WO2006024457A1 - Magnetorheologische elastomere und deren verwendung - Google Patents

Magnetorheologische elastomere und deren verwendung Download PDF

Info

Publication number
WO2006024457A1
WO2006024457A1 PCT/EP2005/009195 EP2005009195W WO2006024457A1 WO 2006024457 A1 WO2006024457 A1 WO 2006024457A1 EP 2005009195 W EP2005009195 W EP 2005009195W WO 2006024457 A1 WO2006024457 A1 WO 2006024457A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetorheological
magnetizable
magnetorheological elastomers
elastomers according
particles
Prior art date
Application number
PCT/EP2005/009195
Other languages
English (en)
French (fr)
Inventor
Holger Böse
René RÖDER
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to AT05782886T priority Critical patent/ATE510288T1/de
Priority to EP05782886A priority patent/EP1782438B1/de
Priority to US11/574,397 priority patent/US7608197B2/en
Publication of WO2006024457A1 publication Critical patent/WO2006024457A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
    • F16F1/361Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material comprising magneto-rheological elastomers [MR]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • H01F1/375Flexible bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the invention relates to magnetorheological elastomers of at least one non-magnetizable elastomeric carrier medium and magnetizable particles contained therein and their use.
  • the mechanical properties such as the shear modulus can be reversibly changed by an applied magnetic field.
  • Magnetically controllable elastomer composites comprising an elastomer matrix and magnetically polarizable particles, so-called magnetorheological elastomers (MRE), are already known.
  • MRE magnetorheological elastomers
  • EP 41 88 07 Bl describes the preparation of a highly saturated nitrile rubber without a binder and reaction accelerator in which strontium and / or barium ferrites are incorporated. After the aforementioned European patent In this case, after shaping, the material is hardened by the action of a high-voltage electron beam.
  • WO 230 25 056 A1 describes a resin composition consisting of 50 to 95% by mass of an elastomer and 50 to 5% by mass of an ethylene copolymer having a high strength and good elastic properties. This resin contains magnetic powders.
  • the object of the present invention is therefore to specify new MREs which have a particularly high variability due to the applied magnetic field with respect to the mechanical properties.
  • Another object of the invention is to provide appropriate uses for such magnetorheological elastomers.
  • the object is solved by the characterizing features of claim 1.
  • the claims 15 and 16 indicate the uses of the invention.
  • the subclaims show advantageous developments. According to the present invention, it is thus proposed that special elastomeric carrier media be used, and those which have a shear modulus ⁇ 500 kPa measured at a frequency of 10 Hz and a deformation of 1% kPa, preferably ⁇ 250 kPa. This allows increases in the thrust module to be achieved by a factor of 100 or more.
  • the excellent properties of the magnetorheological elastomers according to the invention are attributed to the fact that particularly "soft elastomeric support materials" are used.
  • the elastomers of the invention are polymers having a rubber-elastic behavior, which do not work at the temperature of use owing to the crosslinking of the polymer chains viscous flow (see also Römpp Chemie Lexikon, 1st edition, page 1105 ff.)
  • the elastomeric carrier media according to the invention be ⁇ sit next to the shear modulus described above, a Shore A hardness of less than 20, preferably less than 10 and an E modulus 1500 kPa, preferably ⁇ 750 kPa
  • the shear modulus of the elastomers according to the invention is determined oscillatorily at a constant frequency and shear deformation, and is therefore a material property of the elastomer.
  • the high slope of the Schubmo ⁇ pulse in the magnetic field is due to the relatively high mobility of the magnetic particles in the weakly crosslinked elastomer. This ensures that the magnetic forces of attraction between the particles overcome the holding forces generated by the elastomer, so that the particles in the magnetic field become mechanically particularly strong structures. saim ⁇ ienlegen.
  • a peculiarity of the MRE's according to the invention is that although the basic shear modulus decreases as expected when the degree of crosslinking in the elastomer decreases, the shear modulus increases in some cases but surprisingly surprisingly in a strong magnetic field.
  • the elastomer is selected from silicone or polyurethane, wherein, as already explained, the corresponding shear modulus must be present.
  • Elastomers which can be used for the MRE's according to the invention are commercially available, e.g. at Bayer AG or Wacker-Chemie GmbH.
  • the elastomers can be prepared in such a way that, starting from the liquid educts, a thermal or photochemical crosslinking is carried out, the educts for producing the elastomers being designed so that a corresponding degree of crosslinking and a corresponding shear modulus, as described in patent claim 1 is required is set.
  • Silicone elastomers are prepared, for example, by polyaddition of long-chain, vinyl-containing dimethylsiloxane polymers with short-chain, silane-containing dimethylsiloxane polymers. Depending on the location of the silane groups, the polymers are extended to chains or crosslinked to a three-dimensional network. By varying the silane content, the silicone elastomer resulting from the crosslinking can be used in its degree of crosslinking and thus in its modulatory properties. be adjusted.
  • Polyurethane elastomers are synthesized, for example, by polyaddition of hydroxyl and cyanate groups.
  • the functionality of the cyanate or hydroxyl reagents in this case determines the degree of crosslinking: bifunctional starting materials extend the molecular chains, trifunctional starting materials form three-dimensional crosslinking sites.
  • magnetizable particles it is possible to use all the particles known per se from the prior art for MRE's or for the magnetorheological fluids.
  • these are magnetizable particles of soft magnetic materials.
  • soft magnetic metallic materials such as iron, cobalt, nickel (also in Vietnamese ⁇ pure form) and alloys thereof such as iron-cobalt, iron-nickel, magnetic steel, iron-silicon and / or mixtures thereof.
  • magnetizable particles of soft-magnetic oxide-ceramic materials can be used, such as cubic ferrites, perovskites and garnets of the general formula: MO.Fe 2 Ü 3 with one or more metals from the group Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd or Magne ⁇ sium and / or mixtures thereof. It is also possible to use mixed ferrites such as MnZn, NiZn, NiCo, NiCuCo, NiMg, CuMg ferrites and / or mixtures thereof, as well as particles of iron carbide, iron nitride, alloys of vanadium, tungsten, copper and Manganese and / or mixtures thereof.
  • the preferred average particle size is in the range of 5 nm to 10 mm, preferably between 10 nm and 1 mm.
  • the particle size distribution can also be bimodal.
  • the magnetisable particles can be distributed isotropically or anisotropically in the elastomer matrix.
  • An anisotropic arrangement is achieved by imprinting a chain-like structure along the field lines to the magnetisable particles before and / or during crosslinking by application of a magnetic field. Due to the strength of the magnetic field prevailing before or during the cross-linking, subtleties of the embossed structure can be predicted.
  • a uniform distribution of the particles in the elastomer matrix is achieved by applying a magnetic field by careful homogenization.
  • the magnetorheological elastomers according to the invention may of course also contain additives already known in the art, such as dispersants, antioxidants, defoamers, plasticizers and / or anti-wear agents.
  • additives already known in the art such as dispersants, antioxidants, defoamers, plasticizers and / or anti-wear agents.
  • a preferred composition of the MRE's according to the invention is as follows:
  • the proportion of magnetizable particles is between 5 and 70% by volume, preferably between 10 and 60% by volume.
  • the proportion of the elastomeric carrier medium is between 20 and 95% by volume, preferably between 30 and 90% by volume.
  • the proportion of additives is up to 20% by mass, preferably between 0.01 and 15% by mass, based on the magnetisable solids.
  • the invention further relates to the use of the magnetorheological materials.
  • both the storage modulus (describes the elastic behavior or energy storage) and the loss modulus (describes the viscous behavior or energy dissipation) are influenced by the magnetic field.
  • a special embodiment of the use of such MRE's consists in the construction of a magnetic circuit with the inclusion of an electromagnet and a permanent magnet.
  • a permanent maga- An increased basic stiffness of the elastomer composite can be set.
  • the electromagnet can strengthen or weaken the magnetic field and thus either increase or decrease the rigidity of the elastomer composite (modulus of elasticity or shear modulus).
  • the operating point can be defined in a vibration-damping system.
  • the MREs according to the invention can be used for a number of applications such as, for example, for vibration damping, vibration isolation, actuators, safety switches, haptic systems and artificial muscles.
  • Another interesting property of the elastomer composites is the occurrence of a shape memory effect.
  • an article molded from the composite material can be deformed by the action of external forces. The new shape is then retained as long as the magnetic field is effective. After switching off the magnetic field, the object returns to its original shape.
  • This effect can be attributed to the fact that in the magnetic field, the magnetic forces between the particles dominate, while the behavior without a magnetic field is determined by the elastic forces of the elastomer. A prerequisite for this is that the elastic forces are not too strong.
  • a soft elastomer matrix is therefore particularly advantageous; the described behavior can be used, for example, for safety systems or artificial muscles. The invention is explained below with reference to exemplary embodiments and FIGS. 1 to 7:
  • silicone polymer PTS-P 7000N ( ⁇ , ⁇ -divinylpoly-dimethylsiloxane, viscosity 7000 mPas, density 0.975 g / cm3 at 23 0 C, Wacker-Chemie GmbH) are in an aluminum container of 250 ml content to 0, 001 g Weighing accuracy weighed.
  • 0.5 g of inhibitor PT 67 (density 0.97 g / cm 3 at 23 ° C., Wacker-Chemie GmbH) are added and homogenized with constant stirring by means of a glass rod (diameter 10 mm).
  • the preparation is analogous to Embodiment 1 / wherein the amount of iron powder is increased to 93.8 g.
  • the preparation is analogous to embodiment 1 / wherein the amount of iron powder is increased to 160.8 g.
  • Example 2 The preparation is analogous to Example 1, wherein the addition of the iron powder is omitted.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Silicone elastomer with 20% by volume of iron particles and crosslinking in the magnetic field
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Silicone elastomer with 30 vol .-% iron particles and crosslinking in the magnetic field Silicone elastomer with 30 vol .-% iron particles and crosslinking in the magnetic field
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Example 4 The preparation is analogous to Example 4, wherein the crosslinking of the silicone in a Magnet ⁇ field of strength 1.28 T.
  • the mechanical properties of the cross-linked magnetorheological elastomer samples would be tion rheometer MCR 300 of the company Paar-Physica in one. Magnetic field variable strength examined.
  • the disk-shaped sample with a diameter of 20 mm is located between two parallel, horizontally arranged plates, of which the upper plate exerts a predetermined torsional vibration and thus oscillates the sample to shear deformation.
  • the magnetic field penetrates the sample vertically, ie perpendicular to the plate plane.
  • the amplitude of the shear deformation was kept constant at 0.01 (corresponding to 1%).
  • the frequency of the vibration was 10 Hz, the temperature was 25 0 C.
  • the current in the magnetic field exciting coil was gradually increased and thus increases the magnetic field strength.
  • the memory module describes the elastic behavior of the material (storage of mechanical energy), while the loss modulus describes the viscous behavior of the material (dissipation of mechanical energy and conversion into heat).
  • the measurement results are shown in FIGS. 1 to 7.
  • the measurement results show that the mechanical properties of the magnetorheological elastomers can be changed to a previously unknown extent by the magnetic field strength.
  • the mechanical properties also depend on the volume fraction of the iron particles in the elastomer and on the size distribution, shape and composition of the particles.
  • Another influencing factor is the magnetic field which is applied during the crosslinking of the elastomer.
  • the storage modulus is increased from an initial value of 30 kPa to a value of almost by a magnetic field applied during the measurement with a flux density of 700 mT 3 MPa, ie by a factor of nearly 100, increased (Figure 1).
  • For the loss modulus an increase of 30 kPa to about 1 MPa is achieved in this sample (FIG. 2).
  • magnetorheological elastomers according to the invention are their shape memory effect. After a shaped body of the magnetorheological elastomer (eg a cube) has been stiffened in a sufficiently strong magnetic field, it can be deformed by the action of external forces. This changed shape will be retained as long as the magnetic field works. In the case of a stepwise reduction of the magnetic field strength, the shaped body finally returns to its original shape. This shape memory effect can be repeated many times (FIG. 7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft magnetorheologi­sche Elastomere aus mindestens einem nicht-magnetisierbaren elastomeren Trägermedium und darin enthaltenen magnetisierbaren Partikeln sowie deren Verwendung. Bei derartigen MRE können die mechanischen Eigenschaften wie der Schubmodul durch ein angelegtes Magnetfeld reversibel verändert werden.

Description

Magnetorheologische Elastomere und deren Verwendung
Die Erfindung betrifft magnetorheologische Elastomere aus mindestens einem nicht-magnetisierbaren elastome- ren Trägermedium und darin enthaltenen magnetisierba- ren Partikeln sowie deren Verwendung. Bei derartigen MRE können die mechanischen Eigenschaften wie der Schubmodul durch ein angelegtes Magnetfeld reversibel verändert werden.
Magnetisch steuerbare Elastomerkomposite aus einer Elastomermatrix und magnetisch polarisierbaren Parti¬ keln, sog. magnetorheologische Elastomere (MRE) , sind bereits bekannt. Die EP 41 88 07 Bl beschreibt z.B. die Herstellung eines hochgesättigten Nitrilkaut- schuks ohne Bindemittel und Reaktionsbeschleuniger, indem Strontium und/oder Bariumferrite eingelagert sind. Nach dem vorstehend erwähnten europäischen Pa- tent wird dabei nach dem Formen das Material durch Einwirken eines Hochspannungselektronenstrahls ausge¬ härtet.
Die WO 230 25 056 Al beschreibt eine Harzzusammenset- zung bestehend aus 50 bis 95 Masse-% eines Elastomers sowie 50 bis 5 Masse-% eines Ethylencopolymers mit einer hohen Festigkeit und guten elastischen Eigen¬ schaften. In diesem Harz sind magnetische Pulver ent- halten.
Nachteilig bei den bisher im Stand der Technik be¬ kannten MRE' s ist es jedoch, dass die mechanischen Eigenschaften dieser vorbekannten MRE' s nur in Gren- zen durch das angelegte Magnetfeld einstellbar waren. Dadurch sind die Einsatzmöglichkeiten dieser MRE' s begrenzt.
Ausgehend hiervon ist deshalb die Aufgabe der vorlie- genden Erfindung, neue MRE' s anzugeben, die eine be¬ sonders hohe Variabilität durch das angelegte Magnet¬ feld in Bezug auf die mechanischen Eigenschaften auf¬ weisen. Eine weitere Aufgabe der Erfindung ist es, entsprechende Verwendungsmöglichkeiten für derartige magnetorheologische Elastomere aufzuzeigen.
Die Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Die Patentansprüche 15 und 16 geben die erfindungsgemäßen Verwendungen an. Die Unteransprüche zeigen vorteilhafte Weiterbildun¬ gen auf. Gemäß der vorliegenden Erfindung wird somit vorge¬ schlagen, dass spezielle elastomere Trägermedien ein¬ gesetzt werden und zwar solche, die einen Schubmodul < 500 kPa gemessen bei einer Frequenz von 10 Hz und einer Deformation von 1 % kPa bevorzugt < 250 kPa aufweisen. Damit lassen sich Steigerungen im Schubmo¬ dul um den Faktor 100 oder mehr erreichen. Die ausge¬ zeichneten Eigenschaften der erfindungsgemäßen magne- torheologischen Elastomere werden darauf zurückge- führt, dass besonders „weiche elastomere Trägerme¬ dien" eingesetzt werden. Die Elastomere der Erfindung sind Polymere mit gummielastischem Verhalten, die bei Gebrauchstemperatur aufgrund der Vernetzung der Poly¬ merketten nicht viskos fließen können (siehe auch Römpp Chemie Lexikon, 1. Auflage, Seite 1105 ff.) . Die elastomeren Trägermedien nach der Erfindung be¬ sitzen neben dem vorstehend beschriebenen Schubmodul eine Shorehärte A von unter 20, bevorzugt unter 10 und ein E-Modul < 1500 kPa, bevorzugt < 750 kPa auf- weisen. Das Schubmodul der Elastomere nach der Erfin¬ dung wird oszillatorisch bei einer konstanten Fre¬ quenz und Scherdeformation bestimmt. Es handelt sich somit um eine Materialeigenschaft des Elastomers.
Es wird vermutet, dass die hohe Steigung des Schubmo¬ duls im Magnetfeld auf die relativ hohe Beweglichkeit der magnetischen Partikeln im schwach vernetzten Elastomer zurückzuführen ist. Damit wird erreicht, dass die magnetischen Anziehungskräfte zwischen den Teilchen, die durch das Elastomer erzeugten Halte¬ kräfte überwinden, sodass sich die Partikel im Mag¬ netfeld zu mechanisch besonders festen Strukturen zu- saimτienlegen können. Eine Besonderheit der erfindungs- gemäßen MRE' s ist darin zu sehen, dass bei einer Ver¬ ringerung des Vernetzungsgrades im Elastomer zwar der Grundschubmodul erwartungsgemäß abnimmt, der Schubmo- dul in einem starken Magnetfeld teilweise aber über¬ raschenderweise zunimmt.
Bei den erfindungsgemäßen MRE' s ist es bevorzugt, wenn das Elastomer aus Silicon oder Polyurethan aus- gewählt ist, wobei, wie eingangs bereits ausgeführt, das entsprechende Schubmodul vorhanden sein muss.
Elastomere, die für die erfindungsgemäßen MRE' s ein¬ gesetzt werden können, sind käuflich erhältlich, z.B. bei Bayer AG oder Wacker-Chemie GmbH. Die Elastomere können dabei so hergestellt werden, dass ausgehend von den flüssigen Edukten eine thermische oder photo¬ chemische Vernetzung durchgeführt wird, wobei die Edukte zur Herstellung der Elastomere so ausgelegt sind, dass ein entsprechender Vernetzungsgrad und ein entsprechendes Schubmodul, wie es gemäß Patentan¬ spruch 1 gefordert wird, eingestellt wird.
Silicon-Elastomere werden beispielsweise durch PoIy- addition von langkettigen, vinylgruppenhaltigen Di- methylsiloxan-Polymeren mit kurzkettigen, silanhalti- gen Dimethylsiloxan-Polymeren hergestellt. Je nach Lage der Silan-Gruppen werden die Polymere zu Ketten verlängert oder zu einem dreidimensionalen Netzwerk vernetzt. Durch Variation des Silan-Anteils kann das bei der Vernetzung entstehende Silicon-Elastomer in seinem Vernetzungsgrad und somit in seinen Modulwer- ten eingestellt werden.
Polyurethan-Elastomere werden beispielsweise durch Polyaddition von Hydroxyl- mit Cyanat-Gruppen synthe- tisiert. Die Funktionalität der Cyanat- oder Hydro- xyl-Reagenzien bestimmen hierbei den Vernetzungsgrad: Bifunktionelle Edukte verlängern die Molekülketten, trifunktionelle Edukte bilden dreidimensionale Ver¬ netzungsstellen.
Bei den magnetisierbaren Partikeln können alle an und für sich aus dem Stand der Technik für MRE' s bzw. für die magnetorheologischen Flüssigkeiten bekannten Par¬ tikel eingesetzt werden. Bevorzugt sind dies magneti- sierbare Partikel aus weichmagnetischen Materialien. Beispiele hierfür sind: Weichmagnetische metallische Werkstoffe wie Eisen, Kobalt, Nickel (auch in nicht¬ reiner Form) und Legierungen daraus wie Eisen-Kobalt, Eisen-Nickel, magnetischer Stahl, Eisen-Silizium und/oder deren Mischungen. Weiterhin können magneti- sierbare Partikel aus weichmagnetischen oxidkerami¬ schen Werkstoffen eingesetzt werden, wie kubische Ferrite, Perowskite und Granaten der allgemeinen For¬ mel: MO.Fe2Ü3 mit einem oder mehreren Metallen aus der Gruppe Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd oder Magne¬ sium und/oder deren Mischungen. Auch können Mischfer- rite wie MnZn-, NiZn-, NiCo-, NiCuCo-, NiMg-, CuMg- Ferrite und/oder deren Mischungen eingesetzt werden, wie auch Partikel aus Eisencarbid, Eisennitrid, Le- gierungen von Vanadium, Wolfram, Kupfer und Mangan und/oder deren Mischungen. Die bevorzugte mittlere Partikelgröße liegt dabei im Bereich von 5 nm bis 10 mm, bevorzugt zwischen 10 nm und 1 mm. Die Parti¬ kelgrößenverteilung kann auch bimodal sein.
Bei den magnetorheologischen Elastomeren nach der Er¬ findung, können die magnetisierbaren Partikel isotrop oder anisotrop in der Elastomermatrix verteilt sein.
Eine anisotrope Anordnung wird dadurch erreicht, dass den magnetisierbaren Teilchen bereits vor und/oder während der Vernetzung durch Anlegen eines Magnetfel¬ des eine kettenförmige Struktur entlang der Feldli- nien eingeprägt wird. Durch die Stärke des vor bzw. während der Vernetzung herrschender Magnetfeldes las¬ sen sich Feinheiten der eingeprägten Struktur vorge¬ ben.
Eine gleichmäßige Verteilung der Teilchen in der Elastomermatrix wird ohne Anlegen eines Magnetfeldes durch sorgfältiges Homogenisieren erreicht.
Die Möglichkeit der anisotropen bzw. isotropen Anord¬ nung der Teilchen in der Elastomermatrix hat bei den erfindungsgemäßen MRE' s eine hohe Bedeutung. Damit können die mechanischen Grundeigenschaften, aber auch die Veränderungen der mechanischen Eigenschaften beim Anlegen eines Magnetfeldes zusätzlich eingestellt werden.
Die erfindungsgemäßen magnetorheologischen Elastomere können selbstverständlich auch im Stand der Technik schon bekannte Additive enthalten, wie Dispergiermit¬ tel, Antioxidantien, Entschäumer, Weichmacher und/oder Antiverschleißmittel. Eine bevorzugte Zusammensetzung der erfindungsgemäßen MRE' s ist wie folgt:
der Anteil der magnetisierbaren Partikel beträgt zwischen 5 und 70 Vol.-%, bevorzugt zwischen 10 und 60 Vol.-%.
der Anteil des elastomeren Trägermediums beträgt zwischen 20 und 95 Vol.-%, bevorzugt zwischen 30 und 90 Vol.-%.
der Anteil der Additive beträgt bis zu 20 Mas- se-%, bevorzugt zwischen 0,01 und 15 Masse-%, bezogen auf die magnetisierbaren Feststoffe.
Die Erfindung betrifft weiterhin die Verwendung der magnetorheologischen Materialien.
Es wurde festgestellt, dass bei den erfindungsgemäßen MRE' s sowohl der Speichermodul (beschreibt das elas¬ tische Verhalten bzw. Energiespeicherung) als auch der Verlustmodul (beschreibt das viskose Verhalten bzw. Energiedissipation) durch das Magnetfeld beein- flusst werden. Gleiches gilt auch für den Verlustfak¬ tor als Verhältnis von Verlust- und Speichermodul. Damit entstehen technisch bedeutende Möglichkeiten der elektrisch gesteuerten Schwingungsdämpfung bzw. Schwingungsisolation.
Eine spezielle Ausführungsform der Nutzung von derar¬ tigen MRE' s besteht im Aufbau eines Magnetkreises un¬ ter Einschluss eines Elektromagneten und eines Perma- nentmagneten. Durch die Auswahl eines Permanentmagne- ten kann eine erhöhte Grundsteifigkeit des Elastomer- komposits eingestellt werden. Der Elektromagnet kann je nach Richtung des fließenden Stromes das Magnet¬ feld stärken oder schwächen und damit die Steifigkeit des Elastomerkomposits (E-Modul bzw. Schubmodul) ent¬ weder erhöhen oder verringern. Damit kann beispiels¬ weise der Arbeitspunkt in einem schwingungsdämpfenden System festgelegt werden. Die erfindungsgemäßen MRE' s können für eine Reihe von Anwendungen wie z.B. für die Schwingungsdämpfung, Schwingungsisolation, Akto¬ ren, Sicherheitsschalter, haptische Systeme und künstliche Muskeln eingesetzt werden.
Eine weitere interessante Eigenschaft der Elastomer- komposite besteht im Auftreten eines Formgedächtnis¬ effektes. Im Magnetfeld und damit im versteiften Zu¬ stand des Komposits kann ein aus dem Kompositmaterial abgeformter Gegenstand durch Einwirkung von äußeren Kräften verformt werden. Die neue Form bleibt an- schließend erhalten, solange das Magnetfeld wirkt. Nach Abschalten des Magnetfelds geht der Gegenstand in seine ursprüngliche Form zurück. Dieser Effekt lässt sich darauf zurückführen, dass im Magnetfeld, die magnetischen Kräfte zwischen den Teilchen domi- nieren, während das Verhalten ohne Magnetfeld durch die elastischen Kräfte des Elastomers bestimmt wird. Eine Vorraussetzung hierfür besteht darin, dass die elastischen Kräfte nicht zu stark sind. Eine weiche Elastomermatrix ist daher besonders vorteilhaft, das beschriebene Verhalten kann z.B. für Sicherheitssys¬ teme oder künstliche Muskeln genutzt werden. Die Erfindung wird nachfolgend anhand von Ausfüh¬ rungsbeispielen und den Figuren 1 bis 7 erläutert:
Ausführungsbeispiel 1:
Siliconelastomer mit 10 Vol.-% Eisenpartikeln
45,8 g Siliconpolymer PTS-P 7000N (α, ω-Divinylpoly- dimethylsiloxan, Viskosität 7000 mPas, Dichte 0,975 g/cm3 bei 23 0C, Wacker-Chemie GmbH) werden in einem Aluminiumbehälter von 250 ml Inhalt auf 0, 001 g Ein¬ waagegenauigkeit eingewogen. Hierzu werden 0, 5 g In¬ hibitor PT 67 (Dichte 0,97 g/cm3 bei 23 °C, Wacker- Chemie GmbH) hinzugefügt und unter stetigem Rühren mittels eines Glasstabes (Durchmesser 10 mm) homoge¬ nisiert. Anschließend werden 0,5 g Vernetzer PTS-X 58 (Dichte 0,98 g/cm3 bei 23 0C, Wacker-Chemie GmbH) sorgfältig eingerührt, bis alle Komponenten gleichmä¬ ßig verteilt sind. Danach werden 41, 69 g Eisenpulver (Höganäs ASC 300, mittlere Partikelgröße 41 um) lang¬ sam eindispergiert. Unter stetigem Rühren werden nun 0,1 g Katalysator EP (1, 1, 3, 3-Tetramethyl-l, 3-Divi- nylsiloxan-Platinkomplex, Dichte 0,96 g/cm3 bei 23 0C, Wacker-Chemie GmbH) hinzugegeben. Nach sorgfälti- gern Homogenisieren wird der Aluminiumbehälter in ei¬ nen ausreichend großen Exsikkator gestellt und 5 Mi¬ nuten evakuiert. Anschließend wird das Gemisch lang¬ sam in Probenformen aus Polytetrafluorethylen mit 20 mm Durchmesser und 1 mm Höhe gegossen und 2 Stunden bei 120 0C getempert. Ausführungsbeispiel 2:
Siliconelastomer mit 20 Vol.-% Eisenpartikeln
Die Herstellung erfolgt analog zu Ausführungsbeispiel 1/ wobei die Menge des Eisenpulvers auf 93,8 g erhöht wird.
Ausführungsbeispiel 3:
Siliconelastomer mit 23VoI.-% Eisenpartikeln
Die Herstellung erfolgt analog zu Ausführungsbeispiel 1/ wobei die Menge des Eisenpulvers auf 160,8 g er- höht wird.
Ausführungsbeispiel 4 :
Referenzprobe Siliconelastomer ohne Eisenpartikel
Die Herstellung erfolgt analog zu Ausführungsbeispiel 1, wobei die Zugabe des Eisenpulvers unterbleibt.
Ausführungsbeispiel 5:
Siliconelastomer mit 10 Vol.-% Eisenpartikeln und Vernetzung im Magnetfeld
Die Herstellung erfolgt analog zu Ausführungsbeispiel 1, wobei die Vernetzung des Silicons in einem Magnet¬ feld der Stärke 1,28 T erfolgt. Ausführungsbeispiel 6:
Siliconelastomer mit 20 Vol.-% Eisenpartikeln und Vernetzung im Magnetfeld
Die Herstellung erfolgt analog zu Ausführungsbeispiel
2, wobei die Vernetzung des Silicons in einem Magnet¬ feld der Stärke 1,28 T erfolgt.
Ausführungsbeispiel 7:
Siliconelastomer mit 30 Vol.-% Eisenpartikeln und Vernetzung im Magnetfeld
Die Herstellung erfolgt analog zu Ausführungsbeispiel
3, wobei die Vernetzung des Silicons in einem Magnet¬ feld der Stärke 1,28 T erfolgt.
Ausführungsbeispiel 8:
Referenzprobe Siliconelastomer ohne Eisenpartikel und Vernetzung im Magnetfeld
Die Herstellung erfolgt analog zu Ausführungsbeispiel 4, wobei die Vernetzung des Silicons in einem Magnet¬ feld der Stärke 1,28 T erfolgt.
Durchführung der Messungen an den magnetorheologi- schen Elastomeren
Die mechanischen Eigenschaften der vernetzten magne- torheologischen Elastomerproben würden in einem Rota- tionsrheometer MCR 300 der Firma Paar-Physica in einem. Magnetfeld variabler Stärke untersucht. Dabei befindet sich die scheibenförmige Probe mit 20 mm Durchmesser zwischen zwei parallelen, horizontal an- geordneten Platten, von denen die obere Platte eine vorgegebene Drehschwingung ausübt und damit die Probe oszillatorisch einer Scherdeformation unterzieht. Das Magnetfeld durchdringt die Probe vertikal, d. h. senkrecht zur Plattenebene. Die Amplitude der Scher- deformation wurde mit 0,01 (entspricht 1 %) konstant gehalten. Die Frequenz der Schwingung betrug 10 Hz, die Temperatur war 25 0C. Während der Messung wurde die Stromstärke in der magnetfelderregenden Spule stufenweise gesteigert und damit die Magnetfeldstärke erhöht.
Bei der Messung werden außer der Scherdeformation auch die Schubspannung und die Phasenverschiebung zwischen beiden Größen vom Messgerät aufgenommen. Aus den Messgrößen werden der Speichermodul G' (Realteil des komplexen Schubmoduls) , der Verlustmodul G'' (Imaginärteil des komplexen Schubmoduls) sowie der Verlustfaktor tan δ = G' ' /G' bestimmt. Der Speicher¬ modul beschreibt das elastische Verhalten des Materi- als (Speicherung mechanischer Energie) , während der Verlustmodul das viskose Verhalten des Materials be¬ schreibt (Dissipation mechanischer Energie und Um¬ wandlung in Wärme) .
Die Messergebnisse sind in den Figuren 1 bis 7 darge¬ stellt. Die Messergebnisse zeigen, dass die mechanischen Eigenschaften der magnetorheologischen Elastomere in bisher nicht bekanntem Ausmaß durch die magnetische Feldstärke verändert werden können. Die mechanischen Eigenschaften hängen außerdem vom Volumenanteil der Eisenpartikel im Elastomer sowie von Größenvertei¬ lung, Form und Zusammensetzung der Partikel ab. Ein weiterer Einflussfaktor ist das Magnetfeld, das wäh¬ rend der Vernetzung des Elastomers angelegt wird, Beim Ausführungsbeispiel 3 wird der Speichermodul durch ein während der Messung angelegtes Magnetfeld mit einer Flussdichte von 700 mT von einem Anfangs¬ wert von 30 kPa auf einen Wert von nahezu 3 MPa, d. h. um einen Faktor von nahezu 100, gesteigert (Figur 1) . Für den Verlustmodul wird bei dieser Probe eine Steigerung von 30 kPa auf etwa 1 MPa erreicht (Figur 2) .
Die starke Veränderung des Verlustfaktors tan δ mit der angelegten magnetischen Feldstärke (Flussdichte) (Figuren 5 und 6) zeigt, dass der relative Anteil der dissipierten Energie durch das Magnetfeld gesteuert werden kann. Dies könnte für steuerbare Schwingungs¬ dämpfer interessant sein.
Eine weitere überraschende Eigenschaft der erfin¬ dungsgemäßen magnetorheologischen Elastomere ist ihr Formgedächtniseffekt. Nachdem ein Formkörper des magnetorheologischen Elastomers (z.B. ein Würfel) in einem hinreichend starken Magnetfeld versteift wurde, kann er durch Einwirken äußerer Kräfte verformt wer¬ den. Diese veränderte Form wird beibehalten, solange das Magnetfeld wirkt. Bei einer stufenweisen Reduzie¬ rung der Magnetfeldstärke geht der Formkörper schließlich wieder in seine Ausgangsform zurück. Die¬ ser Formgedächtniseffekt lässt sich viele Male wie¬ derholen (Figur 7) .

Claims

Patentansprüche
1. Magnetorheologische Elastomere aus mindestens einem nicht-magnetisierbaren elastomeren Träger- medium und darin enthaltenen magnetisierbaren
Partikeln, dadurch gekennzeichnet, dass das min¬ destens eine elastomere Trägermedium ein Elasto¬ mer ist, das einen Schubmodul < 500 kPa gemessen bei 10 Hz und einer Deformation von 1 % auf- weist.
2. Magnetorheologische Elastomere nach Anspruch 1, dadurch gekennzeichnet, dass das Schubmodul
< 250 kPa ist.
3. Magnetorheologische Elastomere nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elastomere Trägermedium ausgewählt ist aus gießfähigen Elastomermateria¬ lien wie Silikone oder Polyurethane.
4. Magnetorheologische Materialien nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetisierbaren Parti¬ kel aus weichmagnetischen Materialien ausgewählt sind.
5. Magnetorheologische Elastomere nach Anspruch 4, dadurch gekennzeichnet, dass die magnetisierba¬ ren Partikel aus weichmagnetischen metallischen Werkstoffen, wie Eisen, Kobalt, Nickel (auch in nicht-reiner Form) und Legierungen daraus, wie Eisen-Kobalt, Eisen-Nickel, magnetischer Stahl, Eisen-Silizium und/oder deren Mischungen ausge¬ wählt sind.
6. Magnetorheologische Elastomere nach Anspruch 4, dadurch gekennzeichnet, dass die magnetisierba- ren Partikel aus weichmagnetischen oxidkerami¬ schen Werkstoffen, wie kubischen Ferriten, Pe- rowskiten und Granaten der allgemeinen Formel
MO.Fe2O3
mit einem oder mehreren Metallen aus der Gruppe M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd oder Magnesi¬ um und/oder deren Mischungen ausgewählt sind.
7. Magnetorheologische Elastomere nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetisierbaren Parti- kel aus Mischferriten wie MnZn-, NiZn-, NiCo-,
NiCuCo-, NiMg-, CuMg-Ferriten und/oder deren Mi¬ schungen ausgewählt sind.
8. Magnetorheologische Elastomere nach einem oder mehreren der vorliegenden Ansprüche, dadurch ge- kennzeichnet, dass die magnetisierbaren Partikel aus Eisencarbid, Eisennitrid, Legierungen von Vanadium, Wolfram, Kupfer und Mangan und/oder deren Mischungen ausgewählt sind.
9. Magnetorheologische Elastomere nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Partikelgröße der magnetisierbaren Partikel zwischen 5 nm und 10 mm, bevorzugt zwischen 10 nm und 1 mm liegt.
10. Magnetorheologische Elastomere nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetisierbaren Parti¬ kel eine bimodale Größenverteilung aufweisen.
11. Magnetorheologische Elastomere nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetisierbaren Parti¬ kel eine anisotrope Verteilung in der Elastomer- matrix aufweisen.
12. Magnetorheologische Elastomere nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetisierbaren Parti¬ kel eine isotrope Verteilung in der Elastomer- matrix aufweisen.
13. Magnetorheologische Elastomere nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie als Additive Disper¬ giermittel, Antioxidantien, Entschäumer, Weich- macher und/oder Antiverschleißmittel enthalten.
14. Magnetorheologische Materialien nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
- der Anteil der magnetisierbaren Partikel zwischen 5 und 70 Vol.-%, bevorzugt zwischen 10 und 60 Vol.-%, liegt.
der Anteil des elastomeren Trägermediums zwischen 20 und 95 Vol.-%, bevorzugt zwischen 30 und 90 Vol.-% liegt.
der Anteil der Additive bis zu 20 Masse-%, bevorzugt zwischen 0,01 und 15 (bezogen auf die magnetisierbaren Feststoffe) beträgt.
15. Verwendung der magnetorheologischen Elastomere nach einem der vorhergehenden Ansprüche 1 bis 14 als magnetisch steuerbare Elastomerkomposite zu- sammen mit einem Magnetkreis, der Elektromagnete und Permanentmagnete zur Einstellung des Ar¬ beitspunktes der Steifigkeit enthält.
16. Verwendung der magnetorheologischen Elastomere nach einem der vorhergehenden Ansprüche als mag¬ netisch steuerbare Elastomerkomposition für die Schwingungsdämpfung, Schwingungsisolation, Akto¬ ren, Sicherheitsschalter, haptische Systeme und künstliche Muskeln
PCT/EP2005/009195 2004-08-27 2005-08-25 Magnetorheologische elastomere und deren verwendung WO2006024457A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT05782886T ATE510288T1 (de) 2004-08-27 2005-08-25 Magnetorheologische elastomere und deren verwendung
EP05782886A EP1782438B1 (de) 2004-08-27 2005-08-25 Magnetorheologische elastomere und deren verwendung
US11/574,397 US7608197B2 (en) 2004-08-27 2005-08-25 Magnetorheological elastomers and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004041649.4 2004-08-27
DE102004041649A DE102004041649B4 (de) 2004-08-27 2004-08-27 Magnetorheologische Elastomere und deren Verwendung

Publications (1)

Publication Number Publication Date
WO2006024457A1 true WO2006024457A1 (de) 2006-03-09

Family

ID=35295239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/009195 WO2006024457A1 (de) 2004-08-27 2005-08-25 Magnetorheologische elastomere und deren verwendung

Country Status (5)

Country Link
US (1) US7608197B2 (de)
EP (1) EP1782438B1 (de)
AT (1) ATE510288T1 (de)
DE (1) DE102004041649B4 (de)
WO (1) WO2006024457A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155109A1 (de) * 2007-06-21 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische kompositmaterialien mit hartmagnetischen partikeln, verfahren zu deren herstellung sowie deren verwendung
DE102009001769A1 (de) 2008-03-28 2009-10-01 Basf Se Magnetorheologische Elastomere
US7897060B2 (en) 2004-08-27 2011-03-01 Fraunhofer-Gesselschaft Zur Forderung Der Angewandten Forschung E.V. Magnetorheological materials having a high switching factor and use thereof
US8123971B2 (en) 2006-04-10 2012-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological elastomers (MREs) with polynorbornene as a carrier medium, processes for producing such elastomer composites and their use
EP2500589A1 (de) 2011-03-14 2012-09-19 Aktiebolaget SKF Lageranordnung
WO2018189088A1 (en) 2017-04-10 2018-10-18 Basf Se Dispersion of magnetizable particles in polyol, its preparation and use

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004041651B4 (de) * 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Materialien mit magnetischen und nichtmagnetischen anorganischen Zusätzen und deren Verwendung
DE102005034925B4 (de) * 2005-07-26 2008-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomerkomposite sowie deren Verwendung
DE102006020650B3 (de) * 2006-05-02 2007-08-23 Thyssenkrupp Presta Ag Lenksäule für ein Kraftfahrzeug
WO2008074701A1 (de) * 2006-12-20 2008-06-26 Basf Se Anisotrope zellige elastomere
DE102007017589B3 (de) * 2007-04-13 2008-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dämpfungsvorrichtung mit feldsteuerbarer Flüssigkeit
DE102008026887B4 (de) * 2008-06-05 2012-02-23 Tridelta Weichferrite Gmbh Weichmagnetischer Kompositwerkstoff
EP2131373B1 (de) 2008-06-05 2016-11-02 TRIDELTA Weichferrite GmbH Weichmagnetischer Werkstoff und Verfahren zur Herstellung von Gegenständen aus diesem weichmagnetischen Werkstoff
DE102008057575A1 (de) * 2008-11-15 2010-05-20 Bayerische Motoren Werke Aktiengesellschaft Aktor mit einem magnetorheologischen Elastomer-Element
DE102008044388A1 (de) * 2008-12-05 2010-06-10 Holger Redtel Materialien mit elektrisch bzw. magnetisch induzierter Einstellung mechanischer Eigenschaften
US8820492B1 (en) 2009-08-31 2014-09-02 Advanced Materials And Devices, Inc. Soft matrix magnetorheological mounts for shock and vibration isolation
DE102012202418A1 (de) 2011-11-04 2013-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adaptive Feststell-und Lösevorrichtung und deren Verwendung zum gesteuerten Blockieren bzw. Freigeben beweglicher Bauteile
KR101724747B1 (ko) 2011-11-23 2017-04-10 현대자동차주식회사 Mre를 이용한 가변형 디퍼런셜 마운트 장치
US10414054B2 (en) * 2013-03-29 2019-09-17 Koninklijke Philips N.V. Force feedback gripping device with magnetorheological based actuator
WO2014201913A1 (zh) * 2013-06-19 2014-12-24 哈尔滨工业大学 一种基于磁流变弹性体的板材软模成形装置及方法
DE102014222832A1 (de) * 2014-11-10 2016-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Linearaktor und dessen Verwendung
JP2016102906A (ja) * 2014-11-28 2016-06-02 キヤノン株式会社 画像加熱装置、定着装置、及び画像形成装置
CN104725835B (zh) * 2015-04-07 2018-04-20 重庆大学 一种受磁场控制阻尼显著变化的粘弹性材料
US10173349B2 (en) 2016-01-21 2019-01-08 The Boeing Company Bladder that changes stiffness based on temperature effects for manufacture of composite components
JP6113351B1 (ja) * 2016-03-25 2017-04-12 富士高分子工業株式会社 磁気粘弾性エラストマー組成物、その製造方法及びこれを組み込んだ振動吸収装置
CN106970340B (zh) * 2017-04-12 2023-07-28 浙江师范大学 一种基于各向异性磁流变弹性体的磁场强度测量装置
CN110709475A (zh) * 2017-06-05 2020-01-17 株式会社阿瑞斯科技 成形品、食品制造装置用部件及食品制造用高分子制品
DE102018112683A1 (de) * 2017-07-03 2019-01-03 Fuji Polymer Industries Co., Ltd. Verfahren und Vorrichtung zum Herstellen eines radial ausgerichteten magnetorheologischen Elastomer-Formkörpers
CN108727710B (zh) * 2018-06-05 2019-12-17 重庆大学 具有高耐热及拉伸特性的磁流变弹性体的制备方法
CN109504097A (zh) * 2019-01-09 2019-03-22 兰州理工大学 一种复合磁敏弹性体及其制备方法
US11158450B2 (en) * 2019-06-17 2021-10-26 International Business Machines Corporation Particle-based, anisotropic composite materials for magnetic cores
KR20210010175A (ko) * 2019-07-19 2021-01-27 현대자동차주식회사 자기유변 탄성체
CN113515868A (zh) * 2021-08-04 2021-10-19 常熟理工学院 一种磁流变弹性体的链簇模型构建方法及性能估测方法
CN113757296B (zh) * 2021-09-08 2023-03-21 青岛大学 一种刚度可调节的磁流变弹性体减震器及其制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0784163A1 (de) * 1996-01-11 1997-07-16 Ford Motor Company Limited Magnetorheologisches Elastomer benutzende Buchse mit veränderlicher Steifigkeit
US6027664A (en) * 1995-10-18 2000-02-22 Lord Corporation Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid
WO2001061713A1 (en) * 2000-02-18 2001-08-23 The Board Of Regents Of The University And Community College System Of Nevada Magnetorheological polymer gels

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575360A (en) * 1947-10-31 1951-11-20 Rabinow Jacob Magnetic fluid torque and force transmitting device
DE1024439B (de) * 1952-05-24 1958-02-13 Johan E Graae Vollmantel-Zentrifuge
US2938183A (en) * 1956-11-09 1960-05-24 Bell Telephone Labor Inc Single crystal inductor core of magnetizable garnet
US3425666A (en) * 1963-02-21 1969-02-04 Chevron Res Process for producing ferrimagnetic materials
US3426666A (en) 1966-03-14 1969-02-11 Mamiya Camera Single-lens reflex camera using cartridge film
GB1428000A (en) * 1972-03-07 1976-03-10 Lignes Telegraph Telephon Magnetic materials for magnetic circuits
JPS6259564A (ja) * 1985-09-10 1987-03-16 日本碍子株式会社 セラミツクス用成形助剤及びそれを用いて得られた成形体並びにセラミツクス製品の製造法
DE3890400C2 (de) 1987-05-19 1994-02-10 Bridgestone Corp Verwendung einer Kautschukmischung in der Laufschicht von Luftreifen
US5771013A (en) * 1989-05-01 1998-06-23 Dow Corning Corporation Method for stabilizing compositions containing carbonyl iron powder
US5002677A (en) * 1989-09-19 1991-03-26 The B. F. Goodrich Company Flexible high energy magnetic blend compositions based on ferrite particles in highly saturated nitrile rubber and methods of processing the same
JPH03119041A (ja) 1989-09-30 1991-05-21 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
DE4101869A1 (de) 1991-01-23 1992-07-30 Basf Ag Kunststoffmischung mit ferromagnetischen oder ferroelektrischen fuellstoffen
EP0636273B1 (de) * 1992-04-14 1997-08-20 Byelocorp Scientific, Inc. Magnetorheologische flüssigkeiten und herstellungsverfahrens
EP0667029B1 (de) * 1992-10-30 1998-09-23 Lord Corporation Magnetorheologische thixotrope materialien
US5578238A (en) * 1992-10-30 1996-11-26 Lord Corporation Magnetorheological materials utilizing surface-modified particles
WO1994010694A1 (en) * 1992-10-30 1994-05-11 Lord Corporation Magnetorheological materials utilizing surface-modified particles
US5549837A (en) 1994-08-31 1996-08-27 Ford Motor Company Magnetic fluid-based magnetorheological fluids
US5579837A (en) * 1995-11-15 1996-12-03 Ford Motor Company Heat exchanger tube and method of making the same
DE19613194A1 (de) * 1996-04-02 1997-10-09 Huels Chemische Werke Ag Reifenlaufflächen mit geringem Rollwiderstand und verbessertem ABS-Bremsen
US5667715A (en) * 1996-04-08 1997-09-16 General Motors Corporation Magnetorheological fluids
DE19614140C1 (de) 1996-04-10 1997-05-07 B & F Formulier Und Abfuell Gm Verfahren zur Herstellung einer Dichtungsmasse
DE19725971A1 (de) 1997-06-19 1998-12-24 Huels Silicone Gmbh RTV-Siliconkautschuk-Mischungen
US5985168A (en) * 1997-09-29 1999-11-16 University Of Pittsburgh Of The Commonwealth System Of Higher Education Magnetorheological fluid
US5971835A (en) * 1998-03-25 1999-10-26 Qed Technologies, Inc. System for abrasive jet shaping and polishing of a surface using magnetorheological fluid
US6123633A (en) * 1998-09-03 2000-09-26 Wilson Sporting Goods Co. Inflatable game ball with a lobular carcass and a relatively thin cover
US6399193B1 (en) * 1998-12-18 2002-06-04 The University Of Massachusetts Lowell Surfacing laminate with bonded with pigmented pressure sensitive adhesive
US6203717B1 (en) * 1999-07-01 2001-03-20 Lord Corporation Stable magnetorheological fluids
US6132633A (en) * 1999-07-01 2000-10-17 Lord Corporation Aqueous magnetorheological material
US6599439B2 (en) * 1999-12-14 2003-07-29 Delphi Technologies, Inc. Durable magnetorheological fluid compositions
US6395193B1 (en) * 2000-05-03 2002-05-28 Lord Corporation Magnetorheological compositions
DE10024439A1 (de) 2000-05-19 2001-12-06 Koppe Franz Verguss- oder Einbettmasse mit elektromagnetischen Abschirmeigenschaften zur Herstellung elektronischer Bauteile
US6451219B1 (en) * 2000-11-28 2002-09-17 Delphi Technologies, Inc. Use of high surface area untreated fumed silica in MR fluid formulation
JP4104978B2 (ja) 2000-11-29 2008-06-18 ジ アドバイザー − ディフェンス リサーチ アンド ディベラップメント オーガナイゼイション 磁気流動学的流体組成物およびその製造方法
US6610404B2 (en) * 2001-02-13 2003-08-26 Trw Inc. High yield stress magnetorheological material for spacecraft applications
JP3608612B2 (ja) * 2001-03-21 2005-01-12 信越化学工業株式会社 電磁波吸収性熱伝導組成物及び熱軟化性電磁波吸収性放熱シート並びに放熱施工方法
US20030030026A1 (en) 2001-08-06 2003-02-13 Golden Mark A. Magnetorheological fluids
US20030034475A1 (en) 2001-08-06 2003-02-20 Ulicny John C. Magnetorheological fluids with a molybdenum-amine complex
US6855426B2 (en) * 2001-08-08 2005-02-15 Nanoproducts Corporation Methods for producing composite nanoparticles
US20030042461A1 (en) 2001-09-04 2003-03-06 Ulicny John C. Magnetorheological fluids with an additive package
US20040186234A1 (en) * 2001-09-14 2004-09-23 Masashi Tsukamoto Resin composition
US6592772B2 (en) * 2001-12-10 2003-07-15 Delphi Technologies, Inc. Stabilization of magnetorheological fluid suspensions using a mixture of organoclays
US20040126565A1 (en) * 2002-05-09 2004-07-01 Ganapathy Naganathan Actively controlled impact elements
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
US7261834B2 (en) * 2003-05-20 2007-08-28 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Tunable magneto-rheological elastomers and processes for their manufacture
US7419616B2 (en) * 2004-08-13 2008-09-02 Gm Global Technology Operations, Inc. Magnetorheological fluid compositions
DE102004041650B4 (de) * 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Materialien mit hohem Schaltfaktor und deren Verwendung
DE102004041651B4 (de) * 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Materialien mit magnetischen und nichtmagnetischen anorganischen Zusätzen und deren Verwendung
DE102005034925B4 (de) 2005-07-26 2008-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomerkomposite sowie deren Verwendung
US7393463B2 (en) * 2005-09-16 2008-07-01 Gm Global Technology Operations, Inc. High temperature magnetorheological fluid compositions and devices
US7354528B2 (en) * 2005-09-22 2008-04-08 Gm Global Technology Operations, Inc. Magnetorheological fluid compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027664A (en) * 1995-10-18 2000-02-22 Lord Corporation Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid
EP0784163A1 (de) * 1996-01-11 1997-07-16 Ford Motor Company Limited Magnetorheologisches Elastomer benutzende Buchse mit veränderlicher Steifigkeit
WO2001061713A1 (en) * 2000-02-18 2001-08-23 The Board Of Regents Of The University And Community College System Of Nevada Magnetorheological polymer gels

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAVIS L C: "Model of magnetorheological elastomers", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 85, no. 6, 15 March 1999 (1999-03-15), pages 3348 - 3351, XP012046944, ISSN: 0021-8979 *
GINDER J M ; NICHOLS M E ; ELIE L D ; TARDIFF J L: "Magnetorheological elastomers: Properties and applications", PROC SPIE INT SOC OPT ENG; PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 1999 SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, BELLINGHAM, WA, USA, vol. 3675, March 1999 (1999-03-01), pages 131 - 138, XP002355156 *
JOLLY M R ET AL: "A model of the behavior of magnetorheological materials", SMART MATERIALS AND STRUCTURES, IOP PUBLISHING LTD., BRISTOL, GB, vol. 5, 1996, pages 607 - 614, XP002030580, ISSN: 0964-1726 *
JOLLY MARK R ET AL: "Magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix", J INTELL MATER SYST STRUCT; JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES NOV 1996, vol. 7, no. 6, November 1996 (1996-11-01), NY, US, pages 613 - 622, XP009057466 *
SHEN Y. ET AL.: "Experimental research and modeling of magnetorheological elastomers", JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES SAGE PUBLICATIONS USA, vol. 16, no. 2, January 2004 (2004-01-01), pages 27 - 35, XP002355157, ISSN: 1045-389X *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897060B2 (en) 2004-08-27 2011-03-01 Fraunhofer-Gesselschaft Zur Forderung Der Angewandten Forschung E.V. Magnetorheological materials having a high switching factor and use thereof
US8123971B2 (en) 2006-04-10 2012-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological elastomers (MREs) with polynorbornene as a carrier medium, processes for producing such elastomer composites and their use
WO2008155109A1 (de) * 2007-06-21 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische kompositmaterialien mit hartmagnetischen partikeln, verfahren zu deren herstellung sowie deren verwendung
DE102009001769A1 (de) 2008-03-28 2009-10-01 Basf Se Magnetorheologische Elastomere
EP2500589A1 (de) 2011-03-14 2012-09-19 Aktiebolaget SKF Lageranordnung
DE102011005494A1 (de) * 2011-03-14 2012-09-20 Aktiebolaget Skf Lageranordnung
DE102011005494B4 (de) * 2011-03-14 2012-12-06 Aktiebolaget Skf Lageranordnung
WO2018189088A1 (en) 2017-04-10 2018-10-18 Basf Se Dispersion of magnetizable particles in polyol, its preparation and use

Also Published As

Publication number Publication date
EP1782438B1 (de) 2011-05-18
US20080318045A1 (en) 2008-12-25
DE102004041649B4 (de) 2006-10-12
US7608197B2 (en) 2009-10-27
DE102004041649A1 (de) 2006-03-02
ATE510288T1 (de) 2011-06-15
EP1782438A1 (de) 2007-05-09

Similar Documents

Publication Publication Date Title
EP1782438B1 (de) Magnetorheologische elastomere und deren verwendung
EP1907724B1 (de) Magnetorheologische elastomerkomposite sowie deren verwendung
DE60008533T2 (de) Stabile magnetorheologische flüssigkeiten
EP2010598A1 (de) Magneto-rheologische elastomere (mre) mit polynorbornen als trägermedium, verfahren zur herstellung solcher elastomerkomposite sowie deren verwendung
US7897060B2 (en) Magnetorheological materials having a high switching factor and use thereof
EP2160741B1 (de) Magnetorheologische kompositmaterialien mit hartmagnetischen partikeln, verfahren zu deren herstellung sowie deren verwendung
EP1198803B1 (de) Wasserhaltige magnetorheologische materialien
DE1944432C3 (de) Dauermagnet
EP1782439B1 (de) Magnetorheologische materialien mit magnetischen und nichtmagnetischen anorganischen zusätzen und deren verwendung
Yu et al. A dimorphic magnetorheological elastomer incorporated with Fe nano-flakes modified carbonyl iron particles: Preparation and characterization
EP1423859A1 (de) Magnetorheologische fluide mit einem zusatzstoffpaket
US20030034475A1 (en) Magnetorheological fluids with a molybdenum-amine complex
DE112010002358T5 (de) Magnetorheologische Zusammensetzungen, die nicht-magnetisches Material umfassen
DE102018112683A1 (de) Verfahren und Vorrichtung zum Herstellen eines radial ausgerichteten magnetorheologischen Elastomer-Formkörpers
CN111564274A (zh) 单晶磁粉及其磁流变流体和方法
KR101602315B1 (ko) 판 형상의 철 입자들을 포함하는 자기유변유체
KR100936013B1 (ko) 자기가변 점성유체 조성물
Sherje et al. Synthesis and Optimization of Magneto-Rheological Fluid for Dampers of Suspension System
Sobri et al. Assessment of Various Additives in Magnetorheological-Elastomer for Impact Applications
US20040206929A1 (en) Magnetorheological fluids with a molybdenum-amine complex

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005782886

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11574397

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005782886

Country of ref document: EP