WO2006022341A1 - サブミクロンハニカム構造の製造法 - Google Patents

サブミクロンハニカム構造の製造法 Download PDF

Info

Publication number
WO2006022341A1
WO2006022341A1 PCT/JP2005/015456 JP2005015456W WO2006022341A1 WO 2006022341 A1 WO2006022341 A1 WO 2006022341A1 JP 2005015456 W JP2005015456 W JP 2005015456W WO 2006022341 A1 WO2006022341 A1 WO 2006022341A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
substrate
organic solvent
insoluble polymer
incompatible organic
Prior art date
Application number
PCT/JP2005/015456
Other languages
English (en)
French (fr)
Inventor
Masatsugu Shimomura
Hiroshi Yabu
Original Assignee
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University filed Critical National University Corporation Hokkaido University
Priority to EP05774701A priority Critical patent/EP1783162A4/en
Priority to US11/661,620 priority patent/US7531211B2/en
Priority to JP2006532591A priority patent/JP4682332B2/ja
Publication of WO2006022341A1 publication Critical patent/WO2006022341A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • B29D24/005Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0089Producing honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic

Definitions

  • a thin film having a fine periodic structure is a useful material in various fields.
  • miniaturization of the field transistor channel is required, and a manufacturing process of less than lOOnm is actually put into practical use (Gerzinge et al., IEEE Spectrum 1989, 89th, 43).
  • diffraction gratings and photonic crystals are attracting attention as next-generation optical functional elements (Noda et al., Nature, 2000, 407, 608).
  • the periodic structure below the wavelength of light is transparent in the visible light region, and can be expected to prevent light scattering.
  • there have been reports in the field of regenerative medicine that the fine structure of the surface affects cultured cells (Chen et al., Science ⁇ 1997, 276, 1425).
  • phase separation of block copolymers is known as a lOnm scale microstructure fabrication process (Albrecht et al., Macromol ecules, 2002, 35th, 8106-8110). Institut et al. (Nature, 1994, 369, 387) reported the preparation of a structure having a regular form of polystyrene-polyparaphenylene (PS-PPP) block copolymer. .
  • PS-PPP polystyrene-polyparaphenylene
  • the honeycomb-like porous body is a thin film structure made of a polymer, and minute holes or dents oriented in the vertical direction of the film are provided in a honeycomb shape in the plane direction of the structure. Means something. The same is true for the Hercam's porous material in the present invention.
  • Patent Document 1 JP-A-8-311231
  • Patent Document 2 JP 2001-157574
  • Non-Patent Document 1 Gelsinge et al., IEEE Spectrum, 1989, 89, 43
  • Non-patent document 2 Noda et al., Nature, 2000, 407, 608
  • Non-patent document 3 Chen et al., Science, 1997, 276, 1425
  • Non-patent document 4 Whiteside et al., Angew. Chem. Int. Ed., 1998, 37, 550-575.
  • Non-Patent Document 5 Albrecht et al., Macromolecules, 2002, 35th, 8106-8110
  • Non-Patent Document 6 Francois et al., Nature, 1994, 369, 387
  • Non-Patent Document 7 Gu et al., Langmuir, No. 17
  • Non-Patent Document 8 Carso et al., Langmuir, 1999, 15th, 8276-8 281
  • An object of the present invention is to provide a hermoid porous material having a period of 200 nm or less and a method for producing the same, in addition to a method of forming water droplets in a bowl shape.
  • the inventors of the present invention have prepared a method for producing a Herkam-like porous body having water droplets in a bowl shape, and controlling the evaporation time of the solvent, specifically, removing the solvent in a shorter time. By evaporating, it was found that the pore size of the porous body can be controlled at a level of 10 to 200 nm, and the following present invention was completed.
  • the method of the present invention is a method for producing a conventional Hercam's porous body having water droplets in the shape of a water-incompatible organic solvent solution of a water-insoluble polymer applied to a substrate.
  • a water-incompatible organic solvent solution of a water-insoluble polymer applied to a substrate.
  • the present invention relates to the following a) to e).
  • the evaporation rate of water-incompatible organic solvent is the rate at which the film thickness of water-incompatible organic solvent of water-insoluble polymer decreases to 1Z5 within 1 second when the solution is applied to the substrate surface.
  • step 2) is performed by applying a water-incompatible organic solvent solution of a water-insoluble polymer to the surface of the substrate while moving the substrate in a uniaxial direction.
  • Step 3) applies a water-incompatible organic solvent solution polymer solution of a water-insoluble polymer applied to the surface of the substrate to a flow rate 10-: LOOLZ of air flow having a relative humidity of 30% or more.
  • FIG. 1 is an enlarged view of a Hercam's porous material (pore diameter lOOnm) of the present invention.
  • FIG. 2 is an enlarged view of a part (pore diameter: 20 nm) of the Hercam's porous material of the present invention.
  • FIG. 3 shows an apparatus for continuously producing a honeycomb-shaped porous body of the present invention.
  • FIG. 4 is an enlarged view of the honeycomb porous body of the present invention.
  • FIG. 5 is an enlarged view of the Hercam's porous material (pore diameter 150 nm) of the present invention.
  • FIG. 6 is an enlarged view of the Hercam-like porous body (pore diameter 200 nm) of the present invention.
  • a liquid film is prepared by applying a water-incompatible organic solvent solution of a water-insoluble polymer to the surface of a glass or metal substrate, and relative to the liquid film.
  • Humidity 30% or more of air with a flow rate of 10 to: LOOLZ minute contact makes the water-incompatible organic solvent rapidly evaporate and the growth of water droplets to be 200 nm or less.
  • the pore diameter of the porous body is controlled to 200 nm or less.
  • the step 1) constituting the production method of the present invention comprises water-incompatibility of the water-insoluble polymer by dissolving the water-insoluble polymer in a water-incompatible organic solvent having a surface tension ⁇ L of 50 dyn / cm or less. This is a step of preparing an organic solvent solution.
  • the water-incompatible organic solvent that can be used in the present invention has a surface tension of 50 dyn / cm or less and water-incompatibility that can hold water droplets condensed on the surface of the solution.
  • Any boiling point can be used if the boiling point under atmospheric pressure is 0 to 150 ° C, preferably 10 to 50 ° C.
  • Specific examples include halogenated hydrocarbons such as carbon tetrachloride, dichloromethane and chloroform, aromatic hydrocarbons such as benzene, toluene and xylene, esters such as ethyl acetate and butyl acetate, and non-hydrocarbons such as methyl isoptyl ketone.
  • Examples include water-soluble ketones and carbon disulfide.
  • a honeycomb-shaped porous body is produced using a fluorine-based polymer in which hydrogen in the side chain of fluorinated alkyl in the side chain or metatalylate is substituted with fluorine
  • a fluorine-based organic material is used.
  • a solvent such as AK-225
  • the water-insoluble polymer used in the present invention is insoluble in water and soluble in the above-mentioned water-incompatible organic solvent, or in a water-incompatible organic solvent in the presence of a suitable surfactant.
  • a water-insoluble polymer that can provide the functions and characteristics expected of the produced honeycomb porous body without any particular limitation can be appropriately selected and used.
  • Examples include biodegradable polymers such as polylactic acid and polyhydroxybutyric acid, aliphatic polycarbonates, amphiphilic polymers, photofunctional polymers, and electronic functional polymers.
  • water-incompatible organic solvent and the water-insoluble polymer include, for example, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyalkylsiloxane, and polymethyl methacrylate.
  • organic solvents such as carbon tetrachloride, dichloromethane, chloroform, benzene, toluene, xylene, carbon dioxide Can be used together.
  • fluorocarbon solvents such as AK-225 (Asahi Glass Co., Ltd.).
  • chlorobenzene, fluore ethers, etc. also gives good results.
  • a water-insoluble polymer that can be dissolved in a water-incompatible organic solvent by dissolving it in 0.1 gZL to 10 gZL with respect to the same solvent.
  • concentration of the water-insoluble polymer in the solution can be appropriately determined according to the characteristics and physical properties required for the produced honeycomb porous body and the water-incompatible organic solvent to be used.
  • Another step constituting the present invention is a step of applying the water-incompatible organic solvent solution of the water-insoluble polymer prepared in the above step 1) to the substrate surface.
  • the surface tension ⁇ S of the substrate surface is ⁇ S ⁇ ⁇ SL with respect to the surface tension ⁇ L of the water-incompatible organic solvent to be applied and the surface tension ⁇ SL between the substrate and the solvent.
  • ⁇ S represents the surface tension of the substrate surface
  • y SL represents the surface tension between the substrate and the solvent.
  • the wettability of the substrate itself on which the water-incompatible organic solvent solution of the water-insoluble polymer solution is applied to the water-incompatible organic solvent to be used is formed on the substrate. Can affect the thickness of the. Therefore, it is preferable that the substrate has a high affinity with the water-incompatible organic solvent solution of the water-insoluble polymer solution to be applied. Specifically, the surface of the water-incompatible organic solvent is used. A substrate having a surface exhibiting a surface tension that can be expressed by the above formula using the tension ⁇ L as an index should be used. Preferable examples of such a substrate include a glass plate, a silicon plate, and a metal plate.
  • a substrate having a surface subjected to processing capable of increasing the affinity with a water-incompatible organic solvent solution can be used.
  • Such improvement of the wettability of the substrate surface can be achieved by a method known per se, such as a silane coupling treatment for a glass or metal substrate, in accordance with the water-incompatible organic solvent used.
  • a monomolecular film forming method using a thiol compound can be used.
  • a hydrophobic organic solvent such as black mouth form
  • the surface is modified with a sufficiently cleaned Si substrate or an alkylsilane coupling agent.
  • a glass substrate or the like is preferable.
  • fluorinated solvents It is preferable to use a Teflon (registered trademark) substrate or a glass substrate modified with a fluorinated alkylsilane coupling agent!
  • a water-incompatible organic solvent solution of a water-insoluble polymer as exemplified above is applied to a substrate to form a liquid film of the same solution.
  • a bar coating, a dip coating, a spin coating method, etc. may be mentioned in addition to a method of dropping the same solution on a substrate. Both batch type and continuous type can be used.
  • a liquid film is prepared by applying a water-insoluble organic solvent solution of a water-insoluble polymer to a movable substrate.
  • the method is preferred.
  • a powerful method can be implemented by using a device having a structure generally shown in FIG.
  • the apparatus in FIG. 3 includes a substrate 1 that can move to the left in the figure at a predetermined speed, a metal plate 2 provided on the substrate 1, and a nozzle 3 that blows air having a predetermined relative humidity. Have.
  • the metal plate 2 is placed on the substrate 1 with a gap corresponding to a desired liquid film thickness.
  • the thickness of the liquid film applied to the substrate 1 is reduced by passing the substrate 1 coated with the water-incompatible organic solvent solution of the water-insoluble polymer under the metal plate.
  • the thickness can be adjusted to be approximately equal to the gap between the substrate 1 and the metal plate 2. It is also possible to control the diameter of the holes formed in the hermetic porous body by adjusting the gap between the metal plate 2 and the substrate to change the thickness of the liquid film on the substrate. is there.
  • the moving speed of substrate 1 is 0! It is desirable to adjust to ⁇ 10mmZ seconds, especially l ⁇ 5mmZ seconds.
  • the Herkam-like porous body formed on the substrate can be continuously recovered from the substrate. Therefore, as an industrial production method for the honeycomb-shaped porous body of the present invention, It is advantageous.
  • One of the steps constituting the present invention is to bring the water-incompatible organic solvent solution of the water-insoluble polymer applied to the substrate surface in the step 2) into contact with air having a relative humidity of 30% or more.
  • This is a step of evaporating the incompatible organic solvent.
  • the evaporation rate of the solvent is 1Z within 1 second when the water-incompatible organic solvent solution of water-insoluble polymer is applied to the substrate surface. The speed is reduced to 5.
  • the water-incompatible organic solvent solution of the water-insoluble polymer applied to the substrate is brought into contact with air having a relative humidity of 30% or more to quickly evaporate the water-incompatible organic solvent solution.
  • air having a relative humidity of 30% or more to quickly evaporate the water-incompatible organic solvent solution.
  • the growth of water droplets condensed on the surface of the solution is suppressed, and pores smaller than 200 nm, preferably 10 to 100 nm, are provided in the hermetic porous material.
  • the water incompatibility of the water-insoluble polymer coated on the substrate is almost parallel to the surface direction of the liquid film of the organic solvent solution, and 10 L (liter) Z in the upward direction.
  • a method of evaporating water-incompatible organic solvent by forming a flow of air layer of more than minutes, incompatibility water incompatibility of water-insoluble polymer below the boiling point of organic solvent and below the dew point of air contacting liquid film There is a method to evaporate the water-incompatible organic solvent by heating the substrate coated with the organic solvent solution (for example, calorie heat using a Berch element), and contact the liquid film with the boiling point of the incompatible organic solvent.
  • Examples thereof include a method of evaporating a water-incompatible organic solvent by placing a water-incompatible organic solvent solution of a water-insoluble polymer applied to a substrate under reduced pressure so as not to exceed the dew point of air.
  • the dew point is a value that is determined in relation to the relative humidity and absolute temperature, the temperature at which water vapor reaches saturation and condenses in air at a certain temperature.
  • the water-incompatible organic solvent solution of the water-insoluble polymer applied to the substrate is almost parallel to the liquid film, and the relative humidity is 30% or more in the upward direction.
  • Flow rate with humidity 10 ⁇ To generate air flow of LOOLZ.
  • the flow rate of the airflow may be appropriately adjusted according to the volatility of the water-incompatible organic solvent used and the water-incompatible organic solvent solution film thickness of the water-insoluble polymer applied to the substrate.
  • 10L ⁇ LOOLZ minutes, preferably 10L ⁇ 50LZ minutes.
  • the airflow when the airflow is applied to the liquid film of the water-incompatible organic solvent solution of the water-insoluble polymer applied to the substrate from an obliquely upward direction or in a vertical direction, the airflow causes the liquid to flow. Strain on the membrane and turtle Cracks can occur.
  • the air flow is preferably generated in parallel or upward with the liquid film of the water-incompatible organic solvent solution of the water-insoluble polymer applied to the substrate.
  • the airflow may be generated by any positive pressure from the upstream side or negative pressure by the downstream force.
  • the nozzle force installed toward the substrate may be ejected from a predetermined air, or the air above the substrate may be sucked from one direction.
  • An AK-225 solution of a compound represented by the following formula 1 (JP-A 2000-143726), which is a fluorinated resin, was prepared at a concentration of 1. OgZL. 30 L of this solution was dropped on a glass substrate, and this was placed in parallel with air having a relative humidity of 40% (flow rate of 10 LZ).
  • the solvent was instantly evaporated (within 1 second) and visually observed from the vertical direction to give a transparent thin film.
  • a hard structure having a pore diameter of lOOnm or less was formed (Fig. 1).
  • a hole with a minimum size of about 20 nm was observed at the edge (Fig. 2).
  • the apparatus shown in Fig. 3 was assembled in order to continuously produce a thin film of a Hercam-like porous body having pores with a pore diameter of lOOnm or less.
  • the substrate 1 is a fluorinated alkylsilane coupling agent 1H, 1H, 2H, 2H, perfluorooctyl chloride opening.
  • a cleaned glass substrate treated with silane (Azmax) and coated with fluorine was used.
  • a metal plate 2 was placed on the substrate 1 with a gap of 50 m.
  • Example 2 After the substrate 1 coated with the same organic solvent solution as in Example 1 was moved from the right side to the left side of the figure at a speed of 2 mmZ seconds, and the thickness of the thin film on the substrate was adjusted to 50 m, Nozzle 3 was supplied with air having a relative humidity of 40% (flow rate of 10 LZ). By this method, a honeycomb-like porous body having a pore diameter of lOOnm or less was continuously produced (FIG. 4).
  • the liquid film has a thickness of 75 ⁇ m and is set to 100 ⁇ mn, so that a pore diameter of 150 nm (FIG. 5) and a pore diameter of 200 nm ( A honeycomb-shaped porous material having the structure shown in Fig. 6) was obtained.

Description

明 細 書
サブミクロンノヽニカム構造の製造法
技術分野
[0001] 微細な周期構造を持つ薄膜は、様々な分野にぉ 、て有用な材料である。電子材料 の分野では、電界トランジスタのチャネルの微細化が求められており、実際に lOOnm 以下の作製プロセスが実用化されている(ゲルジンゲら、 IEEEスペクトラム (IEEE Spectrum) 1989年、第 89卷、第 43頁)。光学材料の分野では、回折格子やフォト ニック結晶などが、次世代の光機能素子として注目されている(ノダら、ネイチヤー (N ature)、 2000年、第 407卷、第 608頁)。また光の波長以下の周期構造は可視光 領域で透明であり、光の散乱などを防止する効果が期待できる。また、近年再生医療 分野においても、表面の微細構造が培養細胞に影響を与えるなどの報告がなされて いる(チェンら、サイエンス(Science)ゝ 1997年、第 276卷、 1425頁)。
背景技術
[0002] 従来、サブミクロンサイズのハ-カム状構造体を作製する技術としては、フォトリソグ ラフィーゃソフトリソグラフィー(ホワイトサイドら、 Angew. Chem. Int. Ed. , 1998 年、第 37卷、第 550— 575頁)などが知られている。このように物質を細力べ切断する ことにより作製する微細化プロセスは、トップダウン型の作製プロセスと呼ばれる。一 般的に、トップダウン型の作製プロセスは分子間の結合を切断することに基づいてい るため、本質的に高エネルギーが必要である。そのため、これらの方法は多段階で 高コストのプロセスであり、また回折限界などの問題から、単純な周期構造を作製す る方法としては解決すべき問題が多 、。
[0003] これに対して、材料を分子レベル力 積み上げることで微細周期構造を作製する試 みがなされている。例えば、 lOnmスケールの微細構造作製プロセスとして、ブロック コポリマーの相分離が知られている(アルブレヒトら、マクロモレキュール(Macromol ecules)、 2002年、第 35卷、第 8106— 8110頁)。また、フランソワら(Nature, 199 4年、第 369卷、第 387頁)はポリスチレン一ポリパラフエ-レン(PS— PPP)ブロック コポリマー力 なる規則的な形態を有する構造体の調製を報告して 、る。相溶性の 異なる高分子の末端を共有結合でつなげたブロックコポリマーは、相溶性と各セグメ ントの長さによって、相分離構造の周期を可変できる。し力しながらこの方法も複雑な 有機合成プロセスが必要であり、合成できるブロックコポリマーも限られている。
[0004] さらに、サブミクロンのコロイド微粒子を集積することで、 2次元、 3次元の周期構造 が作製する方法 (グら、ラングミュア (Langmuir)、第 17卷)、これを铸型にすることで インバースドォパール構造を作製する方法 (カルソら、 ラングミュア (Langmuir)、 1 999年、第 15卷、第 8276— 8281頁)が報告されているが、いずれも、単一粒径の 微粒子を調製しなくてはならず、また、型を取った後に铸型を分解しなくてはならない など、様々なプロセス上の問題がある。
[0005] これらの方法とは異なる原理に基づくものとして、水滴を铸型として簡便にハニカム 状多孔質体を作製する方法が報告されている (特開平 8— 311231)。具体的には、 高分子の非水性有機溶媒溶液表面上に水滴を結露させ、該水滴を铸型としてハニ カム状の多孔質体を調製するものである。また、特開 2001— 157574にはポリ L— 乳酸のクロ口ホルム溶液をガラス基板にキャストしたのち、徐々に溶媒を飛ばすことで ハニカム状多孔質体を製造する方法が開示されて 1、る。ここでハニカム状多孔質体 とは、高分子 (ポリマー)からなる薄膜構造体であって、膜の垂直方向に向けられた微 小な孔あるいは窪みが構造体の平面方向に蜂の巣状に設けられて 、るものを意味 する。本発明におけるハ-カム状多孔質体も同じである。
[0006] 特許文献 1 :特開平 8— 311231
特許文献 2 :特開 2001— 157574
非特許文献 1:ゲルジンゲら、 IEEEスペクトラム (IEEE Spectrum) 1989年、第 89 卷、第 43頁
非特許文献 2 :ノダら、ネイチヤー(Nature)、 2000年、第 407卷、第 608頁 非特許文献 3 :チェンら、サイエンス(Science)、 1997年、第 276卷、 1425頁 非特許文献 4:ホワイトサイドら、 Angew. Chem. Int. Ed. , 1998年、第 37卷、第 550— 575頁
非特許文献 5 :アルブレヒトら、マクロモレキュール(Macromolecules)、 2002年、第 35卷、第 8106— 8110頁 非特許文献 6 :フランソワら、 Nature, 1994年、第 369卷、第 387頁
非特許文献 7 :グら、ラングミュア (Langmuir)、第 17卷
非特許文献 8 :カルソら、 ラングミュア(Langmuir)、 1999年、第 15卷、第 8276— 8 281頁
発明の開示
発明が解決しょうとする課題
[0007] し力し、この水滴を铸型とする方法では、 0. 2 μ m以下のサイズの孔径を有するハ 二カム状多孔質体は製造できないと報告されている。本発明の目的は、水滴を铸型 とする方法にぉ 、て、 200nm以下の周期を持つハ-カム状多孔質体とその製造法 を提供することにある。
課題を解決するための手段
[0008] 本発明者らは、水滴を铸型とするハ-カム状多孔質体の作製方法にお!、て、溶媒 の蒸発時間を制御すること、具体的にはより短時間で溶媒を蒸発させることで、多孔 質体の孔径を 10〜200nmというレベルで制御できることを見出し、下記の本発明を 兀成し 7こ。
[0009] 本発明の方法は、水滴を铸型とする従来のハ-カム状多孔質体の製造法において 、基板に塗布された非水溶性ポリマーの水不和合性有機溶媒溶液カゝら溶媒を蒸発 させる時間を制御することで、铸型となる水滴のサイズを調節し、孔径を 200nm以下 に制御するものである。
[0010] 具体的には、本発明は以下の a)〜e)に関する。
[0011] a)以下の工程を含む、直径 10〜200nmの細孔を有する、非水溶性ポリマーからな る厚さ 10〜: LOOOnmのハニカム状多孔質体の製造方法。
[0012] 1) 50dyn/cm以下の表面張力 γ Lを有する水不和合性有機溶媒に非水溶性ポリマ 一を溶解して非水溶性ポリマーの水不和合性有機溶媒溶液を調製する工程; 2)工程 1)で調製される非水溶性ポリマーの水不和合性有機溶媒溶液を基板の表面 に塗布する工程、ここで該基板の表面張力 γ Sは塗布される水不和合性有機溶媒の 表面張力 γ Lならびに該基板と該溶媒との間の表面張力 γ SLに対して γ S— γ SL > T Lの関係を満たす; 3)工程 2)で基板上に塗布された非水溶性ポリマーの水不和合性有機溶媒溶液に 相対湿度 30%以上の空気を接触させて水不和合性有機溶媒を蒸発させる工程、こ こで水不和合性有機溶媒の蒸発速度は非水溶性ポリマーの水不和合性有機溶媒 溶液の基板表面への塗布時の液膜厚が 1秒以内に 1Z5にまで減少する速度である
[0013] b)工程 2)にお ヽて基板に塗布される非水溶性ポリマーの水不和合性有機溶媒溶液 の液膜厚が 1 μ m〜100 μ mである、 a)に記載の製造方法。
[0014] c)工程 2)が基板を一軸方向に移動させながら非水溶性ポリマーの水不和合性有機 溶媒溶液を基板の表面に塗布することにより行われる、 a)に記載の製造方法。
[0015] d)基板がガラス板もしくは金属板である、 a)に記載の方法。
[0016] e)工程 3)が基板の表面に塗布された非水溶性ポリマーの水不和合性有機溶媒溶 液ポリマー溶液を相対湿度 30%以上の湿度を有する流速 10〜: LOOLZ分の気流に 接触させる工程である、 a)に記載の製造方法。
図面の簡単な説明
[0017] [図 1]図 1は本発明のハ-カム状多孔質体(孔径 lOOnm)の拡大図である。
[図 2]図 2は本発明のハ-カム状多孔質体の一部(孔径 20nm)の拡大図である。
[図 3]図 3は本発明のハニカム状多孔質体を連続的に製造する装置を示す。
[図 4]図 4は本発明のハニカム状多孔質体の拡大図である。
[図 5]図 5は本発明のハ-カム状多孔質体(孔径 150nm)の拡大図である。
[図 6]図 6は本発明のハ-カム状多孔質体(孔径 200nm)の拡大図である。
発明を実施するための最良の形態
[0018] 本発明の好適な態様としては、ガラス製または金属製の基板の表面に非水溶性ポ リマーの水不和合性有機溶媒溶液を塗布して液膜を調製し、この液膜に相対湿度 3 0%以上の湿度を有する空気を流速 10〜: LOOLZ分の範囲で接触させることにより 水不和合性有機溶媒を急速に蒸発させ、水滴の成長を 200nm以下とすることにより ハ-カム状多孔質体の孔の径を 200nm以下に制御するものである。
[0019] 本発明の製造方法を構成する工程 1)は、 50dyn/cm以下の表面張力 γ Lを有する 水不和合性有機溶媒に非水溶性ポリマーを溶解して非水溶性ポリマーの水不和合 性有機溶媒溶液を調製する工程である。
[0020] 本発明で利用することのできる水不和合性有機溶媒としては、 50dyn/cm以下の表 面張力を有し、かつ該溶液表面に結露した水滴を保持し得る程度の水不和合性と、 大気圧下の沸点が 0〜150°C、好ましくは 10〜50°Cであれば、何れも利用可能であ る。具体的には、四塩化炭素、ジクロロメタン、クロ口ホルム等のハロゲンィ匕炭化水素 、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、酢酸ェチル、酢酸ブチル等 のエステル類、メチルイソプチルケトン等の非水溶性のケトン類、二硫化炭素などを 挙げることができる。
[0021] これらの中から、具体的に使用する非水溶性ポリマーに対する溶解性を考慮して、 適宜選択して使用することができる。
[0022] また、フッ素化アルキルを側鎖に持つポリアタリレートやメタタリレートの側鎖の水素 をフッ素に置換したフッ素系ポリマーを用いてハニカム状多孔質体を製造する際に は、フッ素系の有機溶媒 (AK— 225等)の使用も良好な結果を与える。
[0023] 本発明で使用する非水溶性ポリマーは、水に不溶性でかつ上記の水不和合性有 機溶媒に可溶な、あるいは適当な界面活性剤の存在下で水不和合性有機溶媒に溶 解し得るポリマーであれば特別の制限はなぐ製造されるハニカム状多孔質体に期 待される機能、特性を与え得る非水溶性ポリマーを適宜選択して使用することができ る。
[0024] 例えば、ポリ乳酸やポリヒドロキシ酪酸のような生分解性ポリマー、脂肪族ポリカーボ ネート、両親媒性ポリマー、光機能性ポリマー、電子機能性ポリマーなどを挙げること ができる。
[0025] 上記の水不和合性有機溶媒と非水溶性ポリマーとの具体的な組み合わせの例とし ては、例えばポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポ リアルキルシロキサン、ポリメタクリル酸メチルなどのポリアルキルメタタリレートまたは ポリアルキルアタリレート、ポリブタジエン、ポリイソプレン、ポリ N ビュルカルバゾ ール、ポリ乳酸、ポリ ε 一力プロラタトン、ポリアルキルアクリルアミド、およびこれら の共重合体よりなる群力 選ばれるポリマーに対しては、四塩化炭素、ジクロロメタン 、クロ口ホルム、ベンゼン、トルエン、キシレン、二硫ィ匕炭素などの有機溶媒を組み合 わせて使用することができる。また、フッ素化アルキルを側鎖に持つアタリレート、メタ タリレートおよびこれらの共重合体よりなる群力 選ばれるポリマーに対しては、 AK— 225 (旭硝子株式会社製)などのフッ化炭素溶媒、トリフルォロベンゼン、フルォロェ 一テル類などの使用も良好な結果を与える。
[0026] 本発明では、水不和合性有機溶媒に溶解し得る非水溶性ポリマーを、同溶媒に対 して 0. lgZL〜10gZLに溶解して使用することが好ましい。ここで、溶液中の非水 溶性ポリマー濃度は、製造されるハニカム状多孔質体に求める特性、物性並びに使 用する水不和合性有機溶媒に応じて、適宜定めることができる。
[0027] 本発明を構成する別の工程は、上記工程 1)で調製される非水溶性ポリマーの水不 和合性有機溶媒溶液を基板表面に塗布する工程である。ここで該基板表面の表面 張力 γ Sは、塗布される水不和合性有機溶媒の表面張力 γ Lならびに該基板と該溶 媒との間の表面張力 γ SLに対して、 γ S— γ SL> γ Lの関係を満たす。ここで γ S は基板表面の表面張力を表し、 y SLは基板と該溶媒との間の表面張力を表す。
[0028] 本発明の場合、非水溶性ポリマー溶液の水不和合性有機溶媒溶液を塗布する基 板自体の、用いられる水不和合性有機溶媒に対する濡れ性が、基板上に形成される 液膜の厚みに影響を与え得る。そのため、基板には、塗布される非水溶性ポリマー 溶液の水不和合性有機溶媒溶液との親和性が高 ヽものであることが好ましぐ具体 的には、水不和合性有機溶媒の表面張力 γ Lを指標にして上記式で表すことのでき る表面張力を示す表面を有する基板を利用すればよ!ヽ。そのような基板の好適な例 としては、ガラス板、シリコン製板あるいは金属板などを挙げることができる。
[0029] また、水不和合性有機溶媒溶液との親和性を高めることのできる加工を表面に施し た基板の使用も可能である。この様な基板表面の濡れ性の改良は、基板と使用する 水不和合性有機溶媒に合わせて、自体公知の方法、例えばガラス製や金属製の基 板に対してはそれぞれシランカップリング処理ゃチオール化合物による単分子膜形 成処理方法などを利用することができる。
[0030] 例えば、クロ口ホルムなどの疎水性有機溶媒を水不和合性有機溶媒として用いる場 合の基板としては、十分に洗浄された Si基板や、アルキルシランカップリング剤など で表面を修飾したガラス基板などの使用が好ましい。また、フッ素系溶媒を用いる場 合は、テフロン (登録商標)基板、あるいはフッ素化アルキルシランカップリング剤など で修飾したガラス基板などの使用が好まし!/ヽ。
[0031] 本発明では、上記に例示したような非水溶性ポリマーの水不和合性有機溶媒溶液 を基板に塗付して、同溶液の液膜を形成させるが、その際の液膜厚としては 1 m〜 100 m、好ましくは 30 μ m以下とすることが望まし!/ヽ。
[0032] 基板に非水溶性ポリマーの水不和合性有機溶媒溶液を塗付する方法としては、基 板に同溶液を滴下する方法の他、バーコート、ディップコート、スピンコート法などを 挙げることができ、バッチ式、連続式の何れも利用することができる。
[0033] 本発明では、微細孔を有するハニカム状多孔質体を製造するという観点から、移動 可能な基板に非水溶性ポリマーの水不和合性有機溶媒溶液を塗付して液膜を調製 する方法が好ましい。例えば、概ね図 3に示すような構造を有する装置を利用するこ とで、力かる方法を実施し得る。図 3の装置は、所定の速度で図の右力 左方向に移 動可能な基板 1と、基板 1上に設けた金属板 2と、所定の相対湿度を有する空気を吹 き付けるノズル 3を有している。ここで、金属板 2は、所望の液膜厚に相当する間隙を 伴って基板 1の上に設置される。
[0034] この装置では、非水溶性ポリマーの水不和合性有機溶媒溶液を塗付した基板 1を 金属板の下側をくぐらせることで、基板 1に塗付された液膜の厚さを基板 1と金属板 2 との間隙とほぼ等しい厚みへと調整することができる。また、金属板 2と基板との間隙 を調節して基板上の液膜の厚みを変化させることによつても、ハ-カム状多孔質体に 形成させる孔の径を制御することも可能である。基板 1の移動速度は、 0. !〜 10 mmZ秒、特に l〜5mmZ秒へと調節することが望まし 、。
[0035] この方法を用いると、基板上に形成されるハ-カム状多孔質体を連続的に基板から 回収することができるので、本発明のハニカム状多孔質体の工業的生産方法としても 有利である。
[0036] 本発明を構成する工程の一つは、前記工程 2)で基板表面に塗布された非水溶性 ポリマーの水不和合性有機溶媒溶液を相対湿度 30%以上の空気に接触させて水 不和合性有機溶媒を蒸発させる工程である。ここで溶媒の蒸発速度は非水溶性ポリ マーの水不和合性有機溶媒溶液の基板表面への塗布時の液膜厚が 1秒以内に 1Z 5にまで減少する速度である。
[0037] 従来法のように、非水溶性ポリマーの有機溶媒溶液を相対湿度の高 ヽ環境中に放 置して、該溶媒表面への結露と有機溶媒の蒸発を待つのでは、水滴の径を 200nm 以下に制御することはできず、その結果、 200nm以下、特に 10〜: LOOnmの細孔を 有するハニカム状多孔質体を製造することはできな 、。
[0038] 本発明では、基板に塗布された非水溶性ポリマーの水不和合性有機溶媒溶液を 相対湿度が 30%以上である空気に接触させて水不和合性有機溶媒溶液を速やか に蒸発させるとともに、溶液表面で結露する水滴の成長を抑制して、ハ-カム状多孔 質体に 200nmより小さい孔、好ましくは 10〜100nmの孔を設けるものである。
[0039] これを実施する方法としては、基板上に塗布した非水溶性ポリマーの水不和合性 有機溶媒溶液の液膜の面方向に対してほぼ平行な 、し上方向に 10L (リットル) Z分 以上の空気層の流れを形成して水不和合性有機溶媒を蒸発させる方法、不和合性 有機溶媒の沸点未満かつ液膜に接触する空気の露点未満で非水溶性ポリマーの水 不和合性有機溶媒溶液が塗布された基板を加熱 (例えばベルチ 素子を用いてカロ 熱)して水不和合性有機溶媒を蒸発させる方法、ある!ヽは不和合性有機溶媒の沸点 ならびに液膜に接触する空気の露点を超えないような減圧下に基板に塗布された非 水溶性ポリマーの水不和合性有機溶媒溶液をおいて水不和合性有機溶媒を蒸発さ せる方法、等を挙げることができる。ここで、露点とは、ある温度におかれた空気の中 に含まれて 、る水蒸気が飽和に達して凝結する温度を 、 、、相対湿度と絶対温度に 対して定まる値である。
[0040] 本発明の好適な例としては、基板に塗布された非水溶性ポリマーの水不和合性有 機溶媒溶液の液膜に対してほぼ平行な 、し上方向に相対湿度 30%以上の湿度を 有する流速 10〜: LOOLZ分の気流を発生させることである。気流の流速は、用いる 水不和合性有機溶媒の揮発度や基板に塗布された非水溶性ポリマーの水不和合性 有機溶媒溶液の液膜の厚さに応じて適宜調製すればよいが、概ね 10L〜: LOOLZ 分、好ましくは 10L〜50LZ分とすればよい。また気流は、基板に塗布された非水溶 性ポリマーの水不和合性有機溶媒溶液の液膜に対して斜め上方向から、あるいは垂 直方向力 気流を当たるような配置では、気流による風圧によって液膜に歪みや亀 裂が発生することもあり得る。その様な場合には、気流は基板に塗布された非水溶性 ポリマーの水不和合性有機溶媒溶液の液膜に平行に、あるいは上方向に生じさせる ことが好ましい。この場合、気流はその上流からの陽圧あるいは下流力もの負圧の何 れによって発生させても構わない。例えば、基板に向けて設置したノズル力 所定の 空気を噴射しても、基板上部の空気を一方向から吸引しても、何れでも良い。
[0041] 以下に実施例を示し、本発明の詳細を説明する。ただし、これらの実施例は何ら本 発明を限定するものではない。
実施例 1
[0042] フッ素榭脂化合物である下記式 1の化合物(特開 2000— 143726号)の AK— 22 5溶液を 1. OgZLの濃度で調製した。この溶液 30 Lをガラス基板上に滴下し、こ れを相対湿度 40%を有する空気 (流速 10LZ分)に対して平行に置 ヽた。
[0043] 溶媒は瞬時に(1秒以内に)蒸発し、垂直方向から目視観察して透明な薄膜を与え た。この作製された薄膜中に形成された構造を走査型電子顕微鏡で観察を行った結 果、孔径 lOOnm以下のハ-カム構造が形成されていることが観察された(図 1)。さら に、エッジ部分では最小 20nm程度の孔も観察された(図 2)。
[0044] [化 1]
Figure imgf000011_0001
実施例 2
lOOnm以下の孔径の細孔を有するハ-カム状多孔質体の薄膜を連続製造するた めに、図 3に示す装置を組み立てた。図 3の装置において、基板 1は、フッ素化アル キルシランカップリング剤である 1H, 1H, 2H, 2H,パーフルォロォクチルトリクロ口 シラン (ァズマックス社)によって処理し、フッ素コートィ匕した洗浄済みガラス基板を用 いた。また、金属板 2を、基板 1上に 50 mの間隙を伴って設置した。
[0046] 実施例 1と同じ有機溶媒溶液を塗付した基板 1を図の右カゝら左に向けて 2mmZ秒 の速度で移動させ、基板上の薄膜の厚みを 50 mに調整した後、ノズル 3から相対 湿度 40%を有する空気 (流速 10LZ分)を供給した。この方法により、 lOOnm以下 の孔径を有するハニカム状多孔質体が連続的に製造された (図 4)。
[0047] また、上記の方法にぉ 、て金属板 2の位置を調整して液膜を 75 μ mある 、は 100 μ mnとすることで、 150nmの孔径(図 5)ならびに 200nmの孔径(図 6)を有するハ 二カム状多孔質体を得た。

Claims

請求の範囲
[1] 以下の工程を含む、直径 10〜200nmの細孔を有する、非水溶性ポリマー力もなる 厚さ 10〜: LOOOnmのハ-カム状多孔質体の製造方法。
1) 50dyn/cm以下の表面張力 γ Lを有する水不和合性有機溶媒に非水溶性ポリマ 一を溶解して非水溶性ポリマーの水不和合性有機溶媒溶液を調製する工程;
2)工程 1)で調製される非水溶性ポリマーの水不和合性有機溶媒溶液を基板の表面 に塗布する工程、ここで該基板の表面張力 γ Sは塗布される水不和合性有機溶媒の 表面張力 γ Lならびに該基板と該溶媒との間の表面張力 γ SLに対して γ S— γ SL > T Lの関係を満たす;
3)工程 2)で基板上に塗布された非水溶性ポリマーの水不和合性有機溶媒溶液に 相対湿度 30%以上の空気を接触させて水不和合性有機溶媒を蒸発させる工程、こ こで水不和合性有機溶媒の蒸発速度は非水溶性ポリマーの水不和合性有機溶媒 溶液の基板表面への塗布時の液膜厚が 1秒以内に 1Z5にまで減少する速度である
[2] 工程 2)にお ヽて基板に塗布される非水溶性ポリマーの水不和合性有機溶媒溶液 の液膜厚が 1 μ πι〜100 /ζ mである、請求項 1に記載の製造方法。
[3] 工程 2)が基板を一軸方向に移動させながら非水溶性ポリマーの水不和合性有機 溶媒溶液を基板の表面に塗布することにより行われる、請求項 1に記載の製造方法。
[4] 基板がガラス板もしくは金属板である、請求項 1に記載の方法。
[5] 工程 3)が基板の表面に塗布された非水溶性ポリマーの水不和合性有機溶媒溶液 ポリマー溶液を相対湿度 30%以上の湿度を有する流速 10〜: L00LZ分の気流に接 触させる工程である、請求項 1に記載の製造方法。
PCT/JP2005/015456 2004-08-27 2005-08-25 サブミクロンハニカム構造の製造法 WO2006022341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05774701A EP1783162A4 (en) 2004-08-27 2005-08-25 PROCESS FOR PRODUCING SUBMICRONIC STRUCTURES OF HONEYCOMB
US11/661,620 US7531211B2 (en) 2004-08-27 2005-08-25 Process for production of submicrohoneycomb structures
JP2006532591A JP4682332B2 (ja) 2004-08-27 2005-08-25 サブミクロンハニカム構造の製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-247852 2004-08-27
JP2004247852 2004-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11661620 Continuation 2007-05-03

Publications (1)

Publication Number Publication Date
WO2006022341A1 true WO2006022341A1 (ja) 2006-03-02

Family

ID=35967548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015456 WO2006022341A1 (ja) 2004-08-27 2005-08-25 サブミクロンハニカム構造の製造法

Country Status (5)

Country Link
US (1) US7531211B2 (ja)
EP (1) EP1783162A4 (ja)
JP (1) JP4682332B2 (ja)
KR (1) KR101174391B1 (ja)
WO (1) WO2006022341A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291185A (ja) * 2006-04-21 2007-11-08 Hokkaido Univ ハニカム状多孔質体及びその製造方法。
JP2009073983A (ja) * 2007-09-21 2009-04-09 Fujifilm Corp 多孔フィルムの製造方法及び装置
JP2010037554A (ja) * 2008-07-10 2010-02-18 Fujifilm Corp 多孔体の製造方法
JP2010134440A (ja) * 2008-10-27 2010-06-17 Fujifilm Corp 位相差フィルムの製造方法及びその製造設備
JP2011202100A (ja) * 2010-03-26 2011-10-13 Fujifilm Corp ハニカム構造フィルムの製造方法
JP2014065229A (ja) * 2012-09-26 2014-04-17 Fujifilm Corp 結露装置、結露方法及び多孔フィルムの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241539B2 (en) 2006-04-25 2012-08-14 National University Of Singapore Method of patterning and product(s) obtained therefrom
JP5534750B2 (ja) * 2008-09-19 2014-07-02 キヤノン株式会社 表面に凹形状部を有する固形物の製造方法および電子写真感光体の製造方法
GB201112404D0 (en) 2011-07-19 2011-08-31 Surface Innovations Ltd Method
KR101687491B1 (ko) * 2015-07-16 2016-12-16 한국과학기술원 자발 확산 효과를 이용한 유기 또는 무기 박막 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2216895A1 (de) 1971-04-14 1972-11-02 Watanabe, Hisashi, Mitakia, Tokio (Japan) Baustoff und Verfahren zu seiner Herstellung
US4954381A (en) 1986-12-30 1990-09-04 The Research Foundation Of The State University Of New York Preparation of porous substrates having well defined morphology
EP1000964A1 (fr) 1998-11-13 2000-05-17 Institut Français du Pétrole Matériaux alvéolaires contenant un polymère thermoplastique, une résine époxyde modifée et un agent porogène
JP2001157574A (ja) * 1999-11-30 2001-06-12 Terumo Corp ハニカム構造体およびその調製方法、ならびにその構造体を用いたフィルムおよび細胞培養基材
JP2003294905A (ja) 2002-03-29 2003-10-15 Fuji Photo Film Co Ltd ハニカム構造体を用いた光学機能膜およびその製造方法
JP2005232238A (ja) * 2004-02-17 2005-09-02 Japan Science & Technology Agency 3次元多孔質構造体とその製造方法
EP1588995A1 (en) 2004-01-13 2005-10-26 Ibiden Co., Ltd. Pore-forming material for porous body, method for producing pore-forming material for porous body, method for producing porous body, porous body and honeycomb structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387378A (en) * 1993-04-21 1995-02-07 Tulane University Integral asymmetric fluoropolymer pervaporation membranes and method of making the same
JPH08311231A (ja) * 1995-05-17 1996-11-26 Toyota Central Res & Dev Lab Inc ハニカム状多孔質体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2216895A1 (de) 1971-04-14 1972-11-02 Watanabe, Hisashi, Mitakia, Tokio (Japan) Baustoff und Verfahren zu seiner Herstellung
US4954381A (en) 1986-12-30 1990-09-04 The Research Foundation Of The State University Of New York Preparation of porous substrates having well defined morphology
EP1000964A1 (fr) 1998-11-13 2000-05-17 Institut Français du Pétrole Matériaux alvéolaires contenant un polymère thermoplastique, une résine époxyde modifée et un agent porogène
JP2001157574A (ja) * 1999-11-30 2001-06-12 Terumo Corp ハニカム構造体およびその調製方法、ならびにその構造体を用いたフィルムおよび細胞培養基材
JP2003294905A (ja) 2002-03-29 2003-10-15 Fuji Photo Film Co Ltd ハニカム構造体を用いた光学機能膜およびその製造方法
EP1588995A1 (en) 2004-01-13 2005-10-26 Ibiden Co., Ltd. Pore-forming material for porous body, method for producing pore-forming material for porous body, method for producing porous body, porous body and honeycomb structure
JP2005232238A (ja) * 2004-02-17 2005-09-02 Japan Science & Technology Agency 3次元多孔質構造体とその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALBRECHT ET AL., MACROMOLECULES, vol. 35, 2002, pages 8106 - 8110
CHENG ET AL., SCIENCE, vol. 276, 1997, pages 1425
FRANCOIS ET AL., NATURE, vol. 369, 1994, pages 387
GU ET AL., LANGMUIR, vol. 17
KALSO ET AL., LANGMUIR, vol. 15, 1999, pages 8276 - 8281
See also references of EP1783162A4
WHITESIDE ET AL., ANGEW. CHEM. INT. ED., vol. 37, 1998, pages 550 - 575

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291185A (ja) * 2006-04-21 2007-11-08 Hokkaido Univ ハニカム状多孔質体及びその製造方法。
JP2009073983A (ja) * 2007-09-21 2009-04-09 Fujifilm Corp 多孔フィルムの製造方法及び装置
JP2010037554A (ja) * 2008-07-10 2010-02-18 Fujifilm Corp 多孔体の製造方法
JP2010134440A (ja) * 2008-10-27 2010-06-17 Fujifilm Corp 位相差フィルムの製造方法及びその製造設備
JP2011202100A (ja) * 2010-03-26 2011-10-13 Fujifilm Corp ハニカム構造フィルムの製造方法
JP2014065229A (ja) * 2012-09-26 2014-04-17 Fujifilm Corp 結露装置、結露方法及び多孔フィルムの製造方法

Also Published As

Publication number Publication date
KR20070100221A (ko) 2007-10-10
KR101174391B1 (ko) 2012-08-16
JP4682332B2 (ja) 2011-05-11
JPWO2006022341A1 (ja) 2008-05-08
US20080032048A1 (en) 2008-02-07
US7531211B2 (en) 2009-05-12
EP1783162A4 (en) 2010-03-17
EP1783162A1 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP4682332B2 (ja) サブミクロンハニカム構造の製造法
KR101169426B1 (ko) 나노임프린트 리소그래피에 의한 계층형 나노패턴 형성방법
Vogel et al. A convenient method to produce close‐and non‐close‐packed monolayers using direct assembly at the air–water interface and subsequent plasma‐induced size reduction
JP5414011B2 (ja) 微細構造体、パターン媒体、及びそれらの製造方法
Zhang et al. Colloidal self‐assembly meets nanofabrication: From two‐dimensional colloidal crystals to nanostructure arrays
KR100930966B1 (ko) 블록공중합체의 나노구조와 일치하지 않는 형태의 표면패턴상에 형성되는 블록공중합체의 나노구조체 및 그 제조방법
JP4654279B2 (ja) 微細構造を有する高分子薄膜およびパターン基板の製造方法
KR100935863B1 (ko) 용매 어닐링과 디웨팅을 이용한 블록공중합체의 나노구조의패턴화방법
Haupt et al. Nanoporous Gold Films Created Using Templates Formed from Self‐Assembled Structures of Inorganic–Block Copolymer Micelles
WO2012043114A1 (ja) シルセスキオキサンを有する高分子薄膜、微細構造体及びこれらの製造方法
US20150232689A1 (en) Using Chemical Vapor Deposited Films to Control Domain Orientation in Block Copolymer Thin Films
Gowrishankar et al. Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography
CN110656311A (zh) 一种自上而下制备纳米粒子的方法
JP4830104B2 (ja) パターン化ハニカム状多孔質体の製造方法
JPWO2006112358A1 (ja) ハニカム状多孔質体の製造方法。
Shih et al. Topographic control on silicone surface using chemical oxidization method
KR20090081532A (ko) 나노 실린더형 템플레이트 및 나노 점 어레이 제조 방법
KR101758961B1 (ko) 패턴화된 실리카 입자 제조방법 및 이를 통해 제조된 패턴화된 실리카 입자
KR102595510B1 (ko) 기판의 표면장력을 조절하여 형성된 이중 나노 중공 패턴을 포함하는 이중 나노 중공 패턴 공중합체 박막 적층체 및 그의 제조방법
Kang et al. Fabrication of ordered honeycomb structures and microspheres using polystyrene-block-poly (tert-butyl acrylate) star polymers
Coulon et al. Plasma texturing of polymers
KR100527409B1 (ko) 백나노미터 이하의 고정밀 나노 미세패턴 및 자성 금속 점정렬 형성방법
JP2007291185A (ja) ハニカム状多孔質体及びその製造方法。
KR101617718B1 (ko) 초소수성 박막의 제조방법 및 이를 통해 제조된 초소수성 박막
JP2005262777A (ja) 高品質ハニカム構造フィルムの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077003126

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005774701

Country of ref document: EP

Ref document number: 2006532591

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11661620

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005774701

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661620

Country of ref document: US