CAV (Constant Angular Velocity)方式で記録等を実施 するようになっているので、スピンドルモータ 11は制御部 16等からの指示で設定され た一定の角速度で回転するようになって 、る。
[0214] 光ピックアップ 10は、スピンドルモータ 11によって回転させられる光ディスク Dに対 してレーザ光を照射するユニットであり、その構成を図 3に示す。同図に示すように、 光ピックアップ 10はレーザービーム Bを出射するレーザーダイオード 53と、回折格子 58と、レーザービーム Bを光ディスク Dの面に集光する光学系 55と、反射光を受光す る受光素子 56とを備えて 、る。
[0215] 光ピックアップ 10において、レーザーダイオード 53は、レーザドライバ 19 (図 2参照 )から駆動電流が供給されることにより該駆動電流に応じた強度のレーザービーム B を出射する。光ピックアップ 10は、レーザーダイオード 53より出射されたレーザービ ーム Bを回折格子 58により主ビームと先行ビームと後行ビームに分離し、この 3つの レーザービームを偏光ビームスプリッタ 59、コリメータレンズ 60、 1Z4波長板 61、対 物レンズ 62を経て、光ディスク Dの面に集光させる。そして、光ディスク Dの面で反射 された 3つのレーザービームを、再び対物レンズ 62、 1Z4波長板 61、コリメータレン ズ 60を透過させて、偏光ビームスプリッタ 59で反射させ、シリンドリカルレンズ 63を経 て、受光素子 56に入射させるようになつている。受光素子 56は受光した信号を RFァ ンプ 12 (図 2参照)に出力し、該受光信号が RFアンプ 12を介して制御部 16ゃサー ボ回路 13に供給されるようになっている。
[0216] 対物レンズ 62は、フォーカスァクチユエータ 64およびトラッキングァクチユエータ 65 に保持されて、レーザービーム Bの光軸方向および光ディスク Dの径方向に移動でき るようになって!/、る。フォーカスァクチユエータ 64およびトラッキングァクチユエータ 65 の各々は、サーボ回路 13 (図 2参照)から供給されるフォーカスエラー信号およびトラ ッキングエラー信号に応じて対物レンズ 62を光軸方向および径方向に移動させる。 なお、サーボ回路 13は、受光素子 56および RFアンプ 12を介して供給される受光信 号に基づ 、てフォーカスエラー信号およびトラッキングエラー信号を生成し、上記の ように対物レンズ 62を移動させることでフォーカス制御およびトラッキング制御を行う
[0217] また、光ピックアップ 10には、図示しないフロントモ-ターダイオードを有しており、 レーザーダイオード 53がレーザ光を出射しているときに、当該出射光を受光したフロ ントモニタダイオードに電流が生じ、当該電流が光ピックアップ 10から図 2に示すレー ザパワー制御回路 20に供給されるようになっている。
[0218] RFアンプ 12は光ピックアップ 10から供給された EFM (Eight to Fourteen Modulati on)変調された RF信号を増幅し、増幅後の RF信号をサーボ回路 13およびデコーダ 15に RF信号を出力する。デコーダ 15は、再生時には RFアンプ 12から供給される E FM変調された RF信号を EFM復調して再生データを生成する。
[0219] サーボ回路 13には、制御部 16からの指示信号、周波数発生器 21から供給される スピンドルモータ 11の回転数に応じた周波数の FGパルス信号、および RFアンプ 12 力 の RF信号が供給される。サーボ回路 13は、これらの供給される信号に基づいて 、スピンドルモータ 11の回転制御および光ピックアップ 10のフォーカス制御、トラツキ ング制御を行う。光ディスク Dの記録面に情報を記録する時や、光ディスク Dの画像 記録層に可視画像を形成する場合のスピンドルモータ 11の駆動方式としては、光デ イスク Dを角速度一定で駆動する方式(CAV: Constant Angular Velocity)や、一定 の記録線速度となるように光ディスク Dを回転駆動する方式(CLV: Constant Linear Velocity)の 、ずれを用いるようにしてもよく、図 2以降にぉ 、て説明する光ディスク記 録装置 100では、 CAV方式を採用しており、サーボ回路 13はスピンドルモータ 11を 制御部 16によって指示された一定の角速度で回転駆動させる。
[0220] ノッファメモリ 36は、ホスト PC110から供給される、光ディスク Dの記録面に記録す べき情報(以下、記録データと ヽぅ)および光ディスク Dの画像記録層に形成すべき 可視画像に対応した情報 (以下、画像データ)を蓄積する。そして、バッファメモリ 36 に蓄積された記録データをェンコーダ 17に出力され、画像データは制御部 16に出 力される。 [0221] エンコーダ 17は、ノ ッファメモリ 36から供給される記録データを EFM変調し、ストラ テジ回路 18に出力する。ストラテジ回路 18は、エンコーダ 17から供給された EFM信 号に対して時間軸補正処理等を行い、レーザドライバ 19に出力する。
[0222] レーザドライバ 19は、ストラテジ回路 18から供給される記録データに応じて変調さ れた信号と、レーザパワー制御回路 20の制御にしたがって光ピックアップ 10のレー ザダイオード 53 (図 3参照)を駆動する。
[0223] レーザパワー制御回路 20は、光ピックアップ 10のレーザダイオード 53 (図 3参照) 力も照射されるレーザパワーを制御するものである。具体的には、レーザパワー制御 回路 20は、制御部 16によって指示される最適なレーザパワーの目標値と一致する 値のレーザ光が光ピックアップ 10から照射されるようにレーザドライバ 19を制御する 。ここで行われるレーザパワー制御回路 20によるレーザパワー制御は、光ピックアツ プ 10のフロントモニタダイオードから供給される電流値を用い、目標となる強度のレ 一ザ光が光ピックアップ 10から照射されるように制御するフィードバック制御である。
[0224] FIFOメモリ 34には、ホスト PC110から供給されバッファメモリ 36に蓄積された画像 データが制御部 16を介して供給され順次蓄積される。ここで、 FIFOメモリ 34に蓄積 される画像データ、すなわちホスト PC110から当該光ディスク記録装置 100に供給さ れる画像データは以下のような情報を含んでいる。この画像データは、円盤状の光 ディスク Dの面上に可視画像を形成するためのデータであり、図 4に示すように、光デ イスク Dの中心 Oを中心とした多数の同心円上の n個の各座標 (図中黒点で示す)毎 にその階調度 (濃淡)を示す情報が記述されている。当該画像データは、これらの各 座標の階調度を示す情報が最内周側の円に属する座標点 Pl l、 P12…… Pln、そ の 1つ外周側の円に属する座標 P21、 P22…… P2n、さらにその 1つ外周側の円に 属する座標といった順序で最外周の円の座標 Pmnまでの各々座標点の階調度を示 す情報が記述されたデータであり、 FIFOメモリ 34にはこのような極座標上の各座標 の階調度を示す情報が上記のような順序で供給されることになる。なお、図 4は各座 標の位置関係を明瞭に示すために模式的に示す図であり、実際の各座標は図示し たものよりも密に配置されることになる。また、ホスト PC110において、一般的に使用 されるビットマップ形式等で光ディスク Dの感光面に形成する画像データを作成した 場合には、当該ビットマップデータを上記のような極座標形式のデータに変換し、変 換後の画像データをホスト PC110から光ディスク記録装置 100に送信するようにす ればよい。
[0225] 上記のように供給される画像データに基づ!/、て、光ディスク Dの画像記録層に対し て可視画像を形成する際、 FIFOメモリ 34には、 PLL回路 33から画像記録用のクロ ック信号が供給されるようになっている。 FIFOメモリ 34は、この画像記録用のクロック 信号のクロックパルスが供給される毎に、最も先に蓄積された一つの座標の階調度を 示す情報を駆動パルス生成部 35に出力するようになっている。
[0226] 駆動ノ ルス生成部 35は、光ピックアップ 10から照射するレーザ光の照射タイミング 等を制御する駆動パルスを生成する。ここで、駆動パルス生成部 35は、 FIFOメモリ 3 4から供給される各座標毎の階調度を示す情報に応じたパルス幅の駆動パルスを生 成する。例えば、ある座標の階調度が比較的大きい場合 (濃度が大きい場合)には、 図 5上段に示すようにライトレベル (第 2の強度)のパルス幅を大きくした駆動パルスを 生成し、一方階調度が比較的小さい座標については図 5下段に示すようにライトレべ ルのパルス幅を小さくした駆動パルスを生成する。ここで、ライトレベルとは、そのレべ ルのレーザパワーを光ディスク Dの画像記録層に照射した際に画像記録層に変化が 生じ、反射率が明らかに変化するパワーレベルであり、上記のような駆動パルスがレ 一ザドライバ 19に供給された場合、そのパルス幅に応じた時間だけライトレベルのレ 一ザ光が光ピックアップ 10から照射される。したがって、階調度が大きい場合にはよ り長くライトレベルのレーザ光が照射され、光ディスク Dの画像記録層の単位領域中 のより大きな領域において反射率が変化することになり、この結果ユーザ等はこの領 域が濃度の濃い領域であると視覚的に認識することになる。本実施形態では、このよ うに単位領域 (単位長さ)あたりの反射率変化させる領域の長さを可変することにより 、画像データに示される階調度を表現するようにしているのである。なお、サーボレべ ル (第 1の強度)とは、そのレベルのレーザパワーを光ディスク Dの画像記録層に照射 した際に画像記録層がほとんど変化しないパワーレベルであり、反射率を変化させる 必要がない領域に対してはライトレベルのレーザ光を照射せずに当該サーボレベル のレーザ光を照射すればょ 、。 [0227] また、駆動パルス生成部 35は、上記のような各座標毎の階調度を示す情報にした 力 た駆動パルスを生成するとともに、レーザパワー制御回路 20によるレーザパワー 制御や、サーボ回路 13によるフォーカス制御およびトラッキング制御を実施するため に必要がある場合には、各々上記階調度を示す情報に拘わらず、非常に短い期間 のライトレベルのパルスを挿入したり、サーボレベルのパルスを挿入する。例えば、図 6上段に示すように、画像データ中のある座標の階調度にしたがって可視画像を表 現するために、時間 T1の期間ライトレベルのレーザ光を照射する必要がある場合で あって、該時間 T1がレーザパワーを制御するための所定のサーボ周期 STよりも長 い場合には、ライトレベルのパルスを生成した時点カゝらサーボ周期 STが経過した時 点で非常に短い時間 tのサーボ用オフパルス(SSP1)を挿入する。一方、図 6下段に 示すように、画像データ中のある座標の階調度にしたがって可視画像を表現するた めにサーボ周期 ST以上の期間サーボレベルのレーザ光を照射する必要がある場合 には、サーボレベルのパルスが生成されて力 サーボ周期 ST経過後にサーボ用ォ ンパルス (SSP2)を挿入する。
[0228] 上述したようにレーザパワー制御回路 20によるレーザパワー制御は、光ピックアツ プ 10のレーザーダイオード 53 (図 3参照)力も照射されるレーザ光を受光したフロント モニターダイオードから供給される電流(照射レーザ光の強度に応じた値の電流)に 基づいて実施されることになる。より具体的には、図 7に示すように、レーザパワー制 御回路 20は、上記のようなフロントモ-ターダイオード 53aによって受光される照射レ 一ザ光の強度に応じた値をサンプルホールドする(S201、 S202)。そして、ライトレ ベルを目標値として照射しているとき、すなわちライトレベルの駆動パルス(図 5,図 6 参照)が生成されているときにサンプルホールドした結果に基づいて、制御部 16から 供給されるライトレベル目標値のレーザ光が照射されるようレーザパワー制御を行う( S203)。また、サーボレベルを目標値として照射しているとき、すなわちサーボレべ ルの駆動パルス(図 5,図 6参照)が生成されているときにサンプルホールドした結果 に基づいて、制御部 16から供給される目標サーボレベル値のレーザ光が照射される ようレーザパワー制御を行う(S204)。したがって、ライトレベルもしくはサーボレベル のパルスが所定のサーボ周期 ST (サンプル周期)より長い時間継続して出力されな い場合には、画像データの内容に拘わらず上記のようにサーボ用オフパルス SSP1 、サーボ用オンパルス SSP2を強制的に挿入し、上記のような各々のレベル毎にレー ザパワー制御ができるようにしているのである。
