DE102014222832A1 - Linearaktor und dessen Verwendung - Google Patents

Linearaktor und dessen Verwendung Download PDF

Info

Publication number
DE102014222832A1
DE102014222832A1 DE102014222832.8A DE102014222832A DE102014222832A1 DE 102014222832 A1 DE102014222832 A1 DE 102014222832A1 DE 102014222832 A DE102014222832 A DE 102014222832A DE 102014222832 A1 DE102014222832 A1 DE 102014222832A1
Authority
DE
Germany
Prior art keywords
magnetic
linear actuator
elastomer composite
styrene
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102014222832.8A
Other languages
English (en)
Inventor
Holger Böse
Johannes Ehrlich
Rabih Darwiche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE102014222832.8A priority Critical patent/DE102014222832A1/de
Priority to EP15193019.5A priority patent/EP3026680B1/de
Publication of DE102014222832A1 publication Critical patent/DE102014222832A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Electromagnets (AREA)

Abstract

Die Erfindung betrifft einen Linearaktor, der mindestens einen magnetischen Elastomer-Komposit aus einem Elastomer und magnetisierbaren Partikeln sowie ein inneres und ein äußeres Magnetjoch sowie mindestens eine Spule und/oder mindestens einen Permanentmagneten oder mindestens einen schaltbaren Hartmagneten zur Erzeugung von mindestens einem Magnetkreis, der eine Unterbrechung aufweist, enthält. Der Linearaktor findet Verwendung zum gesteuerten Bewegen, Verstellen oder Justieren unterschiedlichster Gegenstände sowie zur Erzeugung von Bewegung in Robotern sowie für haptisch fühlbare Elemente.

Description

  • Die Erfindung betrifft einen Linearaktor, der mindestens einen magnetischen Elastomer-Komposit aus einem Elastomer und magnetisierbaren Partikeln sowie ein inneres und ein äußeres Magnetjoch sowie mindestens eine Spule und/oder mindestens einen Permanentmagneten oder mindestens einen schaltbaren Hartmagneten zur Erzeugung von mindestens einem Magnetkreis, der eine Unterbrechung aufweist, enthält. Der Linearaktor findet Verwendung zum gesteuerten Bewegen, Verstellen oder Justieren unterschiedlichster Gegenstände sowie zur Erzeugung von Bewegung in Robotern sowie für haptisch fühlbare Elemente.
  • In vielen technischen Systemen soll eine Linearbewegung über eine relativ kleine Entfernung elektrisch gesteuert werden. Eine solche Anforderung tritt beispielsweise beim Verstellen von Klappen oder von optischen Elementen wie Spiegeln oder Leuchtelementen auf. Ein weiterer Einsatzfall für solche Linearantriebe für kurze Distanzen betrifft das Verriegeln oder Entriegeln von Türen, Fenstern, etc. Auch in der Robotik treten solche Linearbewegungen auf, wenn etwa ein Objekt gegriffen und anschließend positioniert werden soll (Pick and Place). Schließlich werden vermehrt Aktoren für Mensch-Maschine-Schnittstellen mit haptischer Rückmeldung gewünscht, bei denen mit den Fingern auf einer Bedienoberfläche eine Bewegung erspürt werden kann, die dem Benutzer eine Information z. B. über eine erfolgreiche Eingabe vermittelt.
  • Für diese Anwendungsfälle werden Aktoren benötigt, die eine Linearbewegung über einen relativ kurzen Weg von einigen Millimetern oder Zentimetern ausführen. In der Regel soll der zurückzulegende Weg der Bewegung flexibel vorgegeben und präzise ausgeführt werden können. Der Hub eines solchen Linearaktors soll damit elektrisch gesteuert werden.
  • Zum Verstellen von Spiegeln oder Klappen werden in der Regel Elektromotoren eingesetzt, die zunächst eine Rotationsbewegung erzeugen, die anschließend über ein Getriebe in eine Linearbewegung übersetzt wird. Dies verlangt einen relativ hohen technischen Aufwand für eine verhältnismäßig einfache Bewegung. Eine Alternative besteht in der Verwendung von elektromagnetischen Aktoren (Voice Coil). Diese sind jedoch schwer steuerbar und damit in ihrer Positioniergenauigkeit begrenzt. Piezoaktoren können zwar sehr präzise positionieren und dabei auch große Kräfte erzeugen, doch sind die Stellwege für die genannten Anwendungsfälle zu klein. Um Piezoaktoren dafür nutzen zu können, müssen Stellwegsvergrößerer integriert werden, was den Aufwand deutlich erhöht. Außerdem sind Piezoaktoren allein schon teuer und benötigen zudem relativ hohe elektrische Ansteuerspannungen.
  • Aufgrund dieser Situation besteht ein hoher Bedarf an neuen Aktoren, die die genannte Aufgabe einer präzise gesteuerten Linearbewegung über eine Distanz von einigen Millimetern oder Zentimetern erfüllen können. Die vorliegende Erfindung löst die Aufgabe mit Hilfe von magnetisch steuerbaren Materialien, sogenannten magnetoaktiven Polymeren.
  • Magnetoaktive Polymere (MAP) sind Kompositmaterialien aus einer Elastomermatrix, die mit magnetischen oder magnetisierbaren Partikeln gefüllt ist. Aus diesem Grund werden sie im Folgenden magnetische Elastomerkomposite genannt. Beim Anlegen eines Magnetfeldes kommt es einerseits zu einer reversiblen Versteifung des Materials. Andererseits entsteht im Magnetfeld eine Verformung des magnetischen Elastomerkomposits entlang der Feldlinien. Wird im Luftspalt zwischen zwei Magnetjochteilen ein Magnetfeld erzeugt, so zieht sich ein magnetischer Elastomerkomposit, der im unmagnetisierten Zustand den Spalt nicht überbrückt, in die Länge, so dass nun eine Überbrückung erfolgt. Dieser Effekt ist bereits bekannt.
  • Für die Realisierung eines Linearaktors ist diese Bewegung infolge der Verformung aber nicht gut geeignet, da durch die Magnetjochteile beide Seiten des magnetischen Elastomerkomposits nicht zugänglich sind und die Bewegung schlecht kontrolliert werden kann. Weiterhin ist bekannt, dass sich ein ringförmiger magnetischer Elastomerkomposit in einem innen oder außen liegenden Ringspalt zwischen einem Innen- und einem Außenjoch eines Magnetkreises radial ausdehnen und damit den Ringspalt verschließen kann. Auf diese Weise lassen sich ringförmige Ventile realisieren. Eine andere Nutzung dieser Radialausdehnung von magnetischen Elastomerkompositen im Magnetfeld besteht in elektrisch steuerbaren Feststell- und Lösevorrichtungen. Eine solche Vorrichtung wird in der Patentschrift DE 2012 202 418 beschrieben.
  • Mit den aus dem Stand der Technik bekannten Verformungsmechanismen von magnetischen Elastomerkompositen im Magnetfeld lassen sich keine präzise steuerbaren Linearbewegungen erzeugen.
  • Ausgehend hiervon war es Aufgabe der vorliegenden Erfindung, einen Linearaktor bereitzustellen, mit dem eine präzise steuerbare Linearbewegung ausführbar ist, wobei der zurückzulegende Weg flexibel vorgebbar und präzise ausführbar sein soll, so dass der Hub des Linearaktors elektrisch steuerbar ist.
  • Diese Aufgabe wird durch den Linearaktor mit den Merkmalen des Anspruchs 1 gelöst. Die weiteren abhängigen Ansprüche zeigen vorteilhafte Weiterbildungen auf. Erfindungsgemäße Verwendungen werden in den Ansprüchen 14 und 15 angegeben.
  • Erfindungsgemäß wird ein Linearaktor enthaltend mindestens einen magnetischen Elastomer-Komposit, der mindestens ein Elastomer und magnetisierbare Partikel enthält, bereitgestellt. Weiterhin enthält der Linearaktor ein inneres und ein äußeres Magnetjoch sowie mindestens eine Spule und/oder mindestens einen Permanentmagneten oder mindestens einen schaltbaren Hartmagneten zur Erzeugung von mindestens einem Magnetkreis, der eine Unterbrechung aufweist. Der magnetische Elastomer-Komposit ist dabei bei Anlegen oder Ändern des Magnetfeldes derart verformbar, dass eine lineare Aktorbewegung ausgelöst wird und die Distanz der Aktorbewegung durch die Stärke des Magnetfeldes kontinuierlich und/oder reversibel steuerbar ist.
  • Die Erfindung stellt daher einen Linearaktor bereit, der eine solche präzise steuerbare Linearbewegung ermöglicht. Hierzu wird ein Linearaktor mit einem speziellen Magnetkreis beschrieben, bei dem ein magnetischer Elastomerkomposit von dem auf einer Seite liegenden Magnetkreis angezogen wird, während die andere Seite des magnetischen Elastomerkomposits frei zugänglich ist. Durch die magnetische Anziehung verformt sich der magnetische Elastomerkomposit, wobei die Verformung und damit auch der Aktorstellweg mit zunehmender Magnetfeldstärke oder magnetischer Flussdichte ansteigen. Beim Abschalten des Magnetfeldes oder bei Reduzierung der Magnetfeldstärke verformt sich der magnetische Elastomerkomposit zurück. Dabei wirkt das Elastomer wie eine inhärente Rückstellfeder.
  • Der magnetische Elastomerkomposit kann in dem Linearaktor verschiedene Formen einnehmen.
  • Eine bevorzugte Ausführungsform der Erfindung sieht vor, dass der magnetische Elastomer-Komposit scheibenförmig ist und das Magnetfeld im Wesentlichen senkrecht zu dessen Grundfläche ausgerichtet wird und die Verformung des magnetisches Elastomer-Komposits in Form einer Wölbung des magnetisches Elastomer-Komposits die Richtung der Aktorbewegung vorgibt. Der scheibenförmige magnetische Elastomerkomposit ist dabei beispielweise mit einem weitgehend geschlossenen zylindrischen Magnetkreis aus einer Spule, einem Innen- und einem Außenjoch verbunden. Dabei steht das Außenjoch, auf dem der magnetische Elastomerkomposit aufliegt, hervor. Beim Einschalten des Magnetfeldes wird der Mittelteil des magnetischen Elastomerkomposits vom Innenjoch angezogen, wodurch die Verformung entsteht. Beim Abschalten des Magnetfeldes erfolgt eine Rückverformung des scheibenförmigen magnetischen Elastomerkomposits. Die Stärke des Magnetfeldes bestimmt den Grad der Verformung.
  • In einer anderen bevorzugten Ausführungsform steht das Innenjoch hervor und der magnetische Elastomer-Komposit liegt darauf auf. In diesem Fall wird beim Einschalten des Magnetfeldes der Außenteil des magnetischen Elastomerkomposits vom Außenjoch angezogen, wodurch eine entsprechende Verformung entsteht. Beim Abschalten des Magnetfeldes erfolgt auch hier eine Rückverformung des scheibenförmigen magnetischen Elastomerkomposits. Die Stärke des Magnetfeldes bestimmt wiederum den Grad der Verformung.
  • Eine weitere bevorzugte Ausführungsform sieht vor, dass der magnetische Elastomer-Komposit im Wesentlichen scheibenförmig ist und zum Zentrum der Scheibe hin eine größere oder kleinere Scheibendicke aufweist, insbesondere in Form einer Wölbung nach außen oder innen auf der dem inneren Joch zugewandten Seite, wobei sich die Scheibendicke stetig oder stufenweise ändert. Dabei ist es bevorzugt, dass das innere Joch eine zur Scheibenform im Wesentlichen korrespondierende konkave oder konvexe Wölbung aufweist. Durch die Formanpassung zwischen dem Elastomer-Komposit und dem inneren Joch wird die Aktuationskraft verstärkt.
  • Es ist weiter bevorzugt, dass der magnetische Elastomer-Komposit mit mindestens einem mechanischen und/oder hydraulischen Element, insbesondere ausgewählt aus der Gruppe bestehend aus einer Stange, einem Stempel, einem Faden, einer hydraulischen Flüssigkeit, einem mit Flüssigkeit oder Gas gefüllten Sack sowie Kombinationen hiervon, gekoppelt ist, über die die Verformung in eine lineare Bewegung des Linearaktors übertragbar ist.
  • Vorzugsweise weist der Linearaktor eine Spule oder eine Spule und einen Permanentmagneten oder eine Spule und einen schaltbaren Hartmagneten auf.
  • Der magnetische Elastomerkomposit enthält vorzugsweise als Matrixmaterial mindestens ein Elastomer, das bevorzugt ausgewählt ist aus der Gruppe bestehend aus Silicon, Fluorsilicon, Polyurethan (PUR), Polynorbornen, Naturkautschuk (NR), Styrol-Butadien (SBR), Isobutylen-Isopren (IIR), Ethylen-Propylen-Dien-Terpolymer (EPDM/EPM), Poly-Chlorbutadien (CR), Chlorsulfoniertes Polyethylen (CSM), Acrylnitril-Butadien (NBR), Hydriertes Acrylnitril-Butadien (HNBR), einen Fluorkautschuk wie Viton, ein thermoplastisches Elastomer wie thermoplastische Styrol-Copolymere (Styrol-Butadien-Styrol-(SBS-), Styrol-Ethylen-Butadien-Styrol-(SEBS-), Styrol-Ethylen-Propylen-Styrol-(SEPS-), Styrol-Ethylen-Ethylen-Propylen-Styrol-(SEEPS-) oder Styrol-Isopren-Styrol-(SIS-)Copolymer), teilvernetzte Blends auf Polyolefin-Basis (aus Ethylen-Propylen-Dien-Kautschuk und Polypropylen (EPDM/PP), aus Nitril-Butadien-Kautschuk und Polypropylen (NBR/PP) oder aus Ethylen-Propylen-Dien-Kautschuk und Polyethylen(EPDM/PE)) oder thermoplastische Urethan-Copolymere (aromatisches Hartsegment und Ester-Weichsegment (TPU-ARES), aromatisches Hartsegment und Ether-Weichsegment (TPU-ARET) oder aromatisches Hartsegment und Ester/Ether-Weichsegment (TPU-AREE)) sowie Mischungen, Blends oder Legierungen hiervon.
  • Als magnetische Partikel werden bevorzugt Partikel ausgewählt aus der Gruppe bestehend aus Eisen, insbesondere Carbonyleisen, Cobalt, Nickel, Eisenlegierungen, insbesondere Eisen-Cobalt-Legierungen oder Eisen-Nickel-Legierungen, Eisenoxiden, insbesondere Magnetit oder Ferrit, bevorzugt Manganzinkferrit, Aluminium-Nickel-Cobalt-Legierungen und Mischungen hiervon ausgewählt. Die mittlere Größe der magnetischen Partikel beträgt vorzugsweise unter 100 µm.
  • Bei einer weiteren erfindungsgemäßen Variante enthält der erfindungsgemäße magnetische Elastomer-Komposit vorzugsweise sich von den magnetisierbaren Partikeln unterscheidende magnetisierbare Elemente bzw. Formkörper, wobei die Größe der Elemente bzw. Formkörper die Größe der Partikel bevorzugt um den Faktor 10, besonders bevorzugt um den Faktor 100 übersteigt. Diese magnetisierbaren Elemente verstärken die magnetischen Anziehungskräfte auf den magnetischen Elastomerkomposit. Alternativ können auch mehrere oder viele magnetisierbaren Elemente in oder an dem magnetischen Elastomerkomposit befestigt sein. Der oder die magnetisierbaren Elemente können aus weichmagnetischen Materialien, insbesondere Eisen, bevorzugt Carbonyleisen, Cobalt, Nickel, Eisenlegierungen, bevorzugt Eisen-Cobalt-Legierungen oder Eisen-Nickel-Legierungen, Eisenoxiden, bevorzugt Magnetit oder Ferrit, besonders bevorzugt Manganzinkferrit, oder hartmagnetischen Materialien, insbesondere Aluminium-Nickel-Cobalt, Neodym-Eisen-Bor oder Samarium-Cobalt oder Mischungen hiervon bestehen.
  • Der magnetische Elastomerkomposit kann auch aus einem Faltenbalg mit konzentrischen Falten bestehen. Durch die Entfaltung wird die Verformung im Magnetfeld erleichtert. Eine weitere Möglichkeit besteht darin, dass der scheibenförmige magnetische Elastomerkomposit auf einer Seite eine Auswölbung aufweist. Auf diese Weise kommt es zu einer stärkeren magnetischen Anziehung im Magnetfeld. Außerdem kann das Innenjoch und/oder die Spule eine komplementäre Einwölbung aufweisen, in die sich die Auswölbung magnetischen Elastomerkomposits hineinbewegt. Auf diese Weise kann eine stärkere Verformungsbewegung des magnetischen Elastomerkomposits stattfinden.
  • Die Verformung des magnetischen Elastomerkomposits im Magnetfeld kann direkt als Linearaktuation genutzt werden. In diesem Fall erfolgt die Aktuation beim Einschalten des Magnetfeldes von der Außenseite des magnetischen Elastomerkomposits betrachtet nach innen. Die Verformungsbewegung kann jedoch durch eine mechanische Übertragung auf die andere Seite des Magnetkreises transferiert werden. Zur Übertragung wird beispielsweise eine Stange oder ein Stempel eingesetzt, die durch das Innenjoch hindurchgeführt wird. Alternativ kann hierfür auch ein hydraulisches Medium verwendet werden, das die Bewegung des magnetischen Elastomerkomposits auf die andere Seite des Magnetkreises überträgt. Die mechanische Übertragung kann alternativ auch durch das Außenjoch erfolgen.
  • Das Magnetfeld zum Ansteuern des magnetischen Elastomerkomposits wird in der Regel durch eine Spule erzeugt. Der Magnetkreis kann jedoch auch einen Permanentmagneten enthalten, der ohne elektrische Energie ein Magnetfeld erzeugt. Eine zusätzliche Spule kann dann dieses Magnetfeld wahlweise entweder schwächen oder sogar kompensieren oder verstärken. Durch den Permanentmagneten wird auf diese Weise eine Grundeinstellung des Linearaktors mit einer bestimmten Verformung des magnetischen Elastomerkomposits definiert. Durch die Kompensation des Magnetfeldes des Permanentmagneten durch die Spule wird so das Schaltverhalten gegenüber einem Magnetkreis nur mit Spule umgekehrt. Vorzugsweise besteht der Permanentmagnet aus Neodym-Eisen-Bor oder Samarium-Cobalt.
  • Außerdem besteht die Möglichkeit, einen schaltbaren Hartmagneten in den Magnetkreis zu integrieren. In diesem Fall wird der Hartmagnet durch ein kurzzeitig durch die Spule erzeugtes Magnetfeld mit einer bleibenden Magnetisierung versehen. Auf diese Weise wird der magnetische Elastomerkomposit verformt und der Linearaktor bewegt sich in eine definierte Position. Bei dieser Anordnung wird elektrische Energie nur für die Veränderung der Aktorposition benötigt, indem der schaltbare Hartmagnet eine andere Magnetisierung erhält. Vorzugsweise besteht der schaltbare Hartmagnet aus Aluminium-Nickel-Cobalt oder aus einem Ferrit. Bevorzugt werden für den schaltbaren Hartmagneten Materialien mit einer Koerzitivfeldstärke von weniger als 100 kA/m und einer Sättigungsmagnetisierung von mehr als 600 mT.
  • Schließlich kann der Linearaktor auch zwei Magnetkreise aufweisen, die elektrisch separat angesteuert werden können. In diesem Fall befindet sich der magnetische Elastomerkomposit vorzugsweise zwischen den beiden Magnetkreisen und kann wahlweise von dem einen oder dem anderen Magnetkreis angezogen werden. Da hier keine Zugänglichkeit von außen vorliegt, wird die Bewegung des magnetischen Elastomerkomposits durch die bereits dargestellte mechanische oder hydraulische Übertragung nach außen transferiert werden.
  • In einer weiteren Ausführungsform kann der magnetische Elastomerkomposit dazu verwendet werden, eine Eigenschaftsänderung durch eine lineare Aktorbewegung zu steuern, wobei diese Eigenschaftsänderung beispielsweise eine Änderung einer Oberflächenstruktur zur Folge hat. Die Änderung der Struktur der zumindest einen Oberfläche bewirkt, dass sich die Oberfläche in eine Bedienfläche umwandelt. Durch ein Aktivierungssignal wird über eine Spule ein Magnetfeld erzeugt, wobei infolgedessen der magnetische Elastomerkomposit in seiner Form verändert und eine Bedienfläche sichtbar wird. Durch die Deaktivierung des Magnetfeldes geht der magnetische Elastomerkomposit wieder in seine Ausgangsform zurück, wobei sich die Bedienfläche wieder in die anfängliche Oberfläche umwandelt. Damit sind reversibel formbare Oberflächen zur Abdeckung von zum Beispiel Schaltern, Sensoren, Bedienelementen usw. möglich.
  • Die erfindungsgemäßen Linearaktoren finden Verwendung zum gesteuerten Bewegen, Verstellen oder Justieren von Klappen, Türen, Spiegeln, optischen Elementen, insbesondere Strahlungsquellen. Ebenso können die Linearaktoren zur Erzeugung von Bewegungen in Robotern sowie für haptisch fühlbare Elemente dienen.
  • Anhand der in den nachfolgenden Figuren dargestellten Ausführungsbeispiele soll der erfindungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier gezeigten spezifischen Ausführungsformen einschränken zu wollen.
  • In der folgenden Legende sind die in den einzelnen Figuren dargestellten Komponenten bezeichnet.
    Figure DE102014222832A1_0002
  • Die Figuren zeigen:
  • 1 einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld
  • 2 einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld, wobei das Innenjoch länger als das Außenjoch ist und sich der magnetische Elastomerkomposit durch die Anziehung zum Außenjoch verformt
  • 3 einen Linearaktor mit Magnetkreis mit Spule und mit Auswölbung auf magnetischem Elastomer-Komposit
  • 4 einen Linearaktor mit Magnetkreis mit Spule und mit Auswölbung auf magnetischem Elastomer-Komposit sowie Einwölbung in Magnetinnenjoch
  • 5 einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung auf Membran durch hydraulische Flüssigkeit
  • 6 einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung durch hydraulische Flüssigkeit und Stempel
  • 7 einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung auf Membran durch hydraulische Flüssigkeit; magnetischer Elastomerkomposit enthält magnetischen Formkörper
  • 8 einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung durch hydraulische Flüssigkeit und Stempel; magnetischer Elastomerkomposit enthält magnetischen Formkörper
  • 9 einen Linearaktor mit magnetischem Elastomerkomposit als Faltenbalg, der sich durch das Magnetfeld entfaltet; Übertragung der Bewegung auf Membran durch hydraulische Flüssigkeit
  • 10 einen Linearaktor mit magnetischem Elastomerkomposit als Faltenbalg, der sich durch das Magnetfeld entfaltet; Übertragung der Bewegung durch hydraulische Flüssigkeit und Stempel
  • 11 einen Linearaktor mit Elektromagnet und schaltbarem Hartmagnet in Magnetkreis; Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung auf Membran durch hydraulische Flüssigkeit
  • 12 einen Linearaktor mit Elektromagnet und schaltbarem Hartmagnet in Magnetkreis; Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung durch hydraulische Flüssigkeit und Stempel
  • 13 einen Linearaktor mit Elektromagnet und Permanentmagnet in Magnetkreis; Verformung von magnetischem Elastomerkomposit im Magnetfeld
  • 14 einen Linearaktor mit Auswölbung von magnetischem Elastomerkomposit und Einwölbung von Magnetkreis einschließlich Elektromagnet auf der zum magnetischen Elastomerkomposit hinweisenden Seite; Übertragung der Bewegung durch Stempel
  • 15 einen Linearaktor mit Auswölbung von magnetischem Elastomerkomposit und Einwölbung von Magnetkreis einschließlich Elektromagnet auf der zum magnetischen Elastomerkomposit hinweisenden Seite; magnetischer Elastomerkomposit enthält magnetischen Formkörper; Übertragung der Bewegung durch Stempel.
  • 16 einen Linearaktor, bei dem sich der magnetische Elastomerkomposit zwischen zwei Jochteilen befindet, sich im Magnetfeld ausdehnt und dabei die Bewegung durch einen Stempel durch das Innenjoch nach außen überträgt.
  • Ausführungsbeispiele
  • Das erste Ausführungsbeispiel zeigt einen Linearaktor mit einem Magnetkreis mit einer Spule. Das äußere Joch, auf dem der magnetische Elastomerkomposit aufliegt, ist kürzer als das innere Joch, wodurch der Magnetkreis zwischen dem inneren Joch und dem scheibenförmigen magnetischen Elastomerkomposit eine Unterbrechung aufweist (1, links). Beim Anlegen eines Stromes in der Spule wird ein Magnetfeld erzeugt, durch welches der magnetische Elastomerkomposit vom inneren Joch angezogen wird und sich dabei verformt (1, rechts). Die Stärke der Verformung ist durch die Stärke des angelegten Magnetfeldes über den Spulenstrom kontinuierlich steuerbar. Beim Abschalten des Magnetfeldes formt sich der magnetische Elastomerkomposit wieder in seine Ausgangsform zurück.
  • Im zweiten Ausführungsbeispiel ist das äußere Joch kürzer als das innere Joch. Dadurch liegt der scheibenförmige magnetische Elastomerkomposit auf dem inneren Joch auf (2, links). Beim Anlegen des Magnetfeldes wird der magnetische Elastomerkomposit vom äußeren Joch angezogen und verformt sich entsprechend (2, rechts).
  • Das dritte Ausführungsbespiel zeigt wieder einen Linearaktor mit einem kürzeren Innenjoch. Hier weist der magnetische Elastomerkomposit auf der dem Innenjoch zugewandten Seite eine Auswölbung auf (3, links). Beim Anlegen des Magnetfeldes wird der magnetische Elastomerkomposit vom Innenjoch mit einer stärkeren Kraft angezogen als ohne Auswölbung. Die Stärke der Verformung ist dagegen durch die Auswölbung eingeschränkt (3, rechts).
  • Im vierten Ausführungsbeispiel weist das Innenjoch eine Einwölbung auf, die sich zur Auswölbung auf dem magnetischen Elastomerkomposit komplementär verhält (4, links). Beim Anlegen des Magnetfeldes kann deshalb die Auswölbung auf dem magnetischen Elastomerkomposit in die Einwölbung in dem Innenjoch eindringen (4, rechts).
  • Das fünfte Ausführungsbeispiel zeigt einen Linearaktor mit einem kürzeren Innenjoch, das von einem Kanal durchzogen wird, der am oberen Ende durch eine Membran abgedichtet wird. Der Zwischenraum zwischen dem magnetischen Elastomerkomposit und dem Innenjoch sowie der Kanal sind mit einer hydraulischen Flüssigkeit gefüllt (5, links). Beim Anlegen des Magnetfeldes verformt sich der magnetische Elastomerkomposit in Richtung des Innenjoches und verdrängt dabei die hydraulische Flüssigkeit aus dem Zwischenraum. Die hydraulische Flüssigkeit wird durch den Kanal nach oben gedrückt und verformt dabei die oben anliegende Membran (5, rechts).
  • Im sechsten Ausführungsbeispiel ist der Kanal nur teilweise mit einer hydraulischen Flüssigkeit gefüllt. Über der Flüssigkeitsoberfläche befindet sich eine Stange (6, links). Beim Anlegen des Magnetfeldes drückt die hydraulische Flüssigkeit die Stange nach oben und aus dem Joch hinaus (6, rechts).
  • Das Ausführungsbeispiel gemäß 7 zeigt wie das fünfte Ausführungsbeispiel einen Linearaktor, bei dem die Verformung des magnetischen Elastomerkomposits durch eine hydraulische Flüssigkeit nach oben übertragen wird. Durch einen auf der Unterseite des magnetischen Elastomerkomposits angebrachten magnetischen Formkörper aus magnetischem Stahl wird die Anziehungskraft auf das Innenjoch stark erhöht. Dadurch steigt auch der auf die hydraulische Flüssigkeit ausgeübte Druck und damit die Aktuationskraft entsprechend.
  • Im Ausführungsbeispiel gemäß 8 wird ebenfalls ein magnetischer Formkörper am magnetischen Elastomerkomposit zur Verstärkung der Aktuationskraft angebracht. Hier wird die Kraft jedoch wie im sechsten Ausführungsbeispiel zunächst hydraulisch und dann über eine Stange übertragen.
  • Im neunten Ausführungsbeispiel hat der magnetische Elastomerkomposit die Form eines Faltenbalgs (9, links). Beim Anlegen des Magnetfeldes entfaltet sich der Faltenbalg und drückt eine hydraulische Flüssigkeit nach oben, die wiederum eine Membran verformt.
  • Im Ausführungsbespiel gemäß 10 wird die hydraulische Flüssigkeit wieder teilweise durch eine Stange ersetzt.
  • Im elften Ausführungsbeispiel enthält der Magnetkreis zusätzlich zum Elektromagneten einen ringförmigen schaltbaren Hartmagneten aus einer Aluminium-Nickel-Cobalt-Legierung, der anfangs nicht magnetisiert ist (11, links). Beim Erzeugen eines Magnetfeldes durch die Spule wird der Hartmagnet magnetisiert und behält die Magnetisierung auch nach Abschalten des Spulenstromes bei (11, rechts). Damit bleiben die Verformung des magnetischen Elastomerkomposits, die Verschiebung der hydraulischen Flüssigkeit nach oben und die Verformung der darüber liegenden Membran erhalten, ohne dass weitere elektrische Energie durch die Spule zugeführt werden muss. Nur für eine Veränderung des Aktuationszustandes muss elektrische Energie durch die Spule zugeführt werden, um die Magnetisierung des Hartmagneten zu verändern.
  • Im Ausführungsbeispiel gemäß 12 wird die hydraulische Flüssigkeit gegenüber dem elften Ausführungsbeispiel wieder teilweise durch eine Stange ersetzt.
  • Im dreizehnten Ausführungsbeispiel enthält der Magnetkreis zusätzlich zum Elektromagneten einen ringförmigen Permanentmagneten aus einer Samarium-Cobalt-Legierung. Das vom Permanentmagneten erzeugte Magnetfeld verformt den magnetischen Elastomerkomposit ohne Zufuhr von elektrischer Energie (13, links). Ein zusätzlich von der Spule erzeugtes Magnetfeld kann das Feld des Permanentmagneten verstärken und damit die Verformung des magnetischen Elastomerkomposits vergrößern (13, Mitte). Durch die Umkehrung der Stromrichtung in der Spule kann das zusätzliche Magnetfeld auch das Feld des Permanentmagneten schwächen und damit die Verformung des magnetischen Elastomerkomposits verringern oder sogar aufheben (13, rechts).
  • Das Ausführungsbeispiel gemäß 14 zeigt eine kompakte Form eines Linearaktors mit magnetischem Elastomerkomposit. Hier ist der magnetische Elastomerkomposit kegelförmig mit abgeflachter Spitze ausgeführt (14, links). Die Spulenwicklung weist einen dreiecksförmigen Querschnitt auf, der zur Kegelform des magnetischen Elastomerkomposits weitgehend komplementär ist. Beim Anlegen des Magnetfeldes durch die Spule verformt sich der magnetische Elastomerkomposit und drückt eine kurze Stange nach oben (14, rechts). Mit einem solchen Linearaktor können relativ hohe Aktuationskräfte erzeugt werden.
  • Im Ausführungsbeispiel gemäß 15 ist der Linearaktor ähnlich aufgebaut wie im Ausführungsbeispiel gemäß 14. Der magnetische Elastomerkomposit enthält hier jedoch einen magnetischen Formkörper. Dadurch wird die Anziehungskraft auf das Innenjoch und damit die Aktuationskraft noch einmal verstärkt.
  • Im sechszehnten Ausführungsbeispiel gemäß 16 weist der magnetische Elastomerkomposit die Form eines Zylinders auf. Er befindet sich im Linearaktor zwischen einem unteren und einem oberen Jochteil, füllt aber den Zwischnraum zwischen Jochteilen nur teilweise aus (16, links). Beim Anlegen des Magnetfeldes wird der magnetische Elastomerkomposit von beiden Jochteilen angezogen und dehnt sich in seiner Länge nach oben aus. Dadurch wird eine Stange durch das Innenjoch nach oben verschoben (16, rechts).
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 2012202418 [0007]

Claims (15)

  1. Linearaktor enthaltend mindestens einen magnetischen Elastomer-Komposit enthaltend mindestens ein Elastomer und magnetisierbare Partikel, ein inneres und ein äußeres Magnetjoch sowie mindestens eine Spule und/oder mindestens einen Permanentmagneten und/oder mindestens einen schaltbaren Hartmagneten zur Erzeugung von mindestens einem Magnetkreis, der eine Unterbrechung aufweist, wobei der magnetische Elastomer-Komposit bei Anlegen oder Ändern des Magnetfeldes derart verformbar ist, dass eine lineare Aktorbewegung ausgelöst wird und die Distanz der Aktorbewegung durch die Stärke des Magnetfelds kontinuierlich und/oder reversibel steuerbar ist.
  2. Linearaktor nach Anspruch 1, dadurch gekennzeichnet, dass das auf den magnetischen Elastomer-Komposit einwirkende Magnetfeld inhomogen ist.
  3. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der magnetische Elastomer-Komposit scheibenförmig ist und das Magnetfeld im Wesentlichen senkrecht zu dessen Grundfläche ausgerichtet wird und die Verformung des magnetisches Elastomer-Komposits in Form einer Wölbung des magnetisches Elastomer-Komposits die Richtung der Aktorbewegung vorgibt.
  4. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der magnetische Elastomer-Komposit im Wesentlichen scheibenförmig ist und zum Zentrum der Scheibe hin eine größere oder kleinere Scheibendicke aufweist, insbesondere in Form einer Auswölbung nach außen oder einer Einwölbung nach innen auf der dem inneren Joch zugewandten Seite, wobei sich die Scheibendicke stetig oder stufenweise ändert.
  5. Linearaktor nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das innere oder das äußere Joch eine zur Scheibenform Im Wesentlichen korrespondierende konkave oder konvexe Wölbung aufweist.
  6. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der magnetische Elastomer-Komposit mit mindestens einem mechanischen und/oder hydraulischen Element, insbesondere ausgewählt aus der Gruppe bestehend aus einer Stange, einem Stempel, einem Faden, einer hydraulischen Flüssigkeit, einem mit Flüssigkeit oder Gas gefüllten Sack sowie Kombinationen hiervon, gekoppelt ist, über die die Verformung in eine lineare Bewegung des Linearaktors übertragbar ist.
  7. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Linearaktor eine Spule und einen Permanentmagneten oder eine Spule und einen schaltbaren Hartmagneten aufweist, der bevorzugt aus einer Aluminium-Nickel-Cobalt-Legierung, aus einem Ferrit oder aus einem anderen Material mit einer Koerzitivfeldstärke von weniger als 100 kA/m und einer Sättigungsmagnetisierung von mehr als 600 mT besteht.
  8. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Elastomer ausgewählt ist aus der Gruppe bestehend aus Silicon, Fluorsilicon, Polyurethan (PUR), Polynorbornen, Naturkautschuk (NR), Styrol-Butadien (SBR), Isobutylen-Isopren (IIR), Ethylen-Propylen-Dien-Terpolymer (EPDM/EPM), Poly-Chlorbutadien (CR), Chlorsulfoniertes Polyethylen (CSM), Acrylnitril-Butadien (NBR), Hydriertes Acrylnitril-Butadien (HNBR), einen Fluorkautschuk wie Viton, ein thermoplastisches Elastomer wie thermoplastische Styrol-Copolymere (Styrol-Butadien-Styrol-(SBS-), Styrol-Ethylen-Butadien-Styrol-(SEBS-), Styrol-Ethylen-Propylen-Styrol-(SEPS-), Styrol-Ethylen-Ethylen-Propylen-Styrol-(SEEPS-) oder Styrol-Isopren-Styrol-(SIS-)Copolymer), teilvernetzte Blends auf Polyolefin-Basis (aus Ethylen-Propylen-Dien-Kautschuk und Polypropylen (EPDM/PP), aus Nitril-Butadien-Kautschuk und Polypropylen (NBR/PP) oder aus Ethylen-Propylen-Dien-Kautschuk und Polyethylen(EPDM/PE)) oder thermoplastische Urethan-Copolymere (aromatisches Hartsegment und Ester-Weichsegment (TPU-ARES), aromatisches Hartsegment und Ether-Weichsegment (TPU-ARET) oder aromatisches Hartsegment und Ester/Ether-Weichsegment (TPU-AREE)) sowie Mischungen, Blends oder Legierungen hiervon.
  9. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetisierbaren Partikel ausgewählt sind aus Materialien bestehend aus Eisen, insbesondere Carbonyleisen, Cobalt, Nickel, Eisenlegierungen, insbesondere Eisen-Cobalt-Legierungen oder Eisen-Nickel-Legierungen, Eisenoxiden, insbesondere Magnetit oder Ferrit, bevorzugt Manganzinkferrit, Aluminium-Nickel-Cobalt-Legierungen und Mischungen hiervon, wobei die mittlere Partikelgröße bevorzugt unter 100 µm liegt.
  10. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der magnetische Elastomer-Komposit zusätzlich sich von den magnetisierbaren Partikeln unterscheidende magnetisierbare Elemente bzw. Formkörper aufweist, wobei die Größe der Elemente die Größe der Partikel bevorzugt um den Faktor 10, besonders bevorzugt um den Faktor 100 übersteigt.
  11. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetisierbaren Partikel und die magnetisierbaren Elemente bzw. Formkörper isotrop oder anisotrop im magnetischen Elastomer-Komposit angeordnet sind.
  12. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die magnetisierbaren Elemente bzw. Formkörper aus weichmagnetischen Materialien, insbesondere Eisen, bevorzugt Carbonyleisen, Cobalt, Nickel, Eisenlegierungen, bevorzugt Eisen-Cobalt-Legierungen oder Eisen-Nickel-Legierungen, Eisenoxiden, bevorzugt Magnetit oder Ferrit, besonders bevorzugt Manganzinkferrit, oder hartmagnetischen Materialien, insbesondere Aluminium-Nickel-Cobalt, Neodym-Eisen-Bor oder Samarium-Cobalt oder Mischungen hiervon bestehen.
  13. Linearaktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der magnetische Elastomer-Komposit die Form eines Faltenbalgs aufweist, der sich bei Anlegen oder Ändern eines Magnetfelds zumindest teilweise entfaltet oder zusammenfaltet.
  14. Verwendung des Linearaktors nach einem der vorhergehenden Ansprüche zum gesteuerten Bewegen, Verstellen oder Justieren von Klappen, Türen, Spiegeln, optischen Elementen, insbesondere Strahlungsquellen.
  15. Verwendung des Linearaktors nach einem der vorhergehenden Ansprüche zur Erzeugung von Bewegungen in Robotern sowie für haptisch fühlbare Elemente.
DE102014222832.8A 2014-11-10 2014-11-10 Linearaktor und dessen Verwendung Ceased DE102014222832A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102014222832.8A DE102014222832A1 (de) 2014-11-10 2014-11-10 Linearaktor und dessen Verwendung
EP15193019.5A EP3026680B1 (de) 2014-11-10 2015-11-04 Linearaktor und dessen verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014222832.8A DE102014222832A1 (de) 2014-11-10 2014-11-10 Linearaktor und dessen Verwendung

Publications (1)

Publication Number Publication Date
DE102014222832A1 true DE102014222832A1 (de) 2016-05-12

Family

ID=54476780

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014222832.8A Ceased DE102014222832A1 (de) 2014-11-10 2014-11-10 Linearaktor und dessen Verwendung

Country Status (2)

Country Link
EP (1) EP3026680B1 (de)
DE (1) DE102014222832A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313076A (zh) * 2016-12-09 2019-10-08 皇家飞利浦有限公司 致动器装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1588978A1 (de) * 1966-03-21 1970-04-23 Mohawk Data Sciences Corp Elektromechanische Schaltvorrichtung
DE102004041649A1 (de) * 2004-08-27 2006-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomere und deren Verwendung
DE102011010757A1 (de) * 2011-02-09 2012-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetoaktives oder elektroaktives Kompositmaterial, dessen Verwendung und Verfahren zur Beeinflussung von auf dem magnetoaktiven oder elektroaktiven Kompositmaterial angelagerten biologischen Zellen
DE102012202418A1 (de) 2011-11-04 2013-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adaptive Feststell-und Lösevorrichtung und deren Verwendung zum gesteuerten Blockieren bzw. Freigeben beweglicher Bauteile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028663A1 (de) * 2007-06-21 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Kompositmaterialien mit hartmagnetischen Partikeln, Verfahren zu deren Herstellung sowie deren Verwendung
US8550222B2 (en) * 2007-08-16 2013-10-08 GM Global Technology Operations LLC Active material based bodies for varying frictional force levels at the interface between two surfaces
JP5267907B2 (ja) * 2007-12-28 2013-08-21 国立大学法人九州工業大学 磁気力によるアクチュエータ及びそれを用いた駆動装置、並びにセンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1588978A1 (de) * 1966-03-21 1970-04-23 Mohawk Data Sciences Corp Elektromechanische Schaltvorrichtung
DE102004041649A1 (de) * 2004-08-27 2006-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomere und deren Verwendung
DE102011010757A1 (de) * 2011-02-09 2012-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetoaktives oder elektroaktives Kompositmaterial, dessen Verwendung und Verfahren zur Beeinflussung von auf dem magnetoaktiven oder elektroaktiven Kompositmaterial angelagerten biologischen Zellen
DE102012202418A1 (de) 2011-11-04 2013-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adaptive Feststell-und Lösevorrichtung und deren Verwendung zum gesteuerten Blockieren bzw. Freigeben beweglicher Bauteile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313076A (zh) * 2016-12-09 2019-10-08 皇家飞利浦有限公司 致动器装置和方法

Also Published As

Publication number Publication date
EP3026680A1 (de) 2016-06-01
EP3026680B1 (de) 2020-04-29

Similar Documents

Publication Publication Date Title
EP2394068B1 (de) Schaltbare magnetorheologische drehmoment- oder kraftübertragungsvorrichtung, deren verwendung sowie magnetorheologisches drehmoment- oder kraftübertragungsverfahren
EP2880696B1 (de) Aktuatorvorrichtung
EP2135271A1 (de) Magnetische schaltvorrichtung
DE102016203602A1 (de) Elektromagnetischer Aktor und Ventil
DE102014108678A1 (de) Schieberventil
DE102007017588A1 (de) Blockiervorrichtung mit feldsteuerbarer Flüssigkeit
EP2699829A1 (de) Schaltbares druckbegrenzungsventil
DE102017120131A1 (de) Folienwandler sowie Ventil
DE202021100223U1 (de) Akustische Vorrichtung mit verformbarer Form als Ventil
DE102018205029A1 (de) Greifvorrichtung
EP3026680B1 (de) Linearaktor und dessen verwendung
WO2016074758A1 (de) Vakuumventil
EP0922893B1 (de) Ventil
DE102015216766B3 (de) Antriebsvorrichtung
DE1750415B1 (de) Elektromagnetisch betaetigtes steuerventil
DE102019214410A1 (de) Elektromechanische Sicherheitsbremse
DE102017130199A1 (de) Folienwandler, Ventil, Pumpe sowie Verfahren zum Betreiben einer Pumpe
WO2019002428A9 (de) Magnetorheologischer aktuator für einer befüllungseinheit einer getränkeabfüllanlage
DE102009053121A1 (de) Elektromagnetische Stellvorrichtung
DE102012108568A1 (de) Aktuatorvorrichtung
DE102014207393B4 (de) Ventil
WO2018121901A1 (de) Elektromagnetische klappanker-ventilvorrichtung
DE10202628A1 (de) Multistabile Stellvorrichtung
EP2158421B1 (de) Schaltventil und verfahren zum schalten eines schaltventils
DE102017211257A1 (de) Elektromagnetischer Antrieb und damit ausgestattetes Ventil

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: PFENNING, MEINIG & PARTNER MBB PATENTANWAELTE, DE

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H02K0001020000

Ipc: H02N0002000000

R082 Change of representative

Representative=s name: PFENNING, MEINIG & PARTNER MBB PATENTANWAELTE, DE

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final