WO2006016579A1 - 基板の熱的性質判定方法及び熱処理条件の決定方法 - Google Patents

基板の熱的性質判定方法及び熱処理条件の決定方法 Download PDF

Info

Publication number
WO2006016579A1
WO2006016579A1 PCT/JP2005/014577 JP2005014577W WO2006016579A1 WO 2006016579 A1 WO2006016579 A1 WO 2006016579A1 JP 2005014577 W JP2005014577 W JP 2005014577W WO 2006016579 A1 WO2006016579 A1 WO 2006016579A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
lamp
substrate
temperature
temperature data
Prior art date
Application number
PCT/JP2005/014577
Other languages
English (en)
French (fr)
Inventor
Yoichiro Yasuda
Toshiyuki Tsukamoto
Masamori Sanaka
Hiroshi Asechi
Atsuhiro Ogura
Original Assignee
Applied Materials Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc. filed Critical Applied Materials Inc.
Priority to US11/573,257 priority Critical patent/US8308350B2/en
Publication of WO2006016579A1 publication Critical patent/WO2006016579A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Definitions

  • the present invention relates to a method for determining thermal properties of a substrate and a method for determining heat treatment conditions.
  • RTP Rapid Thermal Process
  • the rapid thermal processing apparatus used for RTP is, for example, a lamp for heating a substrate, a temperature sensor (for example, a pie meter) disposed opposite to the lamp, and a substrate between the lamp and the temperature sensor. And an edge ring for holding.
  • a temperature sensor for example, a pie meter
  • the temperature sensor detects radiant heat from the substrate.
  • Patent Document 1 Japanese Patent No. 2711239
  • Patent Document 2 Japanese Translation of Special Publication 2002-510153
  • an open loop step for raising the temperature of the substrate by open loop control and a closed loop step for raising and maintaining the temperature of the substrate by closed loop control can be sequentially performed.
  • the substrate is heated from 250 ° C. to 400 ° C. by irradiating the substrate with infrared rays for about 30 seconds using a lamp.
  • the lamp power (power applied to the lamp) is a constant value that has been optimized in advance in order to raise the temperature of the substrate uniformly and rapidly while preventing warping and cracking of the substrate due to thermal stress. Is maintained. Such warping and cracking of the substrate is more prominent in a 300 mm ⁇ silicon wafer than in a 200 mm ⁇ silicon wafer.
  • the temperature sensor force is compared with the temperature data output sequentially and the preset temperature, and the lamp power is automatically calculated using the comparison result. adjust.
  • the optimum value of the lamp power in the open loop step depends on the thermal properties of the substrate (for example, infrared absorption characteristics, infrared transmission characteristics, etc.). However, it is difficult to determine the thermal properties of the substrate, and the optimum value of lamp power is usually determined by trial and error.
  • an object of the present invention is to provide a method capable of determining the thermal properties of a substrate in a short time and a method capable of determining the heat treatment conditions of the open loop step.
  • a method for determining a thermal property of a substrate includes a lamp for heating a substrate and a rapid thermal processing apparatus provided with a temperature sensor arranged to face the lamp.
  • the temperature sensor force is obtained by applying pulse heating to the substrate placed between the temperature sensor and the temperature sensor using a lamp, and the thermal properties of the substrate are determined using the temperature data.
  • pulse heating refers to, for example, heating with an energy beam whose energy amount repeatedly changes in a pulse shape. same as below.
  • the substrate When the energy beam emitted from the lamp is absorbed by the substrate, the substrate is heated.
  • the temperature sensor detects radiant heat from the heated substrate and sequentially outputs temperature data.
  • the temperature sensor when part of the energy rays passes through the substrate, the temperature sensor also detects the energy rays that have passed through the substrate.
  • the substrate thermal property determination method of the present invention since the obtained temperature data includes information on the thermal property of the substrate! /, The thermal property of the substrate can be determined in a short time. Furthermore, since pulse heating is used, heating can be performed in a short time while sufficiently suppressing warpage or cracking of the substrate.
  • the pulse width in the pulse heating is preferably 1 second or more.
  • the substrate can be heated in a short time by pulse heating.
  • pulse width means, for example, the time from the half-value point at the leading edge of the pulse to the half-value point at the trailing edge. same as below.
  • the pulse width in pulse heating is preferably 10 seconds or less. In this case, since the rapid temperature rise of the substrate can be suppressed, warping and cracking of the substrate can be suppressed.
  • the method for determining the heat treatment condition of the present invention is arranged between a lamp and a temperature sensor in a rapid heat treatment apparatus including a lamp for heating a substrate and a temperature sensor arranged to face the lamp. This is a method for determining the heat treatment conditions of an open loop step in which the temperature of a substrate is raised by open loop control. The temperature is output sequentially from the temperature sensor while performing pulse heating on the substrate using a lamp in a rapid heat treatment apparatus. And a step of obtaining data and a step of determining heat treatment conditions of the open loop step using the temperature data.
  • the substrate When the energy beam emitted from the lamp is absorbed by the substrate, the substrate is heated.
  • the temperature sensor detects radiant heat from the heated substrate and sequentially outputs temperature data.
  • the temperature sensor also detects the energy rays that have passed through the substrate.
  • the obtained temperature data includes information on the thermal properties of the substrate, so the optimum open loop step heat treatment conditions depending on the thermal properties of the substrate can be determined in a short time. can do.
  • pulse heating it is possible to heat the substrate in a short time while sufficiently suppressing warpage or cracking of the substrate.
  • the pulse width in the pulse heating is preferably 1 second or more.
  • the substrate can be heated in a short time by pulse heating.
  • the pulse width in the pulse heating is preferably 10 seconds or less. In this case, since the rapid temperature rise of the substrate can be suppressed, warping and cracking of the substrate can be suppressed.
  • the step of determining the heat treatment condition of the open loop step it is preferable to determine the heat treatment condition of the open loop step using the maximum value and the minimum value of the temperature data in the temperature data measurement period. By paying attention to the maximum and minimum values, the heat treatment conditions for the open loop step can be easily determined.
  • the heat treatment conditions for the open loop step include a first heat treatment condition for raising the temperature of the first region including the central portion of the substrate, and a thermal property that surrounds the central portion of the substrate and is different from that of the first region. And a second heat treatment condition for raising the temperature of the second region of the substrate having heat treatment, and the step of determining the heat treatment condition of the open loop step is performed using temperature data.
  • the in-plane temperature difference of the substrate can be reduced as compared with the case where the first region and the second region of the substrate are heated under the same heat treatment condition.
  • the first heat treatment condition is determined using the maximum value and the minimum value of the temperature data in the temperature data measurement period, and in the step of calculating the ratio, the temperature data It is preferable to calculate the ratio using the maximum and minimum values of the temperature data during the measurement period.
  • the first heat treatment condition can be easily determined by focusing on the maximum and minimum values.
  • FIG. 1 is a perspective view showing an example of a rapid thermal processing apparatus (RTP apparatus).
  • RTP apparatus rapid thermal processing apparatus
  • FIG. 2 is a partially enlarged sectional view of the rapid thermal processing apparatus of FIG.
  • FIG. 3 is a plan view of a wafer that also shows the positional force of a lamp group.
  • FIG. 4 is a sectional view taken along arrows IV-IV shown in FIG.
  • FIG. 5 is a plan view of a lamp group viewed from the wafer position.
  • FIG. 6 is a graph showing an example of temperature data sequentially output from a temperature sensor when a rapid thermal processing is performed on a wafer using a rapid thermal processing apparatus.
  • FIG. 7 is a graph showing an example of temperature data that is sequentially output from the temperature sensor force when wafers having different thermal properties are subjected to nozzle heating.
  • FIG. 8 is a graph showing the relationship between (Kab) ⁇ (Tlmin) and central lamp power G1.
  • FIG. 9 is a graph showing the relationship between the temperature rise time and the in-plane temperature difference ⁇ .
  • FIG. 10 is a graph showing the relationship between the center lamp power G1 (%) and the peripheral lamp power G2 (%).
  • FIG. 11 is a graph showing the relationship between (Kab) ⁇ (Tlmin) and the ratio G2ZG1.
  • FIG. 12 is a flowchart showing an example of a heat treatment condition determination method according to the present embodiment.
  • FIG. 13 is a graph showing an example of temperature data that is sequentially output from the temperature sensor force when wafers having different thermal properties are subjected to nozzle heating.
  • FIG. 14 is a graph showing an example of temperature data in which the temperature sensor force is also sequentially output when pulse heating is performed on the bare silicon wafer.
  • FIG. 15 is a diagram showing the relationship between the center lamp power G1 (%) and the peripheral lamp power G2 (%).
  • Fig.16 shows the time and ratio required to raise the temperature data that can obtain the temperature sensor force when the wafer is continuously heated from 250 ° C to 380 ° C.
  • Fig. 16 (B) shows the relationship between the pulse cycle and the ratio G2 required for the temperature data to obtain the temperature sensor force when the wafer is subjected to pulse heating to reach a predetermined temperature. It is a graph which shows the relationship with ZG1.
  • FIG. 1 is a perspective view (partial sectional view) showing an example of a rapid thermal processing apparatus
  • FIG. 2 is a partially enlarged sectional view of the rapid thermal processing apparatus of FIG.
  • the rapid thermal processing apparatus 1 is, for example, a single wafer rapid thermal processing apparatus for performing thermal processing while controlling the temperature of a wafer W (substrate) such as a silicon wafer.
  • the rapid thermal processing apparatus 1 is used for manufacturing semiconductor devices such as LSI, for example.
  • the rapid thermal processing apparatus 1 includes a chamber 2 composed of a base portion 2a, a side wall portion 2b, and a lid portion 2c.
  • a substrate support 3 such as a susceptor that supports the wafer W is installed in the chamber 2.
  • the substrate support unit 3 includes a force with a cylindrical frame 5 rotatably attached to the base unit 2a via a bearing 4 or a magnetic levitation rotation mechanism, and an edge ring 6 provided at the upper end of the cylindrical frame 5.
  • a supporting step 6 a for supporting the edge of the wafer W is provided on the inner edge of the edge ring 6.
  • a closed surface surrounded by the base portion 2a, the substrate support portion 3, and the wafer W is provided on the back surface side of the wafer W.
  • a space Sa is formed.
  • a lift mechanism 7 is provided below the base portion 2a for supporting the wafer W, which has been transferred into the chamber 2 by a transfer robot (not shown), on the substrate support portion 3.
  • the lift mechanism 7 has a plurality of (for example, three) support pins 8 that lift the wafer W through the base portion 2a.
  • the side wall 2b of the chamber 2 is provided with a gas supply port 12 and a gas discharge port 13 facing each other.
  • the gas supply port 12 is supplied with gas for supplying N gas Gp as a process gas to the outside of the closed space Sa in the chamber 2, that is, the space Sb on the front side of the wafer W.
  • a system (not shown) is connected.
  • process gas in addition to N gas, O gas, N
  • Examples include H gas, NO gas, N 2 O gas, and H gas.
  • the gas outlet 13 is empty.
  • a gas exhaust system (not shown) for exhausting the gas in Sb to the outside of chamber 2 is connected.
  • a lamp group 9G including a plurality of lamps 9 for heating the wafer W supported by the substrate support 3 is disposed.
  • the lamp 9 for example, a norologen lamp is preferably used.
  • the lid portion 2c is provided with a circular lamp window portion Lw, and energy rays (light) such as infrared rays emitted from the lamp 9 pass through the lamp window portion Lw and reach the wafer W. .
  • energy rays are absorbed by woofer W, the temperature of woofer W rises.
  • the radiant heat from the wafer W or the wafer W is transmitted through the base 2a.
  • Temperature sensor such as a pie meter for optically detecting the energy beam
  • the lamp group 9G and the temperature sensors ⁇ ⁇ 1 to ⁇ 7 are arranged to face each other, and the wafer W is arranged between the lamp group 9G and the temperature sensors ⁇ 1 to ⁇ 7!
  • the temperature sensors ⁇ 1 to ⁇ 7 include a part of the center and the periphery of the circular plate 11 surrounded by the substrate support portion 3 in the base portion 2a and have a predetermined angle (for example, 90 degrees). It is built into the sensor installation area that has an approximately fan shape.
  • the temperature sensors T1 to T7 are arranged in order toward the peripheral edge of the central force of the circular plate 11.
  • the above-described closed space Sa is optically a completely closed space, and temperature detection using the closed space Sa by the optical temperature sensors ⁇ 1 to ⁇ 7 is realized without any trouble.
  • a temperature controller 20 that collects temperature data sequentially output from the temperature sensors ⁇ 1 to ⁇ 7, respectively, is optically connected to the temperature sensors T1 to T7.
  • a lamp driver 22 for driving the lamp group 9G is connected to the temperature controller 20.
  • the temperature data obtained from the temperature sensors ⁇ 1 to ⁇ 7 is used as an index of the temperature of the wafer W.
  • the temperature controller 20 determines the optimum value of the power applied to the lamp 9 (hereinafter referred to as lamp power). Thereafter, a signal is output from the temperature controller 20 to the lamp driver 22.
  • energy rays having a desired energy amount are emitted from the lamp 9 toward Weno and W.
  • FIG. 3 is a plan view of the wafer W viewed from the position of the lamp group 9G
  • FIG. 4 is a cross-sectional view taken along arrows IV-IV shown in FIG.
  • a part of the wafer W is displayed for the sake of convenience in order to display a part of the supporting step 6 a of the edge ring 6.
  • the outer diameter d of the edge ring 6 is larger than the diameter d of Ueno, W. Wafer W is supported by support step 6a
  • Wafer W includes a central portion b (first region) and a peripheral portion b (second region) surrounding the central portion b.
  • peripheral edge b 2 of the wafer W is in contact with the supporting step 6 a of the edge ring 6, the thermal properties of the peripheral edge b are in addition to the thermal properties of the wafer W.
  • FIG. 5 is a plan view of the lamp group 9G viewed from the position of the wafer W.
  • the lamps 9 constituting the lamp group 9G are arranged in a her cam shape.
  • the lamp 9 in the central region a of the lamp group 9G is disposed to face the central portion b (see FIG. 3) of the wafer W, and heats the central portion b.
  • the lamp 9 in the area a surrounding the central area a of the lamp group 9G is the peripheral edge b of the wafer W (see Fig. 3).
  • a peripheral region a is provided around the region a.
  • FIG. 6 is a graph showing an example of temperature data sequentially output from the temperature sensors T1 to T7 when the wafer W is subjected to rapid thermal processing in the rapid thermal processing apparatus 1 described above.
  • the vertical axis of the graph shows the temperature data (° C) output from temperature sensors ⁇ 1 to ⁇ 7
  • the horizontal axis of the graph shows the elapsed time (seconds).
  • waveforms U1 to U7 represent temperature data sequentially output from the temperature sensors T1 to T7, respectively.
  • an open loop step L1 for performing open loop control and a closed loop step L2 for performing closed loop control are performed.
  • a wafer (especially bare silicon wafer) based on silicon (Si) is likely to transmit energy rays when its temperature is less than 400 ° C.
  • the temperature sensors T1 to T7 also detect energy rays transmitted through the wafer W. Therefore, the temperature data sequentially output from the temperature sensors ⁇ 1 to ⁇ 7 does not necessarily reflect the temperature of the wafer W. Therefore, first, the wafer W is heated to about 400 ° C in the open loop step L1!
  • the temperature of the wafer W is raised to about 1000 ° C in the closed loop step L2.
  • the conditions for rapid thermal processing are pressure: 760 X 133. 322 Pa (760 Torr), O gas flow rate: 20 slm, temperature rise time: 60 seconds.
  • slm means 0 ° C, latm
  • the open loop step L1 is! /, And the central region a shown in FIG. Lamp power of each lamp 9 in the center lamp power Gl, run of each lamp 9 in area a
  • the lamp power is the peripheral lamp power G2.
  • Lamp 9 in central area a and lamp in area a are the lamps 9 in central area a and lamp in area a
  • the in-plane temperature difference ⁇ (hereinafter simply referred to as the in-plane temperature difference ⁇ ) of Ueno and W when switching from the open loop step L1 to the closed loop step L2 can be reduced.
  • the in-plane temperature difference ⁇ is expressed, for example, by the difference between the temperature data obtained from the temperature sensor T1 and the temperature data obtained from the temperature sensor T7.
  • the in-plane temperature difference ⁇ can be further reduced by optimizing the relationship between the central lamp power G1 and the peripheral lamp power G2 according to the wafer type. In the example shown in Fig. 6, the central lamp power G1 in the open loop step L1 is 24% of full power and the peripheral lamp power G2 is 33% of full power.
  • the lamp power G3 is fixed at 5% of the full power.
  • the substrate thermal property determination method according to this embodiment is preferably implemented using the rapid thermal processing apparatus 1.
  • the method for determining the heat treatment condition according to the present embodiment is preferably implemented using the rapid thermal processing apparatus 1 prior to the rapid thermal treatment including the open loop step L1 and the closed loop step L2 described above.
  • a wafer W is placed between the lamp group 9G and the temperature sensors T1 to T7. Subsequently, temperature data sequentially output from the temperature sensors ⁇ 1 to ⁇ 7 are obtained while pulse heating is performed on the wafer W using the lamp 9 of the lamp group 9G.
  • pulse heating is applied to the wafer W
  • energy rays emitted from the lamp 9 are absorbed by the wafer W.
  • the temperature sensors ⁇ 1 to ⁇ 7 detect radiant heat from the heated wafer W and sequentially output temperature data to the temperature controller 20. When part of the energy rays passes through the wafer W, the temperature sensors ⁇ 1 to ⁇ 7 also detect the energy rays that have passed through the wafer W.
  • FIG. 7 is a graph showing an example of temperature data sequentially output from the temperature sensor T1 when pulse heating is performed on the wafers WA and WH having different thermal properties.
  • the wafers WA and WH are specific examples of the wafer W described above.
  • one vertical axis of the graph shows the temperature data (° C) sequentially output from the temperature sensor T1
  • the other vertical axis shows the lamp power (%) when the full power of the lamp 9 is 100%.
  • the horizontal axis of the graph shows elapsed time (seconds).
  • Waveforms UA and UH in the graph indicate temperature data obtained when wafers WA and WH are used, respectively.
  • Waveform RP in the graph indicates the change in lamp power with time and depicts a waveform in which multiple pulses are repeated.
  • a plurality of heating periods HS and a plurality of cooling periods CS are alternately repeated, and one pulse is positioned in one heating period HS.
  • the cooling period CS sufficiently prevents the wafers WA and WH from warping or cracking.
  • the heating period HS and the cooling period CS are each 4 seconds.
  • the heating period HS and cooling period CS may be the same or different from each other.
  • the heating period HS in the central area a and area a of the lamp group 9G shown in FIG.
  • Lamp 9 lamp power is, for example, 19% of full power.
  • the lamp power of lamps 9 in 3 is, for example, 5% of full power.
  • the lamp power of the lamps 9 in the central area a, the area a, and the peripheral area a is, for example,
  • the temperature data represented by the waveforms UA and UH includes information on the thermal properties of the wafers WA and WH, respectively. Therefore, using the temperature data represented by the waveforms UA and UH, the thermal properties of the wafers WA and WH can be easily determined in a short time as follows, for example. Further, in the case of pulse heating, warpage and cracking of the wafers WA and WH can be sufficiently suppressed.
  • Fig. 7 shows part of the temperature data measurement period (elapsed time: 750 to 770 seconds) represented by waveforms UA and UH. During the measurement period, as shown in Fig. 7, the maximum and minimum values of temperature data are saturated.
  • “measurement period” means a period in which the difference between the minimum values of adjacent temperature data is within ⁇ 0.2 ° C.
  • the maximum value Tlmax of the temperature data in the measurement period of the temperature data represented by the waveforms UA and UH is about 390 ° C
  • the minimum value Tlmin is about 370 ° C.
  • the maximum value Tlmax and the minimum value Tlmin are large, it can be seen that the wafer is likely to be warmed by absorbing the energy line.
  • the difference ⁇ 1 is large, it can be divided that the wafer is easy to transmit energy rays.
  • the temperature data of the waveform UA in the heating period HS increases linearly, and the temperature data of the waveform UA in the cooling period CS decreases linearly.
  • the temperature data of the waveform UH during the heating period HS rises so as to protrude upward, and the temperature data of the waveform UH during the cooling period CS decreases so as to protrude downward. From these, it can be seen that the wafer WH is more likely to transmit energy rays than the wafer WA.
  • the thermal properties of the wafer can be easily determined in a short time using the temperature data obtained by performing the pulse heating. .
  • warpage or cracking of the wafer can be sufficiently suppressed.
  • the open loop step L1 shown in FIG. 6 is performed.
  • the center lamp power G1 and the peripheral lamp power G2 of the lamp 9 in the open loop step L1 can be easily determined in a short time as will be described later. .
  • warpage and cracking of the wafer W can be sufficiently suppressed.
  • temperature data represented by waveforms UA and UH is obtained by pulse heating as shown in FIG.
  • Tmax and minimum value Tmin of the temperature data during the temperature data measurement period the central The pump power Gl and the peripheral lamp power G2 can be determined. The details will be described below.
  • the absorption correction coefficient K expressed by the following equation (1) Define ab.
  • FIG. 8 is a graph showing the relationship between (Kab) ⁇ (Tlmin) and the central lamp power G1.
  • the vertical axis of the graph indicates the central lamp power G1 (%)
  • the horizontal axis of the graph indicates (Kab) ⁇ (Tim in) (K).
  • the approximate straight lines L10, L15, L20, L25, L30, L35, and L40i in the graph are specific examples of the linear function expression expressed by the above equation (2).
  • the approximate straight lines L10, L15, L20, L2 5, L30, L35, and L40 are respectively the time required to raise the temperature data, which is also output from the temperature sensor T1 force, to 250 ° C and 400 ° C in the open loop step ( This corresponds to the case where the temperature rise time is 10 seconds, 15 seconds, 25 seconds, 30 seconds, 35 seconds, and 40 seconds.
  • the approximate line ⁇ 0, L15, L20, L25, L30, L35, L40 is obtained as follows.
  • the absorption correction coefficient Kab and the minimum value Tlmin are calculated from the temperature data sequentially output from the temperature sensor T1 when the wafers WA to WH and WJ having different thermal properties are each subjected to pulse heating.
  • the center lamp power G1 which is the temperature rise time force S10 seconds, 15 seconds, 25 seconds, 30 seconds, 35 seconds, and 40 seconds, is experimentally obtained. Plotting the central lamp power G1 against (Kab) ⁇ (Tlmin) gives the graph in Fig. 8.
  • (Kab) ⁇ (Tlmin) can be calculated from temperature data obtained by pulse heating for a wafer having unknown thermal properties.
  • the central lamp power G1 can be easily determined in a short time by using the approximate lines L10, L15, L20, L25, L30, L35, and L40 corresponding to the temperature rise time. For example, if the temperature rise time is set to 30 seconds, the temperature data obtained by performing the wafer heating on the wafer is also calculated (Kab) ⁇ (Tlmin) and the approximate straight line L30. Lamp power G1 is determined.
  • FIG. 9 is a graph showing the relationship between the temperature rise time and the in-plane temperature difference ⁇ .
  • the vertical axis of the dull indicates the in-plane temperature difference ⁇ (°, and the horizontal axis of the graph indicates the temperature rise time (seconds).
  • the solid lines L50 to L60 in the graph have different thermal properties.
  • the temperature rise time and in-plane temperature difference ⁇ when rapid thermal processing is applied to wafers WA to WK are shown, and the optimum value for the temperature rise time is about 25 seconds to about 30 seconds (area RT).
  • the ratio G 2ZG1 that minimizes the in-plane temperature difference ⁇ is calculated separately from the determination of the central lamp power G1.
  • the ratio G2ZG1 will be described with reference to FIGS. 10 (A) and 10 (B).
  • FIG. 10 (A) and FIG. 10 (B) are diagrams showing the relationship between the center lamp power G1 (%) and the peripheral lamp power G2 (%) in the open loop step.
  • the heat treatment conditions in the open loop step are, for example, pressure:
  • FIG. 10 (A) shows that for wafers WA to WK having different thermal properties, the central lamp power G1 is changed within the range of 18 to 30% of the full power, and the respective central lamp power G1 is changed.
  • the experimental result of the peripheral lamp power G2 that minimizes the in-plane temperature difference ⁇ is shown.
  • FIG. 10 (B) shows the ratio G2ZG1 in which the experimental result force of FIG. 10 (A) was also obtained.
  • the ratio G2ZG1 is a substantially constant value even if the central lamp power G1 changes, it is confirmed that the ratio G2ZG1 is an eigenvalue of the wafer.
  • an average value can be used as the value of the ratio G2ZG1.
  • wafers can be classified by thermal properties. Specifically, for example, it can be seen that the wafer is easily heated when the ratio G2ZG1 is large. On the other hand, if the ratio G2ZG1 is small, it can be seen that the wafer is difficult to warm.
  • FIG. 11 (A) and FIG. 11 (B) are graphs showing the relationship between (Kab) ⁇ (Tlmin) and the ratio G2ZG1.
  • the vertical axis of the graph indicates the ratio G 2ZG1
  • the horizontal axis of the graph indicates (Kab) ⁇ (Tlmin) (K).
  • the solid line LE shows the result when pulse heating is performed with the lamp 9 having a lamp power of 19% (low power) of the full power.
  • the lamp power of the lamp group 9G shown in FIG. 11 (A) shows the lamp power of the lamp group 9G shown in FIG.
  • the lamp power of the lamp 9 in the peripheral area a is, for example,
  • the solid line HE indicates the result when pulse heating is performed with the lamp power of the lamp 9 set to 23% (high power) of the full power.
  • the lamp power of the lamp group 9G shown in FIG. 11 (B) the lamp power of the lamp group 9G shown in FIG.
  • the deviation is 23% of the full power, and the lamp power of the lamp 9 in the peripheral area a is, for example,
  • (Kab) ⁇ (Tlmin) can be calculated from temperature data obtained when pulse heating is performed at low power or high power for a wafer having unknown thermal properties. Substituting this (Kab) ⁇ (Tlmin) into the functional equation represented by the solid line LE in Fig. 11 (A) or the solid line HE in Fig. 11 (B), the ratio G2ZG1 can be calculated.
  • the peripheral lamp power G2 is determined using the central lamp power G1 and the ratio G2ZG1 obtained as described above.
  • FIG. 12 is a flowchart showing an example of a heat treatment condition determination method according to the present embodiment.
  • pulse heating is performed on the wafer in the rapid thermal processing apparatus 1 by setting the lamp power of the lamp 9 to, for example, 19% (low power) of the full power (process Sl).
  • the absorption correction coefficient Kab and the minimum value Tlmin are calculated from the temperature data sequentially output from the temperature sensor T1 (step S2). If the minimum value Tlmin does not exceed the detection limit value of the temperature sensor T1, for example 250 ° C, pulse heating is applied to the wafer by setting the lamp power of lamp 9 to 23% of the full power (high power), for example ( Step S3).
  • the absorption correction coefficient Kab and the minimum value Tlmin are calculated from the temperature data obtained at this time (step S4).
  • step S5a the ratio G2ZG1 is calculated using the obtained (Kab) ⁇ (Tlmin) and the solid line LE in FIG. 11 (A) or the solid line HE in FIG. 11 (B) (step S5b).
  • step S6 the peripheral lamp power G2 is determined using the central lamp power G1 and the ratio G2ZG1 (step S6).
  • the pulse width in pulse heating is preferably 1 second or more.
  • the wafer can be heated in a short time by pulse heating.
  • the thermal properties of the wafer can be easily determined in a short time, and the lamp power of the open loop step L1 can be determined.
  • the pulse width is preferably 10 seconds or less. In this case, since a rapid temperature rise of the wafer can be suppressed, warpage and cracking of the wafer can be suppressed. In one embodiment, the pulse width can be, for example, 4 seconds.
  • the pulse width corresponds to the heating period HS in Figure 7. [0067] [Second Embodiment]
  • the substrate thermal property determination method according to this embodiment is preferably implemented using the rapid thermal processing apparatus 1.
  • the method for determining the heat treatment condition according to the present embodiment is preferably implemented using the rapid thermal processing apparatus 1 prior to the rapid thermal treatment including the open loop step L1 and the closed loop step L2 described above.
  • FIG. 13 is a graph showing an example of temperature data sequentially output from the temperature sensor T1 when pulse heating is performed on the wafers W1 to W4 having different thermal properties.
  • one vertical axis of the graph shows temperature data (° C) sequentially output from the temperature sensor T1
  • the other vertical axis shows lamp power (%) when the full power of lamp 9 is 100%.
  • the horizontal axis of the graph indicates elapsed time (seconds).
  • the lamp power of the lamp 9 in the peripheral area a is 24% of the power, for example.
  • the pulse width is 4 seconds, for example.
  • Other conditions during pulse heating are pressure: 10 X 133. 322 Pa (10 Torr), N gas flow rate: lOslm.
  • Waveforms U1 to U4 in the graph indicate temperature data when wafers W1 to W4 are used, respectively.
  • Wafer W1 is a Si wafer with a 9nm thick SiO film, and the emissivity E is 0.
  • Wafer W2 is a Si wafer with a 170nm thick SiO film, and the emissivity E
  • Wafer W3 is a Si wafer provided with a SiN film with a thickness of 240 nm.
  • Wafer W4 is a Si wafer with a 120 nm thick Si N film.
  • Waveform RP in the graph shows the change in lamp power with time and depicts a waveform in which multiple pulses are repeated.
  • the Si wafer with the Si N film is easier to warm.
  • FIG. 14 is a graph showing an example of temperature data sequentially output from the temperature sensor T1 when pulse heating is performed on the bare silicon wafer. If the temperature data is below 300 ° C, the temperature Compared to the case where the temperature data exceeds 300 ° C, the difference ⁇ 2 between the maximum and minimum values of adjacent temperature data is large. This shows that the effect of the energy line passing through the wafer is large when the temperature data is below 300 ° C! /
  • the thermal properties of the wafer can be easily determined in a short time.
  • the lamp power in the open loop step can be determined easily in a short time.
  • This lamp power is, for example, the lamp region of the lamp group 9G shown in FIG.
  • Lamp power of lamp 9 in central area a and lamp power of lamp 9 in area a Indicates one. Lamp power of lamp 9 in central area a and lamp power of lamp 9 in area a
  • One may be the same or different from each other. Furthermore, since pulse heating is used, heating can be performed in a short time while sufficiently suppressing warpage or cracking of the wafer.
  • FIG. 15 (A) is a diagram showing the relationship between the central lamp power G1 and the peripheral lamp power G2 for the wafers W5 to W9 having different thermal properties.
  • FIG. 15 (A) shows the peripheral lamp power G2 that minimizes the in-plane temperature difference ⁇ for each central lamp power G1.
  • FIG. 15B shows the ratio G2ZG1 for wafers W5 to W9. From Fig. 15 (A) and Fig. 15 (B), it is confirmed that the ratio G2ZG1 is the eigenvalue of the wafer.
  • Figure 16 (A) shows the time (seconds) required to raise the temperature data obtained from temperature sensor T1 from 250 ° C to 380 ° C when wafers W5 to W9 are continuously heated. And a graph showing the relationship with the ratio G2ZG1. In this continuous heating, the lamp power of the lamp group 9G shown in FIG. 5 is set to 20% of the full power.
  • the ratio of the wafer is calculated from the time required to raise the temperature data obtained from the temperature sensor T1 when the wafer is continuously heated from 250 ° C to 380 ° C.
  • G2ZG1 can be calculated.
  • FIG. 16 (B) shows the cycle (times) of pulses necessary for the temperature data obtained from the temperature sensor T1 to reach a predetermined temperature when pulse heating is performed on the wafers W5 to W9. It is a graph which shows the relationship with ratio G2ZG1. During the heating period of this pulse heating treatment, the lamp power of the lamp group 9G shown in FIG.
  • the ratio G2ZG1 of the wafer can be calculated from the pulse cycle necessary for the temperature data obtained from the temperature sensor Tl to reach a predetermined temperature.
  • the ratio G2ZG1 may be calculated before the central lamp power G1 is determined, or the ratio G2ZG1 may be calculated after the central lamp power G1 is determined. Also, determination of the central lamp power G1 and calculation of the ratio G2ZG1 may be performed simultaneously.
  • thermal properties of the substrate can be determined in a short time and heat treatment conditions for the open loop step can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】 短時間で基板の熱的性質を判定できる方法及びオープンループステップの熱処理条件を決定できる方法を提供する。 【解決手段】 本発明の基板の熱的性質判定方法によれば、ウェハWを加熱するためのランプ9とランプ9に対向配置された温度センサT1~T7とを備えた急速熱処理装置1内で、ランプ9と温度センサT1~T7との間に配置されたウェハWにランプ9を用いてパルス加熱を施しながら、温度センサT1~T7から逐次出力される温度データを得る。その後、当該温度データを用いてウェハWの熱的性質を判定する。

Description

基板の熱的性質判定方法及び熱処理条件の決定方法
技術分野
[0001] 本発明は、基板の熱的性質判定方法及び熱処理条件の決定方法に関する。
背景技術
[0002] 従来、半導体デバイス等の製造に用いられる熱処理方法として、急速熱処理 (RT P : Rapid Thermal Process)が知られている(例えば、特許文献 1及び 2参照)。 RTPに 用いられる急速熱処理装置は、例えば、基板を加熱するためのランプと、ランプに対 向配置された温度センサ(例えば、パイ口メータ等)と、ランプと温度センサとの間に基 板を保持するためのエッジリングとを備えている。ランプと温度センサとの間に基板を 挿入し、ランプを用いて基板に赤外線を照射すると、基板の温度は急速に上昇する 。温度センサは、基板からの輻射熱を検知する。
特許文献 1 :特許第 2711239号公報
特許文献 2 :特表 2002— 510153号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、 RTPでは、オープンループ制御によって基板を昇温させるオープンルー プステップと、クローズドループ制御によって基板の温度を上昇させ、維持するクロー ズドループステップとを順に行うことができる。
[0004] オープンループステップでは、例えば、ランプを用いて基板に約 30秒間赤外線を 照射することによって、基板が 250°Cから 400°Cに昇温される。このとき、熱応力に起 因する基板の反りや割れを防止しながら基板の温度を均一且つ急速に上昇させるた めに、ランプパワー(ランプに印加される電力)は予め最適化された一定値に維持さ れている。かかる基板の反りや割れは、 200mm φのシリコンウェハに比べて 300mm φのシリコンウェハにおいて顕著となる。
[0005] 一方、クローズドループステップでは、温度センサ力 逐次出力される温度データと 、予め決められた設定温度とを比較して、その比較結果を用いてランプパワーを自動 調整する。
[0006] ここで、オープンループステップにおけるランプパワーの最適値は、基板の熱的性 質 (例えば、赤外吸収特性、赤外透過特性等)に依存する。しかしながら、基板の熱 的性質を判定することは困難であり、ランプパワーの最適値は、通常、トライアンドエ ラーにより決定される。
[0007] そこで、本発明は、短時間で基板の熱的性質を判定できる方法及びオープンルー プステップの熱処理条件を決定できる方法を提供することを目的とする。
課題を解決するための手段
[0008] 上述の課題を解決するため、本発明の基板の熱的性質判定方法は、基板を加熱 するためのランプとランプに対向配置された温度センサとを備えた急速熱処理装置 内で、ランプと温度センサとの間に配置された基板にランプを用いてパルス加熱を施 しながら、温度センサ力 逐次出力される温度データを得る工程と、温度データを用 いて基板の熱的性質を判定する工程とを含む。ここで、 「パルス加熱」とは、例えば、 エネルギー量がパルス状に繰り返し変化するエネルギー線による加熱を 、う。以下、 同じ。
[0009] ランプから出射されたエネルギー線が基板に吸収されると、当該基板は加熱される 。温度センサは、加熱された基板からの輻射熱を検知して、温度データを逐次出力 する。また、エネルギー線の一部が基板を透過する場合、温度センサは基板を透過 したエネルギー線も検知する。本発明の基板の熱的性質判定方法では、得られる温 度データが基板の熱的性質に関する情報を含んで!/、るので、基板の熱的性質を短 時間で判定することができる。さらに、パルス加熱を用いるので、基板の反りや割れ 等を十分に抑制しながら短時間で加熱することができる。
[0010] また、パルス加熱におけるパルス幅は、 1秒以上であると好ましい。この場合、パル ス加熱により基板を短時間で加熱することができる。ここで、 「パルス幅」とは、例えば 、 ノ ルスの前縁での半値点から後縁での半値点までの時間をいう。以下、同じ。
[0011] また、パルス加熱におけるパルス幅は、 10秒以下であると好ましい。この場合、基 板の急激な温度上昇を抑制することができるので、基板の反りや割れを抑制すること ができる。 [0012] 本発明の熱処理条件の決定方法は、基板を加熱するためのランプとランプに対向 配置された温度センサとを備えた急速熱処理装置内で、ランプと温度センサとの間 に配置された基板をオープンループ制御により昇温させるオープンループステップ の熱処理条件を決定する方法であって、急速熱処理装置内で、ランプを用いて基板 にパルス加熱を施しながら、温度センサカゝら逐次出力される温度データを得る工程と 、温度データを用いてオープンループステップの熱処理条件を決定する工程とを含 む。
[0013] ランプから出射されたエネルギー線が基板に吸収されると、当該基板は加熱される 。温度センサは、加熱された基板からの輻射熱を検知して、温度データを逐次出力 する。また、エネルギー線の一部が基板を透過する場合、温度センサは基板を透過 したエネルギー線も検知する。本発明の熱処理条件の決定方法では、得られる温度 データが基板の熱的性質に関する情報を含んで 、るので、基板の熱的性質に依存 する最適なオープンループステップの熱処理条件を短時間で決定することができる。 さらに、パルス加熱を用いるので、基板の反りや割れ等を十分に抑制しながら短時間 で加熱することができる。
[0014] また、パルス加熱におけるパルス幅は、 1秒以上であると好ましい。この場合、パル ス加熱により基板を短時間で加熱することができる。
[0015] また、パルス加熱におけるパルス幅は、 10秒以下であると好ましい。この場合、基 板の急激な温度上昇を抑制することができるので、基板の反りや割れを抑制すること ができる。
[0016] また、オープンループステップの熱処理条件を決定する工程では、温度データの 測定期間における温度データの最大値及び最小値を用いてオープンループステツ プの熱処理条件を決定すると好ましい。力かる最大値及び最小値に着目することに より、オープンループステップの熱処理条件を容易に決定できる。
[0017] また、オープンループステップの熱処理条件には、基板の中央部を含む第 1領域を 昇温させるための第 1熱処理条件と、基板の中央部を取り囲み第 1領域とは異なる熱 的性質を有する基板の第 2領域を昇温させるための第 2熱処理条件とが含まれてお り、オープンループステップの熱処理条件を決定する工程は、温度データを用いて 第 1熱処理条件を決定する工程と、温度データを用いて第 2熱処理条件と第 1熱処 理条件との比率を算出する工程と、第 1熱処理条件と比率とを用いて第 2熱処理条 件を決定する工程とを含む。
[0018] この熱処理条件の決定方法では、基板の第 1領域と第 2領域とを同一の熱処理条 件で加熱する場合に比べて、基板の面内温度差を小さくすることができる。
[0019] また、第 1熱処理条件を決定する工程では、温度データの測定期間における温度 データの最大値及び最小値を用いて第 1熱処理条件を決定し、比率を算出するェ 程では、温度データの測定期間における温度データの最大値及び最小値を用いて 比率を算出すると好ましい。力かる最大値及び最小値に着目することにより、第 1熱 処理条件を容易に決定できる。
発明の効果
[0020] 本発明によれば、短時間で基板の熱的性質を判定できる方法及びオープンルー プステップの熱処理条件を決定できる方法を提供することができる。
図面の簡単な説明
[0021] [図 1]急速熱処理装置 (RTP装置)の一例を示す斜視図である。
[図 2]図 1の急速熱処理装置の部分拡大断面図である。
[図 3]ランプ群の位置力も見たウェハの平面図である。
[図 4]図 3に示される IV— IV矢印に沿った断面図である。
[図 5]ウェハの位置から見たランプ群の平面図である。
[図 6]急速熱処理装置を用いてウェハに急速熱処理を施したときに、温度センサから 逐次出力される温度データの一例を示すグラフである。
[図 7]互いに異なる熱的性質を有するウェハにノ ルス加熱を施したときに温度センサ 力 逐次出力される温度データの一例を示すグラフである。
[図 8] (Kab) · (Tlmin)と中央ランプパワー G1との関係を示すグラフである。
[図 9]温度上昇時間と面内温度差 ΔΤとの関係を示すグラフである。
[図 10]中央ランプパワー G1 (%)と周縁ランプパワー G2 (%)との関係を示す図であ る。
[図 11] (Kab) · (Tlmin)と比率 G2ZG1との関係を示すグラフである。 [図 12]本実施形態に係る熱処理条件の決定方法の一例を示すフローチャートである
[図 13]互いに異なる熱的性質を有するウェハにノ ルス加熱を施したときに温度センサ 力 逐次出力される温度データの一例を示すグラフである。
[図 14]ベアシリコンウェハにパルス加熱を施したときに温度センサ力も逐次出力され る温度データの一例を示すグラフである。
[図 15]中央ランプパワー G1 (%)と周縁ランプパワー G2 (%)との関係を示す図であ る。
[図 16]図 16(A)は、ウェハに連続加熱を施したときに温度センサ力も得られる温度デ ータを 250°Cから 380°Cに上昇させるのに必要な時間と比率 G2ZG1との関係を示 すグラフであり、図 16(B)は、ウェハにパルス加熱を施したときに温度センサ力も得ら れる温度データが所定の温度に到達するのに必要なパルスのサイクルと、比率 G2 ZG 1との関係を示すグラフである。
符号の説明
[0022] 9…ランプ、 T1〜T7…温度センサ、 1…急速熱処理装置、 W…ウェハ(基板)、 L1 …オープンループステップ、 Tlmax…温度データの最大値、 Tlmin…温度データ の最小値、 b…基板の中央部 (基板の第 1領域)、 b…基板の周縁部 (基板の第 2領
1 2
域)。
発明を実施するための最良の形態
[0023] 以下、図面とともに本発明の好適な実施形態について説明する。なお、図面の説 明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。
[0024] [第 1実施形態]
(急速熱処理装置)
まず、図 1〜図 5を参照して急速熱処理装置 (RTP装置)について説明する。図 1は 、急速熱処理装置の一例を示す斜視図(一部断面図)であり、図 2は、図 1の急速熱 処理装置の部分拡大断面図である。急速熱処理装置 1は、例えば、シリコンウェハ等 のウェハ W (基板)を温度制御しながら熱処理を行うための枚葉式急速熱処理装置 である。急速熱処理装置 1は、例えば LSI等の半導体デバイスの製造に用いられる。 急速熱処理装置 1はベース部 2a、側壁部 2b及び蓋部 2cから構成されるチャンバ 2を 備える。
[0025] チャンバ 2内には、ウェハ Wを支持するサセプタ等の基板支持部 3が設置されてい る。基板支持部 3は、ベース部 2aにベアリング 4又は磁気浮上式回転機構を介して 回転自在に取り付けられた円筒フレーム 5と、円筒フレーム 5の上端に設けられたェ ッジリング 6と力ら成る。エッジリング 6の内側縁部には、ウェハ Wのエッジ部を支持す るための支持用段部 6aが設けられて 、る。
[0026] ここで、ウェハ Wが基板支持部 3に支持された状態(図 2参照)では、ウェハ Wの裏 面側に、ベース部 2aと基板支持部 3とウェハ Wとで囲まれた閉空間 Saが形成される。 なお、エッジリング 6の支持用段部 6aにウェハ Wのエッジ部が載ったときには、装置 の構造上、ウェハ Wとエッジリング 6との間に若干の間隙が生じることがある。
[0027] ベース部 2aの下部には、搬送ロボット(図示せず)によりチャンバ 2内に搬送された ウェハ Wを基板支持部 3に支持させるためのリフト機構 7が設けられている。このリフト 機構 7は、ベース部 2aを貫通してウェハ Wを持ち上げる複数本 (例えば 3本)の支持 ピン 8を有している。
[0028] チャンバ 2の側壁部 2bには、ガス供給口 12とガス排出口 13とが対向して設けられ ている。ガス供給口 12には、チャンバ 2内における閉空間 Saの外部、すなわちウェハ Wの表面側の空間 Sbにプロセスガスとしての Nガス Gpを供給するためのガス供給
2
系(図示せず)が接続されている。プロセスガスとしては、 Nガスの他に、 Oガス、 N
2 2
Hガス、 NOガス、 N Oガス、 Hガス等が挙げられる。一方、ガス排出口 13には、空
3 2 2
間 Sb内のガスをチャンバ 2の外部に排出するためのガス排出系(図示せず)が接続 されている。
[0029] チャンバ 2の蓋部 2cの上方には、基板支持部 3に支持されたウェハ Wを加熱するた めの複数のランプ 9から成るランプ群 9Gが配置されている。ランプ 9としては、例えば ノ、ロゲンランプが好適に用いられる。蓋部 2cには円形のランプ用窓部 Lwが設けられ ており、ランプ 9から出射される赤外線等のエネルギー線 (光)は、このランプ用窓部 L wを透過してゥヱハ Wに到達する。エネルギー線がゥヱハ Wに吸収されると、ゥヱハ W の温度が上昇する。ベース部 2aには、ウェハ Wからの輻射熱又はウェハ Wを透過し たエネルギー線を光学的に検出するためのパイ口メータ等といった温度センサ τι〜
Τ7が設けられている。したがって、急速熱処理装置 1内でランプ群 9Gと温度センサ Τ1〜Τ7とは互いに対向配置されており、ランプ群 9Gと温度センサ Τ1〜Τ7との間に はウェハ Wが配置されて!、る。
[0030] 温度センサ Τ1〜Τ7は、ベース部 2aにおける基板支持部 3に囲まれた円形プレー ト 11にお 、て、その中心と周縁の一部を含み且つ所定の角度 (例えば 90度)を有す る略扇形のセンサ設置領域内に組み込まれている。温度センサ T1〜T7は、例えば 、円形プレート 11の中心力 周縁に向けて順に配列されている。なお、上述した閉空 間 Saは光学的には完全な閉空間とされており、光学式の温度センサ Τ1〜Τ7による 閉空間 Saを利用した温度検出が支障なく実現される。
[0031] 図 2に示されるように、温度センサ T1〜T7には、温度センサ Τ1〜Τ7からそれぞれ 逐次出力される温度データを収集する温度コントローラ 20が光学的に接続されてい る。温度コントローラ 20には、ランプ群 9Gを駆動するランプドライバ 22が接続されて いる。温度センサ Τ1〜Τ7から得られる温度データは、ウェハ Wの温度の指標とされ る。かかる温度データを用いて、温度コントローラ 20ではランプ 9に印加される電力( 以下、ランプパワーとする)の最適値が決定される。その後、温度コントローラ 20から ランプドライバ 22に信号が出力される。その結果、ランプ 9からウエノ、 Wに向けて、所 望のエネルギー量を有するエネルギー線が出射される。このようにクローズドループ 制御を行うことにより、ウェハ Wの温度が所望の設定値に調整される。
[0032] 図 3は、ランプ群 9Gの位置から見たウェハ Wの平面図であり、図 4は、図 3に示され る IV— IV矢印に沿った断面図である。なお、図 3では、エッジリング 6の支持用段部 6 aの一部を表示させるために便宜上ウェハ Wの一部を表示して!/ヽな 、。エッジリング 6 の外径 dは、ウエノ、 Wの直径 dより大きい。ウェハ Wは、支持用段部 6aによって支持
2 1
されている。ウェハ Wは、中央部 b (第 1領域)と中央部 bを取り囲む周縁部 b (第 2
1 1 2 領域)とを有している。ウェハ Wの周縁部 b 2はエッジリング 6の支持用段部 6aに接触し ているので、周縁部 bの熱的性質は、ウェハ Wの熱的性質に加えてエッジリング 6の
2
熱的性質にも依存する。したがって、中央部 b 1と周縁部 b 2とでは熱的性質が異なつ ている。 [0033] 図 5は、ウェハ Wの位置から見たランプ群 9Gの平面図である。ランプ群 9Gを構成 するランプ 9は、ハ-カム状に配置されている。ランプ群 9Gの中央領域 a内のランプ 9は、ウェハ Wの中央部 b (図 3参照)に対向配置され、中央部 bを加熱する。ランプ 群 9Gの中央領域 aを取り囲む領域 a内のランプ 9は、ウェハ Wの周縁部 b (図 3参
1 2 2 照)に対向配置され、周縁部 bを加熱する。領域 aの周囲には周縁領域 aが設けら
2 2 3 れている。
[0034] 次に、図 6を参照して急速熱処理装置 1により実施される急速熱処理について説明 する。図 6は、上述の急速熱処理装置 1内でウェハ Wに急速熱処理を施したときに、 温度センサ T1〜T7から逐次出力される温度データの一例を示すグラフである。図 6 中、グラフの縦軸は温度センサ Τ1〜Τ7から出力される温度データ (°C)を示し、ダラ フの横軸は経過時間(秒)を示す。グラフ中、波形 U1〜U7はそれぞれ温度センサ T 1〜T7から逐次出力される温度データを表している。
[0035] 図 6に示されるように、急速熱処理装置 1内で実施される急速熱処理では、オーブ ンループ制御を行うオープンループステップ L1と、クローズドループ制御を行うクロ ーズドループステップ L2とが実施される。例えば、シリコン (Si)を基材とするウェハ( 特にベアシリコンウエノ、)は、その温度が 400°C未満であるとエネルギー線を透過し やすい。このため、ウェハ Wの温度が 400°C未満の場合、温度センサ T1〜T7はゥェ ハ Wを透過したエネルギー線も検出してしまう。よって、温度センサ Τ1〜Τ7から逐次 出力される温度データは、必ずしもウェハ Wの温度を反映していない。そこで、まず、 オープンループステップ L1にお!/、てウェハ Wは 400°C程度まで昇温される。その後 、クローズドループステップ L2においてウェハ Wは 1000°C程度まで昇温される。図 6 に示される例では、急速熱処理の条件は、圧力: 760 X 133. 322Pa (760Torr)、 Oガス流量: 20slm、昇温時間: 60秒である。ここで、「slm」とは、 0°C、 latmにおけ
2
る 1分間あたりの流量 (リットル)を示す。これは、引き続く説明においても同じである。 図 6のグラフを参照すると、オープンループステップ L1では波形 U1〜U7間に差が 見られる力 クローズドループステップ L2では波形 U1〜U7間に差がほとんど見られ ない。
[0036] 本実施形態では、オープンループステップ L1にお!/、て、図 5に示される中央領域 a 内の各ランプ 9のランプパワーを中央ランプパワー Gl、領域 a内の各ランプ 9のラン
1 2
プパワーを周縁ランプパワー G2とする。中央領域 a内のランプ 9と領域 a内のランプ
1 2
9とでランプパワーを変えることにより、オープンループステップ L1からクローズドルー プステップ L2に切り替えるときにおけるウエノ、 Wの面内温度差 ΔΤ (以下、単に面内 温度差 ΔΤとする)を小さくすることができる。面内温度差 ΔΤは、例えば、温度セン サ T1から得られる温度データと温度センサ T7から得られる温度データとの差分によ り表される。また、中央ランプパワー G1と周縁ランプパワー G2との関係をウェハの種 類に応じて最適化することにより、面内温度差 ΔΤを更に小さくできる。図 6に示され る例では、オープンループステップ L1における中央ランプパワー G1がフルパワーの 24%、周縁ランプパワー G2がフルパワーの 33%である。
[0037] 図 5に示されるランプ群 9Gの周縁領域 a内のランプ 9は、温度センサ T1〜T7から
3
得られる温度データが 500°C以下の場合、ウェハ Wの昇温にほとんど寄与しない。周 縁領域 a内の各ランプ 9のランプパワーをランプパワー G3とすると、図 6に示される例
3
では、オープンループステップ L1におけるランプパワー G3はフルパワーの 5%に固 定されている。
[0038] (基板の熱的性質判定方法及び熱処理条件の決定方法)
次に、第 1実施形態に係る基板の熱的性質判定方法及び熱処理条件の決定方法 について説明する。本実施形態に係る基板の熱的性質判定方法は、急速熱処理装 置 1を用いて好適に実施される。また、本実施形態に係る熱処理条件の決定方法は 、上述のオープンループステップ L1及びクローズドループステップ L2を含む急速熱 処理に先立って、急速熱処理装置 1を用 ヽて好適に実施される。
[0039] まず、急速熱処理装置 1内でランプ群 9Gと温度センサ T1〜T7との間にウェハ Wを 配置させる。続いて、ランプ群 9Gのランプ 9を用いてウェハ Wにパルス加熱を施しな がら、温度センサ Τ1〜Τ7から逐次出力される温度データを得る。ウェハ Wにパルス 加熱を施すと、ランプ 9から出射されたエネルギー線は、ゥヱハ Wに吸収される。温度 センサ Τ1〜Τ7は、加熱されたウェハ Wからの輻射熱を検知して、温度データを温度 コントローラ 20に逐次出力する。エネルギー線の一部がウェハ Wを透過する場合、温 度センサ Τ1〜Τ7はウェハ Wを透過したエネルギー線も検知する。 [0040] 図 7は、互いに異なる熱的性質を有するウェハ WA, WHにそれぞれパルス加熱を 施したときに温度センサ T1から逐次出力される温度データの一例を示すグラフであ る。ウェハ WA, WHは、上述のウェハ Wの具体例である。図 7中、グラフの一方の縦 軸は温度センサ T1から逐次出力される温度データ (°C)を示し、他方の縦軸はランプ 9のフルパワーを 100%とした場合のランプパワー(%)を示す。グラフの横軸は経過 時間 (秒)を示す。
[0041] グラフ中の波形 UA, UHは、それぞれウェハ WA, WHを用いた場合に得られる温 度データを示す。グラフ中の波形 RPは、ランプパワーの経時変化を示し、複数のパ ルスが繰り返される波形を描いている。波形 RPでは、複数の加熱期間 HS及び複数 の冷却期間 CSが交互に繰り返され、 1つの加熱期間 HSに 1つのパルスが位置して いる。この冷却期間 CSによって、ウェハ WA, WHの反りや割れ等が十分に防止され る。
[0042] 図 7に示される例では、加熱期間 HS及び冷却期間 CSの時間はそれぞれ 4秒間で ある。加熱期間 HS及び冷却期間 CSの時間は同じでもよいし、互いに異なっていて もよい。加熱期間 HSでは、図 5に示されるランプ群 9Gの中央領域 a及び領域 a内
1 2 のランプ 9のランプパワーは、例えばいずれもフルパワーの 19%であり、周縁領域 a
3 内のランプ 9のランプパワーは、例えばいずれもフルパワーの 5%である。冷却期間 C Sでは、中央領域 a、領域 a及び周縁領域 a内のランプ 9のランプパワーは、例えば
1 2 3
いずれもフルパワーの 5%である。また、パルス加熱時のその他の条件は、例えば圧 力: 740 X 133. 322Pa (740Torr)、 Nガス流量: lOslmである。
2
[0043] 上記波形 UA, UHで表される温度データは、それぞれウェハ WA, WHの熱的性 質に関する情報を含んでいる。このため、波形 UA, UHで表される温度データを用 いると、ウェハ WA, WHの熱的性質を例えば以下のように短時間で簡便に判定でき る。また、パルス加熱の場合、ウェハ WA, WHの反りや割れ等を十分に抑制すること ができる。なお、図 7には波形 UA, UHで表される温度データの測定期間の一部 (経 過時間: 750〜770秒)が示されている。測定期間では、図 7に示されるように、温度 データの極大値及び極小値が飽和している。例えば、「測定期間」とは、隣り合う温度 データの極小値間の差が ±0. 2°C以内となる期間を意味する。 [0044] 図 7に示される例では、波形 UA, UHで表される温度データの測定期間における 温度データの最大値 Tlmaxは約 390°Cであり、最小値 Tlminは約 370°Cである。 この場合、最大値 Tlmaxと最小値 Tlminとの差 Δ T1 ( Δ Tl = Tlmax -Tlmin) は、約 20°Cである。最大値 Tlmax及び最小値 Tlminが大きいと、エネノレギ一線を 吸収することにより温まりやすいウェハであることが分かる。また、差 ΔΤ1が大きいと、 エネルギー線が透過しやすいウェハであることが分力る。
[0045] また、図 7に示される例では、加熱期間 HSにおける波形 UAの温度データが直線 的に上昇しており、冷却期間 CSにおける波形 UAの温度データが直線的に下降し ている。一方、加熱期間 HSにおける波形 UHの温度データは上に凸となるように上 昇しており、冷却期間 CSにおける波形 UHの温度データは下に凸となるように下降 している。これらのことから、ウェハ WHはウェハ WAに比べてエネルギー線を透過さ せやすいことが分かる。
[0046] また、未知の熱的性質を有するウェハに対しても同様に、上記パルス加熱を施して 得られる温度データを用いて当該ウェハの熱的性質を短時間で簡便に判定すること ができる。また、パルス加熱の場合、ウェハの反りや割れ等を十分に抑制することが できる。
[0047] 続いて、ランプ群 9Gのランプ 9を用いてウェハ Wにパルス加熱を施すときに温度セ ンサ T1〜T7から逐次出力される温度データを用いて、図 6に示されるオープンルー プステップ L1におけるランプ 9のランプパワー(熱処理条件)を決定する。このランプ ノ ヮ一としては、上述の中央ランプパワー G1 (第 1熱処理条件 G1)及び周縁ランプ ノ^ー G2 (第 2熱処理条件 G2)が挙げられる。この場合、上記パルス加熱により得ら れる温度データを用いると、後述するように、短時間で簡便にオープンループステツ プ L1におけるランプ 9の中央ランプパワー G1及び周縁ランプパワー G2を決定する ことができる。また、パルス加熱の場合、ウェハ Wの反りや割れ等を十分に抑制するこ とがでさる。
[0048] 例えば、ウェハ Wとしてウェハ WA, WHを用いると、図 7に示されるように、パルス加 熱により波形 UA, UHで表される温度データが得られる。この温度データの測定期 間における温度データの最大値 Tmax及び最小値 Tminを用いると、容易に中央ラ ンプパワー Gl及び周縁ランプパワー G2を決定することができる。以下、詳細に説明 する。
[0049] (中央ランプパワー G1の決定)
まず、上記波形 UA, UHで表される温度データの最大値 Tlmax、及び、最大値 T lmaxと最小値 Tlminとの差 Δ T1を用いて、下記式(1)で表される吸収補正係数 K abを定義する。
Kab = 1 - ( Δ Tl/Tlmax) … (1)
[0050] この吸収補正係数 Kabに最小値 Tlminを乗じると、 (Kab) · (Tlmin)が得られる。
この (Kab) · (Tlmin)と、下記式(2)で表される一次関数式とを用いて中央ランプパ ヮー G1を決定する。式中、 p及び qは所定の定数を示す。
Gl =p X (Kab) - (Tlmin) +q … (2)
[0051] 図 8は、(Kab) · (Tlmin)と中央ランプパワー G1との関係を示すグラフである。図 8 中、グラフの縦軸は中央ランプパワー G1 (%)を示し、グラフの横軸は (Kab) · (Tim in) (K)を示す。グラフ中の近似直線 L10, L15, L20, L25, L30, L35, L40iま、 上記式(2)で表される一次関数式の具体例である。近似直線 L10, L15, L20, L2 5, L30, L35, L40は、それぞれ、オープンループステップにおいて温度センサ T1 力も出力される温度データを 250°C力も 400°Cまで上昇させるのに必要な時間(以下 、温度上昇時間とする)が 10秒、 15秒、 25秒、 30秒、 35秒、 40秒の場合に対応す る。
[0052] 近似直線 ΙΛ0, L15, L20, L25, L30, L35,: L40は次にように得られる。まず、 互いに異なる熱的性質を有するウェハ WA〜WH, WJにそれぞれパルス加熱を施し たときに温度センサ T1から逐次出力される温度データから吸収補正係数 Kab及び 最小値 Tlminを算出する。一方、各ウェハ WA〜WH, WJに対して、温度上昇時間 力 S10秒、 15秒、 25秒、 30秒、 35秒、 40秒となる中央ランプパワー G1をそれぞれ実 験的に求める。そして、(Kab) · (Tlmin)に対して中央ランプパワー G1をプロットす ると図 8のグラフが得られる。
[0053] また、未知の熱的性質を有するウェハに対しても同様に、パルス加熱により得られる 温度データから (Kab) · (Tlmin)を算出できる。さらに、所望の温度上昇時間を設 定して、当該温度上昇時間に対応する近似直線 L10, L15, L20, L25, L30, L35 , L40を用いることによって短時間で簡便に中央ランプパワー G1を決定できる。例え ば、温度上昇時間を 30秒とした場合、ウェハにノ ルス加熱を施して得られる温度デ 一タカも算出される (Kab) · (Tlmin)と、近似直線 L30とを用いることにより、中央ラ ンプパワー G1が決定される。
[0054] 図 9は、温度上昇時間と面内温度差 ΔΤとの関係を示すグラフである。図 9中、ダラ フの縦軸は面内温度差 ΔΤ(° を示し、グラフの横軸は温度上昇時間(秒)を示す。 グラフ中の実線 L50〜L60は、互いに異なる熱的性質を有するウェハ WA〜WKに 対してそれぞれ急速熱処理を施したときの温度上昇時間及び面内温度差 ΔΤを示 す。グラフより、温度上昇時間の最適値は、約 25秒〜約 30秒 (領域 RT内)であること が分かる。温度上昇時間が 30秒を超える場合 (領域 BD)、オープンループステップ の時間が長くなるので、急速熱処理のスループットが低下する傾向にある。一方、温 度上昇時間が 25秒未満の場合 (領域 HT)、ウェハ WA〜WKが急速に加熱されるた め、面内温度差 ΔΤが大きくなる傾向にある。したがって、図 8では近似直線 L25, L 30の 、ずれか一方を用いて最適な中央ランプパワー G1を決定することが好ま U、。
[0055] (比率 G2/G1の算出)
一方、中央ランプパワー G1の決定とは別に、面内温度差 ΔΤを最小にする比率 G 2ZG1の算出を行う。まず、比率 G2ZG1について図 10(A)及び図 10(B)を用いて 説明する。
[0056] 図 10(A)及び図 10(B)は、オープンループステップにおける中央ランプパワー G1 ( %)と周縁ランプパワー G2 (%)との関係を示す図である。図 10(A)及び図 10( B)に示される例では、オープンループステップにおける熱処理の条件は、例えば圧 力:
740 X 133. 322Pa (740Torr)、 Nガス流量: lOslmである。
2
[0057] 図 10(A)は、互いに異なる熱的性質を有するウェハ WA〜WKについて、中央ラン プパワー G1をフルパワーの 18〜30%の範囲内において変化させ、それぞれの中 央ランプパワー G1に対して面内温度差 ΔΤが最小となる周縁ランプパワー G2を実 験的に求めた結果を示す。 [0058] 図 10(B)は、図 10(A)の実験結果力も得られた比率 G2ZG1を示す。図 10(B)に示 されるように、中央ランプパワー G1が変化しても比率 G2ZG1は略一定値であること から、比率 G2ZG1はウェハの固有値であることが確認される。比率 G2ZG1の値と しては、例えば平均値を用いることができる。比率 G2ZG1を用いれば、ウェハを熱 的性質ごとに分類することができる。具体的には、例えば、比率 G2ZG1が大きいと 温まりやすいウェハであることが分かる。一方、比率 G2ZG1が小さいと温まり難いゥ ェハであることが分かる。
[0059] 次に、比率 G2ZG1の算出方法について図 11(A)及び図 11(B)のグラフを用いて 説明する。図 11(A)及び図 11(B)は、いずれも(Kab) · (Tlmin)と比率 G2ZG1との 関係を示すグラフである。図 11(A)及び図 11(B)中、グラフの縦軸はいずれも比率 G 2ZG1を示し、グラフの横軸はいずれも(Kab) · (Tlmin) (K)を示す。
[0060] 図 11(A)中、実線 LEは、ランプ 9のランプパワーをフルパワーの 19% (低パワー)と してパルス加熱を行ったときの結果を示している。一実施例では、図 5に示されるラン プ群 9Gの中央領域 a及び領域 a内のランプ 9のランプパワーは、例えばいずれもフ
1 2
ルパワーの 19%であり、周縁領域 a内のランプ 9のランプパワーは、例えばいずれも
3
フルパワーの 5%である。また、パルス加熱時のその他の条件は、例えば圧力: 740 X 133. 322Pa (740Torr)、 Nガス流量: lOslmである。低パワーでパルス加熱を
2
行うと、例えば、図 7の波形 UA, UHで表される温度データが得られる。この温度デ ータを用いて算出された (Kab) · (Tlmin)を、図 11(A)中の実線 LEで表される関数 式に代入すると、比率 G2ZG1が算出される。
[0061] 一方、図 11(B)中、実線 HEは、ランプ 9のランプパワーをフルパワーの 23% (高パ ヮー)としてパルス加熱を行ったときの結果を示している。一実施例では、図 5に示さ れるランプ群 9Gの中央領域 a及び領域 a内のランプ 9のランプパワーは、例えばい
1 2
ずれもフルパワーの 23%であり、周縁領域 a内のランプ 9のランプパワーは、例えば
3
いずれもフルパワーの 5%である。また、パルス加熱時のその他の条件は、例えば圧 力: 740 X 133. 322Pa (740Torr)、 Nガス流量: lOslmである。高パワーでパルス
2
加熱を行うと、温度センサ T1〜T7から逐次出力される温度データが得られる。この 温度データを用いて算出された (Kab) · (Tlmin)を、図 11(B)中の実線 HEで表され る関数式に代入すると、比率 G2ZG1が算出される。
[0062] また、未知の熱的性質を有するウェハに対しても同様に、低パワー又は高パワーで パルス加熱を施したときに得られる温度データから (Kab) · (Tlmin)を算出できる。 この(Kab) · (Tlmin)を、図 11(A)中の実線 LE又は図 11(B)中の実線 HEで表され る関数式に代入すると、比率 G2ZG1を算出することができる。
[0063] (周縁ランプパワー G2の決定)
上述のようにして得られた中央ランプパワー G1及び比率 G2ZG1を用いて周縁ラ ンプパワー G2を決定する。
[0064] 図 12は、本実施形態に係る熱処理条件の決定方法の一例を示すフローチャートで ある。まず、急速熱処理装置 1内でランプ 9のランプパワーを、例えばフルパワーの 1 9% (低パワー)としてウェハにパルス加熱を施す(工程 Sl)。このとき、温度センサ T1 力 逐次出力された温度データから吸収補正係数 Kab及び最小値 Tlminの値を算 出する(工程 S2)。最小値 Tlminが温度センサ T1の検出限界値、例えば 250°Cを 超えていない場合には、ランプ 9のランプパワーを、例えばフルパワーの 23% (高パ ヮー)としてウェハにパルス加熱を施す(工程 S3)。このとき得られる温度データから 吸収補正係数 Kab及び最小値 Tlminの値を算出する(工程 S4)。
[0065] 続いて、得られた (Kab) · (Tlmin)と、例えば図 8のグラフに示される近似直線 L1 0, L15, L20, L25, L30, L35,: L40とを用!ヽて、中央ランプノヮー G1を決定する (工程 S5a)。一方、得られた (Kab) · (Tlmin)と、図 11(A)中の実線 LE又は図 11(B )中の実線 HEとを用いて比率 G2ZG1を算出する(工程 S5b)。その後、中央ランプ パワー G1と比率 G2ZG1とを用いて周縁ランプパワー G2を決定する(工程 S6)。
[0066] また、パルス加熱におけるパルス幅は、 1秒以上であると好ましい。この場合、パル ス加熱によりウェハを短時間で加熱することができる。このため、短時間で簡便にゥェ ハの熱的性質を判定することができると共に、オープンループステップ L1のランプパ ヮーを決定することができる。また、パルス幅は 10秒以下であると好ましい。この場合 、ウェハの急激な温度上昇を抑制することができるので、ウェハの反りや割れを抑制 することができる。一実施例では、パルス幅を例えば 4秒とすることができる。パルス 幅は、図 7の加熱期間 HSに対応する。 [0067] [第 2実施形態]
次に、第 2実施形態に係る基板の熱的性質判定方法及び熱処理条件の決定方法 について説明する。本実施形態に係る基板の熱的性質判定方法は、急速熱処理装 置 1を用いて好適に実施される。また、本実施形態に係る熱処理条件の決定方法は 、上述のオープンループステップ L1及びクローズドループステップ L2を含む急速熱 処理に先立って、急速熱処理装置 1を用 ヽて好適に実施される。
[0068] 図 13は、互いに異なる熱的性質を有するウェハ W1〜W4にパルス加熱を施したとき に温度センサ T1から逐次出力される温度データの一例を示すグラフである。図 13中 、グラフの一方の縦軸は温度センサ T1から逐次出力される温度データ (°C)を示し、 他方の縦軸はランプ 9のフルパワーを 100%とした場合のランプパワー(%)を示す。 グラフの横軸は経過時間(秒)を示す。図 13に示される例では、図 5に示されるランプ 群 9Gの中央領域 a及び領域 a内のランプ 9のランプパワーは、例えばいずれもフル
1 2
パワーの 24%であり、周縁領域 a内のランプ 9のランプパワーは、例えばいずれもフ
3
ルパワーの 5%である。また、パルス幅は例えば 4秒である。パルス加熱時のその他 の条件は、圧力: 10 X 133. 322Pa (10Torr)、 Nガス流量: lOslmである。
2
[0069] グラフ中の波形 U1〜U4は、ウェハ W1〜W4を用いた場合の温度データをそれぞ れ示す。ウェハ W1は厚さ 9nmの SiO膜が設けられた Siウェハであり、輻射率 Eは 0.
2
60である。ウェハ W2は厚さ 170nmの SiO膜が設けられた Siウェハであり、輻射率 E
2
は 0. 90である。ウェハ W3は厚さ 240nmの Si N膜が設けられた Siウェハであり、輻
3 4
射率 Eは 0. 66である。ウェハ W4は厚さ 120nmの Si N膜が設けられた Siウェハで
3 4
あり、輻射率 Eは 0. 98である。グラフ中の波形 RPは、ランプパワーの経時変化を示 し、複数のパルスが繰り返される波形を描いている。
[0070] 図 13に示されるグラフより、ウェハ Wl, W2は温まり難ぐウェハ W3, W4は温まり やすいことが分かる。また、同じ材料力もなる膜が設けられた Siウェハにおいては、輻 射率 Eが高いほど温まりやすいことが分かる。さらに、 SiO膜が設けられた Siウェハよ
2
りも Si N膜が設けられた Siウェハの方が温まりやすいことが分かる。
3 4
[0071] 図 14は、ベアシリコンウェハにパルス加熱を施したときに温度センサ T1から逐次出 力される温度データの一例を示すグラフである。温度データが 300°C以下では、温 度データが 300°Cを超える場合に比べて、隣り合う温度データの極大値と極小値と の差 ΔΤ2が大きい。これは、温度データが 300°C以下の場合にウェハを透過するェ ネルギ一線の影響が大き 、ことを示して!/、る。
[0072] 図 13及び図 14に示される温度データを用いると、ウェハの熱的性質を短時間で簡 便に判定することができる。また、第 1実施形態と同様に、オープンループステップに おけるランプパワーを短時間で簡便に決定することができる。このランプパワーは、例 えば、図 5に示されるランプ群 9Gの中央領域 a及び領域 a内のランプ 9のランプパヮ
1 2
一を示す。中央領域 a内のランプ 9のランプパワーと領域 a内のランプ 9のランプパヮ
1 2
一とは同じでもよいし、互いに異なっていてもよい。さらに、パルス加熱を用いるので ウェハの反りや割れ等を十分に抑制しながら短時間で加熱することができる。
[0073] 図 15(A)は、互いに異なる熱的性質を有するウェハ W5〜W9について中央ランプ パワー G1と周縁ランプパワー G2との関係を示す図である。図 15(A)には、各々の中 央ランプパワー G1について、面内温度差 ΔΤが最小となるような周縁ランプパワー G 2が表示されている。図 15(B)は、ウェハ W5〜W9について比率 G2ZG1を示す図 である。図 15(A)及び図 15(B)より、比率 G2ZG1がウェハの固有値であることが確認 される。
[0074] 図 16(A)は、ウェハ W5〜W9に連続加熱を施したときに温度センサ T1から得られ る温度データを 250°Cから 380°Cに上昇させるのに必要な時間(秒)と、比率 G2ZG 1との関係を示すグラフである。この連続加熱では、図 5に示されるランプ群 9Gの中 央領域 a及び領域 a内のランプ 9のランプパワーはフルパワーの 20%に設定されて
1 2
いる。図 16(A)を用いると、ウェハに連続加熱を施したときに温度センサ T1から得ら れる温度データを 250°Cから 380°Cに上昇させるのに必要な時間から、当該ウエノ、 の比率 G2ZG1を算出できる。
[0075] 図 16(B)は、ウェハ W5〜W9にパルス加熱を施したときに温度センサ T1から得られ る温度データが所定の温度に到達するのに必要なパルスのサイクル(回)と、比率 G 2ZG1との関係を示すグラフである。このパルス加熱処理の加熱期間では、図 5に示 されるランプ群 9Gの中央領域 a及び領域 a内のランプ 9のランプパワーはフルパヮ
1 2
一の 20%に設定されている。図 16(B)を用いると、ウェハにパルス加熱を施したとき に温度センサ Tlから得られる温度データが所定の温度に到達するのに必要なパル スのサイクルから、当該ウェハの比率 G2ZG1を算出できる。
[0076] 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記各実 施形態に限定されない。
[0077] 例えば、中央ランプパワー G1を決定する前に比率 G2ZG1を算出するとしてもよ いし、中央ランプパワー G1を決定した後に比率 G2ZG1を算出するとしてもよい。ま た、中央ランプパワー G1の決定と、比率 G2ZG1の算出とを同時に行ってもよい。
[産業上の利用可能性]
短時間で基板の熱的性質を判定でき、オープンループステップの熱処理条件を決 定できる用途に適用できる。

Claims

請求の範囲
[1] 基板を加熱するためのランプと前記ランプに対向配置された温度センサとを備えた 急速熱処理装置内で、前記ランプと前記温度センサとの間に配置された前記基板に 前記ランプを用いてパルス加熱を施しながら、前記温度センサから逐次出力される温 度データを得る工程と、
前記温度データを用いて前記基板の熱的性質を判定する工程と、
を含む基板の熱的性質判定方法。
[2] 前記パルス加熱におけるパルス幅は、 1秒以上である請求項 1に記載の基板の熱 的性質判定方法。
[3] 前記パルス加熱におけるパルス幅は、 10秒以下である請求項 1又は 2に記載の基 板の熱的性質判定方法。
[4] 基板を加熱するためのランプと前記ランプに対向配置された温度センサとを備えた 急速熱処理装置内で、前記ランプと前記温度センサとの間に配置された前記基板を オープンループ制御により昇温させるオープンループステップの熱処理条件を決定 する方法であって、
前記急速熱処理装置内で、前記ランプを用いて前記基板にパルス加熱を施しなが ら、前記温度センサから逐次出力される温度データを得る工程と、
前記温度データを用いて前記オープンループステップの前記熱処理条件を決定 する工程と、
を含む熱処理条件の決定方法。
[5] 前記パルス加熱におけるパルス幅は、 1秒以上である請求項 4に記載の熱処理条 件の決定方法。
[6] 前記パルス加熱におけるパルス幅は、 10秒以下である請求項 4又は 5に記載の熱 処理条件の決定方法。
[7] 前記オープンループステップの前記熱処理条件を決定する工程では、前記温度デ ータの測定期間における前記温度データの最大値及び最小値を用いて前記オーブ ンループステップの前記熱処理条件を決定する請求項 4〜6のいずれか一項に記載 の熱処理条件の決定方法。
[8] 前記オープンループステップの前記熱処理条件には、前記基板の中央部を含む 第 1領域を昇温させるための第 1熱処理条件と、前記基板の前記中央部を取り囲み 前記第 1領域とは異なる熱的性質を有する前記基板の第 2領域を昇温させるための 第 2熱処理条件とが含まれており、
前記オープンループステップの前記熱処理条件を決定する工程は、
前記温度データを用いて前記第 1熱処理条件を決定する工程と、
前記温度データを用いて前記第 2熱処理条件と前記第 1熱処理条件との比率を算 出する工程と、
前記第 1熱処理条件と前記比率とを用いて前記第 2熱処理条件を決定する工程と を含む請求項 4〜6のいずれか一項に記載の熱処理条件の決定方法。
[9] 前記第 1熱処理条件を決定する工程では、前記温度データの測定期間における前 記温度データの最大値及び最小値を用いて前記第 1熱処理条件を決定し、 前記比率を算出する工程では、前記温度データの測定期間における前記温度デ ータの最大値及び最小値を用いて前記比率を算出する請求項 8に記載の熱処理条 件の決定方法。
PCT/JP2005/014577 2004-08-09 2005-08-09 基板の熱的性質判定方法及び熱処理条件の決定方法 WO2006016579A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/573,257 US8308350B2 (en) 2004-08-09 2005-08-09 Method of determining thermal property of substrate and method of deciding heat treatment condition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004232584A JP4925571B2 (ja) 2004-08-09 2004-08-09 基板の熱的性質判定方法及び熱処理条件の決定方法
JP2004-232584 2004-08-09

Publications (1)

Publication Number Publication Date
WO2006016579A1 true WO2006016579A1 (ja) 2006-02-16

Family

ID=35839348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014577 WO2006016579A1 (ja) 2004-08-09 2005-08-09 基板の熱的性質判定方法及び熱処理条件の決定方法

Country Status (3)

Country Link
US (1) US8308350B2 (ja)
JP (1) JP4925571B2 (ja)
WO (1) WO2006016579A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532877A (ja) * 2006-03-30 2009-09-10 アプライド マテリアルズ インコーポレイテッド 基板の急速熱処理のための適応制御方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562529B2 (ja) * 2008-04-17 2014-07-30 大日本スクリーン製造株式会社 熱処理装置
KR101892467B1 (ko) * 2008-05-02 2018-08-28 어플라이드 머티어리얼스, 인코포레이티드 회전하는 기판들에 대한 비 방사상 온도 제어를 위한 시스템
KR101859344B1 (ko) 2012-01-26 2018-05-18 어플라이드 머티어리얼스, 인코포레이티드 상부 기판 지지 어셈블리를 갖는 열 처리 챔버
US9568443B2 (en) 2012-10-15 2017-02-14 Board Of Trustees Of Michigan State University Testing system for estimating thermal properties of a material
US9756579B2 (en) 2013-10-18 2017-09-05 Board Of Trustees Of Michigan State University Near field communication system and method for controlling transmission power of near field communication system
WO2015146637A1 (ja) * 2014-03-25 2015-10-01 株式会社日立国際電気 基板処理装置、温度制御方法及び半導体装置の製造方法並びに記録媒体
US10840114B1 (en) * 2016-07-26 2020-11-17 Raytheon Company Rapid thermal anneal apparatus and method
JP6820717B2 (ja) 2016-10-28 2021-01-27 株式会社日立ハイテク プラズマ処理装置
JP6877581B2 (ja) * 2018-11-27 2021-05-26 株式会社日立ハイテク プラズマ処理装置及びそれを用いた試料の処理方法
JP7312020B2 (ja) * 2019-05-30 2023-07-20 株式会社Screenホールディングス 熱処理方法および熱処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209233A (ja) * 1992-01-30 1993-08-20 Nippon Steel Corp 加熱炉の炉内温度制御装置
JP2000509171A (ja) * 1996-01-31 2000-07-18 エイエスエム アメリカ インコーポレイテッド 熱処理のモデル規範型予測制御
JP2002198320A (ja) * 2000-12-26 2002-07-12 Sony Corp 加熱処理装置、加熱処理方法および半導体装置の製造方法
JP2003045818A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769540A (en) * 1990-04-10 1998-06-23 Luxtron Corporation Non-contact optical techniques for measuring surface conditions
US5444217A (en) * 1993-01-21 1995-08-22 Moore Epitaxial Inc. Rapid thermal processing apparatus for processing semiconductor wafers
US5561612A (en) * 1994-05-18 1996-10-01 Micron Technology, Inc. Control and 3-dimensional simulation model of temperature variations in a rapid thermal processing machine
US5660472A (en) 1994-12-19 1997-08-26 Applied Materials, Inc. Method and apparatus for measuring substrate temperatures
US5738440A (en) * 1994-12-23 1998-04-14 International Business Machines Corp. Combined emissivity and radiance measurement for the determination of the temperature of a radiant object
US5714392A (en) * 1996-07-26 1998-02-03 Advanced Micro Devices, Inc. Rapid thermal anneal system and method including improved temperature sensing and monitoring
JPH1073492A (ja) * 1996-08-30 1998-03-17 Sumitomo Sitix Corp 半導体基板の温度測定方法並びにその処理装置
US6056434A (en) * 1998-03-12 2000-05-02 Steag Rtp Systems, Inc. Apparatus and method for determining the temperature of objects in thermal processing chambers
US6280183B1 (en) 1998-04-01 2001-08-28 Applied Materials, Inc. Substrate support for a thermal processing chamber
US6188050B1 (en) * 1999-03-25 2001-02-13 Karta Technologies, Inc. System and method for controlling process temperatures for a semi-conductor wafer
NL1011856C2 (nl) * 1999-04-21 2000-10-24 Asm Internat B V Floating wafer reactor alsmede werkwijze voor het regelen van de temperatuur daarvan.
US6891124B2 (en) * 2000-01-05 2005-05-10 Tokyo Electron Limited Method of wafer band-edge measurement using transmission spectroscopy and a process for controlling the temperature uniformity of a wafer
JP3430258B2 (ja) * 2000-10-17 2003-07-28 独立行政法人産業技術総合研究所 熱拡散率と界面熱抵抗の測定方法
US6970644B2 (en) * 2000-12-21 2005-11-29 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
KR101067901B1 (ko) * 2001-12-26 2011-09-28 맷슨 테크날러지 캐나다 인코퍼레이티드 온도 측정 및 열처리 방법과 시스템
US6849831B2 (en) * 2002-03-29 2005-02-01 Mattson Technology, Inc. Pulsed processing semiconductor heating methods using combinations of heating sources
US7223660B2 (en) * 2002-07-31 2007-05-29 Intel Corporation Flash assisted annealing
JP4618705B2 (ja) * 2003-09-18 2011-01-26 大日本スクリーン製造株式会社 熱処理装置
US7976216B2 (en) * 2007-12-20 2011-07-12 Mattson Technology, Inc. Determining the temperature of silicon at high temperatures
US8575521B2 (en) * 2008-04-01 2013-11-05 Mattson Technology, Inc. Monitoring witness structures for temperature control in RTP systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209233A (ja) * 1992-01-30 1993-08-20 Nippon Steel Corp 加熱炉の炉内温度制御装置
JP2000509171A (ja) * 1996-01-31 2000-07-18 エイエスエム アメリカ インコーポレイテッド 熱処理のモデル規範型予測制御
JP2002198320A (ja) * 2000-12-26 2002-07-12 Sony Corp 加熱処理装置、加熱処理方法および半導体装置の製造方法
JP2003045818A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532877A (ja) * 2006-03-30 2009-09-10 アプライド マテリアルズ インコーポレイテッド 基板の急速熱処理のための適応制御方法

Also Published As

Publication number Publication date
US8308350B2 (en) 2012-11-13
US20070291818A1 (en) 2007-12-20
JP2006054214A (ja) 2006-02-23
JP4925571B2 (ja) 2012-04-25

Similar Documents

Publication Publication Date Title
WO2006016579A1 (ja) 基板の熱的性質判定方法及び熱処理条件の決定方法
US8222574B2 (en) Temperature measurement and control of wafer support in thermal processing chamber
US8111978B2 (en) Rapid thermal processing chamber with shower head
TWI401746B (zh) 使用次要處理工廠進行快速傳導冷卻的方法與設備
US7860379B2 (en) Temperature measurement and control of wafer support in thermal processing chamber
JP4786925B2 (ja) 基板処理方法および基板処理装置
JP6239559B2 (ja) 放射加熱された基板のクールダウンを向上させるための装置および方法
US6473993B1 (en) Thermal treatment method and apparatus
US20090095422A1 (en) Semiconductor manufacturing apparatus and substrate processing method
TW201140699A (en) Substrate processing device and substrate processing method thereof
WO2009122913A1 (ja) 熱処理装置
JP2014522574A (ja) 基板を支持および制御する装置および方法
JP4502220B2 (ja) 熱処理装置
JP2009074148A (ja) 成膜装置
JP2003282558A (ja) 熱処理装置
TWI545654B (zh) 用於快速熱處理腔之透明反射板
JP2005093911A (ja) 基板処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11573257

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11573257

Country of ref document: US