WO2006018952A1 - 多モード光伝送装置 - Google Patents

多モード光伝送装置 Download PDF

Info

Publication number
WO2006018952A1
WO2006018952A1 PCT/JP2005/013633 JP2005013633W WO2006018952A1 WO 2006018952 A1 WO2006018952 A1 WO 2006018952A1 JP 2005013633 W JP2005013633 W JP 2005013633W WO 2006018952 A1 WO2006018952 A1 WO 2006018952A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
optical transmission
predetermined
oscillation mode
Prior art date
Application number
PCT/JP2005/013633
Other languages
English (en)
French (fr)
Inventor
Masaru Fuse
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05767205A priority Critical patent/EP1772983B1/en
Priority to DE602005024141T priority patent/DE602005024141D1/de
Priority to US11/660,155 priority patent/US7917038B2/en
Priority to JP2006531400A priority patent/JPWO2006018952A1/ja
Publication of WO2006018952A1 publication Critical patent/WO2006018952A1/ja
Priority to US12/974,484 priority patent/US8078059B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical transmission device that converts data into an optical signal and transmits it, receives the transmitted optical signal, and converts it into data. More specifically, the light has physical properties.
  • the present invention relates to an optical transmission apparatus that realizes encrypted communication of highly confidential data by remarkably suppressing data sniffing by a third party other than a legitimate receiver by using noise components. Background art
  • FIG. 19 is a diagram showing a configuration of a conventional optical transmission device 91 corresponding to encrypted communication.
  • the optical transmission apparatus 91 includes a light source 95, an optical information modulation unit 94, an encryption unit 93, an optical transmission path 993, a decryption unit 98, and a light intensity detection unit 97.
  • the light transmission circuit 92 is configured by the light source 95, the optical information modulation unit 94, and the encryption unit 93.
  • the decoder 98 and the light intensity detector 97 constitute an optical receiver circuit 96.
  • the interceptor light receiving circuit 99 including the interceptor light intensity detecting unit 992 and the decryption unit 991 is also shown.
  • the encryption unit 93 shares the source code Ki in advance as an “encryption key” with the decryption unit 98 in the optical reception circuit 96.
  • the encryption unit 93 encrypts the information signal Di to be transmitted using the source code Ki and outputs it.
  • the optical information modulation unit 94 optically modulates the light output from the light source 95 with the encrypted information signal output from the encryption unit 93, and sends it to the optical transmission line 993.
  • the light intensity detector 97 receives an optical modulation signal transmitted through the optical transmission line 993, detects the light intensity modulation component, converts it into an electrical signal, and outputs it.
  • Decoding section 98 decodes the output signal from light intensity detecting section 97 using source code Ki, and reproduces information signal Di.
  • a predetermined code is shared as a “secret key” between the sender and the receiver.
  • the transmitting side encrypts the information signal by performing a calculation process of a predetermined procedure using the code.
  • the receiving side uses a similar code to perform a substantially reverse procedure.
  • the original information signal is reproduced by decoding by performing the above calculation process.
  • Patent Document 1 JP-A-9-205420
  • the eavesdropper side optical receiver circuit 99 on the eavesdropper side splits and extracts a part of the optical signal propagating through the optical transmission line 993, and has an optical quality equal to or comparable to that of the optical receiver circuit 96 on the regular receiver side.
  • the signal can be input to the eavesdropper light intensity detection unit 992 and converted into an electric signal, and the decryption unit 991 can restore the original information signal Di.
  • the decryption unit 991 is mainly composed of a high-speed computer, etc., and even if it does not have a ⁇ secret key '', it can decrypt the cipher by calculation processing as long as a signal of sufficient quality is input. be able to.
  • an object of the present invention is to realize cryptographic communication that cannot be analyzed and decrypted by computer processing by using an unpredictable noise component of light as a physical property (natural phenomenon). It is to provide an optical transmission device that can be used.
  • a first aspect of the present invention is a multimode optical transmission apparatus for transmitting a multimode optical signal modulated with an information signal to be transmitted, the multimode oscillation light being modulated with the information signal, After a predetermined operation is performed on at least one oscillation mode light in the oscillation light, an optical transmission circuit to be transmitted to the optical transmission path and an optical signal transmitted through the optical transmission path are received, and the predetermined operation is performed.
  • An optical receiving circuit that restores an optical signal before a predetermined operation is performed by performing an operation reverse to the operation, converts the restored optical signal into an electrical signal, and reproduces an information signal.
  • At least one oscillation mode in multimode oscillation light is provided.
  • a predetermined operation is applied to the light beam to change the correlation between the light intensity or the light phase between the oscillation mode light components.
  • an unpredictable noise component that light has as a physical property (natural phenomenon) is generated.
  • the optical signal received by the eavesdropper optical receiver circuit is degraded in signal-to-noise ratio due to the unpredictable noise component, so the optical signal transmitted by the optical transmitter circuit is accurately reproduced. Can not do it. Therefore, an optical transmission apparatus capable of realizing highly confidential encryption communication that cannot be analyzed and decrypted by computer processing using the unpredictable noise component is provided.
  • the optical transmission circuit performs, as a predetermined operation, an operation corresponding to a predetermined code for a group of a plurality of oscillation mode lights in the multimode oscillation light, and performs optical transmission.
  • the optical receiving circuit receives the light transmitted through the optical transmission path, and performs a predetermined operation on the group of oscillation mode light by performing an operation opposite to the operation corresponding to the predetermined code.
  • the optical signal before the operation is restored the change in the total light intensity of the group of oscillation mode light is detected, converted into an electrical signal, and the information signal is reproduced.
  • the optical transmission circuit performs a predetermined operation on each oscillation mode light of the multimode oscillation light to correlate the light intensity or the optical phase between the oscillation mode light components. Change the relationship. As a result, an unpredictable noise component of light as a physical property (natural phenomenon) is generated.
  • the regular optical receiving circuit and the optical transmitting circuit share the light intensity or optical phase change pattern between the oscillation mode light components as a “secret key”. Based on the secret key, the optical receiver circuit removes the noise component by performing an operation that is opposite to the predetermined operation performed by the optical transmitter circuit. As a result, the optical receiving circuit can regenerate an optical signal having an optical spectrum according to the optical signal transmitted by the optical transmitting circuit.
  • the optical signal received by the eavesdropper optical receiver circuit has a signal-to-noise ratio deteriorated due to the unpredictable noise component, so the optical signal transmitted by the optical transmitter circuit is accurately reproduced. I can't. Therefore, an optical transmission apparatus capable of realizing highly confidential encryption communication that cannot be analyzed and decrypted by computer processing using the unpredictable noise component is provided.
  • the optical transmission circuit modulates light output from the multi-mode light source with an information signal and outputs a modulated optical signal.
  • An optical signal output from the information modulation unit and the optical information modulation unit is input, and a first operation corresponding to a predetermined code is performed on a group of a plurality of oscillation mode lights of the optical signal to transmit an optical signal.
  • the second operation which is opposite to the first operation corresponding to, is performed, and the output of the mode decoding unit and the change in the total light intensity of the optical signal output from the mode decoding unit are detected.
  • the first operation in the mode code section is an operation that gives a predetermined amount of intensity change corresponding to a predetermined code to each of a plurality of oscillation mode lights of the input optical signal.
  • the second operation in the decoding unit is an operation that gives an intensity change having a polarity opposite to a predetermined amount of intensity change corresponding to a predetermined code to each of a plurality of oscillation mode lights of the input optical signal.
  • the first operation in the mode code section is an operation for giving a predetermined amount of phase change corresponding to a predetermined code to each of a plurality of oscillation mode lights of the input optical signal.
  • the second operation in the decoding unit is an operation for giving a phase change having a polarity opposite to a predetermined amount of phase change corresponding to a predetermined code to each of a plurality of oscillation mode lights of the input optical signal.
  • the first operation in the mode code unit is an operation for giving a predetermined amount of deflection change corresponding to a predetermined code to each of a plurality of oscillation mode lights of the input optical signal.
  • the second operation in the decoding unit is an operation for giving a deflection change having a polarity opposite to a predetermined amount of the deflection change corresponding to a predetermined sign to each of the plurality of oscillation mode lights of the input optical signal.
  • the first operation in the mode code unit is an operation of giving a predetermined amount of frequency change corresponding to a predetermined code to each of a plurality of oscillation mode lights of the input optical signal.
  • the second operation in the mode decoding unit is a frequency change having a polarity opposite to a predetermined amount of frequency change corresponding to a predetermined code for each of a plurality of oscillation mode lights of the input optical signal. It is an operation that gives
  • the multi-mode light source has a correlation in light intensity and optical phase with each other, and combines a plurality of light sources that output light of different wavelengths and light output from the plurality of light sources, and outputs And a modulation signal that modulates the intensity and Z or phase of light output from a plurality of light sources in a substantially random manner, with the total intensity of light output from the optical mode combining unit and the light mode combining unit being constant. It is good to comprise the code generation part supplied to each light source.
  • the multi-mode light source includes a plurality of light sources that output light having different wavelengths, a light mode combining unit that combines and outputs light output from the plurality of light source modules, and a plurality of light sources.
  • the optical phase synchronization unit that synchronizes the phase change of the output light and the total intensity of the light output from the optical mode combining unit are made constant, and the intensity of the light output from multiple light sources is modulated almost randomly. It is preferable to include a code generation unit that supplies such a modulation signal to each light source.
  • the multi-mode light source includes a plurality of light sources that output light having different wavelengths, a light mode combining unit that combines and outputs light output from the plurality of light source modules, and a plurality of light sources.
  • the light intensity synchronization unit that synchronizes changes in the intensity of the output light and the total intensity of the light output from the optical mode combining unit are made constant, and the phase of the light output from multiple light sources is modulated almost randomly. It is preferable to include a code generation unit that supplies such a modulation signal to each light source.
  • the multimode light source may be an LED (Light Emission Diode), an FP (Fabry-Perot) laser, an RC (Resonant Cabity) —LED, It may be L (Vertical Cabity Surface Emitting Laser) or SLD (Super Luminescent Diode).
  • LED Light Emission Diode
  • FP Fabry-Perot
  • RC Resonant Cabity
  • L Vertical Cabity Surface Emitting Laser
  • SLD Super Luminescent Diode
  • the optical transmission unit includes a plurality of pairs of optical transmission circuits and optical reception circuits, combines an optical signal component output from each optical transmission circuit, and sends the optical signal component to the optical transmission line, and an optical transmission line
  • An optical branching unit that branches an optical signal component transmitted via the optical signal and outputs the optical signal component to a corresponding optical receiver circuit, and each pair of the optical transmitter circuit and the optical receiver circuit includes a group of a plurality of oscillation mode lights
  • a first operation and a second operation corresponding to different predetermined codes may be performed.
  • the optical transmission line may be an optical fiber, an optical waveguide, or free space.
  • the optical transmission circuit extracts predetermined oscillation mode light from the multimode oscillation light and sends it to the optical transmission line.
  • the light transmitted through the transmission line is received, and the extracted predetermined oscillation mode light is combined with the same light or the light according to the predetermined oscillation mode light, and then square detection is performed to obtain the information signal. It is good to regenerate.
  • the third aspect of the present invention in order to detect the light from which the predetermined oscillation mode light is removed by transmitting the light from which the predetermined oscillation mode light has been removed from the light that oscillates in multiple modes, The same light as the predetermined oscillation mode light or light according to the predetermined oscillation mode light is required. Therefore, when a third party attempts to eavesdrop and receives light from which the predetermined oscillation mode light has been removed, the optical power that oscillates in multiple modes The noise generated when the predetermined oscillation mode light is removed (mode partition noise) As a result, the signal-to-noise power ratio will deteriorate significantly, and third parties will not be able to detect correctly.
  • the optical power that oscillates in multiple modes is also noise generated when a predetermined oscillation mode light is removed (mode partition noise).
  • the optical transmission circuit includes a multimode light source that outputs light that oscillates in a multimode, and an optical information modulation unit that modulates the light output from the multimode light source with an information signal and outputs the optical signal. Then, an optical signal output from the optical information modulation unit is input, and a predetermined oscillation mode light is separated from a plurality of oscillation mode lights in the optical signal and transmitted to the sub optical transmission line, and also in the optical signal. And an optical separation unit that sends the remaining optical signal components other than the predetermined oscillation mode light to the main optical transmission line, and the optical receiver circuit transmits the optical signal component transmitted through the main optical transmission line and the sub optical transmission line. It is preferable to include a light intensity detection unit that combines the predetermined oscillation mode light transmitted through the transmission path and square-detects to reproduce the information signal.
  • the optical transmission circuit includes a multimode light source that outputs light that oscillates in a multimode, and an optical information modulator that modulates the light output from the multimode light source with an information signal and outputs the optical signal. Then, an optical signal output from the optical information modulation unit is input, and a predetermined oscillation mode light is separated from a plurality of oscillation mode lights in the optical signal and transmitted to the sub optical transmission line, and also in the optical signal. And an optical separation unit for sending the remaining optical signal components other than the predetermined oscillation mode light to the main optical transmission line, and the optical receiving circuit inputs the predetermined oscillation mode light transmitted through the sub optical transmission line.
  • a local light generation unit that generates local oscillation light that has the same physical properties as the oscillation mode light, and an optical signal component that is transmitted through the main optical transmission line. Is combined with the local oscillation light that is output and And a light intensity detector that reproduces the information signal.
  • the optical transmission circuit includes a multimode light source that outputs light that oscillates in a multimode, and an optical information modulator that modulates the light output from the multimode light source with an information signal and outputs the optical signal. And inputting an optical signal output from the optical information modulator, separating a predetermined oscillation mode light from a plurality of oscillation mode lights in the optical signal, and remaining light other than the predetermined oscillation mode light in the optical signal.
  • a light separation unit that sends a signal component to the optical transmission line, and a predetermined oscillation mode light separated by the light separation unit are input, the physical property of the predetermined oscillation mode light is detected, and the detection signal is transmitted to the transmission line.
  • a light detector that transmits the light, and the light receiving circuit has a predetermined wave as light in accordance with a predetermined oscillation mode light based on a detection signal transmitted through the transmission line.
  • a local light generator that generates local oscillation light that has the same physical properties as the oscillation mode light, an optical signal component that is transmitted through the optical transmission line, and a local oscillation light that is output from the local light generator are combined.
  • a light intensity detector that reproduces an information signal by square detection.
  • the regular receiver can share the oscillation mode light and ensure high received signal quality. Therefore, it is possible to realize a highly confidential optical transmission device that significantly prevents eavesdropping by a third party.
  • the optical signal components other than the predetermined oscillation mode light output from the plurality of pairs of optical transmission circuits and optical reception circuits and the respective optical transmission circuits are combined and sent to the main optical transmission line. It is preferable to include an optical multiplexing unit and a main optical branching unit that branches an optical signal component other than a predetermined oscillation mode light transmitted through the main optical transmission line and outputs the branched optical signal component to a corresponding optical receiving circuit.
  • a sub-optical branching unit that branches a predetermined oscillation mode light transmitted through the sub-optical transmission path and outputs the branched light to a corresponding optical receiving circuit may be provided.
  • the optical signal components other than the predetermined oscillation mode light output from the plurality of pairs of optical transmission circuits and optical reception circuits and the respective optical transmission circuits are combined and sent to the main optical transmission line.
  • An optical multiplexing unit, a main optical branching unit for branching optical signal components other than the predetermined oscillation mode light transmitted through the main optical transmission line, and outputting them to the corresponding optical receiving circuit, and output from each optical transmitting circuit A predetermined oscillation mode light to be combined and transmitted to the sub optical transmission path, and a predetermined oscillation mode light transmitted via the sub optical transmission path is branched to a corresponding optical receiving circuit. It is preferable to provide an auxiliary light branching unit for outputting.
  • a plurality of pairs of optical transmission circuits and optical reception circuits a combining unit that combines detection signals output from the respective optical transmission circuits, and transmits the combined signals to the transmission path, are transmitted through the transmission path.
  • a branching unit that branches the detection signal and outputs it to the corresponding optical receiving circuit.
  • optical power that oscillates in multiple modes Utilizes noise generated when light of a predetermined oscillation mode is removed, prevents information leakage and interference between multiple pairs of senders and receivers, and provides highly confidential optical transmission A device can be realized.
  • the optical signal components other than the predetermined oscillation mode light transmitted and received by the plurality of pairs of optical transmission circuits and optical reception circuits have different wavelengths.
  • the predetermined oscillation modes transmitted and received by the plurality of pairs of optical transmission circuits and optical reception circuits may have different wavelengths.
  • the optical signal components other than the predetermined oscillation mode light transmitted and received by the plural pairs of optical transmission circuits and the optical reception circuits have the same wavelength components, and the plural pairs of optical transmission circuits and optical reception circuits
  • the predetermined oscillation mode lights transmitted and received by may have different wavelengths.
  • the optical power that multi-mode oscillates simplifies the optical transmission line while preventing information leakage and interference between a plurality of pairs of senders and receivers by using noise generated when light of a predetermined oscillation mode is removed.
  • a highly confidential optical transmission device can be realized economically.
  • a multi-mode light source combines light output from a plurality of light sources and a plurality of light sources that output light having different wavelengths with a correlation between light intensity and optical phase.
  • Modulation signal that modulates the intensity and Z or phase of light output from multiple light sources with a constant total intensity of light output from the optical mode combining unit It is good to consist of the code generation part which supplies to each light source.
  • a multi-mode light source outputs a plurality of light sources that output light of different wavelengths, a light mode combining unit that combines and outputs light output from a plurality of light source modules, and a plurality of light sources.
  • Modulation that keeps the total intensity of light output from the optical phase synchronizer and the optical mode combiner constant, and modulates the intensity of light output from multiple light sources almost randomly. It is good to comprise a code generation part which supplies a signal to each light source.
  • a multi-mode light source is a plurality of light sources that output light having different wavelengths, a light mode combining unit that combines and outputs light output from a plurality of light source modules, and a plurality of light sources. Modulation that keeps the total intensity of the light output from the light intensity synchronizer and the optical mode combiner constant to synchronize changes in the intensity of the emitted light, and modulates the phase of the light output from multiple light sources approximately randomly. It is good to comprise a code generation part which supplies a signal to each light source.
  • the multimode light source may be an LED (Light Emission Diode) or an FP (Fabry-Perot) laser! /, And RC (Resonant Cabity) —It can be an LED, VCSEL (Vertical Cabity Surface Emitting Laser) or SLD (Super Luminescent Diode).
  • a predetermined operation is performed on at least one oscillation mode light in the multimode oscillation light to correlate the light intensity or the optical phase between the oscillation mode light components. Change the relationship.
  • an unpredictable noise component that light has as a physical property (natural phenomenon) is generated.
  • the optical signal received by the eavesdropper optical receiver circuit is degraded in signal-to-noise ratio due to the unpredictable noise component, so the optical signal transmitted by the optical transmitter circuit is accurately reproduced. Can not do it. Therefore, an optical transmission apparatus capable of realizing highly confidential encryption communication that cannot be analyzed and decrypted by computer processing using the unpredictable noise component is provided.
  • FIG. 1 is a functional block diagram showing a conceptual configuration of an optical transmission device 1 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of an optical transmission device 100 compatible with cryptographic communication according to the first embodiment of the present invention.
  • FIG. 3A is a schematic diagram showing an example of the spectrum of light (optical signal) in the main part of the optical transmission device 100.
  • FIG. 3A is a schematic diagram showing an example of the spectrum of light (optical signal) in the main part of the optical transmission device 100.
  • FIG. 3B shows an example of the spectrum of light (optical signal) in the main part of the optical transmission device 100. It is a schematic diagram showing.
  • FIG. 3C is a schematic diagram showing an example of the spectrum of light (optical signal) in the main part of the optical transmission device 100.
  • FIG. 3D is a schematic diagram showing an example of a spectrum of light (optical signal) in the main part of the optical transmission device 100.
  • FIG. 3E is a schematic diagram showing an example of a spectrum of light (optical signal) in the main part of the optical transmission device 100.
  • FIG. 4A is a schematic diagram showing an example of a spectrum of light (optical signal) in the main part of optical transmission device 100 or interceptor optical receiver circuit 1003.
  • FIG. 4B is a schematic diagram showing an example of a spectrum of light (optical signal) in the main part of optical transmission device 100 or interceptor optical receiver circuit 1003.
  • FIG. 4C is a schematic diagram showing an example of the spectrum of light (optical signal) in the main part of the optical transmission device 100 or the interceptor optical receiver circuit 1003.
  • FIG. 4D is a schematic diagram showing an example of light (optical signal) spectrum in the main part of the optical transmission device 100 or the interceptor optical receiving circuit 1003.
  • FIG. 4E is a schematic diagram showing an example of a spectrum of light (optical signal) in the main part of the optical transmission device 100 or the interceptor optical receiver circuit 1003.
  • FIG. 5 is a diagram showing a configuration of a first modified example related to the first embodiment.
  • FIG. 6 is a diagram showing a configuration of a second modified example related to the first embodiment.
  • FIG. 7 is a diagram showing a configuration of an optical transmission device 200 according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of an optical transmission apparatus 200 compatible with cryptographic communication according to a third embodiment of the present invention.
  • FIG. 9A is a schematic diagram showing a spectrum of light (optical signal) in the main part of the optical transmission apparatus 200 shown in FIG.
  • FIG. 9B is a schematic diagram showing a light (optical signal) spectrum in the main part of the optical transmission apparatus 200 shown in FIG.
  • FIG. 9C shows a spectrum of light (optical signal) in the main part of the optical transmission apparatus 200 shown in FIG. It is a schematic diagram showing Torr.
  • FIG. 10 is a diagram showing a configuration of an optical transmission apparatus 200a according to a first modification example related to the third embodiment.
  • FIG. 11 is a diagram showing a configuration of an optical transmission device 200b according to a second modification example regarding the third embodiment.
  • FIG. 12 is a diagram illustrating a configuration of an optical transmission device 200 according to another example of the third embodiment.
  • FIG. 13 is a diagram showing a configuration of an optical transmission apparatus 500 according to the fourth embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration of an optical transmission apparatus 700 according to a fifth embodiment of the present invention.
  • FIG. 15 is a diagram showing a configuration of an optical transmission apparatus 800 according to the sixth embodiment of the present invention.
  • FIG. 16 is a diagram showing a configuration of an optical transmission device 800a when the sub-optical transmission line 205 is shared when the first and second optical signals are set to different wavelength bands. .
  • FIG. 17 is a diagram showing a configuration of an optical transmission apparatus 800c according to a seventh embodiment of the present invention.
  • FIG. 18 is a diagram showing a configuration of an optical transmission device 800b according to an eighth embodiment of the present invention.
  • FIG. 19 is a diagram showing a configuration of a conventional optical transmission device 91 corresponding to encrypted communication. Explanation of symbols
  • FIG. 1 is a functional block diagram showing a conceptual configuration of the optical transmission apparatus 1 according to the embodiment of the present invention.
  • an optical transmission device 1 includes an optical transmission circuit 2 and an optical reception circuit 8.
  • the optical transmission circuit 2 includes a multimode light source 3, an optical information modulation unit 4, and a spectrum processing unit 5.
  • the optical receiving circuit 8 includes a spectrum restoration unit 6 and a photoelectric conversion unit 7.
  • the multimode light source 3 outputs multimode oscillation light.
  • the optical information modulator 4 modulates the multimode oscillation light output from the multimode light source 3 with the information signal Di to be transmitted, and outputs it as an optical signal.
  • the spectrum processing unit 5 performs a predetermined operation on the optical signal output from the optical information modulation unit 4 based on the input key information Ki for at least one oscillation mode light in the multimode oscillation light. To the optical transmission line 9. As the predetermined operation, various spectrum processes disclosed in the following embodiments can be considered.
  • the spectrum restoration unit 6 receives an optical signal transmitted through the optical transmission line 9, and performs an operation reverse to a predetermined operation in the optical transmission circuit based on the input key information Ki. The optical signal before the predetermined operation is restored. As the reverse operation in the spectrum restoration unit 6, various processes disclosed in the following embodiments can be considered.
  • the photoelectric conversion unit 7 converts the optical signal restored by the spectrum restoration unit 6 into an electrical signal, and reproduces the information signal Di.
  • FIG. 2 is a diagram showing a configuration of the optical transmission device 100 that supports encryption communication according to the first embodiment of the present invention.
  • 3A to 3E are schematic diagrams illustrating an example of a light (optical signal) spectrum in the main part of the optical transmission device 100.
  • FIG. 4A-4E show the optical transmission device 100 or interceptor light 6 is a schematic diagram showing an example of light (optical signal) spectrum in the main part of the receiving circuit 1003.
  • an optical transmission device 100 of this embodiment includes a multimode light source 101, an optical information modulation unit 102, a mode code unit 103, an optical transmission path 104, and a mode decoding unit. 105 and a light intensity detector 106.
  • the multimode light source 101, the optical information modulation unit 102, and the mode code unit 103 constitute an optical transmission circuit 1001.
  • the mode decoder 105 and the light intensity detector 106 constitute an optical receiver circuit 1002.
  • an eavesdropper light receiving circuit 1003 having the eavesdropper mode decoding unit 1052 and the eavesdropper light intensity detection unit 1062 as constituent elements is also shown. It is shown in the figure.
  • the optical transmission path 104 connecting the optical transmission circuit 1001 and the optical reception circuit 1002 may be an optical fiber, an optical waveguide, or a free space.
  • the multi-mode light source 101 is composed of a light source that oscillates in a plurality of modes as shown in FIG. 3A (in FIG. 3A, eight wavelengths ml to m8 are expressed as a plurality of modes). Outputs light having.
  • multimode oscillation light sources include LED (Light Emission Diode), FP (Fabry-Perot) laser, RC (Resonant Cabity) —LED ⁇ VCSEL (Vertical Cabity Surface Emitting Laser), SLD (Super Luminescent Diode) or surface emitting laser. Parameters of light intensity, light phase, etc.
  • the light intensity fluctuation component and the optical phase fluctuation component of each oscillation mode light are output from the multimode light source 101 while correlating with the light intensity fluctuation component and the optical phase fluctuation component of the other oscillation mode lights.
  • the total light intensity of the emitted light has the property of showing a substantially constant value.
  • the optical information modulation unit 102 modulates the light output from the multimode light source 101 with the information signal Di to be transmitted, and outputs it as an optical signal.
  • the mode code key unit 103 receives an optical signal output from the optical information modulation unit 102 and is a predetermined code shared in advance with the mode decoding key unit 105 in the optical reception circuit 1002. Based on the source code Ki, as a spectral process, a unique predetermined value is assigned to each oscillation mode light. Is output to the optical transmission line 104. That is, the mode encoding unit 103 outputs light that has been subjected to a predetermined operation (first operation) corresponding to a predetermined code for a group of a plurality of oscillation mode lights. Specifically, for example, as shown in FIG. 3B, the mode encoding unit 103 defines a light intensity transmittance of a predetermined pattern determined by the source code Ki for each oscillation mode light.
  • the mode code key unit 103 performs, as a first operation, an operation that gives a predetermined amount of intensity change to each of the plurality of oscillation mode lights, and transmits the light subjected to the first operation to the optical transmission line. Send to 104.
  • an unpredictable noise component (mode partition noise) included in the light is generated as a physical property (natural phenomenon), and the mode code unit 103 is different from the input optical signal (FIG. 3A).
  • An optical signal ( Figure 3C) with a different optical spectrum will be created and output.
  • mode decoding unit 105 receives an optical signal transmitted via optical transmission path 104 and communicates with mode code unit 103 in optical transmitting circuit 1001 in advance. Based on the predetermined source code Ki that is shared, a decoding operation that is unique to each of the oscillation mode lights and that is opposite (complementary) to the predetermined encoding operation is performed. Then output. That is, the mode decoding unit 105 performs a second operation, which is an operation opposite to a predetermined operation (first operation) corresponding to a predetermined code, on a plurality of groups of oscillation mode light. Output light. Specifically, as shown in FIG.
  • the mode decoding unit 105 has an inverse pattern that is in a reverse relationship (complementary relationship) to the predetermined pattern shown in FIG. 3B for each oscillation mode light.
  • the light intensity transmittance is defined based on the source code Ki.
  • the mode decoding unit 105 performs, as a second operation, an operation of giving an intensity change having a polarity opposite to the predetermined amount of intensity change to each of the plurality of oscillation mode lights.
  • the light subjected to operation 2 is input to the light intensity detector 106.
  • the mode partition noise is removed, and the mode decoding unit 105 outputs the optical signal (FIG. 3C) transmitted via the optical transmission path 104 from the optical information modulation unit 102. It is converted into an optical signal (Fig. 3E) having an optical spectrum in accordance with the optical signal (Fig. 3A) and output.
  • the light intensity detection unit 106 square-detects the optical signal output from the mode decoding unit 105, detects a modulation component by detecting a change in the total light intensity, and detects the original information signal Di. Reproduce.
  • FIGS. 4A shows the optical spectrum of the optical signal output from the optical information modulation unit 102, and is the same as FIG. 3A.
  • FIG. 4B shows the light intensity transmittance of a predetermined pattern in the mode code input section 103, which is the same as FIG. 3B.
  • FIG. 4A shows the optical spectrum of the optical signal output from the optical information modulation unit 102, and is the same as FIG. 3A.
  • FIG. 4B shows the light intensity transmittance of a predetermined pattern in the mode code input section 103, which is the same as FIG. 3B.
  • FIG. 4C shows the optical spectrum of the optical signal output from the mode code key unit 103, which is the same as FIG. 3C.
  • FIG. 4D shows the light intensity transmittance in the interceptor mode decoding unit 1052.
  • FIG. 4E shows an optical spectrum of the optical signal output from the interceptor mode decoding unit 1052.
  • the interceptor optical receiving circuit 1003 branches a part of the optical signal propagating through the optical transmission path 104 and inputs it to the interceptor mode decoding unit 1052. Since the eavesdropper mode decoding unit 1052 does not share the source code Ki with the mode code key unit 103, based on the code Kj different from the source code Ki, for each oscillation mode light of the input optical signal Output after performing a specific, unique operation. Specifically, for example, as shown in FIG. 4D, the interceptor mode decoding unit 1052 has a pattern different from the light intensity transmittance (FIG. 3D) that the mode decoding unit 105 gives to each oscillation mode light. The optical signal is output and the optical signal is output. As shown in FIG.
  • this optical signal has an optical spectrum different from that of the optical signal (FIG. 4A) output from the optical information modulator 102.
  • the optical signal output from the eavesdropper mode decoding unit 1052 has altered coherency and includes excessive noise. Therefore, the interceptor light intensity detection unit 1062 cannot reproduce the information signal Di.
  • the received signal quality (SNR: signal-to-noise ratio) in the interceptor optical receiver circuit 1003 is degraded as compared to that of the regular receiver (optical receiver circuit 1002). Confidentiality can be ensured.
  • the multimode light source 101 outputs light that oscillates in eight modes, and the mode code unit 103 transmits light intensity of a predetermined pattern with respect to the eight oscillation mode lights. Force to give rate
  • the number of modes may be any number other than 8.
  • the multimode light source 101 may oscillate in any of a plurality of modes other than 8.
  • the mode code key unit 103 only has to have a light intensity transmittance of a predetermined pattern corresponding to the number of modes that the multimode light source 101 oscillates.
  • the mode code key unit 103 and the mode decoding key unit 105 are configured to give a light intensity transmittance of a predetermined pattern to each oscillation mode light. The same effect can be obtained even when the optical phase fluctuation is applied.
  • the mode code unit 103 performs a first operation on a phase change of a predetermined amount corresponding to a predetermined code for each of a plurality of oscillation mode lights of the input optical signal.
  • Apply as The mode decoding unit 105 has a phase change having a polarity opposite to the phase change of the predetermined amount corresponding to the predetermined code for each of a plurality of oscillation mode lights of the input optical signal.
  • As the second operation As the second operation.
  • the mode code key unit 103 and the mode decoding key unit 105 give a deflection change of a predetermined pattern to each oscillation mode light, substantially the same effect can be obtained.
  • the mode code unit 103 firstly applies a predetermined amount of deflection change corresponding to a predetermined code to each of a plurality of oscillation mode lights of the input optical signal. It is given as an operation.
  • the mode decoding unit 105 performs, for each of a plurality of oscillation mode lights of the input optical signal, a polarization change having a polarity opposite to the deflection change of the predetermined amount corresponding to the predetermined code. It is given as the second operation.
  • the mode code unit 103 and the mode decoding unit 105 give a frequency change of a predetermined pattern to each oscillation mode light, substantially the same effect can be obtained.
  • the mode code unit 103 performs frequency change for a predetermined amount corresponding to a predetermined code for each of a plurality of oscillation mode lights of the input optical signal.
  • the mode decoding unit 105 performs a frequency change having a polarity opposite to the frequency change of the predetermined amount corresponding to the predetermined code for each of a plurality of oscillation mode lights of the input optical signal. It is given as the second operation.
  • the mode code key unit 103 and the mode decoding key unit 105 give a delay time of a predetermined pattern to each oscillation mode light, substantially the same effect can be obtained.
  • the mode code unit 103 performs a predetermined amount corresponding to the predetermined code as the first operation for each of the plurality of oscillation mode lights of the input optical signal. The delay time is given.
  • the mode decoding unit 105 performs a second operation with a delay time corresponding to the predetermined amount corresponding to the predetermined code. Gives a delay time with opposite polarity.
  • FIG. 5 is a diagram showing a configuration of a first modification example relating to the first embodiment.
  • an optical transmission circuit 1001a of the optical transmission device 10 Oa is obtained by replacing the multimode light source 101 of the optical transmission circuit 1001 shown in FIG. 1 with a multimode light source 101a.
  • the multimode light source 101a includes a first light source 4011, a second light source 4012, a third light source 4013, an optical mode synthesis unit 402, and a code generation unit 403.
  • the first to third light sources 4011 to 4013 oscillate and output single mode lights having different wavelengths and phase-synchronized with each other in a predetermined relationship.
  • the light mode combining unit 402 combines the output lights from the first to third light sources 4011 to 4013 and outputs them.
  • the code generation unit 403 generates predetermined code sequences C1 to C3 that change substantially randomly as modulation signals corresponding to the first to third light sources 4011 to 4013, and is output from the optical mode synthesis unit 402.
  • the light intensities of the first to third light sources 4011 to 4013 are modulated almost randomly so that the total light intensity is constant.
  • the multimode light source 101a artificially creates multimode light having a predetermined synchronization relationship with each other even in the light fluctuation component, and generates light according to the light output from the multimode light source 101 in FIG. Can be output.
  • the first modification a plurality of phase-synchronized single-mode light beams are generated, and the light intensity modulation is independently performed.
  • the light intensity fluctuation is synchronized or the light intensity is constant. Even if it is stabilized to a value and a substantially random optical phase modulation is performed independently, the same effect can be obtained.
  • the first to third light sources 4011 to 4013 single-mode lights having different wavelengths and whose light intensities are synchronized with each other in a predetermined relationship are optically phase-modulated. A light source that oscillates and outputs in a state is used.
  • the code generator 403 generates predetermined code sequences C1 to C3 that change substantially randomly corresponding to the first to third light sources 4011 to 4013 as modulation signals, and is output from the optical mode combiner 402.
  • the light phases of the first to third light sources 4011 to 4013 are modulated almost randomly so that the total light intensity is constant. This artificially creates multimode light that is in a predetermined synchronous relationship with respect to the light fluctuation component, and emits light according to the light output from the multimode light source 101 in FIG. Can help.
  • the code generation unit 403 generates a predetermined code sequence that changes substantially randomly corresponding to each light source, and the total light intensity output from the optical mode combining unit 402 becomes constant.
  • the light intensity of each light source may be modulated substantially randomly.
  • FIG. 6 is a diagram showing a configuration of a second modification example regarding the first embodiment.
  • an optical transmission circuit 1001b of the optical transmission device 10 Ob is obtained by replacing the multimode light source 101 of the optical transmission circuit 1001 shown in FIG. 2 with a multimode light source 101b.
  • the multi-mode light source 101b includes a first light source 4011, a second light source 4012, a third light source 4013, an optical mode combining unit 402, a first code generation unit 5001, and a second code.
  • a generation unit 5002, a first optical phase modulation unit 5011, a second optical phase modulation unit 5012, and a third optical phase modulation unit 5013 are included.
  • the first to third light sources 4011 to 4013 oscillate and output single mode lights having different wavelengths.
  • the first to third optical phase modulators 5011 to 5013 are provided corresponding to the first to third light sources 4011 to 4013, and change the phase of the output light from the first to third light sources 4011 to 4013. Modulate and output each.
  • the optical mode combining unit 402 combines and outputs the optical signals output from the first to third optical phase modulation units 5011 to 5013.
  • the first code generation unit 5001 generates predetermined code sequences C1 to C3, which change in a substantially random manner as modulation signals, corresponding to the first to third light sources 4011 to 4013, respectively. Based on the above, the output light intensity from the first to third light sources 4011 to 4013 is modulated to be substantially random.
  • the second code generation unit 5002 generates predetermined code sequences D1 to D3 that change substantially randomly corresponding to the first to third optical phase modulation units 5011 to 5013, and based on the code sequences To modulate the phase of the output light from the first to third optical phase modulation units 5011 to 5012 so that the phase change is synchronized, and the total output light intensity from the optical mode synthesis unit 402 Make the degree constant.
  • the first to third optical phase modulation units 5011 to 5013 and the second code generation unit 5002 are optical phase synchronization units that synchronize phase changes of light output from the first to third light sources 4011 to 4013. I can say that.
  • the first code generator 5001 makes the total intensity of the light output from the optical mode combiner 402 constant, and the first to third light sources 4011 to 4013 output the intensity of the output light approximately randomly. It can be said that this is a code generation unit that supplies a code, which is a modulation signal for modulation, to each light source.
  • a code which is a modulation signal for modulation
  • the optical phase modulation is performed after the light intensity modulation of a plurality of single mode lights.
  • the multi-mode light source includes a plurality of light sources that phase-modulate and output light having different wavelengths, and a plurality of light intensity modulation units that modulate the intensity of the light output from the plurality of light sources.
  • An optical mode synthesis unit that synthesizes optical signals output from a plurality of light intensity modulation units, and a constant total intensity of light output from the optical mode synthesis unit, and a phase of light output from a plurality of light sources.
  • a first code generation unit that inputs a code, which is a modulation signal for substantially random modulation, to each light source and a code for synchronizing changes in the intensity of output light from a plurality of light intensity modulation units. It is preferable to include a second code generation unit that inputs to the modulation unit.
  • the light intensity modulation unit and the second code generation unit function as a light intensity synchronization unit for synchronizing changes in the intensity of light output from a plurality of light source powers.
  • two or four or more light sources may be used instead of three light sources.
  • an optical phase modulator must be provided according to the number of light sources.
  • the first code generation unit 5001 generates a predetermined code sequence that changes substantially randomly corresponding to each light source, and modulates the output light intensity of each light source based on the code sequence.
  • the second code generation unit 5002 generates a predetermined code sequence that changes substantially randomly corresponding to each optical phase modulation unit, and the phase of the output light from each optical phase modulation unit based on the code sequence
  • Output from the optical mode combining unit 402 Ensure that the intensity of light is constant. This makes it possible to artificially create multimode light that is synchronized with each other in light fluctuations, and to output light according to the light output from the multimode light source 101 in FIG.
  • FIG. 7 is a diagram showing a configuration of an optical transmission device 200 compatible with cryptographic communication according to the second embodiment of the present invention.
  • the optical transmission device 200 of this embodiment corresponds to a configuration including a plurality of sets (two sets in FIG. 7) of the optical transmission circuit 1001 and the optical reception circuit 1002 in FIG.
  • the optical transmission apparatus 200 includes a first and second multimode light source 101, a first and second optical information modulation unit 102, a first and second mode encoding unit 103, an optical multiplexing unit 609, An optical transmission line 104, an optical branching unit 610, first and second mode decoding units 105, and first and second optical intensity detection units 106 are provided.
  • the first (second) multimode light source 101, the first (second) optical information modulation unit 102, and the first (second) mode code key unit 103 are used to provide the first (second) ) Optical transmission circuit 1001 is configured.
  • the first (second) mode decoding unit 105 and the first (second) light intensity detection unit 106 constitute a first (second) optical receiving circuit 1002.
  • the optical transmission device 200 of this embodiment includes two sets of an optical transmission circuit 1001 and an optical reception circuit 1002.
  • the first and second optical information modulators 102 modulate the light output from the corresponding first and second multimode light sources 101 with the first and second information signals (D1 and D2). And output as first and second optical signals, respectively.
  • the first and second mode encoding units 103 perform a predetermined pattern encoding operation (first operation) on the corresponding first and second optical signals based on different source codes K1 and K2. Apply.
  • Optical combiner 609 The optical signal components output from the first and second optical transmission circuits 1001 are combined and sent to the optical transmission line 104.
  • the optical branching unit 610 branches an optical signal component transmitted through the optical transmission path 104 and outputs the branched optical signal component to the corresponding optical receiving circuit 1002.
  • First and second mode decoding sections 105 receive optical signals output from optical branching section 610 and share source codes K1 shared with corresponding first and second mode code section sections 103, respectively.
  • a decryption operation (second operation) of a predetermined pattern is performed and output.
  • the first and second light intensity detectors 10 6 square-detect the optical signals output from the corresponding first and second mode decoding units 105 to obtain first and second information signals ( Play D1 and D2) respectively.
  • first and second optical signals may be set in different wavelength bands, or all or part of the optical vectors may be set in the same wavelength band.
  • the first and second optical signals are configured to be multiplex-transmitted, but the multiplex number may be any plural number other than two.
  • the multimode light source used in the second embodiment may be a multimode light source as shown in FIG. 5 or FIG.
  • the noise generated when the light intensity or the optical phase correlation between the oscillation mode light components is changed is used in each of the plurality of transmission / reception circuit pairs. Then, the light intensity or light phase change pattern between the oscillation mode light components is shared as a “secret key” between the sender and the authorized receiver. As a result, mutual interference and information leakage can be remarkably suppressed, and a highly confidential optical transmission apparatus can be easily provided.
  • FIG. 8 is a diagram showing a configuration of an optical transmission device 200 compatible with cryptographic communication according to the third embodiment of the present invention.
  • 9A to 9C are schematic diagrams showing light (optical signal) spectra in the main part of the optical transmission apparatus 200 shown in FIG.
  • the optical transmission apparatus 200 of the present embodiment includes a multimode light source 201, an optical information modulation unit 202, an optical separation unit 203, a main optical transmission line 204, and a sub optical transmission line 205. And a light intensity detection unit 206.
  • the multi-mode light source 201, the optical information modulation unit 202, and the light separation unit 203 constitute an optical transmission circuit 2001.
  • the light intensity detection unit 206 the light receiving circuit 2002 is Composed.
  • an interceptor light receiving circuit 2003 including the interceptor light intensity detecting unit 2062 as a component is also illustrated.
  • the multimode light source 201 is composed of light sources that oscillate in a plurality of (longitudinal) modes (eight in FIG. 9A: ml to m8) over a predetermined wavelength band as shown in FIG. 9A, and output such light.
  • multimode oscillation light sources include LED (Light Emission Diode), FP (Fabry-Perot) laser, RC (Resonant Cabity) — LED ⁇ VCSEL (Vertical Cabity Surface Emitting Laser), SLD (Super Luminescent Diode). In these output light spectra, both the light intensity and optical phase parameters of each oscillation mode light change rapidly.
  • the light intensity fluctuation component and the optical phase fluctuation component in each oscillation mode light are output from the multimode light source 201 while correlating with the light intensity fluctuation component and the optical phase fluctuation component in other oscillation mode lights.
  • the total light intensity of the emitted light has the property of showing a substantially constant value.
  • the optical information modulation unit 202 modulates the light output from the multimode light source 201 with the information signal Di to be transmitted, and outputs it as an optical signal.
  • the optical separation unit 203 receives the optical signal output from the optical information modulation unit 202, extracts only the predetermined mode light from the plurality of oscillation mode lights, separates it, and supplies it to the sub optical transmission line 205. At the same time, the remaining optical signal components are sent to the main optical transmission line 204. For example, as shown in FIG. 9B, the light separation unit 203 extracts the sixth oscillation mode light (m6), separates it, and sends it to the sub optical transmission line 205. Further, as shown in FIG. 9C, the optical separation unit 203 extracts and separates the remaining optical signal components (ml to m5, m7, m8) and sends them to the main optical transmission line 204.
  • the light intensity detector 206 combines the optical signal component transmitted through the main optical transmission path 204 and the predetermined oscillation mode light transmitted through the sub optical transmission path 205, and then squares it. Detection is performed to detect the modulation component of the total light intensity, and the original information signal Di is reproduced.
  • the eavesdropper light receiving circuit 2003 receives a part of the optical signal propagating through the main optical transmission line 204 without receiving the predetermined oscillation mode light propagated through the sub optical transmission line 205.
  • the signal is input to the interceptor light intensity detection unit 2062.
  • the interceptor light intensity detection unit 2062 converts the input optical signal into an electrical signal and outputs it. Since the eavesdropper light intensity detection unit 2062 does not receive the predetermined oscillation mode light separately propagated through the sub-optical transmission path 205, the remaining optical signal components excluding the oscillation mode light ( Only square detection is performed for Fig. 9C).
  • the eavesdropper light intensity detection unit 2062 lacks some of the oscillation mode light among the multimode light that oscillates while the light intensity fluctuation component and the optical phase fluctuation component are correlated with each other. Therefore, the modulation component of the total light intensity is detected. Therefore, a fluctuation component of each oscillation mode light appears in the detection signal, and mode partition noise is generated. Therefore, the reception signal quality (SNR: signal-to-noise power ratio) of the eavesdropper is deteriorated as compared with the regular receiver (optical reception circuit 2002). Therefore, high confidentiality can be secured.
  • SNR signal-to-noise power ratio
  • one oscillation mode light (m6 in FIG. 9B) is separated and extracted by the light separation unit 203, but two or more oscillation mode lights are separated. May be extracted.
  • FIG. 10 is a diagram illustrating a configuration of an optical transmission device 200a according to a first modification example relating to the third embodiment.
  • the optical transmission circuit 2001a of the optical transmission device 200a has a configuration in which the multimode light source 201 shown in FIG. 8 is replaced with a multimode light source 201a.
  • Other configurations of the optical transmission device 200a are the same as those in FIG.
  • the multimode light source 201a includes a first light source 3011, a second light source 3012, a third light source 3013, an optical mode synthesis unit 302, and a code generation unit 303.
  • the first to third light sources 3011 to 3013 oscillate and output single mode light having different wavelengths and phase-synchronized with each other in a predetermined relationship.
  • the light mode combining unit 302 combines the output lights from the first to third light sources 3011 to 3013 and outputs them.
  • the code generation unit 303 corresponds to the first to third light sources 3011 to 3013, respectively.
  • the light intensity of the first to third light sources 3011 to 3013 is substantially random so that the total light intensity output from the optical mode combining unit 302 is constant. Modulate to. This makes it possible to artificially create multi-mode light that has a predetermined synchronization relationship with each other even in the light fluctuation component, and when any single-mode light is missing, noise that conforms to the above mode partition noise Can be generated.
  • a plurality of phase-synchronized single-mode light beams are created and each independently modulates the light intensity.
  • the light intensity fluctuations are synchronized or the light intensity is constant. Even if it is stabilized to a value and a substantially random optical phase modulation is performed independently, the same effect can be obtained.
  • the first to third light sources 3011 to 3013 single-mode lights having different wavelengths and whose light intensities are synchronized with each other in a predetermined relationship are optically phase-modulated. A light source that oscillates and outputs in a state is used.
  • the code generation unit 303 generates predetermined code sequences C1 to C3 that change substantially randomly corresponding to the first to third light sources 3011 to 3013, respectively, and outputs the total light output from the optical mode combining unit 302.
  • the optical phases of the first to third light sources 3011 to 3013 are modulated almost randomly so that the intensity is constant. This makes it possible to artificially create multi-mode light that has a predetermined synchronization relationship with respect to the light fluctuation component, and when either single-mode light is missing, conform to the above mode partition noise. Noise can be generated.
  • the code generation unit 303 generates a predetermined code sequence that changes approximately randomly corresponding to each light source, and the total light intensity output from the optical mode combining unit 302 is constant.
  • the light intensity of each light source may be modulated substantially randomly.
  • FIG. 11 is a diagram illustrating a configuration of an optical transmission device 200b according to a second modification example regarding the third embodiment.
  • the optical transmission circuit 2001b of the optical transmission device 200b includes the multimode light source 201 shown in FIG.
  • the multi-mode light source is replaced with 20 lb.
  • Other configurations of the optical transmission device 200b are the same as those in FIG.
  • the multi-mode light source 201b includes a first light source 3011, a second light source 3012, a third light source 3013, an optical mode synthesis unit 302, a first code generation unit 6001, and a second code generation unit. 6002, a first optical phase modulator 6011, a second optical phase modulator 6012, and a third optical phase modulator 6013.
  • the first to third light sources 3011 to 3013 oscillate and output single-mode light having different wavelengths.
  • the first to third optical phase modulators 6011 to 6013 are provided corresponding to the first to third light sources 3011 to 3013, and change the phase of the output light from the first to third light sources 3011 to 3013. Modulate and output each.
  • the optical mode combining unit 302 combines the optical signals output from the first to third optical phase modulation units 6011 to 6013 and outputs the combined optical signals.
  • the first code generation unit 6001 generates predetermined code sequences C1 to C3 that change in a substantially random manner corresponding to the first to third light sources 3011 to 3013, and the first code generation unit 6001 generates the first code sequence based on the code sequences.
  • the intensity of the output light from the third light sources 3011 to 3013 is modulated so as to be substantially random.
  • the second code generation unit 6002 generates predetermined code sequences D1 to D3, which change substantially randomly, corresponding to the first to third optical phase modulation units 6011 to 6013, respectively.
  • the total output light intensity from the optical mode combining unit 302 is modulated by modulating the phase of the output light from the first to third optical phase modulation units 6011 to 6012 so that the phase change is synchronized. To be constant.
  • the first to third optical phase modulation units 6011 to 6013 and the second code generation unit can be said to be optical phase synchronization units that synchronize phase changes of light output from the first to third light sources 3011 to 3013.
  • the first code generation unit 6001 keeps the total intensity of light output from the optical mode combining unit 302 constant, and substantially increases the intensity of light output from the first to third light sources 3011 to 3013. It can be said that this is a code generator that supplies a code, which is a modulation signal for modulating the light source, to each light source.
  • a code which is a modulation signal for modulating the light source
  • the optical phase modulation is performed after optical intensity modulation of a plurality of single-mode lights.
  • substantially the same effect can be achieved by an optical phase modulation after optical phase modulation.
  • the optical transmission device phase-modulates light having different wavelengths.
  • a plurality of light sources that output light
  • a plurality of light intensity modulators that modulate the intensity of light that is output from a plurality of light sources
  • an optical mode combiner that combines optical signals output from the plurality of light intensity modulators
  • a first code that inputs a code that is a modulation signal for making the total intensity of light output from the optical mode combining unit constant and that modulates the phase of light output from a plurality of light sources approximately randomly.
  • the light intensity modulation unit and the second code generation unit function as a light intensity synchronization unit for synchronizing changes in the intensity of light output from a plurality of light source powers.
  • the first code generation unit 6001 generates a predetermined code sequence that changes substantially randomly corresponding to each light source, and modulates the output light intensity of each light source based on the code sequence.
  • the second code generation unit 6002 generates a predetermined code sequence that changes approximately randomly corresponding to each optical phase modulation unit, and the phase of the output light from each optical phase modulation unit based on the code sequence And the total output light intensity from the light mode combining unit 302 is made constant. This makes it possible to artificially create multi-mode light that is synchronized with each other in light fluctuations, and to generate noise according to the mode partition noise when any single-mode light is missing.
  • the noise generated when the predetermined oscillation mode light is removed from the light that oscillates in multiple modes is used to make the predetermined oscillation mode light “secret”.
  • sharing the key as a “key” between the sender and the authorized receiver it is possible to significantly prevent eavesdropping by a third party and provide an optical transmission apparatus with high secrecy.
  • the total power of a certain oscillation mode light is extracted, but only a part of the power of a certain oscillation mode light is extracted, and the remaining optical signal components are extracted. It may be transmitted to the optical receiver circuit.
  • light according to the oscillation mode light extracted by the light separation unit 203 is input to the light intensity detection unit 206 by some means without passing through the auxiliary light transmission path 205. May be.
  • FIG. 13 is a diagram showing a configuration of an optical transmission apparatus 500 that supports encryption communication according to the fourth embodiment of the present invention.
  • the optical transmission device 500 of this embodiment includes a multimode light source 201, an optical information modulation unit 202, an optical separation unit 203, a main optical transmission line 204, a sub optical transmission line 205, and an optical intensity.
  • a detection unit 206 and a local light generation unit 507 are provided.
  • the optical transmission device 500 according to the second embodiment is different from the configuration of FIG. 8 in that a local light generation unit 507 is newly provided and the connection relationship is different.
  • the multimode light source 201, the optical information modulation unit 202, and the light separation unit 203 constitute an optical transmission circuit 2001.
  • the light intensity detector 206 and the local light generator 507 constitute an optical receiver circuit 7002. Also, in FIG. 13, as in FIG. 8, for the purpose of explaining the operation of the present embodiment, the interceptor light receiving circuit 2003 having the interceptor light intensity detecting unit 2062 as a component is also illustrated.
  • the local light generation unit 507 receives a predetermined oscillation mode light transmitted via the sub optical transmission path 205, and relates to the light intensity fluctuation information and the optical phase fluctuation information.
  • a local light having the same information is generated and output. More specifically, the local light generation unit 507 has a local light emission (predetermined oscillation mode) having the same physical properties as the predetermined oscillation mode light by a configuration of light injection locking in which the predetermined oscillation mode light is injected into the semiconductor laser. Light).
  • the light intensity detection unit 206 combines the optical signal component transmitted through the main optical transmission line 204 and the local light output from the local light generation unit 507, and then square-detects it to thereby modulate the total light intensity. Is detected and the original information signal Di is reproduced.
  • the interceptor light intensity detector 2062 receives the remaining optical signals excluding the predetermined oscillation mode light as in FIG. Since only the component is input, mode partition noise occurs and the received signal product The quality is deteriorated compared with the optical receiving circuit 7002, and it is possible to ensure high secrecy.
  • the noise generated when the predetermined oscillation mode light is removed from the light that oscillates in the multimode is used to physically connect the predetermined oscillation mode light and the physical light.
  • the noise generated when the predetermined oscillation mode light is removed from the light that oscillates in the multimode is used to physically connect the predetermined oscillation mode light and the physical light.
  • the multimode light source 201 is replaced with a multimode light source 201a (see FIG. 10) having a plurality of single-mode light source powers.
  • it can be replaced with multiple single-mode light sources and a multi-mode light source 20 lb (see Figure 11) that also has optical phase modulation power! /.
  • FIG. 14 is a diagram showing a configuration of an optical transmission apparatus 700 that supports encryption communication according to the fifth embodiment of the present invention.
  • an optical transmission device 700 of this embodiment includes a multimode light source 201, an optical information modulation unit 202, an optical separation unit 203, a main optical transmission line 204, an optical intensity detection unit 206, A transmission path 705, a local light generation unit 707, and a light detection unit 708 are provided.
  • the optical transmission apparatus 700 according to the fifth embodiment is different from the configuration shown in FIG. 8 in that a sub-transmission path 705 is provided instead of the sub-optical transmission path 205, and a local light generation unit 707 and a light detection unit 708 are provided. And the connection relationship is different.
  • the multi-mode light source 201, the optical information modulation unit 202, the light separation unit 203, and the light detection unit 708 constitute an optical transmission circuit 8001.
  • the light receiving circuit 8002 is configured by the light intensity detection unit 206 and the local light generation unit 707. Further, in FIG. 14, similarly to FIG. 8, for the purpose of explaining the operation of the present embodiment, an interceptor light receiving circuit 2003 including the interceptor light intensity detection unit 2062 as a component is also illustrated.
  • the light detection unit 708 detects the predetermined oscillation mode light separated and extracted by the light separation unit 203, and displays the light intensity variation information and the optical phase variation information. Detected and sent to sub-transmission path 705.
  • the local light generator 707 is connected to the sub-transmission path 7 Based on the light intensity fluctuation information and the optical phase fluctuation information transmitted via 05, local light (light according to a predetermined oscillation mode light) having the information is generated and output.
  • the light intensity detection unit 206 combines the optical signal component transmitted through the main optical transmission line 204 and the local light generated by the local light generation unit 707, and then performs square detection to synthesize the total light intensity. Detects the component and reproduces the original information signal Di.
  • the eavesdropper light intensity detection unit 2062 receives the remaining optical signals excluding the predetermined oscillation mode light. Since only the components are input, mode partition noise is generated, and the received signal quality is deteriorated compared to the optical receiving circuit 8002, and high confidentiality can be ensured.
  • the noise generated when the predetermined oscillation mode light is removed from the light that oscillates in the multi-mode is used to physically By sharing light of the same nature as a “secret key” between the sender and the authorized receiver, it is possible to significantly prevent eavesdropping by a third party and easily provide a highly confidential optical transmission device. Can do.
  • the multimode light source 201 is replaced with a multimode light source 201a (see FIG. 10) that also has a plurality of single-mode light source powers. However, it can be replaced with multiple single-mode light sources and a multi-mode light source 20 lb (see Figure 11) that also has optical phase modulation power! /.
  • FIG. 15 is a diagram showing a configuration of an optical transmission apparatus 800 that supports encryption communication according to the sixth embodiment of the present invention.
  • the optical transmission device 800 of this embodiment has a configuration including a plurality of sets (two sets in FIG. 15) of the optical transmission circuit 2001 and the optical reception circuit 7002 in FIG.
  • the optical transmission apparatus 800 includes a first and second multimode light source 201, a first and second optical information modulation unit 202, a first and second optical separation unit 203, and a main optical transmission line 204. , First and second sub-optical transmission lines 205, first and second light intensity detection units 206, first and second local light generation units 507, main light combining unit 709, and main light branching unit 710. 13 is different from the configuration in FIG.
  • the first (second) multimode light source 201, the first (second) optical information modulator 202, and the first (second) light separator 20 3 constitutes a first (second) optical transmission circuit 2001.
  • the first (second) light intensity detection unit 206 and the first (second) local light generation unit 507 constitute a first (second) light reception circuit 7002.
  • the optical transmission device 800 of this embodiment includes two sets of an optical transmission circuit 2001 and an optical reception circuit 7002.
  • the first and second optical information modulators 202 modulate the light output from the corresponding first and second multimode light sources 201 with the first and second information signals (D1 and D2). And output as first and second optical signals, respectively.
  • the first and second optical separators 203 receive the first and second optical signals output from the corresponding first and second optical information modulators 202, and the plurality of oscillation mode lights Then, each of the predetermined mode lights is separated and extracted, and is sent to the first and second sub optical transmission lines 205, and the remaining optical signal components are output to the main light combining unit 709.
  • the main light combining unit 709 combines the optical signal components output from the first and second light separating units 203 and sends them to the main optical transmission line 204.
  • the main light branching unit 710 branches the optical signal component transmitted through the main light transmission path 204 and inputs the branched optical signal components to the first and second light intensity detection units 206, respectively.
  • the first and second light intensity detectors 206 include optical signal components output from the main light branching unit 710 and predetermined oscillation mode lights output from the corresponding first and second local light generating units 507. After combining, square detection is performed to detect the modulation component of the total light intensity, and the first and second information signals (D1 and D2) are reproduced.
  • first and second optical signals output from the first and second optical information modulators 202 and the predetermined oscillation mode light extracted by the first and second optical separators 203 Each wavelength setting will be described.
  • the first and second optical signals may be set in different wavelength bands, or all or part of their optical spectra may be set in the same wavelength band.
  • the predetermined oscillation mode light extracted by the first and second optical separation unit 203 is, among a plurality of modes, Either mode is acceptable.
  • the first and second optical signals are set in different wavelength bands.
  • the sub optical transmission line 205 can be shared.
  • FIG. 16 is a diagram illustrating a configuration of the optical transmission device 800a when the sub-optical transmission path 205 is shared when the first and second optical signals are set to different wavelength bands.
  • the optical transmission device 8OOa uses the sub-light combining unit 809 and the sub-light branching unit 810 to perform wavelength multiplexing Z separation of a predetermined oscillation mode light, thereby Can transmit a predetermined oscillation mode light.
  • the optical transmission device transmits predetermined oscillation mode light via separate sub optical transmission paths 205, respectively.
  • the optical transmission apparatus transmits power through separate sub optical transmission lines 205, or transmits through one sub optical transmission line 205 as shown in FIG. .
  • the noise generated when the predetermined oscillation mode light is removed from the light that multi-mode oscillates in each of the plurality of transmission / reception circuit pairs.
  • the noise generated when the predetermined oscillation mode light is removed from the light that multi-mode oscillates in each of the plurality of transmission / reception circuit pairs.
  • by sharing light that has the same physical properties as the specified oscillation mode light as a ⁇ secret key '' between the sender and the authorized receiver mutual interference and information leakage are remarkably suppressed, and confidentiality is maintained. It is possible to easily provide an optical transmission device.
  • each predetermined oscillation mode light and Z or each predetermined oscillation mode light is extracted by providing a plurality of pairs of optical transmission circuits and optical reception circuits. These optical signals may be combined and Z-branched for transmission.
  • a plurality of pairs of optical transmission circuits and optical reception circuits are provided so that detection signals output from the respective optical detection units are combined and branched and transmitted.
  • the first and / or second multimode light source 201 is a multimode light source 201a having a plurality of single-mode light source powers as shown in the first modification. (See FIG. 10), or a multimode light source 201b (see FIG. 10) composed of a plurality of single-mode light sources and an optical phase modulator. [0128] (Seventh embodiment)
  • FIG. 17 is a diagram showing a configuration of an optical transmission device 800c compatible with cryptographic communication according to the seventh embodiment of the present invention.
  • the optical transmission device 800c includes an optical transmission circuit 9001 and an optical reception circuit 9002.
  • the optical transmission circuit 9001 includes a multimode light source 101, an optical information modulation unit 102, a mode encoding unit 103, and an optical separation unit 203.
  • An optical receiving circuit 9002, a mode decoding unit 9003, and a light intensity detection unit 9004 are included.
  • the mode code unit 103 outputs an optical signal obtained by performing a unique predetermined encoding operation for each oscillation mode light.
  • the optical demultiplexing unit extracts at least one oscillation mode light from the optical signal output from the mode encoding unit 103 and sends it to the sub-optical transmission line 205, and the remaining optical signal component as the main optical signal component. Send to optical transmission line 204.
  • the mode decoding unit 90 03 synthesizes the optical signal from the main optical transmission line 204 and the optical signal from the sub optical transmission line 205, and reverses the relationship with the first operation in the mode code unit 103. Outputs light that has undergone a certain decoding operation (second operation).
  • the light intensity detection unit 9004 square-detects the optical signal output from the mode decoding unit 9003, detects a modulation component by detecting a change in the total light intensity, and reproduces the original information signal Di.
  • the optical transmission circuit 9001 performs an operation corresponding to a predetermined code on a group of a plurality of oscillation mode lights in a multimode oscillation light as a predetermined operation.
  • the optical signal is transmitted by the optical encoder 103 and separated by the optical separation unit 203 and transmitted to the sub-optical transmission path 205, and the remaining optical signal components other than the predetermined oscillation mode light are transmitted to the main light. Send to route 204.
  • the optical receiving circuit 9002 combines the optical signal component transmitted through the main optical transmission path 204 and the predetermined oscillation mode light transmitted through the sub optical transmission path 205 by the mode decoding unit 9003, An operation opposite to the operation corresponding to the predetermined code is performed on the group of oscillation mode light by the mode decoding unit 9003 to restore the optical signal before the predetermined operation is performed.
  • FIG. 18 is a diagram showing a configuration of an optical transmission device 800b compatible with cryptographic communication according to the eighth embodiment of the present invention.
  • the optical transmission device 800b includes an optical transmission circuit 9005 and an optical reception circuit 9006.
  • the optical transmission circuit 9005 includes a multimode light source 101, an optical information modulation unit 102f, a first mode code unit 103f, and a second mode code unit 103g.
  • the light receiving circuit 9006 includes a light intensity detector 9007.
  • the optical information modulation unit 102f modulates the light output from the multimode light source 101 with the information signal Di to be transmitted, splits it into two, and outputs it.
  • One optical signal from the optical information modulation unit 102f is input to the first mode code unit 103f.
  • the first mode code unit 103f inputs the optical signal output from the optical information modulation unit 102, and performs spectrum processing on each of the oscillation mode lights based on a predetermined source code Ki. Then, after performing a unique predetermined code operation, the result is output to the main optical transmission line 204.
  • the other optical signal from the optical information modulation unit 102f is input to the second mode code unit 103g.
  • the second mode code section 103f is unique to each oscillation mode light as a spectrum process based on a predetermined source code Ki, and is the first mode code section 103f. After performing an encoding operation having a reverse relationship (complementary relationship) to the predetermined encoding operation performed, the data is output to the secondary optical transmission line 205.
  • the light intensity detection unit 9007 combines the optical signal transmitted through the main optical transmission path 204 and the optical signal transmitted through the sub optical transmission path 205, squarely detected, and modulated the total light intensity. Is detected and the original information signal Di is played back.
  • the optical transmission circuit 9005 performs, as a predetermined operation, an operation corresponding to a predetermined code for a group of a plurality of oscillation mode lights in the multimode oscillation light.
  • the operation is performed by the first mode code section 103f and sent to the main optical transmission line 204.
  • the second mode code unit 103g performs an operation opposite to the operation corresponding to the predetermined code on the group of a plurality of oscillation mode lights in the multimode oscillation light, and sends it to the sub optical transmission line 205. To do.
  • the optical receiving circuit 9006 combines the optical signal transmitted through the main optical transmission path 204 and the optical signal transmitted through the sub optical transmission path 205, and thereby the light before being subjected to a predetermined operation. Restore the signal. In this way, an optical communication device with excellent secrecy can also be realized by transmitting and synthesizing oscillation mode lights having an inverse relationship to each other.
  • the optical transmission apparatus uses an unpredictable noise component that light has as a physical property (natural phenomenon), and is an encryption that cannot be analyzed and decrypted by computer processing. It can realize communication and is useful in the communication field.

Abstract

光送信回路(2)は、多モード発振光を情報信号で変調し、多モード発振光における少なくとも1つの発振モード光に対して、所定の操作を施した後、光伝送路に送出する。光受信回路(8)は、光伝送路を介して伝送される光信号を受信し、所定の操作と逆の操作を施すことによって、所定の操作を施される前の光信号を復元し、復元した光信号を電気信号に変換して、情報信号を再生する。

Description

明 細 書
多モード光伝送装置
技術分野
[0001] 本発明は、データを光信号に変換して伝送し、伝送された光信号を受信してデー タに変換する光伝送装置に関し、より特定的には、光が物理的性質として備える雑音 成分を利用して、正規受信者以外の第三者によるデータの盗み見 Z盗聴を著しく抑 制し、高い秘匿性を有するデータの暗号通信を実現する光伝送装置に関する。 背景技術
[0002] 図 19は、暗号通信に対応する従来の光伝送装置 91の構成を示す図である。図 19 において、本光伝送装置 91は、光源 95と、光情報変調部 94と、暗号化部 93と、光 伝送路 993と、復号化部 98と、光強度検出部 97とを備える。光源 95と、光情報変調 部 94と、暗号ィ匕部 93とによって、光送信回路 92が構成される。復号化部 98と、光強 度検出部 97とによって、光受信回路 96が構成される。なお、図中には、本光伝送装 置 91の動作説明のため、傍受者光強度検出部 992と、暗号解読部 991とを構成要 素とする傍受者光受信回路 99を併せて示して 、る。
[0003] 上記のように構成された光伝送装置 91について、図 19を用いて、その動作を説明 する。光送信回路 92において、暗号ィ匕部 93は、光受信回路 96内の復号化部 98と の間で、「暗号鍵」として予め源符号 Kiを共有している。暗号化部 93は、伝送すべき 情報信号 Diを源符号 Kiを用いて暗号化し、出力する。光情報変調部 94は、光源 95 カゝら出力された光を、暗号化部 93から出力された暗号化情報信号によって光変調し 、光伝送路 993に送出する。光強度検出部 97は、光伝送路 993を介して伝送される 光変調信号を入力して、当該光強度変調成分を検出し、電気信号に変換し、出力す る。復号化部 98は、源符号 Kiを用いて、光強度検出部 97からの出力信号を復号ィ匕 し、情報信号 Diを再生する。
[0004] 以上のような従来の光伝送装置では、送信者と受信者との間で所定の符号を「秘 密鍵」として共有する。送信側は、情報信号に対して、当該符号を用いて所定の手順 の計算処理を施して暗号ィ匕する。伝送後、受信側は、同様の符号を用いて略逆手順 の計算処理を施すことで復号化し、元の情報信号を再生する。これにより、「秘密鍵」 を保有する正規の受信者以外の第三者による復号ィヒが不可能となり、盗聴を著しく 困難とし、秘匿性の高!、データ通信を実現することが可能となる。
特許文献 1:特開平 9— 205420号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、従来のように、計算処理に基づく従来の暗号通信方式は、電子計算 機の発達に伴い、いずれ数学的に解読される危険性を常に含んでおり、高い安全性 を長期間保証することができないという課題を有している。即ち、盗聴者側の傍受者 光受信回路 99は、光伝送路 993を伝搬する光信号の一部を分岐して取り出し、正規 受信者側の光受信回路 96と同等もしくはそれに匹敵する品質の光信号を傍受者光 強度検出部 992に入力して、電気信号に変換し、暗号解読部 991で、元の情報信 号 Diを復元することができる。暗号解読部 991は、主に、高速の計算機等で構成さ れ、「秘密鍵」を所持していなくても、充分な品質の信号が入力しさえすれば、計算処 理によって暗号を解読することができる。
[0006] それ故に、本発明の目的は、物理的性質(自然現象)として光が備える、予測不能 の雑音成分を利用して、計算機処理による解析'解読が不可能な暗号通信を実現す ることができる光伝送装置を提供することである。
課題を解決するための手段
[0007] 上記課題を解決するために本発明は以下のような特徴と有する。本発明の第 1の 局面は、伝送すべき情報信号で変調された多モードの光信号を伝送するための多 モード光伝送装置であって、多モード発振光を情報信号で変調し、多モード発振光 における少なくとも 1つの発振モード光に対して、所定の操作を施した後、光伝送路 に送出する光送信回路と、光伝送路を介して伝送される光信号を受信し、所定の操 作と逆の操作を施すことによって、所定の操作を施される前の光信号を復元し、復元 した光信号を電気信号に変換して、情報信号を再生する光受信回路とを備えること を特徴とする。
[0008] 本発明の第 1の局面によれば、多モード発振光における少なくとも 1つの発振モー ド光に対して、所定の操作を施して発振モード光成分間の光強度または光位相の相 関関係を変更する。これによつて、物理的性質(自然現象)として光が備える、予測不 能の雑音成分が発生することとなる。盗聴が行われる場合、傍受者光受信回路が受 信する光信号は、上記予測不能の雑音成分によって、信号対雑音比が劣化している ので、光送信回路が送信した光信号を正確に再生することができない。よって、上記 予測不能の雑音成分を利用して、計算機処理による解析'解読が不可能な秘匿性 の高い暗号通信を実現することができる光伝送装置が提供されることとなる。
[0009] 本発明の第 2の局面において、光送信回路は、所定の操作として、多モード発振光 における複数の発振モード光の群に対して所定の符号に対応した操作を施して、光 伝送路に送出し、光受信回路は、光伝送路を介して伝送される光を受信し、発振モ ード光の群に対して所定の符号に対応した操作と逆の操作を施すことによって所定 の操作を施される前の光信号を復元し、発振モード光の群の総光強度変化を検出し 、電気信号に変換して、情報信号を再生するとよい。
[0010] 本発明の第 2の局面により、光送信回路は、多モード発振する光の各発振モード光 に対して、所定の操作を施して発振モード光成分間の光強度または光位相の相関 関係を変更する。これによつて、物理的性質(自然現象)として光が備える、予測不能 の雑音成分が発生することとなる。正規の光受信回路と光送信回路とは、発振モード 光成分間の光強度または光位相の変更パターンを「秘密鍵」として共有する。光受信 回路は、当該秘密鍵に基づいて、光送信回路が施した所定の操作とは逆の関係に ある操作を施すことによって、雑音成分を除去する。これにより、光受信回路は、光送 信回路が送信した光信号に準じた光スぺ外ルを有する光信号を再生することができ る。盗聴が行われる場合、傍受者光受信回路が受信する光信号は、上記予測不能 の雑音成分によって、信号対雑音比が劣化しているので、光送信回路が送信した光 信号を正確に再生することができない。よって、上記予測不能の雑音成分を利用して 、計算機処理による解析'解読が不可能な秘匿性の高い暗号通信を実現することが できる光伝送装置が提供されることとなる。
[0011] 好ましくは、光送信回路は、多モード発振する光を出力する多モード光源と、多モ ード光源から出力される光を情報信号で変調し、変調された光信号を出力する光情 報変調部と、光情報変調部から出力される光信号を入力し、光信号の複数の発振モ ード光の群に対して、所定の符号に対応した第 1の操作を施し、光伝送路に送出す るモード符号化部とを含み、光受信回路は、光伝送路を介して伝送される光信号を 入力し、光信号の複数の発振モード光の群に対して、所定の符号に対応した第 1の 操作と逆の関係にある第 2の操作を施し、出力するモード復号ィ匕部と、モード復号ィ匕 部から出力される光信号の総光強度変化を検出し、電気信号に変換して、情報信号 を再生する光強度検出部とを含むとよい。
[0012] これにより、複数モードで発振する光を構成する各成分に対して、それぞれ独立な 操作を施すことで発生する雑音を利用することとなるので、送受信者間では、一意な 符号化'復号化操作を共有して、高い受信信号品質を確保すると共に、第三者によ る盗聴を著しく妨げ、秘匿性の高!ヽ光伝送装置を実現できる。
[0013] たとえば、モード符号ィ匕部における第 1の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、所定の符号に対応した所定量の強度変化を与える操作で あり、モード復号ィ匕部における第 2の操作は、入力光信号の複数の発振モード光の それぞれに対して、所定の符号に対応した所定量の強度変化と逆の極性を有する 強度変化を与える操作であるとょ 、。
[0014] たとえば、モード符号ィ匕部における第 1の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、所定の符号に対応した所定量の位相変化を与える操作で あり、モード復号ィ匕部における第 2の操作は、入力光信号の複数の発振モード光の それぞれに対して、所定の符号に対応した所定量の位相変化と逆の極性を有する 位相変化を与える操作であるとょ 、。
[0015] たとえば、モード符号ィ匕部における第 1の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、所定の符号に対応した所定量の偏向変化を与える操作で あり、モード復号ィ匕部における第 2の操作は、入力光信号の複数の発振モード光の それぞれに対して、所定の符号に対応した所定量の偏向変化と逆の極性を有する 偏向変化を与える操作であるとよ 、。
[0016] たとえば、モード符号ィ匕部における第 1の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、所定の符号に対応した所定量の周波数変化を与える操作 であり、モード復号ィ匕部における第 2の操作は、入力光信号の複数の発振モード光 のそれぞれに対して、所定の符号に対応した所定量の周波数変化と逆の極性を有 する周波数変化を与える操作であるとょ 、。
[0017] これらにより、複数モードで発振する光を構成する各成分の物理パラメータに対し て、それぞれ独立な操作を施すことで発生する雑音を利用することとなるので、送受 信者間では、一意な符号化'復号ィ匕操作を共有して、高い受信信号品質を確保する と共に、第三者による盗聴を著しく妨げ、秘匿性の高い光伝送装置を実現できる。
[0018] 好ましくは、多モード光源は、互いに光強度および光位相に相関性を有し、互いに 異なる波長の光を出力する複数の光源と、複数の光源から出力される光を合成し、 出力する光モード合成部と、光モード合成部から出力される光の総強度を一定とし、 かつ複数の光源から出力される光の強度および Zまたは位相を略ランダムに変調す るような変調信号を各光源に供給する符号発生部とからなるとよい。
[0019] 好ましくは、多モード光源は、互いに異なる波長の光を出力する複数の光源と、複 数の光源カゝら出力される光を合成し、出力する光モード合成部と、複数光源から出 力される光の位相変化を同期させる光位相同期部と、光モード合成部から出力され る光の総強度を一定とし、かつ複数の光源から出力される光の強度を略ランダムに 変調するような変調信号を各光源に供給する符号発生部とからなるとよい。
[0020] 好ましくは、多モード光源は、互いに異なる波長の光を出力する複数の光源と、複 数の光源カゝら出力される光を合成し、出力する光モード合成部と、複数光源から出 力される光の強度変化を同期させる光強度同期部と、光モード合成部から出力され る光の総強度を一定とし、かつ複数の光源から出力される光の位相を略ランダムに 変調するような変調信号を各光源に供給する符号発生部とからなるとよい。
[0021] これらにより、当該光強度変動および光位相変動において互いに相関性を有する 多モード光を生成し、当該各光成分に対して、それぞれ独立な操作を施すことで発 生する雑音を利用することとなるので、第三者による盗聴を著しく妨げ、秘匿性の高 V、光伝送装置を実現できる。
[0022] たとえば、多モード光源は、 LED (Light Emission Diode)であったり、 FP (Fab ry- Perot)レーザであったり、 RC (Resonant Cabity)—LEDであったり、 VCSE L (Vertical Cabity Surface Emitting Laser)であったり、 SLD (Super Lu minescent Diode)であったりする。
[0023] これらにより、当該光強度変動および光位相変動において互いに相関性を有する 多モード光源を使用し、当該各光成分に対して、それぞれ独立な操作を施すことで 発生する雑音を利用することとなるので、第三者による盗聴を著しく妨げ、秘匿性の 高 、光伝送装置を実現できる。
[0024] 好ましくは、複数対の光送信回路と光受信回路とを有し、各光送信回路から出力さ れる光信号成分を合成し、光伝送路に送出する光合波部と、光伝送路を介して伝送 される光信号成分を分岐し、対応する光受信回路に出力する光分岐部とを備え、光 送信回路と光受信回路との各対は、それぞれ、複数の発振モード光の群に対して、 互いに異なる所定の符号に対応した第 1の操作および第 2の操作を施すとよい。
[0025] これより、複数モードで発振する光を構成する各成分に対して、それぞれ独立な操 作を施すことで発生する雑音を利用することとなるので、複数の送受信者対の間の情 報漏洩や干渉を防 、で、秘匿性の高!、光伝送装置を実現できる。
[0026] たとえば、光伝送路は、光ファイバ、光導波路、または自由空間であるとよい。
[0027] 本発明の第 3の局面において、光送信回路は、所定の操作として、多モード発振光 から所定の発振モード光を抽出して、光伝送路に送出し、光受信回路は、光伝送路 を介して伝送される光を受信し、抽出された所定の発振モード光と同一の光もしくは 所定の発振モード光に準じた光とを合成した後、自乗検波して、前記情報信号を再 生するとよい。
[0028] 本発明の第 3の局面により、多モード発振する光から所定の発振モード光が除去さ れた光が送信され、所定の発振モード光が除去されている光を検波するために、所 定の発振モード光と同一の光もしくは所定の発振モード光に準じた光が必要となる。 したがって、第三者が盗聴を試みて所定の発振モード光が除去された光を受信した 場合、多モード発振する光力 所定の発振モード光を除去した際に生じる雑音 (モー ドパーティションノイズ)が発生することとなり、信号対雑音電力比が著しく劣化し、第 三者は、正しく検波することができない。このように、本発明では、多モード発振する 光力も所定の発振モード光を除去した際に生じる雑音 (モードパーティションノイズ) を利用し、第三者による盗聴を著しく妨げ、秘匿性の高い光伝送装置を提供すること ができる。
[0029] 好ましくは、光送信回路は、多モード発振する光を出力する多モード光源と、多モ ード光源から出力される光を情報信号で変調し、光信号を出力する光情報変調部と 、光情報変調部から出力される光信号を入力し、光信号における複数の発振モード 光の内、所定の発振モード光を分離して副光伝送路に送出すると共に、光信号にお ける所定の発振モード光以外の残りの光信号成分を主光伝送路に送出する光分離 部とを含み、光受信回路は、主光伝送路を介して伝送される光信号成分と、副光伝 送路を介して伝送される所定の発振モード光とを合成し、自乗検波して、情報信号を 再生する光強度検出部を含むとよい。
[0030] 好ましくは、光送信回路は、多モード発振する光を出力する多モード光源と、多モ ード光源から出力される光を情報信号で変調し、光信号を出力する光情報変調部と 、光情報変調部から出力される光信号を入力し、光信号における複数の発振モード 光の内、所定の発振モード光を分離して副光伝送路に送出すると共に、光信号にお ける所定の発振モード光以外の残りの光信号成分を主光伝送路に送出する光分離 部とを含み、光受信回路は、副光伝送路を介して伝送される所定の発振モード光を 入力し、所定の発振モード光に準じた光として、当該発振モード光と物理的性質を同 じくする局部発振光を発生する局発光発生部と、主光伝送路を介して伝送される光 信号成分と、局発光発生部力 出力される局部発振光とを合成し、自乗検波して、情 報信号を再生する光強度検出部とを含むとよい。
[0031] 好ましくは、光送信回路は、多モード発振する光を出力する多モード光源と、多モ ード光源から出力される光を情報信号で変調し、光信号を出力する光情報変調部と 、光情報変調部から出力される光信号を入力し、光信号における複数の発振モード 光の内、所定の発振モード光を分離すると共に、光信号における所定の発振モード 光以外の残りの光信号成分を光伝送路に送出する光分離部と、光分離部によって 分離された所定の発振モード光を入力し、当該所定の発振モード光の物理的性質を 検出し、検出信号を伝送路に送出する光検出部とを含み、光受信回路は、伝送路を 介して伝送される検出信号に基づき、所定の発振モード光に準じた光として、所定の 発振モード光と物理的性質を同じくする局部発振光を発生する局発光発生部と、光 伝送路を介して伝送される光信号成分と、局発光発生部から出力される局部発振光 とを合成し、自乗検波して、情報信号を再生する光強度検出部とを含むとよい。
[0032] これらにより、多モード発振する光力 所定の発振モード光を除去した際に生じる 雑音を利用し、正規受信者は、当該発振モード光を共有して、高い受信信号品質を 確保すると共に、第三者による盗聴を著しく妨げ、秘匿性の高い光伝送装置を実現 できる。
[0033] 好ましくは、さらに、複数対の光送信回路と光受信回路と、各光送信回路から出力 される所定の発振モード光以外の光信号成分を合成し、主光伝送路に送出する主 光合波部と、主光伝送路を介して伝送される所定の発振モード光以外の光信号成 分を分岐し、対応する光受信回路に出力する主光分岐部とを備えるとよい。
[0034] 好ましくは、さらに、複数対の光送信回路と光受信回路と、各光送信回路から出力 される所定の発振モード光を合成し、副光伝送路に送出する副光合波部と、副光伝 送路を介して伝送される所定の発振モード光を分岐し、対応する光受信回路に出力 する副光分岐部とを備えるとよい。
[0035] 好ましくは、さらに、複数対の光送信回路と光受信回路と、各光送信回路から出力 される所定の発振モード光以外の光信号成分を合成し、主光伝送路に送出する主 光合波部と、主光伝送路を介して伝送される所定の発振モード光以外の光信号成 分を分岐し、対応する光受信回路に出力する主光分岐部と、各光送信回路から出力 される所定の発振モード光を合成し、副光伝送路に送出する副光合波部と、副光伝 送路を介して伝送される所定の発振モード光を分岐し、対応する光受信回路に出力 する副光分岐部とを備えるとよい。
[0036] 好ましくは、さらに、複数対の光送信回路と光受信回路と、各光送信回路から出力 される検出信号を合成し、伝送路に送出する合成部と、伝送路を介して伝送される 検出信号を分岐し、対応する光受信回路に出力する分岐部とを備えるとよい。
[0037] これらにより、多モード発振する光力 所定の発振モード光を除去した際に生じる 雑音を利用し、複数の送受信者対の間の情報漏洩や干渉を防いで、秘匿性の高い 光伝送装置を実現できる。 [0038] 好ましくは、複数対の光送信回路と光受信回路とが送受信する所定の発振モード 光以外の光信号成分が、互いに異なる波長を有するとよい。
[0039] 好ましくは、複数対の光送信回路と光受信回路とが送受信する所定の発振モード 光力 互いに異なる波長を有するとよい。
[0040] 好ましくは、複数対の光送信回路と光受信回路とが送受信する所定の発振モード 光以外の光信号成分が、互いに同じ波長成分有し、複数対の光送信回路と光受信 回路とが送受信する所定の発振モード光が、互いに異なる波長を有するとよい。
[0041] これらにより、多モード発振する光力 所定の発振モード光を除去した際に生じる 雑音を利用し、複数の送受信者対の間の情報漏洩や干渉を防ぎながら、光伝送路 を簡略ィ匕して、秘匿性の高い光伝送装置を経済的に実現できる。
[0042] たとえば、多モード光源は、互いに光強度および光位相に相関性を有し、互いに異 なる波長の光を出力する複数の光源と、複数の光源から出力される光を合成し、出 力する光モード合成部と、光モード合成部から出力される光の総強度を一定とし、か つ複数の光源から出力される光の強度および Zまたは位相を略ランダムに変調する ような変調信号を各光源に供給する符号発生部とからなるとよい。
[0043] たとえば、多モード光源は、互いに異なる波長の光を出力する複数の光源と、複数 の光源カゝら出力される光を合成し、出力する光モード合成部と、複数光源から出力さ れる光の位相変化を同期させる光位相同期部と、光モード合成部から出力される光 の総強度を一定とし、かつ複数の光源から出力される光の強度を略ランダムに変調 するような変調信号を各光源に供給する符号発生部とからなるとよい。
[0044] たとえば、多モード光源は、互いに異なる波長の光を出力する複数の光源と、複数 の光源カゝら出力される光を合成し、出力する光モード合成部と、複数光源から出力さ れる光の強度変化を同期させる光強度同期部と、光モード合成部から出力される光 の総強度を一定とし、かつ複数の光源から出力される光の位相を略ランダムに変調 するような変調信号を各光源に供給する符号発生部とからなるとよい。
[0045] このように、当該光強度変動および光位相変動において互いに相関性を有する多 モード光を生成し、当該所定の発振モード光を除去した際に生じる雑音を利用する ことで、第三者による盗聴を著しく妨げ、秘匿性の高い光伝送装置を実現できる。 [0046] たとえば、多モード光源は、 LED (Light Emission Diode)であってもよいし、 F P (Fabry -Perot)レーザであってもよ!/、し、 RC (Resonant Cabity)—LEDであ つてもょ ヽし、 VCSEL (Vertical Cabity Surface Emitting Laser)であっても ょ ヽし、 SLD (Super Luminescent Diode)であって よ ヽ。
[0047] このように、当該光強度変動および光位相変動において互いに相関性を有する多 モード光源を使用し、当該所定の発振モード光を除去した際に生じる雑音を利用す ることで、第三者による盗聴を著しく妨げ、秘匿性の高い光伝送装置を実現できる。 発明の効果
[0048] 以上のように、本発明によれば、多モード発振光における少なくとも 1つの発振モー ド光に対して、所定の操作を施して発振モード光成分間の光強度または光位相の相 関関係を変更する。これによつて、物理的性質(自然現象)として光が備える、予測不 能の雑音成分が発生することとなる。盗聴が行われる場合、傍受者光受信回路が受 信する光信号は、上記予測不能の雑音成分によって、信号対雑音比が劣化している ので、光送信回路が送信した光信号を正確に再生することができない。よって、上記 予測不能の雑音成分を利用して、計算機処理による解析'解読が不可能な秘匿性 の高い暗号通信を実現することができる光伝送装置が提供されることとなる。
[0049] なお、本発明における装置および回路の用語は、規模の大小には関係なぐ場合 によっては、システム等の意味に解釈してもよい。
[0050] 本発明のこれらおよび他の目的、特徴、局面、効果は、添付図面と照合して、以下 の詳細な説明から一層明らかになるであろう。
図面の簡単な説明
[0051] [図 1]図 1は、本発明の実施形態に係る光伝送装置 1の概念的な構成を示す機能ブ ロックである。
[図 2]図 2は、本発明の第 1の実施形態に係る暗号通信対応の光伝送装置 100の構 成を示す図である。
[図 3A]図 3Aは、光伝送装置 100の主要部における光 (光信号)のスペクトルの一例 を表す模式図である。
[図 3B]図 3Bは、光伝送装置 100の主要部における光 (光信号)のスペクトルの一例 を表す模式図である。
[図 3C]図 3Cは、光伝送装置 100の主要部における光 (光信号)のスペクトルの一例 を表す模式図である。
[図 3D]図 3Dは、光伝送装置 100の主要部における光 (光信号)のスペクトルの一例 を表す模式図である。
[図 3E]図 3Eは、光伝送装置 100の主要部における光 (光信号)のスペクトルの一例 を表す模式図である。
[図 4A]図 4Aは、光伝送装置 100または傍受者光受信回路 1003の主要部における 光 (光信号)のスペクトルの一例を表す模式図である。
[図 4B]図 4Bは、光伝送装置 100または傍受者光受信回路 1003の主要部における 光 (光信号)のスペクトルの一例を表す模式図である。
[図 4C]図 4Cは、光伝送装置 100または傍受者光受信回路 1003の主要部における 光 (光信号)のスペクトルの一例を表す模式図である。
[図 4D]図 4Dは、光伝送装置 100または傍受者光受信回路 1003の主要部における 光 (光信号)のスペクトルの一例を表す模式図である。
[図 4E]図 4Eは、光伝送装置 100または傍受者光受信回路 1003の主要部における 光 (光信号)のスペクトルの一例を表す模式図である。
圆 5]図 5は、第 1の実施形態に関する第 1の変形例の構成を示す図である。
圆 6]図 6は、第 1の実施形態に関する第 2の変形例の構成を示す図である。
[図 7]図 7は、本発明の第 2の実施形態に係る光伝送装置 200の構成を示す図である
[図 8]図 8は、本発明の第 3の実施形態に係る暗号通信対応の光伝送装置 200の構 成を示す図である。
[図 9A]図 9Aは、図 8に示す光伝送装置 200の主要部における光 (光信号)のスぺク トルを表す模式図である。
[図 9B]図 9Bは、図 8に示す光伝送装置 200の主要部における光 (光信号)のスぺタト ルを表す模式図である。
[図 9C]図 9Cは、図 8に示す光伝送装置 200の主要部における光 (光信号)のスぺク トルを表す模式図である。
[図 10]図 10は、第 3の実施形態に関する第 1の変形例に係る光伝送装置 200aの構 成を示す図である。
[図 11]図 11は、第 3の実施形態に関する第 2の変形例に係る光伝送装置 200bの構 成を示す図である。
[図 12]図 12は、第 3の実施形態の他の例に係る光伝送装置 200構成を示す図であ る。
[図 13]図 13は、本発明の第 4の実施形態に係る光伝送装置 500の構成を示す図で ある。
[図 14]図 14は、本発明の第 5の実施形態に係る光伝送装置 700の構成を示す図で ある。
[図 15]図 15は、本発明の第 6の実施形態に係る光伝送装置 800の構成を示す図で ある。
[図 16]図 16は、第 1および第 2の光信号が、互いに異なる波長帯に設定される場合 に副光伝送路 205を共通化したときの光伝送装置 800aの構成を示す図である。
[図 17]図 17は、本発明の第 7の実施形態に係る光伝送装置 800cの構成を示す図で ある。
[図 18]図 18は、本発明の第 8の実施形態に係る光伝送装置 800bの構成を示す図 である。
[図 19]図 19は、暗号通信に対応する従来の光伝送装置 91の構成を示す図である。 符号の説明
1, 100, 100a, 100b, 200, 200a, 500, 700, 800, 800a, 800b, 800c 光伝 送装置
3. 101, 101a, 101b, 201, 201a, 201b 多モード光源
4. 102, 202 光情報変調部
5 スペクトル処理部
6 スペクトル復元部
7 光電気変換部 103 モード符号化部
9, 104 光伝送路
105 モード復号化部
106 光強度検出部
1052 傍受者モード復号化部
1062, 2062 傍受者光強度検出部
2. 1001, 1001a, 1001b, 2001, 2001a, 2001b, 8001 光送信回路
8. 1002, 2002, 7002, 8002 光受信回路
1003, 2003 傍受者光受信回路
4011 第 1の光源
4012 第 2の光源
4013 第 3の光源
402 光モード合成部
403 符号発生部
5001, 6001 第 1の符号発生部
5002, 6002 第 2の符号発生部
5011, 6011 第 1の光位相変調部
5012, 6012 第 2の光位相変調部
5013, 6013 第 3の光位相変調部
609 光合波部
610 光分岐部
203 光分離部
204 主光伝送路
205 副光伝送路
206 光強度検出部
507 符号発生部
705 副伝送路
707 局発光発生部 708 光検出部
709 主光合成部
710 主光分岐部
809 副光合成部
810 副光分岐部
発明を実施するための最良の形態
[0053] 図 1は、本発明の実施形態に係る光伝送装置 1の概念的な構成を示す機能ブロッ ク図である。図 1において、光伝送装置 1は、光送信回路 2と、光受信回路 8とを備え る。光送信回路 2は、多モード光源 3と、光情報変調部 4と、スペクトル処理部 5とを含 む。光受信回路 8は、スペクトル復元部 6と、光電気変換部 7とを含む。
[0054] 多モード光源 3は、多モード発振光を出力する。光情報変調部 4は、伝送すべき情 報信号 Diで、多モード光源 3から出力された多モード発振光を変調して、光信号とし て出力する。スペクトル処理部 5は、光情報変調部 4から出力される光信号に対して、 多モード発振光における少なくとも 1つの発振モード光に対して、入力される鍵情報 Kiに基づき、所定の操作を施して、光伝送路 9に送出する。当該所定の操作として は、以下の実施形態で開示する様々なスペクトル処理が考え得る。
[0055] スペクトル復元部 6は、光伝送路 9を介して伝送される光信号を受信し、入力される 鍵情報 Kiに基づき、光送信回路での所定の操作と逆の操作を施すことによって、当 該所定の操作を施される前の光信号を復元する。スペクトル復元部 6における当該 逆の操作としては、以下の実施形態で開示する様々な処理が考え得る。光電気変換 部 7は、スペクトル復元部 6によって復元された光信号を電気信号に変換して、情報 信号 Diを再生する。
[0056] 以下、図 1に示す光伝送装置 1を実現するための実施形態について、図面を参照 しながら、具体的に説明する。
[0057] (第 1の実施形態)
図 2は、本発明の第 1の実施形態に係る暗号通信対応の光伝送装置 100の構成を 示す図である。図 3A〜3Eは、光伝送装置 100の主要部における光 (光信号)のスぺ タトルの一例を表す模式図である。図 4A〜4Eは、光伝送装置 100または傍受者光 受信回路 1003の主要部における光 (光信号)のスペクトルの一例を表す模式図であ る。
[0058] 図 1において、本実施形態の光伝送装置 100は、多モード光源 101と、光情報変 調部 102と、モード符号ィ匕部 103と、光伝送路 104と、モード復号ィ匕部 105と、光強 度検出部 106とを備える。多モード光源 101と、光情報変調部 102と、モード符号ィ匕 部 103とによって、光送信回路 1001が構成される。モード復号ィ匕部 105と、光強度 検出部 106とによって、光受信回路 1002が構成される。なお、本実施形態の動作説 明のため、図 1には、傍受者モード復号ィ匕部 1052と、傍受者光強度検出部 1062と を構成要素とする傍受者光受信回路 1003が、併せて図示されている。なお、光送 信回路 1001と光受信回路 1002とを接続する光伝送路 104は、光ファイバであって もよいし、光導波路であってもよし、自由空間であってもよい。
[0059] 次に、図 1に示す本実施形態の動作を説明する。光送信回路 1001において、多 モード光源 101は、図 3Aに示すような複数のモード(図 3Aでは 8つの波長 ml〜m8 を複数のモードとして ヽる)で発振する光源で構成され、複数のモードを有する光を 出力する。このような多モード発振光源の具体例は、 LED (Light Emission Diod e)や、 FP (Fabry -Perot)レーザ、 RC (Resonant Cabity)—LEDゝ VCSEL (V ertical Cabity Surface Emitting Laser)、 SLD (Super Luminescent Di ode)、あるいは面発光レーザである。これらの出力光スペクトルにおける個々の発振 モード光は、光強度、光位相等のパラメータが高速に変動する。これらの光源におい て、個々の発振モード光における光強度変動成分および光位相変動成分は、他の 発振モード光における光強度変動成分および光位相変動成分と相関しながらも、多 モード光源 101から出力される光の総光強度は、略一定値を示す性質を有している
[0060] 光情報変調部 102は、伝送すべき情報信号 Diで、多モード光源 101から出力され る光を変調して、光信号として出力する。
[0061] モード符号ィ匕部 103は、光情報変調部 102から出力される光信号を入力し、光受 信回路 1002内のモード復号ィ匕部 105との間で予め共有している所定の源符号 Kiに 基づいて、スペクトル処理として、当該発振モード光のそれぞれに対して一意な所定 の符号化操作を施した後、光伝送路 104に出力する。すなわち、モード符号化部 10 3は、複数の発振モード光の群に対して、所定の符号に対応した所定の操作 (第 1の 操作)を施した光を出力する。具体的には、例えば図 3Bに示すように、モード符号化 部 103は、各発振モード光に対して、源符号 Kiによって定まる所定のパターンの光 強度透過率を定義しておく。そして、モード符号ィ匕部 103は、第 1の操作として、複数 の発振モード光のそれぞれに対して所定量の強度変化を与える操作を施して、第 1 の操作を施した光を光伝送路 104に送出する。これにより、物理的性質(自然現象) として光が備える、予測不能の雑音成分 (モードパーティションノイズ)が発生すること となり、モード符号ィ匕部 103は、入力される光信号(図 3A)とは異なる光スペクトルを 有する光信号(図 3C)を作成し、出力することとなる。
[0062] 光受信回路 1002において、モード復号ィ匕部 105は、光伝送路 104を介して伝送さ れる光信号を入力し、光送信回路 1001内のモード符号ィ匕部 103との間で予め共有 している所定の源符号 Kiに基づいて、当該発振モード光のそれぞれに対して一意で あり、かつ上記所定の符号化操作と逆の関係 (相補的な関係)にある復号化操作を 施した後、出力する。すなわち、モード復号ィ匕部 105は、複数の発振モード光の群に 対して、所定の符号に対応した所定の操作 (第 1の操作)と逆の操作である第 2の操 作を施した光を出力する。具体的には、例えば図 3Dに示すように、モード復号化部 105は、各発振モード光に対して、図 3Bに示す所定のパターンと逆の関係 (相補的 な関係)にある逆パターンの光強度透過率を源符号 Kiに基づいて定義しておく。そ して、モード復号ィ匕部 105は、複数の発振モード光のそれぞれに対して、上記所定 量の強度変化と逆の極性を有する強度変化を与える操作を第 2の操作として施して、 第 2の操作を施した光を光強度検出部 106に入力する。これにより、上記モードパー テイシヨンノイズが除去されることとなり、モード復号ィ匕部 105は、光伝送路 104を介し て伝送された光信号 (図 3C)を、光情報変調部 102から出力された光信号 (図 3A) に準じた光スペクトルを有する光信号(図 3E)に変換して、出力することとなる。
[0063] 光強度検出部 106は、モード復号ィ匕部 105から出力される光信号を自乗検波して 、総光強度の変化を検出することによって変調成分を検出し、元の情報信号 Diを再 生する。 [0064] 次に、本実施形態において、第三者 (傍受者光受信回路 1003)による盗聴が行わ れる場合について図 4A〜4Eを用いて説明する。図 4Aは、光情報変調部 102から 出力される光信号の光スペクトルを表しており図 3Aと同様である。図 4Bは、モード符 号ィ匕部 103における所定のパターンの光強度透過率を表しており図 3Bと同様である 。図 4Cは、モード符号ィ匕部 103から出力される光信号の光スペクトルを表しており図 3Cと同様である。図 4Dは、傍受者モード復号ィ匕部 1052における光強度透過率を 表している。図 4Eは、傍受者モード復号ィ匕部 1052から出力される光信号の光スぺク トルを表している。
[0065] 盗聴が行われる場合、傍受者光受信回路 1003は、光伝送路 104を伝搬する光信 号の一部を分岐して、傍受者モード復号ィ匕部 1052に入力する。傍受者モード復号 化部 1052は、モード符号ィ匕部 103と源符号 Kiを共有していないため、源符号 Kiと は異なる符号 Kjに基づいて、入力光信号の発振モード光のそれぞれに対して一意 な所定の操作を施した後、出力する。具体的には、例えば図 4Dに示すように、傍受 者モード復号ィ匕部 1052は、モード復号ィ匕部 105が各発振モード光に対して与える 光強度透過率(図 3D)とは異なるパターンの光強度透過率を与え、光信号を出力す る。この光信号は、図 4Eに示すように、光情報変調部 102が出力する光信号(図 4A )と異なる光スペクトルである。そのため、傍受者モード復号ィ匕部 1052から出力され る光信号は、コヒーレント性が変質しており、過剰な雑音を含んでいる。よって、傍受 者光強度検出部 1062は、情報信号 Diを再生することができない。このように、傍受 者光受信回路 1003における受信信号品質 (SNR:信号対雑音比)は、正規受信者 (光受信回路 1002)に比較して劣化しているので、光伝送装置 100は、高い秘匿性 を確保することができる。
[0066] なお、本実施形態では、多モード光源 101は、 8つのモードで発振する光を出力し 、モード符号ィ匕部 103は、当該 8つの発振モード光に対して所定パターンの光強度 透過率を与えることとした力 当該モード数は、 8以外のいずれの複数であってもよい 。この場合、多モード光源 101は、 8以外のいずれの複数のモードで発振すればよい 。また、モード符号ィ匕部 103は、多モード光源 101が発振するモードの数に応じた所 定パターンの光強度透過率を有して 、ればよ 、。 [0067] なお、本実施形態では、モード符号ィ匕部 103およびモード復号ィ匕部 105は、各発 振モード光に対して、所定パターンの光強度透過率を与える構成としたが、所定バタ ーンの光位相変動を与える構成としても、ほぼ同様の効果を得ることができる。この 場合、具体的には、モード符号ィ匕部 103は、入力される光信号の複数の発振モード 光のそれぞれに対して、所定の符号に対応した所定量分の位相変化を第 1の操作と して施す。モード復号ィ匕部 105は、入力される光信号の複数の発振モード光のそれ ぞれに対して、上記所定の符号に対応した上記所定量分の位相変化とは逆の極性 を有する位相変化を第 2の操作として施す。
[0068] また、モード符号ィ匕部 103およびモード復号ィ匕部 105が、各発振モード光に対して 、所定パターンの偏向変化を与えても、ほぼ同様の効果が得られる。この場合、具体 的には、モード符号ィ匕部 103は、入力される光信号の複数の発振モード光のそれぞ れに対して、所定の符号に対応した所定量分の偏向変化を第 1の操作として施す。 モード復号ィ匕部 105は、入力される光信号の複数の発振モード光のそれぞれに対し て、上記所定の符号に対応した上記所定量分の偏向変化とは逆の極性を有する偏 向変化を第 2の操作として施す。
[0069] また、モード符号ィ匕部 103およびモード復号ィ匕部 105が、各発振モード光に対して 、所定パターンの周波数変化を与えても、ほぼ同様の効果が得られる。この場合、具 体的には、モード符号ィ匕部 103は、入力される光信号の複数の発振モード光のそれ ぞれに対して、所定の符号に対応した所定量分の周波数変化を第 1の操作として施 す。モード復号ィ匕部 105は、入力される光信号の複数の発振モード光のそれぞれに 対して、上記所定の符号に対応した上記所定量分の周波数変化とは逆の極性を有 する周波数変化を第 2の操作として施す。
[0070] また、モード符号ィ匕部 103およびモード復号ィ匕部 105が、各発振モード光に対して 、所定パターンの遅延時間を与えても、ほぼ同様の効果が得られる。この場合、具体 的には、モード符号ィ匕部 103は、入力される光信号の複数の発振モード光のそれぞ れに対して、第 1の操作として、所定の符号に対応した所定量分の遅延時間を与え る。モード復号ィ匕部 105は、入力される光信号の複数の発振モード光のそれぞれに 対して、第 2の操作として、上記所定の符号に対応した上記所定量分の遅延時間と は逆の極性を有する遅延時間を与える。
[0071] (第 1の変形例)
次に、第 1の実施形態に関する第 1の変形例について説明する。図 5は、第 1の実 施形態に関する第 1の変形例の構成を示す図である。図 5において、光伝送装置 10 Oaの光送信回路 1001aは、図 1に示す光送信回路 1001の多モード光源 101を多 モード光源 101aに置き換えたものである。
[0072] 多モード光源 101aは、第 1の光源 4011と、第 2の光源 4012と、第 3の光源 4013と 、光モード合成部 402と、符号発生部 403とを含む。本構成において、第 1〜第 3の 光源 4011〜4013は、それぞれ異なる波長を有し、かつ所定の関係で互いに位相 同期された単一モード光を発振し、出力する。光モード合成部 402は、第 1〜第 3の 光源 4011〜4013からの出力光を合成し、出力する。符号発生部 403は、第 1〜第 3の光源 4011〜4013に対応して、それぞれ略ランダムに変化する所定の符号列 C 1〜C3を変調信号として発生し、光モード合成部 402から出力される総光強度が一 定となるように、第 1〜第 3の光源 4011〜4013の光強度を略ランダムに変調する。こ れにより、多モード光源 101aは、光変動成分においても互いに所定の同期関係にあ る多モード光を人為的に作成し、図 2の多モード光源 101から出力される光に準じた 光を出力することができる。
[0073] また、第 1の変形例では、位相同期された単一モード光を複数作成し、それぞれ独 立に光強度変調する構成としたが、光強度変動を同期させ、あるいは光強度を一定 値に安定化させ、それぞれ独立に略ランダムな光位相変調を施す構成としても、ほ ぼ同様の効果を有する。この場合、具体的には、第 1〜第 3の光源 4011〜4013とし て、それぞれ異なる波長を有し、かつ所定の関係で互いに光強度が同期された単一 モード光が光位相変調された状態で発振し出力する光源を用いる。符号発生部 403 は、第 1〜第 3の光源 4011〜4013に対応して、それぞれ略ランダムに変化する所 定の符号列 C1〜C3を変調信号として発生し、光モード合成部 402から出力される 総光強度が一定となるように、第 1〜第 3の光源 4011〜4013の光位相を略ランダム に変調する。これにより、光変動成分においても互いに所定の同期関係にある多モ 一ド光を人為的に作成し、図 1の多モード光源 101から出力される光に準じた光を出 力することができる。
[0074] なお、第 1の変形例において、三つの光源を用いることとした力 二つまたは四つ 以上の光源を用いてもよい。この場合も、符号発生部 403は、各光源に対応して、そ れぞれ略ランダムに変化する所定の符号列を発生し、光モード合成部 402から出力 される総光強度が一定となるように、各光源の光強度を略ランダムに変調すればよい 。これにより、光変動成分においても互いに所定の同期関係にある多モード光を人 為的に作成し、いずれかの単一モード光が欠如した際に、上記モードパーティション ノイズに準じた雑音を発生させることができる。
[0075] (第 2の変形例)
次に、第 1の実施形態に関する第 2の変形例について説明する。図 6は、第 1の実 施形態に関する第 2の変形例の構成を示す図である。図 6において、光伝送装置 10 Obの光送信回路 1001bは、図 2に示す光送信回路 1001の多モード光源 101を多 モード光源 101bに置き換えたものである。
[0076] 多モード光源 101bは、第 1の光源 4011と、第 2の光源 4012と、第 3の光源 4013 と、光モード合成部 402と、第 1の符号発生部 5001と、第 2の符号発生部 5002と、 第 1の光位相変調部 5011と、第 2の光位相変調部 5012と、第 3の光位相変調部 50 13とを含む。本構成において、第 1〜第 3の光源 4011〜4013は、それぞれ互いに 異なる波長の単一モード光を発振し、出力する。第 1〜第 3の光位相変調部 5011〜 5013は、第 1〜第 3の光源 4011〜4013に対応して設けられ、第 1〜第 3の光源 40 11〜4013からの出力光の位相をそれぞれ変調し、出力する。光モード合成部 402 は、第 1〜第 3の光位相変調部 5011〜5013から出力された光信号を合成し、出力 する。第 1の符号発生部 5001は、第 1〜第 3の光源 4011〜4013に対応して、それ ぞれ略ランダムに変化する所定の符号列 C1〜C3を変調信号として発生し、当該符 号列に基づいて第 1〜第 3の光源 4011〜4013からの出力光強度を略ランダムとな るように変調する。第 2の符号発生部 5002は、第 1〜第 3の光位相変調部 5011〜5 013に対応して、それぞれ略ランダムに変化する所定の符号列 D1〜D3を発生し、 当該符号列に基づいて第 1〜第 3の光位相変調部 5011〜5012からの出力光の位 相を位相変化が同期するように変調し、かつ光モード合成部 402からの総出力光強 度が一定となるようにする。第 1〜第 3の光位相変調部 5011〜5013および第 2の符 号発生部 5002は、第 1〜第 3の光源 4011〜4013から出力される光の位相変化を 同期させる光位相同期部といえる。また、第 1の符号発生部 5001は、光モード合成 部 402から出力される光の総強度を一定とし、かつ第 1〜第 3の光源 4011〜4013 力 出力される光の強度を略ランダムに変調するための変調信号である符号を各光 源に供給する符号発生部であるといえる。このように、第 2の変形例において、光変 動にお 、て互 ヽに同期関係にある多モード光を人為的に作成し、図 2の多モード光 源 101から出力される光に準じた光を出力することができる。
[0077] なお、本実施形態では、複数の単一モード光を光強度変調した後、光位相変調す る構成としたが、光位相変調後、光強度変調する構成としても、ほぼ同様の効果を有 する。この場合、具体的には、多モード光源は、互いに異なる波長の光を位相変調し て出力する複数の光源と、複数の光源力 出力される光を強度変調する複数の光強 度変調部と、複数の光強度変調部から出力される光信号を合成する光モード合成部 と、光モード合成部から出力される光の総強度を一定とし、かつ複数の光源から出力 される光の位相を略ランダムに変調するための変調信号である符号を各光源に入力 する第 1の符号発生部と、複数の光強度変調部からの出力光の強度変化を同期させ るための符号を各光強度変調部に入力する第 2の符号発生部とを備えるとよい。これ により、光強度変調部と第 2の符号発生部とが、複数の光源力 出力される光の強度 変化を同期させるための光強度同期部として機能することとなる。このような構成によ つて、光変動において互いに同期関係にある多モード光を人為的に作成し、図 2の 多モード光源 101から出力される光に準じた光を出力することができる。
[0078] なお、第 2の変形例において、三つの光源を用いることとした力 二つまたは四つ 以上の光源を用いてもよい。この場合、光源の数に応じて、光位相変調部が設けら れなければならない。また、第 1の符号発生部 5001は、各光源に対応して、それぞ れ略ランダムに変化する所定の符号列を発生し、当該符号列に基づいて各光源らの 出力光強度を変調する。第 2の符号発生部 5002は、各光位相変調部に対応して、 それぞれ略ランダムに変化する所定の符号列を発生し、当該符号列に基づいて各 光位相変調部からの出力光の位相を変調し、かつ光モード合成部 402からの総出 力光強度が一定となるようにする。これにより、光変動において互いに同期関係にあ る多モード光を人為的に作成し、図 2の多モード光源 101から出力される光に準じた 光を出力することができる。
[0079] 以上説明したように、第 1の実施形態によれば、多モード発振する光において、発 振モード光成分間の光強度または光位相の相関関係を変更した際に生じる雑音を 利用し、当該発振モード光成分間の光強度または光位相の変更パターンを「秘密鍵 」として、送信者と正規受信者との間で共有することにより、第三者による盗聴を著しく 妨げ、秘匿性の高!、光伝送装置を提供することができる。
[0080] (第 2の実施形態)
図 7は、本発明の第 2の実施形態に係る暗号通信対応の光伝送装置 200の構成を 示す図である。図 7において、本実施形態の光伝送装置 200は、図 2中の光送信回 路 1001および光受信回路 1002を、複数組 (図 7では 2組)備えた構成に相当する。 光伝送装置 200は、第 1および第 2の多モード光源 101と、第 1および第 2の光情報 変調部 102と、第 1および第 2のモード符号化部 103と、光合波部 609と、光伝送路 1 04と、光分岐部 610と、第 1および第 2のモード復号化部 105と、第 1および第 2の光 強度検出部 106とを備える。なお、第 1 (第 2)の多モード光源 101と、第 1 (第 2)の光 情報変調部 102と、第 1 (第 2)のモード符号ィ匕部 103とによって、第 1 (第 2)の光送 信回路 1001が構成される。第 1 (第 2)のモード復号化部 105と、第 1 (第 2)の光強度 検出部 106とによって、第 1 (第 2)の光受信回路 1002が構成される。
[0081] 次に、図 7に示す本実施形態の動作を説明する。本実施形態の構成は、前述の第 1の実施形態(図 2)に準ずるため、同一の動作を行うブロックに関しては、同一の番 号を付して、その説明を省略し、相違点のみを以下に説明する。その構成において、 本実施形態の光伝送装置 200は、光送信回路 1001および光受信回路 1002を 2組 備える。第 1および第 2の光情報変調部 102は、第 1および第 2の情報信号 (D1およ び D2)で、対応する第 1および第 2の多モード光源 101から出力される光を変調して 、第 1および第 2の光信号としてそれぞれ出力する。第 1および第 2のモード符号化部 103は、互いに異なる源符号 K1および K2に基づいて、対応する第 1および第 2の 光信号に対して、所定パターンの符号化操作 (第 1の操作)を施す。光合波部 609は 、第 1および第 2の光送信回路 1001から出力される各光信号成分を合成し、光伝送 路 104に送出する。光分岐部 610は、光伝送路 104を介して伝送される光信号成分 を分岐し、対応する光受信回路 1002に出力する。第 1および第 2のモード復号化部 105は、光分岐部 610から出力される光信号を入力し、対応する第 1および第 2のモ ード符号ィ匕部 103とそれぞれ共有する源符号 K1および K2に基づいて、所定パター ンの復号ィ匕操作 (第 2の操作)を施し、出力する。第 1および第 2の光強度検出部 10 6は、対応する第 1および第 2のモード復号ィ匕部 105から出力される光信号を自乗検 波して、第 1および第 2の情報信号 (D1および D2)をそれぞれ再生する。
[0082] なお、第 1および第 2の光信号は、互いに異なる波長帯に設定されても、その光ス ベクトルの全部または一部が同じ波長帯に設定されてもよい。
[0083] また、本実施形態では、第 1および第 2の光信号を多重伝送する構成としたが、当 該多重数は、 2以外のいずれの複数であってもよい。
[0084] さらに、第 2の実施形態で用いる多モード光源は、図 5または図 6に示すような多モ ード光源であってもよい。
[0085] 以上説明したように、第 2の実施形態によれば、複数の送受信回路対のそれぞれ において、発振モード光成分間の光強度または光位相の相関関係を変更した際に 生じる雑音を利用し、当該発振モード光成分間の光強度または光位相の変更パター ンを「秘密鍵」として、送信者と正規受信者との間で共有する。これにより、互いの干 渉、情報漏洩を著しく抑圧し、秘匿性の高い光伝送装置を容易に提供することがで きる。
[0086] (第 3の実施形態)
図 8は、本発明の第 3の実施形態に係る暗号通信対応の光伝送装置 200の構成を 示す図である。図 9A〜9Cは、図 8に示す光伝送装置 200の主要部における光(光 信号)のスペクトルを表す模式図である。
[0087] 図 8において、本実施形態の光伝送装置 200は、多モード光源 201と、光情報変 調部 202と、光分離部 203と、主光伝送路 204と、副光伝送路 205と、光強度検出部 206とを備える。多モード光源 201と、光情報変調部 202と、光分離部 203とによって 、光送信回路 2001が構成される。光強度検出部 206によって、光受信回路 2002が 構成される。なお、図 8では、本実施形態の動作説明のため、傍受者光強度検出部 2062を構成要素とする傍受者光受信回路 2003が併せて図示されている。
[0088] 次に、図 8に示す本実施形態の動作を説明する。多モード光源 201は、図 9Aに示 すような所定の波長帯域に亘り複数の(縦)モード(図 9Aでは 8つ: ml〜m8)で発振 する光源で構成され、このような光を出力する。このような多モード発振光源の具体 例は、 LED (Light Emission Diode)や、 FP (Fabry -Perot)レーザ、 RC (Res onant Cabity)— LED^ VCSEL (Vertical Cabity Surface Emitting Lase r) , SLD (Super Luminescent Diode)である。これらの出力光スペクトルにおい て、個々の発振モード光における光強度および光位相の両パラメータは、高速に変 動している。これらの光源において、個々の発振モード光における光強度変動成分 および光位相変動成分は、他の発振モード光における光強度変動成分および光位 相変動成分と相関しながらも、多モード光源 201から出力される光の総光強度は、略 一定値を示す性質を有して 、る。
[0089] 光情報変調部 202は、伝送すべき情報信号 Diで、多モード光源 201から出力され る光を変調して、光信号として出力する。
[0090] 光分離部 203は、光情報変調部 202から出力される光信号を入力し、複数の発振 モード光の内、所定のモード光のみを抽出して分離し、副光伝送路 205に送出する と共に、残りの光信号成分を主光伝送路 204に送出する。例えば、図 9Bに示すよう に、光分離部 203は、 6番目の発振モード光 (m6)を抽出して分離し副光伝送路 20 5に送出する。さらに、図 9Cに示すように、光分離部 203は、残りの光信号成分 (ml 〜m5、 m7、 m8)を抽出して分離し主光伝送路 204に送出する。
[0091] 光強度検出部 206は、主光伝送路 204を介して伝送される光信号成分と、副光伝 送路 205を介して伝送される所定の発振モード光とを合成した後、自乗検波して、総 光強度の変調成分を検出し、元の情報信号 Diを再生する。
[0092] 次に、本実施形態において、第三者 (傍受者光受信回路 2003)による盗聴が不可 能である根拠にっ 、て説明する。
[0093] ここで、傍受者光受信回路 2003は、副光伝送路 205を介して伝搬される所定の発 振モード光を受信することなぐ主光伝送路 204を伝搬する光信号の一部を分岐して 、傍受者光強度検出部 2062に入力したと想定する。傍受者光強度検出部 2062は 、入力光信号を電気信号に変換し、出力する。傍受者光強度検出部 2062は、副光 伝送路 205を介して別途伝搬される所定の発振モード光を受信しな 、として 、るの で、当該発振モード光を除いた残りの光信号成分(図 9C)のみを自乗検波することと なる。即ち、傍受者光強度検出部 2062は、光強度変動成分および光位相変動成分 が互!、に相関性を有しながら発振する多モード光の内、一部の発振モード光を欠如 した状態で、総光強度の変調成分を検出することとなる。したがって、各発振モード 光の変動成分が検出信号に現れることとなり、モードパーティションノイズが発生する 。よって、盗聴者の受信信号品質 (SNR:信号対雑音電力比)は、正規受信者 (光受 信回路 2002)に比較して、劣化することとなる。ゆえに、高い秘匿性を確保すること ができる。
[0094] なお、上記第 3の実施形態では、六つのモードが利用されることとした力 最低限二 つ以上のモードが利用されればよい。
[0095] なお、上記第 1の実施形態では、光分離部 203で一つの発振モード光(図 9Bでは 、 m6)が分離、抽出されることとしたが、二つ以上の発振モード光が分離、抽出され てもよい。
[0096] (第 1の変形例)
次に、第 3の実施形態に係る第 1の変形例について説明する。図 10は、第 3の実施 形態に関する第 1の変形例に係る光伝送装置 200aの構成を示す図である。図 10に おいて、光伝送装置 200aの光送信回路 2001aは、図 8に示す多モード光源 201を 、多モード光源 201aに置き換えた構成を有する。光伝送装置 200aにおけるそれ以 外の構成は、図 1の場合と同様である。多モード光源 201aは、第 1の光源 3011と、 第 2の光源 3012と、第 3の光源 3013と、光モード合成部 302と、符号発生部 303と を含む。
[0097] 本構成において、第 1〜第 3の光源 3011〜3013は、それぞれ異なる波長を有し、 かつ所定の関係で互いに位相同期された単一モード光を発振し、出力する。光モー ド合成部 302は、第 1〜第 3の光源 3011〜3013からの出力光を合成し、出力する。 符号発生部 303は、第 1〜第 3の光源 3011〜3013に対応して、それぞれ略ランダ ムに変化する所定の符号列 C1〜C3を発生し、光モード合成部 302から出力される 総光強度が一定となるように、第 1〜第 3の光源 3011〜3013の光強度を略ランダム に変調する。これにより、光変動成分においても互いに所定の同期関係にある多モ 一ド光を人為的に作成し、いずれかの単一モード光が欠如した際に、上記モードパ ーテイシヨンノイズに準じた雑音を発生させることができる。
[0098] また、第 1の変形例では、位相同期された単一モード光を複数作成し、それぞれ独 立に光強度変調する構成としたが、光強度変動を同期させ、あるいは光強度を一定 値に安定化させ、それぞれ独立に略ランダムな光位相変調を施す構成としても、ほ ぼ同様の効果を有する。この場合、具体的には、第 1〜第 3の光源 3011〜3013とし て、それぞれ異なる波長を有し、かつ所定の関係で互いに光強度が同期された単一 モード光が光位相変調された状態で発振し出力する光源を用いる。符号発生部 303 は、第 1〜第 3の光源 3011〜3013に対応して、それぞれ略ランダムに変化する所 定の符号列 C1〜C3を発生し、光モード合成部 302から出力される総光強度が一定 となるように、第 1〜第 3の光源 3011〜3013の光位相を略ランダムに変調する。これ により、光変動成分にぉ 、ても互 、に所定の同期関係にある多モード光を人為的に 作成し、いずれかの単一モード光が欠如した際に、上記モードパーティションノイズ に準じた雑音を発生させることができる。
[0099] なお、第 1の変形例において、三つの光源を用いることとした力 二つまたは四つ 以上の光源を用いてもよい。この場合も、符号発生部 303は、各光源に対応して、そ れぞれ略ランダムに変化する所定の符号列を発生し、光モード合成部 302から出力 される総光強度が一定となるように、各光源の光強度を略ランダムに変調すればよい 。これにより、光変動成分においても互いに所定の同期関係にある多モード光を人 為的に作成し、いずれかの単一モード光が欠如した際に、上記モードパーティション ノイズに準じた雑音を発生させることができる。
[0100] (第 2の変形例)
次に、第 1の実施形態に係る第 2の変形例について説明する。図 11は、第 3の実施 形態に関する第 2の変形例に係る光伝送装置 200bの構成を示す図である。図 11に おいて、光伝送装置 200bの光送信回路 2001bは、図 8に示す多モード光源 201を 、多モード光源 20 lbに置き換えた構成を有する。光伝送装置 200bにおけるそれ以 外の構成は、図 8の場合と同様である。多モード光源 201bは、第 1の光源 3011と、 第 2の光源 3012と、第 3の光源 3013と、光モード合成部 302と、第 1の符号発生部 6 001と、第 2の符号発生部 6002と、第 1の光位相変調部 6011と、第 2の光位相変調 部 6012と、第 3の光位相変調部 6013とを含む。
[0101] 本構成において、第 1〜第 3の光源 3011〜3013は、それぞれ互いに異なる波長 の単一モード光を発振し、出力する。第 1〜第 3の光位相変調部 6011〜6013は、 第 1〜第 3の光源 3011〜3013に対応して設けられ、第 1〜第 3の光源 3011〜301 3からの出力光の位相をそれぞれ変調し、出力する。光モード合成部 302は、第 1〜 第 3の光位相変調部 6011〜6013から出力された光信号を合成し、出力する。第 1 の符号発生部 6001は、第 1〜第 3の光源 3011〜3013に対応して、それぞれ略ラ ンダムに変化する所定の符号列 C1〜C3を発生し、当該符号列に基づいて第 1〜第 3の光源 3011〜3013からの出力光強度を略ランダムとなるように変調する。第 2の 符号発生部 6002は、第 1〜第 3の光位相変調部 6011〜6013に対応して、それぞ れ略ランダムに変化する所定の符号列 D 1〜D3を発生し、当該符号列に基づ!/、て 第 1〜第 3の光位相変調部 6011〜6012からの出力光の位相を位相変化が同期す るように変調し、かつ光モード合成部 302からの総出力光強度が一定となるようにす る。第 1〜第 3の光位相変調部 6011〜6013および第 2の符号発生部は、第 1〜第 3 の光源 3011〜3013から出力される光の位相変化を同期させる光位相同期部とい える。また、第 1の符号発生部 6001は、光モード合成部 302から出力される光の総 強度を一定とし、かつ第 1〜第 3の光源 3011〜3013から出力される光の強度を略ラ ンダムに変調するための変調信号である符号を各光源に供給する符号発生部であ るといえる。このように、第 2の変形例において、光変動において互いに同期関係に ある多モード光を人為的に作成し、いずれかの単一モード光が欠如した場合に、上 記モードパーティションノイズに準じた雑音を発生させることができる。
[0102] また、本実施形態では、複数の単一モード光を光強度変調した後、光位相変調す る構成としたが、光位相変調後、光強度変調する構成としても、ほぼ同様の効果を有 する。この場合、具体的には、光伝送装置は、互いに異なる波長の光を位相変調し て出力する複数の光源と、複数の光源力 出力される光を強度変調する複数の光強 度変調部と、複数の光強度変調部から出力される光信号を合成する光モード合成部 と、光モード合成部から出力される光の総強度を一定とし、かつ複数の光源から出力 される光の位相を略ランダムに変調するための変調信号である符号を各光源に入力 する第 1の符号発生部と、複数の光強度変調部からの出力光の強度変化を同期させ るための符号を各光強度変調部に入力する第 2の符号発生部とを備えるとよい。これ により、光強度変調部と第 2の符号発生部とが、複数の光源力 出力される光の強度 変化を同期させるための光強度同期部として機能することとなる。このような構成によ つて、光変動において互いに同期関係にある多モード光を人為的に作成し、いずれ かの単一モード光が欠如した場合に、上記モードパーティションノイズに準じた雑音 を発生させることができる。
[0103] なお、第 2の変形例において、三つの光源を用いることとした力 二つまたは四つ 以上の光源を用いてもよい。この場合、光源の数に応じて、光位相変調部が設けら れなければならない。また、第 1の符号発生部 6001は、各光源に対応して、それぞ れ略ランダムに変化する所定の符号列を発生し、当該符号列に基づいて各光源らの 出力光強度を変調する。第 2の符号発生部 6002は、各光位相変調部に対応して、 それぞれ略ランダムに変化する所定の符号列を発生し、当該符号列に基づいて各 光位相変調部からの出力光の位相を変調し、かつ光モード合成部 302からの総出 力光強度が一定となるようにする。これにより、光変動において互いに同期関係にあ る多モード光を人為的に作成し、いずれかの単一モード光が欠如した場合に、上記 モードパーティションノイズに準じた雑音を発生させることができる。
[0104] 以上説明したように、第 1の実施形態によれば、多モード発振する光から所定の発 振モード光を除去した際に生じる雑音を利用し、当該所定の発振モード光を「秘密鍵 」として、送信者と正規受信者との間で共有することにより、第三者による盗聴を著しく 妨げ、秘匿性の高!、光伝送装置を提供することができる。
[0105] なお、ここでは、図 9Bに示すように、ある発振モード光の全電力を抽出することとし たが、ある発振モード光の一部電力のみが抽出されて、残りの光信号成分が光受信 回路に送信されても良い。 [0106] なお、図 12に示すように、光分離部 203で抽出された発振モード光に準じた光が、 何らかの手段によって、副光伝送路 205を介することなく光強度検出部 206に入力さ れてもよい。
[0107] (第 4の実施形態)
図 13は、本発明の第 4の実施形態に係る暗号通信対応の光伝送装置 500の構成 を示す図である。図 13において、本実施形態の光伝送装置 500は、多モード光源 2 01と、光情報変調部 202と、光分離部 203と、主光伝送路 204と、副光伝送路 205と 、光強度検出部 206と、局発光発生部 507とを備える。第 2の実施形態に係る光伝 送装置 500は、図 8の構成に対して、局発光発生部 507を新たに備える点と、接続 関係とが異なる。多モード光源 201と、光情報変調部 202と、光分離部 203とによつ て、光送信回路 2001が構成される。光強度検出部 206と、局発光発生部 507とによ つて、光受信回路 7002が構成される。また、図 13では、図 8と同様に、本実施形態 の動作説明のため、傍受者光強度検出部 2062を構成要素とする傍受者光受信回 路 2003力 併せて図示されている。
[0108] 次に、図 13に示す本実施形態の動作を説明する。本実施形態の構成は、前述の 第 1の実施形態(図 8)に準ずるため、同一の動作を行うブロックに関しては、同一の 番号を付して、その説明を省略し、相違点のみを以下に説明する。
[0109] 本実施形態の光伝送装置 500において、局発光発生部 507は、副光伝送路 205を 介して伝送される所定の発振モード光を入力し、光強度変動情報および光位相変動 情報に関して同一の情報を有する局発光を生成し、出力する。具体的には、局発光 発生部 507は、半導体レーザに所定の発振モード光を注入する光注入同期の構成 によって、所定の発振モード光と同じ物理的性質を有する局発光 (所定の発振モー ド光に準じた光という)を生成する。光強度検出部 206は、主光伝送路 204を介して 伝送される光信号成分と、局発光発生部 507から出力される局発光を合成後、自乗 検波することで、総光強度の変調成分を検出し、元の情報信号 Diを再生する。
[0110] 本実施形態において、傍受者光受信回路 2003を用いた盗聴を行った場合、図 8と 同様、傍受者光強度検出部 2062には、所定の発振モード光を除いた残りの光信号 成分のみが入力されるため、モードパーティションノイズが発生し、当該受信信号品 質は、光受信回路 7002に比べて劣化し、高い秘匿性を確保することが可能である。
[0111] 以上説明したように、第 4の実施形態によれば、多モード発振する光から所定の発 振モード光を除去した際に生じる雑音を利用し、当該所定の発振モード光と物理的 性質を同じくする光を「秘密鍵」として、送信者と正規受信者の間で共有することによ り、第三者による盗聴を著しく妨げ、秘匿性の高い光伝送装置を容易に提供すること ができる。
[0112] なお、第 4の実施形態において、多モード光源 201は、第 1の変形例で示したように 、複数の単一モードの光源力もなる多モード光源 201a (図 10参照)に置き換えられ てもよ 、し、複数の単一モードの光源および光位相変調部力もなる多モード光源 20 lb (図 11参照)に置き換えられてもよ!/、。
[0113] (第 5の実施形態)
図 14は、本発明の第 5の実施形態に係る暗号通信対応の光伝送装置 700の構成 を示す図である。図 14において、本実施形態の光伝送装置 700は、多モード光源 2 01と、光情報変調部 202と、光分離部 203と、主光伝送路 204と、光強度検出部 20 6と、副伝送路 705と、局発光発生部 707と、光検出部 708とを備える。第 5の実施形 態に係る光伝送装置 700は、図 8の構成に対して、副光伝送路 205に代えて、副伝 送路 705を備える点、局発光発生部 707と光検出部 708とを新たに備える点、およ び接続関係が異なる。多モード光源 201と、光情報変調部 202と、光分離部 203と、 光検出部 708とによって、光送信回路 8001が構成される。光強度検出部 206と、局 発光発生部 707とによって、光受信回路 8002が構成される。また、図 14では、図 8と 同様に、本実施形態の動作説明のため、傍受者光強度検出部 2062を構成要素と する傍受者光受信回路 2003が、併せて図示されている。
[0114] 次に、図 14に示す本実施形態の動作を説明する。本実施形態の構成は、前述の 第 1の実施形態(図 8)に準ずるため、同一の動作を行うブロックに関しては、同一の 番号を付して、その説明を省略し、相違点のみを以下に説明する。
[0115] 本実施形態の光伝送装置 700において、光検出部 708は、光分離部 203によって 分離、抽出された所定の発振モード光を検波し、当該光強度変動情報および光位 相変動情報を検出し、副伝送路 705に送出する。局発光発生部 707は、副伝送路 7 05を介して伝送される光強度変動情報および光位相変動情報に基づ 、て、当該情 報を備えた局発光 (所定の発振モード光に準じた光)を生成し、出力する。光強度検 出部 206は、主光伝送路 204を介して伝送される光信号成分と、局発光発生部 707 力 出力される局発光を合成後、自乗検波することで、総光強度の変調成分を検出 し、元の情報信号 Diを再生する。
[0116] 本実施形態において、傍受者光受信回路 2003を用いた盗聴を行った場合、図 8と 同様、傍受者光強度検出部 2062には、所定の発振モード光を除いた残りの光信号 成分のみが入力されるため、モードパーティションノイズが発生し、当該受信信号品 質は、光受信回路 8002に比べて劣化し、高い秘匿性を確保することが可能である。
[0117] 以上説明したように、第 5の実施形態によれば、多モード発振する光から所定の発 振モード光を除去した際に生じる雑音を利用し、当該所定の発振モード光と物理的 性質を同じくする光を「秘密鍵」として、送信者と正規受信者の間で共有することによ り、第三者による盗聴を著しく妨げ、秘匿性の高い光伝送装置を容易に提供すること ができる。
[0118] なお、第 5の実施形態において、多モード光源 201は、第 1の変形例で示したように 、複数の単一モードの光源力もなる多モード光源 201a (図 10参照)に置き換えられ てもよ 、し、複数の単一モードの光源および光位相変調部力もなる多モード光源 20 lb (図 11参照)に置き換えられてもよ!/、。
[0119] (第 6の実施形態)
図 15は、本発明の第 6の実施形態に係る暗号通信対応の光伝送装置 800の構成 を示す図である。図 15において、本実施形態の光伝送装置 800は、図 13中の光送 信回路 2001および光受信回路 7002を、複数組(図 15では 2組)備えた構成である 。光伝送装置 800は、第 1および第 2の多モード光源 201と、第 1および第 2の光情 報変調部 202と、第 1および第 2の光分離部 203と、主光伝送路 204と、第 1および 第 2の副光伝送路 205と、第 1および第 2の光強度検出部 206と、第 1および第 2の 局発光発生部 507と、主光合成部 709と、主光分岐部 710とを備える。主光合成部 7 09と、主光分岐部 710とを新たに備える点が図 13の構成と異なる。なお、第 1 (第 2) の多モード光源 201と、第 1 (第 2)の光情報変調部 202と、第 1 (第 2)の光分離部 20 3とによって、第 1 (第 2)の光送信回路 2001が構成される。第 1 (第 2)の光強度検出 部 206と、第 1 (第 2)の局発光発生部 507とによって、第 1 (第 2)の光受信回路 7002 が構成される。
[0120] 次に、図 15に示す本実施形態の動作を説明する。本実施形態の構成は、前述の 第 4の実施形態(図 13)に準ずるため、同一の動作を行うブロックに関しては、同一の 番号を付して、その説明を省略し、相違点のみを以下に説明する。
[0121] 本実施形態の光伝送装置 800は、光送信回路 2001および光受信回路 7002を 2 組備える。第 1および第 2の光情報変調部 202は、第 1および第 2の情報信号 (D1お よび D2)で、対応する第 1および第 2の多モード光源 201から出力される光を変調し て、第 1および第 2の光信号としてそれぞれ出力する。第 1および第 2の光分離部 20 3は、対応する第 1および第 2の光情報変調部 202から出力される第 1および第 2の 光信号を入力し、当該複数の発振モード光の内、それぞれ所定のモード光を分離、 抽出して、第 1および第 2の副光伝送路 205に送出すると共に、残りの光信号成分を 主光合成部 709に出力する。主光合成部 709は、第 1および第 2の光分離部 203か ら出力される光信号成分を合成して、主光伝送路 204に送出する。主光分岐部 710 は、主光伝送路 204を介して伝送される光信号成分を分岐して、第 1および第 2の光 強度検出部 206にそれぞれ入力する。第 1および第 2の光強度検出部 206は、主光 分岐部 710から出力される光信号成分と、対応する第 1および第 2の局発光発生部 5 07から出力される所定の発振モード光を合成後、自乗検波して、総光強度の変調成 分を検出し、第 1および第 2の情報信号 (D1および D2)をそれぞれ再生する。
[0122] さらに、第 1および第 2の光情報変調部 202から出力される第 1および第 2の光信号 、ならびに第 1および第 2の光分離部 203によって抽出される所定の発振モード光の 各波長設定について説明する。第 1および第 2の光信号は、互いに異なる波長帯に 設定されていてもよいし、その光スペクトルの全部または一部が同じ波長帯に設定さ れていてもよい。
[0123] 第 1および第 2の光信号が、互いに異なる波長帯に設定される場合、第 1および第 2の光分離部 203によって抽出される所定の発振モード光は、複数のモードの内、い ずれのモードであってもよい。第 1および第 2の光信号が、互いに異なる波長帯に設 定される場合、副光伝送路 205を共通化することができる。図 16は、第 1および第 2 の光信号が、互いに異なる波長帯に設定される場合に副光伝送路 205を共通化し たときの光伝送装置 800aの構成を示す図である。図 16に示すように、光伝送装置 8 OOaは、副光合成部 809および副光分岐部 810を用いて、所定の発振モード光を波 長多重 Z分離することで、一つの副光伝送路 205で所定の発振モード光を伝送する ことができる。
[0124] また、第 1および第 2の光信号の光スペクトルの全部または一部が同じ波長帯に設 定される場合で、かつ第 1および第 2の光信号のそれぞれから抽出される所定の発 振モード光が同じ波長帯である場合には、光伝送装置は、別々の副光伝送路 205を 介して所定の発振モード光をそれぞれ伝送する。一方、第 1および第 2の光信号の 光スペクトルの全部または一部が同じ波長帯に設定される場合で、かつ第 1および第 2の光信号のそれぞれから抽出される所定の発振モード光が互いに異なる波長帯で ある場合には、光伝送装置は、別々の副光伝送路 205を介して伝送する力、もしくは 、図 16に示すように、一つの副光伝送路 205を介して伝送する。
[0125] 以上説明したように、第 6の実施形態によれば、複数の送受信回路対において、そ れぞれ、多モード発振する光から所定の発振モード光を除去した際に生じる雑音を 利用し、当該所定の発振モード光と物理的性質を同じくする光を「秘密鍵」として、送 信者と正規受信者の間で共有することにより、互いの干渉、情報漏洩を著しく抑圧し 、秘匿性の高!ヽ光伝送装置を容易に提供することができる。
[0126] なお、図 8に示す構成においても、複数対の光送信回路と光受信回路とを備えるよ うにして、各所定の発振モード光および Zまたは各所定の発振モード光を抽出した 残りの光信号を合成 Z分岐して伝送するようにしてもよい。また、図 14に示す構成に おいても、複数対の光送信回路と光受信回路とを備えるようにして、各光検出部が出 力する検出信号を合成 z分岐して伝送するようにしてもょ ヽ。
[0127] なお、第 6の実施形態において、第 1および/または第 2の多モード光源 201は、 第 1の変形例で示したように、複数の単一モードの光源力もなる多モード光源 201a ( 図 10参照)に置き換えられてもよいし、複数の単一モードの光源および光位相変調 部からなる多モード光源 201b (図 10参照)に置き換えられてもよい。 [0128] (第 7の実施形態)
図 17は、本発明の第 7の実施形態に係る暗号通信対応の光伝送装置 800cの構 成を示す図である。図 17において、図 1に示す第 1の実施形態と同様の動作を行う ブロックに関しては、同一の番号を付して、説明を省略する。また、図 8に示す第 3の 実施形態と同様の動作を行うブロックに関しては、同一の番号を付して、説明を省略 する。図 17において、光伝送装置 800cは、光送信回路 9001と、光受信回路 9002 とを備える。光送信回路 9001は、多モード光源 101と、光情報変調部 102と、モード 符号化部 103と、光分離部 203とを含む。光受信回路 9002と、モード復号化部 900 3と、光強度検出部 9004とを含む。
[0129] モード符号ィ匕部 103からは、発振モード光のそれぞれに対して、一意な所定の符 号化操作が施された光信号が出力される。光分離部は、モード符号化部 103から出 力される光信号の内、すくとも 1つの発振モード光を抽出して、副光伝送路 205に送 出すると共に、残りの光信号成分を主光伝送路 204に送出する。モード復号化部 90 03は、主光伝送路 204からの光信号と副光伝送路 205からの光信号とを合成して、 モード符号ィ匕部 103での第 1の操作と逆の関係にある復号ィ匕操作 (第 2の操作)を施 した光を出力する。光強度検出部 9004は、モード復号ィ匕部 9003から出力される光 信号を自乗検波して、総光強度の変化を検出することによって変調成分を検出し、 元の情報信号 Diを再生する。
[0130] このように、第 7の実施形態では、光送信回路 9001は、所定の操作として、多モー ド発振光における複数の発振モード光の群に対して所定の符号に対応した操作をモ ード符号化部 103によって施し、所定の発振モード光を光分離部 203によって分離 して副光伝送路 205に送出すると共に、所定の発振モード光以外の残りの光信号成 分を主光伝送路 204に送出する。光受信回路 9002は、主光伝送路 204を介して伝 送される光信号成分と、副光伝送路 205を介して伝送される所定の発振モード光と をモード復号化部 9003によって合成し、当該発振モード光の群に対して当該所定 の符号に対応した操作と逆の操作をモード復号化部 9003によって施して、当該所 定の操作を施される前の光信号を復元する。このように、第 1の実施形態と第 3の実 施形態とを組み合わせることによつても、秘匿性に優れた光通信装置を実現すること ができる。
[0131] なお、第 7の実施形態においても、上述したあらゆる変形例を適用することができる ことは言うまでもない。
[0132] (第 8の実施形態)
図 18は、本発明の第 8の実施形態に係る暗号通信対応の光伝送装置 800bの構 成を示す図である。図 18において、図 1に示す第 1の実施形態と同様の動作を行う ブロックに関しては、同一の番号を付して、説明を省略する。また、図 8に示す第 3の 実施形態と同様の動作を行うブロックに関しては、同一の番号を付して、説明を省略 する。図 18において、光伝送装置 800bは、光送信回路 9005と、光受信回路 9006 とを備える。光送信回路 9005は、多モード光源 101と、光情報変調部 102fと、第 1 のモード符号ィ匕部 103fと、第 2のモード符号ィ匕部 103gとを含む。光受信回路 9006 は、光強度検出部 9007を含む。
[0133] 光情報変調部 102fは、伝送すべき情報信号 Diで、多モード光源 101から出力さ れる光を変調して、 2分岐して出力する。
[0134] 光情報変調部 102fからの一方の光信号は、第 1のモード符号ィ匕部 103fに入力さ れる。第 1のモード符号ィ匕部 103fは、光情報変調部 102から出力される光信号を入 力し、所定の源符号 Kiに基づいて、スペクトル処理として、当該発振モード光のそれ ぞれに対して一意な所定の符号ィ匕操作を施した後、主光伝送路 204に出力する。
[0135] 光情報変調部 102fからの他方の光信号は、第 2のモード符号ィ匕部 103gに入力さ れる。第 2のモード符号ィ匕部 103fは、所定の源符号 Kiに基づいて、スペクトル処理と して、当該発振モード光のそれぞれに対して一意であり、かつ第 1のモード符号ィ匕部 103fで施された所定の符号化操作と逆の関係 (相補的な関係)にある符号化操作を 施した後、副光伝送路 205に出力する。
[0136] 光強度検出部 9007は、主光伝送路 204を伝送された光信号と副光伝送路 205を 伝送された光信号とを合成して、自乗検波して、総光強度の変調成分を検出し、元 の情報信号 Diを再生する。
[0137] このように、第 8の実施形態において、光送信回路 9005は、所定の操作として、多 モード発振光における複数の発振モード光の群に対して所定の符号に対応した操 作を第 1のモード符号ィ匕部 103fによって施し主光伝送路 204に送出する。一方、第 2のモード符号ィ匕部 103gは、多モード発振光における複数の発振モード光の群に 対して当該所定の符号に対応した操作と逆の操作を施して副光伝送路 205に送出 する。光受信回路 9006は、主光伝送路 204を介して伝送される光信号と副光伝送 路 205を介して伝送される光信号とを合成することによって、所定の操作を施される 前の光信号を復元する。このように、互いに逆の関係にある発振モード光を伝送して 、合成することによつても、秘匿性の優れた光通信装置を実現することができる。
[0138] なお、第 8の実施形態においても、上述したあらゆる変形例を適用することができる ことは言うまでもない。
[0139] 以上、本発明を詳細に説明してきたが、前述の説明はあらゆる点において本発明 の例示にすぎず、その範囲を限定しょうとするものではない。本発明の範囲を逸脱す ることなく種々の改良や変形を行うことができることは言うまでもな 、。
産業上の利用可能性
[0140] 本発明に係る光伝送装置は、物理的性質(自然現象)として光が備えて!/ヽる予測不 能の雑音成分を利用して、計算機処理による解析'解読が不可能な暗号通信を実現 することができ、通信分野等に有用である。

Claims

請求の範囲
[1] 伝送すべき情報信号で変調された多モードの光信号を伝送するための多モード光 伝送装置であって、
多モード発振光を前記情報信号で変調し、前記多モード発振光における少なくとも
1つの発振モード光に対して、所定の操作を施した後、光伝送路に送出する光送信 回路と、
前記光伝送路を介して伝送される光信号を受信し、前記所定の操作と逆の操作を 施すことによって、前記所定の操作を施される前の光信号を復元し、復元した光信号 を電気信号に変換して、前記情報信号を再生する光受信回路とを備えることを特徴 とする、多モード光伝送装置。
[2] 前記光送信回路は、前記所定の操作として、前記多モード発振光における複数の 発振モード光の群に対して所定の符号に対応した操作を施して、前記光伝送路に送 出し、
前記光受信回路は、前記光伝送路を介して伝送される光を受信し、前記発振モー ド光の群に対して前記所定の符号に対応した操作と逆の操作を施すことによって前 記所定の操作を施される前の光信号を復元し、前記発振モード光の群の総光強度 変化を検出し、電気信号に変換して、前記情報信号を再生することを特徴とする、請 求項 1に記載の多モード光伝送装置。
[3] 前記光送信回路は、前記所定の操作として、前記多モード発振光から所定の発振 モード光を抽出して、前記光伝送路に送出し、
前記光受信回路は、前記光伝送路を介して伝送される光を受信し、抽出された前 記所定の発振モード光と同一の光もしくは前記所定の発振モード光に準じた光とを 合成した後、自乗検波して、前記情報信号を再生することを特徴とする、請求項 1〖こ 記載の光伝送装置。
[4] 前記光送信回路は、
多モード発振する光を出力する多モード光源と、
前記多モード光源から出力される光を情報信号で変調し、変調された光信号を出 力する光情報変調部と、 前記光情報変調部から出力される前記光信号を入力し、前記光信号の複数の発 振モード光の群に対して、前記所定の符号に対応した第 1の操作を施し、前記光伝 送路に送出するモード符号ィ匕部とを含み、
前記光受信回路は、
前記光伝送路を介して伝送される光信号を入力し、前記光信号の複数の発振モ ード光の群に対して、前記所定の符号に対応した前記第 1の操作と逆の関係にある 第 2の操作を施し、出力するモード復号化部と、
前記モード復号化部から出力される光信号の総光強度変化を検出し、電気信号 に変換して、前記情報信号を再生する光強度検出部とを含む、請求項 2に記載の多 モード光伝送装置。
[5] 前記モード符号化部における前記第 1の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、前記所定の符号に対応した所定量の強度変化を与える操 作であり、
前記モード復号化部における前記第 2の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、前記所定の符号に対応した前記所定量の強度変化と逆の 極性を有する強度変化を与える操作であることを特徴とする、請求項 4に記載の多モ ード光伝送装置。
[6] 前記モード符号化部における前記第 1の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、前記所定の符号に対応した所定量の位相変化を与える操 作であり、
前記モード復号化部における前記第 2の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、前記所定の符号に対応した前記所定量の位相変化と逆の 極性を有する位相変化を与える操作であることを特徴とする、請求項 4に記載の多モ ード光伝送装置。
[7] 前記モード符号化部における前記第 1の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、前記所定の符号に対応した所定量の偏向変化を与える操 作であり、
前記モード復号化部における前記第 2の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、前記所定の符号に対応した前記所定量の偏向変化と逆の 極性を有する偏向変化を与える操作であることを特徴とする、請求項 4に記載の多モ ード光伝送装置。
[8] 前記モード符号化部における前記第 1の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、前記所定の符号に対応した所定量の周波数変化を与える 操作であり、
前記モード復号化部における前記第 2の操作は、入力光信号の複数の発振モード 光のそれぞれに対して、前記所定の符号に対応した前記所定量の周波数変化と逆 の極性を有する周波数変化を与える操作であることを特徴とする、請求項 4に記載の 多モード光伝送装置。
[9] 複数対の前記光送信回路と前記光受信回路とを有し、
各前記光送信回路から出力される光信号成分を合成し、前記光伝送路に送出する 光合波部と、
前記光伝送路を介して伝送される光信号成分を分岐し、対応する前記光受信回路 に出力する光分岐部とを備え、
前記光送信回路と前記光受信回路との各対は、それぞれ、複数の発振モード光の 群に対して、互いに異なる所定の符号に対応した第 1の操作および第 2の操作を施 すことを特徴とする、請求項 4に記載の多モード光伝送装置。
[10] 前記光送信回路は、
多モード発振する光を出力する多モード光源と、
前記多モード光源から出力される光を前記情報信号で変調し、光信号を出力す る光情報変調部と、
前記光情報変調部から出力される前記光信号を入力し、前記光信号における複 数の発振モード光の内、前記所定の発振モード光を分離して副光伝送路に送出す ると共に、前記光信号における前記所定の発振モード光以外の残りの光信号成分を 主光伝送路に送出する光分離部とを含み、
前記光受信回路は、
前記主光伝送路を介して伝送される前記光信号成分と、前記副光伝送路を介し て伝送される所定の発振モード光とを合成し、自乗検波して、前記情報信号を再生 する光強度検出部を含む、請求項 3に記載の光伝送装置。
[11] さらに、複数対の前記光送信回路と前記光受信回路と、
各前記光送信回路から出力される前記所定の発振モード光を合成し、前記副光伝 送路に送出する副光合波部と、
前記副光伝送路を介して伝送される前記所定の発振モード光を分岐し、対応する 光受信回路に出力する副光分岐部とを備える、請求項 10に記載の光伝送装置。
[12] 前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 力 互いに異なる波長を有することを特徴とする、請求項 11に記載の光伝送装置。
[13] さらに、複数対の前記光送信回路と前記光受信回路と、
各前記光送信回路から出力される前記所定の発振モード光以外の光信号成分を 合成し、前記主光伝送路に送出する主光合波部と、
前記主光伝送路を介して伝送される前記所定の発振モード光以外の光信号成分 を分岐し、対応する前記光受信回路に出力する主光分岐部と、
各前記光送信回路から出力される前記所定の発振モード光を合成し、前記副光伝 送路に送出する副光合波部と、
前記副光伝送路を介して伝送される前記所定の発振モード光を分岐し、対応する 光受信回路に出力する副光分岐部とを備える、請求項 10に記載の光伝送装置。
[14] 前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 以外の光信号成分が、互いに同じ波長成分有し、
前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 力 互いに異なる波長を有することを特徴とする、請求項 13に記載の光伝送装置。
[15] 前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 以外の光信号成分が、互いに異なる波長を有することを特徴とする、請求項 13に記 載の光伝送装置。
[16] 前記光送信回路は、
多モード発振する光を出力する多モード光源と、
前記多モード光源から出力される光を前記情報信号で変調し、光信号を出力す る光情報変調部と、
前記光情報変調部から出力される前記光信号を入力し、前記光信号における複 数の発振モード光の内、前記所定の発振モード光を分離して副光伝送路に送出す ると共に、前記光信号における前記所定の発振モード光以外の残りの光信号成分を 主光伝送路に送出する光分離部とを含み、
前記光受信回路は、
前記副光伝送路を介して伝送される前記所定の発振モード光を入力し、前記所 定の発振モード光に準じた光として、当該発振モード光と物理的性質を同じくする局 部発振光を発生する局発光発生部と、
前記主光伝送路を介して伝送される前記光信号成分と、前記局発光発生部から 出力される前記局部発振光とを合成し、自乗検波して、前記情報信号を再生する光 強度検出部とを含む、請求項 3に記載の光伝送装置。
[17] さらに、複数対の前記光送信回路と前記光受信回路と、
各前記光送信回路から出力される前記所定の発振モード光を合成し、前記副光伝 送路に送出する副光合波部と、
前記副光伝送路を介して伝送される前記所定の発振モード光を分岐し、対応する 光受信回路に出力する副光分岐部とを備える、請求項 16に記載の光伝送装置。
[18] 前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 力 互いに異なる波長を有することを特徴とする、請求項 17に記載の光伝送装置。
[19] さらに、複数対の前記光送信回路と前記光受信回路と、
各前記光送信回路から出力される前記所定の発振モード光以外の光信号成分を 合成し、前記主光伝送路に送出する主光合波部と、
前記主光伝送路を介して伝送される前記所定の発振モード光以外の光信号成分 を分岐し、対応する前記光受信回路に出力する主光分岐部と、
各前記光送信回路から出力される前記所定の発振モード光を合成し、前記副光伝 送路に送出する副光合波部と、
前記副光伝送路を介して伝送される前記所定の発振モード光を分岐し、対応する 光受信回路に出力する副光分岐部とを備える、請求項 16に記載の光伝送装置。
[20] 前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 以外の光信号成分が、互いに同じ波長成分有し、
前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 力 互いに異なる波長を有することを特徴とする、請求項 19に記載の光伝送装置。
[21] 前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 以外の光信号成分が、互いに異なる波長を有することを特徴とする、請求項 19に記 載の光伝送装置。
[22] 前記光送信回路は、
多モード発振する光を出力する多モード光源と、
前記多モード光源から出力される光を前記情報信号で変調し、光信号を出力す る光情報変調部と、
前記光情報変調部から出力される前記光信号を入力し、前記光信号における複 数の発振モード光の内、前記所定の発振モード光を分離すると共に、前記光信号に おける前記所定の発振モード光以外の残りの光信号成分を光伝送路に送出する光 分離部と、
前記光分離部によって分離された前記所定の発振モード光を入力し、当該所定 の発振モード光の物理的性質を検出し、検出信号を伝送路に送出する光検出部と を含み、
前記光受信回路は、
前記伝送路を介して伝送される検出信号に基づき、前記所定の発振モード光に 準じた光として、前記所定の発振モード光と物理的性質を同じくする局部発振光を発 生する局発光発生部と、
前記光伝送路を介して伝送される光信号成分と、前記局発光発生部から出力さ れる局部発振光とを合成し、自乗検波して、前記情報信号を再生する光強度検出部 とを含む、請求項 3に記載の光伝送装置。
[23] さらに、複数対の前記光送信回路と前記光受信回路と、
各前記光送信回路から出力される検出信号を合成し、前記伝送路に送出する合成 部と、 前記伝送路を介して伝送される検出信号を分岐し、対応する前記光受信回路に出 力する分岐部とを備える、請求項 22に記載の光伝送装置。
[24] さらに、複数対の前記光送信回路と前記光受信回路と、
各前記光送信回路から出力される前記所定の発振モード光以外の光信号成分を 合成し、前記主光伝送路に送出する主光合波部と、
前記主光伝送路を介して伝送される前記所定の発振モード光以外の光信号成分 を分岐し、対応する前記光受信回路に出力する主光分岐部とを備える、請求項 3に 記載の光伝送装置。
[25] 前記複数対の光送信回路と光受信回路とが送受信する前記所定の発振モード光 以外の光信号成分が、互いに異なる波長を有することを特徴とする、請求項 24に記 載の光伝送装置。
[26] 前記光送信回路は、前記所定の操作として、前記多モード発振光における複数の 発振モード光の群に対して所定の符号に対応した操作を施し、所定の発振モード光 を分離して副光伝送路に送出すると共に、前記所定の発振モード光以外の残りの光 信号成分を主光伝送路に送出し、
前記光受信回路は、前記主光伝送路を介して伝送される前記光信号成分と、前記 副光伝送路を介して伝送される所定の発振モード光とを合成し、前記発振モード光 の群に対して前記所定の符号に対応した操作と逆の操作を施すことによって前記所 定の操作を施される前の光信号を復元し、前記発振モード光の群の総光強度変化 を検出し、電気信号に変換して、前記情報信号を再生することを特徴とする、請求項 1に記載の多モード光伝送装置。
[27] 前記光送信回路は、前記所定の操作として、前記多モード発振光における複数の 発振モード光の群に対して所定の符号に対応した操作を施して主光伝送路に送出 し、前記多モード発振光における複数の発振モード光の群に対して前記所定の符号 に対応した操作と逆の操作を施して副光伝送路に送出し、
前記光受信回路は、前記主光伝送路を介して伝送される光と前記副光伝送路を介 して伝送される光とを合成することによって、前記所定の操作を施される前の光信号 を復元し、前記発振モード光の群の総光強度変化を検出し、電気信号に変換して、 前記情報信号を再生することを特徴とする、請求項 1に記載の光伝送装置。
[28] 前記光送信回路で用いられる多モード光源は、
互いに光強度および光位相に相関性を有し、互いに異なる波長の光を出力する 複数の光源と、
前記複数の光源から出力される光を合成し、出力する光モード合成部と、 前記光モード合成部から出力される光の総強度を一定とし、かつ前記複数の光 源から出力される光の強度および Zまたは位相を略ランダムに変調するような変調 信号を各前記光源に供給する符号発生部とからなることを特徴とする、請求項 1に記 載の多モード光伝送装置。
[29] 前記送信回路で用いられる多モード光源は、
互いに異なる波長の光を出力する複数の光源と、
前記複数の光源から出力される光を合成し、出力する光モード合成部と、 前記複数光源力 出力される光の位相変化を同期させる光位相同期部と、 前記光モード合成部から出力される光の総強度を一定とし、かつ前記複数の光源 から出力される光の強度を略ランダムに変調するような変調信号を各前記光源に供 給する符号発生部とからなることを特徴とする、請求項 1に記載の多モード光伝送装 置。
[30] 前記送信回路で用いられる多モード光源は、
互いに異なる波長の光を出力する複数の光源と、
前記複数の光源から出力される光を合成し、出力する光モード合成部と、 前記複数光源力 出力される光の強度変化を同期させる光強度同期部と、 前記光モード合成部から出力される光の総強度を一定とし、かつ前記複数の光 源から出力される光の位相を略ランダムに変調するような変調信号を各前記光源に 供給する符号発生部とからなることを特徴とする、請求項 1に記載の多モード光伝送 装置。
[31] 前記送信回路で用いられる多モード光源は、 LED (Light Emission Diode)で あることを特徴とする、請求項 1に記載の光伝送装置。
[32] 前記多モード光源は、 FP (Fabry -Perot)レーザであることを特徴とする、請求項 1に記載の光伝送装置。
[33] 前記多モード光源は、 RC (Resonant Cabity)— LEDであることを特徴とする、 請求項 1に記載の光伝送装置。
[34] 前記多モード光源は、 VCSEL (Vertical Cabity Surface Emitting Laser) であることを特徴とする、請求項 1に記載の光伝送装置。
[35] 前記多モード光源は、 SLD (Super Luminescent Diode)であることを特徴とす る、請求項 1に記載の光伝送装置。
[36] 前記光伝送路は、光ファイバ、光導波路、または自由空間であることを特徴とする、 請求項 1に記載の多モード光伝送装置。
PCT/JP2005/013633 2004-08-20 2005-07-26 多モード光伝送装置 WO2006018952A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05767205A EP1772983B1 (en) 2004-08-20 2005-07-26 Multimode optical transmission device
DE602005024141T DE602005024141D1 (de) 2004-08-20 2005-07-26 Optische vorrichtung zur multimode-übertragung
US11/660,155 US7917038B2 (en) 2004-08-20 2005-07-26 Multimode optical transmission device
JP2006531400A JPWO2006018952A1 (ja) 2004-08-20 2005-07-26 多モード光伝送装置
US12/974,484 US8078059B2 (en) 2004-08-20 2010-12-21 Multimode optical transmission device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004241069 2004-08-20
JP2004241070 2004-08-20
JP2004-241069 2004-08-20
JP2004-241070 2004-08-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/660,155 A-371-Of-International US7917038B2 (en) 2004-08-20 2005-07-26 Multimode optical transmission device
US12/974,484 Division US8078059B2 (en) 2004-08-20 2010-12-21 Multimode optical transmission device

Publications (1)

Publication Number Publication Date
WO2006018952A1 true WO2006018952A1 (ja) 2006-02-23

Family

ID=35907343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013633 WO2006018952A1 (ja) 2004-08-20 2005-07-26 多モード光伝送装置

Country Status (5)

Country Link
US (2) US7917038B2 (ja)
EP (1) EP1772983B1 (ja)
JP (1) JPWO2006018952A1 (ja)
DE (1) DE602005024141D1 (ja)
WO (1) WO2006018952A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047684A (ja) * 2007-07-06 2009-03-05 Honeywell Internatl Inc Rfog変調エラー補正
JP2010528531A (ja) * 2007-05-18 2010-08-19 コーニング インコーポレイテッド 光信号の受動的な暗号化及び復号化のためのシステム
US8908187B2 (en) 2011-11-02 2014-12-09 Honeywell International Inc. System and method for reducing errors in a resonator fiber optic gyroscope
JP2016519458A (ja) * 2013-03-12 2016-06-30 トリビディア ヘルス,インコーポレーテッド 個人用健康装置、及び、個人用健康装置と演算装置とのペアリング方法(関連出願の相互参照)この特許出願は、「個人用健康装置と演算装置との無線ペアリング」と題され、2013年3月12日に出願された米国仮特許出願第61/777,467号、並びに「個人用健康装置と演算装置との無線ペアリング」と題され、2014年3月12日に出願された米国出願第14/206,077号の利益を主張するものであり、その全体が参照により本明細書に組み込まれる。本明細書に開示された実施形態は、個人用健康装置に係り、より詳細には、個人用健康装置と演算装置との無線ペアリングに関する。

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8244137B1 (en) * 2009-06-30 2012-08-14 Verizon Patent And Licensing Inc. Multichannel on a single wave laser over wave division multiplexing in free space optics using phase masks
US8582631B2 (en) * 2010-04-26 2013-11-12 Sierra Wireless, Inc. Managing communication operations of wireless devices
JP5170586B2 (ja) * 2010-10-08 2013-03-27 学校法人玉川学園 Yuen暗号用光送信装置及び受信装置、Yuen暗号光送信方法及び受信方法、並びに暗号通信システム
US20120177065A1 (en) 2011-01-09 2012-07-12 Winzer Peter J Secure Data Transmission Using Spatial Multiplexing
US20140241722A1 (en) * 2013-02-25 2014-08-28 Alcatel-Lucent Usa Inc. PDM-(M) Ask Optical Systems And Methods For Metro Network Applications
US9887771B2 (en) * 2015-10-23 2018-02-06 International Business Machines Corporation Bandwidth throttling
US9853741B2 (en) 2015-11-30 2017-12-26 International Business Machines Corporation Fiber optic encryption
US9998255B2 (en) 2016-05-11 2018-06-12 International Business Machines Corporation Fiber optic light intensity encryption
CN106533565B (zh) * 2016-11-28 2019-03-12 工业和信息化部电信研究院 量子保密通信方法和装置
CN110519044B (zh) * 2018-05-21 2023-06-20 科大国盾量子技术股份有限公司 一种基于模式编码的量子密钥分发方法和系统
US10892847B2 (en) 2019-04-18 2021-01-12 Microsoft Technology Licensing, Llc Blind detection model optimization
US10873393B2 (en) 2019-04-18 2020-12-22 Microsoft Technology Licensing, Llc Receiver training for throughput increases in optical communications
US10938485B2 (en) 2019-04-18 2021-03-02 Microsoft Technology Licensing, Llc Error control coding with dynamic ranges
US10742325B1 (en) 2019-04-18 2020-08-11 Microsoft Technology Licensing, Llc Power-based encoding of data to be transmitted over an optical communication path
US11018776B2 (en) * 2019-04-18 2021-05-25 Microsoft Technology Licensing, Llc Power-based decoding of data received over an optical communication path
US10998982B2 (en) 2019-04-18 2021-05-04 Microsoft Technology Licensing, Llc Transmitter for throughput increases for optical communications
US10911155B2 (en) * 2019-04-18 2021-02-02 Microsoft Technology Licensing, Llc System for throughput increases for optical communications
US10911152B2 (en) 2019-04-18 2021-02-02 Microsoft Technology Licensing, Llc Power-based decoding of data received over an optical communication path
US10862591B1 (en) 2019-04-18 2020-12-08 Microsoft Technology Licensing, Llc Unequal decision regions for throughput increases for optical communications
US10873392B2 (en) 2019-04-18 2020-12-22 Microsoft Technology Licensing, Llc Throughput increases for optical communications
US10951342B2 (en) 2019-04-18 2021-03-16 Microsoft Technology Licensing, Llc Throughput increases for optical communications
US10756817B1 (en) 2019-04-18 2020-08-25 Microsoft Technology Licensing, Llc Power switching for systems implementing throughput improvements for optical communications
US10742326B1 (en) 2019-04-18 2020-08-11 Microsoft Technology Licensing, Llc Power-based encoding of data to be transmitted over an optical communication path
US10897315B2 (en) 2019-04-18 2021-01-19 Microsoft Technology Licensing, Llc Power-based decoding of data received over an optical communication path
US10911141B1 (en) 2019-07-30 2021-02-02 Microsoft Technology Licensing, Llc Dynamically selecting a channel model for optical communications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866699A (en) * 1987-06-22 1989-09-12 Bell Communications Research, Inc. Optical telecommunications system using code division multiple access
JPH0316334A (ja) * 1989-06-14 1991-01-24 Fujitsu Ltd 秘話装置
JP2002009865A (ja) * 2000-06-16 2002-01-11 Canon Inc データ伝送装置、データ伝送システム、データ伝送方法および記録媒体
JP2003110503A (ja) * 2001-09-28 2003-04-11 Communication Research Laboratory 送信装置および送信方法、受信装置および受信方法、並びに送受信装置および送受信方法
JP2003115869A (ja) * 2001-10-05 2003-04-18 Oki Electric Ind Co Ltd 通信装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703474A (en) * 1986-02-28 1987-10-27 American Telephone And Telegraph Company, At&T Bell Laboratories Spread spectrum code-division-multiple-access (SS-CDMA) lightwave communication system
US4779266A (en) * 1986-03-10 1988-10-18 Bell Communications Research, Inc. Encoding and decoding for code division multiple access communication systems
JPH0289016A (ja) * 1988-09-26 1990-03-29 Nikon Corp 走査型顕微鏡
US5258821A (en) * 1990-04-20 1993-11-02 Photon, Inc. Laser beam profiler having a multimode laser diode interferometer
FR2742616B1 (fr) 1995-12-18 1998-01-09 Cit Alcatel Dispositif de chiffrement et dispositif de dechiffrement d'informations transportees par des cellules a mode de transfert asynchrone
DE19605567A1 (de) 1996-02-15 1997-08-21 Sel Alcatel Ag Optisches frequenzkodiertes CDMA-Übertragungssystem und optischer Empfänger dafür
DE19722370A1 (de) * 1997-05-28 1998-12-03 Alsthom Cge Alcatel Empfänger für ein optisches Nachrichtenübertragungssystem und Verfahren zu dessen Betrieb
US6038357A (en) * 1998-02-03 2000-03-14 E-Tek Dynamics, Inc PDM-WDM for fiberoptic communication networks
RU2001105929A (ru) 1998-07-30 2003-01-27 Коудстрим Текнолоджиз Корпорейшн (Us) Способ и устройство для снижения помех в оптической системе мдкр
US6381053B1 (en) * 1998-10-08 2002-04-30 Universite Laval Fast frequency hopping spread spectrum for code division multiple access communication networks (FFH-CDMA)
FI982841A (fi) * 1998-12-31 2000-07-01 Nokia Networks Oy Optisella kuidulla kulkevien signaalien aallonpituuksien monitorointi
GB0005615D0 (en) * 2000-03-09 2000-05-03 Univ Southampton An optical processing device based on fiber grating
TW469712B (en) * 2000-06-23 2001-12-21 Nat Science Council Fiber Bragg grating-based optical CDMA encoder/decoder
EP1346499A4 (en) * 2000-07-10 2006-08-23 Victor Yeeman Lo SYSTEM AND METHOD FOR INCREASING CAPACITY OF A FIBER OPTIC COMMUNICATIONS NETWORK CHANNEL
US7050723B2 (en) 2001-01-19 2006-05-23 Nippon Telegraph And Telephone Corporation Laser oscillator, optical communication method and system
JP3808372B2 (ja) 2001-01-19 2006-08-09 日本電信電話株式会社 レーザ発振器ならびに光通信方法及びシステム
WO2003001722A2 (en) * 2001-06-22 2003-01-03 Canesta, Inc. Method and system to display a virtual input device
FR2827971B1 (fr) 2001-07-27 2003-10-10 Thales Sa Reseau de communications optiques, multi-utilisateurs, reconfigurable a faible temps de latence
US7324755B2 (en) * 2002-07-02 2008-01-29 Hrl Laboratories, Llc Optical code-division multiple access transmission system and method
WO2004019502A2 (en) * 2002-08-26 2004-03-04 The Regents Of The University Of California Optical code division multiple access network utilizing reconfigurable spectral phase coding
JP4419391B2 (ja) * 2003-01-09 2010-02-24 沖電気工業株式会社 伝送媒体アクセス制御システムおよび中継側ターミナル装置
US7209670B2 (en) * 2003-04-29 2007-04-24 Nortel Networks Limited Polarization diversity receiver for optical transmission system
CN1813429B (zh) * 2003-07-16 2011-09-21 日本电信电话株式会社 使用光频率编码的光通信系统、其光发送装置以及接收装置、反射型光通信装置
JP4021382B2 (ja) * 2003-07-28 2007-12-12 オリンパス株式会社 光学式エンコーダ及びその製造方法並びに光学レンズモジュール
WO2006013745A1 (ja) * 2004-08-05 2006-02-09 Matsushita Electric Industrial Co., Ltd. マルチモード光伝送システム及びマルチモード光伝送方法
KR100621218B1 (ko) * 2004-12-17 2006-09-13 한국전자통신연구원 2차원 광 코드분할다중접속 시스템, 이 시스템에서사용되는 파장/시간 연속형 인코더 및 디코더 및인코딩/디코딩 방법
US20080107430A1 (en) * 2005-02-18 2008-05-08 Janet Lehr Jackel Mixed phase and wavelength coded optical code division multiple access system
KR100687756B1 (ko) * 2005-11-17 2007-02-27 한국전자통신연구원 음향광학 필터 및 상기 음향광학 필터를 이용한 광cdma 시스템
JP4655904B2 (ja) * 2005-11-25 2011-03-23 沖電気工業株式会社 光符号分割多重送受信方法及び光符号分割多重送受信装置
US7792427B1 (en) * 2006-01-30 2010-09-07 Lockheed Martin Corporation Optical code division multiple access data storage and retrieval

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866699A (en) * 1987-06-22 1989-09-12 Bell Communications Research, Inc. Optical telecommunications system using code division multiple access
JPH0316334A (ja) * 1989-06-14 1991-01-24 Fujitsu Ltd 秘話装置
JP2002009865A (ja) * 2000-06-16 2002-01-11 Canon Inc データ伝送装置、データ伝送システム、データ伝送方法および記録媒体
JP2003110503A (ja) * 2001-09-28 2003-04-11 Communication Research Laboratory 送信装置および送信方法、受信装置および受信方法、並びに送受信装置および送受信方法
JP2003115869A (ja) * 2001-10-05 2003-04-18 Oki Electric Ind Co Ltd 通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1772983A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528531A (ja) * 2007-05-18 2010-08-19 コーニング インコーポレイテッド 光信号の受動的な暗号化及び復号化のためのシステム
JP2009047684A (ja) * 2007-07-06 2009-03-05 Honeywell Internatl Inc Rfog変調エラー補正
US8908187B2 (en) 2011-11-02 2014-12-09 Honeywell International Inc. System and method for reducing errors in a resonator fiber optic gyroscope
JP2016519458A (ja) * 2013-03-12 2016-06-30 トリビディア ヘルス,インコーポレーテッド 個人用健康装置、及び、個人用健康装置と演算装置とのペアリング方法(関連出願の相互参照)この特許出願は、「個人用健康装置と演算装置との無線ペアリング」と題され、2013年3月12日に出願された米国仮特許出願第61/777,467号、並びに「個人用健康装置と演算装置との無線ペアリング」と題され、2014年3月12日に出願された米国出願第14/206,077号の利益を主張するものであり、その全体が参照により本明細書に組み込まれる。本明細書に開示された実施形態は、個人用健康装置に係り、より詳細には、個人用健康装置と演算装置との無線ペアリングに関する。
US10285052B2 (en) 2013-03-12 2019-05-07 Trividia Health, Inc. Wireless pairing of personal health device with a computing device
JP2019195222A (ja) * 2013-03-12 2019-11-07 トリビディア ヘルス,インコーポレーテッド 個人用健康装置、及び、個人用健康装置と演算装置とのペアリング方法
JP7026083B2 (ja) 2013-03-12 2022-02-25 トリビディア ヘルス,インコーポレーテッド 個人用健康装置、及び、個人用健康装置と演算装置とのペアリング方法

Also Published As

Publication number Publication date
EP1772983B1 (en) 2010-10-13
US20080240734A1 (en) 2008-10-02
DE602005024141D1 (de) 2010-11-25
EP1772983A1 (en) 2007-04-11
US7917038B2 (en) 2011-03-29
US8078059B2 (en) 2011-12-13
JPWO2006018952A1 (ja) 2008-05-08
US20110085804A1 (en) 2011-04-14
EP1772983A4 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
WO2006018952A1 (ja) 多モード光伝送装置
JP4746676B2 (ja) 光符号通信システム
JP4848283B2 (ja) データ通信装置
JP5421792B2 (ja) 偏波多重送信器及び伝送システム
US8867742B2 (en) Optical transmission device and reception device for Yuen encryption, optical transmission method and reception method for Yuen encryption, and encrypted communication system
Gleĭm et al. Sideband quantum communication at 1 Mbit/s on a metropolitan area network
US6665500B2 (en) Dual-mode fiber optic telecommunications system and method
CN109981176A (zh) 基于偏振调制的光跳频系统及发送机、接收机
JP2017050678A (ja) 光秘匿通信システム
CN111181650A (zh) 基于电吸收调制激光器的光跳频系统
Wang et al. Secure optical transmission in a point-to-point link with encrypted CDMA codes
CN116192284B (zh) 一种用于在光通信系统物理层中无痕加密的装置及方法
JP6850516B2 (ja) 信号処理装置
JP4575813B2 (ja) 秘密鍵配送装置および秘密鍵配送方法
US7512237B1 (en) Encryption for optical communications using dynamic subcarrier multiplexing
CN106340222A (zh) 一种量子密码通信结合光纤窃听的教学演示装置
WO2021206060A1 (ja) 信号処理装置
CN113422650A (zh) 一种多通道光跳频系统、信号加密方法和光通信设备
JP5845514B2 (ja) 暗号光送信装置及び受信装置、並びに暗号通信システム
JP3998143B2 (ja) 光信号送信装置、光信号受信装置、光信号送受信システム及び光通信方法
JP2007096911A (ja) データ伝送方法及びシステム、光送信装置並びに光受信装置
US20240089093A1 (en) Reception device, quantum key distribution system, and method for detecting quantum signal
JPH11234265A (ja) 情報セキュリティ通信装置および方法
CN101006671A (zh) 多模光发送设备
Singh Security enhancement by swapping bits belonging to different data channels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531400

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005767205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580028584.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005767205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11660155

Country of ref document: US