[0229] また、上述したようにサーボ用オフパルス SSP1を挿入するのは、レーザパワーを制 御するためだけではなぐサーボ回路 13によるフォーカス制御やトラッキング制御を 行うためにも実施されている。すなわち、トラッキング制御およびフォーカス制御は、 光ピックアップ 10の受光素子 56 (図 3参照)によって受光された RF信号、つまりレー ザ一ダイオード 53が出射したレーザ光の光ディスク Dからの戻り光 (反射光)に基づ いて行われる。ここで、図 8にレーザ光を照射した時に受光素子 56によって受光され る信号の一例を示す。同図に示すように、ライトレベルのレーザ光を照射した時の反 射光は、レーザ光立ち上がり時のピーク部分 Kl、その後レベルが一定になる肩部分 Κ2の要素を含んでおり、図中斜線で示す部分が画像記録層の画像形成のために 用いられたエネルギーであると考えられる。そして、このような画像記録層の画像形 成に用いられるエネルギーは常に安定した値となるとは限らず、種々の状況に応じて 変動することが考えられる。したがって、図中斜線部分の形状はその都度変動するこ とが考えられ、つまりライトレベルのレーザ光の反射光はノイズ等が多く安定した反射 光が得られるとは限らず、この反射光を用いると、正確なフォーカス制御およびトラッ キング制御の妨げとなってしまうおそれがある。したがって、上述したようにライトレべ ルのレーザ光が継続して長時間照射された場合には、サーボレベルのレーザ光の反 射光を得ることができず、正確なフォーカス制御およびトラッキング制御が行えなくな つてしまう。
[0230] そこで、上述したようにサーボ用オフパルス SSP1を挿入することにより、サーボレべ ルのレーザ光の反射光を周期的に取得できるようにし、該取得した反射光に基づい てフォーカス制御およびトラッキング制御を実行して 、るのである。光ディスク Dの画 像記録層に可視画像を形成する際には、記録面に対して記録する際と異なり、予め 形成されたプリグループ (案内溝)等に沿ってトレースすると 、つた必要がな 、。した がって、本実施形態では、トラッキング制御の目標値は固定値 (一定のオフセット電 圧を設定しておく)としている。なお、このような制御方法は、画像記録層に画像情報 を形成する場合のみならず、記録面に画像情報を形成する場合にも適用できる。す なわち、レーザ光を照射したときに反射率だけでなく発色も変化する材質を記録面( 記録層)に用いれば、画像記録層と同様、記録面にも画像を形成させることが可能で ある。このように記録面に可視画像を形成させると、可視画像を形成した部分には当 然ながら本来のデータ記録はできなくなるので、データ記録をする領域と可視画像を 形成させる領域とを予め分けておくのが好ましい。
[0231] なお、上記のようにサーボ用オフパルス SSP1やサーボ用オフパルス SSP2を挿入 する時間は、レーザパワー制御、トラッキング制御およびフォーカス制御といった各種 サーボの実行に支障をきたさない範囲で最小の時間とすることが好ましぐ挿入時間 を非常に短くすることで、形成される可視画像にほとんど影響を与えることなぐ上記 のような各種サーボを行うことができる。
[0232] 図 2に戻り、 PLL回路 (信号出力手段) 33は、周波数発生器 21から供給されるスピ ンドルモータ 11の回転速度に応じた周波数の FGパルス信号を遁倍し、後述する可 視画像形成のために用いられるクロック信号を出力する。周波数発生器 21は、スピ ンドルモータ 11のモータドライバにより得られる逆起電流を利用してスピンドル回転 数に応じた周波数の FGパルス信号を出力する。例えば、図 9上段に示すように、周 波数発生器 21がスピンドルモータ 11が 1回転、すなわち光ディスク Dが 1回転して ヽ る間に 8個の FGパルスを生成するものである場合に、図 9下段に示すように、 PLL回 路 33は当該 FGパルスを遁倍したクロック信号 (例えば FGパルス信号 5倍の周波数、 光ディスク Dが 1回転中に Hレベルのパルス力 0個)を出力する、つまりスピンドルモ ータ 11によって回転させられる光ディスク Dの回転速度に応じた周波数のクロック信 号を出力する。このように FGパルス信号を遁倍したクロック信号力PLL回路 33から F IFOメモリ 34に出力され、該クロック信号に 1周期毎、つまりある一定角度分ディスク Dが回転する毎に 1つの座標の階調度を示すデータが FIFOメモリ 34から駆動パル ス生成部 35に出力されるのである。なお、上記のように PLL回路 33を用いて FGパ ルスを遁倍したクロック信号を生成するようにしてもょ 、が、スピンドルモータ 11として 、回転駆動能力が十分に安定しているモータを用いた場合には、 PLL回路 33に代 えて水晶発振器を設け、上記のような FGパルスを遁倍したクロック信号、すなわち光 ディスク Dの回転速度に応じた周波数のクロック信号を生成するようにしてもよい。
[0233] ステッピングモータ 30は、光ピックアップ 10を当該光ディスク Dにセットされた光ディ スク Dの径方向に移動させるためのモータである。モータドライバ 31は、モータコント ローラ 32から供給されるパルス信号に応じた量だけステッピングモータ 30を回転駆 動する。モータコントローラ 32は、制御部 16から指示される光ピックアップ 10の径方 向への移動方向および移動量を含む移動開始指示にしたがって、移動量や移動方 向に応じたパルス信号を生成し、モータドライバ 31に出力する。ステッピングモータ 3 0が光ピックアップ 10を光ディスク Dの径方向に移動させること、および光ディスク Dを スピンドルモータ 11が光ディスク Dを回転させることにより、光ピックアップ 10のレーザ 光照射位置を光ディスク Dの様々な位置に移動させることができ、これらの構成要素 が照射位置調整手段を構成して 、るのである。
[0234] 制御部 16は、 CPU (Central Processing Unit)、 ROM (Read Only Memory)および RAM (Random Access Memory)等から構成されており、 ROMに格納されたプログラ ムにしたがって当該光ディスク記録装置 100の装置各部を制御し、光ディスク Dの記 録面に対する記録処理および光ディスク Dの画像記録層に対する画像形成処理を 中枢的に制御するように構成されている。以上説明したのが本実施形態に係る光デ イスク記録装置 100の構成である。
[0235] B.光ディスク記録装置の動作
次に、上記構成の光ディスク記録装置 100の動作について説明する。上述したよう にこの光ディスク記録装置 100は、光ディスク Dの記録面に対してホスト PC110から 供給された音楽データ等の情報を記録することが可能であるとともに、光ディスク Dの 画像記録層に対してホスト PC110から供給される画像データに対応した可視画像を 形成することができるように構成されている。以下、情報記録および可視画像形成と いった処理を行うことが可能な光ディスク記録装置 100の動作について図 10および 図 11を参照しながら説明する。
[0236] まず、当該光ディスク記録装置 100に光ディスク Dがセットされると、制御部 16は光 ピックアップ 10等を制御し、セットされた光ディスク Dの光ピックアップ 10と対向する面 がどのようなフォーマットの光ディスクであるかを検出する。例えば、 DVD— Rの場合 は、ランドプリピット信号や、プリレコード信号、 DVD+Rの場合は、 ADIP (Address i n Pregroove)の有無を検出する。これらの情報が記録されていない場合には光ディ スクとして認識されない。
[0237] ここで、セットされた光ディスク Dから、例えば、 DVD— Rの場合は、ランドプリピット 信号やプリコード信号、 DVD+Rの場合は ADIPが検出された場合には、記録面が 光ピックアップ 10と対向するように光ディスク Dがセットされていると判断し、制御部 1 6は記録面に対してホスト PC 110から供給される記録データを記録するための制御 を行う(ステップ Sa2)。ここで行われる記録データを記録するための制御は、従来の 光ディスク記録装置 (DVD— Rや DVD+Rドライブ装置)と同様であるため、その説 明を省略する。
[0238] 一方、セットされた光ディスク D力 描画可能な光ディスクであることを示すプリピット 信号が検出された場合には、画像記録層が光ピックアップ 10と対向するように光ディ スク Dがセットされていると判断し、制御部 16はセットされた光ディスク Dのディスク ID を取得することができる力否かを判断する (ステップ Sa3)。なお、光ディスク Dのディ スク IDは、プリピット信号の中に搭載することができる。また、例えば図 12に示すよう に、ディスク IDをコード化した情報に対応する可視画像を光ディスク Dの画像記録層 側の最外周部分の円周に沿って記述しておく。図 12では、図示のように、最外周部 分の円周に沿って上記コードに応じた長さの反射領域 301aと非反射領域 301bとを 形成することによりディスク IDを光ディスク Dの画像記録層に記述して 、る。制御部 1 6は光ディスク Dの最外周の円周に沿って光ピックアップ 10のレーザ光の照射位置を トレースすることにより、その反射光力もディスク IDを取得する。
[0239] したがって、画像記録層の最外周部分に上記のようなディスク IDに対応する反射 領域 301aおよび非反射領域 301bが形成されていない場合には、当該光ディスク D は画像記録層を有しな 、一般的な光ディスク (CD—R、 DVD—R等)であると判別 することができる。このようにディスク IDを取得できない場合は、制御部 16は可視画 像の形成が不可能な光ディスク Dであると判断し (ステップ Sa4)、その旨をユーザに 通知等するための処理を行う。
[0240] 一方、光ディスク Dからディスク IDを取得することができた場合には、ホスト PC110 から画像データを含む画像形成指示があるまで待機し (ステップ Sa5)、画像形成指 示があった場合には制御部 16は光ディスク Dの画像記録層に可視画像を形成する ための初期化制御を行う(ステップ Sa6)。より具体的には、制御部 16は、所定の角 速度でスピンドルモータ 11が回転させられるようサーボ回路 13を制御したり、光ピッ クアップ 10を光ディスク Dの径方向の最内周側の初期位置に移動させるための指示 をモータコントローラ 32に送出し、ステッピングモータ 30を駆動させたりする。
[0241] また、画像形成のための初期化制御において制御部 16は、記録面に対して情報 記録を行う時よりも、大き 、ビームスポット径のレーザ光が光ディスク Dの画像記録層 に照射されるようなフォーカス制御の目標値をサーボ回路 13に対して指示することも できる。
[0242] 上記のような目標値を指示した際のフォーカス制御内容をより具体的に説明すると 、次の通りである。上述したようにサーボ回路 13によるフォーカス制御は、光ピックァ ップ 10の受光素子 56から出力される信号に基づいて行われる。光ディスク Dの記録 面【こ対する†青報記録時【こ ίま、図 13【こ示す受光素子 56の 4つのエリ 56a, 56b, 56 c, 56dの中心に円形の戻り光(図の A)が受光されるようサーボ回路 13がフォーカス ァクチユエータ 64 (図 3参照)を駆動する。すなわち、エリア 56a, 56b, 56c, 56dの 各々の受光量を a, b, c, dとした場合に、(a+c)— (b + d) =0となるようにフォーカス ァクチユエータ 64を駆動するのである。
[0243] 一方、光ディスク Dの画像記録層に対して可視画像を形成する場合には、上述した ように記録面に対する情報記録時よりも径の大き 、レーザ光が画像記録層に照射さ れるようフォーカス制御が行われる。図 13に示す受光素子 56に受光される戻り光の 形状が楕円形状(図の Bや C)である場合には、そのレーザ光のスポットサイズは上記 円形 Aの場合よりも大きいので、サーボ回路 13はこのような楕円形状の戻り光が受光 素子 56に受光されるようフォーカスァクチユエータ 64を駆動する。すなわち、(a + c) - (b + d) = α ( αは 0ではない)を満たすようにフォーカスァクチユエータ 64を駆動 するのである。したがって、本実施形態において、制御部 16、サーボ回路 13はビー ムスポット制御手段を構成して 、る。
[0244] 以上のように上述した可視画像形成のための初期化制御において制御部 16が α ( 0ではない)をサーボ回路 13に指示設定することで、記録面に対する情報記録時より も大き 、スポット径のレーザ光を光ディスク Dの画像記録層に照射することができる。 このように光ディスク Dの画像記録層に対する可視画像を形成するときに、記録面に 対する情報記録時よりも大きいスポット径のレーザ光を照射することで以下のような効 果を得ることができる。すなわち、本実施形態では、可視画像を形成する際にも、記 録面に情報記録を行う際と同様、光ディスク Dを回転させながらレーザ光を照射する こととしている。したがって、レーザ光のビームスポット径を大きくすることで、より短時 間で光ディスク Dの画像記録層の全領域に対して可視画像を形成することができる。 この理由について、図 14を参照しながら説明する。同図に模式的に示すように、照 射するレーザ光のビームスポット径 BSが大き 、場合と小さ!/、場合とを比較すると、光 ディスク Dを 1回転させたときに画像形成の対象となる領域の面積がビームスポット径 BSが大きい時の方が大きくなる。このため、ビームスポット径 BSが小さい場合には全 領域を画像形成の対象とするためにより多く光ディスク Dを回転させなければならず( 図示の例では、大きい場合は 4回転、小さい場合は 6回転)、画像形成のために多く の時間を要してしまう。以上のような理由から、この光ディスク記録装置 100では、可 視画像を形成する際に情報記録時よりも大きいスポット径のレーザ光が照射されるよ うにしているのである。
[0245] また、画像形成のための初期化制御において制御部 16は、取得したディスク IDに 応じたライトレベルおよびサーボレベルのレーザ光が光ピックアップ 10から照射され るよう、各々のレベルの目標値をレーザパワー制御回路 20に指示する。すなわち、 制御部 16の ROMには、複数種類のディスク ID毎に、ライトレベルおよびサーボレべ ルとして設定すべき目標値が記憶されており、制御部 16は取得されたディスク IDに 対応するライトレベルおよびサーボレベルの目標値を読み出し、これらの目標値をレ 一ザパワー制御回路 20に指示するのである。
[0246] このようにディスク IDに応じてパワーの目標値を設定するのは以下のような理由に 基づくものである。すなわち、光ディスク Dの種類によって画像記録層の色素の特性 が異なることが考えられ、特性が異なる場合、どの程度のパワーのレーザ光を照射す れば反射率が変化するといつた特性も当然変化することになる。このため、ある光デ イスク Dの画像記録層に対してはあるライトレベルのレーザ光を照射することにより、 その照射領域の反射率を十分変化させることができた場合にも、他の光ディスク Dの 画像記録層に対して同じライトレベルのレーザ光を照射させた場合にその照射領域 の反射率を変化させることができるとは限らない。したがって、本実施形態では、上記 のように種々のディスク ID毎に対応する光ディスク毎に、予め正確な画像形成が行え るようなライトレベルおよびサーボレベルの目標値を実験により求めておく。そして、 求めた目標値を各々のディスク IDに対応付けて ROMに格納しておくことにより、上 記のような種々の光ディスク Dの画像記録層の特性に応じて最適なパワー制御を行う ことができるようにしている。
[0247] 以上説明したような初期化制御が制御部 16によって行われると、実際に光ディスク Dの画像記録層に可視画像を形成するための処理が行われることになる。図 11に示 すように、まず制御部 16は、ホスト PC110からバッファメモリ 36を介して供給された 画像データを FIFOメモリ 34に転送する (ステップ Sa7)。そして、制御部 16は、周波 数発生器 21から供給される FGパルス信号から、スピンドルモータ 11によって回転さ せられる光ディスク Dの所定の基準位置力 光ピックアップ 10のレーザ光照射位置を 通過した力否かを判断する (ステップ Sa8)。
[0248] ここで、図 15および図 16を参照しながら所定の基準位置、およびレーザ光照射位 置がその位置を通過したか否かの検出方法にっ 、て説明する。図 15に示すように、 周波数発生器 21は、スピンドルモータ 11が 1回転する間、つまり光ディスク Dが 1回 転する間に所定個(図示の例では 8個)の FGパルスを出力する。したがって、制御部 16は、周波数発生器 21から供給される FGパルスのいずれ力 1つを基準パルスと立 ち上がりタイミングを同期させて基準位置検出用ノ ルスを出力し、その後は基準位置 検出パルスから 1回転分の個数目(図示の例では 8個目)のパルスの立ち上がりタイミ ングと同期させて基準位置検出用パルスを出力する基準位置検出用パルス信号を 生成する。このような基準位置検出用パルスを生成することで、当該パルスが生成さ れた時が光ディスク Dの基準位置を光ピックアップ 10のレーザ光照射位置が通過し たタイミングであると検出できるのである。すなわち、図 16に示すように、最初の基準 位置検出用パルスを生成したタイミングにおける光ピックアップ 10のレーザ光照射位 置が図中太線 (光ピックアップ 10は径方向に移動可能であるため、照射位置が取り 得る位置は線で表される)で示す位置であるとすると、その 1回転後に生成される基 準位置検出用パルスの生成した時にも当然光ピックアップ 10のレーザ光照射位置は 図中太線で示す位置にある。このように最初に基準位置検出用パルスを生成したタ イミングにレーザ光の照射位置が属する径方向の線を基準位置となり、制御部 16は 、上記のように光ディスク Dが 1回転する毎に生成される基準位置検出用パルス信号 に基づ!/、て、レーザ光の照射位置が光ディスク Dの基準位置を通過したことを検出 することができるのである。なお、図中一点鎖線は、ある基準位置検出用パルスが生 成されてから、次の基準位置検出用パルスが生成されるまでにレーザ光の照射位置 の移動軌跡の一例を示す。
[0249] ホスト PC110から画像形成指示を受けた後、以上のような手法で光ディスク Dの基 準位置がレーザ光の照射位置を通過したことを検出すると、制御部 16は、回転数を 示す変数 Rに 1をインクリメントした後 (ステップ Sa9)、 Rが奇数であるか否かを判別す る(ステップ SalO)。
[0250] ここで、画像形成指示を受けた後、最初に基準位置を通過したことを検出した際に は、 R=0 (初期値) + 1 = 1であり、この場合、ステップ SalOにおいて Rは奇数である と判別されることになる。このように Rが奇数であると判別した場合、制御部 16は、光 ピックアップ 10から光ディスク Dの画像記録層にレーザ光を照射して可視画像を形 成するための制御を行う(ステップ Sal l)。より具体的には、制御部 16は、上記の基 準位置検出用パルスを受け取った時点から、 PLL回路 33から出力されるクロック信 号に同期して FIFOメモリ 34から画像データを順次出力するよう各部を制御する。こ の制御により、図 17に示すように、 FIFOメモリ 34は、 PLL回路 33からクロックパルス が供給される毎に、 1つの座標の階調度を示す情報を駆動パルス生成部 35に出力 し、駆動ノ ルス生成部 35は当該情報に示される階調度にしたがったパルス幅の駆 動パルスを生成してレーザドライバ 19に出力する。この結果、光ピックアップ 10は、 各座標の階調度に応じた時間だけライトレベルでレーザ光を光ディスク Dの画像記 録層に照射し、その照射領域の反射率が変化することにより、図 18に示すような可視 画像を形成することができる。 [0251] 同図に模式的に示すように、光ディスク Dはスピンドルモータ 11によって回転させら れているので、光ピックアップ 10のレーザ光の照射位置はクロック信号の 1周期(パ ルスの立ち上がりタイミング力 次のパルスの立ち上がりタイミングまでの期間)中に 図中 Cで示す領域分だけ円周に沿って移動することになる。この領域 Cをレーザ光照 射位置が通過する間にライトレベルでレーザ光を照射すべき時間を上記のように階 調度に応じて変化させることで、図示のように領域 C毎に異なる階調度に応じて異な る面積の反射率を変化させることができる。このように各座標の階調度に応じて各々 の領域 Cを通過するときのライトレベルのレーザ光の照射時間を制御することにより、 画像データに応じた可視画像を光ディスク Dの画像記録層に形成することができるの である。
[0252] 以上のように画像データに応じて制御されるレーザ光照射によって可視画像の形 成を実行するための制御を実行すると、制御部 16の処理はステップ Sa7に戻り、バッ ファメモリ 36から供給された画像データを FIFOメモリ 34に転送する。そして、光ディ スク Dの基準位置を光ピックアップ 10のレーザ光照射位置が通過した力否かを検出 し、基準位置を通過したことが検出された場合、 Rに 1をインクリメントする。この結果、 Rが偶数となった場合には、制御部 16は上記のようなレーザ光照射制御による可視 画像形成を停止させるよう装置各部を制御する (ステップ Sal2)。より具体的には、 F IFOメモリ 34に対して、 PLL回路 33から供給されるクロック信号に同期して各座標の 階調度を示す情報を駆動パルス生成部 35に出力しないよう制御する。つまり、制御 部 16は、光ディスク Dの画像記録層に対してライトレベルのレーザ光を照射して可視 画像を形成した後、次に光ディスク Dが 1回転して ヽる間は画像記録層の反射率を 変化させるためのレーザ光の照射を行わな 、ように制御して 、るのである。
[0253] このように可視画像形成のためのレーザ光照射を停止させると、制御部 16は、モー タコントローラ 32に対して所定量だけ光ピックアップ 10を径方向の外周側に移動させ るよう指示し (ステップ Sal3)、該指示に応じてモータコントローラ 32がモータドライバ 31を介してステッピングモータ 30を駆動し、これにより光ピックアップ 10が所定量だ け外周側に移動させられる。
[0254] ここで、光ピックアップ 10を光ディスク Dの径方向に移動させる所定量は、上述した ように光ピックアップ 10から照射されるビームスポット径 BS (図 14参照)に応じて適宜 決定すればよい。すなわち、円盤状の光ディスク Dの画像記録層に可視画像を形成 する際には、光ピックアップ 10のレーザ光照射位置を光ディスク Dの面上ほぼ隙間な く移動させることが、より高品位の画像形成を実現するために必要となる。したがって 、上記のような径方向への光ピックアップ 10の単位移動量を、光ディスク Dに対する 照射レーザ光のビームスポット径 BSとほぼ同じ長さとすれば、光ディスク Dの面上に ほぼ隙間なくレーザ光を照射することができ、より高品位な画像形成が可能となる。な お、画像記録層の性質等の種々の要因によって照射したビームスポット径よりも大き い領域が発色するケースもあり、このようなケースでは、その発色領域の幅を考慮し、 隣り合う発色領域が重ならな 、よう単位移動量を決めるようにすればょ 、。本実施形 態では、ビームスポット径 BSを記録面に対する記録時より大きくして 、るので (例えば 、 20 m程度)、制御部 16は、このビームスポット径 BSとほぼ同じ長さ分だけ光ピッ クアップ 10を径方向に移動させるようモータコントローラ 32を制御し、ステッピングモ ータ 30を駆動させている。なお、近年のステッピングモータ 30は、 ステップ技術を 利用することで、 10 m単位でその移動量を制御することが可能であり、上記のよう にステッピングモータ 30を用いて光ピックアップ 10を 20 μ m単位で径方向に移動さ せることは十分に実現可能である。
上記のように光ピックアップ 10を径方向に所定量だけ移動させる制御を行うと、制 御部 16は、 目標となるレーザ光のライトレベル値を変更するべぐライトレベルでレー ザ光を照射する際に目標とすべき変更後のライトレベル値をレーザパワー制御回路 20に対して指示する (ステップ Sal4)。本実施形態では、可視画像を形成する際の 方式として光ディスク Dを角速度を一定に維持して回転させながらレーザ光を照射す る CAV方式を採用しており、上記のように光ピックアップ 10が外周側に移動させられ ると、線速度が大きくなる。したがって、レーザ光をこのように光ピックアップ 10を径方 向(外周側)に移動させた時には、上記のようにライトレベルの目標値をその時点まで よりも大きくなるように変更し、これにより線速度が変化しても光ディスク Dの画像記録 層の反射率が十分に変化できる強度のレーザパワーを照射できるようにしているので ある。 [0256] 以上のように光ピックアップ 10の径方向への移動制御およびライトレベルの目標値 を変更する制御を実行すると、制御部 16は可視画像形成のために未処理の画像デ ータ、つまり駆動パルス生成部 35に供給されていない画像データがある力否かを判 別し、当該画像データがない場合には処理を終了する。
[0257] 一方、モータコントローラ 32に供給されていない未処理の画像データがある場合に は、ステップ Sa7に戻り、可視画像形成のための処理を続行する。すなわち、制御部 16から FIFOメモリ 34に画像データを転送し (ステップ Sa7)、レーザ光の照射位置が 光ディスク Dの基準位置を通過した力否かを判別する (ステップ Sa8)。そして、基準 位置を通過した際には、回転数を示す変数 Rに 1をインクリメントし (ステップ Sa9)、ィ ンクリメント後の Rが奇数である力否かを判別する(ステップ SalO)。ここで、 Rが奇数 である場合には、制御部 16は上記のような可視画像を形成するためのレーザ光照射 がなされるよう装置各部を制御し、 Rが偶数である場合には可視画像を形成するため のレーザ光照射を停止し (サーボレベルのレーザ光は照射する)、上記のような光ピ ックアップ 10の径方向への移動制御や、ライトレベルの目標値変更といった制御を 行う。すなわち、制御部 16は、ある周回中に光ディスク Dに対して画像形成のための レーザ光照射 (ライトレベルを含む)を行った場合、その次の周回中には画像形成の ためのレーザ光照射が行われないよう制御し、その周回中に光ピックアップ 10の径 方向への移動制御等を実施するようにして 、る。このように画像形成を行わな 、周回 中に光ピックアップ 10を移動させる制御やライトレベル目標値の変更制御等を実施 することで、当該制御に伴って照射位置や照射されるレーザ光のパワー値等が変動 している間に画像形成されることがなぐ照射位置やレーザ光の強度が安定してから 画像形成のためのレーザ光照射を実行することができる。したがって、上記のような 光ピックアップ 10の径方向の移動制御等に起因して形成される可視画像の品位が 低下してしまうことを抑制できる。
[0258] 以上説明したのが、光ディスク記録装置 100の主要な動作であり、光ディスク記録 装置 100によれば、新たに印刷手段等を搭載することなぐ記録面に対して情報記 録を行うために用いられる光ピックアップ 10等の装置各部を可能な限り利用し、画像 記録層が形成された光ディスク Dの当該画像記録層に対してレーザ光を照射して画 像データに対応した可視画像を形成することができる。
[0259] また、本実施形態では、スピンドルモータ 11の回転に応じて生成される FGパルス を用いて生成したクロック信号、すなわち光ディスク Dの回転量に応じて生成されるク ロック信号に基づ 、てレーザ光照射タイミングを制御して 、るので、光ディスク D側か ら位置情報等を取得することなぐ光ディスク記録装置 100においてレーザ光照射位 置を把握することができる。したがって、光ディスク記録装置 100によれば、画像記録 層にプリグループ (案内溝)を形成すると ヽつた特別な加工等を施した光ディスク Dを 用いなくてはならな!、と 、つた制限はなぐプリグループや位置情報等が予め形成さ れて ヽな ヽ画像記録層に対しても、画像データに対応する可視画像を形成すること ができる。
[0260] C.変形例
なお、本発明は、上述した形態に限定されるものではなぐ以下に例示するような種 々の変形が可能である。
[0261] (変形例 1)
上述した実施形態では、ホスト PC110から供給される可視画像に対応した画像デ ータに含まれる各座標毎の階調度に応じて、レーザ光の照射時間を制御することに より光ディスク Dの画像記録層に形成される可視画像の濃淡を表現するようにして!/ヽ たが、各座標毎の階調度を示す情報にしたがって照射するレーザパワーのライトレべ ルを変更し、可視画像の濃淡を表現するようにしてもよい。例えば、図 19に示すよう に、光ディスク Dの画像記録層が加えられるエネルギーの量に応じて反射率変化の 度合いが緩やかに変化する特性を有しているものであれば、エネルギー El、 E2、 E 3といったように異なるエネルギーを加えることにより、画像記録層の反射率変化の度 合いも Dl, D2, D3といったように変化することになる。したがって、上記のような特 性を有する画像記録層が形成された光ディスク Dに対しては、画像データに示される 各座標毎の階調度に応じて照射するレーザ光のライトレベル値を変更することにより 、光ディスク Dにおける各々座標位置を、その階調度に応じて変化させることができ、 これにより濃淡を表現することができる。
[0262] また、上記のようにライトレベル値を階調度に応じて変更する方法以外にも、以下の ような隣接する複数の座標を階調度を表現するための 1つの単位領域として捉え、当 該単位領域に含まれる複数の各座標に対するレーザ光の照射時間を違いに関連付 けて制御することで、光ディスク Dの画像記録層に形成される可視画像の濃淡を表現 するようにしてもよい。より具体的には、図 20に模式的に示すように、光ディスク記録 装置 100では、光ピックアップ 10のレーザ光照射位置を図示のような円周経路 TR( 図中一点鎖線)に沿って複数周相対移動させ、その移動中に照射するレーザ光のパ ヮー値を画像データに応じてライトレベルとサーボレベルとに適宜切り換えることによ り可視画像形成が実施される。
[0263] この変形例では、光ディスク Dを複数に分割した扇形部分の各々に属する隣接する 所定数(図示の例では、 3つ)の円周経路 TRを含む扇型の領域を単位領域 TA (図 中太線で示す)とし、可視画像における当該単位領域 TA毎に濃淡が表現されるよう に当該単位領域 TAに属する 3つの円周経路 TRの各々に照射するレーザ光の照射 タイミングを制御する。
[0264] 例えば、ある単位領域 TAの濃度を非常に薄く表現した画像 (濃度が 0ではな ヽ)を 形成する場合には、図 21上段に示すように、当該単位領域 TAに属する 3つの円周 経路 TRを全ての反射率を変化 (変色部分は図中黒色で示す)させるようにレーザ光 の照射時間を制御する、つまり図 21下段に示すような駆動ノルスが駆動パルス生成 部 35によって生成されるような画像データを作成しておき、当該単位領域 TAに属す る 3つの円周経路 TRをレーザ光照射位置が通過して!/、る時間中、ライトレベルのレ 一ザ光を照射し続けると 、つた制御を行う。
[0265] 一方、単位領域 TAの濃度を濃く表現した画像を形成する場合には、図 22上段に 示すように、当該単位領域 TAに属する 3つの円周経路 TRのうち、最内周側の円周 経路 TRの僅かな部分の反射率だけ変化させるようにレーザ光の照射時間を制御す る、つまり図 22下段に示すように、内周側の円周経路 TRをレーザ光照射位置が通 過する時間中の一部の時間のみにライトレベルのレーザ光が照射されるような駆動 パルスが駆動パルス生成部 35によって生成されるような画像データを作成しておく のである。
[0266] また、単位領域 TAの濃度を中間程度の濃さにする場合には、図 23上段に示すよ うに、当該単位領域 TAに属する 3つの円周経路 TRのうち、最内周側の円周経路 T Rの全ての部分の反射率が変化し、中間の円周経路 TRの半分が変色するようにレ 一ザ光の照射時間を制御する。つまり、図 23下段に示すように、円周経路 TRのうち 内周側の円周経路 TRをレーザ光の照射位置が通過して 、る時間および中間の円 周経路 TRをレーザ光照射位置が通過している時間の一部の時間だけライトレベル のレーザ光が照射されるような駆動パルスが駆動パルス生成部 35によって生成され るような画像データを生成しておくのである。
[0267] 予めホスト PC110において、上記のような単位領域 TA毎の階調表現がなされるよ うな画像データを生成しておき、当該画像データを光ディスク記録装置 100に供給 することにより、上記のような単位領域 TA毎の階調表現がなされた可視画像を光デ イスク Dの画像記録層に形成することができる。
[0268] (変形例 2)
また、上述した実施形態では、光ディスク Dを基準位置から 1回転させている間にレ 一ザ光を照射して可視画像を形成すると、光ピックアップ 10を径方向の外周側に所 定量だけ移動させるといったフィード制御を行うことにより、光ディスク Dの全面に隙間 がほとんどできな 、ようにレーザ光照射位置を移動させるようにして 、た。しかしなが ら、径方向へ光ピックアップ 10を駆動する機構が 20 mといった単位で駆動量を制 御できない場合もある。このような駆動機構を搭載した光ディスク記録装置では、光 ディスク Dにおけるレーザ光が照射できない隙間の領域が大きくなり、この結果、光デ イスク Dの画像記録層に形成される可視画像の品位が低下してしまうことになる。
[0269] そこで、光ピックアップ 10を径方向に移動させる駆動手段の分解能が低い場合に は、当該駆動手段による径方向への光ピックアップ 10の移動制御と、光ピックアップ 10のトラッキング制御とを併用することにより、より微小な単位、例えば 20 /z mといつ た単位でレーザ光の径方向の照射位置を制御できるようにしてもよ!、。より具体的に は、図 24に示すように、まずステッピングモータ等の径方向駆動手段によって光ピッ クアップ 10を位置 Aに移動させる。そして、この位置 Aに光ピックアップ 10を固定した 状態で、レーザ光の径方向の照射位置が A1となるようトラッキング制御を行う。このよ うに照射位置を A1にした状態で光ディスク Dを 1回転させながらレーザ光を制御して 可視画像の形成を行う。照射位置を A1にした状態での可視画像の形成が終了する と、光ピックアップ 10は位置 Aに固定したまま、トラッキング制御によってレーザ光の 照射位置を距離 aだけ外周側に移動させて照射位置を位置 A2にする。そして、この 状態で光ディスク Dを 1回転させながらレーザ光を照射することで可視画像形成を行 う。以降も同様に、光ピックアップ 10は位置 Aに固定したまま、トラッキング制御により レーザ光の照射位置を A3, A4, A5といった順序で移動させながら画像形成を行う
[0270] そして、レーザ光の照射位置を A5にした状態で画像形成が終了すると、駆動手段 によって光ピックアップ 10を距離 Aだけ外周側に移動させ光ピックアップ 10を位置 B に移動させる。そして、この位置 Bに光ピックアップ 10を固定した状態でトラッキング 制御を行うことにより、レーザ光の照射位置を位置 Bl, B2, B3, B4, B5といったよう に外周側に順次距離 aずつ移動させながら画像形成を行う。このようにステッピング モータ等による光ピックアップ 10の径方向への移動制御とトラッキング制御とを併用 することで、径方向への光ピックアップ 10の駆動手段の駆動制御の分解能が低い場 合にも、レーザ光の照射位置をより微小な距離単位で移動させることができる。
[0271] (変形例 3)
また、上述した実施形態に係る光ディスク記録装置 100では、光ディスク Dを一定 の角速度で回転させながらレーザ光を照射して可視画像を形成する CAV方式を採 用するようにして 、たが、線速度が一定となる CLV方式を採用するようにしてもょ 、。 上述したように CAV方式を採用する場合には、高品位の可視画像を形成するため に、レーザ光の照射位置が光ディスク Dの外周側に移動するに伴って照射するレー ザ光のライトレベル値を大きくする必要がある力 CLV方式の場合にはライトレベル 値を変更する必要がない。したがって、目標レーザパワー値の変動に起因して、光 ディスク Dの画像記録層に形成される画像の画質が劣化すると!/ヽつたことが生じな!/ヽ
[0272] (変形例 4)
また、上述した実施形態では、レーザパワー制御回路 20は、光ピックアップ 10のフ ロントモ-ターダイオード 53aの受光結果に基づいて、ライトレベル目標値もしくはサ ーボレベル目標値のレーザ光が照射されるようレーザパワー制御を行うようになって いた(図 7参照)。そして、上記実施形態においては、レーザーダイオード 53から照射 されるレーザ光の強度がライトレベル目標値と一致するように制御するために、ライト レベルを目標としてレーザーダイオード 53が出射した時のフロントモ-ターダイォー ド 53aの受光結果を用いている。また、レーザーダイオード 53から照射されるレーザ 光の強度がサーボレベル目標値と一致するように制御するために、サーボレベルを 目標としてレーザーダイオード 53が出射した時のフロントモ-ターダイオード 53aの 受光結果を用いていた。
[0273] このようにライトレベルおよびサーボレベルの各々のレベルを目標値としてレーザパ ヮー制御を行う際に、各々のレベルを目標値として照射したレーザ光の受光結果を 用いる以外にも、サーボレベルを目標値として照射したレーザ光の受光結果から、サ ーボレベルだけではなくライトレベルを目標値とするレーザパワー制御をレーザパヮ 一を行うようにしてもよい。より具体的には、レーザパワー制御回路 20は、サーボレべ ルを目標値として出射したレーザ光の受光結果 (電流値)から、図 25上段に示すよう にサーボレベル目標値 SMの強度のレーザ光をレーザーダイオード 53から出射する ためにレーザーダイオード 53に供給すべき電流値 SIを求める。このようにサーボレ ベル目標値 SMのレーザ光を出射するために供給すべき電流値 SIを求めると、該電 流値 SIと予め実験等により求められた供給電流値と出射レーザパワーとの関係を一 次関数で表すための傾き αとから、図 25下段に示すように、当該レーザーダイオード 53に関して供給電流値と出射レーザパワーとの関係 (一次関数)を導出する。次に、 レーザパワー制御回路 20は、導出した両者の関係と、制御部 16によって設定された ライトレベル目標値 WMとから、ライトレベルのレーザ光を出射するためにレーザーダ ィオード 53に供給すべき電流値 WIを求める。そして、ライトレベルのレーザ光を照射 する際には、レーザパワー制御回路 20は上記のように求めた電流値 WIをレーザー ダイオード 53に供給するようレーザドライバ 19を制御する。このようにしてライトレべ ルを目標値として出射したレーザ光の受光結果を用いることなぐライトレベルのレー ザ光を出射するための制御を行うことができる。
[0274] なお、上述した実施形態および当該変形例にお!、ては、可視画像形成のためにレ 一ザ光を照射している時にフロントモ-ターダイオード 53aの受光結果に基づいてレ 一ザパワーのフィードバック制御を行うようにしている力 可視画像形成時にはフィー ドバック制御を行わず、可視画像形成前にレーザ光のテスト照射を実施し、該テスト 照射した時のフロントモ-ターダイオード 53aの受光結果に基づいて電流値をレーザ 一ダイオード 53に供給すると 、つたレーザパワー制御を行うようにしてもょ 、。画像 形成のために必要となる時間が短い場合には、光ピックアップ 10や、その周囲の環 境 (温度)等の変動が少なぐ上記のようにフィードバック制御を行わなくても、十分に 正確なレーザパワー制御が行える場合もある。したがって、短時間で画像形成を行え る光ディスク記録装置にぉ 、ては、上記のようにフィードバック制御を行わな 、レーザ ノ ヮ一制御を採用することも可能である。
[0275] (変形例 5)
また、上述した実施形態では、光ディスク Dの画像記録層の最外周部分等に記録さ れたディスク IDを読み取ることにより、光ディスク記録装置 100にセットされたディスク の種類を識別し、識別したディスク種類に応じたレーザパワー制御等を行うようにして いたが(図 12参照)、光ディスク Dの記録面のリードインに記録されたディスク IDを読 み取り、当該光ディスク Dの画像記録層に対する可視画像形成時に読み取ったディ スク IDによって識別されるディスク種類に応じたレーザパワー制御等を行うようにして もよい。このように記録面のリードインに記録されたディスク IDを取得するために、ュ 一ザはまず光ディスク Dを記録面が光ピックアップ 10と対向するようにセットし、光ディ スク記録装置 100がセットされた光ディスク Dのリードイン領域力もディスク IDを読み 取る。そして、光ディスク記録装置 100は、ディスクを裏返して再挿入するようユーザ に促し、画像記録層が光ピックアップ 10と対向するように光ディスク Dがセットされると 、当該光ディスク Dの画像記録層に対して、リードイン領域カゝら読み取ったディスク ID に応じたレーザパワー制御を行って可視画像を形成するようにすればよ!ヽ。
[0276] (変形例 6)
上述した実施形態で説明したように光ディスク記録装置 100は、記録面に対して情 報記録を実施するための光ピックアップ 10等の装置各部を利用し、記録面と反対側 の面に形成された画像記録層に対して可視画像を形成することができるようにして ヽ る。ところで、 CD— Rの場合には、記録層の上層に設けられる保護層の厚みは 1. 2 mmであるのに対し、反対側の面に設けられる保護層の厚みは非常に小さい。したが つて、図 26に示すように、光ディスク Dのレーザ光の照射すべき層の位置と、光ピック アップ 10の位置との間の距離 dl, d2 (相対的な位置関係)は、記録面と画像記録層 のいずれを光ピックアップ 10と対向するように光ディスク Dをセットするかによって約 1 . 2mm程度異なることになる。
[0277] 光ディスク Dの記録面との距離 dlが焦点距離となることを前提として設計されている 光ピックアップ 10のフォーカスァクチユエータ 64 (図 3参照)では、光ピックアップ 10と 照射対象面との距離が d2となった場合に十分なフォーカス制御ができなくなる場合 もある。そこで、光ディスク Dが画像記録層を光ピックアップ 10と対向するようにセット された場合に、その画像記録層と光ピックアップ 10との間の距離が dlとほぼ一致す るように約 1. 2mm分だけ光ピックアップ 10から離間する方向に移動させた位置で光 ディスク Dを保持するような機構を設けるようにしてもょ 、。
[0278] このような機構としては、図 27に示すように、光ディスク D中央のチヤッキング部 270 に装着可能なアダプタ湘対位置調整手段) 271を用いるようにし、上記のように光デ イスク Dの画像記録層が光ピックアップ 10に対向するように当該光ディスク Dを光ディ スク記録装置 100にセットする際には、上記アダプタ 271を光ディスク Dに装着するよ うにすればよい。
[0279] また、光ディスク記録装置 100の光ディスク Dをセットする部位近傍と、該部位から 離間した位置との間で移動可能な機構であって、上記のように光ディスク Dの保持位 置を変更するための機構を光ディスク記録装置 100に設けるようにし、光ディスク Dの 画像記録層が光ピックアップ 10と対向するようにセットされた場合にのみ上記セット する近傍に上記機構を移動させて光ディスク Dの保持位置を調整するようにしてもよ い。
[0280] また、上記のようなアダプタ 271等を用いることにより光ディスク Dの保持位置を光ピ ックアップ 10から離間する位置に移動させる以外にも、図 28に示すように、画像記録 層が光ピックアップ 10と対向するように光ディスク Dがセットされた場合に、画像記録 層と光ピックアップ 10との距離が dlとなるように光ピックアップ 10の位置を光ディスク D力も離間する位置に移動させる駆動機構湘対位置調整手段) 280を設けるように してちよい。
[0281] (変形例 7)
また、上述した実施形態では、光ピックアップ 10の受光素子 56 (図 3参照)が受光 した光ディスク Dからの戻り光に応じてフォーカス制御を行い、このフォーカス制御に おいては記録面に対して記録を行う時よりもスポット径が大きいレーザ光が光ディスク Dの画像記録層に照射されるようにしていた。そして、上記実施形態においては、ス ポット径を大きくするために、受光素子 56の受光結果が図 13に示す楕円形状 B、 C となるようフォーカスァクチユエータ 64を駆動するようにしていた。このような楕円形状 B、 Cが受光結果として得られる場合のスポット径よりも大き 、スポット径のレーザ光を 光ディスク Dの画像記録層に照射するために、受光素子 56の 4つのエリア 56a, 56b , 56c, 56dの各々受光量に応じたフォーカス制御ではなぐ受光素子 56の全てのェ リアの総受光量に応じたフォーカス制御を行うようにしてもよい。すなわち、光ディスク Dの画像記録層に照射するレーザ光のスポット径を大きくすると、その戻り光の全て を受光素子 56で受光することができず、図 29中円形 Zで示すように受光素子 56の 受光エリアよりも大きいエリアの戻り光が得られることになる。すなわち、受光素子 56 の総受光量が少なくなるのである。したがって、サーボ回路 13が受光素子 56の総受 光量が図 13に示す円形 A、楕円形 B、 Cのような受光結果が得られる場合の総受光 量よりも少なくなるようにフォーカスァクチユエータ 64を駆動することで、より大きなス ポット径のレーザ光を光ディスク Dの画像記録層に照射することができる。
[0282] (変形例 8)
また、光ディスク Dの画像記録層として透明度の高いものを利用すると、画像記録 層と光ピックアップ 10とが対向するように光ディスク Dをセットした場合にも、光デイス ク記録装置 100では、光ディスク Dからの戻り光 (反射光)から、光ディスク Dの記録面 に形成されたプリグループ (案内溝)を検出することができる。より具体的には、記録 面に対してレーザ光を照射している場合とは逆に、プリグループにレーザ光を照射し ている時の戻り光レベルが大きぐランド部分を照射しているときの戻り光が小さい。し たがって、戻り光のレベルを検出することによってプリグループを検出することができ 、この結果該プリグループに沿ってトラッキング制御を行うことも可能となる。
[0283] 以上のように画像記録層を光ピックアップ 10と対向するように光ディスク Dをセットし た時に、反対側の記録面に形成されたプリグループに沿ったトラッキング制御が可能 である場合には、当該プリグループに沿ってレーザ光照射位置を移動させながら、可 視画像形成のためのレーザ光照射制御を行うようにしてもよい。このように画像記録 層の反対側の記録面に形成されたプリグループを検出し、該プリグループに沿って レーザ光照射位置が移動するようトラッキング制御を行う場合には、スピンドルモータ 11の回転方向を記録面に対する記録時とは逆方向にし、光ディスク Dを逆方向に回 転させる。このように逆回転させる理由について図 30を参照しながら説明する。同図 上段に示すように、光ディスク Dの記録面に記録面側力 見て時計回りの螺旋状の プリグループ PBが形成されている場合に、図 30下段に示すように、そのプリグルー ブ PBは反対側の面である画像記録層側からは反時計回りの螺旋状に形成されてい るように見えることになる。したがって、プリグループ PBに沿った位置の最内周の位 置 PBS力ら、記録時と同じ回転方向に光ディスク Dを回転させた場合には、レーザ光 の照射位置をプリグループ PBに沿って移動させることができない。したがって、光デ イスク Dの画像記録層に対してレーザ光を照射して可視画像を形成する際に、プリグ ループ PBに沿ってレーザ光照射位置を移動させる場合には、記録面に対して記録 を実行する時と逆方向に光ディスク Dを回転させて 、るのである。
[0284] したがって、プリグループ PBに沿ってレーザ光の照射位置を移動させながら、画像 データに応じてレーザ光の照射タイミングおよびパワーを制御することにより、上記実 施形態と同様の可視画像形成を行う場合には、制御部 16はスピンドルモータ 11を記 録面に対する記録時と逆方向に回転させるようにサーボ回路 13に指示すればょ 、。
[0285] また、上記のように記録面に形成されたプリグループ PBに沿ってレーザ光照射位 置を移動させながら画像記録層に対して可視画像形成を行う場合、レーザ光の照射 開始位置をプリグループ PBの最も外周側の位置 PBEとすれば、光ディスク Dの回転 方向が記録時と同一方向であってもプリグループ PBに沿ってレーザ光照射位置を 移動させることができる。
[0286] (変形例 9) また、上述した実施形態において、制御部 16が、図 31に示す光ディスク Dの画像 記録層における所定の禁止領域 KAに対して、画像形成のためのレーザ光 (ライトレ ベルのレーザ光)の照射を行わな 、よう制御するようにしてもょ 、。同図に示すように 、禁止領域 KAは、上述した基準位置(図 16参照)から時計回りにレーザ光照射位置 が移動させられる場合には、基準位置力 その反時計回りの方向に所定角度 Θの扇 形の領域である。すなわち、光ディスク Dを回転させることにより、基準位置からレー ザ光照射位置を移動させながら可視画像形成のためのレーザ光照射を行った際に 、その基準位置にレーザ光の照射位置が戻る直前にレーザ光照射位置が通過する 領域が禁止領域 KAである。
[0287] このような禁止領域 KAに対する可視画像の形成を禁止するための制御としては、 制御部 16がホスト PC 110から供給された画像データ中の当該禁止領域 KAに属す る座標の階調度を「0」に変更するといつたデータ変換を行うようにすればよい。このよ うなデータ変換を行えば、そのデータにしたがって駆動パルス生成部 35が忠実に駆 動パルスを生成したとしても、レーザ光照射位置が禁止領域 KAを通過するときには ライトレベルのレーザ光は照射されず、この結果、禁止領域 KAには可視画像が形成 されなくなる。
[0288] 以上のように禁止領域 KAに対して可視画像形成のためのレーザ光照射を行わな いようにすることで、以下のような効果が得られる。すなわち、上述したように PLL回 路 33から供給されるクロック信号に同期して画像形成を行った場合にも、スピンドル モータ 11が 1回転する間の回転速度が微妙に揺れ、これに伴って PLL回路 33から 出力されるクロック信号の周期が揺れることがある。このように画像形成のための同期 信号となるクロック信号が揺れることに起因し、図 31に示すように基準位置 KKから可 視画像形成のためのレーザ光を照射を開始してからほぼレーザ光照射位置の軌跡( 図中一点鎖線で示す)が 1回転し、本来その基準位置の直前の位置 KCの画像を表 現するために照射されるレーザ光が基準位置を通過した位置 KTに照射されると 、つ たことが起こりうる。つまり、本来その基準位置の直前の位置 KCの画像を表現するた めに照射されるレーザ光力 既に可視画像形成のためにレーザ光が照射されている 領域中の位置 KTに照射されると 、つた重なるレーザ光照射が行われ、この結果形 成される可視画像に不具合が生じてしまうこともあり得るのである。そこで、 PLL回路 33によって生成されるクロック信号に揺れ等があった場合にも、上記のような禁止領 域 KAが設定されるよう画像データを変換することで、同じ位置に 2度可視画像形成 のためのレーザ光が照射されるといった不具合を未然に防止することができる。
[0289] (変形例 10)
また、上述した実施形態に係る光ディスク記録装置 100に代えて、図 32に示すよう な構成の光ディスク記録装置 100'を用いるようにしてもよい。同図に示すように、この 光ディスク記録装置 100'と、上記実施形態における光ディスク記録装置 100との相 違点は、 FIFOメモリ 34および駆動パルス生成部 35を有しておらず、エンコーダ 17 に代えてエンコーダ 320を備えている点である。
[0290] エンコーダ 320は、図 2に示したエンコーダ 17と同様、供給されるデータに対して E FM変調や CIRC (Cross Interleave Reed- SolomonCode)変換等を施す回路であり、 供給されたデータを一時的にメモリに蓄積し、該蓄積したデータに対して上記のよう な変調処理等を施してストラテジ回路 18'に出力する。また、エンコーダ 320は、制御 部 16から供給される変調オン Zオフ信号に基づいて、バッファメモリ 36から供給され たデータに対し、 EFM変調等の処理を施して出力する力、 EFM変調等を施さない でデータを出力するかを切り換えることができるよう構成されている。そして、制御部 1 6から変調オンを示す信号が供給された場合、エンコーダ 320はバッファメモリ 36か ら供給されるデータに対して EFM変調等を施してストラテジ回路 18に出力する。一 方、制御部 16から変調オフ信号が供給された場合、エンコーダ 320はバッファメモリ 36から供給されたデータに対して変調等は行わず、 PLL回路 33から供給されるクロ ック信号に同期してデータを出力する。
[0291] 制御部 16は、図示せぬユーザインターフェース等を介して入力されるユーザ力もの 指示にしたがってエンコーダ 320に対して変調オン Zオフ信号を出力する。より具体 的には、ユーザから画像記録層に対して可視画像形成を行う旨の指示を受けた場合 には、変調オフ信号を出力し、ユーザから記録面に対して情報記録を行う旨の指示 を受けた場合には、変調オン信号を出力する。なお、上記のようにユーザ力もの指示 にしたがって制御部 16が変調オン Zオフ信号を出力するようにしてもよいが、光ディ スク Dがいずれの面を光ピックアップ 10と対向するようにセットされたかに応じて変調 オン Zオフ信号を出力するようにしてもよい。この場合、画像記録層が光ピックアップ 10と対向するように光ディスク Dがセットされた時には変調オフ信号を出力し、記録 面が光ピックアップ 10と対向するように光ディスク Dにセットされた時には変調オン信 号を出力するようにすればょ 、。
[0292] 上記構成の下、ユーザから記録面に対して情報記録を行う旨が指示された場合、 制御部 16は変調オン信号をエンコーダ 320に出力する。そして、ホスト PC110から 光ディスク Dの記録面に対して記録すべき記録データがバッファメモリ 36に供給され 、ノッファメモリ 36からエンコーダ 320に転送される。変調オン信号を受けたェンコ一 ダ 320は、バッファメモリ 36から供給される記録データに対して EFM変調等を施して ストラテジ回路 18に出力する。ストラテジ回路 18'は、 EFM変調されたデータの時間 軸補正等を行い、レーザドライバ 19を駆動するための駆動パルスを生成し、レーザド ライバ 19に出力する。この駆動パルスに応じてレーザドライバ 19が光ピックアップ 10 のレーザーダイオード 53 (図 3参照)に駆動電流を供給することにより光ピックアップ 1 0からレーザ光が照射され、光ディスク Dの記録面に対して、ホスト PC110から供給さ れた記録データの記録が行われる。
[0293] 一方、ユーザから画像記録層に対して可視画像形成を行う旨が指示された場合、 制御部 16は変調オフ信号をエンコーダ 320に出力する。そして、ホスト PC110から 光ディスク Dの画像記録層に対して形成すべき可視画像に対応した画像データがバ ッファメモリ 36に供給され、バッファメモリ 36からエンコーダ 320に内蔵されるメモリに 転送される。変調オフ信号を受けたエンコーダ 320は、ノ ッファメモリ 36から転送され た画像データに対して変調等の処理は行わず、 PLL回路 33から供給されるクロック 信号に同期して、各座標毎のデータ(階調度を示す情報)を順次ストラテジ回路 18に 出力する。ストラテジ回路 18'は、上述した実施形態における駆動パルス生成部 35と 同様、順次供給される各座標毎の階調度を示すデータに基づいて駆動パルスを生 成し、生成した駆動パルスをレーザドライバ 19に出力する。この駆動パルスに応じて レーザドライバ 19が光ピックアップ 10のレーザーダイオード 53 (図 3参照)に駆動電 流を供給することにより光ピックアップ 10からレーザ光が照射され、光ディスク Dの画 像記録層に対して、ホスト PC110から供給された画像データに対応する可視画像形 成が実施される。
[0294] 以上説明したように可視画像を形成する場合と情報記録を行う場合とでエンコーダ 320が変調を行うか否かを切り換えることができるようにすることで、可視画像形成の ためだけに用いられる FIFOメモリ 34や駆動ノルス生成部 35といった構成を省略す ることができ、より簡易な構成でありながら、光ディスク記録装置 100'に可視画像形 成機能および情報記録機能を持たせることができる。
[0295] (変形例 11)
可視画像を形成するために記録すべきデータ (画像データ)を、光ディスク記録装 置 100のメモリ(図示せず)に予め格納しておいてもよい。たとえば、光ディスク D上に 、数字 0〜9を可視画像として形成するために記録すべきデータをメモリに用意して おく。そして、ユーザが光ディスク D上に形成する数字を指定すると、指定された数字 に関わる記録データをメモリから読み出し、これを光ディスク Dに記録して可視画像の 形成をするようにしてもよい。また、ディスク内周力 外周にかけて本来のデータ記録 をしていき、データ記録を終了した後、ユーザの指示によることなぐ記録時の日時や 時刻に関わるタイムスタンプ情報を可視画像として自動形成するようにしてもよい。タ ィムスタンプ情報は、外部装置 (ホスト PC110)力も光ディスク記録装置 100に供給 すればよい。また、本来のデータ記録を終了した後、ユーザ名や記録データの内容 を示すシグ -チユア情報を可視画像として形成するようにしてもよ!ヽ。シグ-チユア情 報は、ユーザがホスト PC110を操作して光ディスク記録装置 100に供給すればよい 。あるいは、ユーザが直接光ディスク記録装置 100を操作して、シグ-チユア情報を 入力(登録)できるようにしてもょ 、。
[0296] 次 、で、情報記録層への情報 (デジタル情報)の記録につ!、て説明する。情報記 録層が色素型の場合、まず、未記録の前述の光ディスクを所定の記録線速度にて回 転させながら、レーザーピックアップ力 レーザー光を照射する。この照射光により、 情報記録層の色素がその光を吸収して局所的に温度上昇し、所望のピットが生成し てその光学特性が変わることにより情報が記録される。
[0297] レーザー光の記録波形は、 1つのピットの形成する際には、ノ ルス列でも 1パルスで も力まわない。実際に記録しょうとする長さ (ピットの長さ)に対する割合が重要である レーザー光のパルス幅としては、実際に記録しょうとする長さに対して 20〜95%の 範囲が好ましぐ 30〜90%の範囲がより好ましぐ 35〜85%の範囲が更に好ましい 。ここで、記録波形がパルス列の場合には、その和が上記の範囲にあることを指す。
[0298] レーザー光のパワーとしては、記録線速度によって異なる力 記録線速度が 3. 5m Zsの場合、 1〜: LOOmWの範囲が好ましぐ 3〜50mWの範囲がより好ましぐ 5〜4 5mWの範囲が更に好ましい。また、記録線速度が 2倍になった場合には、レーザー 光のパワーの好ましい範囲は、それぞれ 21/2倍力、あるいはそれよりやや大きくなる。
[0299] また、記録密度を高めるために、ピックアップに使用される対物レンズの NAは 0. 5 5以上が好ましぐ 0. 60以上がより好ましい。
[0300] 本発明においては、記録光として 350〜850nmの範囲の発振波長を有する半導 体レーザーを用いることができる。
[0301] 一方、情報記録層が相変化型の場合について説明する。相変化型の場合は、前 述の材質から構成され、レーザー光の照射によって結晶相と非晶相との相変化を繰 り返すことができる。
情報記録時は、集中したレーザー光パルスを短時間照射し、相変化記録層を部分 的に溶融する。溶融した部分は熱拡散により急冷され、固化し、非晶状態の記録マ ークが形成される。また、消去時には、記録マーク部分にレーザー光を照射し、情報 記録層の融点以下、結晶化温度以上の温度に加熱し、かつ除冷することによって、 非晶状態の記録マークを結晶化し、もとの未記録状態に戻す。
[0302] 次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に 限定されるものではない。
[0303] (実施例 1)
本実施例は、 2枚のディスクを貼り合わせてなる DVD—R型の光ディスクである。以 下に、該光ディスクの作製方法を説明する。
射出成形にて、ポリカーボネート榭脂から、スパイラル状 (螺旋状)のグループ (深さ : 130應、幅 300 、トラックピッチ: 0. を有する厚さ 0. 6mm、直径 120m mの基板を成形した。下記色素(1) 1. 4gを 2, 2, 3, 3—テトラフルォ口— 1—プロパ ノール 100mlに溶解して塗布液(1)を調製し、この塗布液(1)をスピンコート法により 上記基板のグループが形成された面上に塗布し、情報記録層を形成した。次に、情 報記録層上に銀をスパッタして膜厚 120nmの反射層を形成した後、紫外線硬化榭 脂 (SD318 (大日本インキ化学工業 (株)製)をスピンコート法により塗布した後、紫外 線を照射して硬化し、層厚 10 /z mの保護層を形成した。以上の工程により、第 1のデ イスクを作製した。
[0304] [化 56]
Figure imgf000139_0001
色素 ( 1 )
[0305] 次に、画像記録層を形成するため、前記色素(1) 1. lgと下記色素(2) 0. 4gとを、 2, 2, 3, 3—テトラフルォ口— 1—プロパノール 100mlに溶解した塗布液(2)を調製 し、この塗布液(2)をスノィラル状 (螺旋状)のトラッキング用の溝 (深さ: 140nm、幅 3 OOnm、ピッチ: 0. 74 m)を有する厚さ 0. 6mm、直径 120mmの基板上にスピンコ ートにて形成した。次に、画像記録層上に銀をスパッタして膜厚 120nmの反射層を 形成した後、紫外線硬化榭脂 (SD318 (大日本インキ化学工業 (株)製)をスピンコー ト法により塗布した後、紫外線を照射して硬化し、層厚 10 mの保護層を形成した。 以上の工程により、第 2のディスクを作製した。 [0306] [化 57]
Figure imgf000140_0001
色素 (2 )
[0307] 画像記録層は、記録前の反射率が波長 660nmにおいて 28%、波長 500nmにお いて 13%であり、かつ記録後の波長 660nmにおける反射率が記録前に比べて 60 %低下し、波長 450〜550nmの範囲での反射率増加が最大となる波長 530nmで の反射率が記録前の反射率に対して 75%増加した。
[0308] 次いで、前記第 1のディスクと前記第 2のディスクとを貼り合せて、 1枚のディスクとし て完成させるため、次のような工程を経た。まず、両方のディスクの保護層上に遅効 性カチオン重合型接着剤(ソニーケミカル (株)社製、 SDK7000)をスクリーン印刷に よって印刷した。このとき、スクリーン印刷の印刷版のメッシュサイズは 300メッシュの ものを使用した。次に、メタルノヽライドランプを使用し紫外線照射した直後、第 1のデ イスクと第 2のディスクとをそれぞれの保護層側カゝら貼り合わせ、両面から押圧し 5分 間放置し、実施例 1の光ディスクを作製した。
[0309] (実施例 2)
1. 1mm厚の溝付き (溝深さ 170nm、幅 500nm、直径 12cm)成形基板を射出成 形で作製し、その上に情報記録層用の色素を溶解した塗布液 (シァニン色素(下記 構造を有する色素(3) )と Ciba社製ォラゾールブルー及び日本化薬製 IRG023を、 テトラフルォロプロパノール 100mlにそれぞれ 0. 5gずつ溶解)をスピンコートにより 塗布し情報記録層を形成した。さらに、情報記録層上に反射層として ANC銀合金を 200nm厚)スパッタして形成した。そして、反射層上に画像記録層用の色素として下 記色素(3) 1. 2gをテトラフルォロプロパノール 100mlに溶解して得られた塗布液を スピンコートにより塗布し、 150nmの画像記録層を形成した。その後、 RFスパッタに て ZnS ' SiOを厚み 10nmで成膜しバリア層を形成した。さらに、紫外線硬化榭脂 S
2
D640を厚み 5 μ mにてスピンコートし、その上に 95 μ mのポリカーボネートベースを 紫外線硬化により貼り合わせた。
[0310] [化 58]
Figure imgf000141_0001
色素 ( 3 )
[0311] 画像記録層は、記録前の反射率が波長 780nmにおいて 7〜50%の範囲内であり 、波長 500nmにおいて 45%であり、かつ記録後の波長 780nmにおける反射率が 記録前に比べて 30%低下し、波長 450〜550nmの範囲での反射率増加が最大と なる波長 530nmでの反射率が記録前の反射率に対して 50%増加した。
[0312] (実施例 3)
実施例 1の画像記録層の形成に使用した色素を、以下の色素 A (シァニン色素)と 色素 B (フタロシアニン色素)とを 30: 70の混合比(質量比)で混合したものに変更し たこと、画像記録層が形成される基板として、溝が形成されていないものを使用したこ と、及び画像記録層の厚さを、厚さの指標となる光学濃度(OD : Optical Density)を 0 36となるように形成したこと以外は実施例 1と同様にして、実施例 3の光ディスクを作 製した。
画像記録層は、請求項 3の条件を満たすものであり、実施例 3の画像記録前後の 反射率スペクトラムを図 33に示す。
[化 59]
Figure imgf000142_0001
( n = 1〜3 ) 色素 B
(実施例 4)
実施例 1の画像記録層の形成に使用した色素を、以下の色素 A (シァニン色素)と 色素 B (フタロシアニン色素)とを 30: 70の混合比(質量比)で混合したものに変更し たこと、及び画像記録層の厚さを、厚さの指標となる光学濃度(OD : Optical Density) が 0.40となるように形成したこと以外は実施例 1と同様にして、実施例 4の光ディスクを 作製した。
画像記録層は、請求項 3の条件を満たすものであり、実施例 4の画像記録前後の 反射率スペクトラムを図 34に示す。
[0315] (実施例 5〜34)
実施例 3の画像記録層に使用した色素を下記表 5に示す色素に変更したこと以外 は実施例 3と同様にして光ディスクを作製した。なお、実施例 5〜8、及び 30では、 1 種の色素のみを用い、実施例 9以降(実施例 30を除く)では 2種の色素を組み合わ せて用いた。なお、 2種の色素を組合せた例における配合比(質量比)を表 5に示し た。表 5の配合比の左列と右列は、色素の左列と右列に対応している(例えば、実施 例 9においては、色素 C :色素 E = 30 : 70である。;)。
[0316] [表 5]
色素 配合比 実施例 5 色素 C - - - 実施例 6 色素 E - - - 実施例 7 色素 D 一 - - 実施例 8 色素 G 一 - - 実施例 9 色素 C 色素 E 30 70 実施例 10 色素 C 色素 D 30 フ0 実施例 1 1 色素 C 色素 G 30 70 実施例 12 色素 E 色素 D 50 50 実施例 13 色素 E 色素 G 30 70 実施例 14 色素 C C-42 20 80 実施例 15 色素 C C-43 20 80 実施例 16 色素 C C-12 30 フ 0 実施例 17 色素 C C-28 30 70 実施例 18 色素 E C-42 80 20 実施例 19 色素 E C-43 70 30 実施例 20 色素 E C-12 80 20 実施例 21 色素 E C - 28 70 30 実施例 22 色素 D C - 42 80 20 実施例 23 色素 D C-43 70 30 実施例 24 色素 D C-12 70 30 実施例 25 色素 D C-28 70 30 実施例 26 色素 G C-42 30 70 実施例 27 色素 G C-43 30 70 実施例 28 色素 G C-12 30 70 実施例 29 色素 G C - 28 10 90 実施例 30 色素 F - - 一 実施例 31 色素 F C-42 30 70 実施例 32 色素 F C-43 30 70 実施例 33 色素 F C-12 30 70 実施例 34 色素 F C-28 30 70 [0317] 表 5中の色素 C〜Gの構造を以下に示す (色素 A〜Bは既に示した。 )0 C 12〜C —42は既述のシァニン色素の例示化合物の番号に対応する。ただし、 C—43は、 C —42の構造における「C10 "Jが「BF "Jに置き換わった構造である。
4 4
[0318] [化 60]
Figure imgf000146_0001
色素 D
Figure imgf000147_0001
色素 E
[0320] [化 62]
Figure imgf000147_0002
[0321] [比較例 1]
実施例 1の第 2のディスク作製において、塗布液(2)の色素(1)及び色素(2)を下 記構造の色素 (4) 0. 9gに変更したこと以外は実施例 1と同様にして比較例 1の光デ イスクを作製した。
画像記録層は、記録前の反射率が波長 660nmにおいて 49%、波長 500nmにお いて 38%であり、かつ記録後の波長 660nmにおける反射率が記録前に比べて 43 %低下し、波長 450〜550nmの範囲での反射率増加が最大となる波長 550nmで の反射率が記録前の反射率に対して 28%増加した。
[0322] [化 63]
Figure imgf000148_0001
色素 (4 )
[評価]
作製した実施例 1〜2及び比較例 1の光ディスクに対し、以下の評価を行った。 (コントラスト評価)
• DVD— R記録再生波長(660nm)での画像記録
実施例 1及び比較例 1の光ディスクに対し、 DVD Rの記録再生に用いられる波 長 660nmの半導体レーザーを用い、線速度 3. 5m/s,記録パワー 8mWの条件で 、フォーカスをかけた状態で、画像記録層への記録を行った。記録前後のコントラスト の違いを数値ィ匕するため、分光光度計((株)島津製作所製、 UV3100— PC)を用 いて、記録前後の反射率 (波長 530nm)を測定した。測定結果を表 6に示す。
•CD— R記録再生波長(780nm)での画像記録
また、実施例 2の光ディスクに対しては、 CD— Rの記録再生に用いられる波長 780 nmの半導体レーザーを用い、線速度 2. 4mZs、記録パワー 22mWの条件で、フォ 一カスをかけた状態で、画像記録層への記録を行った。記録前後のコントラストの違 いを数値ィ匕するため、分光光度計((株)島津製作所製、 UV3100— PC)を用いて、 記録前後の反射率 (波長 530nm)を測定した。測定結果を表 6に示す。
[0324] [表 6]
Figure imgf000149_0001
[0325] 表 6より、実施例 1〜2の光ディスクでは、画像記録前から画像記録後にかけて反射 率が一定以上増加したのに対し、比較例 1の光ディスクでは 27%の増加であり、実 施例 1〜2の光ディスクは、画像記録部分と画像未記録部分とでのコントラストが高く 視認性が良好であることが分かる。
[0326] また、実施例 5〜34の光ディスクに対しても、上述の「DVD— R記録再生波長(66 Onm)での画像記録」と同様に画像記録を行ったところ、 V、ずれも十分な視認性が得 られた。
図面の簡単な説明
[0327] [図 1]本発明の光ディスクの画像記録層のレーザー光の波長に対する反射率の変化 をグラフで示す図である。
[図 2]本発明の光ディスクを取り扱うことができる光ディスク記録装置の一例の構成を 示すブロック図である。
[図 3]前記光ディスク記録装置の構成要素である光ピックアップの構成を示す図であ る。
[図 4]前記光ディスク記録装置による前記光ディスクの画像記録層に対して可視画像 を形成するために用いられる画像データの内容を説明するための図である。
[図 5]前記光ディスク記録装置が本発明の光ディスクの画像記録層に対して可視画 像を形成する際に、画像の濃淡を表現するためのレーザ光の照射制御内容を説明 するための図である。
[図 6]前記光ディスク記録装置が前記光ディスクの画像記録層に対して可視画像を 形成する際のレーザ光の制御方法を説明するための図である。
[図 7]前記光ディスク記録装置の構成要素であるレーザパワー制御回路によるレーザ パワー制御内容を説明するための図である。
[図 8]前記光ディスク記録装置の光ピックアップから前記光ディスクの画像記録層に 照射したレーザ光の戻り光を示す図である。
[図 9]前記光ディスク記録装置の構成要素である周波数発生器 21によってスピンドル モータの回転量に応じて生成される FGパルスおよび当該 FGパルスに基づ!/、て生成 されるクロック信号を示す図である。
[図 10]前記光ディスク記録装置の動作を説明するためのフローチャートである。
[図 11]前記光ディスク記録装置の動作を説明するためのフローチャートである。
[図 12]前記光ディスクの画像記録層に記録されたディスク IDを示す図である。
[図 13]前記光ディスク記録装置の前記光ピックアップの受光素子によって受光される レーザ光の戻り光の形状を示す図である。
[図 14]前記光ディスク記録装置の前記光ピックアップが前記光ディスクの前記画像記 録層に照射するレーザ光のビームスポット径のサイズを説明するための図である。
[図 15]前記光ディスク記録装置のレーザ光照射位置が前記光ディスクの基準位置を 通過したことを検出する方法を説明するための図である。
[図 16]前記光ディスク記録装置のレーザ光照射位置が前記光ディスクの基準位置を 通過したことを検出する方法を説明するための図である。 [図 17]前記光ディスクの画像記録層にレーザ光を照射して可視画像を形成する時の 前記光ディスク記録装置の動作を説明するためのタイミングチャートである。
[図 18]前記光ディスク記録装置によってレーザ光が照射された前記光ディスクの画像 記録層を示す図である。
[図 19]前記光ディスク記録装置によって前記光ディスクの画像記録層に形成される 可視画像の濃淡を表現する方法を説明するための図である。
[図 20]前記光ディスク記録装置によって前記光ディスクの画像記録層に形成される 可視画像の濃淡を表現する方法を説明するための図である。
[図 21]前記光ディスク記録装置によって前記光ディスクの画像記録層に形成される 可視画像の濃淡を表現する方法を説明するための図である。
[図 22]前記光ディスク記録装置によって前記光ディスクの画像記録層に形成される 可視画像の濃淡を表現する方法を説明するための図である。
[図 23]前記光ディスク記録装置によって前記光ディスクの画像記録層に形成される 可視画像の濃淡を表現する方法を説明するための図である。
[図 24]前記光ディスク記録装置によって前記光ディスクの画像記録層に可視画像を 形成する際に、レーザ光の照射位置を前記光ディスクの径方向に移動させる方法を 説明するための図である。
圆 25]前記光ディスク記録装置によって実施されるレーザパワー制御内容を説明す るための図である。
[図 26]前記光ディスク記録装置に前記画像記録層が前記光ピックアップと対向する ように前記光ディスクをセットした場合と、前記画像記録層と反対側の面が前記光ピッ クアップと対向するように前記光ディスクをセットした場合の、前記光ディスクと前記光 ピックアップとの位置関係を示す図である。
[図 27]前記光ディスクと前記光ピックアップとの位置関係を調整するためのアダプタ を示す外観図である。
圆 28]前記光ディスクと前記光ピックアップとの位置関係を調整する機能を備えた光 ディスク記録装置の概略構成を示す図である。
[図 29]前記光ディスクの画像記録層に照射するレーザ光のビームスポット径を大きく するための方法を説明するための図である。
[図 30]前記光ディスクの画像記録層と反対側の面に形成された記録面上のプリダル ーブに沿ってレーザ光の照射位置を移動させて前記可視画像形成を行う方法を説 明するための図である。
圆 31]前記光ディスク記録装置による可視画像形成のためのレーザ光照射が禁止さ れる前記光ディスクの禁止領域を説明するための図である。
[図 32]前記光ディスク記録装置の変形例の構成を示すブロック図である。
[図 33]実施例 3における、画像記録前後の反射率スペクトラムをグラフで示す図であ る。
[図 34]実施例 4における、画像記録前後の反射率スペクトラムをグラフで示す図であ る。
符号の説明
10……光ピックアップ、 11……スピンドルモータ(回転駆動手段)、 12…… RFアン プ、 13……サーボ回路、 16……制御部、 17……エンコーダ、 18……ストラテジ回路 、 19……レーザドライバ、 20……レーザパワー制御回路、 21……周波数発生器、 3 0……ステッピングモータ、 31……モータドライノく、 32……モータコントローラ、 33· ·· •••PLL回 、 34…… メモリ、 35……馬区動ノ ノレス生 j^§、 36……ノ ッフ: Γメモリ 、 53……レーザーダイオード、 53a……フロントモ-ターダイオード、 56……受光素 子、 64……フォーカスァクチユエータ、 65……トラッキングァクチユエータ、 100…… 光ディスク記録装置、 270……チヤッキング部、 271……アダプタ、 280……駆動機 構、 320……エンコーダ、 D……光ディスク。

Claims

請求の範囲
[1] 溝を有する基板と、該基板上に形成され、レーザー光の照射により可視画像を記 録可能な画像記録層とを有する光ディスクであって、
前記画像記録層が、記録前の反射率が波長 660nmにおいて 7〜45%、波長 500 nmにおいて 35%以下であり、かつ記録後の波長 660nmにおける反射率が記録前 に比べて 50%以上低下するとともに、波長 450〜550nmの範囲での反射率増加が 最大となる波長の反射率変化が記録前の反射率に対して 30%以上増加することを 特徴とする光ディスク。
[2] 溝を有する基板と、該基板上に形成され、レーザー光の照射により可視画像を記 録可能な画像記録層とを有する光ディスクであって、
前記画像記録層が、記録前の反射率が波長 780nmにおいて 7〜50%、波長 500 nmにおいて 45%以下であり、かつ記録後の波長 780nmにおける反射率が記録前 に比べて 30%以上低下するとともに、波長 450〜600nmの範囲での反射率増加が 最大となる波長の反射率変化が記録前の反射率に対して 30%以上増加することを 特徴とする光ディスク。
[3] 溝を有しない基板と、該基板上に形成され、レーザー光の照射により可視画像を記 録可能な画像記録層とを有する光ディスクであって、
前記画像記録層が、記録前の反射率が波長 660nmにおいて 5〜25%、波長 550 nmにおいて 25%以下であり、かつ記録後の波長 660nmにおける反射率が記録前 に比べて 30%以上増加するとともに、波長 450〜550nmの範囲での反射率増加が 最大となる波長の反射率変化が記録前の反射率に対して 70%以上増加することを 特徴とする光ディスク。
[4] 前記画像記録層が、シァニン色素を含むことを特徴とする請求項 1から 3のいずれ 力 1項に記載の光ディスク。
[5] 前記画像記録層が、フタロシアニン色素を含むことを特徴とする請求項 1から 3のい ずれ力 1項に記載の光ディスク。
[6] 前記画像記録層が、ォキソノール色素を含むことを特徴とする請求項 1から 3のい ずれ力 1項に記載の光ディスク。
[7] 前記画像記録層が、シァニン色素とフタロシアニン色素とを含むことを特徴とする請 求項 1から 3のいずれ力 1項に記載の光ディスク。
[8] 前記画像記録層が、シァニン色素とォキソノール色素とを含むことを特徴とする請 求項 1から 3のいずれ力 1項に記載の光ディスク。
[9] 基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可能な画 像記録層とを有する光ディスクであって、
前記画像記録層が、シァニン色素を含むことを特徴とする光ディスク。
[10] 基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可能な画 像記録層とを有する光ディスクであって、
前記画像記録層が、ォキソノール色素を含むことを特徴とする光ディスク。
[11] 基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可能な画 像記録層とを有する光ディスクであって、
前記画像記録層が、シァニン色素とォキソノール色素とを含むことを特徴とする光 ディスク。
[12] 基板と、該基板上に形成され、レーザー光の照射により可視画像を記録可能な画 像記録層とを有する光ディスクであって、
前記画像記録層が、シァニン色素とフタロシアニン色素とを含むことを特徴とする光 ディスク。
PCT/JP2005/015761 2004-08-30 2005-08-30 光ディスク WO2006025383A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-250842 2004-08-30
JP2004250842 2004-08-30

Publications (1)

Publication Number Publication Date
WO2006025383A1 true WO2006025383A1 (ja) 2006-03-09

Family

ID=36000033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015761 WO2006025383A1 (ja) 2004-08-30 2005-08-30 光ディスク

Country Status (2)

Country Link
TW (1) TW200623105A (ja)
WO (1) WO2006025383A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171535A (ja) * 2006-12-12 2008-07-24 Ricoh Co Ltd 光情報記録媒体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106575A (ja) * 1995-09-12 1997-04-22 Wea Mfg Inc 情報記録媒体およびその製造方法
JPH09120541A (ja) * 1995-06-29 1997-05-06 Matsushita Electric Ind Co Ltd 光学的情報記録媒体および光学的記録再生装置
JP2001118289A (ja) * 1999-10-20 2001-04-27 Seiko Epson Corp 光ディスク
JP2001283464A (ja) * 2000-03-31 2001-10-12 Pioneer Electronic Corp 情報記録再生媒体
JP2003016649A (ja) * 2001-06-27 2003-01-17 Hitachi Ltd 図形書き込み方法及び光ディスク装置
JP2004213796A (ja) * 2003-01-07 2004-07-29 Yamaha Corp 光ディスク及び光ディスク記録再生装置
JP2004213811A (ja) * 2003-01-07 2004-07-29 Mitsubishi Chemicals Corp 光情報記録媒体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120541A (ja) * 1995-06-29 1997-05-06 Matsushita Electric Ind Co Ltd 光学的情報記録媒体および光学的記録再生装置
JPH09106575A (ja) * 1995-09-12 1997-04-22 Wea Mfg Inc 情報記録媒体およびその製造方法
JP2001118289A (ja) * 1999-10-20 2001-04-27 Seiko Epson Corp 光ディスク
JP2001283464A (ja) * 2000-03-31 2001-10-12 Pioneer Electronic Corp 情報記録再生媒体
JP2003016649A (ja) * 2001-06-27 2003-01-17 Hitachi Ltd 図形書き込み方法及び光ディスク装置
JP2004213796A (ja) * 2003-01-07 2004-07-29 Yamaha Corp 光ディスク及び光ディスク記録再生装置
JP2004213811A (ja) * 2003-01-07 2004-07-29 Mitsubishi Chemicals Corp 光情報記録媒体

Also Published As

Publication number Publication date
TW200623105A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
JP2005219326A (ja) 光記録媒体及び画像記録方法
TWI430268B (zh) 光碟及其製造方法、信號處理方法、信號處理裝置、影像描繪方法、光碟記錄裝置、及光記錄媒體
JP4689426B2 (ja) 光ディスクシステム、光ディスク記録装置、画像描画方法、及び光ディスク
WO2007122830A1 (ja) 光記録媒体および可視情報記録方法
JP5042995B2 (ja) 光ディスクおよび画像形成方法
JP4637800B2 (ja) 光ディスク及びその製造方法、スタンパー、信号処理方法、信号処理装置、画像描画方法、並びに光ディスク記録装置
WO2006100930A1 (ja) 光ディスク
WO2006025383A1 (ja) 光ディスク
WO2006088178A1 (ja) 光記録媒体およびその製造方法、基板およびその使用方法、スタンパーおよびその製造方法
JP2007095274A (ja) 光ディスク
JP2007050678A (ja) 光情報記録媒体、画像記録方法及び色素の利用方法
WO2007063923A1 (ja) 光情報記録媒体、光情報記録媒体の製造方法、可視情報記録方法、混合物の利用方法及び混合物
JP2008059701A (ja) 光記録媒体
JP2008059700A (ja) 光記録媒体
JP2007095273A (ja) 信号処理方法、信号処理装置、画像描画方法及び光ディスク記録装置
JP2006260730A (ja) 光ディスクおよび光記録方法
JP2006107620A (ja) 光ディスク
JP2007276343A (ja) 光記録媒体、可視情報記録方法、及び色素化合物の利用方法
JP2008159194A (ja) 光ディスクおよび画像記録方法
JP2007122848A (ja) 信号処理方法、信号処理装置、画像描画方法、光ディスク記録装置、及び光ディスク
JP2006155751A (ja) 光ディスク
JP2006228278A (ja) 光ディスク
JP2006040440A (ja) 光ディスクに対する画像記録方法
JP2005285167A (ja) 光記録媒体
JP2006031899A (ja) 光ディスク

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP