WO2006025183A1 - ウェハ温度調整装置及びウェハ温度調整方法 - Google Patents

ウェハ温度調整装置及びウェハ温度調整方法 Download PDF

Info

Publication number
WO2006025183A1
WO2006025183A1 PCT/JP2005/014327 JP2005014327W WO2006025183A1 WO 2006025183 A1 WO2006025183 A1 WO 2006025183A1 JP 2005014327 W JP2005014327 W JP 2005014327W WO 2006025183 A1 WO2006025183 A1 WO 2006025183A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
wafer
plane
temperature adjusting
semiconductor wafer
Prior art date
Application number
PCT/JP2005/014327
Other languages
English (en)
French (fr)
Inventor
Kouichi Harada
Junichi Teraki
Mitsuhiro Tanaka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004250570A external-priority patent/JP3778204B2/ja
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2006025183A1 publication Critical patent/WO2006025183A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a temperature adjustment technique, and more particularly to a technique for heating and cooling a wafer (for example, a semiconductor wafer).
  • Patent Documents 1 to 3 In order to avoid the problem, a technique for providing a protrusion on the temperature control plate and supporting the semiconductor wafer with this is described in Patent Documents 1 to 3, for example. With this supporting technology, a slight gap of, for example, about 100 m is provided between the temperature control plate and the semiconductor wafer to adjust the temperature of the semiconductor wafer.
  • Patent Document 4 proposes a technique for levitation of a semiconductor wafer by gas ejection above a holding plate other than a temperature control plate! RU
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 312637
  • Patent Document 2 Japanese Patent Laid-Open No. 11-329922
  • Patent Document 3 Japanese Patent Laid-Open No. 11-330212
  • Patent Document 4 Japanese Patent Application Laid-Open No. 59-215718
  • the semiconductor wafer When a protrusion is provided on the temperature control plate to support the semiconductor wafer, the semiconductor wafer In consideration of the distortion, the height of the protrusion cannot be remarkably lowered. This is because contact between the temperature control plate and the semiconductor wafer should be avoided as much as possible. However, when the height of the protrusion is increased, the gap between the temperature control plate and the semiconductor wafer is increased, and it becomes difficult to quickly adjust the temperature of the semiconductor wafer using the temperature control plate.
  • An object of the present invention is to reduce the gap between the two while avoiding contact between the temperature control plate and the semiconductor wafer, and thereby to quickly adjust the temperature of the semiconductor wafer by the temperature control plate. .
  • a first aspect (10A, 10B, IOC, 10D, 10E) of a wafer temperature adjusting apparatus that is useful in the present invention includes a plane (3c) and a temperature setting unit (set to a predetermined temperature). 1 and 2) and at least one outlet (3a) provided in the plane for supplying fluid (FIO, Fl l, F12: F1), and the wafer (W) is disposed above the plane. To support.
  • the distance between the plane and the wafer is avoided while avoiding contact between the plane and the wafer. It can be made smaller. Therefore, the temperature adjustment efficiency of the wafer can be increased and the time required for temperature adjustment can be shortened. Since the fluid moves between the flat surface and the lower main surface of the wafer, the effect is enhanced.
  • a second aspect (10A, 10B) of a wafer temperature adjusting device that is effective in the present invention is the wafer temperature adjusting device according to the first aspect, wherein the outlet port is more than the original pressure at which the fluid is delivered. The pressure of the fluid at is low.
  • the rigidity at the time of supporting the wafer with the fluid can be increased by giving the fluid resistance to the outlet.
  • a third aspect (10A, 10B) of a wafer temperature adjusting device according to the present invention is the wafer temperature adjusting device according to the third aspect, wherein the original pressure and the pressure of the fluid at the outlet differential pressure (delta P) a parameter obtained by multiplying the flow rate (Q) value obtained by dividing the viscosity of the fluid (1Zr)) of the fluid (ZR) is smaller than 1. 0 X 10- 12 with ,.
  • a fourth aspect (10A) of the wafer temperature adjusting device according to the present invention is the wafer temperature adjusting device according to any one of the first to third aspects, and is provided on the plane (3c). And a protrusion (44, 45) for restricting the movement of the edge of the wafer.
  • the wafer can be stably held.
  • a fifth aspect (10B) of the wafer temperature adjustment device according to the present invention is the wafer temperature adjustment device according to any one of the first to third aspects, wherein a plurality of the outlets (3a) are provided. And at least two of the outlets supply the fluid toward the center of the plane.
  • the wafer can be stably held in non-contact with the wafer.
  • a sixth aspect (10E) of the wafer temperature adjusting device according to the present invention is a wafer temperature adjusting device according to the first aspect, wherein at least the fluid is discharged to the plane.
  • a single suction port (3b) is further provided.
  • the suction and suction force fluid is discharged, and the blower that does not touch the surface of the wafer opposite to the plane is supplied. It is possible to prevent the wafer from rising excessively due to the fluid.
  • the differential pressure at the outlet can be increased, the rigidity of support by the fluid can be increased.
  • a seventh aspect (10E) of the wafer temperature adjusting device according to the present invention is a wafer temperature adjusting device that works on the sixth aspect, wherein the blowout port (3a) and the suction port (3b) There are several, and they are arranged in pairs.
  • the temperature distribution of the wafer is uniformly blocked.
  • An eighth aspect of the wafer temperature adjusting apparatus according to the present invention is the wafer temperature adjusting apparatus according to any one of the first to seventh aspects, wherein there are few helium and neon lights as the fluid. Select and use one gas.
  • the thermal conductivity is high! As the fluid is used as a fluid, the temperature adjustment efficiency of the wafer can be further increased and the time required for temperature adjustment can be further shortened.
  • a ninth aspect of the wafer temperature adjusting apparatus according to the present invention is the wafer temperature adjusting apparatus according to any one of the first to seventh aspects, wherein the fluid is water or a fluoro compound. At least one liquid is selected and used.
  • the thermal conductivity is high! Since the liquid is adopted as the fluid, the temperature adjustment efficiency of the wafer is further increased and necessary for temperature adjustment. Time can be shortened.
  • a tenth aspect (IOC, 10D) of a wafer temperature adjusting device that is useful for the present invention is a plane (3c) that secures a predetermined amount of liquid, and a temperature setting unit that sets the plane to a predetermined temperature ( 1 and 2), and the wafer (W) is placed on the plane through the liquid.
  • liquid can be interposed between the flat surface and the wafer main surface on the opposite side. Therefore, the heat conduction between the plane and the wafer can be improved by the liquid, the temperature adjustment efficiency of the wafer can be increased, and the time required for the temperature adjustment can be shortened.
  • a first aspect (10A, 10B, IOC, 10D, 10E) of a wafer temperature adjustment method that is useful for the present invention is that a wafer (W) is opposed to a main surface on the lower side thereof at a predetermined temperature.
  • the temperature is adjusted by a plane (3c) set to, wherein the plane has at least one blowout opening (3a), the wafer is disposed above the main surface, and Supply fluid (F10, Fl l, F12: F1) to the main surface.
  • the distance between the plane and the wafer is avoided while avoiding contact between the plane and the wafer. It can be made smaller. Therefore, the temperature adjustment efficiency of the wafer can be increased and the time required for temperature adjustment can be shortened. Since the fluid moves between the flat surface and the lower main surface of the wafer, the effect is enhanced.
  • a second aspect (10A, 10B) of the wafer temperature adjustment method according to the present invention is the wafer temperature adjustment method according to the first aspect, wherein the wafer temperature adjustment method in the outlet is more than the original pressure for delivering the fluid.
  • the pressure of the fluid is small.
  • the rigidity at the time of supporting the wafer with the fluid can be increased by giving the fluid resistance to the outlet.
  • a third aspect (10A, 10B) of the wafer temperature adjustment method according to the present invention is the wafer temperature adjustment method according to the second aspect, in which the original pressure, the pressure of the fluid at the outlet, differential pressure (delta P) smaller than a value obtained by dividing the parameter obtained by multiplying the viscosity) of the fluid (1Zr) (ZR) is 1. 0 X 10- 12 the flow rate (Q) of the fluid, .
  • a fourth aspect (10A) of the wafer temperature adjustment method according to the present invention is a wafer temperature adjustment method that works in the first to third aspects, wherein the end of the wafer is flat (3c The movement is restricted by the protrusions (44, 45) provided on
  • the wafer can be stably held.
  • a fifth aspect (10B) of the wafer temperature adjustment method according to the present invention is the wafer temperature adjustment method according to the first to third aspects, wherein a plurality of the outlets (3a) are provided, At least two of the outlets supply the fluid toward the center of the plane.
  • the wafer can be stably held in non-contact with the wafer.
  • a sixth aspect (10E) of the wafer temperature adjustment method according to the present invention is a wafer temperature adjustment method that works on the first aspect, wherein the plane further includes at least one suction port (3b).
  • the fluid (F2) is discharged from the suction port while supplying the fluid (F1) from the blowout port to the main surface.
  • the suction force is supplied without discharging the suction and inlet force fluid, and touching the surface of the wafer opposite to the plane. It is possible to prevent the wafer from rising excessively due to the fluid.
  • the differential pressure at the outlet can be increased, the rigidity of support by the fluid can be increased.
  • the seventh aspect (10E) of the wafer temperature adjusting method according to the present invention is more powerful than the sixth aspect.
  • a plurality of the blowing ports (3a) and the suction ports (3b) are provided and arranged in pairs with each other.
  • the temperature distribution of the wafer is uniformly blocked.
  • An eighth aspect of the wafer temperature adjustment method according to the present invention is the wafer temperature adjustment method according to any of the first to seventh aspects, wherein at least helium and neon light are used as the fluid. Select and adopt one gas.
  • the thermal conductivity is high! Since gas is used as a fluid, the temperature adjustment efficiency of the wafer is further increased and necessary for temperature adjustment. Time can be shortened.
  • a ninth aspect of the wafer temperature adjustment method according to the present invention is the wafer temperature adjustment method according to any of the first to seventh aspects, wherein the fluid is water or a fluoro compound. At least one liquid is selected and used.
  • the thermal conductivity is high! Since the liquid is adopted as the fluid, the temperature adjustment efficiency of the wafer is further improved, and the temperature adjustment is performed. The required time can be further reduced.
  • a tenth aspect (IOC, 10D) of the wafer temperature adjustment method that is useful in the present invention is a plane (3c) that secures a predetermined amount of liquid, and a temperature setting unit that sets the plane to a predetermined temperature ( 1 and 2), and the wafer (W) is placed on the plane through the liquid.
  • liquid can be interposed between the flat surface and the wafer main surface on the opposite side. Therefore, the heat conduction between the plane and the wafer can be improved by the liquid, the temperature adjustment efficiency of the wafer can be increased, and the time required for the temperature adjustment can be shortened.
  • FIG. 1 is a conceptual cross-sectional view illustrating a configuration that is useful for a first embodiment of the present invention.
  • FIG. 2 is a graph showing the effect of the first exemplary embodiment of the present invention.
  • FIG. 3 is a graph showing the effect of the first exemplary embodiment of the present invention.
  • FIG. 4 is a graph showing the effect of the second exemplary embodiment of the present invention.
  • FIG. 5 is a graph showing the effect of the second exemplary embodiment of the present invention.
  • FIG. 6 is a conceptual cross-sectional view illustrating a configuration that is useful for a third embodiment of the present invention.
  • FIG. 7 is a graph showing the effect of the fourth exemplary embodiment of the present invention.
  • FIG. 8 is a graph showing the effect of the fourth exemplary embodiment of the present invention.
  • FIG. 9 is a conceptual cross-sectional view illustrating a configuration that is useful for a fifth embodiment of the present invention.
  • FIG. 10 is a conceptual cross-sectional view illustrating a configuration that is useful for a sixth embodiment of the present invention.
  • FIG. 11 is a conceptual cross-sectional view illustrating a configuration that is useful for a seventh embodiment of the present invention.
  • Fig. 12 is a conceptual perspective view exemplifying a configuration that is useful for a seventh embodiment of the present invention.
  • FIG. 13 is a cross-sectional view conceptually illustrating the vicinity of a through hole.
  • FIG. 14 is a plan view illustrating the arrangement of air outlets, air inlets, and inlets.
  • FIG. 15 is a graph showing the effect of the seventh exemplary embodiment of the present invention.
  • FIG. 16 is a graph showing the effect of the seventh exemplary embodiment of the present invention.
  • FIG. 17 is a conceptual cross-sectional view illustrating a configuration that is useful for an eighth embodiment of the present invention.
  • FIG. 18 is a graph showing the effect of the eighth exemplary embodiment of the present invention.
  • FIG. 1 is a conceptual cross-sectional view illustrating the configuration of a wafer temperature adjusting apparatus 10A that is useful for the first embodiment of the present invention, together with a semiconductor wafer W that is the object of temperature adjustment.
  • the wafer temperature adjustment device 10A includes a cooling unit 1, a thermoelectric element group 2, and a temperature adjustment plate 3, which are stacked in this order.
  • the thermoelectric element group 2 has at least one thermoelectric element.
  • the thermoelectric element group 2 includes four thermoelectric elements 21, 22, 23, 24 is illustrated.
  • the thermoelectric elements 21 to 24 are connected to a power source (not shown), and the surface on the cooling unit 1 side functions as a heat dissipation surface, and the surface on the temperature control plate 3 side functions as a heat absorption surface.
  • the cooling unit 1 functions to cool the heat radiation surface of the thermoelectric element group 2.
  • the cooling unit 1 has a refrigerant supply port la and a discharge port lb.
  • water is used as the refrigerant, and the supply port la As shown by the arrow Ml, the water enters, and from the outlet lb, the water flows as shown by the arrow M2.
  • the temperature control plate 3 has a flat surface 3c and protrusions 44 and 45 protruding from the flat surface 3c on the upper side thereof.
  • the semiconductor wafer w is supported above a plane 3c by a fluid F10 described later.
  • the protrusions 44 and 45 restrict the movement of the end portion of the semiconductor wafer W parallel to the plane 3c above the plane 3c.
  • the temperature control plate 3 also has at least one outlet 3a provided on the plane 3c for supplying fluid.
  • FIG. 1 illustrates the case where one outlet 3 a is provided at the center of the temperature control plate 3.
  • the outlet 3a supplies the fluid F10 in the plane 3c by blowing out the fluid F10 introduced through the cooling unit 1 and the temperature control plate 3 in the direction of the arrow from the fluid inlet 310. .
  • the case where the semiconductor wafer W is water-cooled has been exemplified.
  • the above fluid supply can be applied.
  • the heat dissipation surface of the thermoelectric element group 2 is provided on the temperature control plate 3 side
  • the heat absorption surface is provided on the opposite side
  • a mechanism for heating the heat absorption surface is provided instead of the cooling unit 1.
  • FIG. 2 is a graph showing a result of simulating the distance that the semiconductor wafer W is levitated from the plane 3c by the fluid F10 supplied on the plane 3c.
  • the differential pressure adopted on the horizontal axis is the pressure of the fluid F10 on the plane 3c and the pressure on the fluid inlet 310 side applied to the fluid F10 on the side opposite to the outlet 3a (herein referred to as "original pressure") ) Pressure difference.
  • the gap adopted on the vertical axis indicates the distance between the semiconductor wafer W and the plane 3c, that is, the flying height of the semiconductor wafer W from the plane 3c.
  • a silicon substrate was used as the semiconductor wafer W, and its diameter and thickness were 200 mm and 0.8 mm, respectively. Air was used as the fluid.
  • the temperature control plate 3c is made of a material having good thermal conductivity, for example, a metal,
  • the opposite side force is absorbed by thermoelectric element group 2.
  • the heat radiation surface of the thermoelectric element group 2 is cooled by the cooling unit 1. Therefore, it is possible to grasp the cooling unit 1 and the thermoelectric element group 2 as the temperature setting unit and grasp that the plane 3 of the temperature control plate 3 is set to a predetermined temperature by the temperature setting unit.
  • the temperature sensor 7 measures the temperature of the temperature adjustment plate 3. Based on the temperature measured by the temperature sensor 7, the voltage applied to the thermoelectric element group 2 is controlled by a control device (not shown). As a result, the temperature of the temperature adjustment plate 3, particularly the plane 3c, can be set to a predetermined temperature.
  • the semiconductor wafer W is supported by the force that the fluid F10 applies to the semiconductor wafer W.
  • the fluid F10 is interposed between the plane 3c and the semiconductor wafer W, and the distance between the two can be reduced while avoiding contact between the two. Therefore, the temperature adjustment efficiency of the semiconductor wafer and W can be increased and the time required for temperature adjustment can be shortened. Since the fluid moves between the flat surface 3c and the lower main surface of the semiconductor wafer W, the effect of shortening the time required for temperature adjustment is enhanced.
  • FIG. 3 is a graph showing the effect of the present embodiment, and shows the result of simulating the temperature drop of the semiconductor wafer and W when the initial temperature of the semiconductor wafer W is 150 ° C.
  • the vertical axis shows the temperature of the semiconductor wafer W
  • the horizontal axis shows the passage of time when the point when the semiconductor wafer W is placed above the plane 3c is zero.
  • a silicon substrate was used as the semiconductor wafer W, and the diameter and thickness thereof were set to 200 mm and 0.8 mm, respectively.
  • the average temperature of the semiconductor wafer W is shown.
  • the diameter of the outlet 3a is 0.2 mm and is exposed at the center of the plane 3c, and blows out air.
  • the set temperature of plane 3c is 23 ° C.
  • the gap between plane 3c and semiconductor wafer W was set to 50 ⁇ m (graph L 101).
  • a liquid may be employed as the force fluid, which illustrates the case where air as a gas is employed as the fluid. The specific effect in that case will be described later in the fourth embodiment.
  • FIG. 1 also shows that the diameter is smaller than the diameter of the fluid inlet 310 in the vicinity of the outlet 3a in order to increase the rigidity.
  • the stiffness changes with the parameter ⁇ ZR obtained by dividing the fluid viscosity ⁇ by the resistance R of the outlet 3a. In addition to rigidity, it also depends on the size of the gap between the semiconductor wafer W and the plane 3c.
  • the reciprocal (1ZR) of the resistance R of the outlet 3a is a value obtained by dividing the flow rate Q of the fluid F10 by the differential pressure ⁇ P between the original pressure and the pressure of the fluid F10 at the outlet 3a.
  • the original pressure has been described by taking the pressure on the fluid inlet 310 side as an example.
  • the pressure may be any pressure upstream of the fluid F10 from the outlet 3a.
  • FIG. 4 is a graph showing the relationship between the gap and the rigidity when a semiconductor wafer W made of silicon having a diameter of 200 mm and a thickness of 0.8 ⁇ m is supported by the fluid F 10 as the semiconductor wafer W.
  • Graph L201, L202, L203, L204, L205, L206 respectively, Roh parameters / ZZR force .0X10- 14, 1.0X10- 13, 2.0X10- 13 , 5.0X10- 13, 1.0X10- 12, the 2.0X10- 12 Shows the case.
  • the rigidity required to make the undershoot at the position of the semiconductor wafer W less than 50 ⁇ m is 2.3 X 10 3 N Zm or more .
  • the gap that is remarkably advantageous over the conventional technology is considered to be about 100 m. Therefore, in order to obtain a rigidity of 2.3 X 10 3 NZm or more when the gap is 100 ⁇ m or less, the norometer / z ZR is 1.0 X 10 — Must be smaller than 12 .
  • FIG. 5 is a graph showing the relationship between the gap and rigidity when a semiconductor wafer W made of silicon having a diameter of 300 mm and a thickness of 0.8 ⁇ m is supported by the fluid F 10 as the semiconductor wafer W.
  • Graph L301, L302, L303, L304, L305, L306 respectively, Roh parameters / ZZR force .0X10- 14, 1.0X10- 13, 2.0X10- 13 , 5.0X10- 13, 1.0X10- 12, the 2.0X10- 12 Shows the case.
  • the rigidity required to make the undershoot at the position of the semiconductor wafer W less than 50 ⁇ m is 5.0X10 3 N Zm or more. Therefore in order to gap gain strength mow stiffness below about 100 mu m, the parameter mu ZR is should be still smaller than 1.0X 10- 12.
  • the pressure of the fluid F10 at the outlet 3a can be made smaller than the original pressure at which the fluid F10 is delivered, and the rigidity of the gas panel by the fluid F10 can be increased.
  • the rigidity of the gas panel by the fluid F10 can be increased.
  • by less than 1.0X10- 12 parameters / ZZR even when lowering toward the plane 3 c in lOmmZs the semiconductor wafer W, suppress the undershoot of the position of the semiconductor wafer W to the following 50 mu m be able to. This is suitable for quickly adjusting the temperature of the semiconductor wafer W by setting the gap between the semiconductor wafer W and the plane 3c to about 100 ⁇ m or less.
  • FIG. 6 is a conceptual cross-sectional view illustrating the configuration of a wafer temperature adjusting apparatus 10B that works on the third embodiment of the present invention, together with the semiconductor wafer W that is the object of temperature adjustment. This differs from the wafer temperature adjustment device 10A in that a plurality of outlets 3a are provided.
  • two of the outlets 3a supply the fluids Fl l and F12 toward the center of the plane 3c, and these fluids flow from the fluid inlets 311 and 312 to the direction of the arrow, respectively. It has been introduced through three.
  • the blowing force 3a for supplying the fluid F10 at the center of the flat surface 3c is also shown in the figure. This may be omitted.
  • the fluids Fl l and F12 prevent the position of the semiconductor wafer W from moving from the center to the outside.
  • the fluid for supporting the semiconductor wafer W not only gas but also liquid can be adopted. Since the liquid sometimes has a higher thermal conductivity than the gas, the temperature of the semiconductor wafer W can be adjusted more quickly by the temperature control plate 3. Some can quickly adjust the temperature even if the gap between the two is widened.
  • FIG. 7 is a graph showing the result of simulating the relationship between the differential pressure and the gap when water is used as the fluid.
  • a silicon substrate was used as the semiconductor wafer W, and its diameter and thickness were 200 mm and 0.8 mm, respectively.
  • the simulation was performed for the case where the diameter of the outlet 3a was 0.4 mm and four planes 3c were provided.
  • the outlet 3a Since the diameter of the pipe is doubled and the number is quadrupled, the gap for the differential pressure is also increasing.
  • the thermal conductivity of water (0.61 WZmK) is about 23 times larger than that of air (0.026 W / mK). Therefore, the temperature of the semiconductor wafer W can be quickly adjusted even if the gap is increased compared to the case where air is used as the fluid.
  • FIG. 8 is a graph showing the effect of the present embodiment, and shows the result of simulating the temperature drop of the semiconductor wafer and W when the initial temperature of the semiconductor wafer W is 150 ° C.
  • the vertical and horizontal axes are the same as in Fig. 3.
  • a liquid that does not adversely affect the semiconductor wafer W is desirable.
  • the semiconductor wafer W is not corroded and does not affect the conductivity of the semiconductor.
  • it is desirable to select and use at least one of fluoro compound compounds such as perfluorotripenteiramine, perfluoropolyether, perfluoropolyester and the like.
  • FIG. 9 is a conceptual cross-sectional view illustrating the configuration of a wafer temperature adjusting device 10C according to the fifth embodiment of the present invention, together with the semiconductor wafer W to be temperature adjusted.
  • Wafer A plurality of outlets 3a are provided as compared with the temperature adjusting device 10A.
  • protrusions 41, 42, 43 are additionally provided on the plane 3c.
  • lift pins 53 are additionally provided.
  • the liquid is introduced from the fluid inlet 310 into the plane 3c by the outlet 3a, and is interposed between the semiconductor wafer W and the plane 3c.
  • the protrusions 41, 42, 43 support the semiconductor wafer W above the plane 3c.
  • the liquid is introduced from the fluid inlet 310 into the plane 3c by the outlet 3a, and is interposed between the semiconductor wafer W and the plane 3c.
  • the plane 3c ensures a certain amount of liquid by the outlet 3a, although there is inflow and outflow. It is desirable that the space between the semiconductor wafer W and the plane 3c be filled with liquid.
  • the lift pins 53 can be moved up and down through the cooling unit 1 and the temperature control plate 3. As the lift pins 53 move upward, the semiconductor wafer W is lifted away from the protrusions 41, 42, 43. As the lift pins 53 move downward, the semiconductor wafer W is lowered and placed on the protrusions 41, 42, 43.
  • the presence of the liquid improves the heat conduction between the semiconductor wafer W and the flat surface 3c even when the gap between the semiconductor wafer W and the flat surface 3c is large. Therefore, the temperature applied to the semiconductor wafer W is not necessarily supported by the force exerted by the liquid on the semiconductor wafer W, and the temperature adjustment efficiency of the semiconductor wafer W is increased even if it is supported by the protrusions 41, 42, and 43 as in the present embodiment. be able to.
  • FIG. 10 is a conceptual cross-sectional view illustrating the configuration of a wafer temperature adjusting apparatus 10D according to the sixth embodiment of the present invention, together with the semiconductor wafer W that is the object of temperature adjustment.
  • the blowout port 3a is removed, while an annular protrusion 46 is provided around the plane 3c.
  • the semiconductor wafer W can be supported by the protrusions 41, 42, and 43, there is no need to blow liquid to the flat surface 3c. In this way, the temperature adjustment efficiency of the semiconductor wafer W thereon can be increased by simply storing a predetermined amount of liquid on the plane 3c. [0098] In particular, since the protrusion 46 is annular, it prevents the semiconductor wafer W from moving in a direction parallel to the plane 3c.
  • the protrusions 41, 42, and 43 can be omitted. This is also the force that the semiconductor wafer W floats on due to the surface tension of the liquid surface.
  • FIG. 11 is a conceptual cross-sectional view illustrating the configuration of a wafer temperature adjusting apparatus 10E that works well with the seventh embodiment of the present invention, together with the semiconductor wafer W that is the object of temperature adjustment.
  • the wafer temperature adjustment device 10E includes a cooling unit 1, a thermoelectric element group 2, and a temperature adjustment plate 3 in the same manner as the wafer temperature adjustment device 10A.
  • thermoelectric element group 2 is composed of three thermoelectric elements 21, 22, 23 is illustrated here.
  • the thermoelectric element 21 is connected to a power source (not shown) by a wiring pair 24, and the surface on the cooling part 1 side functions as a heat dissipation surface, and the surface on the temperature control plate 3 side functions as a heat absorption surface.
  • the thermoelectric elements 22 and 23 are connected to a power source via a pair of wires (not shown), and function as a heat radiating surface on the cooling unit 1 side and a heat absorbing surface on the temperature control plate 3 side. To do.
  • the flat surface 3c of the temperature control plate 3 has at least one protrusion that protrudes also here, in this case, three even protrusions 41, 42, 43! From these projections 41, 42, 43 ⁇ , the semiconductor wafer W is supported by a downward force by providing a slight gap such as a flat 3c force.
  • the temperature control plate 3 has at least one suction port 3b for discharging the fluid in the plane 3c in addition to the blowout port 3a.
  • the outlet 3a supplies the fluid introduced from the fluid inlet 31 on the plane 3c.
  • the suction port 3b discharges the fluid in the plane 3c and discharges it from the fluid outlet 32.
  • FIG. 12 is a conceptual perspective view illustrating the configuration of the wafer temperature adjusting device 10E together with the wafer lift mechanism 5.
  • the wafer lift mechanism 5 has lift pins 51, 52, 53 and a pedestal 50 for supporting them, and moves up and down along a direction substantially perpendicular to the wafer temperature adjusting device 10, that is, a lead straight direction.
  • the wafer temperature adjusting device 10 is provided with through holes 61, 62, 63 avoiding the thermoelectric elements 21, 22, 23, and lift pins 51, 52, 53 move in the holes, respectively.
  • FIG. 13 is a cross-sectional view conceptually illustrating the vicinity of the through hole 63.
  • the through hole 63 has a through hole 631 provided in the cooling unit 1 and a through hole 632 provided in the temperature control plate 3.
  • the tip of the lift pin 53 can be lowered below the plane 3c. In this case, the semiconductor wafer W is supported by the protrusions 41, 42, and 43.
  • the tip of the lift pin 53 can be raised above the protrusions 41, 42, 43. In this case, the semiconductor wafer W is lifted by the lift pins 51, 52, 53 (see the chain line).
  • the semiconductor wafer W is placed above the wafer temperature adjustment device 10, that is, above the plane 3c. More specifically, it is placed on the protrusions 41, 42, 43.
  • the case where the semiconductor wafer W is cooled is illustrated.
  • the fluid is blown out from the blowout port 3a and the fluid is sucked in from the suction port 3b. Can be avoided.
  • the heating efficiency of the semiconductor wafer W can be increased and the time required for heating can be shortened.
  • the heat conduction between the two is improved.
  • the temperature adjustment efficiency such as cooling and heating can be improved, and the time required for temperature adjustment can be shortened.
  • FIG. 14 is a plan view illustrating the arrangement of the air outlet 3a and the air inlet 3b on the plane 3c.
  • the through-holes 61, 62, 63 and the protrusions 41, 42, 43 are arranged at almost equal angles.
  • the temperature control plate 3 is provided with a communication pipe 33 and communication pipes 331 to 336 communicating with each other via the communication pipe 33.
  • the communication pipes 331 to 336 are partially opened at the plane 3c and blown out. Forms the mouth 3a.
  • the temperature control plate 3 is provided with a communication pipe 34 and communication pipes 341 to 346 that communicate with each other via the communication pipe 34, and the communication pipes 341 to 346 are partially opened to the plane 3c for suction. Form the entrance 3b.
  • the communication pipes 331 to 336 and the communication pipes 341 to 346 are not in communication with each other and have an interdigital arrangement in which they are almost mixed with each other.
  • the fluid inlet 31 has inlets 31a, 31b, and lc, and fluid flows into the communication pipe 33 from each of them.
  • the fluid inlet 31 has inlets 31a, 31b, and 31c, and fluid flows into the communication pipe 33 from each of them.
  • the fluid outlet 32 has outlets 32a, 32b, 32c, and fluid flows out from the communication pipe 34 to each of them.
  • the fluid may be a gas, for example, air, or a liquid as introduced in the fourth embodiment.
  • FIG. 15 is a graph showing the effect of the present embodiment, and shows the result of simulating the temperature drop of the semiconductor wafer W when the initial temperature of the semiconductor wafer W is variously changed.
  • the vertical axis shows the temperature of the semiconductor wafer W
  • the horizontal axis shows the passage of time when the point when the semiconductor wafer W is placed above the plane 3c is zero.
  • the diameter of the semiconductor wafer W was set to 200 mm, and the initial temperature was 130 ° C, 150 ° C, and 170 ° C.
  • Outlet 3a, sucking The inlets 3b are provided in a ratio of 1 to 1 on the plane 3c so as to be paired with each other, and assume that they are arranged in an almost pine pattern at equal intervals of lcm. In this way, the air outlet 3a and the air inlet 3b are paired with each other, so that the temperature distribution is uniformly uniform.
  • the set temperature of plane 3c is 23 ° C.
  • Air is used as the fluid, air is blown out from the outlet 3a with a differential pressure of 0.0 IMPa, air is drawn out from the inlet 3b, 0.03 MPa, and the pressure of the fluid F2 in the plane 3c is An example is shown in which the air is sucked in and sucked in by a pressure difference from the pressure on the fluid outlet 32 side applied to the fluid F2 on the opposite side to the port 3b.
  • the semiconductor wafer W is silicon with a thickness of 800 ⁇ m
  • the gap between this and the plane 3c was set to 80 ⁇ m.
  • Graphs LI, L2, and L3 show the case with air inflow / outflow
  • graphs L4, L5, and L6 show the case with no air inflow / outflow
  • Graphs LI and L4 show the initial temperature of semiconductor wafer W at 130 ° C
  • graphs L2 and L5 show the initial temperature of semiconductor wafer W at 150 ° C
  • graphs L3 and L6 show the initial temperature of semiconductor wafer W.
  • Each shows the case of 170 ° C. In either case, the effect of inflowing air appears significantly as a reduction in cooling time.
  • FIG. 16 is also a graph showing the effect of the present embodiment, and shows the result of simulating the temperature drop of the semiconductor wafer W and W when the initial temperature of the semiconductor wafer W is 150 ° C. This is the case when air is blown out from the outlet 3a at 0.03 MPa and sucked in from the inlet 3b at 0.03 MPa.
  • the other conditions are the same as in the simulation of FIG. 23.
  • the time required to reach 2 ° C is 15 seconds, which is about 0.5 seconds shorter than the time shown in graph L2 in Fig. 15. Recognize.
  • the semiconductor wafer W without the projections 41, 42, 43 is placed on the plane 3c. It is also possible to support it.
  • FIG. 17 is a conceptual cross-sectional view illustrating the configuration of a wafer temperature adjusting apparatus 10B that works on the eighth embodiment of the present invention, together with the semiconductor wafer W that is the object of temperature adjustment.
  • the wafer temperature adjusting device 10A is different from the wafer temperature adjusting device 10A in that a fluid outlet 32 having a suction port 3b is provided at the tip and a plurality of outlets 3a are provided around the fluid outlet 32b.
  • the diameter of the outlet 3a be smaller than the diameter of the fluid inlet 310, as in the first to sixth embodiments. .
  • the flying height of the semiconductor wafer W can be suppressed even if the differential pressure at the blowout port 3a is increased. Therefore, it is possible to increase the rigidity when the semiconductor wafer W is supported by the fluid while reducing the flying height.
  • FIG. 18 shows the relationship between the gap and the rigidity when the semiconductor wafer W having a silicon force of 200 mm in diameter and 0.8 ⁇ m in thickness is supported by air as fluid, as in the case of FIG. It is a graph to show.
  • graphs L401 and L402 respectively show the case where there is no suction port 3b and the case where one is provided, and both show the case where three outlets 3a having a diameter of 0.2 mm are provided.
  • the diameter of the suction port 3b was set to 0.5 mm.
  • the differential pressure of the fluid blown out from the air outlet 3a can be increased by sucking the fluid from the air inlet 3b, so that the rigidity can be increased as can be seen from these graph forces.
  • the pressure difference at the outlet 3a needs to be 150 Pa when it is shown by the graph L401.
  • the differential pressure at the outlet 3a can be increased up to 300Pa by sucking and sucking the fluid F2 with the suction! It was.
  • the stiffness can be almost doubled from Fig. 18 force to almost 1.3 X 10 4 NZm force to 2.5 X 10 4 NZm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 温度調整の対象となるウェハと、所定の温度に設定された平面との間に隙間を設けつつも、両者間の熱伝導を向上させる。温調プレート3は、その上側に平面3cと、平面3cから突出する突起44,45を有している。半導体ウェハWは、平面3cの上方で後述する流体F10によって支持される。突起44,45は、平面3cの上方において半導体ウェハWの端部が平面3cに平行な移動を制限する。温調プレート3の中央部には、平面3cにおいて設けられて流体を供給する少なくとも一つの吹き出し口3aが一つ設けられている。吹き出し口3aは、流体流入口310から矢印の方向に向かって冷却部1及び温調プレート3を貫通して導入された流体F10を吹き出すことにより、平面3cにおいて流体F10を供給する。

Description

明 細 書
ウェハ温度調整装置及びウェハ温度調整方法
技術分野
[0001] この発明は温度調整技術に関し、特にゥ ハ (例えば半導体ウェハ)を加熱、冷却 する技術に関する。
背景技術
[0002] 半導体ウェハの処理の一工程である、リソグラフィー工程において、薬液の塗布、 加熱、温度調整が繰り返される。そしてこれら加熱、冷却工程では温度管理が厳しく 要求される。また、生産性向上のため、冷却、加熱に要する時間を短縮することも要 求されている。
[0003] 半導体ウェハの温度を調整する際、温度調整された平面を有する温調プレート〖こ 接触させると、半導体ウェハの微少な破片が発生したり、温調プレート上のゴミが半 導体ウェハに付着したりする。あるいは更に、半導体ウェハのゴミが温調プレートに付 着して他の半導体ウェハに付着して汚染が拡大する可能性がある。
[0004] また、半導体ウェハは極く僅かながら歪んでいるので、温調プレートと接触する部分 と接触しな ヽ部分との間で温度むらが発生する。
[0005] 力かる問題を回避するため、温調プレート上に突起を設け、これで半導体ウェハを 支持する技術が、例えば特許文献 1〜3に記載されている。このように支持する技術 により、温調プレートと半導体ウェハとの間に僅かな、例えば 100 m程度の隙間を 設け、半導体ウェハの温度調整を行っていた。
[0006] なお、温調プレート以外の保持板の上方で、半導体ウェハをガスの噴出によって浮 揚させる技術が特許文献 4にお 、て提案されて!、る。
[0007] 特許文献 1 :特開平 11 312637号公報
特許文献 2:特開平 11― 329922号公報
特許文献 3:特開平 11― 330212号公報
特許文献 4:特開昭 59— 215718号公報
[0008] 温調プレート上に突起を設け、これで半導体ウェハを支持する場合、半導体ウェハ の歪みを考慮すると、突起の高さを顕著に低くすることはできない。温調プレートと半 導体ウェハとの接触はできるだけ回避されなければならな 、からである。しかし突起 の高さを高くすると、温調プレートと半導体ウェハとの間のギャップを大きくしてしまい 、温調プレートによる半導体ウェハの温度調整を迅速に行うことが困難となる。
発明の開示
[0009] 本発明は温調プレートと半導体ウェハとの接触を回避しつつ、両者間のギャップを 小さくし、以て温調プレートによる半導体ウェハの温度調整を迅速にすることを目的と している。
[0010] この発明に力かるウェハ温度調整装置の第 1の態様(10A, 10B, IOC, 10D, 10 E)は、平面(3c)と、前記平面を所定の温度に設定する温度設定部(1, 2)と、前記 平面において設けられて流体 (FIO, Fl l, F12 :F1)を供給する少なくとも一つの吹 き出し口(3a)とを備え、前記平面の上方でウェハ (W)を支持する。
[0011] この発明にかかるウェハ温度調整装置の第 1の態様によれば、流体がウェハと平面 との間に介在するので、平面とウェハとの接触を回避しつつ、両者の間の距離を小さ くすることができる。よってウェハの温度調整効率を高め、温度調整に必要な時間を 短縮できる。し力も、平面とウェハの下方側主面との間で流体が移動するのでその効 果は高められる。
[0012] この発明に力かるウェハ温度調整装置の第 2の態様(10A, 10B)は、第 1の態様に かかるウェハ温度調整装置であって、前記流体を送出する元圧よりも前記吹き出し口 における前記流体の圧力が小さい。
[0013] この発明にかかるウェハ温度調整装置の第 2の態様によれば、吹き出し口に流体の 抵抗を持たせることにより、ウェハを流体で支持する際の剛性を高めることができる。
[0014] この発明に力かるウェハ温度調整装置の第 3の態様(10A, 10B)は、第 3の態様に かかるウェハ温度調整装置であって、前記元圧と前記吹き出し口における前記流体 の圧力との差圧 ( Δ P)で前記流体の流量 (Q)を除した値(1ZR)に前記流体の粘性 率 )を乗じて得られるパラメタ( ZR)が 1. 0 X 10— 12よりも小さ 、。
[0015] この発明にかかるウェハ温度調整装置の第 3の態様によれば、ウェハを流体で支持 する際の剛性を高めることにより、平面とウェハとの接触を回避できる。 [0016] この発明にかかるウェハ温度調整装置の第 4の態様(10A)は、第 1乃至第 3の態 様のいずれかにかかるウェハ温度調整装置であって、前記平面(3c)において設けら れて、前記ウェハの端部の移動を制限する突起 (44、 45)を更に備える。
[0017] この発明にかかるウェハ温度調整装置の第 4の態様によれば、ウェハを安定して保 持することができる。
[0018] この発明にかかるウェハ温度調整装置の第 5の態様(10B)は、第 1乃至第 3の態様 のいずれかにかかるウェハ温度調整装置であって、前記吹き出し口(3a)は複数設け られ、前記吹き出し口の少なくとも二つは、前記平面の中心に向けて前記流体を供 給する。
[0019] この発明にかかるウェハ温度調整装置の第 5の態様によれば、ウェハに対して非接 触でウェハを安定して保持することができる。
[0020] この発明に力かるウェハ温度調整装置の第 6の態様(10E)は、第 1の態様に力かる ウェハ温度調整装置であって、前記平面にお!、て前記流体を排出する少なくとも一 つの吸い込み口(3b)を更に備える。
[0021] この発明に力かるウェハ温度調整装置の第 6の態様によれば、吸 、込み口力 流 体を排出することによって、平面と反対側のウェハの表面に触れることなぐ吹き出し ロカ 供給された流体によってウェハが過剰に浮上することを防止できる。また吹き 出し口での差圧を高めることができるので、流体による支持の剛性を高めることがで きる。
[0022] この発明にかかるウェハ温度調整装置の第 7の態様(10E)は、第 6の態様に力かる ウェハ温度調整装置であって、前記吹き出し口(3a)と吸い込み口(3b)とは複数設 けられ、相互に対となって配置される。
[0023] この発明にかかるウェハ温度調整装置の第 7の態様によれば、ウェハの温度分布を 均一にしゃすい。
[0024] この発明に力かるウェハ温度調整装置の第 8の態様は、第 1乃至第 7の態様の 、ず れカにかかるウェハ温度調整装置であって、前記流体としてヘリウム、ネオンカも少 なくとも一つのガスを選択して採用する。
[0025] この発明に力かるウェハ温度調整装置の第 8の態様によれば、熱伝導率が高!、ガ スを流体として採用するので、更にウェハの温度調整効率を高め、温度調整に必要 な時間をより短縮できる。
[0026] この発明に力かるウェハ温度調整装置の第 9の態様は、第 1乃至第 7の態様の 、ず れカにかかるウェハ温度調整装置であって、前記流体として、水、フルォロ化合物か ら少なくとも一つの液体を選択して使用する。
[0027] この発明に力かるウェハ温度調整装置の第 9の態様によれば、熱伝導率が高!、液 体を流体として採用するので、更にウェハの温度調整効率を高め、温度調整に必要 な時間をより短縮できる。
[0028] この発明に力かるウェハ温度調整装置の第 10の態様(IOC, 10D)は、所定量の 液体を確保する平面 (3c)と、前記平面を所定の温度に設定する温度設定部(1, 2) とを備え、前記液体を介して前記平面にウェハ (W)を載置する。
[0029] この発明にかかるウェハ温度調整装置の第 10の態様によれば、平面及びこれと対 向する側のウェハ主面との間に液体を介在させることができる。従って、平面とウェハ との間の熱伝導を液体によって改善することができ、ウェハの温度調整効率を高め、 温度調整に必要な時間を短縮できる。
[0030] この発明に力かるウェハ温度調整方法の第 1の態様(10A, 10B, IOC, 10D, 10 E)は、ウェハ (W)を、その下方側の主面に対向して所定の温度に設定された平面( 3c)によって温度調整する方法であって、前記平面は、少なくとも一つの吹き出し口( 3a)を有し、前記主面の上方に前記ウェハを配置し、前記吹き出し口から前記主面 へ流体 (F10, Fl l, F12 :F1)を供給する。
[0031] この発明にかかるウェハ温度調整方法の第 1の態様によれば、流体がウェハと平面 との間に介在するので、平面とウェハとの接触を回避しつつ、両者の間の距離を小さ くすることができる。よってウェハの温度調整効率を高め、温度調整に必要な時間を 短縮できる。し力も、平面とウェハの下方側主面との間で流体が移動するのでその効 果は高められる。
[0032] この発明にかかるウェハ温度調整方法の第 2の態様(10A, 10B)は、第 1の態様に かかるウェハ温度調整方法であって、前記流体を送出する元圧よりも前記吹き出し口 における前記流体の圧力が小さい。 [0033] この発明に力かるウェハ温度調整方法の第 2の態様によれば、吹き出し口に流体の 抵抗を持たせることにより、ウェハを流体で支持する際の剛性を高めることができる。
[0034] この発明にかかるウェハ温度調整方法の第 3の態様(10A, 10B)は、第 2の態様に かかるウェハ温度調整方法であって、前記元圧と前記吹き出し口における前記流体 の圧力との差圧 ( Δ P)で前記流体の流量 (Q)を除した値(1ZR)に前記流体の粘性 率 )を乗じて得られるパラメタ( ZR)が 1. 0 X 10— 12よりも小さ 、。
[0035] この発明にかかるウェハ温度調整方法の第 3の態様によれば、ウェハを流体で支持 する際の剛性を高めることにより、平面とウェハとの接触を回避できる。
[0036] この発明にかかるウェハ温度調整方法の第 4の態様(10A)は、第 1乃至第 3の態 様に力かるウェハ温度調整方法であって、前記ウェハの端部は、平面(3c)に設けら れた突起 (44、 45)によって移動が制限される。
[0037] この発明にかかるウェハ温度調整方法の第 4の態様によれば、ウェハを安定して保 持することができる。
[0038] この発明にかかるウェハ温度調整方法の第 5の態様(10B)は、第 1乃至第 3の態様 にかかるウェハ温度調整方法であって、前記吹き出し口(3a)は複数設けられ、前記 吹き出し口の少なくとも二つは、前記平面の中心に向けて前記流体を供給する。
[0039] この発明にかかるウェハ温度調整方法の第 5の態様によれば、ウェハに対して非接 触でウェハを安定して保持することができる。
[0040] この発明にかかるウェハ温度調整方法の第 6の態様(10E)は、第 1の態様に力かる ウェハ温度調整方法であって、前記平面は、少なくとも一つの吸い込み口(3b)を更 に有し、前記吹き出し口から前記主面へ流体 (F1)を供給しつつ、前記吸い込み口 から前記流体 (F2)を排出する。
[0041] この発明に力かるウェハ温度調整方法の第 6の態様によれば、吸 、込み口力 流 体を排出することによって、平面と反対側のウェハの表面に触れることなぐ吹き出し ロカ 供給された流体によってウェハが過剰に浮上することを防止できる。また吹き 出し口での差圧を高めることができるので、流体による支持の剛性を高めることがで きる。
[0042] この発明にかかるウェハ温度調整方法の第 7の態様(10E)は、第 6の態様に力かる ウェハ温度調整方法であって、前記吹き出し口(3a)と吸い込み口(3b)とは複数設 けられ、相互に対となって配置される。
[0043] この発明にかかるウェハ温度調整方法の第 7の態様によれば、ウェハの温度分布を 均一にしゃすい。
[0044] この発明にかかるウェハ温度調整方法の第 8の態様は、第 1乃至第 7の態様のいず れカにかかるウェハ温度調整方法であって、前記流体としてヘリウム、ネオンカも少 なくとも一つのガスを選択して採用する。
[0045] この発明に力かるウェハ温度調整方法の第 8の態様によれば、熱伝導率が高!、ガ スを流体として採用するので、更にウェハの温度調整効率を高め、温度調整に必要 な時間をより短縮できる。
[0046] この発明にかかるウェハ温度調整方法の第 9の態様は、第 1乃至第 7の態様のいず れカにかかるウェハ温度調整方法であって、前記流体として、水、フルォロ化合物か ら少なくとも一つの液体を選択して使用する。
[0047] この発明に力かるゥ ハ温度調整方法の第 9の態様によれば、熱伝導率が高!、液 体を流体として採用するので、更にウェハの温度調整効率を高め、温度調整に必要 な時間をより短縮できる。
[0048] この発明に力かるウェハ温度調整方法の第 10の態様(IOC, 10D)は、所定量の 液体を確保する平面 (3c)と、前記平面を所定の温度に設定する温度設定部(1, 2) とを用い、前記液体を介して前記平面にウェハ (W)を載置する。
[0049] この発明にかかるウェハ温度調整方法の第 10の態様によれば、平面及びこれと対 向する側のウェハ主面との間に液体を介在させることができる。従って、平面とウェハ との間の熱伝導を液体によって改善することができ、ウェハの温度調整効率を高め、 温度調整に必要な時間を短縮できる。
[0050] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。
図面の簡単な説明
[0051] [図 1]本発明の第 1の実施の形態に力かる構成を例示する概念的な断面図である。
[図 2]本発明の第 1の実施の形態の効果を示すグラフである。 [図 3]本発明の第 1の実施の形態の効果を示すグラフである。
[図 4]本発明の第 2の実施の形態の効果を示すグラフである。
[図 5]本発明の第 2の実施の形態の効果を示すグラフである。
[図 6]本発明の第 3の実施の形態に力かる構成を例示する概念的な断面図である。
[図 7]本発明の第 4の実施の形態の効果を示すグラフである。
[図 8]本発明の第 4の実施の形態の効果を示すグラフである。
[図 9]本発明の第 5の実施の形態に力かる構成を例示する概念的な断面図である。
[図 10]本発明の第 6の実施の形態に力かる構成を例示する概念的な断面図である。
[図 11]本発明の第 7の実施の形態に力かる構成を例示する概念的な断面図である。
[図 12]本発明の第 7の実施の形態に力かる構成を例示する概念的な斜視図である。
[図 13]貫通孔の近傍を概念的に例示する断面図である。
[図 14]吹き出し口、吸 、込み口の配置を例示する平面図である。
[図 15]本発明の第 7の実施の形態の効果を示すグラフである。
[図 16]本発明の第 7の実施の形態の効果を示すグラフである。
[図 17]本発明の第 8の実施の形態に力かる構成を例示する概念的な断面図である。
[図 18]本発明の第 8の実施の形態の効果を示すグラフである。
発明を実施するための最良の形態
[0052] 第 1の実施の形態.
図 1は本発明の第 1の実施の形態に力かるウェハ温度調整装置 10Aの構成を、温 度調整の対象となる半導体ウェハ Wと共に例示する、概念的な断面図である。ウェハ 温度調整装置 10Aは、冷却部 1、熱電素子群 2、温調プレート 3を備えており、この順 に積層されている。
[0053] 熱電素子群 2は少なくとも一つの熱電素子を有しており、ここでは 4個の熱電素子 2 1, 22, 23, 24で構成されている場合が例示されている。熱電素子 21〜24は図示さ れない電源に接続されており、その冷却部 1側の面を放熱面とし、温調プレート 3側 の面を吸熱面として機能する。
[0054] 冷却部 1は熱電素子群 2の放熱面を冷却する機能を果たす。冷却部 1は冷媒の供 給口 laと、排出口 lbとを有している。冷媒としては例えば水が採用され、供給口 la には矢印 Mlで示されるように入水し、排出口 lbからは矢印 M2で示されるように出 水する。
[0055] 温調プレート 3は、その上側に平面 3cと、平面 3cから突出する突起 44, 45を有して いる。半導体ウェハ wは、平面 3cの上方で後述する流体 F10によって支持される。 突起 44, 45は、平面 3cの上方において半導体ウェハ Wの端部が平面 3cに平行な 移動を制限する。
[0056] 温調プレート 3はまた、平面 3cにおいて設けられて流体を供給する少なくとも一つ の吹き出し口 3aを有する。図 1では吹き出し口 3aが温調プレート 3の中央部に一つ 設けられる場合が例示されている。吹き出し口 3aは、流体流入口 310から矢印の方 向に向力つて冷却部 1及び温調プレート 3を貫通して導入された流体 F10を吹き出 すこと〖こより、平面 3cにおいて流体 F10を供給する。
[0057] 上記の説明では半導体ウェハ Wを水冷する場合を例示した。しかし半導体ウェハ Wを加熱する場合にも、上記流体の供給を適用することができる。半導体ウェハ Wを 加熱するには、例えば、熱電素子群 2の放熱面を温調プレート 3側に、吸熱面を反対 側に設け、当該吸熱面を加熱する機構を冷却部 1の代わりに設ける。
[0058] 図 2は平面 3cにおいて供給された流体 F10により、半導体ウェハ Wが平面 3cから 浮上する距離をシミュレーションした結果を示すグラフである。横軸に採用された差 圧とは、平面 3cにおける流体 F10の圧力と、吹き出し口 3aとは反対側で流体 F10に 印加された流体流入口 310側の圧力(ここでは「元圧」と称す)との圧力差を示す。縦 軸に採用されたギャップとは、半導体ウェハ Wと平面 3cとの間の距離、即ち半導体ゥ ェハ Wの平面 3cからの浮上量を示す。但しシミュレーションにおいては、半導体ゥェ ハ Wとしてシリコン基板を用い、その直径及び厚さをそれぞれ 200mm及び 0. 8mm とした。また流体として空気を採用した。
[0059] 図 2から理解されるように、半導体ウェハ Wの平面 3cからの距離が 100 m以下で あっても、差圧によって、従って元圧によって制御可能である。し力も、半導体ウェハ Wは流体によって支持されるので、これに歪みが生じていても、その最も平面 3cに近 V、位置までもが浮上し、両者が接触することを回避できる。
[0060] 温調プレート 3cは熱伝導性の良好な材料、例えば金属で形成されており、平面 3c と反対側力 熱電素子群 2によって吸熱される。上述のように熱電素子群 2の放熱面 は冷却部 1によって冷却される。従って、冷却部 1と熱電素子群 2とを温度設定部とし て把握して、当該温度設定部によって温調プレート 3の平面 3が所定の温度に設定さ れると把握することができる。
[0061] 温度センサ 7は温度調整プレート 3の温度を測定する。温度センサ 7によって測定さ れた温度に基づき、図示されない制御装置によって熱電素子群 2に与えられる電圧 が制御される。これにより温度調整プレート 3の、特に平面 3cの温度を所定の温度に 設定することができる。
[0062] 上述のように、流体 F10が半導体ゥ ハ Wに与える力で半導体ゥ ハ Wが支持され る。これにより、平面 3cと半導体ウェハ Wとの間に流体 F10が介在し、両者間の接触 を回避しつつ両者の間の距離を小さくすることができる。よって半導体ウエノ、 Wの温 度調整効率を高め、温度調整に必要な時間を短縮できる。し力も、平面 3cと半導体 ウェハ Wの下方側主面との間では流体が移動するので、温度調整に必要な時間を 短縮できる効果が高められる。
[0063] 図 3は本実施の形態の効果を示すグラフであり、半導体ウェハ Wの初期温度を 150 °Cとした場合の半導体ウエノ、 Wの温度低下をシミュレーションした結果を示す。縦軸 は半導体ゥ ハ Wの温度を、横軸は半導体ゥ ハ Wを平面 3cの上方に載置した時 点を 0とする時間の経過を示す。
[0064] 但しシミュレーションにおいては、半導体ウェハ Wとしてシリコン基板を用い、その直 径及び厚さをそれぞれ 200mm及び 0. 8mmとした。シミュレーション結果としては、 半導体ウェハ Wの温度の平均値を示している。また吹き出し口 3aの直径は 0. 2mm として平面 3cの中央に露出しており、空気を吹き出している。平面 3cの設定温度は 2 3°Cである。平面 3cと半導体ウェハ Wとの間のギャップを 50 μ mに設定した(グラフ L 101)。
[0065] なお、比較のために、半導体ウェハ Wを、平面 3cから突出する突起によって支持し た場合についても併記した (グラフ L102)。但し、突起によって支持した場合、上述 のように半導体ウェハ Wの歪みによる平面 3cとの接触を回避するために、両者の間 のギャップは 120 μ mに設定した。 [0066] 流体によって半導体ウェハ Wを支持する場合 (グラフ L101)の方力 突起によって 半導体ウェハ Wを支持する場合 (グラフ L102)と比較して、冷却時間が顕著に短縮さ れていることが示されている。例えば 23. 2°Cまで冷却されるのに必要な時間は、約 1 2秒短縮されている。これは半導体ウェハ Wと平面 3cとの間のギャップが小さいこと、 あるいは更に流体が両者の間を流れることによる冷却の効果であると考えられる。
[0067] 図 3では流体として気体たる空気を採用した場合を説明した力 流体として液体を 採用してもよい。その場合の特有の効果については第 4の実施の形態で後述する。
[0068] 第 2の実施の形態.
半導体ウェハ Wを平面 3cの上方で安定して支持するためには、半導体ウェハ Wに 対して働く力に対するギャップの変化を小さくすることが望ましい。換言すれば、流体 によるガスパネの剛性を高めることが望ま 、。
[0069] 例えば半導体ウェハ Wを平面 3cの上方から降下させて流体によって支持させる場 合、当該剛性が不足していれば、降下する半導体ウェハ Wの慣性力を流体による浮 上力が支持しきれない。このような剛性の不足は、半導体ウェハ Wが平面 3cに接触 することを許してしまうことになる。つまり半導体ウェハ Wと平面 3cとの間のギャップを Δとして支持したい場合、両者の間の接触を回避するためには半導体ウェハ Wの位 置のアンダーシュートは Δよりも小さく抑える必要がある。
[0070] そこで本実施の形態では当該剛性を高めるため、第 1の実施の形態において、吹 き出し口 3aの流体 F10に対する抵抗を高めることを提案する。但し図 1においても、 当該剛性を高めるために吹き出し口 3aの近傍においてその径が流体流入口 310の 径よりも細くなることが図示されている。
[0071] 剛性は流体の粘性率 μを吹き出し口 3aの抵抗 Rで除した値 μ ZRをパラメータとし て変化する。また剛性はもちろん、半導体ウェハ Wと平面 3cとの間のギャップの大き さにも依存する。ここで吹き出し口 3aの抵抗 Rの逆数(1ZR)は、元圧と吹き出し口 3 aにおける流体 F10の圧力との差圧 Δ Pで流体 F10の流量 Qを除した値である。
[0072] 第 1の実施の形態において元圧を、流体流入口 310側の圧力を例に採って説明し ていたが、吹き出し口 3aよりも流体 F10の上流側の圧力であればよい。そしてパラメ ータ ZRの値が小さいほど、吹き出し口 3aの抵抗は大きいことになる。これにより、 流体 F10を送出する元圧よりも吹き出し口 3aにおける流体 F10の圧力はより小さくな る。
[0073] 図 4は半導体ウェハ Wとして直径 200mm、厚さ 0.8 μ mのシリコンからなる半導体 ウェハ Wを流体 F 10で支持する場合の、ギャップと剛性との関係を示すグラフである 。グラフ L201, L202, L203, L204, L205, L206はそれぞれ、ノ ラメータ/ zZR 力 .0X10— 14, 1.0X10— 13, 2.0X10— 13, 5.0X10— 13, 1.0X10— 12, 2.0X10— 12 の場合を示している。
[0074] 半導体ウェハ Wを lOmmZsで平面 3cへ向けて下降させた場合、半導体ウェハ W の位置のアンダーシュートを 50 μ m未満とするために要求される剛性は 2.3 X 103N Zm以上となる。従来の技術に対して顕著に有利なギャップは 100 m程度と考えら れるので、ギャップが 100 μ m以下において 2.3 X 103NZm以上の剛性を得るため には、ノラメータ/ z ZRが 1.0X 10— 12よりも小さいことが必要となる。
[0075] 図 5は半導体ウェハ Wとして直径 300mm、厚さ 0.8 μ mのシリコンからなる半導体 ウェハ Wを流体 F 10で支持する場合の、ギャップと剛性との関係を示すグラフである 。グラフ L301, L302, L303, L304, L305, L306はそれぞれ、ノ ラメータ/ zZR 力 .0X10— 14, 1.0X10— 13, 2.0X10— 13, 5.0X10— 13, 1.0X10— 12, 2.0X10— 12 の場合を示している。
[0076] 半導体ウェハ Wを lOmmZsで平面 3cへ向けて下降させた場合、半導体ウェハ W の位置のアンダーシュートを 50 μ m未満とするために要求される剛性は 5.0X103N Zm以上となる。よってギャップが 100 μ m程度以下において力かる剛性を得るため には、パラメータ μ ZRがやはり 1.0X 10— 12よりも小さくなければならない。
[0077] 以上のように、流体 F10を送出する元圧よりも吹き出し口 3aにおける流体 F10の圧 力を小さくし、流体 F10によるガスパネの剛性を高めることができる。特に、パラメータ /ZZRを 1.0X10— 12よりも小さくすることにより、半導体ウェハ Wを lOmmZsで平面 3 cへ向けて下降させる際でも、半導体ウェハ Wの位置のアンダーシュートを 50 μ m以 下に抑えることができる。これは半導体ウェハ Wと平面 3cとの間のギャップを 100 μ m 程度以下にして、半導体ウェハ Wの温度調節を迅速に行う場合に好適である。
[0078] 第 3の実施の形態. 本実施の形態では平面 3cに平行な方向での半導体ウェハ Wの安定性を、突起 44 , 45を設けずに改善する技術を提案する。
[0079] 図 6は本発明の第 3の実施の形態に力かるウェハ温度調整装置 10Bの構成を、温 度調整の対象となる半導体ウェハ Wと共に例示する、概念的な断面図である。ウェハ 温度調整装置 10Aに対し、吹き出し口 3aを複数設けた点で異なって 、る。
[0080] ここでは吹き出し口 3aの二つが平面 3cの中心に向けて流体 Fl l, F12を供給して おり、これらの流体はそれぞれ流体流入口 311 , 312から矢印の方向に向かって温 調プレート 3を貫通して導入されている。またウェハ温度調整装置 10Aと同様に、平 面 3cの中央で流体 F10を供給する吹き出し口 3aも図示されている力 これは省略し ても構わない。
[0081] 流体 Fl l, F12は半導体ウェハ Wの位置が中央から外へと移動することを妨げる。
従って、平面 3cに平行な方向での半導体ウェハ Wの安定性を、非接触で改善するこ とがでさる。
[0082] このような複数の流体による半導体ウェハの浮揚自体は、特許文献 4等により公知 であるので、詳細は割愛する。但し、本実施の形態では温調プレート 3において吹き 出し口 3aを設けているので、流体が支持する半導体ウェハ Wの温度調節を行うベぐ 平面 3cと半導体ウェハ Wとの間のギャップを小さくする場合に特に好適となる。
[0083] 第 4の実施の形態.
半導体ウェハ Wを支持する流体として、気体のみならず液体を採用することができ る。時に液体は、その熱伝導率が気体よりも高いため、温調プレート 3による半導体ゥ ェハ Wの温度調整をより迅速にできる。ある 、は両者間のギャップを広げても温度調 整を迅速にできる。
[0084] 図 7は流体として水を採用した場合の、差圧とギャップとの関係をシミュレーションし た結果を示すグラフである。但しシミュレーションにおいては、半導体ウェハ Wとして シリコン基板を用い、その直径及び厚さをそれぞれ 200mm及び 0. 8mmとした。ま た吹き出し口 3aの直径は 0. 4mmとして平面 3cに 4個設けた場合についてシミュレ ーシヨンした。
[0085] 第 1の実施の形態において示したシミュレーションの条件と比較して、吹き出し口 3a の直径を二倍にし、また個数を 4倍にしたので、差圧に対するギャップも大きくなつて いる。しかしながら水の熱伝導率(0. 61WZmK)は空気のそれ(0. 026W/mK) と比較して約 23倍程度大きい。従って、流体として空気を採用した場合と比較して、 ギャップを大きくしても、半導体ウェハ Wの温度調整を迅速に行うことができる。
[0086] 図 8は本実施の形態の効果を示すグラフであり、半導体ウェハ Wの初期温度を 150 °Cとした場合の半導体ウエノ、 Wの温度低下をシミュレーションした結果を示す。縦軸 及び横軸は図 3と同様に採用した。
[0087] シミュレーションの条件は図 7について示したとおりであり、平面 3cの設定温度は 2 3°Cに設定した。また平面 3cと半導体ウェハ Wとの間のギャップを 400 mに設定し た(グラフ L401)。
[0088] なお、比較のために、半導体ウェハ Wを、平面 3cから突出する突起によって支持し た場合についても併記した (グラフ L402)。但し、この場合の条件は、図 3に示された グラフ L102と同一であり、従って半導体ウェハ Wと平面 3cとの間のギャップは 120 μ mに設定し、かつ両者の間は空気が存在している。
[0089] 水によって半導体ウェハ Wを支持する場合 (グラフ L401)の方力 突起によって半 導体ウェハ Wを支持する場合 (グラフ L402)と比較して、冷却時間が顕著に短縮され ていることが示されている。例えば 23. 2°Cまで冷却されるのに必要な時間は、約 14 秒短縮されている。これは半導体ウエノ、 Wと平面 3cとの間のギャップが 3倍以上大き くても、熱伝導率が高い液体を流体として採用することで温度調整効率を高められた ためと考えられる。
[0090] 流体としては水の他、半導体ゥヱハ Wに対して悪影響を与えない液体が望ましい。
例えば半導体ウェハ Wを腐食させず、また半導体の導電性に影響を与えな 、ことが 望まれる。具体例としては、パーフルォロトリペンテイラミン、パーフルォロポリエーテ ル、パーフルォロポリエステル等のフルォロ化合物カゝら少なくとも一つを選択して採 用することが望ましい。
[0091] 第 5の実施の形態.
図 9は本発明の第 5の実施の形態に力かるウェハ温度調整装置 10Cの構成を、温 度調整の対象となる半導体ウェハ Wと共に例示する、概念的な断面図である。ウェハ 温度調整装置 10Aと比較して吹き出し口 3aが複数設けられている。また平面 3c上に 突起 41 , 42, 43が追加して設けられている。更にリフトピン 53が追加して設けられて いる。
[0092] 液体は流体流入口 310から吹き出し口 3aによって平面 3cへと導入され、半導体ゥ ヱハ Wと平面 3cとの間に介在する。突起 41, 42, 43は半導体ウェハ Wを平面 3cの 上方で支持する。
[0093] 液体は流体流入口 310から吹き出し口 3aによって平面 3cへと導入され、半導体ゥ ハ Wと平面 3cとの間に介在する。換言すれば、吹き出し口 3aによって平面 3cは所 定量の液体を、流出入はあるものの、確保されることになる。半導体ウェハ Wと平面 3 cとの間は液体で充満されることが望ま 、。
[0094] リフトピン 53は冷却部 1及び温調プレート 3を貫通して上下可能である。リフトピン 5 3が上方に移動することによって半導体ウェハ Wを突起 41, 42, 43から離して上方 に挙げる。リフトピン 53が下方に移動することによって半導体ウェハ Wを下降させ、突 起 41 , 42, 43に載せる。
[0095] 第 6の実施の形態.
第 4の実施の形態で説明したように、液体が介在することにより、半導体ウェハ Wと 平面 3cとの間のギャップが大きくても両者間の熱伝導は良好となる。よって必ずしも、 液体が半導体ゥ ハ Wに与える力で半導体ゥ ハ Wを支持せず、本実施の形態のよ うに突起 41, 42, 43で支持しても、半導体ウェハ Wの温度調整効率を高めることが できる。
[0096] 図 10は本発明の第 6の実施の形態に力かるウェハ温度調整装置 10Dの構成を、 温度調整の対象となる半導体ウェハ Wと共に例示する、概念的な断面図である。ゥェ ハ温度調整装置 10Cと比較して吹き出し口 3aが削除されている一方、平面 3cの周 辺には環状の突起 46が設けられている。
[0097] 突起 46は環状であるので平面 3cにお 、て所定量の液体を確保することができる。
し力も突起 41, 42, 43によって半導体ウェハ Wを支持できるので、液体を平面 3cへ と吹き出す必要もない。このように単に平面 3cにおいて所定量の液体を溜めるだけ でも、その上の半導体ウェハ Wの温度調整効率を高めることができる。 [0098] 特に突起 46は環状であるので、半導体ウェハ Wが平面 3cに平行な方向に移動す ることの防止ちでさる。
[0099] 第 4乃至第 6の実施の形態に記載された技術は、液体を介して平面 3cに半導体ゥ ェハ Wを載置する、と把握することもできる。
[0100] また第 5の実施の形態及び第 6の実施の形態において、液体として表面張力の大 きいもの、例えば水を採用した場合、突起 41, 42, 43を省略することもできる。半導 体ウェハ Wが当該液面の表面張力により、その上に浮かぶ力もである。
[0101] 第 7の実施の形態.
図 11は本発明の第 7の実施の形態に力かるウェハ温度調整装置 10Eの構成を、 温度調整の対象となる半導体ウェハ Wと共に例示する、概念的な断面図である。ゥェ ハ温度調整装置 10Eは、ゥ ハ温度調整装置 10Aと同様に冷却部 1、熱電素子群 2 、温調プレート 3を備えている。
[0102] 熱電素子群 2はここでは 3個の熱電素子 21, 22, 23で構成されている場合が例示 されている。熱電素子 21は配線対 24によって図示されない電源に接続されており、 その冷却部 1側の面を放熱面とし、温調プレート 3側の面を吸熱面として機能する。 熱電素子 22, 23についても同様に、配線対(図示を省略)を介して電源が接続され 、それらの冷却部 1側の面を放熱面とし、温調プレート 3側の面を吸熱面として機能 する。
[0103] 温調プレート 3の平面 3cには、ここ力も突出する少なくとも一つの突起、ここでは 3 偶の突起 41, 42, 43を有して!/ヽる。これらの突起 41, 42, 43ίま、平面 3c力ら僅力に 隙間を設けて半導体ウェハ Wを下方力 支持する。
[0104] 温調プレート 3は吹き出し口 3aに加え、平面 3cにおいて上記流体を排出する少な くとも一つの吸い込み口 3bを有する。ここでは吹き出し口 3a、吸い込み口 3bのいず れもが複数設けられる場合が例示されている。吹き出し口 3aは流体流入口 31から導 入された流体を平面 3cにおいて供給する。吸い込み口 3bは当該流体を平面 3cに おいて排出し、これを流体流出口 32から排出する。
[0105] 但し、本実施の形態では突起 41, 42, 43が半導体ウェハ Wを下方力 支持するた め、吹き出し口 3aの近傍で、その径を細める必要はない。 [0106] 図 12はウェハ温度調整装置 10Eの構成を、ウェハリフト機構 5と共に例示する概念 的な斜視図である。ウェハリフト機構 5はリフトピン 51, 52, 53とこれらを支持する台 座 50とを有しており、ウェハ温度調整装置 10に対してほぼ垂直な方向、即ちほぼ鉛 直方向に沿って上下する。ウェハ温度調整装置 10には熱電素子 21, 22, 23を避け て貫通孔 61, 62, 63が設けられており、それぞれリフトピン 51, 52, 53がその中を 移動する。
[0107] 図 13は貫通孔 63の近傍を概念的に例示する断面図である。貫通孔 63は冷却部 1 に設けられた貫通孔 631及び温調プレート 3に設けられた貫通孔 632を有している。 リフトピン 53は、その先端が平面 3cよりも下方に下がることが可能であり、この場合に は突起 41, 42, 43によって半導体ウェハ Wが支持される。リフトピン 53は、その先端 が突起 41, 42, 43よりも上方に上がることが可能であり、この場合にはリフトピン 51, 52, 53によって半導体ウェハ Wが持ち上げられる(鎖線参照)。
[0108] まずリフトピン 51, 52, 53を、それらの先端が突起 41, 42, 43よりも上方に上げら れた状態において半導体ウェハ Wをウェハ温度調整装置 10の上方、即ち平面 3cの 上方に、より詳細には突起 41, 42, 43上に載置する。
[0109] 突起 41, 42, 43で半導体ウェハ Wを支持しつつ、吹き出し口 3aから流体を吹き出 し、吸い込み口 3bから流体を吸い込む。これにより平面 3cと半導体ウェハ Wの下方 側主面との間で流体が移動する。従って平面 3cと半導体ウェハ Wとの隙間において 流体の温度が上昇する等の、冷却効率を下げる事態を回避できる。つまり半導体ゥ ハ Wの冷却効率を高め、冷却に必要な時間を短縮できる。
[0110] し力も吸い込み口 3bから流体を排出することによって、ウェハ Wの上面に触れること もなぐ吹き出し口 3aから供給された流体によってウェハが過剰に浮上することを防 止できる。特に半導体処理工程において、半導体ウェハ Wの上面、即ち平面 3cと反 対側の半導体ウェハ Wの表面にはリソグラフィー処理が為されていることに鑑みれば 、当該上面に触れないことは好適である。
[0111] 上記の説明では半導体ウェハ Wを冷却する場合を例示した。しかし半導体ウェハ Wを加熱する場合にも、突起 41, 42, 43で半導体ウェハ Wを支持しつつ、吹き出し 口 3aから流体を吹き出し、吸い込み口 3bから流体を吸い込むことにより、加熱効率 を下げる事態を回避できる。つまり半導体ウェハ Wの加熱効率を高め、加熱に必要 な時間を短縮できる。
[0112] 以上のように、本実施の形態においても、温度調整の対象となるウェハと、所定の 温度に設定された平面との間に隙間を設けつつも、両者間の熱伝導を向上させる冷 却や加熱などの温度調整効率を高め、温度調整に必要な時間を短縮することができ る。
[0113] 図 14は平面 3cにおける吹き出し口 3a、吸い込み口 3bの配置を例示する平面図で ある。貫通孔 61 , 62, 63と突起 41, 42, 43はほぼ等角度に配置されている力 かか る配置は例示であって、限定的ではない。
[0114] 温調プレート 3内には連通管 33及びこれを介して相互に連通する連通管 331〜33 6が設けられており、連通管 331〜336は部分的に平面 3cにおいて開口して吹き出 し口 3aを形成している。温調プレート 3内には連通管 34及びこれを介して相互に連 通する連通管 341〜346が設けられており、連通管 341〜346は部分的に平面 3c にお ヽて開口して吸 、込み口 3bを形成して 、る。
[0115] 連通管 331〜336と連通管 341〜346とは連通しておらず、相互にほぼ嚙み合つ たインターデジタルな配置を呈して 、る。
[0116] 流体流入口 31は流入口 31a, 31b, lcを有しており、これらのそれぞれから連通管 33へ流体が流入する。流体流入口 31は流入口 31a, 31b, 31cを有しており、これら のそれぞれから連通管 33へ流体が流入する。流体流出口 32は流出口 32a, 32b, 3 2cを有しており、これらのそれぞれへと連通管 34から流体が流出する。
[0117] 上記流体としては気体、例えば空気を採用してもよいし、第 4の実施の形態で紹介 されたように液体を採用してもょ 、。
[0118] 図 15は本実施の形態の効果を示すグラフであり、半導体ウェハ Wの初期温度を種 々変えた場合の半導体ウェハ Wの温度低下をシミュレーションした結果を示す。縦軸 は半導体ゥ ハ Wの温度を、横軸は半導体ゥ ハ Wを平面 3cの上方に載置した時 点を 0とする時間の経過を示す。
[0119] 但しシミュレーションにおいては、半導体ウェハ Wの直径を 200mmとし、その初期 温度が 130°C、 150°C、 170°Cの三つの場合について行った。吹き出し口 3a、吸い 込み口 3bは相互に対となるように、平面 3cにそれぞれ 1対 1の割合で設け、それらが lcmの等間隔でほぼ巿松模様状に配置された場合を想定して 、る。このように吹き 出し口 3a、吸い込み口 3bを相互に対とすることで、温度分布を均一にしゃすくなる。 シミュレーション結果としては、半導体ウェハ Wの温度の平均値を示している。平面 3 cの設定温度は 23°Cである。流体として空気を採用し、吹き出し口 3aから空気を 0. 0 IMPaの差圧で吹き出し、吸い込み口 3bから空気を 0. 03MPaの差圧(平面 3cにお ける流体 F2の圧力と、吸 、込み口 3bとは反対側で流体 F2に印加された流体流出 口 32側の圧力との圧力差)で吸 、込んだ場合が例示されて 、る。半導体ウェハ Wと して厚さ 800 μ mのシリコンを想定し、これと平面 3cとの間の隙間を 80 μ mに設定し た。
[0120] なお、比較のために、空気の流入を行わない場合も併記した。グラフ LI, L2, L3 は空気の流出入がある場合を、グラフ L4, L5, L6は空気の流出入がない場合を、そ れぞれ示している。またグラフ LI, L4は半導体ウェハ Wの初期温度が 130°Cの場合 を、グラフ L2, L5は半導体ウェハ Wの初期温度が 150°Cの場合を、グラフ L3, L6は 半導体ウェハ Wの初期温度が 170°Cの場合を、それぞれ示している。いずれの場合 も空気の流入を行うことの効果が、冷却時間の短縮として顕著に現れて 、る。
[0121] 例えば 23. 2°Cまで冷却されるのに必要な時間は、初期温度が 130°Cの場合には 約 6秒短縮され、初期温度が 150°Cの場合には約 4秒短縮され、初期温度が 170°C の場合には約 3. 5秒短縮されている。
[0122] 図 16も本実施の形態の効果を示すグラフであり、半導体ウェハ Wの初期温度を 15 0°Cとした場合の半導体ウエノ、 Wの温度低下をシミュレーションした結果を示す。吹き 出し口 3aから空気を 0. 03MPaで吹き出し、吸い込み口 3bから 0. 03MPaで吸い込 んだ場合であり、それ以外の条件は図 5のシミュレーションと同一である。 23. 2°Cに 達するのに要する時間は 15秒となっており、図 15のグラフ L2に示した場合よりも更 に 0. 5秒程度、冷却に必要な時間が短縮されていることがわかる。
[0123] 第 8の実施の形態.
第 7の実施の形態に示されたように、吹き出し口 3aのみならず、吸い込み口 3bをも 設けた場合には、突起 41, 42, 43を設けることなぐ半導体ウェハ Wを平面 3cの上 方に支持することも可能である。
[0124] 図 17は本発明の第 8の実施の形態に力かるウェハ温度調整装置 10Bの構成を、 温度調整の対象となる半導体ウェハ Wと共に例示する、概念的な断面図である。ゥェ ハ温度調整装置 10Aに対し、その先端に吸 、込み口 3bを有する流体流出口 32を 設け、その周囲に吹き出し口 3aを複数設けた点で異なっている。
[0125] 但し、第 7の実施の形態とは異なり、第 1乃至第 6の実施の形態と同様に、吹き出し 口 3aの径は、流体流入口 310の径よりも細くなる事が望ま U、。
[0126] 吸い込み口 3bを設けることにより、吹き出し口 3aでの差圧を大きくしても、半導体ゥ ェハ Wの浮上量を抑えることができる。よって浮上量を小さくしつつも半導体ウェハ W を流体で支持する際の剛性を高めることができる。
[0127] 図 18は、図 4と同様に半導体ウェハ Wとして直径 200mm、厚さ 0. 8 μ mのシリコン 力 なる半導体ウェハ Wを流体たる空気で支持する場合の、ギャップと剛性との関係 を示すグラフである。但しグラフ L401, L402はそれぞれ吸い込み口 3bが無い場合 と一つ設けた場合を示しており、いずれも直径 0. 2mmの吹き出し口 3aを 3個設けた 場合を示している。吸い込み口 3bの直径を 0. 5mmとした。
[0128] 同じ浮上量を得る場合、吸い込み口 3bから流体を吸い込むことにより、吹き出し口 3aからの吹き出す流体の差圧を大きくすることができるので、これらのグラフ力 判る ように、剛性が高められる。
[0129] 例えば半導体ウェハ Wを 60 μ mで平面 3cから浮上させる場合、グラフ L401で示さ れる場合には、吹き出し口 3aでの差圧を 150Paとする必要があった。一方、グラフ L 402で示される場合には、吸!、込み口 3bでの差圧を 200Paとして流体 F2を吸!、込 むことにより、吹き出し口 3aでの差圧を 300Paまで高めることができた。この場合、図 18力ら、剛性はほぼ 1. 3 X 104NZm力ら 2. 5 X 104NZmへと、ほぼ倍増すること ができる。
[0130] なお、上記各実施の形態において、流体として気体を採用する場合、更に冷却に 必要な時間を短縮するには、ヘリウム、ネオン力も少なくとも一つのガスを選択して採 用することが望ましい。これらの気体は空気と比較して、その熱伝導性が良好だから である。 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 この発明の範囲力 外れることなく想定され得るものと解される。

