JP3998143B2 - 光信号送信装置、光信号受信装置、光信号送受信システム及び光通信方法 - Google Patents

光信号送信装置、光信号受信装置、光信号送受信システム及び光通信方法 Download PDF

Info

Publication number
JP3998143B2
JP3998143B2 JP2003102427A JP2003102427A JP3998143B2 JP 3998143 B2 JP3998143 B2 JP 3998143B2 JP 2003102427 A JP2003102427 A JP 2003102427A JP 2003102427 A JP2003102427 A JP 2003102427A JP 3998143 B2 JP3998143 B2 JP 3998143B2
Authority
JP
Japan
Prior art keywords
optical
signal
wavelength
optical signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003102427A
Other languages
English (en)
Other versions
JP2004312321A (ja
Inventor
悦 橋本
祥雅 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003102427A priority Critical patent/JP3998143B2/ja
Publication of JP2004312321A publication Critical patent/JP2004312321A/ja
Application granted granted Critical
Publication of JP3998143B2 publication Critical patent/JP3998143B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光信号を送受信する光通信技術に関し、特に、盗聴や改ざんに対するセキュリティを確保し、信頼性の高いデータの送受信を行うための技術に関する。
【0002】
【従来の技術】
従来の光送受信システムでは、図13に示すように、光信号送信側101と光信号受信側102がファイバ伝送路103により一対一に対応し、特定の1つの波長の光をデータ信号で変調した光信号をやり取りしていた。このことは、ノードの数が増えて複数のノード間で光信号のやり取りが行われる複雑なシステムにおいても変わっていない。
【0003】
しかし、図13に示したような単純な構成では、例えば、悪意のある第3者からの盗聴などに弱く、セキュリティ上問題があった。つまり、盗聴者は、ファイバ伝送路103に光信号を分岐するタップ104を入れて光信号パワーの一部105を抜き取り、データ解析・生成装置106などを用いて情報処理すれば、情報の盗聴が可能であった。また、反対に第3者がタップ107を介して改ざんデータ108をファイバ伝送路103に入れても、光信号受信側102で受信データが改ざんデータ108であると判別することが困難であった。
【0004】
盗聴や改ざんに対して高いセキュリティを実現する方法として、多波長の光源を送信側に用い、単独の波長の光信号からはデータを再現することができず、全部の波長の光信号をまとめてはじめて、データを再生することが可能となる方法が知られている。つまり、それぞれの波長の光信号は別々の経路で送信されるもので、もし、盗聴者がある経路から光信号をタップにより分岐してその信号を解析したとしても、単独の光信号からは元のデータを再生することができない。同様に、もし、改ざんデータをある経路にタップから入れたとしても、この改ざんデータは受信側におけるエラーの原因となるだけで、データとして受信側で再生されることはない。このような仕組みにより、この方法は高いセキュリティをもたらす。しかし、この方法では、(1)単独ではデータを再生できないが、一括するとデータの再生が可能となる多波長の光信号をいかにして発生するか、また、(2)盗聴者によって単独の光信号が盗聴された場合にデータの復元を困難とする光信号をいかにして発生するかが課題になる。
【0005】
このような課題を解決する従来の方法の一例として、図14、図15に示されるように、半導体光増幅器を用いた同時発振二波長リングレーザを光源として用いた秘匿通信方法が提案されている。図14に示す二波長発振リングレーザ109は、半導体光増幅器110の出力端にファイバ111と光スプリッタ112を介して二つのファイバ113、115を接続し、一方のファイバ113に中心波長がλ1の光バンドバスフィルタ114を、他方のファイバ115に中心波長がλ2(λ2≠λ1)の光バンドパスフィルタ116をそれぞれ接続し、光カプラ117とファイバ118を介して両方を半導体光増幅器110の入力端に結合し、半導体増幅器110の出力端と光スプリッタ112との間のファイバ111から、光スプリッタ119を介して、波長λ1の光と波長λ2の光を取り出すようになっている。
【0006】
この二波長発振リングレーザ109から出力される二波長λ1、λ2の光は、パワーの時間表示120及びスペクトル表示121から分かるように、パワーの時間波形を見ると両方の合計パワーが常に一定で、且つ、一方の波長のみに注目するとカオス的にパワーが変動しているという特徴を持つ。
【0007】
よって、図15の光信号送信装置のように、二波長発振リングレーザ109からの二波長に対して、光変調器122により同時に変調してデータ信号源123からのデータを重畳し、その後に波長スプリッタ124で二波長λ1、λ2に分波し、別々の経路125、126で伝送すれば、一方の波長例えばλ1の光信号からだけではデータを推測することが非常に困難であるが、他方の波長λ2の光信号を合波するだけで容易にデータを復元することが可能な光信号送信装置ができる。
【0008】
しかし、図14、図15に示した方法は、二波長発振リングレーザ109の性能に深く係わっており、かつ、この二波長発振リングレーザ109の動作特性が十分解明されていないという課題を抱えている。つまり、二波長発振リングレーザ109は現状ではブラックボックス(未知)であり、いわんや二波長発振リングレーザ109を任意に制御する技術レベルには達していない。そのため、二波長発振リングレーザ109を使った光信号送信装置も、安定に再現し、制御することは現状では困難であり、実用レベルの技術には至っていない。
【0009】
【特許文献1】
特開2002−290380
【0010】
【発明が解決しようとする課題】
本発明の課題は、上述した従来技術の問題点に鑑み、単独ではデータを再生することができずに、一括して始めてデータを再生することが可能となる多波長の光信号を送受信するセキュリティの高い伝送技術において、盗聴者による推測が困難な二つの光信号を安定に生成し、それらを用いてデータを送信する技術、及び、それらを受信する技術を提供することである。
【0011】
【課題を解決するための手段】
第1発明は光信号送信装置であり、波長λ1の光を発生する第1光発生手段と、第1光発生手段で発生される光の波長λ1とは異なる波長λ2の光を発生する第2光発生手段と、第1光発生手段で発生される波長λ1の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタン信号のうち一方で変調されてなる第1の光と、第2光発生手段で発生される波長λ2の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタンのうち他方で変調されてなる第2の光を生成する1段目変調手段と、1段目変調手段で生成された第1の光と第2の光を合波する合波手段と、合波手段で合波された合波光をデータ信号で変調する2段目変調手段と、2段目変調手段で変調された光信号を波長λ1の光信号と波長λ2の光信号に分波する分波手段と、分波手段で分波された波長λ1の光信号と波長λ2の光信号を異なる経路に出力する光信号出力手段を有することを特徴とする。
【0012】
第2発明の光信号送信装置は、波長λ1の第1レーザダイオードと、波長λ1とは異なる波長λ2の第2レーザダイオードと、パタンの規則性が低いデジタル信号を発生し、該デジタル信号で第1レーザダイオードと第2レーザダイオードのうち一方を直接変調するためのデジタル信号発生手段と、デジタル信号発生手段で発生されるパタンの規則性が低いデジタル信号を分岐し、その一方のパタンを反転して反転パタン信号を発生し、該反転パタン信号で第1レーザダイオードと第2レーザダイオードのうち他方を直接変調するためのパタン反転手段と、第1レーザダイオードと第2レーザダイオードからの二つの変調された光を合波する合波手段と、合波手段で合波された合波光をデータ信号で変調する電界吸収型光変調手段と、電界吸収型光変調手段にデータ信号を送るデータ信号発生手段と、電界吸収型光変調手段で変調された光信号を波長λ1の光信号と波長λ2の光信号に分波するための分波手段と、分波手段で分波された波長λ1の光信号と波長λ2の光信号を異なる経路に出力するための光信号出力手段を有することを特徴とする。
【0013】
第3発明の光信号送受信装置は、波長λ1の第1レーザダイオードと、波長λ1とは異なる波長λ2の第2レーザダイオードと、パタンの規則性が低いデジタル信号を発生し、該デジタル信号で第1レーザダイオードと第2レーザダイオードのうち一方を直接変調するためのデジタル信号発生手段と、第1レーザダイオードと第2レーザダイオードからの二つの光を合波するための合波手段と、合波手段で合波された合波光を入力し、変調された光の反転パタンを変調されていない光に相互利得変調により転写するための半導体光増幅手段と、半導体光増幅手段からの光をデータ信号で変調するための電界吸収型光変調手段と、電界吸収型光変調手段にデータ信号を送るデータ信号発生手段と、電界吸収型光変調手段で変調された光信号を波長λ1の光信号と波長λ2の光信号に分波するための分波手段と、分波手段で分波された波長λ1の光信号と波長λ2の光信号を異なる経路に出力するための光信号出力手段を有することを特徴とする。
【0014】
第4発明は、第1発明の光信号送信装置において、前記第1光発生手段と前記第2光発生手段は同じパワーで波長λ1の光と波長λ2の光を発生するものであることを特徴とする。
【0015】
第5発明は、第1発明または第2発明または第3発明の光信号送信装置において、前記パタンの規則性の低いデジタル信号と前記データ信号との間の同期をとる同期手段を有することを特徴とする。
【0016】
第6発明は、第1発明または第2発明または第3発明の光信号送信装置において、前記デジタル信号発生手段はパタンの規則性が低いデジタル信号をノイズを起源として発生するものであることを特徴とする。
【0017】
第7発明は、第6発明の光信号送信装置において、前記デジタル信号発生手段として、ノイズ発生手段と、ノイズ発生手段で発生されるノイズから必要な周波数帯域のノイズを取り出すフィルタ手段と、フィルタ手段で取り出されたノイズの振幅と閾値との大小関係を判別し、二値のデジタル信号を発生する判別手段を有することを特徴とする。
【0018】
第8発明は、第7発明の光信号送信装置において、前記ノイズ発生手段として、低いQ値を持つ正帰還増幅器と、この正帰還増幅器の出力周波数の一部を取り出すためのフィルタ手段を有することを特徴とする。
【0019】
第9発明は、第7発明の光信号送信装置において、前記ノイズ発生手段として、自然放出光発生源と、自然放出光発生源で発生される自然放出光の一部の光周波数成分を切り出すための光フィルタ手段と、光フィルタ手段で切り出された自然放出光を受光する受光手段と、受光手段の出力から直流成分を除去する直流成分除去手段を有することを特徴とする。
【0020】
第10発明は、第1発明または第2発明または第3発明の光信号送信装置において、分波後の前記二つの光信号間の遅延量を調整する遅延調整手段を有すること、前記光信号出力手段が波長λ1の光信号と波長λ2の光信号をそれぞれ伝送可能なパワーまで増幅する光増幅器であることを特徴とする。
【0021】
第11発明は、第2発明の光信号送信装置において、前記第1レーザダイオードと第2レーザダイオードのうち一方と前記デジタル信号発生手段との間に直接変調のための第1電気増幅手段を有し、第1レーザダイオードと第2レーザダイオードのうち他方と前記パタン反転手段との間に直接変調するための第2電気増幅手段を有することを特徴とする。
【0022】
第12発明は、第3発明の光信号送信装置において、前記第1レーザダイオードと第2レーザダイオードのうち一方と前記デジタル信号発生手段との間に直接変調のための電気増幅手段を有することを特徴とする。
【0023】
第13発明は、第3発明の光信号送信装置において、前記半導体光増幅手段と前記電界吸収型光変調手段あるいは合波手段との間に電界吸収型変調手段における変調タイミングを調整するための可変遅延手段有することを特徴とする。
【0024】
第14発明は光信号受信装置であり、第1発明から第13発明いずれかの光信号送信装置から伝送されてくる二つの光信号を合波する合波手段と、合波手段で合波された光信号からデータ信号を復元するデータ信号復元手段と、データ信号復元手段で復元されたデータ信号を解読するデータ解読手段を有することを特徴とする。
【0025】
第15発明の光信号受信装置は、第1発明から第13発明いずれかの光信号送信装置から伝送されてくる二つの光信号を光学的に合波する合波手段と、合波手段で合波された光信号を電気信号に変換する光電気変換手段と、伝送で波形が乱れた光電気変換手段からの電気信号を再生するための再生識別手段と、再生識別手段で再生された電気信号からデータを解読するためのデータ解読手段を有することを特徴とする。
【0026】
第16発明の光信号受信装置は、第1発明から第13発明いずれかの光信号送信装置から伝送されてくる二つの光信号をそれぞれ電気信号に変換する光電気変換手段と、伝送で波形が乱れた光電気変換手段からのそれぞれの電気信号を再生するための再生識別手段と、再生識別手段からの二つの電気信号を電気的に合波する合波手段と、合波前の二つの電気信号間の位相を調整するための位相調整手段と、合波手段で合波されて再生されたデータ信号を解読するデータ解読手段を有することを特徴とする。
【0027】
第17発明は、第14発明または第15発明または第16発明の光信号受信装置において、伝送されてくる前記二つの光信号間の遅延をなくすための遅延調整手段を有することを特徴とする。
【0028】
第18発明は、第14発明または第15発明または第16発明の光信号受信装置において、伝送によるパワー損失を補うための光増幅手段を有することを特徴とする。
【0029】
第19発明は光信号送受信システムであり、第1発明から第13発明いずれかの光信号送信装置と、この光信号送信装置が送信する二つの光信号を別々の経路で伝送する伝送手段と、この伝送手段から二つの光信号を受信するための第14発明から第18発明いずれかの光信号受信装置を有することを特徴とする。
【0030】
第20発明は光通信方法であり、送信側では、波長λ1の光及びこれとは異なる波長λ2の光を発生し、波長λ1の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタン信号のうち一方で変調されてなる第1の光を生成し、波長λ2の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタンのうち他方で変調されてなる第2の光を生成し、第1の光と第2の光を合波し、この合波光をデータ信号で変調し、変調された光信号を波長λ1の光信号と波長λ2の光信号に分波し、分波された波長λ1の光信号と波長λ2の光信号を伝送路の異なる経路に出力すること、受信側では、異なる経路で伝送されてくる二つの光信号からデータ信号を復元し、復元されたデータ信号を解読することを特徴とする。
【0031】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。
【0032】
[発明の概要]
図1を参照して本発明の光信号送受信システムを説明する。光信号送信側1には、後述する第1実施例(図2)、第2実施例(図3)、第10実施例(図11)、第11実施例(図12)で代表される光信号送信装置が用いられ、光信号受信側6には、後述する第3実施例(図4)、第4実施例(図5)で代表される光信号受信装置が用いられる。図1に示すように、光信号送信側1からは二つの光信号3、4を伝送路5の異なる経路5A、5Bに伝送し、光信号受信側6では二つの光信号3、4から受信データ信号7を復元し、データを解読する。
【0033】
送信側1から送信された二つの光信号3、4は、単独には、パタンの規則性が低いデジタル信号(例えば、ノイズを起源としたデジタル信号)と送信データ信号2との合成波、もしくは、そのデジタル信号がパタンを反転されてなる反転パタン信号と送信データ信号2との合成波であり、デジタル信号やその反転パタン信号は予測困難なランダム信号なので、一方の光信号から送信データ信号2のみを抽出することは非常に困難である。ところが、光信号受信側6にて二つの光信号3、4を適当に位相を揃えて重ね合わせると、デジタル信号とその反転信号とが補間しあうので、送信データ信号2を容易に抽出することが可能となる。盗聴や改ざんについて説明すれば、例えば、光信号3、4が伝送される伝送路5の異なる経路5A、5Bから一方の光信号3のパワーの一部を第3者がタップ104で抜き取り、データ解析・生成装置106などを用いて情報処理しても、不正確なデータ105となるだけで情報の盗聴は困難である。また、第3者がタップ107を介して改ざんデータを伝送路5の経路5Aに入れても、光信号受信側6では、改ざんデータを送信データ信号2に対する正規の受信データ信号7と区別することができる。
【0034】
これらの効果そのものは、前述した従来の二波長発振リングレーザ109を使用した従来の技術でも同様であるが、本発明による技術では、光源や変調器などがそれぞれ独立して存在するので、パワーや変調度などの各種条件が容易であることや、光源や変調器などにパワーレーザダイオードや電界吸収型光変調器など技術的に確立したものを用いることが可能であることから、信頼性が高く実用性に富む光信号送信装置、光信号受信装置、光信号送受信システム、光通信方法を構成できるという特長がある。また、上記の効果により、先にも述べた第3者によるデータの盗聴や改ざんを防ぐことが可能となり、本発明によりセキュリティの高い光通信を安定且つ確実に実現することができる。
【0035】
[第1実施例:光信号送信装置の構成1]
図2は、本発明の第1実施例における光信号送信装置の構成を示している。この光信号送信装置は、図2に示すように、第1の光源8と、第2の光源9と、第1の光変調器10と、第2の光変調器11と、ノイズ源12と、デジタル信号発生器13と、反転器14と、波長合波器15と、第3の光変調器16と、データ信号源17と、波長分波器18と、第1の遅延調整器19と、第2の遅延調整器20と、第1の光増幅器21と、第2の光増幅器22を有したものである。
【0036】
図2において、第1の光源8は波長λ1のCW光(変調されていないパワーが一定の光)を発生し、これとは独立に、第2の光源9は波長λ1とは異なる波長λ2のCW光を発生する。二つの光源8、9は同じパワーのCW光を発生するようにしている。デジタル信号発生器13はパタンの規則性が低いデジタル信号を発生するためのものであり、本例ではノイズ源12が発生するノイズを起源とするデジタル(2値)信号を作り出す。反転器14はデジタル信号発生器13から出力されるデジタル信号を二分岐した一方の出力のパタンを反転して反転パタン信号を発生するためのものである。本例では、第1の光変調器10は第1の光源8からの波長λ1のCW光をデジタル信号発生器13からのデジタル信号で変調し、第2の光変調器11は第2の光源9からの波長λ2のCW光を反転器14からの反転パタン信号で変調する。逆に、第1の光変調器10により波長λ1のCW光を反転パタン信号で変調し、第2の光変調器11により波長λ2のCW光をデジタル信号で変調しても良い。いずれにしろ、第1の光変調器10と第2の光変調器11により、波長λ1の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタン信号のうち一方で変調されてなる第1の光と、波長λ2の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタンのうち他方で変調されてなる第2の光を生成するための1段目変調手段を構成する。波長合波器15は変調された二つの光を合波するためのものであり、第1の光変調器10及び第2の光変調器11でそれぞれ変調された二つの光を併せて、合波光として出力する。
【0037】
第3の光変調器16は波長合波器15で合波された合波光をデータ信号で変調するものであり、2段目変調手段を構成する。データ信号源17は第3の光変調器16にて変調に用いるデータ信号を発生するためのものであり、データ信号を第3の光変調器16に送る。波長分波器18は第3の光変調器16で変調された光信号を波長λ1の光信号と波長λ2の光信号に分波するものである(図1の光信号3、4参照)。
【0038】
第1の遅延調整器19と第2の遅延調整器20は波長分波器18で分波された波長λ1の光信号と波長λ2の光信号の遅延量を調整するものであり、本例では、分波直後に第1の遅延調整器19と第2の遅延調整器20を設け、二つの光信号の遅延量が揃うように調整している。従って、2つの遅延調整器を用いる代わりに、1つの遅延調整器により遅延量の少ない方の光信号を遅延量の大きい光信号に合わせるように調整することができる。
【0039】
第1の光増幅器21と第2の増幅器22は波長分波器18で分波された波長λ1の光信号と波長λ2の光信号を伝送路の異なる経路(図1の経路5A、5B参照)に出力するものであり、光信号出力手段を構成するとともに、波長λ1の光信号と波長λ2の光信号をそれぞれ伝送可能なパワーまで光増幅するものである。本例では、第1の光増幅器21と第2の増幅器22を遅延調整器19、20の後段に設けているが、遅延調整器19、20の前段に設けても良い。
【0040】
波長分波後の二つの光信号のパワーが十分であれば、光増幅器21、22は不要である。また、二つの光信号の遅延量が揃うように光信号送信装置を調整しておくのが、製品としてはスマートであるが、必ずしもその必要はないので、遅延調整器19、20を省略することもできる。いずれの場合も、光信号出力手段は二つの光信号を別々の経路に送出する機能を有するものであれば良い。
【0041】
図2の光信号送信装置の動作・作用を説明する。第1の光変調器10と第2の光変調器11でそれぞれ変調された光を波長合波器15にて合波すると、両光変調器10、11に入力された変調波(パタンの規則性が低いデジタル信号とその反転パタン信号)が互いに反転関係にあることから、波長合波器15の出力光はCW光のようにパワーが一定の光として出力される。この二波長からなるパワーが一定の合波光を、第3の光変調器16を使ってデータ信号で変調すると、波長が一つのCW光を変調した場合と同様に、データ信号のパタンと同一の振幅変調パタン、つまりデータ信号が重畳された二波長の光信号が現れる。このデータ信号が重畳された二波長の光信号を波長分波器18で波長λ1の光信号と波長λ2の光信号に分離することで、単独ではデータの復元が難しい二つの光信号を容易に生成することが可能となる。このようにして生成した波長λ1の光信号と波長λ2の光信号を必要に応じて遅延調整器19、20を使って遅延量を調整し、また、必要に応じて光増幅器21、22を使って伝送に適当なパワーに調整して、それぞれ別々の経路で受信先まで伝送する。伝送路としては、例えば、WDM(波長分割多重)ネットワークなどの一般的な多波長ファイバ伝送路を用いることができる。
【0042】
[第2実施例:光信号送信装置の構成2]
図3は、本発明の第2実施例として別の光信号送信装置の構成を示している。図3の光信号送信装置を第1実施例(図2)の光信号送信装置と比較すると、デジタル信号発生器13とデータ信号源17との同期を取るためのマスタークロック23を有している点が異なり、他は同じである。従って、図3中で、図2と同じ機能部分には同じ符号を付して説明の重複を省くこととする。
【0043】
マスタークロック23はデジタル信号発生器13からのパタンの規則性が低いデジタル信号とデータ信号源17からのデータ信号との間の同期を取るためのものであり、デジタル信号発生器13とデータ信号源17の両方に同じクロック信号を送る。つまり、同じクロック信号を使って、デジタル信号発生器13がパタンの規則性が低いデジタル信号を発生し、データ信号源17がデータ信号を発生するので、デジタル信号発生器13からのパタンの規則性が低いデジタル信号とデータ信号源17からのデータ信号との間で同期が取られる。
【0044】
図3に示す本第2実施例の光信号送信装置の動作は、基本的に第1実施例(図2)の光信号送信装置と同様であるが、マスタークロック23によりそれぞれの光変調器10、11、16に印加される各信号の間に同期が取られているので、図3中のタイミング表示24から分かるように、信号パタンの時間幅やタイミングが、データ変調前の波長λ1の光、その反転パタンであるデータ変調前の波長λ2の光、そしてデータ信号の間で揃うことになる。その結果、パタンの途中で波長が変わることなく、波長分波器18で分波後の光信号の波形もデータ信号と同じ時間幅を持つ信号となり、識別しやすくなるという利点がある。このことは、受信側において誤りの発生を抑えることにつながる。
【0045】
図3ではデジタル信号発生器13とデータ信号源17との周期を同じとした例を示しているが、デジタル信号発生器13の周期がデータ信号源17の周期の分周値(1/N倍、Nは自然数)であっても構わない。
【0046】
[第3実施例:光信号受信装置の構成1]
図4は本発明の第3実施例として光信号受信装置の構成を示している。図4の光信号受信装置は前述した第1実施例(図2)や第2実施例(図3)の光信号送信装置、あるいは、後述する第10実施例(図11)や第11実施例(図12)の光信号送信装置に対応するものであり、第1の遅延調整器27と、第2の遅延調整器28と、第1の光増幅器29と、第2の光増幅器30と、波長合波器31と、受光器32と、識別再生器33と、タイミング抽出信号解析機43を有している。
【0047】
第1の遅延調整器27と第2の遅延調整器28は伝送されてきた波長λ1の受信光信号25と波長λ2の受信光信号26との間の時間遅延をなくすためのものである。第1の光増幅器29と第2の光増幅器30は伝送によるパワー損失を補うためのものであり、伝送によりパワーが異なってしまった二つの受信光信号25、26のパワーを揃える機能を有している。波長合波器31は二つの受信光信号25、26を光学的に合波するためのものである。受光器32はその光電変換機能により合波後の光信号を電気信号に変換するものである。受光器32としては、波長依存性が小さいもの、少なくとも二つの波長λ1、λ2間で波長依存性が小さいものを使用している。受光器32が出力する電気信号はデータ信号が復元したものである。識別再生器33は、伝送により二つの受信光信号25、26の波形が乱れることを考慮し、伝送により波形が乱れた受光器32からのデータ信号を識別しやすいパタン(信号)に再生するための識別再生手段を構成する。タイミング抽出解析機34は復元あるいは再生されたデータ信号を解読するためのデータ解読手段を構成し、データ信号を読取るためのタイミング抽出機能を備えている。
【0048】
ここで、波長λ1の光信号25と波長λ2の光信号26の遅延量はそれらの伝送経路の距離差に関係するので、両経路に伝送距離差がΔL(m)あるとすれば、例えばΔL(m)の長さの光ファイバを遅延調整器として用いれば、二つの伝送経路差に起因する遅延を打ち消して、送信側でデータ変調した時の位相状態にもどすことができる。従って、2つの遅延調整器27、28の両方でなく、一方を用いて伝送経路の短い方を長い方に合わせることができる。また、二つの伝送経路差が経年変化等で変化する場合は、光信号送信装置からテスト用のパルスを送信し、光信号受信装置で正しく受信できるように遅延調整器27または28で微調整すれば良い。一方、二つの受信光信号25、26のパワーが経路の違いによって異なってしまう場合は、二つの受信光信号25、26のパワーを第1の光増幅器29及び第2の光増幅器30を使って揃えておきことができる。このような状態で二つの受信光信号25、26を合波した後、受光器32で電気信号に変換することにより、データ信号のみからなる電気信号を抽出することができる。データ信号の抽出後は、識別再生器33やタイミング抽出信号解析機34などを用いて一般的な光信号受信機と同様な処理を行うことで、データ信号を解読する。なお、伝送による受信光信号25,26の劣化が激しくない場合は、識別再生器33は必要ない。
【0049】
[第4実施例:光信号受信装置の構成2]
図5は本発明の第4実施例として別の光信号受信装置の構成を示している。図5の光信号受信装置は、第1の遅延調整器27と、第2の遅延調整器28と、第1の受光器35と、第2の受光器36と、第1の識別再生器37と、第2の識別再生器38と、位相シフタ39と、加算器40と、タイミング抽出信号解析機34を有している。この光信号受信装置も前述した第1実施例(図2)や第2実施例(図3)の光信号送信装置、あるいは、後述する第10実施例(図11)や第11実施例(図12)の光信号送信装置に対応するものである。
【0050】
第1の遅延調整器27と第2の遅延調整器28は、第3実施例と同様、伝送されてきた波長λ1の受信光信号25と波長λ2の受信光信号26との間の時間遅延をなくすためのものである。第1の受光器35と第2の受光器36は遅延調整された2つの受信光信号をそれぞれ電気信号に変換するものである。第1の識別再生器37と第2の識別再生器38は、伝送により二つの受信光信号25、26の波形が乱れることを考慮し、伝送により波形が乱れた第1の受光器35と第2の受光器36からの電気信号をそれぞれ識別しやすいパタン(信号)に再生するためのものである。加算器40は識別再生処理された二つの電気信号を電気的に合波するためのものである。位相シフタ39は識別再生過程で生じた電気的な位相ずれを合波前に調整するためのものである。加算器40が出力する電気信号はデータ信号が復元したものである。タイミング抽出信号解析機34は復元されたデータ信号を解読するためのものであり、データ信号を読取るためのタイミング抽出機能を備えている。
【0051】
ここで、第3実施例(図4)の光信号受信装置と同様、波長λ1の受信光信号25と波長λ2の受信光信号26の遅延量はそれらの伝送経路の距離差に関係するので、両経路に伝送距離差がΔL(m)あるとすれば、例えばΔL(m)の長さの光ファイバを遅延調整器として用いれば、二つの伝送経路差に起因する遅延を打ち消して、送信側でデータ変調した時の位相状態にもどすことができる。従って、2つの遅延調整器27、28の両方でなく、一方を用いて伝送経路の短い方を長い方に合わせることができる。また、二つの伝送経路差が経年変化等で変化する場合は、光信号送信装置からテスト用のパルスを送信し、光信号受信装置で正しく受信できるように遅延調整器27または28で微調整すれば良い。このような状態で二つの受信光信号25、26をそれぞれ受光器35、36の光電変換機能によりで電気信号に変換した後、識別再生器37、38で識別再生して加算器40で電気的に合波する。これにより、伝送劣化の大きい波形に対してもデータ信号の識別がしやすく、且つタイミング精度が高いので、二つの電気信号からデータ信号のみを抽出し復元することができ、データ信号を復元する時の精度が高い。データ信号の抽出後は、タイミング抽出信号解析機34などを用いて一般的な光信号受信機と同様な処理を行うことで、データ信号を解読する。なお、識別再生を正確にするためには、第2実施例(図3の光信号送信装置)で述べたように、変調する時間幅が揃っており、データパタンの途中で波長が変わることがない光信号送信装置を用いる必要がある。
【0052】
なお、第3実施例と同様、伝送による受信光信号25,26の劣化が激しくない場合は、識別再生器35,36は必要ない。また、第3実施例と同様、第1の光増幅器29及び第2の光増幅器30を使って、経路の違いによって異なってしまった二つの受信光信号25、26のパワーを揃えておいても良い。
【0053】
[第5実施例:デジタル信号発生器の構成]
図6は本発明の第5実施例としてノイズを起源とするデジタル信号発生器の構成を示している。図6のデジタル信号発生器はノイズ源12と、バンドパスフィルタ41と、増幅器42と、データ判別器43と、外部信号源44を有したものである。ノイズ源12は電気的なノイズを出力する。ノイズ源12としてはデータ信号と同程度の周波数成分を持つノイズを発生するものであれば良く、1/N分周波でサンプリングする場合はデータ信号の1/N倍程度の周波数成分を持てばよい。また、ノイズ源12としては、データ信号増幅用の電気増幅器をその入力が無い状態で用いるものや、次に述べる第6実施例(図7)や第7実施例(図8)のようなものを用いることができる。バンドパスフィルタ41はノイズ源12が発生するノイズから必要な周波数帯域のノイズを取り出すためのフィルタであり、ノイズの直流を中心とする低周波成分及び不必要な高周波成分をカットする役割を果たす。増幅器42はバンドパスフィルタ41で取り出されたノイズ成分を閾値による二値判別が可能な振幅に増幅する。データ判別器43は、増幅器42からのノイズの振幅と閾値との大小関係を判別し、二値のデジタル信号を発生するための判別手段を構成する。つまり、データ判別器43は、閾値判別により、ノイズを0か1かの二値データに変換する。外部信号源44は、データ判別器43に判別タイミングのトリガとしてサンプリングクロックを与える。
【0054】
本第5実施例のノイズを起源とするデジタル信号発生器では、ノイズ源12からノイズの必要な成分をバンドパスフィルタ41で抽出し、増幅した後にデータ判別器43で二値のデジタル信号に変換する。このとき、外部信号源44からのサンプリングクロックをトリがとして閾値判定を行うので、外部信号源44と同期したデジタル信号発生器となる。
【0055】
ノイズを起源とするデジタル信号を外部信号に同期させる必要がない場合は、外部信号源44からのサンプリングクロックは不要である。また、増幅器42はノイズ源12とバンドパスフィルタ41との間に設けても良い。更に、ノイズ源12の出力振幅が閾値判別が可能な振幅であれば、増幅器42は不要である。
【0056】
[第6実施例:ノイズ源の構成1]
図7は本発明の第6実施例としてノイズ源の構成を示している。図7のノイズ源は低Q値発振器45(低いQ値を持つ正帰還増幅器)と、バンドパスフィルタ48を有したものである。低Q値発振器45は、例えば増幅器46と帰還量調整器47とを用いた正帰還増幅器で構成される。バンドパスフィルタ48は低Q値発振器45からの出力が持つ発振周波数成分の一部を取り出すフィルタである。
【0057】
本第6実施例のノイズ源の動作を説明する。低Q値発振器45は比較的広い周波数範囲で発振するので、発振周波数範囲内では、瞬時瞬時の発振周波数は確率的にしか決まらない。よって、パワースペクトルの様子49から分かるように、発振周波数帯域のうち一部の帯域をバンドパスフィルタ48で取り出した出力は、バンドパスフィルタ48の周波数帯域内で発振している場合はフィルタ出力として現れるが、バンドパスフィルタ48の周波数帯域外で発振している場合はフィルタ出力として現れず、フィルタ出力の有無は確率的にしか決まらない。つまり、出力が不確定で変動するノイズ発生源が実現する。
【0058】
[第7実施例:ノイズ源の構成2]
図8は本発明の第7実施例として別のノイズ源の構成を示している。図8のノイズ源は自然放出光源50と、狭帯域光バンドパスフィルタ51と、フォトダイオード52と、DCブロッキングキャパシタ53と、増幅器54を有したものである。自然放出光源50は自然放出光(ASE)を発生するものであり、例えば半導体光増幅器やファイバ光増幅器を用いたものが使用される。狭帯域光バンドパスフィルタ51は自然放出光の成分のうち一部の光周波数帯域を切り出す(スペクトルスライス)ための光フィルタである。フォトダイオード52はスペクトルスライス後の自然放出光を受光し、電気信号に変換するものである。DCブロッキングキャパシタ53は自然放出光から変換された電気信号のうち、直流成分をカット(遮断)するものであり、交流成分を出力する。増幅器54はDCブロッキングキャパシタ53からの交流成分を増幅するものである。
【0059】
本第7実施例のノイズ源の動作を説明する。自然放出光(ASE)は、図8中のパワースペクトルの様子55に示すように広い光周波数範囲に分布しており、瞬時瞬時の光周波数は確率的にしか決まらない。よって、図8中のパワースペクトルの様子56に示すように、その一部の帯域を狭帯域光バンドパスフィルタ51で取り出した光出力は、狭帯域光バンドパスフィルタ51の光周波数帯域内に自然放出光の光周波数がある場合はフィルタ出力として現れるが、狭帯域光バンドパスフィルタ51の光周波数帯域外の場合はフィルタ出力として現れず、フィルタ出力の有無は確率的にしか決まらない。このことは第6実施例と同様であり、フィルタ出力をフォトダイオード52で光電変換し、DCブロッキングキャパシタ53で交流成分を取り出すことにより、出力が不確定で変動するノイズ発生源が実現する。DCブロッキングキャパシタ53で取り出した交流成分の振幅が閾値判別に十分な大きさであれば、増幅器54は不要である。
【0060】
[第8実施例:反転器の構成1]
図9は本発明の第8実施例として反転器の構成を示している。図9の反転器はトランジスタ57と、抵抗58、59から構成されたものである。トランジスタ57のベースとコレクタにそれぞれ抵抗58、59が接続されている。ベースとエミッタ間に抵抗58を介して、デジタル信号発生器からのパタンの規則性が低いデジタル信号60が入力される。コレクタは、抵抗59を介してプルアップ電圧Vpullに接続されている。ベースの入力電圧VinがLow(0V)の場合は、トランジスタ57はオフ状態なので、出力電圧Voutはプルアップ電圧Vpullと同じである。ところが、ベースの入力電圧VinがHighになり、ベース‐エミッタ間電圧が0.6V以上になると、トランジスタ57はオン状態になり、出力電圧Voutはプルアップ電圧Low(0V)となって入力電圧の状態とは反転した状態になる。つまり、デジタル信号60に対してパタンが反転した反転パタン信号61が得られる。本発明では、このような電気的にパタンを反転する回路を使用することが可能である。
【0061】
[第9実施例:反転器の構成2]
図10は本発明の第9実施例として別の反転器の構成を示している。図10の反転器は、半導体光増幅器62とサーキュレータ63から構成されたものである。データ信号のパタンに変調された例えば波長λ1の光64と、CW光のままの波長λ2の光65のそれぞれを、互いに反対方向から半導体光増幅器62に入力すると、相互利得変調が起こり、データ信号のパタンを反転したパタンが波長λ2の光65に転写される。この反転パタンが転写された光66のみをサーキュレータ63を使って図示のように半導体光増幅器62から取り出すことにより、半導体光増幅器62とサーキュレータ63との組合せが、丁度、反転器の役割を果たすことになる。また、この組合せは、反転パタン信号で二つの光の一方を変調する光変調器としての役割も果たす。
【0062】
[第10実施例:具体的な光信号送信装置の構成例1]
図11は、本発明の第2実施例(図3)で示した光信号送信装置のより具体的な構成を示している。この光信号送信装置は、図11に示すように、第1のレーザダイオード(LD)67と、第2のレーザダイオード(LD)68と、第1の電気増幅器69と、第2の電気増幅器70と、デジタル信号発生器13と、反転器14と、波長多重カプラ71と、電界吸収型光変調器(EAM)72と、データ信号源17と、波長スプリッタ73と、光ファイバ遅延線74と、第1の光増幅器21と、第2の光増幅器22を有したものである。
【0063】
図11において、第1のレーザダイオード67は波長λ1のCW光(変調されていないパワーが一定の光)を発生し、これとは独立に、第2のレーザダイオード68は波長λ1とは異なる波長λ2のCW光を発生する。二つレーザダイオード67、68は同じパワーのCW光を発生するようにしている。デジタル信号発生器13はノイズを起源とするパタンの規則性が低いデジタル(二値)信号を発生するものとしている。反転器14はデジタル信号発生器13から出力されるデジタル信号を二分岐した一方の出力のパタンを反転して反転パタン信号を発生するためのものである。第1の電気増幅器69は、デジタル信号発生器13からのデジタル信号で第1のレーザダイオード67を直接変調するためのものであり、当該デジタル信号をレーザの直接変調が可能な出力レベルに増幅する。第2の電気増幅器70は、反転器14からの反転パタン信号で第2のレーザダイオード68を直接変調するためのものであり、当該反転パタン信号をレーザの直接変調が可能な出力レベルに増幅する。逆に、第1のレーザダイオード67を反転パタン信号で直接変調し、第2のレーザダイオード68をデジタル信号で直接変調しても良い。また、デジタル信号発生器13及び反転器14の出力振幅がレーザの直接変調が可能なレベルであれば、電気増幅器69、70は不要である。かくして、波長λ1の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタン信号のうち一方で変調されてなる第1の光と、波長λ2の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタンのうち他方で変調されてなる第2の光を生成するための1段目変調手段が構成される。波長多重カプラ71は変調された二つの光を合波するためのものであり、第1のレーザダイオード67及び第2のレーザダイオード68からそれぞれ出力される変調された二つの光を併せて、合波光として出力する。
【0064】
電界吸収型光変調器72は波長多重カプラ71で合波された合波光を一括してデータ信号で変調するものであり、2段目変調手段を構成する。データ信号源17は電界吸収型光変調器72にて変調に用いるデータ信号を発生するためのものであり、データ信号を電界吸収型光変調器72に送る。本第10実施例では、第2実施例(図3)で用いたマスタークロック23に代えて、データ信号源17をマスタークロックに兼任させ、データ信号源17からはデジタル信号発生器13にクロックを供給することで、パタンの規則性が低いデジタル信号とデータ信号源17からのデータ信号との間の同期を取るようにしている。波長スプリッタ73は電界吸収型光変調器72で一括変調された光信号を波長λ1の光信号と波長λ2の光信号に分波するものである(図1の光信号3、4参照)。
【0065】
ファイバ遅延線74は波長スプリッタ73で分波された波長λ1の光信号と波長λ2の光信号の遅延量を調整するものであり、二つの光信号の遅延量が揃うように調整している。一般に、遅延量の少ない方の光信号を遅延量の大きい光信号に合わせるようにファイバ遅延線74で調整する。
【0066】
第1の光増幅器21と第2の光増幅器22は波長スプリッタ73で分波された波長λ1の光信号と波長λ2の光信号を伝送路の異なる経路(図1の経路5A、5B参照)に出力するものであり、光信号出力手段を構成するとともに、波長λ1の光信号と波長λ2の光信号をそれぞれ伝送可能なパワーまで光増幅するものである。本例では、第2の光増幅器22をファイバ遅延線74の後段に設けているが、その前段に設けても良い。
【0067】
第2実施例と同様、波長分波後の二つの光信号のパワーが十分であれば、光増幅器21、22は不要である。また、二つの光信号の遅延量が揃うように光信号送信装置を調整しておくのが、製品としてはスマートであるが、必ずしもその必要はないので、ファイバ遅延線74を省略することもできる。いずれの場合も、光信号出力手段は二つの光信号を別々の経路に送出する機能を有するものであれば良い。
【0068】
本第10実施例の光信号送信装置の動作・作用は、第1実施例(図2)、第2実施例(図3)で説明したものと同様であり、第1のレーザダイオード67と第2のレーザダイオード68でそれぞれ変調された光を波長多重カプラ71にて合波すると、両レーザダイオード67、68に入力された変調波(パタンの規則性が低いデジタル信号とその反転パタン信号)が互いに反転関係にあることから、波長多重カプラ71の出力光はCW光のようにパワーが一定の光として出力される。この二波長からなるパワーが一定の合波光を、電界吸収型光変調器72を使ってデータ信号で一括変調すると、波長が一つのCW光を変調した場合と同様に、データ信号のパタンと同一の振幅変調パタン、つまりデータ信号が重畳された二波長の光信号が現れる。このデータ信号が重畳された二波長の光信号を波長スプリッタ73で波長λ1の光信号と波長λ2の光信号に分離することで、単独ではデータの復元が難しい二つの光信号を容易に生成することが可能となる。このようにして生成した波長λ1の光信号と波長λ2の光信号を必要に応じてファイバ遅延線74を使って遅延量を調整し、また、必要に応じて光増幅器21、22を使って伝送に適当なパワーに調整して、WDM(波長分割多重)ネットワークなどの一般的な多波長ファイバ伝送路の別々の経路でそれぞれ受信先まで伝送する。
【0069】
[第11実施例:具体的な光信号送信装置の構成例2]
図12は、本発明の第2実施例(図3)で示した光信号送信装置のより具体的な別の構成を示している。この光信号送信装置は、図12に示すように、第1のレーザダイオード(LD)67と、第2のレーザダイオード(LD)68と、デジタル信号発生器13と、波長多重カプラ71と、半導体光増幅器75と、可変遅延線76と、電界吸収型光変調器(EAM)72と、データ信号源17と、波長スプリッタ73と、光ファイバ遅延線74と、第1の光増幅器21と、第2の光増幅器22を有したものである。
【0070】
図12において、第1のレーザダイオード67は波長λ1のCW光(変調されていないパワーが一定の光)を発生し、これとは独立に、第2のレーザダイオード68は波長λ1とは異なる波長λ2のCW光を発生する。二つレーザダイオード67、68は同じパワーのCW光を発生するようにしている。デジタル信号発生器13はノイズを起源とするパタンの規則性が低いデジタル(二値)信号を発生するものとしており、このデジタル信号で第2のレーザダイオード68を直接変調している。逆に、第1のレーザダイオード67をデジタル信号で直接変調しても良い。波長多重カプラ71は変調された二つの光を合波するためのものであり、第1のレーザダイオード67から出力されるCW光及び第2のレーザダイオード68から出力される変調された光を併せて、合波光として半導体光増幅器75に出力する。半導体光増幅器75は合波光を入力し、第9実施例(図10)にて説明したように、相互利得変調によって、変調された光の反転パタンをCW光に転写するものである。かくして、波長λ1の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタン信号のうち一方で変調されてなる第1の光と、波長λ2の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタンのうち他方で変調されてなる第2の光を生成するための1段目変調手段が構成される。
【0071】
可変遅延線76は、電界吸収型光変調器72における変調タイミングを調整するためのものであり、半導体光増幅器75からの光と、データ信号との位相を揃えるために用いている。
【0072】
電界吸収型光変調器72は、デジタル信号で変調された光の反転パタンがCW光に転写されている半導体光増幅器75からの光を可変遅延線76から入力し、一括してデータ信号で変調するものであり、2段目変調手段を構成する。データ信号源17は電界吸収型光変調器72にて変調に用いるデータ信号を発生するためのものであり、データ信号を電界吸収型光変調器72に送る。本第11実施例では、データ信号源17をマスタークロックに兼任させ、データ信号源17からはデジタル信号発生器13にクロックを供給することで、パタンの規則性が低いデジタル信号とデータ信号源17からのデータ信号との間の同期を取るようにしている。波長スプリッタ73は電界吸収型光変調器72で一括変調された光信号を波長λ1の光信号と波長λ2の光信号に分波するものである(図1の光信号3、4参照)。
【0073】
ファイバ遅延線74は波長スプリッタ73で分波された波長λ1の光信号と波長λ2の光信号の遅延量を調整するものであり、二つの光信号の遅延量が揃うように調整している。一般に、遅延量の少ない方の光信号を遅延量の大きい光信号に合わせるようにファイバ遅延線74で調整する。
【0074】
第1の光増幅器21と第2の光増幅器22は波長スプリッタ73で分波された波長λ1の光信号と波長λ2の光信号を伝送路の異なる経路(図1の経路5A、5B参照)に出力するものであり、光信号出力手段を構成するとともに、波長λ1の光信号と波長λ2の光信号をそれぞれ伝送可能なパワーまで光増幅するものである。本例では、第2の光増幅器22をファイバ遅延線74の後段に設けているが、その前段に設けても良い。
【0075】
第2実施例と同様、波長分波後の二つの光信号のパワーが十分であれば、光増幅器21、22は不要である。また、二つの光信号の遅延量が揃うように光信号送信装置を調整しておくのが、製品としてはスマートであるが、必ずしもその必要はないので、ファイバ遅延線74を省略することもできる。いずれの場合も、光信号出力手段は二つの光信号を別々の経路に送出する機能を有するものであれば良い。また、本第11実施例では、デジタル信号発生器13からのデジタル信号で第1のレーザダイオード67(あるいは第2のレーザダイオード68)を直接変調するが、当該デジタル信号がレーザの直接変調が可能な出力レベルでない場合は、第10実施例(図11)と同様、電気増幅器によりデジタル信号を増幅して直接変調すると良い。
【0076】
本第11実施例の光信号送信装置の動作・作用を説明する。第2のレーザダイオード68をパタンの規則性が低いデジタル信号で直接変調し、これが出力する変調された光を波長多重カプラ71により第1のレーザダイオード67からのCW光と合波し、半導体光増幅器75に入力すると、相互利得変調により、デジタル信号で変調された光の反転パタンがCW光に転写し、両者が合波した光が半導体光変調器75から出力される。この際、デジタル信号で変調された光とその反転パタンが転写した光が互いに反転関係にあることから、半導体光増幅器75の出力光はCW光のようにパワーが一定の光として出力される。この二波長からなるパワーが一定の合波光を、電界吸収型光変調器72を使ってデータ信号で一括変調すると、波長が一つのCW光を変調した場合と同様に、データ信号のパタンと同一の振幅変調パタン、つまりデータ信号が重畳された二波長の光信号が現れる。このデータ信号が重畳された二波長の光信号を波長スプリッタ73で波長λ1の光信号と波長λ2の光信号に分離することで、単独ではデータの復元が難しい二つの光信号を容易に生成することが可能となる。このようにして生成した波長λ1の光信号と波長λ2の光信号を必要に応じてファイバ遅延線74を使って遅延量を調整し、また、必要に応じて光増幅器21、22を使って伝送に適当なパワーに調整して、WDM(波長分割多重)ネットワークなどの一般的な多波長ファイバ伝送路の別々の経路でそれぞれ受信先まで伝送する。
【0077】
本第11実施例では、レーザダイオードの直接変調や半導体光増幅器の相互利得変調を用いたコストのかかる変調器を1台にし、部品点数を抑えているので、コンパクトで経済的な光信号送信装置を実現することができる。
【0078】
上記の各実施例では、デジタル信号発生器13として、ノイズを起源とするパタンの規則性が低いデジタル信号を発生するものを説明したが、これに限らず、二値のデジタル信号を予測困難な程度でランダムに、規則性の低いパタンで発生するものであれば良い。
【0079】
以上説明した光信号送信装置と、異なる経路を持つ伝送路と、光信号受信装置を用いることにより、盗聴や改ざんなどに対するセキュリティが高く且つ安定した光信号送受信システムが実現する。なお、二つの光信号に対する遅延調整手段は光信号送信装置と光信号受信装置の両方に設けることが好ましいが、結果的に光信号受信装置側で二つの光信号が光信号送信装置側でデータ変調した時の位相状態に戻れば良いので、光信号送信装置と光信号受信装置の一方のみに遅延調整手段を設けても、あるいは、図1に示すように伝送路5の経路に遅延調整手段を設けても構わない。
【0080】
また、以上の説明から分かるように、送信側では、波長λ1の光及びこれとは異なる波長λ2の光を発生し、波長λ1の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタン信号とのうち一方で変調されてなる第1の光を生成し、波長λ2の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタンとのうち他方で変調されてなる第2の光を生成し、第1の光と第2の光を合波し、この合波光をデータ信号で変調し、変調された光信号を波長λ1の光信号と波長λ2の光信号に分波し、分波された波長λ1の光信号と波長λ2の光信号を伝送路の異なる経路に出力し、受信側では、異なる経路で伝送されてくる二つの光信号からデータ信号を復元し、復元されたデータ信号を解読することにより、盗聴や改ざんなどに対するセキュリティが安定且つ高い光通信方法を実現することができる。
【0081】
【発明の効果】
以上の説明したように、本発明によれば、光信号伝送における盗聴や改ざんなどからのセキュリティを安定且つ確実に高めることができ、しかも、伝送路は既存の多波長ネットワークファイバ網などを用いることができるので、これらで実現されていたバーチャルプライベートネットワーク(VPN)などの広域且つ秘匿性の高いサービスのセキュリティを更に高めることができる。
【図面の簡単な説明】
【図1】本発明によるデータ伝送技術と盗聴の困難さを示す図。
【図2】本発明の第1実施例(光信号送信装置の構成1)を示す図。
【図3】本発明の第2実施例(光信号送信装置の構成2)を示す図。
【図4】本発明の第3実施例(光信号受信装置の構成1)を示す図。
【図5】本発明の第4実施例(光信号受信装置の構成2)を示す図。
【図6】本発明の第5実施例(デジタル信号発生器の構成)を示す図。
【図7】本発明の第6実施例(ノイズ源の構成1)を示す図。
【図8】本発明の第7実施例(ノイズ源の構成2)を示す図。
【図9】本発明の第8実施例(反転器の構成1)を示す図。
【図10】本発明の第9実施例(反転器の構成2)を示す図。
【図11】本発明の第10実施例(具体的な光信号送信装置の構成例1)を示す図。
【図12】本発明の第11実施例(具体的な光信号送信装置の構成例2)を示す図。
【図13】従来の伝送技術とその盗聴の容易性を示す図。
【図14】従来の伝送技術として二波長発振リングレーザの構成を示す図。
【図15】従来の伝送技術として二波長発振リングレーザを光源に用いた光信号送信装置の構成を示す図。
【符号の説明】
1 光信号送信側
2 送信データ
3 波長λ1の光信号
4 波長λ2の光信号
5 伝送路
5A、5B 互いに異なる経路
6 光信号受信側
7 受信データ
8 第1の光源
9 第2の光源
10 第1の光変調器
11 第2の光変調器
12 ノイズ源
13 デジタル信号発生器
14 反転器
15 波長合波器
16 第3の光変調器
17 データ信号源
18 波長分波器
19 第1の遅延調整器(送信側)
20 第2の遅延調整器(送信側)
21 第1の光増幅器(送信側)
22 第2の光増幅器(送信側)
23 マスタークロック
24 タイミング表示
25 波長λ1の受信光信号
26 波長λ2の受信光信号
27 第1の遅延調整器(受信側)
28 第2の遅延調整器(受信側)
29 第1の光増幅器(受信側)
30 第2の光増幅器(受信側)
31 波長合波器(受信側)
32 受光器
33 識別再生器
34 タイミング抽出信号解析機
35 第1の受光器
36 第2の受光器
37 第1の識別再生器
38 第2の識別再生器
39 位相シフタ
40 加算器
41 バンドパスフィルタ
42 増幅器
43 データ判別器
44 外部信号源
45 低Q値正帰還増幅器
46 増幅器
47 帰還量調整器
48 バンドパスフィルタ
49 パワースペクトルの様子
50 自然放出光源
51 狭帯域光バンドパスフィルタ
52 フォトダイオード
53 DCブロッキングキャパシタ
54 増幅器
55 自然放出光のパワースペクトルの様子
56 狭帯域光バンドパスフィルタ通過後のパワースペルトルの様子
57 トランジスタ
58 抵抗
59 抵抗
60 デジタル信号
61 反転パタン信号
62 半導体光増幅器
63 サーキュレータ
64 波長λ1の光信号
65 波長λ2のCW光
66 反転パタンが転写した波長λ2の光信号
67 第1のレーザダイオード
68 第2のレーザダイオード
69 第1の電気増幅器
70 第2の電気増幅器
71 波長多重カプラ
72 電界吸収型光変調器
73 波長スプリッタ
74 ファイバ遅延線
75 半導体光増幅器
76 可変遅延線

Claims (20)

  1. 波長λ1の光を発生する第1光発生手段と、第1光発生手段で発生される光の波長λ1とは異なる波長λ2の光を発生する第2光発生手段と、第1光発生手段で発生される波長λ1の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタン信号のうち一方で変調されてなる第1の光と、第2光発生手段で発生される波長λ2の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタンのうち他方で変調されてなる第2の光を生成する1段目変調手段と、1段目変調手段で生成された第1の光と第2の光を合波する合波手段と、合波手段で合波された合波光をデータ信号で変調する2段目変調手段と、2段目変調手段で変調された光信号を波長λ1の光信号と波長λ2の光信号に分波する分波手段と、分波手段で分波された波長λ1の光信号と波長λ2の光信号を異なる経路に出力する光信号出力手段を有することを特徴とする光信号送信装置。
  2. 波長λ1の第1レーザダイオードと、波長λ1とは異なる波長λ2の第2レーザダイオードと、パタンの規則性が低いデジタル信号を発生し、該デジタル信号で第1レーザダイオードと第2レーザダイオードのうち一方を直接変調するためのデジタル信号発生手段と、デジタル信号発生手段で発生されるパタンの規則性が低いデジタル信号を分岐し、その一方のパタンを反転して反転パタン信号を発生し、該反転パタン信号で第1レーザダイオードと第2レーザダイオードのうち他方を直接変調するためのパタン反転手段と、第1レーザダイオードと第2レーザダイオードからの二つの変調された光を合波する合波手段と、合波手段で合波された合波光をデータ信号で変調する電界吸収型光変調手段と、電界吸収型光変調手段にデータ信号を送るデータ信号発生手段と、電界吸収型光変調手段で変調された光信号を波長λ1の光信号と波長λ2の光信号に分波するための分波手段と、分波手段で分波された波長λ1の光信号と波長λ2の光信号を異なる経路に出力するための光信号出力手段を有することを特徴とする光信号送信装置。
  3. 波長λ1の第1レーザダイオードと、波長λ1とは異なる波長λ2の第2レーザダイオードと、パタンの規則性が低いデジタル信号を発生し、該デジタル信号で第1レーザダイオードと第2レーザダイオードのうち一方を直接変調するためのデジタル信号発生手段と、第1レーザダイオードと第2レーザダイオードからの二つの光を合波するための合波手段と、合波手段で合波された合波光を入力し、変調された光の反転パタンを変調されていない光に相互利得変調により転写するための半導体光増幅手段と、半導体光増幅手段からの光をデータ信号で変調するための電界吸収型光変調手段と、電界吸収型光変調手段にデータ信号を送るデータ信号発生手段と、電界吸収型光変調手段で変調された光信号を波長λ1の光信号と波長λ2の光信号に分波するための分波手段と、分波手段で分波された波長λ1の光信号と波長λ2の光信号を異なる経路に出力するための光信号出力手段を有することを特徴とする光信号送信装置。
  4. 請求項1において、前記第1光発生手段と前記第2光発生手段は同じパワーで波長λ1の光と波長λ2の光を発生するものであることを特徴とする光信号送信装置。
  5. 請求項1または2または3において、前記パタンの規則性の低いデジタル信号と前記データ信号との間の同期をとる同期手段を有することを特徴とする光信号送信装置。
  6. 請求項1または2または3において、前記デジタル信号発生手段はパタンの規則性が低いデジタル信号をノイズを起源として発生するものであることを特徴とする光信号送信装置。
  7. 請求項6において、前記デジタル信号発生手段として、ノイズ発生手段と、ノイズ発生手段で発生されるノイズから必要な周波数帯域のノイズを取り出すフィルタ手段と、フィルタ手段で取り出されたノイズの振幅と閾値との大小関係を判別し、二値のデジタル信号を発生する判別手段を有することを特徴とする光信号送信装置。
  8. 請求項7において、前記ノイズ発生手段として、低いQ値を持つ正帰還増幅器と、この正帰還増幅器の出力周波数の一部を取り出すためのフィルタ手段を有することを特徴とする光信号送信装置。
  9. 請求項7において、前記ノイズ発生手段として、自然放出光発生源と、自然放出光発生源で発生される自然放出光の一部の光周波数成分を切り出すための光フィルタ手段と、光フィルタ手段で切り出された自然放出光を受光する受光手段と、受光手段の出力から直流成分を除去する直流成分除去手段を有することを特徴とする光信号送信装置。
  10. 請求項1または2または3において、分波後の前記二つの光信号間の遅延量を調整するための遅延調整手段を有すること、前記光信号出力手段が波長λ1の光信号と波長λ2の光信号をそれぞれ伝送可能なパワーまで増幅する光増幅器であることを特徴とする光信号送信装置。
  11. 請求項2において、前記第1レーザダイオードと第2レーザダイオードのうち一方と前記デジタル信号発生手段との間に直接変調のための第1電気増幅手段を有し、第1レーザダイオードと第2レーザダイオードのうち他方と前記パタン反転手段との間に直接変調するための第2電気増幅手段を有することを特徴とする光信号送信装置。
  12. 請求項3において、前記第1レーザダイオードと第2レーザダイオードのうち一方と前記デジタル信号発生手段との間に直接変調のための電気増幅手段を有することを特徴とする光信号送信装置。
  13. 請求項3において、前記半導体光増幅手段と前記電界吸収型光変調手段あるいは合波手段との間に電界吸収型変調手段における変調タイミングを調整するための可変遅延手段を有することを特徴とする光信号送信装置。
  14. 請求項1から13いずれかに記載の光信号送信装置から伝送されてくる二つの光信号を合波する合波手段と、合波手段で合波された光信号からデータ信号を復元するデータ信号復元手段と、データ信号復元手段で復元されたデータ信号を解読するデータ解読手段を有することを特徴とする光信号受信装置。
  15. 請求項1から13いずれかに記載の光信号送信装置から伝送されてくる二つの光信号を光学的に合波する合波手段と、合波手段で合波された光信号を電気信号に変換する光電気変換手段と、伝送で波形が乱れた光電気変換手段からの電気信号を再生するための再生識別手段と、再生識別手段で再生された電気信号からデータを解読するためのデータ解読手段を有することを特徴とする光信号受信装置。
  16. 請求項1から13いずれかに記載の光信号送信装置から伝送されてくる二つの光信号をそれぞれ電気信号に変換する光電気変換手段と、伝送で波形が乱れた光電気変換手段からのそれぞれの電気信号を再生するための再生識別手段と、再生識別手段からの二つの電気信号を電気的に合波する合波手段と、合波前の二つの電気信号間の位相を調整するための位相調整手段と、合波手段で合波されて再生されたデータ信号を解読するデータ解読手段を有することを特徴とする光信号受信装置。
  17. 請求項14または15または16において、伝送されてくる前記二つの光信号間の遅延をなくすための遅延調整手段を有することを特徴とする光信号受信装置。
  18. 請求項14または15または16において、伝送によるパワー損失を補うための光増幅手段を有することを特徴とする光信号受信装置。
  19. 請求項1から13いずれかに記載の光信号送信装置と、この光信号送信装置が送信する二つの光信号を別々の経路で伝送する伝送手段と、この伝送手段から二つの光信号を受信するための請求項14から18いずれかに記載の光信号受信装置を有することを特徴とする光信号送受信システム。
  20. 送信側では、波長λ1の光及びこれとは異なる波長λ2の光を発生し、波長λ1の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタン信号とのうち一方で変調されてなる第1の光を生成し、波長λ2の光がパタンの規則性が低いデジタル信号とこのデジタル信号のパタンが反転した反転パタンとのうち他方で変調されてなる第2の光を生成し、第1の光と第2の光を合波し、この合波光をデータ信号で変調し、変調された光信号を波長λ1の光信号と波長λ2の光信号に分波し、分波された波長λ1の光信号と波長λ2の光信号を伝送路の異なる経路に出力すること、
    受信側では、異なる経路で伝送されてくる二つの光信号からデータ信号を復元し、復元されたデータ信号を解読することを特徴とする光通信方法。
JP2003102427A 2003-04-07 2003-04-07 光信号送信装置、光信号受信装置、光信号送受信システム及び光通信方法 Expired - Fee Related JP3998143B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102427A JP3998143B2 (ja) 2003-04-07 2003-04-07 光信号送信装置、光信号受信装置、光信号送受信システム及び光通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102427A JP3998143B2 (ja) 2003-04-07 2003-04-07 光信号送信装置、光信号受信装置、光信号送受信システム及び光通信方法

Publications (2)

Publication Number Publication Date
JP2004312321A JP2004312321A (ja) 2004-11-04
JP3998143B2 true JP3998143B2 (ja) 2007-10-24

Family

ID=33465858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102427A Expired - Fee Related JP3998143B2 (ja) 2003-04-07 2003-04-07 光信号送信装置、光信号受信装置、光信号送受信システム及び光通信方法

Country Status (1)

Country Link
JP (1) JP3998143B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965944B2 (en) * 2007-05-18 2011-06-21 Corning Incorporated System for passive scrambling and unscrambling of an optical signal
CN110943778B (zh) 2018-09-25 2021-12-07 北京外号信息技术有限公司 光通信装置以及用于传输和接收信息的方法
CN114205069B (zh) * 2021-12-22 2024-01-26 杭州电子科技大学 具有随机密钥的相干高效光混沌通信系统
CN114884570B (zh) * 2022-06-16 2024-01-19 北京泛在云科技有限公司 一种光纤窃听检测方法及装置

Also Published As

Publication number Publication date
JP2004312321A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
US7917038B2 (en) Multimode optical transmission device
US8050564B2 (en) Coherent optical channel substitution
JP4632652B2 (ja) 量子暗号鍵配布システム及びそれに用いる同期方法
US20200389299A1 (en) Quantum security systems
Gleĭm et al. Sideband quantum communication at 1 Mbit/s on a metropolitan area network
US6466342B1 (en) Optical transmission system and method using an optical carrier drop/add transceiver
JP6379455B2 (ja) 周波数変調信号検出器及び光受信装置
JP3998143B2 (ja) 光信号送信装置、光信号受信装置、光信号送受信システム及び光通信方法
TW201019626A (en) Dual-service optical fiber access system
CN113422650A (zh) 一种多通道光跳频系统、信号加密方法和光通信设备
JP2004356996A (ja) 受信兼再送信機および送信兼再受信機からなる量子暗号通信システム及びそのタイミング信号作成法
WO2021206060A1 (ja) 信号処理装置
JP4575813B2 (ja) 秘密鍵配送装置および秘密鍵配送方法
US20050018271A1 (en) Apparatus for simultaneous OTDM demultiplexing, electrical clock recovery and optical clock generation, and optical clock recovery
Abbade et al. Double all-optical encryption of M-QAM signals based on spectrally sliced encoding keys
US9020339B2 (en) Optical transmission system and control method
JP5020999B2 (ja) 量子暗号通信装置および量子暗号通信方法
JP2004364033A (ja) 光多重伝送システム、光多重送信装置および光多重受信装置
JP2007096911A (ja) データ伝送方法及びシステム、光送信装置並びに光受信装置
JP2009503971A (ja) 光信号を受信する光伝送システムとデバイス
JP2004187205A (ja) 光パルス分離方法及び光パルス分離装置
JP2007088534A (ja) データ伝送方法及びシステム並びに光送信装置
JP2004343360A (ja) 光送信装置および光通信システム
JP4737225B2 (ja) 量子暗号鍵配布システム及びそれに用いる同期方法
JP3740537B2 (ja) クロック同期信号伝送システム、データ伝送システム及びこれらの方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080111

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20080507

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees