WO2006011571A1 - 光源装置および該光源装置を備える内視鏡 - Google Patents

光源装置および該光源装置を備える内視鏡 Download PDF

Info

Publication number
WO2006011571A1
WO2006011571A1 PCT/JP2005/013871 JP2005013871W WO2006011571A1 WO 2006011571 A1 WO2006011571 A1 WO 2006011571A1 JP 2005013871 W JP2005013871 W JP 2005013871W WO 2006011571 A1 WO2006011571 A1 WO 2006011571A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
light source
source device
output
Prior art date
Application number
PCT/JP2005/013871
Other languages
English (en)
French (fr)
Inventor
Hiromi Ajima
Kousuke Katabe
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US11/572,794 priority Critical patent/US20080262316A1/en
Priority to CN2005800254990A priority patent/CN1993075B/zh
Priority to EP05767431A priority patent/EP1787571A4/en
Publication of WO2006011571A1 publication Critical patent/WO2006011571A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]

Definitions

  • Light source device and endoscope provided with the light source device
  • the present invention relates to a light source device, and more particularly, to a light source device used as illumination for industrial or medical use and an endoscope including the light source device.
  • a medical endoscope includes an illumination optical system for illuminating the inside of a body with white light and a CCD camera for obtaining an in-vivo image.
  • An illumination optical system includes a high-intensity lamp such as a xenon lamp, a condensing lens for condensing the light output from the high-intensity lamp force, and an optical fiber for guiding the light collected by the condensing lens into the body And an illumination lens for irradiating the body with light guided through the light guide.
  • An illumination optical system having such a configuration is disclosed in Non-Patent Document 1, for example.
  • Non-Patent Document 1 a multi-component glass fiber having an NA (numerical aperture) of about 0.6 is used as a light guide, and the tip of the endoscope is used to uniformly illuminate the visual field range.
  • the NA is converted to about 0.87 using an illumination lens on the exit end face side of the light guide fiber located at the center.
  • a light source device having an illumination optical system using an LED or the like is disclosed in, for example, Patent Document 1 and Patent Document 2.
  • the illumination optical system of the light source device disclosed in Patent Document 1 includes a plurality of LEDs and a reflecting member, and is configured to introduce light output from the plurality of LEDs into a light guide member (light guide). ing.
  • the illumination optical system of the light source device disclosed in Patent Document 2 has a plurality of solid state light emitting elements (LED, LD, SLD, etc.) and introduces light output from the plurality of solid state light emitting elements into a fluorescent fiber. Is configured to do.
  • FIG. 10 shows an example of a conventional light source device.
  • the light source device includes a white LED 91, a condensing lens 92, and a plastic optical fiber (POF) 93. Is condensed by a condensing lens 92 and introduced into the incident end of POF93.
  • the white LED 91 includes a blue LED chip 94, a reflecting mirror 95, a sealing material 96, and a fluorescent material 97.
  • the white LED 91 in the conventional light source device has a small size and low power consumption as compared with the above-described high-intensity lamp. That may not be the case.
  • a white LED that is a combination of a blue LED and a yellow phosphor has a relatively high light output, but in principle has a relatively high output of green and red components. In some cases, the color rendering properties cannot be sufficiently obtained due to weakening.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-235796
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-19112
  • Non-Patent Document 1 "Mechanism and Application of Optical System” Optronitas Co., Ltd. Editorial Department pp205-215 (20 2003)
  • Non-Patent Document 2 “Next Generation Illuminated White LED” 2003 Kansai Branch Symposium, Japan Society of Applied Physics, pp35-40 (November 2003)
  • the conventional light source device even if the color rendering properties of the white LED 91 are improved, the light output from the white LED 91 is output to the outside via the POF 93, and therefore the transmission loss of the POF 93 depends on the wavelength. Due to the nature, the spectrum changes. In other words, in the conventional light source device, even if the color rendering property of the white LED 91 is improved, the light source device force may not be able to sufficiently obtain the color rendering property of the light output to the outside.
  • Figure 7 shows the wavelength characteristics of transmission loss for acrylic optical fibers.
  • the acrylic optical fiber has a relatively large transmission loss of about 10% near the red component (for example, 630 nm), whereas the transmission loss near the blue component (for example, 450 nm) is about 2%. Relatively small.
  • the transmission loss of POF93 Due to the wavelength dependence, a design that takes into account the configuration of the white LED 91 and the transmission loss of the POF 93 is required to output light with excellent color rendering in the conventional light source device.
  • the present invention has been conceived under such circumstances, and in addition to being small in size and low in power consumption, a light source device having high output and excellent color rendering properties and the light source device It aims at providing an endoscope provided with.
  • a light source device includes a semiconductor light emitting element that outputs light, and a wavelength that receives light output from the semiconductor light emitting element and outputs light having a longer wavelength than the light.
  • a conversion member, and a wavelength selection member having wavelength characteristics in which the reflectance and transmittance of the light differ according to the wavelength of the input light are provided between the semiconductor light emitting element and the wavelength conversion member.
  • a light source device includes a semiconductor light emitting element that outputs light, and a wavelength for receiving light output from the semiconductor light emitting element and outputting light having a longer wavelength than the light.
  • An endoscope according to the third aspect of the present invention includes a light source device according to the first or second aspect of the present invention, and an image sensor for imaging an irradiation region of light output from the light source device. And.
  • the light source device is located between the semiconductor light emitting element and the wavelength conversion member, and has a wavelength with different reflectance and transmittance of the light according to the wavelength of the input light.
  • a wavelength selection member having characteristics is provided. Therefore, in this light source device, for example, the light transmittance with respect to the wavelength of light output from the semiconductor light emitting element is set high, and the light reflectance with respect to the wavelength of light output from the wavelength conversion member is set high.
  • the light output from the semiconductor light emitting element via the wavelength selection member, the wavelength selection member side of the light output from the wavelength conversion member Can be effectively reflected by the wavelength selection member. Therefore, in the present light source device, the light output by the wavelength conversion member force can be effectively extracted in the direction opposite to the wavelength selection member, so that the output of the light extracted in the opposite direction side can be increased. It can be done.
  • the wavelength conversion member force is also output without passing through the member. Light can be extracted to the outside. Therefore, the light source device is suitable for enhancing the color rendering properties of the light extracted from the light source device power.
  • the light source device is configured such that light output from the semiconductor light emitting element is introduced into the wavelength conversion member via the light guide member. Therefore, in this light source device, the light output from the wavelength conversion member force can be extracted outside without passing through the light guide member. Therefore, in this light source device, even when the transmission loss in the light guide member has wavelength dependency, the color rendering property of the light extracted to the outside of the light source device force can be improved.
  • An endoscope according to the third aspect of the present invention includes the light source device according to the first or second aspect of the present invention. Therefore, this endoscope can irradiate the inside of the body with light having excellent color rendering properties. Therefore, this endoscope is suitable for more accurately identifying colors such as internal conditions.
  • FIG. 1 is a diagram schematically showing a configuration of a light source device according to a first embodiment of the present invention.
  • FIG. 2A is a diagram showing the spread angle of output light when the shape of the output end of the optical fiber in the light source device shown in FIG. 1 is flat.
  • FIG. 2B is a diagram showing the spread angle of output light when the shape of the output end of the optical fiber in the light source device shown in FIG. 1 is a concave curved surface.
  • FIG. 3 is a diagram schematically showing a configuration of a light source device according to a second embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view schematically showing the configuration of an endoscope according to a third embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view schematically showing the configuration of an endoscope according to a fourth embodiment of the present invention.
  • FIG. 6 is a diagram showing the emission spectrum of a purple LED.
  • FIG. 7 is a graph showing wavelength characteristics of transmission loss of an acrylic optical fiber.
  • FIG. 8 is a diagram illustrating wavelength characteristics of a wavelength selection filter.
  • FIG. 9 is a diagram showing the emission spectrum of a white LED that combines a purple LED and a phosphor.
  • FIG. 10 is a diagram schematically showing a configuration of a conventional light source device.
  • LED chip Semiconductor light emitting device
  • Wavelength selection member (wavelength selection mirror)
  • FIG. 1 is a schematic diagram showing a light source device XI according to the first embodiment of the present invention.
  • the light source device XI includes a light source 10, a condenser lens 20, a light guide member 30, a wavelength selection member 40, and a wavelength conversion member 50.
  • the light source 10 includes a semiconductor light emitting element 11, a reflecting member 12, and a sealing material 13, and is a member that outputs light for exciting a wavelength converting member 50 described later.
  • the semiconductor light emitting element 11 is for emitting light having a specific wavelength (for example, light having a short wavelength (eg, 390 nm or less) such as ultraviolet light).
  • Examples of the semiconductor light emitting element 11 include a blue to ultraviolet LED formed using a GaN-based compound semiconductor.For example, when a high-brightness LED is required, for example, an edge emitting LED (EELED: Edge Emitting LED) And super lumi Nescent LED (SLED: Super Luminescent LED) is preferable.
  • the reflecting member 12 is for reflecting the light output from the semiconductor light emitting element 11 and is configured to be able to reflect effectively toward a condensing lens 20 described later.
  • the reflecting member 12 has a substantially cup-like structure, and the semiconductor light emitting element 11 is attached to the central portion of the bottom 12a.
  • the reflecting member 12 include a member made entirely of metal and a member whose surface is coated with aluminum or silver.
  • the sealing material 13 is for sealing the semiconductor light emitting element 11 attached to the reflecting member 12, and has translucency so as to transmit light output from the semiconductor light emitting element 11.
  • the sealing material 13 may be configured to have a lens function for gathering in the light fluorescent lens 20 output from the semiconductor light emitting element 11.
  • the condensing lens 20 is composed of one lens or a combination of a plurality of lenses (in this embodiment, a combination of two lenses), and the light from which the power of the semiconductor light emitting element 11 of the light source 10 is also output.
  • ⁇ Light is used to enter one end 30a of a light guide member 30 to be described later.
  • the lens constituting the condenser lens 20 include an aspheric condenser lens and a ball lens.
  • the light guide member 30 is for guiding light output from the semiconductor light emitting element 11 of the light source 10 to a wavelength conversion member 50 described later, and is configured by, for example, an optical fiber.
  • Examples of the material constituting the light guide member 30 include quartz glass, multi-component glass, and plastic.
  • FIG. 2 shows the result of simulating the output beam corresponding to the light output end shape of the light guide member 30,
  • FIG. 2A shows the case where the output end shape is flat
  • FIG. 2B shows the output. This is the case where the end shape is concave (radius 5mm).
  • the beam divergence angle is 30 °
  • the output end shape of the light guide member 30 is a concave curved surface
  • the beam divergence angle is 50 °.
  • the output end shape of the light guide member 30 is a concave curved surface, thereby increasing the beam divergence angle of the light output from the output end (improves the illumination lens function). Can do it.
  • the beam divergence angle means the angle at which the radiation intensity is 50% of the maximum value from the optical axis (maximum radiation intensity).
  • the wavelength selection member 40 is disposed between the semiconductor light emitting element 11 of the light source 10 and a wavelength conversion member 50 described later (the other end 30b of the light guide member 30 in this embodiment) and is input. It has wavelength characteristics in which the reflectance and transmittance of light differ depending on the wavelength of light.
  • the wavelength selection member 40 examples include a wavelength selection filter (wavelength selection mirror) including a dielectric multilayer film.
  • this dielectric multilayer film is formed by alternately laminating a relatively high refractive index dielectric film (thickness ⁇ / 4) and a relatively low refractive index dielectric film (thickness ⁇ / 4).
  • the reflectance of light with a wavelength within a certain range including the wavelength ⁇ is high (for example, 90% or more), and the transmittance for light with a wavelength shorter than the wavelength (for example, ultraviolet light) is high.
  • the wavelength selection member 40 may be disposed on the light guide member 30 by previously forming the dielectric multilayer film on a glass substrate and using an ultrasonic processing machine. Or a dicing machine or the like divided into a predetermined size with respect to the other end 30b of the light guide member 30 by attaching it to the other end 30b of the light guide member 30 with an adhesive or by a method such as vapor deposition. And a method of directly forming the dielectric multilayer film. When the former method is employed, matching oil (for example, silicon oil) may be interposed between the other end 30b of the light guide member 30 and the wavelength selection member 40.
  • matching oil for example, silicon oil
  • the wavelength selection member 40 may be appropriately sized according to the beam divergence angle of the light output from the other end 30b of the light guide member 30. However, when the beam divergence angle is large, more light is emitted.
  • the light guide member 30 is preferably set to be larger than the other end 30b of the light guide member 30 to be introduced into the wavelength conversion member 50 via the wavelength selection member 40.
  • a method for directly forming the dielectric multilayer film on the other end 30b of the light guide member 30 will be described.
  • a plurality of light guide members 30 are installed in a vapor deposition apparatus in a state where they are collectively held by a predetermined jig.
  • a predetermined dielectric forming material is deposited on the other end 30b of the light guide member 30 at a predetermined temperature (for example, 100 to 150 ° C.).
  • a dielectric multilayer film can be formed on the other end 30b of the light guide member 30.
  • the end face of the optical fiber is polished together with the end face of the ferrule, and the dielectric multilayer film is deposited on the polished face. A little.
  • the wavelength conversion member 50 receives light output from the semiconductor light emitting element 11, and receives the wavelength from the light.
  • phosphors and pigments are dispersed in a predetermined resin (silicone resin) and cured.
  • a blue LED is adopted as the semiconductor light emitting element 11 and a yellow light emitting phosphor (for example, YAG phosphor) is adopted as the wavelength conversion element 50.
  • a purple LED or ultraviolet LED is used as the semiconductor light emitting element 11, and the RG B phosphor (a combination of three kinds of phosphors of red (R), green (G), and blue (B) is used as the wavelength conversion element 50. ).
  • each phosphor constituting the RGB phosphor is dispersed in a resin with a predetermined content and cured. Good. It can be said that the light output end shape of the wavelength conversion member 50 is the same as the light output end shape of the light guide member 30.
  • the light source device XI includes a wavelength selection member 40. Therefore, in the light source device XI, for example, the transmittance at the wavelength of the light output from the semiconductor light emitting element 11 is set high (for example, 90% or more), and the reflectance at the wavelength of the light output from the wavelength conversion member 50 is set. Is set to a high value (for example, 90% or more), the light output from the semiconductor light-emitting element 11 through the wavelength selection member 40 can be made to reach the wavelength conversion member 50 efficiently, and the wavelength conversion Of the light output from the member 50, the light directed toward the wavelength selecting member 40 can be effectively reflected by the wavelength selecting member 40.
  • the transmittance at the wavelength of the light output from the semiconductor light emitting element 11 is set high (for example, 90% or more)
  • the reflectance at the wavelength of the light output from the wavelength conversion member 50 is set. Is set to a high value (for example, 90% or more)
  • the light output from the semiconductor light-emitting element 11 through the wavelength selection member 40 can be made to
  • the light output from the wavelength conversion member 50 can be effectively extracted in the direction opposite to the wavelength selection member 40, so the output of the light extracted in the opposite direction side is increased. It can be done.
  • the wavelength conversion member 50 when a member including a phosphor is employed as the wavelength conversion member 50, the light output from the phosphor has poor directivity, and thus the output improvement effect by the wavelength selection member 40 can be obtained more remarkably.
  • the light output from the semiconductor light emitting element 11 is introduced into the wavelength conversion member 50 via the light guide member 30 and the wavelength selection member 40, and the light output from the wavelength conversion member 50 is external. It is comprised so that it may be taken out. Therefore, in the light source device XI, the light output from the wavelength conversion member 50 can be extracted outside without passing through the light guide member 30. Therefore, the light source device XI can improve the color rendering properties of the light extracted from the light source device XI even when the transmission loss in the light guide member 30 has wavelength dependency. It can be done.
  • FIG. 3 is a schematic diagram showing a light source device X2 according to the second embodiment of the present invention.
  • the wavelength selection member 40 is directly attached to the light output surface of the semiconductor light emitting device 11 except for the condenser lens 20 and the light guide member 30, and in addition to the semiconductor light emitting device 11, wavelength selection is performed.
  • the member 40 and the wavelength conversion member 50 differ from the light source device XI in that the member 40 and the wavelength conversion member 50 are also sealed with the sealing material 13.
  • Other configurations of the light source device X2 are the same as those described above regarding the light source device XI.
  • the light source device X2 includes a wavelength selection member 40. Therefore, in the light source device X2, for example, the transmittance at the wavelength of the light output from the semiconductor light emitting element 11 is set high (for example, 90% or more), and the reflectance at the wavelength of the light output from the wavelength conversion member 50 is set. Is set to a high value (for example, 90% or more), the light output from the semiconductor light-emitting element 11 through the wavelength selection member 40 can be made to reach the wavelength conversion member 50 efficiently, and the wavelength conversion Of the light output from the member 50, the light directed toward the wavelength selecting member 40 can be effectively reflected by the wavelength selecting member 40.
  • the transmittance at the wavelength of the light output from the semiconductor light emitting element 11 is set high (for example, 90% or more)
  • the reflectance at the wavelength of the light output from the wavelength conversion member 50 is set. Is set to a high value (for example, 90% or more)
  • the light output from the semiconductor light-emitting element 11 through the wavelength selection member 40 can be made to reach
  • the light output from the wavelength conversion member 50 can be effectively extracted in the direction opposite to the wavelength selection member 40, so the output of the light extracted in the opposite direction side is increased. It can be done.
  • the wavelength conversion member 50 when a member including a phosphor is employed as the wavelength conversion member 50, the light output from the phosphor has poor directivity, and thus the output improvement effect by the wavelength selection member 40 can be obtained more remarkably.
  • the semiconductor light emitting element 11 and the wavelength conversion member 50 are directly connected via the wavelength selection member 40. That is, in the light source device X2, a member having a wavelength dependency of transmission loss such as the light guide member 30 is not interposed between the semiconductor light emitting element 11 and the wavelength conversion member 50. Therefore, the light source device X2 is excellent in the color rendering of the light extracted from the light source device X2 to the outside.
  • the wavelength selection member 40 is disposed on the light emitting surface of the semiconductor light emitting element 11.
  • This arrangement may be performed by forming a dielectric multilayer film on a glass substrate in advance and dividing it into a predetermined size, and attaching it on the light emitting surface of the semiconductor light emitting element 11 or by vapor deposition. Any method may be used to form a dielectric multilayer film directly on the light emitting surface of the semiconductor light emitting device 11.
  • the semiconductor light emitting element 11 in which the wavelength selection member 40 is disposed at a predetermined position (in the present embodiment, the bottom surface of the cup) of the reflecting member 12 is disposed.
  • the wavelength conversion member 50 is formed on the wavelength selection member 40. Specifically, after a predetermined amount of a constituent material (for example, phosphor-containing silicon resin) is dubbed from the wavelength selection member 40, it is left to stand at room temperature or heated at a predetermined temperature (for example, 60 ° C). The material is formed by curing the constituent materials. By dubbing, a part of the constituent material may flow into the side surface of the wavelength selection member 40!
  • a constituent material for example, phosphor-containing silicon resin
  • the semiconductor light emitting device 11, the wavelength selection member 40, and the wavelength conversion member 50 are all sealed with the sealing material 13.
  • the light source device X2 shown in FIG. 3 is manufactured.
  • FIG. 4 is a partial cross-sectional view showing a schematic configuration of an endoscope Y1 according to the third embodiment of the present invention.
  • the endoscope Y1 includes a light guide member 30, a light source connector unit 110, an image sensor mounting unit 120, and a branching unit 130.
  • the endoscope Y1 is inserted into a body and the internal state thereof is examined. Is for.
  • the same or similar members as those of the light source device XI are denoted by the same reference numerals.
  • the light source connector section 110 includes a light source 10, a condensing lens 20, a holder 111, a ferrule 112, a holder 113, and a connecting means 114.
  • the one end of the optical member 30 is configured to have a predetermined positional relationship.
  • the holder 111 is for holding the light source 10 and the condensing lens 20 so that the light output from the light source 10 is condensed by the condensing lens 20 and input to one end of the light guide member 30. It is configured.
  • one end of the light guide member 30 is inserted into the through hole, and is fixed by, for example, an adhesive (not shown).
  • the holder 113 is for holding the ferrule 112.
  • the connecting means 114 is for supporting the holder 113 in a slidable state via the elastic member 115 and for connecting the holder 111 and the holder 113 together.
  • the connected state of the holder 111 and the holder 113 by the connecting means 114 can be released.
  • the image sensor mounting unit 120 includes a wavelength selection member 40, a wavelength conversion member 50, a holder 121, an image sensor 122, a ferrule 123, and a protection member 124. other The end, the wavelength selection member 40, and the wavelength conversion member 50 are configured to have a predetermined positional relationship.
  • the holder 121 has a substantially columnar shape, and has a through-hole 121a disposed at the center thereof, and a through-hole 121b (two in this embodiment) disposed so as to sandwich the through-hole 121a.
  • the image sensor 121 is a semiconductor element having a photoelectric conversion function, and is fixed in the through hole 121a with an adhesive, a precision screw, or the like (not shown).
  • the image sensor 121 is located at a substantially central portion of the image sensor mounting portion 120 and is controlled by a control means (not shown) connected via a control line 125.
  • Examples of the image pickup device 121 include a CCD (Changing Coupiea Device) -based sensor, a MOS, and an Omplementary Metal Oxide Conductor (Image Sensor) image sensor.
  • the other end of the light guide member 30 is inserted and fixed in the through hole with an adhesive or the like, and is fixed in the through hole 121b with an adhesive or a precision screw (not shown). The other end portion of the light guide member 30 is inserted and fixed, and the wavelength selection member 40 and the wavelength conversion member 50 are sequentially laminated on the tip portion of the ferrule 122.
  • the protection member 124 is for protecting the wavelength selection member 40 and the wavelength conversion member 50 provided at the tip of the ferrule 122 with a force such as outside air, and is attached to the tip of the through hole 121b.
  • the protective member 124 is preferably configured such that the beam divergence angle of the light output through the protective member 124 is within an appropriate range (for example, 120 ° or more) for the endoscope Y1, for example, as described above. From the same viewpoint as the simulation of the light guide member 30, the end on the light output side has a concave curved surface.
  • Examples of the protective member 124 include a cover glass.
  • a predetermined amount of a constituent material of the wavelength conversion member 50 for example, phosphor-containing silicon resin is deposited on the wavelength selection member 40.
  • the wavelength conversion member 50 is formed as described above. Note that the thickness of the wavelength converting member 50 is a force set to, for example, about lmm. Set it according to your needs!
  • the branching means 130 is for branching the light guide member 30 that should input the light output from the light source connector section 110 to the two wavelength conversion members 50.
  • the branching ratio of the light in the branching unit 130 should be approximately equal to each other in order to equalize the brightness and output of the light finally output to the outside through each wavelength conversion member 50 (in this embodiment, 50 %) Is preferably set so that it is branched.
  • a photo power bra is cited as the branching means 130.
  • the endoscope Y1 incorporates the same configuration as that of the light source device XI, and thus has the same effect as that of the light source device XI described above.
  • the endoscope Y1 since the endoscope Y1 includes the image sensor 121, an image of an irradiation area of light output through the wavelength conversion member 50 can be obtained as an electrical signal by the image sensor 121.
  • FIG. 5 is a partial cross-sectional view showing a schematic configuration of an endoscope Y2 according to the fourth embodiment of the present invention.
  • the endoscope Y2 differs from the endoscope Y1 in that it has two light guide members 30 and two light source connector portions 110 instead of the branching means 130.
  • the other configuration of the endoscope Y2 is the same as that described above for the endoscope Y1.
  • the number of the light guide members 30 and the light source connector portions 110 may be three or more.
  • the endoscope Y2 makes the output of light output through the wavelength conversion member 50 approximately twice (varies depending on the number of installations) compared to the endoscope Y1. be able to.
  • at least one of the endoscopes Y2 can be used as a backup light source, it is possible to continue irradiating light even if the main light source is broken during work.
  • the light source devices XI and X2 and the endoscopes Yl and Y2 may employ a light source having a relatively small light diffusibility (for example, a light source that outputs laser light) as the light source 10. With such a configuration, it is possible to introduce a relatively large amount of light into the wavelength conversion member 50 via the wavelength selection member 40 without increasing the size of the wavelength selection member 40.
  • a light source having a relatively small light diffusibility for example, a light source that outputs laser light
  • a fiber having a lens function (for example, a graded index fiber) is provided between the other end 30b of the light guide member 30 and the wavelength selection member 40. Further, it may be provided. According to such a configuration, the diffusion of light output from the fibre toward the wavelength selection member 40 can be suppressed by the fiber having a lens function, so that the size of the wavelength selection member 40 is not increased. However, a relatively large amount of light can be introduced into the wavelength conversion member 50 via the wavelength selection member 40.
  • the endoscopes Yl and Y2 may employ image guide fibers for fiber scope instead of the image sensor 121 and the control line 125. Such a configuration is suitable for reducing the size of the image sensor mounting portion 120 in the endoscopes Y1 and Y2.
  • the endoscopes Yl and Y2 can also be used as an illumination device that does not include any of the image sensor 121, the control line 125, and an image guide fiber for a fiberscope.
  • the light source devices XI and X2 have high output and excellent color rendering, they may be employed as light source devices for projectors, headlights of automobiles, and various bio equipment.
  • a projector requires a high-output point light source as a light source, but the light output end to the outside of the light source device XI is suitable as a point light source.
  • a light source device having the same configuration as the light source device XI shown in FIG. 1 was produced. Specifically, a purple LED is used as the semiconductor light emitting element 11.
  • Figure 6 shows the emission spectrum of the purple LED. As clearly shown in Fig. 6, the wavelength of the light output from the purple LED was mainly about 380 nm.
  • the reflecting member 12 one coated with aluminum was adopted.
  • the sealing material 13 a resin was used. The sealing material 13 has a lens function that reduces the beam divergence angle of the light output from the purple LED.
  • the condenser lens 20 an aspheric condenser lens was used.
  • Figure 7 shows the wavelength characteristics of the transmission loss of this acrylic fiber.
  • a wavelength selection filter composed of a dielectric multilayer film is employed.
  • Figure 8 shows the wavelength characteristics of this wavelength selective mirror.
  • This wavelength selective filter has a transmittance of 90% or more (a level that can be regarded as sufficient) for the wavelength of light output from the purple LED (approximately 380 nm), and for the wavelength range of white light (approximately 410 to 700 nm). Reflectivity is 90% or higher (level considered sufficient) It is configured as follows.
  • a phosphor-containing member in which a RGB phosphor is mixed into silicon resin to form a balta shape was adopted.
  • the RG B phosphor contained in this phosphor-containing member consists of Eu-doped La OS (R component) and Eu-doped SrAl 2 O 3 (G component).
  • FIG. 9 shows a light emission spectrum output from the light source device according to this example manufactured as described above.
  • white light having an emission spectrum as shown in FIG. 5 is output to the outside through a fiber having a wavelength characteristic as shown in FIG.
  • the spectrum had a relatively low value near 630 nm, and it was difficult to ensure excellent color rendering.
  • the influence of the wavelength dependence of the transmission loss of acrylic fiber Therefore, excellent color rendering properties could be easily secured.
  • the light source device according to this example can obtain a higher output than the conventional light source device by adopting the wavelength selection film. From the above, it can be said that the light source device according to the present example is higher in output and excellent in color rendering than the conventional light source device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)

Abstract

 本発明に係る光源装置は、 光を出力する半導体発光素子と、半導体発光素子から出力される光を受けて、該光より波長の長い光を出力するための波長変換部材と、半導体発光素子と前記波長変換部材との間に位置し、入力される光の波長に応じて該光の反射率および透過率が異なる波長特性を有する波長選択部材とを備える。

Description

明 細 書
光源装置および該光源装置を備える内視鏡
技術分野
[0001] 本発明は、光源装置に関し、特に工業用や医療用途の照明として用いる光源装置 および該光源装置を備える内視鏡に関する。
背景技術
[0002] 医療用の内視鏡は、白色光で体内を照らすための照明光学系と、体内画像を得る ための CCDカメラを備える。照明光学系は、キセノンランプなどの高輝度ランプ、該 高輝度ランプ力 出力される光を集光するための集光レンズ、該集光レンズにより集 光された光を体内に導くための光ファイバで構成されたライトガイド、および、該ライト ガイドを介して導かれる光を体内に照射するための照明レンズにより構成されている 。このような構成の照明光学系は、例えば非特許文献 1に開示されている。
[0003] 非特許文献 1の照明光学系では、ライトガイドとして NA (開口数)が 0. 6程度の多 成分ガラスファイバが用いられるとともに、視野範囲を均一に照射するために、内視 鏡先端部に位置するライトガイドファイバの出射端面側で照明レンズを用いて NAを 0 . 87程度まで変換している。
[0004] し力しながら、このような従来の照明光学系では、高輝度ランプの発熱や消費電力 が大きいのにカ卩え、全体形状も大きくなつてしまうなどの問題がある。
[0005] そこで、このような問題を改善すベぐ LEDなどを用いた照明光学系が提案されて いる。 LEDなどを用いた照明光学系を有する光源装置は、例えば特許文献 1や特許 文献 2に開示されている。特許文献 1に開示されている光源装置の照明光学系は、 複数の LEDおよび反射部材を有し、該複数の LEDから出力される光を光ガイド部材 (ライトガイド)に導入するように構成されている。特許文献 2に開示されている光源装 置の照明光学系は、複数の固体発光素子 (LED、 LD、 SLDなど)を有し、該複数の 固体発光素子から出力される光を蛍光ファイバに導入するように構成されている。
[0006] 図 10は、従来の光源装置の一例を表す。本光源装置は、白色 LED91と、集光レ ンズ 92と、プラスチック光ファイバ(POF) 93とを備え、白色 LED91から出力される光 を集光レンズ 92で集光し、 POF93の入射端に導入するように構成されている。白色 LED91は、青色 LEDチップ 94と、反射鏡 95と、封止材 96と、蛍光材 97とを有する
[0007] し力しながら、従来の光源装置における白色 LED91は、上述の高輝度ランプに比 ベて小型且つ低消費電力である力 例えば医療用として用いる場合には光の出力 ゃ演色性に関して充分とはいえない場合がある。具体的には、非特許文献 2によると 、青色 LEDと黄色蛍光体との組み合わせによる白色 LEDは、光の出力が比較的高 いものの、原理的に緑成分および赤成分の出力が相対的に弱くなるため演色性が 充分に得られな 、場合がある。
[0008] そこで、緑成分および赤成分の出力が相対的に高く演色性に優れた白色 LEDとし て、紫外 LEDと RGB蛍光体とを組み合わせた白色 LEDが提案されるなど、白色 LE Dのスペクトラムを太陽光のスペクトラムに近づけるための開発が進められている。 特許文献 1:特開 2003 - 235796号
特許文献 2:特開 2003— 19112号
非特許文献 1 :「光学系の仕組みと応用」 ォプトロ二タス社編集部偏 pp205-215(20 03年)
非特許文献 2:「次世代照らす白色 LED」平成 15年度応用物理学会関西支部シンポ ジゥム、 pp35- 40 (平成 15年 11月)
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、従来の光源装置では、白色 LED91の演色性を改善しても、該白色 LED91から出力される光は POF93を介して外部に出力されるため、 POF93の透 過損失の波長依存性に起因して、スペクトラムが変化してしまう。つまり、従来の光源 装置では、白色 LED91の演色性を改善しても、該光源装置力も外部に出力される 光の演色性を充分に得ることができない場合がある。図 7は、アクリル系光ファイバの 透過損失の波長特性を表す。これによると、アクリル系光ファイバは、赤成分 (例えば 630nm)付近の透過損失が約 10%と比較的大き 、のに対して、青成分 (例えば 450 nm)付近の透過損失が約 2%と比較的小さい。このように、 POF93の透過損失には 波長依存性があるため、従来の光源装置において演色性の優れた光を出力するに は、白色 LED91の構成や POF93の透過損失などを考慮した設計が必要となる。
[0010] 本発明は、このような事情のもとで考え出されたものであって、小型且つ低消費電 力であるのに加え、高出力で演色性に優れた光源装置および該光源装置を備える 内視鏡を提供することを、目的とする。
課題を解決するための手段
[0011] 本発明の第 1の側面に係る光源装置は、光を出力する半導体発光素子と、半導体 発光素子から出力される光を受けて、該光より波長の長い光を出力するための波長 変換部材と、半導体発光素子と波長変換部材との間に、入力される光の波長に応じ て該光の反射率および透過率が異なる波長特性を有する波長選択部材とを備える。
[0012] 本発明の第 2の側面に係る光源装置は、光を出力する半導体発光素子と、半導体 発光素子から出力される光を受けて、該光より波長の長い光を出力するための波長 変換部材と、半導体発光素子力 出力される光を波長変換部材に導くための導光部 材とを備える。
[0013] 本発明の第 3の側面に係る内視鏡は、本発明の第 1または第 2の側面に係る光源 装置と、光源装置から出力される光の照射領域を撮像するための撮像素子とを備え る。
発明の効果
[0014] 本発明の第 1の側面に係る光源装置は、半導体発光素子と波長変換部材との間に 位置し、入力される光の波長に応じて該光の反射率および透過率が異なる波長特性 を有する波長選択部材を備える。そのため、本光源装置では、例えば半導体発光素 子から出力される光の波長に対する光の透過率を高く設定するとともに、波長変換部 材から出力される光の波長に対する光の反射率を高く設定することにより、波長選択 部材を介して半導体発光素子から出力される光を波長変換部材に効率的に到達さ せることができるのに加え、該波長変換部材から出力される光のうち波長選択部材側 に向う光を該波長選択部材により効果的に反射することができる。したがって、本光 源装置では、波長変換部材力 出力される光を波長選択部材とは反対の方向に効 果的に取り出すことができるので、該反対方向側に取り出す光の出力を高めることが できるのである。
[0015] また、本光源装置では、半導体発光素子と波長変換部材との間に、透過損失が波 長依存性を有する部材を介在させたとしても、該部材を介することなく波長変換部材 力も出力する光を外部に取り出すことができる。したがって、本光源装置は、該光源 装置力 外部に取り出す光の演色性を高めるうえで好適である。
[0016] 本発明の第 2の側面に係る光源装置は、半導体発光素子から出力される光が導光 部材を介して波長変換部材に導入されるように構成されている。そのため、本光源装 置では、導光部材を介することなく波長変換部材力 出力される光を外部に取り出す ことができる。したがって、本光源装置では、導光部材における透過損失が波長依存 性を有する場合でも、該光源装置力 外部に取り出す光の演色性を高めることがで きるのである。
[0017] 本発明の第 3の側面に係る内視鏡は、本発明の第 1または第 2の側面に係る光源 装置を備えている。そのため、本内視鏡は、演色性に優れた光により体内などを照射 することができる。したがって、本内視鏡は、体内の状況などの色彩による識別をより 的確に行ううえで好適である。
図面の簡単な説明
[0018] [図 1]本発明の第 1の実施形態に係る光源装置の構成を模式的に表す図である。
[図 2A]図 1に表す光源装置における光ファイバの出力端の形状が平坦状である場合 の出力光の広がり角を表す図である。
[図 2B]図 1に表す光源装置における光ファイバの出力端の形状が凹曲面状である場 合の出力光の広がり角を表す図である。
[図 3]本発明の第 2の実施形態に係る光源装置の構成を模式的に表す図である。
[図 4]本発明の第 3の実施形態に係る内視鏡の構成を模式的に表す部分断面図で ある。
[図 5]本発明の第 4の実施形態に係る内視鏡の構成を模式的に表す部分断面図で ある。
[図 6]紫色 LEDの発光スペクトラムを表す図である。
[図 7]アクリル系光ファイバの透過損失の波長特性を表す図である。 [図 8]波長選択フィルタの波長特性を表す図である
[図 9]紫色 LEDと蛍光体とを組み合わせた白色 LEDの発光スペクトラムを表す図で ある。
[図 10]従来の光源装置の構成を模式的に表す図である。
符号の説明
[0019] XI, X2 :光源装置
Yl, Y2 :内視鏡
10 :光源 (発光ダイオード)
11:半導体発光素子 (LEDチップ)
12 :反射部材 (反射鏡)
13 :封止材
20 :集光レンズ
30 :導光部材 (光ファイバ)
40:波長選択部材 (波長選択ミラー)
50:波長変換部材 (蛍光体含有部)
110 :光源コネクタ部
120 :撮像素子搭載部
130 :分岐手段
発明を実施するための最良の形態
[0020] 図 1は、本発明の第 1の実施形態に係る光源装置 XIを表す模式図である。光源装 置 XIは、光源 10と、集光レンズ 20、導光部材 30、波長選択部材 40、波長変換部材 50を備える。
[0021] 光源 10は、半導体発光素子 11と、反射部材 12と、封止材 13とを有しており、後述 する波長変換部材 50を励起するための光を出力する部材である。半導体発光素子 11は、特定の波長の光 (例えば紫外光などの短波長(例えば 390nm以下)の光)を 発するためのものである。半導体発光素子 11としては、例えば GaN系化合物半導体 を用いて構成される青色〜紫外 LEDなどが挙げられるが、特に高輝度のものが求め られる場合は、例えば端面発光 LED (EELED : Edge Emitting LED)やスーパールミ ネッセント LED (SLED : Super Luminescent LED)などが好ましい。反射部材 12は、半 導体発光素子 11力 出力される光を反射するためのものであり、後述する集光レン ズ 20に向けて効果的に反射できるように構成されている。本実施形態において反射 部材 12は略カップ状の構造を有しており、その底部 12aの中央部分に半導体発光 素子 11が取り付けられている。反射部材 12としては、その全体が金属により構成さ れたものや、その表面がアルミニウムや銀によりコーティングされたものなどが挙げら れる。封止材 13は、反射部材 12に取り付けられた半導体発光素子 11を封止するた めのものであり、半導体発光素子 11から出力される光を透過すべく透光性を有して いる。また、封止材 13は、半導体発光素子 11から出力される光魏光レンズ 20に集 めるためのレンズ機能を有するように構成してもよ 、。
[0022] 集光レンズ 20は、 1のレンズ、または、複数のレンズの組み合わせ (本実施形態で は 2つのレンズの組み合わせ)により構成されており、光源 10の半導体発光素子 11 力も出力される光^^光して、後述する導光部材 30の一端 30aに入射させるための ものである。集光レンズ 20を構成するレンズとしては、非球面コンデンサーレンズや ボールレンズなどが挙げられる。
[0023] 導光部材 30は、光源 10の半導体発光素子 11から出力される光を後述する波長変 換部材 50に導くためのものであり、例えば光ファイバなどにより構成される。導光部 材 30を構成する材料としては、石英ガラス、多成分系ガラス、プラスチックなどが挙げ られる。
[0024] 図 2は、導光部材 30の光の出力端形状に応じた出力ビームをシミュレーションした 結果を表すものであり、図 2Aは出力端形状が平坦状の場合であり、図 2Bは出力端 形状が凹曲面状(半径 5mm)の場合である。図 2に示すシミュレーションの結果によ ると、導光部材 30の出力端形状が平坦状の場合のビーム広がり角は 30° であり、導 光部材 30の出力端形状が凹曲面状の場合のビーム広がり角は 50° である。したが つて、光源装置 XIでは、導光部材 30の出力端形状を凹曲面状にすることにより、出 力端から出力される光のビーム広がり角を大きくする(照明レンズ機能を向上させる) ことができるのである。ここで、ビーム広がり角とは、光軸 (放射強度最大値)から放射 強度が最大値の 50%になる角度を意味する。 [0025] 波長選択部材 40は、光源 10の半導体発光素子 11と後述の波長変換部材 50との 間(本実施形態では導光部材 30の他端 30b)に配設されており、入力される光の波 長に応じて該光の反射率および透過率が異なる波長特性を有している。波長選択部 材 40としては、誘電体多層膜を含んでなる波長選択フィルタ (波長選択ミラー)など が挙げられる。この誘電体多層膜は、例えば、相対的に高屈折率の誘電体膜 (厚さ λ /4)と相対的に低屈折率の誘電体膜 (厚さ λ /4)とを交互に積層してなり、波長 λを含む一定範囲内の波長の光 (例えば可視光)の反射率が高く(例えば 90%以上 )、且つ、波長えより短波長の光 (例えば紫外光)の透過率が高く(例えば 90%以上) なるように構成されて 、る。波長選択部材 40として上記波長選択フィルタを採用した 場合における波長選択部材 40の導光部材 30への配設方法としては、予めガラス系 基板上に上記誘電体多層膜を形成し、超音波加工機やダイシング加工機などにより 所定のサイズに分割したものを、導光部材 30の他端 30bに接着剤などにより取り付 ける方法や、蒸着などの手法により、導光部材 30の他端 30bに対して直接上記誘電 体多層膜を形成する方法などが挙げられる。また、前者の方法を採用する場合は、 導光部材 30の他端 30bと波長選択部材 40との間に、マッチングオイル (例えば、シリ コンオイル)を介在させてもよい。なお、波長選択部材 40の大きさは、導光部材 30の 他端 30bから出力される光のビーム広がり角に応じて適宜すればよいが、該ビーム 広がり角が大きい場合、より多くの光を、波長選択部材 40を介して波長変換部材 50 に導入すベぐ導光部材 30の他端 30bよりも大きく設定するのが好ましい。
[0026] ここで、導光部材 30の他端 30bに対して直接上記誘電体多層膜を形成する方法 の一例について説明する。まず、複数の導光部材 30を所定の治具に一括保持させ た状態で蒸着装置内に設置する。次に、導光部材 30の他端 30bに対して、所定温 度 (例えば 100〜150°C)で所定の誘電体形成材料を蒸着する。以上のようにして、 導光部材 30の他端 30bに対して誘電体多層膜を形成ことができる。なお、導光部材 30としてフエルールにより保持された光ファイバを採用する場合は、該光ファイバの 端面を該フ ルールの端面とともに研磨し、その研磨面に上記誘電体多層膜を蒸着 するようにしてちょい。
[0027] 波長変換部材 50は、半導体発光素子 11から出力される光を受けて、該光より波長 の長い光を出力するためのものであり、例えば蛍光体や顔料などを所定の榭脂(シリ コン榭脂)中に分散させて硬化させたものである。波長変換部材 50から出力される光 を白色光とするには、半導体発光素子 11として青色 LEDを採用し且つ波長変換素 子 50として黄色発光の蛍光体 (例えば YAG蛍光体)を採用する手段や、半導体発 光素子 11として紫色 LEDまたは紫外 LEDを採用し且つ波長変換素子 50として RG B蛍光体 (赤色 (R)、緑色 (G)、青色 (B)の 3種類の蛍光体を組み合わせたもの)を 採用する手段などが挙げられる。特に、波長変換部材 50から出力される光を演色性 に優れた白色光とするには、 RGB蛍光体を構成する各蛍光体を所定の含有量で榭 脂中に分散させて硬化させればよい。なお、波長変換部材 50における光の出力端 形状については、導光部材 30における光の出力端形状と同様のことが言える。
[0028] 本実施形態に係る光源装置 XIは波長選択部材 40を備える。そのため、光源装置 XIでは、例えば半導体発光素子 11から出力される光の波長における透過率を高く( 例えば 90%以上)設定するとともに、波長変換部材 50から出力される光の波長にお ける反射率を高く(例えば 90%以上)設定することにより、波長選択部材 40を介して 半導体発光素子 11力 出力される光を波長変換部材 50に効率的に到達させること ができるのに加え、該波長変換部材 50から出力される光のうち波長選択部材 40側 に向う光を該波長選択部材 40により効果的に反射することができる。したがって、光 源装置 XIでは、波長変換部材 50から出力される光を波長選択部材 40とは反対の 方向に効果的に取り出すことができるので、該反対方向側に取り出す光の出力を高 めることができるのである。特に、波長変換部材 50として蛍光体を含む部材を採用す る場合、該蛍光体から出力される光は指向性に乏しいので、波長選択部材 40による 出力向上効果をより顕著に得ることができる。
[0029] 光源装置 XIでは、半導体発光素子 11から出力される光が導光部材 30および波 長選択部材 40を介して波長変換部材 50に導入され、該波長変換部材 50から出力 する光が外部に取り出されるように構成されている。そのため、光源装置 XIでは、波 長変換部材 50から出力される光を、導光部材 30を介することなく外部に取り出すこと ができる。したがって、光源装置 XIは、導光部材 30における透過損失が波長依存 性を有する場合でも、該光源装置 XIから外部に取り出す光の演色性を高めることが できるのである。
[0030] 図 3は、本発明の第 2の実施形態に係る光源装置 X2を表す模式図である。光源装 置 X2は、集光レンズ 20および導光部材 30を除き、波長選択部材 40を半導体発光 素子 11の光出力面に直接取り付けられている点と、半導体発光素子 11に加えて、 波長選択部材 40および波長変換部材 50も封止材 13により封止されている点とにお いて、光源装置 XIと異なる。光源装置 X2の他の構成については、光源装置 XIに関 して上述したのと同様である。
[0031] 本実施形態に係る光源装置 X2は波長選択部材 40を備える。そのため、光源装置 X2では、例えば半導体発光素子 11から出力される光の波長における透過率を高く( 例えば 90%以上)設定するとともに、波長変換部材 50から出力される光の波長にお ける反射率を高く(例えば 90%以上)設定することにより、波長選択部材 40を介して 半導体発光素子 11力 出力される光を波長変換部材 50に効率的に到達させること ができるのに加え、該波長変換部材 50から出力される光のうち波長選択部材 40側 に向う光を該波長選択部材 40により効果的に反射することができる。したがって、光 源装置 X2では、波長変換部材 50から出力される光を波長選択部材 40とは反対の 方向に効果的に取り出すことができるので、該反対方向側に取り出す光の出力を高 めることができるのである。特に、波長変換部材 50として蛍光体を含む部材を採用す る場合、該蛍光体から出力される光は指向性に乏しいので、波長選択部材 40による 出力向上効果をより顕著に得ることができる。
[0032] また、光源装置 X2では、半導体発光素子 11と波長変換部材 50とが波長選択部材 40を介して直接接続されている。すなわち、光源装置 X2では、半導体発光素子 11 と波長変換部材 50との間に、導光部材 30などの透過損失が波長依存性を有する部 材が介在していない。したがって、光源装置 X2は、該光源装置 X2から外部に取り出 される光の演色性に優れて 、るのである。
[0033] 以下に、光源装置 X2の製造方法の一例について説明する。
[0034] まず、半導体発光素子 11の光出射面上に、波長選択部材 40を配設する。この配 設は、予めガラス系基板上に誘電体多層膜を形成して所定の大きさに分割したもの を、半導体発光素子 11の光出射面上に取り付けることにより行ってもよいし、蒸着な どの手法により、半導体発光素子 11の光出射面に対して直接誘電体多層膜を形成 することにより行ってもよ 、。
[0035] 次に、反射部材 12の所定箇所 (本実施形態では、カップ底面)に波長選択部材 40 が配設された半導体発光素子 11を配設する。
[0036] 次に、波長選択部材 40上に波長変換部材 50を形成する。具体的には、波長選択 部材 40上から所定量の構成材料 (例えば、蛍光体含有シリコン榭脂)をデイツビング した後、室温で放置するか所定温度 (例えば、 60°C)で加熱して該構成材料を硬化 させること〖こより形成する。なお、デイツビングにより、構成材料の一部が波長選択部 材 40の側面に流れ込むようにしてもよ!、。
[0037] 次に、半導体発光素子 11、波長選択部材 40および波長変換部材 50の全体を封 止材 13により封止する。以上のようにして、図 3に表す光源装置 X2は作製される。
[0038] 図 4は、本発明の第 3の実施形態に係る内視鏡 Y1の概略構成を表す部分断面図 である。内視鏡 Y1は、導光部材 30と、光源コネクタ部 110と、撮像素子搭載部 120と 、分岐手段 130とを備えており、例えば体内などに挿入して、その内部状況などを調 ベるためのものである。なお、内視鏡 Y1において、光源装置 XIと同一または同種の 部材については同一の符号を付して表す。
[0039] 光源コネクタ部 110は、光源 10と、集光レンズ 20と、ホルダ 111と、フエルール 112 と、ホルダ 113と、連結手段 114とを有しており、光源 10と集光レンズ 20と導光部材 3 0の一端とが所定の位置関係となるように構成されている。ホルダ 111は、光源 10お よび集光レンズ 20を保持するためのものであり、光源 10から出力された光が集光レ ンズ 20によって集光され、導光部材 30の一端に入力されるように構成されている。フ エルール 112は、その貫通孔に導光部材 30の一端部が挿入され、例えば図示しな い接着剤により固定される。ホルダ 113は、フヱルール 112を保持するためのもので ある。連結手段 114は、弾性部材 115を介して摺動可能な状態でホルダ 113を支持 するとともに、ホルダ 111とホルダ 113とを連結するためのものである。なお、連結手 段 114によるホルダ 111とホルダ 113との連結状態は解除可能である。
[0040] 撮像素子搭載部 120は、波長選択部材 40と、波長変換部材 50と、ホルダ 121と、 撮像素子 122と、フエルール 123と、保護部材 124とを有しており、導光部材 30の他 端と波長選択部材 40と波長変換部材 50とが所定の位置関係となるように構成されて いる。ホルダ 121は、略円柱状であり、その中央部に配設された貫通孔 121aと、該 貫通孔 121aを挟むように配設された貫通孔 121b (本実施形態では 2つ)とを有する 。撮像素子 121は、光電変換機能を有する半導体素子であり、図示しない接着剤や 精密ネジなどにより貫通孔 121a内に固定されている。また、撮像素子 121は、撮像 素子搭載部 120の略中央部に位置しており、制御ライン 125を介して接続される制 御手段(図示せず)により制御されている。撮像素子 121としては、例えば CCD (Cha nge Coupiea Device)づメ ~~ンセンサやし MOS し omplementary Metal Oxide bemico nductor)イメージセンサなどが挙げられる。フエルール 122は、その貫通孔に導光部 材 30の他端部が接着剤などにより挿入固定されており、図示しない接着剤や精密ネ ジなどにより貫通孔 121b内に固定されている。この導光部材 30の他端部が挿入固 定されて!/、るフエルール 122の先端部には、波長選択部材 40および波長変換部材 50が順次積層形成されている。保護部材 124は、フエルール 122の先端部に設けら れた波長選択部材 40および波長変換部材 50を外気など力 保護するためのもので あり、貫通孔 121bの先端部に取り付けられている。保護部材 124は、該保護部材 12 4を介して出力される光のビーム広がり角が内視鏡 Y1として適切な範囲(例えば 120 ° 以上)となるように構成するのが好ましぐ例えば上述の導光部材 30のシミュレーシ ヨンと同様の観点から、光を出力する側の端部が凹曲面状とされる。なお、保護部材 124としては、例えばカバーガラスなどが挙げられる。
ここで、フェルール 122の先端部に設けられた波長選択部材 40に波長変換部材 5 0を形成する方法の一例について説明する。まず、ホルダ 121の貫通孔 121bに、導 光部材 30の他端部が挿入固定されているフエルール 122の先端部に波長選択部材 40が設けられたものを、接着剤または精密ネジなどにより挿入固定する。次に、波長 選択部材 40が上を向くようにホルダ 121を配置した後、該波長選択部材 40上に波 長変換部材 50の構成材料 (例えば、蛍光体含有シリコン榭脂)を所定量デイツビング し、室温で放置するか所定温度 (例えば、 60°C)で加熱して該構成材料を硬化させる 。以上のようにして、波長変換部材 50は形成される。なお、波長変換部材 50の厚さ は例えば lmm程度に設定される力 これには限られず、蛍光体の種類や分散量な どに応じて適宜設定すればよ!ヽ。
[0042] 分岐手段 130は、光源コネクタ部 110から出力する光を 2つの波長変換部材 50に 入力すベぐ導光部材 30を途中で分岐するためのものである。分岐手段 130におけ る光の分岐比は、最終的に各波長変換部材 50を介して外部に出力される光の輝度 や出力などの均一化を図るベぐそれぞれ同程度 (本実施形態では 50%)の光に分 岐されるように設定するのが好ましい。なお、分岐手段 130としては、例えばフォト力 ブラなどが挙げられる。
[0043] 本実施形態に係る内視鏡 Y1は、光源装置 XIと同様の構成を内蔵しているため、 上述の光源装置 XIと同様の効果を奏する。また、本内視鏡 Y1は、撮像素子 121を 有しているため、波長変換部材 50を介して出力される光の照射領域の像を撮像素 子 121により電気信号として得ることができる。
[0044] 図 5は、本発明の第 4の実施形態に係る内視鏡 Y2の概略構成を表す部分断面図 である。内視鏡 Y2は、分岐手段 130に代えて、導光部材 30および光源コネクタ部 1 10をそれぞれ 2つ有する点において、内視鏡 Y1と異なる。内視鏡 Y2の他の構成に ついては、内視鏡 Y1に関して上述したのと同様である。なお、導光部材 30および光 源コネクタ部 110の設置数は、それぞれ 3つ以上でもよ 、。
[0045] 本実施形態に係る内視鏡 Y2は、内視鏡 Y1に比べて、波長変換部材 50を介して 出力される光の出力を約 2倍 (上記設置数に応じて変動)にすることができる。また、 内視鏡 Y2では、少なくとも一つをバックアップ用の光源とすることもできるので、作業 中に主光源が壊れたとしても、光を照射し続けることが可能となる。
[0046] 以上、本発明の具体的な実施形態を示した力 本発明はこれに限定されるもので はなぐ発明の思想力も逸脱しない範囲内で種々の変更が可能である。
[0047] 光源装置 XI, X2および内視鏡 Yl, Y2は、光源 10として比較的光拡散性の小さ い光源 (例えば、レーザ光を出力する光源)を採用してもよい。このような構成〖こよると 、波長選択部材 40のサイズを大きくしなくても、波長選択部材 40を介して波長変換 部材 50に比較的多くの光を導入することが可能となる。
[0048] 光源装置 XIおよび内視鏡 Yl, Y2は、導光部材 30の他端 30bと波長選択部材 40 との間に、レンズ機能を有するファイバ(例えば、グレーテッドインデックスファイノく)を 更に設けてもよい。このような構成によると、レンズ機能を有するファイバにより、該フ ァイノから波長選択部材 40に向って出力される光の拡散を抑制することができるの で、波長選択部材 40のサイズを大きくしなくても、波長選択部材 40を介して波長変 換部材 50に比較的多くの光を導入することが可能となる。
[0049] 内視鏡 Yl, Y2は、撮像素子 121および制御ライン 125に代えて、ファイバスコー プ用のイメージガイドファイバを採用してもよい。このような構成〖こよると、内視鏡 Y1, Y2における撮像素子搭載部 120のサイズを小さくするうえで好適である。なお、内視 鏡 Yl, Y2は、撮像素子 121および制御ライン 125とファイバスコープ用のイメージガ イドファイバとのいずれも有していない照明装置として使用することも可能である。
[0050] 光源装置 XI, X2は、高出力で且つ演色性にも優れているので、プロジェクタ用、 自動車などのヘッドライト用、各種バイオ機器用の光源装置として採用してもよい。特 に、プロジェクタでは、光源として高出力の点光源が必要とされるが、光源装置 XIの 外部への光の出力端は点光源として好適である。
実施例
[0051] <光源装置の作製 >
図 1に示す光源装置 XIと同様の構成の光源装置を作製した。具体的には、半導 体発光素子 11としては、紫色 LEDを採用した。図 6は、本紫色 LEDの発光スぺタト ラムを表す。図 6によく表れているように、本紫色 LEDから出力される光の波長は主と して約 380nmであった。反射部材 12としては、アルミニウムでコーティングされたも のを採用した。封止材 13としては、榭脂を採用した。また、封止材 13は、上記紫色 L EDから出力される光のビーム広がり角度を小さくするようなレンズ機能を有する構成 とした。集光レンズ 20としては、非球面コンデンサーレンズを採用した。導光部材 30 としては、アクリル系ファイバ(直径 2mm、長さ 3m)を採用した。図 7は、本アクリル系 ファイバの透過損失の波長特性を表す。波長選択部材 40としては、誘電体多層膜で 構成されている波長選択フィルタを採用した。図 8は、本波長選択ミラーの波長特性 を表す。本波長選択フィルタは、上記紫色 LEDから出力される光の波長 (約 380nm )に対する透過率が 90%以上(充分とみなせるレベル)であり、且つ、白色光の波長 範囲(約 410〜700nm)に対する反射率が 90%以上(充分とみなせるレベル)となる ように構成されている。波長変換部材としては、シリコン榭脂中に RGB蛍光体を混合 してバルタ状にした蛍光体含有部材を採用した。本蛍光体含有部材に含まれる RG B蛍光体は、 Euがドープされた La O S (R成分)、 Euがドープされた SrAl O (G成
2 2 2 4 分)、 Euがドープされた BaMgAl O (B成分)を含んで構成した。
10 17
<評価 >
図 9は、上述のようにして作製された本実施例に係る光源装置カゝら出力される発光 スペクトラムを表す。従来の光源装置では、図 5に示すような発光スペクトラムを有す る白色光を、図 7に示すような波長特性を有するファイバを介して力 外部に出力す るため、この外部出力光の発光スペクトラムは 630nm付近の値が相対的に低下して しまい、優れた演色性を確保することが困難であつたが、本実施例の光源装置では、 アクリル系ファイバの透過損失の波長依存性の影響を実質的に受けることがないの で、優れた演色性を容易に確保することができた。また、本実施例に係る光源装置で は、上記波長選択フィルムを採用したことにより、従来の光源装置に比べて高い出力 を得ることができることも確認できた。以上のことから、本実施例に係る光源装置は、 従来の光源装置に比べて、高出力で演色性に優れていると言えるのである。

Claims

請求の範囲
[1] 光を出力する半導体発光素子と、
前記半導体発光素子力 出力される光を受けて、該光より波長の長い光を出力す るための波長変換部材と、
前記半導体発光素子と前記波長変換部材との間に位置し、入力される光の波長に 応じて該光の反射率および透過率が異なる波長特性を有する波長選択部材と、を備 えることを特徴とする、光源装置。
[2] 前記波長選択部材は、前記半導体光源素子から出力される光の波長における透 過率が 90%以上であり、且つ、前記波長変換部材から出力される光の波長における 反射率が 90%以上である、請求項 1に記載の光源装置。
[3] 前記波長選択部材は、紫外光の波長における透過率が 90%以上であり、且つ、可 視光の波長における反射率が 90%以上である、請求項 1に記載の光源装置。
[4] 前記半導体発光素子から出力される光の波長は主として 390nm以下であり、前記 波長変換部材から出力される光の波長は主として 410〜700nmである、請求項 1に 記載の光源装置。
[5] 前記波長選択部材は誘電体多層膜を含んで構成されて!、る、請求項 1に記載の光 源装置。
[6] 前記波長変換部材は蛍光体を含んで構成されて!ヽる、請求項 1に記載の光源装置
[7] 光を出力する半導体発光素子と、
前記半導体発光素子力 出力される光を受けて、該光より波長の長い光を出力す るための波長変換部材と、
前記半導体発光素子力 出力される光を前記波長変換部材に導くための導光部 材と、を備えることを特徴とする、光源装置。
[8] 前記半導体発光素子と前記波長変換部材との間に位置し、入力される光の波長に 応じて該光の反射率および透過率が異なる波長特性を有する波長選択部材を更に 備える、請求項 7に記載の光源装置。
[9] 前記波長選択部材は、前記半導体光源素子から出力される光の波長における透 過率が 90%以上であり、且つ、前記波長変換部材から出力される光の波長における 反射率が 90%以上である、請求項 8に記載の光源装置。
[10] 前記波長選択部材は、紫外光の波長における透過率が 90%以上であり、且つ、可 視光の波長における反射率が 90%以上である、請求項 8に記載の光源装置。
[11] 前記半導体発光素子から出力される光の波長は主として 390nm以下であり、前記 波長変換部材から出力される光の波長は主として 410〜700nmである、請求項 8に 記載の光源装置。
[12] 前記波長選択部材は誘電体多層膜を含んで構成されている、請求項 8に記載の光 源装置。
[13] 前記波長変換部材は蛍光体を含んで構成されて ヽる、請求項 7に記載の光源装置
[14] 前記導光部材は光ファイバである、請求項 7に記載の光源装置。
[15] 前記光ファイバはプラスチック光ファイバであり、前記半導体発光素子力 出力され る光の波長は主として 400〜600nmであり、前記波長変換部材から出力される光は 可視光である、請求項 14に記載の光源装置。
[16] 前記導光部材における光の出力端は凹曲面状の部位を有する、請求項 7に記載 の光源装置。
[17] 前記波長変換部材における光の出力端は凹曲面状の部位を有する、請求項 7に 記載の光源装置。
[18] 請求項 1〜17のいずれか一つに記載の光源装置と、前記光源装置力も出力される 光の照射領域を撮像するための撮像素子と、を備えることを特徴とする、内視鏡。
PCT/JP2005/013871 2004-07-28 2005-07-28 光源装置および該光源装置を備える内視鏡 WO2006011571A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/572,794 US20080262316A1 (en) 2004-07-28 2005-07-28 Light Source Apparatus and Endoscope Provided with Light Source Apparatus
CN2005800254990A CN1993075B (zh) 2004-07-28 2005-07-28 光源装置以及备有该光源装置的内视镜
EP05767431A EP1787571A4 (en) 2004-07-28 2005-07-28 SOURCE OF LIGHT AND ENDOSCOPE EQUIPPED WITH THIS SOURCE OF LIGHT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-220725 2004-07-28
JP2004220725 2004-07-28

Publications (1)

Publication Number Publication Date
WO2006011571A1 true WO2006011571A1 (ja) 2006-02-02

Family

ID=35786319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013871 WO2006011571A1 (ja) 2004-07-28 2005-07-28 光源装置および該光源装置を備える内視鏡

Country Status (4)

Country Link
US (1) US20080262316A1 (ja)
EP (1) EP1787571A4 (ja)
CN (1) CN1993075B (ja)
WO (1) WO2006011571A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258019A (ja) * 2006-03-23 2007-10-04 Nichia Chem Ind Ltd 発光装置
JP2007280900A (ja) * 2006-04-12 2007-10-25 Fujikura Ltd 照明装置
WO2007122543A3 (en) * 2006-04-26 2008-01-10 Philips Intellectual Property Light delivery device with improved conversion element
JP2009054325A (ja) * 2007-08-23 2009-03-12 Mitsubishi Electric Corp 照明用光源装置および画像表示装置
EP2035801A1 (de) * 2006-06-26 2009-03-18 OSRAM Opto Semiconductors GmbH Anordnung mit einem lichtleiter
JP2009189473A (ja) * 2008-02-13 2009-08-27 Fujifilm Corp 内視鏡装置
US20100010314A1 (en) * 2006-11-14 2010-01-14 Beat Krattiger Endoscopic System Featuring Fiber-Pumped Fluorescent Illumination
JP2010518587A (ja) * 2007-02-12 2010-05-27 インテマティックス・コーポレーション 発光ダイオード電灯システム
JP2011071404A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 発光装置および照明装置
JP2013202305A (ja) * 2012-03-29 2013-10-07 Olympus Medical Systems Corp 光源装置
US8807799B2 (en) 2010-06-11 2014-08-19 Intematix Corporation LED-based lamps
US8908740B2 (en) 2006-02-14 2014-12-09 Nichia Corporation Light emitting device
CN105011890A (zh) * 2015-06-15 2015-11-04 深圳先进技术研究院 基于梯度型光纤的光声内窥装置

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075147B2 (en) 2003-05-13 2011-12-13 Light Prescriptions Innovators, Llc Optical device for LED-based lamp
JP5019289B2 (ja) * 2007-08-10 2012-09-05 オリンパス株式会社 光ファイバ照明装置
JP2009153712A (ja) 2007-12-26 2009-07-16 Olympus Corp 光源装置およびそれを備えた内視鏡装置
JP5117878B2 (ja) * 2008-02-13 2013-01-16 富士フイルム株式会社 内視鏡光源装置
CN102016402A (zh) * 2008-02-21 2011-04-13 光处方革新有限公司 球形发射远距离磷光体
CN101960619B (zh) * 2008-03-26 2013-06-26 松下电器产业株式会社 半导体发光装置
DE602009001103D1 (de) 2008-06-04 2011-06-01 Fujifilm Corp Beleuchtungsvorrichtung zur Verwendung in Endoskopen
JP5216429B2 (ja) 2008-06-13 2013-06-19 富士フイルム株式会社 光源装置および内視鏡装置
US20100249550A1 (en) * 2009-03-25 2010-09-30 Neilcor Puritan Bennett LLC Method And Apparatus For Optical Filtering Of A Broadband Emitter In A Medical Sensor
JP5767775B2 (ja) * 2009-07-06 2015-08-19 富士フイルム株式会社 内視鏡装置
US8292434B2 (en) * 2009-08-12 2012-10-23 Alcon Research, Ltd. White light emitting diode (LED) illuminator for ophthalmic endoillumination
AU2010332264B2 (en) * 2009-12-17 2013-11-14 Alcon Inc. Photonic lattice LEDs for ophthalmic illumination
JP4991834B2 (ja) 2009-12-17 2012-08-01 シャープ株式会社 車両用前照灯
JP5232815B2 (ja) 2010-02-10 2013-07-10 シャープ株式会社 車両用前照灯
US9314374B2 (en) * 2010-03-19 2016-04-19 Alcon Research, Ltd. Stroboscopic ophthalmic illuminator
JP2011224042A (ja) * 2010-04-15 2011-11-10 Fujifilm Corp 光源装置及びこれを用いた内視鏡装置
US8733996B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device, illuminating device, and vehicle headlamp
US8573801B2 (en) 2010-08-30 2013-11-05 Alcon Research, Ltd. LED illuminator
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
JP5508238B2 (ja) * 2010-11-30 2014-05-28 富士フイルム株式会社 内視鏡用照明光学系ユニット及びその製造方法
JP2012120702A (ja) * 2010-12-08 2012-06-28 Fujifilm Corp 内視鏡および内視鏡システム
TWI421449B (zh) * 2011-02-01 2014-01-01 Lite On Electronics Guangzhou 照明裝置與其介質層之調色劑顏色選擇方法
JP5450527B2 (ja) 2011-08-10 2014-03-26 富士フイルム株式会社 内視鏡装置
JP2013097097A (ja) * 2011-10-31 2013-05-20 Olympus Corp 光学デバイス
US8992042B2 (en) * 2011-11-14 2015-03-31 Halma Holdings, Inc. Illumination devices using natural light LEDs
JP5913949B2 (ja) * 2011-12-13 2016-05-11 オリンパス株式会社 光源システム
JP5649747B2 (ja) * 2011-12-19 2015-01-07 富士フイルム株式会社 内視鏡用照明ユニット及び内視鏡
US20130258699A1 (en) * 2012-02-06 2013-10-03 Lumenetix, Inc. System and method for mixing light emitted from an array having different color light emitting diodes
EP2823747A4 (en) * 2012-03-07 2015-04-22 Olympus Corp PROBE
JP6102696B2 (ja) 2012-12-11 2017-03-29 日亜化学工業株式会社 発光装置及びそれに用いられる光部品の製造方法
TW201425820A (zh) * 2012-12-24 2014-07-01 Hon Hai Prec Ind Co Ltd 光源及具有該光源的發光二極體車燈
DE102012025396A1 (de) 2012-12-24 2014-06-26 Dräger Medical GmbH Ausleuchtvorrichtung für die Ausleuchtung eines Ausleuchtbereichs
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US11437775B2 (en) * 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US10551019B2 (en) 2015-08-24 2020-02-04 Lumileds Holding B.V. Illumination device for a vehicle headlight
US11330963B2 (en) 2015-11-16 2022-05-17 Lazurite Holdings Llc Wireless medical imaging system
JP6215981B2 (ja) * 2016-02-18 2017-10-18 オリンパス株式会社 光源装置およびそれを備えた内視鏡装置
WO2017217188A1 (ja) * 2016-06-17 2017-12-21 オリンパス株式会社 内視鏡照明光学系
JP6273637B1 (ja) * 2016-07-04 2018-02-07 パナソニックIpマネジメント株式会社 ファイバー光源、内視鏡および内視鏡システム
WO2018008284A1 (ja) 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 プロジェクター装置
CN107849448B (zh) 2016-07-04 2022-04-15 松下知识产权经营株式会社 荧光体以及发光装置
US11172560B2 (en) 2016-08-25 2021-11-09 Alcon Inc. Ophthalmic illumination system with controlled chromaticity
TWI620894B (zh) * 2016-10-26 2018-04-11 南華大學 可更換光源模組的生物效應檢驗裝置
CN110831488B (zh) 2017-02-15 2022-03-11 青金石控股有限责任公司 包括头单元和包含集成光源的光缆的无线医学成像系统
JP6513307B2 (ja) * 2017-03-24 2019-05-15 オリンパス株式会社 内視鏡システム
TWI609150B (zh) * 2017-07-04 2017-12-21 Solar Simulator
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
US20220333745A1 (en) * 2019-01-18 2022-10-20 Kyocera Sld Laser, Inc. Laser-based light guide-coupled wide-spectrum light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
JP2020160366A (ja) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 波長変換素子及び照明装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813752A (en) 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue LED-phosphor device with short wave pass, long wave pass band pass and peroit filters
JP2000357406A (ja) * 1999-06-16 2000-12-26 Koken:Kk 光飾装置
JP2001229722A (ja) * 2000-02-18 2001-08-24 Kanegafuchi Chem Ind Co Ltd Uvライン光源ユニット
US6299338B1 (en) 1998-11-30 2001-10-09 General Electric Company Decorative lighting apparatus with light source and luminescent material
US20020079506A1 (en) 1997-09-01 2002-06-27 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a fluorescent material
US20030042493A1 (en) 2001-08-31 2003-03-06 Yuri Kazakevich Solid-state light source
JP2003156430A (ja) * 2001-11-19 2003-05-30 Michitaka Nami 路面上の水と氷と雪の検知方法および路面上の水と氷と雪の検知装置
JP2004071357A (ja) * 2002-08-06 2004-03-04 Shigeo Fujita 照明装置
JP2004284559A (ja) * 2003-03-25 2004-10-14 Kobelco Contstruction Machinery Ltd 作業機械の給油構造

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867136A (en) * 1987-04-23 1989-09-19 Olympus Optical Co., Ltd. Endoscope apparatus
DE69216749T2 (de) * 1991-10-10 1997-07-10 Philips Electronics Nv Röntgenuntersuchungseinrichtung
US5651047A (en) * 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US6687010B1 (en) * 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US6696703B2 (en) * 1999-09-27 2004-02-24 Lumileds Lighting U.S., Llc Thin film phosphor-converted light emitting diode device
JP4390096B2 (ja) * 2001-07-06 2009-12-24 富士フイルム株式会社 内視鏡装置
US6692431B2 (en) * 2001-09-07 2004-02-17 Smith & Nephew, Inc. Endoscopic system with a solid-state light source
JP4199463B2 (ja) * 2002-02-20 2008-12-17 Hoya株式会社 内視鏡用光源装置および光源ユニットの組立方法
US7312560B2 (en) * 2003-01-27 2007-12-25 3M Innovative Properties Phosphor based light sources having a non-planar long pass reflector and method of making
US7157839B2 (en) * 2003-01-27 2007-01-02 3M Innovative Properties Company Phosphor based light sources utilizing total internal reflection
US7118438B2 (en) * 2003-01-27 2006-10-10 3M Innovative Properties Company Methods of making phosphor based light sources having an interference reflector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813752A (en) 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue LED-phosphor device with short wave pass, long wave pass band pass and peroit filters
US20020079506A1 (en) 1997-09-01 2002-06-27 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a fluorescent material
US6299338B1 (en) 1998-11-30 2001-10-09 General Electric Company Decorative lighting apparatus with light source and luminescent material
JP2000357406A (ja) * 1999-06-16 2000-12-26 Koken:Kk 光飾装置
JP2001229722A (ja) * 2000-02-18 2001-08-24 Kanegafuchi Chem Ind Co Ltd Uvライン光源ユニット
US20030042493A1 (en) 2001-08-31 2003-03-06 Yuri Kazakevich Solid-state light source
JP2003156430A (ja) * 2001-11-19 2003-05-30 Michitaka Nami 路面上の水と氷と雪の検知方法および路面上の水と氷と雪の検知装置
JP2004071357A (ja) * 2002-08-06 2004-03-04 Shigeo Fujita 照明装置
JP2004284559A (ja) * 2003-03-25 2004-10-14 Kobelco Contstruction Machinery Ltd 作業機械の給油構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1787571A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908740B2 (en) 2006-02-14 2014-12-09 Nichia Corporation Light emitting device
JP2007258019A (ja) * 2006-03-23 2007-10-04 Nichia Chem Ind Ltd 発光装置
JP2007280900A (ja) * 2006-04-12 2007-10-25 Fujikura Ltd 照明装置
US10111293B2 (en) 2006-04-26 2018-10-23 Philips Lighting Holding B.V. Method of illumination having light emitting device with ceramic conversion material
WO2007122543A3 (en) * 2006-04-26 2008-01-10 Philips Intellectual Property Light delivery device with improved conversion element
US8684555B2 (en) 2006-04-26 2014-04-01 Koninklijke Philips N.V. Light emitting device with ceramic conversion material
EP2035801A1 (de) * 2006-06-26 2009-03-18 OSRAM Opto Semiconductors GmbH Anordnung mit einem lichtleiter
EP2035801B1 (de) * 2006-06-26 2017-08-09 OSRAM Opto Semiconductors GmbH Anordnung mit einem lichtleiter
US20100010314A1 (en) * 2006-11-14 2010-01-14 Beat Krattiger Endoscopic System Featuring Fiber-Pumped Fluorescent Illumination
JP2010518587A (ja) * 2007-02-12 2010-05-27 インテマティックス・コーポレーション 発光ダイオード電灯システム
US8538217B2 (en) 2007-02-12 2013-09-17 Intematix Corporation Light emitting diode lighting system
JP2013243139A (ja) * 2007-02-12 2013-12-05 Intematix Corp 発光ダイオード照明システム
US8628255B2 (en) * 2007-02-12 2014-01-14 Intematix Corporation Light emitting diode lighting system
US7672550B2 (en) 2007-08-23 2010-03-02 Mitsubishi Electric Corporation Illumination light source and image display apparatus
JP2009054325A (ja) * 2007-08-23 2009-03-12 Mitsubishi Electric Corp 照明用光源装置および画像表示装置
JP2009189473A (ja) * 2008-02-13 2009-08-27 Fujifilm Corp 内視鏡装置
JP2011071404A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 発光装置および照明装置
US8807799B2 (en) 2010-06-11 2014-08-19 Intematix Corporation LED-based lamps
JP2013202305A (ja) * 2012-03-29 2013-10-07 Olympus Medical Systems Corp 光源装置
CN105011890A (zh) * 2015-06-15 2015-11-04 深圳先进技术研究院 基于梯度型光纤的光声内窥装置

Also Published As

Publication number Publication date
EP1787571A4 (en) 2009-09-16
EP1787571A1 (en) 2007-05-23
CN1993075B (zh) 2012-04-11
US20080262316A1 (en) 2008-10-23
CN1993075A (zh) 2007-07-04

Similar Documents

Publication Publication Date Title
WO2006011571A1 (ja) 光源装置および該光源装置を備える内視鏡
JP4925618B2 (ja) 光源装置および該光源装置を備える内視鏡
JP6265568B2 (ja) フルスペクトルled照明器
US9885813B2 (en) Projection apparatus
JP6423086B2 (ja) 照明装置用の集光器
JP2012532414A (ja) 発光ダイオード光エンジン
EP2516922A1 (en) Light collector for a white light led illuminator
JP2010129202A (ja) Led照明装置
JP6964611B2 (ja) 熱伝導性の蛍光取り出しドームを備えたレーザベース光源
JP2008021973A (ja) 発光装置
JP2018525799A (ja) 車両ヘッドライトのための照明デバイス
JP2011501427A (ja) バックライティングアプリケーションのための側面放射led光源
JP2008027947A (ja) 発光装置
JP7416791B2 (ja) 照明光源及び車両用ライト
CN106969305B (zh) 一种可调节的光源装置及照明装置
EP3286593B1 (en) Integrating cone for an illumination device
JP2016534337A (ja) 発光体を製造する方法
JP2021083698A (ja) 発光装置及び接続方法
JP5561296B2 (ja) 発光装置
JP2006034723A (ja) Led光源装置とそれを用いた観察装置および内視鏡
US10240726B2 (en) Luminaire and method of manufacturing luminaire
US11280949B2 (en) Light-emitting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580025499.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005767431

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005767431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11572794

Country of ref document: US