Claims

請求の範囲
[1] 平面 (3c)と、
前記平面を所定の温度に設定する温度設定部(1, 2)と、
前記平面において設けられて流体 (F10, Fl l, F12 :F1)を供給する少なくとも一 つの吹き出し口(3a)と
を備え、前記平面の上方でウェハ (W)を支持するウェハ温度調整装置(10A, 10B, IOC, 10D, 10E)。
[2] 前記流体を送出する元圧よりも前記吹き出し口における前記流体の圧力が小さい 、請求項 1記載のウェハ温度調整装置(10A, 10B)。
[3] 前記元圧と前記吹き出し口における前記流体の圧力との差圧 ( Δ P)で前記流体の 流量 (Q)を除した値(1ZR)に前記流体の粘性率( μ )を乗じて得られるパラメタ( μ ZR)が 1. O X 10—12よりも小さい、請求項 2記載のウェハ温度調整装置(10A, 10B)
[4] 前記平面(3c)において設けられて、前記ウェハの端部の移動を制限する突起 (44 、 45)を更に備える、請求項 1乃至 3のいずれか一つに記載のウェハ温度調整装置( 10A) o
[5] 前記吹き出し口(3a)は複数設けられ、
前記吹き出し口の少なくとも二つは、前記平面の中心に向けて前記流体を供給す る、請求項 1乃至請求項 3のいずれか一つに記載のウェハ温度調整装置(10B)。
[6] 前記平面において前記流体を排出する少なくとも一つの吸い込み口(3b)を更に 備える、請求項 1記載のウェハ温度調整装置(10E)。
[7] 前記吹き出し口(3a)と吸い込み口(3b)とは複数設けられ、相互に対となって配置 される、請求項 6記載のウェハ温度調整装置(10E)。
[8] 前記流体としてヘリウム、ネオン力も少なくとも一つのガスを選択して採用する、請 求項 1記載のウェハ温度調整装置。
[9] 前記流体として、水、フルォロ化合物から少なくとも一つの液体を選択して使用する
、請求項 1記載のウェハ温度調整装置。
[10] 所定量の液体を確保する平面(3c)と、 前記平面を所定の温度に設定する温度設定部(1, 2)と
を備え、
前記液体を介して前記平面にウェハ (W)を載置するウェハ温度調整装置(10C, 1 OD)。
[11] ウェハ (W)を、その下方側の主面に対向して所定の温度に設定された平面(3c)に よって温度調整する方法であって、
前記平面は、少なくとも一つの吹き出し口(3a)を有し、
前記主面の上方に前記ウェハを配置し、前記吹き出し口から前記主面へ流体 (F1 0, Fl l, F12 :F1)を供給する、ウェハ温度調整方法(10A, 10B, IOC, 10D, 10 E)。
[12] 前記流体を送出する元圧よりも前記吹き出し口における前記流体の圧力が小さい 、請求項 11記載のウェハ温度調整方法(10A, 10B)。
[13] 前記元圧と前記吹き出し口における前記流体の圧力との差圧 ( Δ P)で前記流体の 流量 (Q)を除した値(1ZR)に前記流体の粘性率( μ )を乗じて得られるパラメタ( μ ZR)が 1. 0 X 10— 12よりも小さい、請求項 12記載のウェハ温度調整方法(10A, 10B
) o
[14] 前記ウェハの端部は、平面(3c)に設けられた突起 (44、 45)によって移動が制限さ れる、請求項 11乃至 13の 、ずれか一つに記載のウェハ温度調整方法( 10A)。
[15] 前記吹き出し口(3a)は複数設けられ、
前記吹き出し口の少なくとも二つは、前記平面の中心に向けて前記流体を供給す る、請求項 11乃至請求項 13の 、ずれか一つに記載のウェハ温度調整方法(10B)。
[16] 前記平面は、少なくとも一つの吸い込み口(3b)を更に有し、
前記吹き出し口から前記主面へ流体 (F1)を供給しつつ、前記吸 、込み口力 前 記流体 (F2)を排出する、請求項 11記載のウェハ温度調整方法。
[17] 前記吹き出し口(3a)と吸い込み口(3b)とは複数設けられ、相互に対となって配置 される、請求項 16記載のウェハ温度調整方法。
[18] 前記流体としてヘリウム、ネオン力も少なくとも一つのガスを選択して採用する、請 求項 11記載のウェハ温度調整方法。
[19] 前記流体として、水、フルォロ化合物から少なくとも一つの液体を選択して使用する
、請求項 11記載のウェハ温度調整方法。
[20] 所定量の液体を確保する平面(3c)と、
前記平面を所定の温度に設定する温度設定部(1, 2)と
を用い、前記液体を介して前記平面にウェハ (W)を載置するウェハ温度調整方法(1
OC, 10D)。
PCT/JP2005/014327 2004-08-30 2005-08-04 ウェハ温度調整装置及びウェハ温度調整方法 WO2006025183A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-250570 2004-08-30
JP2004250570A JP3778204B2 (ja) 2004-01-23 2004-08-30 ウェハ温度調整装置及びウェハ温度調整方法

Publications (1)

Publication Number Publication Date
WO2006025183A1 true WO2006025183A1 (ja) 2006-03-09

Family

ID=35999844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014327 WO2006025183A1 (ja) 2004-08-30 2005-08-04 ウェハ温度調整装置及びウェハ温度調整方法

Country Status (1)

Country Link
WO (1) WO2006025183A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215718A (ja) * 1983-05-23 1984-12-05 Kokusai Electric Co Ltd 半導体基板の赤外線熱処理装置
JPS60117627A (ja) * 1983-11-30 1985-06-25 Toshiba Corp レジストパタ−ンの形成方法及びレジスト処理装置
JPH11195599A (ja) * 1997-10-27 1999-07-21 Dainippon Screen Mfg Co Ltd 基板冷却装置および基板冷却方法
US5937541A (en) * 1997-09-15 1999-08-17 Siemens Aktiengesellschaft Semiconductor wafer temperature measurement and control thereof using gas temperature measurement
US20010025431A1 (en) * 2000-03-30 2001-10-04 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
JP2001313328A (ja) * 2000-04-28 2001-11-09 Dainippon Screen Mfg Co Ltd 基板熱処理装置
JP2003347183A (ja) * 2002-05-30 2003-12-05 Canon Inc 基板温度処理装置
JP2004296509A (ja) * 2003-03-25 2004-10-21 Hirata Corp 基板冷却装置及び基板冷却方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215718A (ja) * 1983-05-23 1984-12-05 Kokusai Electric Co Ltd 半導体基板の赤外線熱処理装置
JPS60117627A (ja) * 1983-11-30 1985-06-25 Toshiba Corp レジストパタ−ンの形成方法及びレジスト処理装置
US5937541A (en) * 1997-09-15 1999-08-17 Siemens Aktiengesellschaft Semiconductor wafer temperature measurement and control thereof using gas temperature measurement
JPH11195599A (ja) * 1997-10-27 1999-07-21 Dainippon Screen Mfg Co Ltd 基板冷却装置および基板冷却方法
US20010025431A1 (en) * 2000-03-30 2001-10-04 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
JP2001313328A (ja) * 2000-04-28 2001-11-09 Dainippon Screen Mfg Co Ltd 基板熱処理装置
JP2003347183A (ja) * 2002-05-30 2003-12-05 Canon Inc 基板温度処理装置
JP2004296509A (ja) * 2003-03-25 2004-10-21 Hirata Corp 基板冷却装置及び基板冷却方法

Similar Documents

Publication Publication Date Title
US9410753B2 (en) Substrate temperature adjusting method and a method of changing the temperature control range of a heater in a substrate processing apparatus
US8741065B2 (en) Substrate processing apparatus
TWI404163B (zh) 用於改良式半導體處理均勻性之熱傳導系統、用於處理一基板之電漿處理系統以及在一處理腔室中處理一基板之方法
KR102234619B1 (ko) 액 공급 노즐 및 기판 처리 장치
CN102315151B (zh) 基板承载台、基板处理装置及基板处理系统
US20070175499A1 (en) Method for cleaning surfaces using parallel flow
US8221581B2 (en) Gas supply mechanism and substrate processing apparatus
US8115142B2 (en) Plate, apparatus for adjusting temperature of substrate having the plate and apparatus for processing substrate having the plate
JP2009512224A (ja) ハイブリッドチャック
JP5796972B2 (ja) 基板処理装置
TWI647785B (zh) 恒定質量流多層次冷卻劑路徑之靜電式夾具
JP2017515146A (ja) リソグラフィ装置のためのサポートテーブル、リソグラフィ装置及びデバイス製造方法
KR101696194B1 (ko) 기판 처리 장치 및 방법
JP4187069B2 (ja) 基板処理装置
JP3778204B2 (ja) ウェハ温度調整装置及びウェハ温度調整方法
US20170338135A1 (en) Thermal coupled quartz dome heat sink
JP4207030B2 (ja) ウェハ温度調整装置
WO2006025183A1 (ja) ウェハ温度調整装置及びウェハ温度調整方法
JP5221508B2 (ja) 基板処理装置
TWI805603B (zh) 內壁及基板處理裝置
KR20170133771A (ko) 기판 처리 장치
JP2000021949A (ja) 非接触式ワーク浮上搬送用構造体
KR20030093090A (ko) 가열장치
KR101739807B1 (ko) 유체가열 장치
KR102423268B1 (ko) 기판처리 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase