WO2006008841A1 - フルオロカーボン膜及びその形成方法 - Google Patents

フルオロカーボン膜及びその形成方法 Download PDF

Info

Publication number
WO2006008841A1
WO2006008841A1 PCT/JP2004/016606 JP2004016606W WO2006008841A1 WO 2006008841 A1 WO2006008841 A1 WO 2006008841A1 JP 2004016606 W JP2004016606 W JP 2004016606W WO 2006008841 A1 WO2006008841 A1 WO 2006008841A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorocarbon
film
fluorocarbon film
gas
chamber
Prior art date
Application number
PCT/JP2004/016606
Other languages
English (en)
French (fr)
Inventor
Tatsuru Shirafuji
Kunihide Tachibana
Original Assignee
Kyoto University
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Zeon Corporation filed Critical Kyoto University
Priority to US10/536,774 priority Critical patent/US7648922B2/en
Priority to KR1020067023989A priority patent/KR20070033975A/ko
Priority to JP2006527779A priority patent/JP4737552B2/ja
Priority to TW093134446A priority patent/TW200605219A/zh
Publication of WO2006008841A1 publication Critical patent/WO2006008841A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3146Carbon layers, e.g. diamond-like layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2506/00Halogenated polymers
    • B05D2506/10Fluorinated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Definitions

  • the present invention relates to an amorphous fluorocarbon film and a method for forming the same used in a technical field such as a semiconductor device manufacturing process.
  • SiO 2 silicon oxide film
  • low dielectric constant film an insulating film having a relative dielectric constant smaller than that of a silicon oxide film.
  • Amorphous fluorinated carbon obtained by depositing fluorocarbon gas is one of various low dielectric constant films. Of particular interest is its extremely low relative dielectric constant (see references below).
  • Non-Patent Document l Tatsuru SHIRAFUJI et. Al, Jpn. J. Appl. Phys. Vol. 42 (2003) P. 4504-4509
  • Patent Document 1 JP 2000-332001 A
  • Patent Document 2 JP-A-9 237783
  • Patent Document 3 W099Z28963 Publication
  • the present invention relates to a fluorocarbon film having a sufficiently low dielectric constant capable of reducing signal delay due to high integration of semiconductor devices, an electronic device using the same, and formation of the fluorocarbon film
  • the main technical problem is to provide a fluorocarbon film in which fine pores are formed, for the purpose of providing a method.
  • a mixed gas containing a first fluorocarbon gas and a second fluorocarbon gas is introduced onto a substrate installed inside the chamber.
  • fluorocarbon gas refers to various fluorocarbons or hydrofluoric carbons [Chemical formula CF (x, y are integers), CFH (x, y, z are integers), etc.
  • the fluorocarbon film means a copolymer film of these gases.
  • the first fluorocarbon gas is a fluorine-containing compound having 4 to 5 carbon atoms
  • the second fluorocarbon gas is a fluorine-containing compound having 6 to 12 carbon atoms.
  • the step of forming the gap includes a step of cleaning the fluorocarbon film with a supercritical fluid.
  • a supercritical fluid can be used.
  • carbon dioxide, water, alcohol, etc. can be used.
  • the step of forming the void may include a step of heating the fluorocarbon film.
  • the conditions for the heat treatment may be, for example, a slow heat treatment or a rapid thermal heat treatment (RTA).
  • the chamber is a plasma excitation chamber capable of generating plasma therein.
  • a plasma excitation chamber capable of generating plasma therein.
  • Various plasma generation methods are possible. For example, an inductive coupling type and a capacitive coupling type can be considered.
  • the first fluorocarbon gas has relatively high volatility
  • the second fluorocarbon gas has relatively low volatility.
  • the void content can be changed.
  • a preferable mixing ratio of the first and second fluorocarbon gases is 10 to 90 mol%, more preferably 30 to 90, when expressed as a ratio of the first fluorocarbon gas to the total amount of both.
  • the mol% is more preferably 50 to 80 mol%. Within these ranges, a fluorocarbon film having a particularly low relative dielectric constant can be obtained.
  • the mixed gas may or may not contain other gases other than the first and second fluorocarbon gases, such as argon gas, helium gas, neon gas, and xenon gas. May be.
  • the amount of the other gas that can be contained in the mixed gas is preferably 50 mol% or less, more preferably 20 mol%, when expressed as a ratio of the other gas to the total amount of all the gases. Below, more preferably 5 mol% or less.
  • the fluorocarbon film according to the present invention is a silicon atom. It is characterized by the use of a deposited film that contains no fluorocarbon gas and at least two or more types of fluorocarbon gases having different vapor pressures (easiness of volatilization).
  • the dielectric constant can be further reduced by providing a porous carbon film with a large number of fine voids.
  • a fluorocarbon film having a relative dielectric constant of 2 or less can be obtained.
  • This fluorocarbon film can be used as an interlayer insulating film for semiconductor devices, as well as for surface coating materials and gas adsorbents for printed circuit boards for high frequency circuits.
  • the method for producing a fluorocarbon film having voids according to the present invention mainly comprises two steps.
  • FIG. 1 shows the basic steps of the present invention.
  • FIG. 2 (a) shows the film structure immediately after film formation (before void formation). It is schematically shown and shows a state of being composed of highly volatile component 10 and low volatile component 11.
  • a fluorocarbon film is deposited using carbon gas as a starting material. In this way, even if a large amount of volatile components remain in the fluorocarbon film immediately after deposition, these volatile components can be removed by subsequent processing. As a result, the present inventors have found that many fine voids can be formed in the fluorocarbon film.
  • the plasma CVD apparatus itself is a very precise technology in which the growth of the film obtained is influenced by a slight difference in experimental conditions, and this apparatus uses a gas for supplying an element as a raw material.
  • this apparatus uses a gas for supplying an element as a raw material.
  • reaction conditions depending on the gas supply conditions and reaction temperature settings.
  • a preferred example of the “first fluorocarbon gas” in the present invention is a fluorine-containing compound having 4 to 5 carbon atoms, that is, a compound having 4 to 5 carbon atoms in the molecule and directly bonded to the carbon atoms.
  • Perfluorocarbons include saturated perfluorocarbons and unsaturated perfluorocarbons. From the perspective of the insulation performance of the resulting film, the overall evaluation shows that the perfluorocarbon having 4 to 5 carbon atoms is preferred to the fluorocarbon having 4 to 5 carbon atoms. Carbon is more preferred, and C5 cyclic unsaturated perfluorocarbon is most preferred.
  • Hyde mouth fluorocarbons with 4 to 5 carbon atoms such as
  • a preferred example of the “second fluorocarbon gas” in the present invention is a fluorine-containing compound having 6 to 12 carbon atoms, that is, a compound having 6 to 12 carbon atoms in the molecule and directly bonded to the carbon atom. It is a compound having one or more fluorine atoms.
  • it is a perfluorocarbon having 6 to 12 carbon atoms or a hydrated fluorocarbon having 6 to 12 carbon atoms.
  • a comprehensive evaluation from the viewpoint of the insulation performance and strength of the resulting film shows that 6 to 12 carbon perfluorinated carbon is preferred to 6 to 12 carbon unsaturated carbon.
  • Most preferred is a C6-C8 cyclic unsaturated perfluorocarbon, more preferably a C6-C8 cyclic unsaturated perfluorocarbon, more preferably a perfluorocarbon.
  • an aromatic perfluorocarbon is preferably used.
  • Hyde mouth fluorocarbons with 6 to 10 carbon atoms such as
  • FIG. 2 (b) shows a state in which the volatile component 10 is removed and a large number of voids A are formed inside.
  • the fluorocarbon film deposited in the step [SA1] in an inert gas such as nitrogen or helium is 50 ° C-450 ° C, more preferably 100 ° C.
  • the force is also heated at 450 ° C, particularly preferably 300 ° C-450 ° C. If the temperature at the time of heating is too low, the dielectric constant will be lowered because the formation of voids is insufficient.
  • heating may cause a problem that the film becomes dense and the film thickness decreases. If the heating temperature is too high, the film reduction rate (thickness reduction rate) is too large, which may be impractical. However, by optimizing the heating conditions, it is possible to remove volatile components while minimizing the decrease in film thickness.
  • Supercritical fluids are highly permeable to substances, so they can enter minute gaps at the molecular level of the deposited amorphous carbon film. Therefore, when a supercritical fluid is used, only volatile components can be selectively removed.
  • the fluorocarbon film according to the present invention has a porosity of preferably 20 to 80%, more preferably 30 to 70%, and particularly preferably 40 to 60%.
  • the dielectric constant decreases as the porosity falls within the above range.
  • the fluorocarbon film according to the present invention has a relative dielectric constant of 2 or less, preferably 1.8 or less, particularly preferably 1.6 or less, and is extremely smaller than a conventional low dielectric constant film.
  • FIG. 3 is a system diagram showing an example of a fluorocarbon film deposition apparatus.
  • PE-CVD plasma enhanced chemical vapor deposition
  • the inside of the chamber is evacuated by a vacuum pump 31, while the source gas is introduced into the chamber 1.
  • the raw material gas at least two kinds of fluorocarbon gases are required, and they are sealed in the first cylinder 33 and the second cylinder 34.
  • the piping is partitioned by valves VI to V10, and the flow rates of V and misaligned source gases are adjusted by mass flow controllers (MFC) 36 and 38 provided in the respective supply lines.
  • MFC mass flow controllers
  • Each source gas line finally joins one line and is connected to the chamber.
  • Valves V3 and V8 shown in this figure are valves for controlling connection to the bypass lines 37 and 39.
  • the broken line in the figure shows the temperature raising means 35 such as a tape heater. Gases with low vapor pressure are liquid at normal temperature and pressure.
  • the raw material is vaporized by heating the cylinder, the side wall of the chamber and the pipe connecting them with the temperature raising means 35.
  • the mass flow controller (MFC) 36 attached to the low vapor pressure system line to which the temperature raising means is added uses a heat resistant specification. In the case of a gas having a high vapor pressure, it is not necessary to add a heating means because it is a gas at normal temperature and pressure.
  • FIG. 4 is a partial cross-sectional view showing an example of a plasma CVD apparatus employing a plasma generation method called inductively coupled plasma (ICP).
  • ICP inductively coupled plasma
  • a coil 41 is provided in the upper part of a cylindrical chamber 40 and is connected to a high-frequency power source 43 via a matching circuit 42 to generate plasma.
  • the interior of the chamber is always evacuated by a vacuum pump 45 connected via a valve 44 and maintained at a predetermined pressure.
  • a gas supply port 46 is provided inside the chamber, and the raw material gas is also introduced here.
  • the substrate on which the fluorocarbon film is deposited is placed on a substrate holding table (susceptor) 47 containing a heater (not shown).
  • Fig. 5 shows a plate called capacitively coupled plasma (CCP). It is a partial cross section figure which shows an example of the plasma CVD apparatus which employ
  • CCP capacitively coupled plasma
  • An upper electrode 51 is provided on (or around) the cylindrical chamber 50 and is connected to a high-frequency power source 53 via a matching circuit 52 to generate plasma.
  • the inside of the chamber is always evacuated by a vacuum pump 55 connected via a valve 54 and kept at a predetermined pressure.
  • a shower nozzle type gas supply port 56 is provided inside the chamber, from which a raw material gas is introduced.
  • the substrate on which the fluorocarbon film is deposited is placed on a substrate holding table (susceptor) 57 containing a heater (not shown).
  • Inductively coupled plasma CVD devices have various types of force S with different coil positions and shapes, but any of them can be used as well.
  • Various film forming methods including a CVD apparatus may be used.
  • a completely different film forming method may be an amorphous / fluorinated carbon film formed by a force laser ablation method.
  • the source gas is a gas whose deposit is relatively volatile (for example, C F, C F, C F, C F
  • Gas is a pentagonal ring structure that has only one carbon-carbon double bond and is easily decomposed and highly volatile.
  • hexafluorobenzene [Chemical formula: CF gas]
  • Octafluorocyclopentene is a gas at normal temperature and pressure, so there is no need to provide heating means for the cylinder 33 or its piping, but hexafluorobenzene is a liquid at normal temperature and pressure. Therefore, the cylinder and piping are heated to about 90 ° C to 110 ° C with a heating device such as a tape heater and introduced into the chamber 40 (or 50).
  • the inside of the chamber is evacuated and the pressure is adjusted to, for example, 6.67 Pa (50 mTorr).
  • a high frequency of 13.56 MHz is applied to the high frequency power supply, and the RF output is set to about 10 W to 100 W, for example.
  • a mixed gas of octafluorocyclopentene and hexafluorobenzene is introduced into the chamber, and deposition of a fluorocarbon film on the substrate is started.
  • the substrate temperature at the time of film formation is room temperature and may be heated if necessary. If the substrate is heated during the deposition of the fluorocarbon film, it is thought that the deposition of the fluorocarbon film and the formation of voids occur almost simultaneously, but anyway deposition (film formation process) and void formation (porous) Process) and, through two steps! / /.
  • the deposition rate and the ratio of volatile components can be adjusted. Is possible.
  • a film with a turbid surface was obtained when the pressure in the chamber during deposition of the fluorocarbon film was higher than 6.93 Pa.
  • the film was formed at a pressure of 6.93 Pa or less.
  • a highly transparent film can be easily obtained.
  • highly transparent films are preferred, so the pressure inside the chamber during fluorocarbon film deposition is preferably 6.93 Pa or less.
  • the introduction amount (flow rate) of the source gas here, otatafluorocyclopentene and hexafluorobenzene
  • the plasma residence time is shortened
  • the pressure at the time can be reduced to some extent, and as a result, a fluorocarbon film with good film quality can be obtained.
  • the conditions for depositing the film are preferably in the range of plasma density of 10 1G -10 15 cm- 3 when using a plasma excitation chamber.
  • the temperature at which the film is deposited is more preferably from room temperature to 300 ° C., preferably in the range of 0 ° C. to 450 ° C.
  • the pressure in the plasma excitation chamber is preferably in the range of 0.0133 Pa-13.3 KPa.
  • FIG. 6 is a configuration diagram of a supercritical fluid cleaning apparatus for performing a void forming step after the formation of the fluorocarbon film.
  • the supercritical fluid cylinder 61 is connected to a high-pressure pump 62 through a valve VI I, and further passed through a caloheater 63 and led to a high-pressure cell 64.
  • the high-pressure cell is a metal container with an extremely thick wall, and a space 65 for installing the substrate S is provided inside. After filling the space 65, the supercritical fluid passes through the pressure control valve V12 and is discharged to the outside through the discharge pipe 66. Further, the temperature controller 67 controls the temperature of the high pressure cell 64 and the calorie heat device 68 provided around the chamber.
  • Carbon dioxide (CO 2) is inexpensive and readily available, making it a supercritical fluid at relatively low temperatures
  • the relative dielectric constant of the fluorocarbon film obtained by this method is about 1.6, but the relative dielectric constant becomes smaller as the void content increases, and theoretically about 1.2. Is possible.
  • the method shown in this embodiment is particularly suitable for an interlayer insulating film of a semiconductor device.
  • CVD source gas for depositing the fluorocarbon film octafluorocyclopentene, hexafluorobenzene, and a mixture of both were used.
  • the fluorocarbon film deposited on the substrate was heated at 400 ° C. for 1 hour in a nitrogen atmosphere to selectively remove volatile components, thereby forming voids in the fluorocarbon film.
  • Fig. 7 (a) The relationship between the relative dielectric constant ⁇ and the CVD source gas composition of the obtained fluorocarbon film is shown in Fig. 7 (a), and the relationship between the porosity and the CVD source gas composition is shown in Fig. 7 (b).
  • the relative permittivity ⁇ and porosity of the fluorocarbon-bonbon film are determined by a general method (for example, the method described in Jpn. J. Appl. Phys., Vol 43, No. 5A (2004), p. 2697-2698). I asked for it.
  • the mixing ratio is greater than 80%, the ratio of volatile gas (otatafluorocyclopentene) decreases, so the number of voids is small, and therefore the relative dielectric constant is considered to have increased. It is done.
  • voids may be formed by heat treatment.
  • the substrate may be heated at a predetermined temperature from the time of film formation, and film formation and void formation may be performed simultaneously.
  • the film may be used without any problem even if the film thickness is somewhat reduced. Even in such a case, a void forming step by heat treatment can be employed.
  • a fluorocarbon film in which voids are formed by using a mixed gas composed of octafluorocyclopentene and hexafluorobenzene as a CVD raw material has an appropriate porosity by subsequent heat treatment. It can be seen that the insulation performance is particularly excellent.
  • the parasitic capacitance can be reduced and the high frequency characteristics can be improved.
  • FIG. 8 (a) shows a front view of a high-frequency printed circuit board having a fluorocarbon film according to the present invention deposited on its surface
  • FIG. 8 (b) is a cross-sectional view taken along line AA in FIG. Show.
  • a fluorocarbon film 82 provided with a large number of voids 81 is formed so as to cover the surface of the printed board 83 for high frequency.
  • the fluorocarbon film according to the present invention has a relative dielectric constant of 2 or less, and is extremely smaller than a conventional low dielectric constant film, so that the film thickness is several m to several tens; Covering the surface of the substrate 83 dramatically reduces dielectric loss, allowing signal transmission delays, signal interference, signal attenuation, circuit heat generation, and reduced power consumption.
  • FIG. 9A shows a cross-sectional view in which a fluorocarbon film 92 of several ⁇ m to several tens of ⁇ m is formed on both surfaces of the substrate 91.
  • the substrate 91 is not particularly limited as long as it can be a base material for forming a fluorocarbon film and can be formed at room temperature.
  • FIG. 9 (b) shows an embodiment in which the fluorocarbon film 94 according to the present invention is formed on the surface of the yarn 93.
  • the cores 95a and 95b are installed in the film forming apparatus 30 and are rotated so that one core is transferred to the other core.
  • the core of the one wound around the supercritical fluid device may be installed as it is.
  • the supercritical fluid has a very high osmotic force and can sufficiently form voids even when wound.
  • the fluorocarbon film according to the present invention has a relative dielectric constant of 2 or less, when applied to an interlayer insulating film of a highly integrated semiconductor device such as a VLSI, the signal delay time can be greatly reduced, and the next-generation semiconductor Expected to be a basic device technology.
  • interlayer insulating film there are uses other than the interlayer insulating film, such as being applicable to a gas adsorbent or a surface coating material of a printed circuit board for a high frequency circuit by utilizing the porous or low dielectric constant.
  • FIG. 1 is a diagram showing basic steps of the present invention.
  • FIG. 2 (a) is a diagram schematically showing the film structure immediately after film formation (before void formation). (b) is a diagram showing a state in which the volatile component 10 is removed and a large number of voids A are formed inside.
  • FIG. 3 is a system diagram showing an example of a fluorocarbon film deposition apparatus.
  • FIG. 4 is a partial cross-sectional view showing an example of an inductively coupled plasma CVD apparatus.
  • FIG. 5 is a partial cross-sectional view showing an example of a capacitively coupled plasma CVD apparatus.
  • FIG. 6 shows a supercritical fluid washing for performing a void forming process after forming a fluorocarbon film. It is a block diagram (partial sectional drawing) of a purification apparatus.
  • Fig. 7 shows the relative permittivity ⁇ of a fluorocarbon film heated at 400 ° C for 1 hour in a nitrogen atmosphere and the fluorocarbon gas (octafluorocyclopentene and hexafluorobenzene) during film formation. It is a figure which shows the relationship with the mixing ratio.
  • (B) is a diagram showing the relationship between the porosity and the CVD source gas composition.
  • FIG. 8 (a) is a front view of a high-frequency print substrate having a fluorocarbon film according to the present invention deposited on its surface
  • FIG. 8 (b) is a cross-sectional view taken along line AA in FIG.
  • FIG. 9 (a) is a cross-sectional view of a substrate having a fluorocarbon film formed on the surface.
  • (b) is a perspective view of a yarn having a fluorocarbon film according to the present invention formed on its surface.
  • (C) is a cross-sectional view of a film forming apparatus showing a state in which a fluorocarbon film according to the present invention is deposited on the surface of a yarn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

 微細な空孔が形成されたフルオロカーボン膜を提供することを主たる課題とする。  チャンバーの内部に設置した基板上に、第1のフッ化炭素ガスと第2のフッ化炭素ガスとを含む混合ガスを導入し前記基板上にフルオロカーボン膜を堆積する工程(SA1)と、前記フルオロカーボン膜に含まれる揮発成分を選択的に除去することにより前記フルオロカーボン膜に空隙を形成する工程(SA2)とを含むことを特徴とする。特に、空隙形成工程(SA2)では、超臨界流体により前記フルオロカーボン膜を洗浄する工程を含むことが好ましい。

Description

明 細 書
フルォロカーボン膜及びその形成方法
技術分野
[0001] 本発明は、半導体デバイスの製造プロセス等の技術分野に用いられる、ァモルファ ス ·フルォロカーボン膜及びその形成方法等に関する。
背景技術
[0002] 従来、半導体デバイスの層間絶縁膜としてシリコン酸ィ匕膜 (SiO )が広く用いられて
2
きた力 微細化に伴って配線間の静電容量乃至層間の静電容量と配線抵抗に起因 する信号遅延が増大している。このため、比誘電率がシリコン酸ィ匕膜よりも小さい絶 縁膜 (以下、「低誘電率膜」という。)を形成する技術が求められている。
[0003] フッ化炭素ガスを堆積して得られる、アモルファス.フッ化炭素膜(amorphous flu orinated carbon,本明細書では以下単に、「フルォロカーボン膜」という。)は、種 々の低誘電率膜の中でも比誘電率が極めて低いため注目されている(下記文献参 照)。
[0004] 非特許文献 l :Tatsuru SHIRAFUJI et. al, Jpn. J. Appl. Phys. Vol. 42 ( 2003) P. 4504-4509
特許文献 1:特開 2000-332001号公報
特許文献 2:特開平 9 237783号公報
特許文献 3:W099Z28963号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、最も誘電率が低いとされるフルォロカーボン膜でもその値は 2以上あり、理 論限界値(κ = 1. 0)にはほど遠いのが実情である。
[0006] 本発明は、半導体デバイスの高集積ィ匕に伴う信号遅延を低減させることのできる十 分に低い誘電率を有するフルォロカーボン膜と、それを用いた電子装置及び、該フ ルォロカーボン膜の形成方法を提供することを目的としてなされたものであり、微細な 空孔が形成されたフルォロカーボン膜を提供することをその主たる技術的課題とする 課題を解決するための手段
[0007] 本件発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、フルォロカー ボン膜に多数の微細な空隙を設け、これによつてフルォロカーボン膜を低誘電率ィ匕 するという発想に至った。
[0008] 本発明に係る空隙を備えたフルォロカーボン膜の形成方法は、チャンバ一の内部 に設置した基板上に第 1のフッ化炭素ガスと第 2のフッ化炭素ガスとを含む混合ガス を導入し前記基板上にフルォロカーボン膜を堆積する工程 (SA1)と、前記フルォロ カーボン膜に含まれる揮発成分を選択的に除去することにより前記フルォロカーボン 膜に空隙を形成する工程 (SA2)とを含むことを特徴とする。
[0009] なお、本明細書において「フッ化炭素ガス」とは、各種フルォロカーボン又はハイド 口フルォロカーボン [ィ匕学式 C F (x、 yは整数)、 C F H (x、 y、 zは整数)などで表さ れるガス]を意味し、フルォロカーボン膜はこれらのガスの共重合膜を意味する。
[0010] 上記のフルォロカーボン膜の形成方法は、第 1のフッ化炭素ガスは炭素数 4乃至 5 の含フッ素化合物を、第 2のフッ化炭素ガスは炭素数 6乃至 12の含フッ素化合物を それぞれ用いることが微細な空孔が多数得られると 、う点にぉ 、て好ま 、。
[0011] 空隙を形成する工程は、超臨界流体により前記フルォロカーボン膜を洗浄するェ 程を含むことが好ましい。超臨界流体はいずれでもよぐ例えば、二酸化炭素、水、ァ ルコール、などを用いることができる。
[0012] 空隙を形成する工程は、前記フルォロカーボン膜を加熱する工程を含むようにして もよい。加熱処理の条件は、例えば、ゆっくりとした加熱処理でも、又は急速熱加熱 処理 (RTA)でもよい。
[0013] 前記チャンバ一は内部でプラズマを発生させることができるプラズマ励起チャンバ 一であることが好ましい。プラズマ発生方式は種々のものが可能であり、例えば、誘 導結合型、容量結合型などが考えられる。
[0014] 前記第 1のフッ化炭素ガスは相対的に揮発性が高ぐ前記第 2のフッ化炭素ガスは 相対的に揮発性が低 、ことが好ま U、。これらのフッ化炭素ガスの混合比率を変化さ せることにより、空隙の含有率を変化させることができる。 [0015] 第 1及び第 2のフッ化炭素ガスの好ましい混合比率は、両者の合計量に対する第 1 のフッ化炭素ガスの割合で表した場合、 10乃至 90モル%、より好ましくは 30乃至 90 モル%、さらに好ましくは 50乃至 80モル%である。これらの範囲にあるとき、特に比 誘電率の低!、フルォロカーボン膜を得ることができる。
[0016] なお、前記混合ガスは、アルゴンガス、ヘリウムガス、ネオンガス、キセノンガスなど 第 1及び第 2のフッ化炭素ガスの以外の他のガスを含んでいてもよぐ又は、含んで いなくてもよい。
但し、混合ガス中に含むことができる上記他のガスの量は、全部のガスの合計量に 対する他のガスの割合で表した場合、好ましくは 50モル%以下、より好ましくは 20モ ル%以下、さらに好ましくは 5モル%以下である。
[0017] なお、低誘電率膜にはフルォロカーボン膜の一部にシロキサン系モノマーなどシリ コン原子を含んだ「有機無機ハイブリッド膜」と呼ばれるタイプが存在するが、本発明 に係るフルォロカーボン膜はシリコン原子を含まず、かつ、蒸気圧 (揮発し易さ)の異 なる少なくとも 2種以上のフッ化炭素ガスを出発材料として成膜した堆積膜を用いて いる点が特徴である。
発明の効果
[0018] フルォロカーボン膜に多数の微細な空隙を設けて多孔質ィ匕することで、比誘電率 をより一層低減することができる。この方法により、比誘電率 2以下のフルォロカーボ ン膜を得ることができる。また、このフルォロカーボン膜は半導体デバイスの層間絶縁 膜のほか、高周波回路用プリント基板の表面被覆材料やガス吸着材などに適用する ことちでさる。
発明を実施するための最良の形態
[0019] 一本発明の基本的な考え方について
本発明に係る空隙を備えたフルォロカーボン膜の製造方法は、主に 2つのステップ カゝらなる。図 1は、本発明の基本的なステップを示す図である。
[0020] (1)成膜工程 [SA1]
相対的に揮発性の高い成分と相対的に揮発性の低い成分とから構成されるフルォ 口カーボン膜を形成する工程である。図 2 (a)は成膜直後 (空隙形成前)の膜構造を 模式的に示すもので、揮発性の高い成分 10と揮発性の低い成分 11とで構成されて いる様子を示している。
[0021] 一般に、フルォロカーボン膜を堆積する場合は、原料ガスに含まれるフッ化炭素ガ スは 1種類であることが多ぐかつ、揮発性の低いガスが用いられる。これは、成膜後 に得られるフルォロカーボン膜の緻密性を高めるためである。
[0022] しかし、本件発明では、相対的に揮発性の高い第 1のフッ化炭素ガスと、相対的に 揮発性の低い第 2のフッ化炭素ガスとの混合ガスを主成分とするフッ化炭素ガスを出 発原料として、フルォロカーボン膜を堆積する。こうすると、堆積直後のフルォロカー ボン膜に揮発成分が多く残って 、ても、その後の処理によりこれらの揮発成分が除去 されうる。その結果、フルォロカーボン膜に多数の微細な空隙を形成することができる ことを本件発明者らは見 、だした。
[0023] なお、プラズマ CVD装置はそれ自体、ほんのわずかな実験条件の違いによって得 られる膜の成長が左右される非常に精密な技術であり、同装置は、原料となる元素を 供給するガスの配管や反応装置部分の構造が複雑である上に、ガスの供給条件や 反応温度などの設定により、無数の反応条件の組み合わせがある。
[0024] このため、成膜レートや揮発成分の含有率や段差被覆率 (カバレッジ)など各種の 観点からこれらの各成膜条件を最適化することで、より効率的に高品質な成膜の条 件が得られる。
[0025] (第 1のフッ化炭素ガスの好ましい例)
本発明における『第 1のフッ化炭素ガス』の好ましい例は、炭素数 4乃至 5の含フッ 素化合物、すなわち、分子内に 4乃至 5個の炭素原子を有すると共にその炭素原子 と直接結合したフッ素原子を 1個以上有する化合物である。
例えば、炭素数 4乃至 5のパーフルォロカーボン又は炭素数 4乃至 5のハイド口フル ォロカーボンである。なお、パーフルォロカーボンには飽和パーフルォロカーボンと 不飽和パーフルォロカーボンとがある。得られる膜の絶縁性能の観点等力 総合評 価すると、炭素数 4乃至 5のハイド口フルォロカーボンよりも炭素数 4乃至 5のパーフ ルォロカーボンの方が好ましぐ炭素数 5の不飽和パーフルォロカーボンがより好まし く、炭素数 5の環状不飽和パーフルォロカーボンが最も好ま U、。 [具体例]
(a)へキサフルォロシクロブテン、へキサフルオロー(1ーメチルシクロプロペン)、ォクタ フルォロシクロペンテン、ォクタフルオロー( 1ーメチルシクロブテン)及びォクタフルォ ロー(1, 2—ジメチルシクロプロペン)などの環状不飽和パーフルォロカーボン
(b)へキサフルオロー 2—ブチン、へキサフルオロー 1ーブチン、ォクタフルオロー 1ーぺ ンチン及びォクタフルオロー 2—ペンチン及びへキサフルォロビニルアセチレンなどの 分子内に 3重結合を有する直鎖又は分岐の不飽和パーフルォロカーボン
(c)へキサフルオロー 1, 3 ブタジエン、ォクタフルオロー 1, 3 ペンタジェン、オタタフ ルオロー 1, 4 ペンタジェン及びォクタフルォロイソプレンなどの分子内に複数の二 重結合を有する不飽和パーフルォロカーボン
(d)ォクタフルオロー 1ーブテン及びォクタフルオロー 2—ブテンなどの分子内に単数の 二重結合を有する直鎖又は分岐の不飽和パーフルォロカーボン
(e) 2H ヘプタフルォ口— 2—ブテン、 2H ペンタフルォ口— 1, 3ブタジエン、 1H—ぺ ンタフルォロシクロブテン、 3H ペンタフルォロシクロブテン、 2H—ノナフルォ口— 2— ペンテン、 3H—ノナフルォロ— 2 ペンテン、 1H—ヘプタフルォロシクロペンテン、 3H —ヘプタフルォロシクロペンテン、 1H, 2H—テトラフルォロシクロブテン、 1H, 3H—テ トラフルォロシクロブテン、 1H, 2H—へキサフルォロシクロペンテン、 1H, 3H—へキ サフルォロシクロペンテン、 1H, 5H—へキサフルォロシクロペンテン
などの炭素数 4乃至 5のハイド口フルォロカーボン
などが挙げられるが、得られる膜の絶縁性の観点から、
(ィ)へキサフルオロー 2—ブチン、へキサフルオロー 1ーブチン、へキサフルォロシクロ ブテン、へキサフルオロー 1, 3 ブタジエン、へキサフルオロー(1ーメチルシクロプロべ ン)、ォクタフルオロー 1ーブテン、ォクタフルオロー 2—ブテン、ォクタフルオロー 1 ペン チン、ォクタフルオロー 2 ペンチン、ォクタフルオロー 1, 3 ペンタジェン、ォクタフル オロー 1, 4 ペンタジェン、ォクタフルォロシクロペンテン、ォクタフルォロイソプレン、 へキサフルォロビニルアセチレン、ォクタフルオロー 1ーメチルシクロブテン又はォクタ フルオロー 1, 2—ジメチルシクロプロペン
が好ましぐ (口)ォクタフルオロー 2 ペンチン、ォクタフルオロー 1, 3 ペンタジェン又はオタタフ ノレォロシクロペンテン
力 り好ましぐ
(ハ)ォクタフルオロー 2—ペンチン又はォクタフルォロシクロペンテン
がさらに好ましく、
(-)ォクタフルォロシクロペンテン
が特に好ましい。
[0027] (第 2のフッ化炭素ガスの好ましい具体例)
本発明における『第 2のフッ化炭素ガス』の好ましい例は、炭素数 6乃至 12の含フッ 素化合物、すなわち、分子内に 6乃至 12個の炭素原子を有すると共にその炭素原 子と直接結合したフッ素原子を 1個以上有する化合物である。
例えば、炭素数 6乃至 12のパーフルォロカーボン又は炭素数 6乃至 12のハイド口 フルォロカーボンである。得られる膜の絶縁性能及び強度の観点から総合評価する と、炭素数 6乃至 12のハイド口フルォロカーボンよりも炭素数 6乃至 12のパーフルォ 口カーボンの方が好ましぐ炭素数 6乃至 8の不飽和パーフルォロカーボンがより好ま しぐ炭素数 6乃至 8の環状不飽和パーフルォロカーボンが更に好ましぐ炭素数 6の 環状不飽和パーフルォロカーボンが最も好まし 、。
なお、上記環状不飽和パーフルォロカーボンとしては、芳香族パーフルォロカーボ ンが好適に用いられる。
[0028] [具体例]
(f)へキサフルォロベンゼン、ォクタフルォロトルエン、デカフルオロー o—キシレン、デ 力フルオロー m—キシレン、デカフルオロー p—キシレン、ォクタフルォロスチレン、ノナフ ルオロー 1, 3, 5 トリメチルベンゼン、ォクタフルォロナフタレン、などの芳香族パーフ ノレ才ロカーボン
(g)ドデカフルオロー 1 キセン、ドデカフルオロー 2 キセン、ドデカフルオロー 3— へキセン、ゥンデ力フルオロー 1 ヘプテン、ゥンデ力フルオロー 2—ヘプテン及びゥン デカフルオロー 3—ヘプテンなどの分子内に単数の二重結合を有する直鎖又は分岐 の不飽和パーフノレオ口カーボン (h)デカフルォロシクロへキセン及びドデカフルォロシクロヘプテンなどの分子内に 単数の二重結合を有する環状不飽和パーフルォロカーボン
(i)デカフルオロー 1, 3 キサジェン、デカフルオロー 1, 4 キサジェン、デカフル ォロ— 1, 5—へキサジェン、デカフルォロ— 2, 4 キサジェン、ォクタフルォロシクロ -1, 3 キサジェン及びォクタフルォロシクロー 1, 4 キサジェンなどの分子内に 複数の二重結合を有する不飽和パーフルォロカーボン
(j)デカフルオロー 2 キシン及びデカフルオロー 3 キシンなどの分子内に 3重結 合を有する直鎖又は分岐の不飽和パーフルォロカーボン
(k)ペンタフルォロベンゼン、テトラフルォロベンゼン、トリフルォロベンゼン、ベンゾト リフルオリド、ペンタフルォロトルエン、 2, 3, 4, 5, 6 ペンタフルォロスチレン、 1, 3, ビス(トリフルォロメチル)ベンゼン、 1, 4 ビス(トリフルォロメチル)ベンゼン、テトラフ ルォロナフタレン
などの炭素数 6乃至 10のハイド口フルォロカーボン
などが挙げられるが、得られる膜の絶縁性能及び強度の関係から、
(ホ)へキサフルォロベンゼン、デカフルオロー o—キシレン、デカフルオロー m キシレ ン、デカフルオロー ρ—キシレン
が好ましぐ
(へ)へキサフルォロベンゼン
が特に好ましい。
(2)空隙形成 (ポーラス化)工程 [SA2]
上記成膜工程の後、揮発性の高い成分を除去することにより、多数の微細な空隙 が形成される。図 2 (b)は、揮発成分 10が除去され、内部に多数の空隙 Aが形成され た様子を示している。
なお、従来、シリコン原子を含有する無機絶縁膜又は有機無機ハイブリッド膜に微 細な空隙を形成した、 V、わゆる『ポーラスシリコン膜』と呼ばれるものが存在して 、た 力 フルォロカーボン膜は元来機械的強度が弱いなどの理由からむしろ緻密性が高
V、ものほど好まし 、と考えられて 、たため、空隙を設けて多孔質ィ匕 (ポーラス化)する という発想は当業者の常識を覆す逆転の発想であったと考えられる。 [0030] 揮発成分を除去するための方法は、フルォロカーボン膜を加熱する方法、及び、加 熱によらず空隙を形成する方法、などが考えられる。
[0031] 加熱により揮発成分を除去する場合、例えば、窒素、ヘリウム等の不活性ガス中で 前記工程 [SA1]で堆積したフルォロカーボン膜を、 50°C— 450°C、さらに好ましくは 100°C力も 450°C、特に好ましくは 300°C— 450°Cで加熱する。加熱時の温度が低 すぎると、空隙の形成が十分でなぐ比誘電率が低下しに《なる。
[0032] しかし、加熱すると膜の緻密化が起こり、膜厚が減少してしまうという問題が発生す る場合がある。加熱時の温度が高すぎると、減膜率 (膜厚の減少率)が大きすぎて、 非実用的となる場合がある。しかし、加熱の条件を最適化すれば、膜厚の減少を最 小限に抑えて揮発成分を除去することも十分に可能である。
[0033] 一方、加熱によらず空隙を形成する場合は、「超臨界流体による洗浄」 t ヽぅ方法を 用!/、ることができる。
超臨界流体は物質に対する浸透性が高いために、堆積したアモルファスカーボン 膜の分子レベルの微細な隙間に入り込むことができる。よって、超臨界流体を用いる と、揮発成分のみを選択的に除去することができる。
[0034] 本発明に係るフルォロカーボン膜は、空隙率が、好ましくは 20— 80%、さらに好ま しくは 30— 70%、特に好ましくは 40— 60%である。空隙率を上記範囲にするほど誘 電率は低下する。
[0035] 本発明に係るフルォロカーボン膜は、比誘電率が 2以下、好ましくは 1. 8以下、特 に好ましくは 1. 6以下であり、従来の低誘電率膜よりも極端に小さい。
[0036] 堆積装置の構成について
はじめに、本発明に係るフルォロカーボン膜の製造方法の第 1ステップであるフル ォロカーボン膜形成工程について説明する。このステップは種々の実施形態の全て に共通するものである。
図 3は、フルォロカーボン膜の堆積装置の一例を示すシステム図を示している。プ ラズマ励起化学気相成長装置(PE - CVD : Prasma Enhansed Chemical Vapo r Deposition) 30は、真空ポンプ 31によりチャンバ一内が排気される一方、原料ガ スがチャンバ一内部に導かれる。 [0037] 原料ガスとしては、少なくとも 2種類のフッ化炭素ガスが必要であり、それらは第 1の ボンべ 33と第 2のボンべ 34とに封入されている。配管はバルブ VI乃至 V10で仕切 られており、 V、ずれの原料ガスもそれぞれの供給ラインに設けられたマスフローコント ローラ(MFC) 36、 38〖こより、流量が調整される。それぞれの原料ガスのラインは最 終的には一つのラインに合流し、チャンバ一に接続される。この図に示すバルブ V3 及び V8はバイパスライン 37、 39への接続を制御するためのバルブである。
[0038] 同図の破線はテープヒータなどの昇温手段 35を示している。蒸気圧の低いガスは 常温常圧で液体である。
このような液体のソース (原料)を用いる場合には、ボンべ、チャンバ一側壁及びそ れらをつなぐ配管を昇温手段 35によって加熱することにより、原料を気化させる。 なお、昇温手段を付加する低蒸気圧系のラインに取り付けるマスフローコントローラ (MFC) 36は耐熱仕様のものを用いる。蒸気圧の高いガスの場合、常温常圧で気体 であるから特に昇温手段を付加する必要はない。
[0039] フルォロカーボン膜を堆積する装置には、種々のものが知られている力 フッ化炭 素ガスの混合ガスを出発原料としてフルォロカーボン膜を堆積するものであれば、 ヽ ずれの成膜装置を用いてもよい。また、原料ガス供給ラインの接続についても適宜変 更することができる。
[0040] 例えば、図 4は、誘導結合型プラズマ(ICP : Inductive Coupled Plasma)と呼 ばれるプラズマ発生方式を採用したプラズマ CVD装置の一例を示す一部断面図で ある。
円筒状のチャンバ一 40の上部にコイル 41が設けられ、マッチング回路 42を介して 高周波電源 43に接続され、プラズマを発生させる。チャンバ一の内部はバルブ 44を 介して接続される真空ポンプ 45により常に排気され、所定の圧力に保たれる。
また、チャンバ一内部にはガス供給口 46が設けられ、ここ力も原料ガスが導入され る。
フルォロカーボン膜を堆積する基板はヒータ (不図示)を内蔵した基板保持台(サセ プター) 47の上に設置される。
[0041] 図 5は容量結合型プラズマ(CCP : Capacitor Coupled Plasma)と呼ばれるプラ ズマ発生方式を採用したプラズマ CVD装置の一例を示す一部断面図である。
円筒状のチャンバ一 50の上部(又は周囲)に上部電極 51が設けられ、マッチング 回路 52を介して高周波電源 53に接続され、プラズマを発生させる。チャンバ一の内 部はバルブ 54を介して接続される真空ポンプ 55により常に排気され、所定の圧力に 保たれる。
また、チャンバ一内部にはシャワーノズルタイプのガス供給口 56が設けられ、ここか ら原料ガスが導入される。
フルォロカーボン膜を堆積する基板はヒータ (不図示)を内蔵した基板保持台(サセ プター) 57の上に設置される。
[0042] なお、誘導結合型プラズマ CVD装置はコイルの位置や形状の異なる種々のタイプ 力 Sあるがそのいずれでもよぐさら〖こ、容量結合型 (平行平板型)プラズマ CVD装置 及びその他のプラズマ CVD装置を含む各種の成膜方法を用いてもよい。或いは、全 く異なる成膜方法ではある力 レーザーアブレーシヨン法によるアモルファス ·フルォ 口カーボン膜でもよい。
[0043] (第 1の実施形態)
—成膜工程—
原料ガスは、堆積物の揮発性が相対的に高いガス (例えば、 C F、 C F、 C Fな
5 8 4 6 2 4 ど)と、堆積物の揮発性が相対的に低いガス (例えば、 C F、 C F、 C F など)と
6 6 10 8 12 10 を一定の割合で混合したガスを、反応室内に導入することが必要である。このように、 揮発性に差があるすなわち蒸気圧の異なる少なくとも 2種類のガスを用いることで、成 膜後に空隙を形成することができる。
[0044] 例えば、ォクタフルォロシクロペンテン [ィ匕学式: C F (より正確には c— C Fである)
5 8 5 8
]ガスは、五角形の環状構造のうち炭素と炭素の二重結合を一つだけ持つ構造であ り、分解され易く揮発性が高い。一方、へキサフルォロベンゼン [ィ匕学式: C Fガス]
6 6 は、六角形の共鳴構造を持っため安定であり揮発性が低い。もっとも、揮発性の大 小は相対的なものであり、ォクタフルォロシクロペンテンと比較すると揮発性の低 、へ キサフルォロベンゼンでも、一定の割合では揮発すると考えられる。なお、ォクタフル ォロシクロペンテンもへキサフルォロベンゼンも 、ずれも地球温暖化係数(GWP: Gr obal Warming Potential)が小さいため地球環境への負荷が小さい。このため、 工業的に大量に使用する場合にも好都合である。
[0045] ォクタフルォロシクロペンテンは常温常圧で気体であるため、ボンべ 33やその配管 に加温手段を設ける必要はな 、が、へキサフルォロベンゼンは常温常圧で液体であ るため、ボンべ及び配管をテープヒータなどの加熱装置で 90°C乃至 110°C程度まで 加熱してチャンバ一 40 (又は 50)に導入する。
[0046] 上記ガスの導入前に、チャンバ一内を排気して圧力を例えば 6. 67Pa (50mTorr) に調整する。また、高周波電源には、例えば、 13. 56MHzの高周波を印加し、 RF 出力は例えば 10W— 100W程度とする。
次に、ォクタフルォロシクロペンテンとへキサフルォロベンゼンとの混合ガスをチヤ ンバー内に導入し、基板上にフルォロカーボン膜の堆積を開始する。
[0047] 成膜時の基板温度は室温とし、必要により加熱してもよい。フルォロカーボン膜の 堆積時カゝら基板を加熱しておけばフルォロカーボン膜の堆積と空隙の形成がほぼ同 時的に起こると考えられるが、いずれにせよ堆積 (成膜工程)と空隙形成 (ポーラス化 工程)と 、う、 2つのステップを経て!/、ることに代わりはな!/、。
[0048] 一般に、プラズマ CVD装置の場合、プラズマ発生電力を大きくしてプラズマ密度を 高く(例えば、 lxloUcm— 3以上)すると、ォクタフルォロシクロペンテンやへキサフル ォロベンゼンなどの高次のガスは、 C
2、 CF
2、 C CFなどといった低次の分子に解離 して基板への付着確率が上昇する。
このように、解離度を考慮してプラズマ密度や反応室の圧力やガス流量などの諸条 件を最適化すれば、堆積速度や揮発成分の比率、つまり空隙の含有率ひいては比 誘電率を調整することが可能である。
[0049] また、フルォロカーボン膜堆積時のチャンバ一内の圧力が 6. 93Paより高い圧力で 成膜した場合には表面が濁った膜が得られたが、 6. 93Pa以下の圧力で成膜した場 合は透明度の高い膜が得られ易くなる。デバイス化には、透明度の高い膜が好まし いため、フルォロカーボン膜堆積時のチャンバ一内圧力は、 6. 93Pa以下が好まし い。
但し、フルォロカーボン膜堆積時のチャンバ一内圧力があまりに低いと成膜レート が低下して実用的ではなくなる。そのため、原料ガス (ここでは、オタタフルォロシクロ ペンテンとへキサフルォロベンゼン)の導入量 (流量)を大きくしてプラズマ滞在時間 を短くすれば、成膜速度を維持した状態で成膜時の圧力をある程度低下させること が可能となり、結果として膜質の良いフルォロカーボン膜を得ることができる。
[0050] 例えば、膜を堆積する際の条件としては、プラズマ励起チャンバ一を用いる場合、 プラズマ密度 101G— 1015cm— 3の範囲が好ましい。また、膜を堆積する際の温度は、 0°C— 450°Cの範囲が好ましぐ室温一 300°Cがより好ましい。また、プラズマ励起チ ヤンバー内の圧力は、 0. 0133Pa— 13. 3KPaの範囲が好ましい。
[0051] 一空隙形成工程
図 6は、フルォロカーボン膜形成後の空隙形成工程を行うための超臨界流体洗浄 装置の構成図である。
超臨界流体のボンべ 61はバルブ VI Iを介して高圧ポンプ 62に接続され、さらにカロ 熱器 63を通り、高圧セル 64に導かれる。高圧セルは肉厚が極めて厚い金属製の容 器であり、内部に基板 Sを設置するための空間 65が設けられている。超臨界流体は この空間 65を満たした後、圧力制御バルブ V12を通り排出管 66より外部に放出され る。また、温度制御装置 67により高圧セル 64及びチャンバ一の周囲に設けられたカロ 熱装置 68の温度が制御される。
[0052] 二酸化炭素(CO )は安価で入手し易ぐし力も比較的低温で超臨界流体となるの
2
で、本発明を実施する上で好ましい。アルコール(例えば、エタノールやメタノール、 イソプロピルアルコールなど)、或いは水(H O)などの超臨界流体もある力 それらで
2
も構わない。
[0053] 超臨界流体による空隙形成によると、熱処理工程が全くないために膜厚を殆ど減 少させることなく揮発成分の除去が可能となる。この方法により得られたフルォロカー ボン膜の比誘電率は概ね 1. 6程度の場合が多いが、比誘電率は空隙の含有率が多 いほど小さくなり、理論的には 1. 2程度も達成可能である。本実施形態に示す方法 は、特に半導体デバイスの層間絶縁膜などに好適である。
[0054] (第 2の実施形態)
—成膜工程一 内径 250mm、高さ 450mmの反応チャンバ一を備えた誘導結合プラズマ方式の P E— CVD反応器(高周波電源: 13. 56MHz)を用いて、表 1の条件でチャンバ一内 に設置したシリコン基板にフルォロカーボン膜を堆積させた。
フルォロカーボン膜を堆積させる際の CVD原料ガスとしては、ォクタフルォロシクロ ペンテン、へキサフルォロベンゼン及び、両者の混合物を用いた。
—空隙形成工程—
次いで、基板上に堆積したフルォロカーボン膜を、窒素雰囲気下、 400°Cで 1時間 の加熱処理を行い、揮発成分を選択的に除去することにより、フルォロカーボン膜に 空隙を形成した。
得られたフルォロカーボン膜の、比誘電率 κと CVD原料ガス組成との関係を図 7 ( a)に示し、空隙率と CVD原料ガス組成との関係を図 7 (b)に示す。なお、フルォロカ 一ボン膜の比誘電率 κ及び空隙率は一般的な方法 (例えば、 Jpn. J. Appl. Phys. , Vol43, No. 5A(2004) , p. 2697— 2698に記載の方法)で求めた。
[0055]
Figure imgf000015_0001
Figure imgf000015_0002
[0056] へキサフルォロベンゼンの混合比率が約 50%乃至 80%のとき、顕著に比誘電率 が低 、ことが分かる。これより混合比率が低 、ときは揮発性ガス (ォクタフルォロシクロ ペンテン)が揮発するとともに膜の緻密化が起こるために比誘電率が大きくなると考え られる。へキサフルォロベンゼンの混合比率がゼロの場合はォクタフルォロシクロべ ンテンのみで堆積したことを示している力 この場合、加熱処理によって全ての揮発 成分が揮発しため比誘電率は測定不能であった。
逆に、混合比率が 80%より大きいと、揮発性ガス (オタタフルォロシクロペンテン)の 割合が少なくなるため、空隙の数が少な 、ために比誘電率が大きくなつたものと考え られる。
[0057] 窒素雰囲気 1気圧 400°Cで 1時間加熱した場合、膜厚の減少もみられた力 比誘 電率 1. 5のフルォロカーボン膜が得られた。
[0058] このように、熱処理の条件を最適化すれば、膜厚の減少が小さく抑えられることもあ るので、そのような場合は熱処理により空隙を形成しても構わない。成膜の時点から 所定の温度で基板を加熱しておき、成膜と空隙形成を同時的に行うなどしてもよい。
[0059] なお、後述の通り、用途によっては多少膜厚の減少があっても問題なく使用できる 場合もあり、そのようなケースでも、熱処理による空隙形成工程を採用することができ る。
[0060] 以上のように、ォクタフルォロシクロペンテン及びへキサフルォロベンゼンからなる 混合ガスを CVD原料として用いて空隙を形成したフルォロカーボン膜は、その後の 熱処理によって適度な空隙率を有し、絶縁性能が特に優れて ヽることが分かる。
[0061] (第 3の実施形態)一高周波回路用プリント基板の表面被覆材料への応用
第 1又は第 2の実施形態などで説明した方法により、高周波回路用プリント基板の 表面に本発明に係るフルォロカーボン膜を形成しておくことにより寄生容量を減らし 、高周波特性を向上させることができる。
[0062] 図 8 (a)は、表面に本発明に係るフルォロカーボン膜を堆積した高周波用プリント基 板の正面図を示しており、(b)は、図(a)における A— A断面図を示している。この図 のように、多数の空隙 81が設けられたフルォロカーボン膜 82が、高周波用プリント基 板 83の表面を覆うように形成されて!ヽる。
[0063] 上述した通り、本発明に係るフルォロカーボン膜は比誘電率が 2以下と、従来の低 誘電率膜よりも極端に小さいので膜厚を数 m乃至数十; z m程度として高周波用プ リント基板 83の表面を覆うと、誘電損失が劇的に下がり、信号伝達の遅延、信号の混 信、信号の減衰、回路の発熱、消費電力の低減が可能となる。
(第 4の実施形態)
-ガス吸着材への応用 - 本件発明に係るフルォロカーボン膜は、当初は半導体集積回路の層間絶縁膜とし て利用することを想定してなされたが、得られた低誘電率膜の多孔質構造を積極的 に利用すれば、ガス吸着材としても有用であると考えられる。そこで、以下の実施形 態ではこれらについて説明する。
[0064] 図 9 (a)は、基板 91の両面に数 μ m乃至数十 μ mのフルォロカーボン膜 92を形成 した断面図を示している。基板 91はフルォロカーボン膜を形成するための基材となる ものであればよぐかつ、室温でも形成できるため、プラスチック基板などその種類を 問わない。
[0065] 図 9 (b)は、糸 93の表面に、本発明に係るフルォロカーボン膜 94を形成した実施 態様を示している。糸 93の表面にコーティングするためには、例えば図 9 (c)のように 、成膜装置 30内に卷芯 95a, 95bを設置しこれらを回転させ、一方の卷芯から他方 の卷芯に糸 93を卷きつけながら成膜していった後、超臨界流体装置に巻き取った方 の卷芯をそのまま設置すればよい。超臨界流体は浸透力が極めて高いので巻き取 つた状態でも十分に空隙形成処理ができる。
産業上の利用可能性
[0066] 本発明に係るフルォロカーボン膜は、比誘電率が 2以下であるため、超 LSIなど高 集積半導体デバイスの層間絶縁膜に適用すると信号遅延時間を大幅に低減させる ことができ、次世代半導体デバイスの基本技術として期待される。
また、他の応用例としては、多孔質或いは低誘電率であることを利用してガス吸着 剤や高周波回路用プリント基板の表面被覆材料などに適用できるなど、層間絶縁膜 以外の用途もある。
以上のように、本発明の産業上の利用可能性は極めて大き!/、。
図面の簡単な説明
[0067] [図 1]図 1は本発明の基本的なステップを示す図である。
[図 2]図 2 (a)は成膜直後 (空隙形成前)の膜構造を模式的に示す図である。 (b)は、 揮発成分 10が除去され、内部に多数の空隙 Aが形成された様子を示す図である。
[図 3]図 3はフルォロカーボン膜の堆積装置の一例を示すシステム図である。
[図 4]図 4は誘導結合型プラズマ CVD装置の一例を示す一部断面図である。
[図 5]図 5は容量結合型プラズマ CVD装置の一例を示す一部断面図である。
[図 6]図 6はフルォロカーボン膜形成後の空隙形成工程を行うための超臨界流体洗 浄装置の構成図 (一部断面図)である。
[図 7]図 7 (a)は窒素雰囲気 1気圧 400°Cで 1時間加熱したフルォロカーボン膜の比 誘電率 κと、成膜時のフッ化炭素ガス (ォクタフルォロシクロペンテン及びへキサフル ォロベンゼン)の混合比率との関係を示す図である。(b)は、空隙率と CVD原料ガス 組成との関係を示す図である。
圆 8]図 8 (a)は、表面に本発明に係るフルォロカーボン膜を堆積した高周波用プリン ト基板の正面図、(b)は、図(a)における A— A断面図である。
[図 9]図 9 (a)は、表面にフルォロカーボン膜を形成した基板の断面図である。 (b)は 、表面に本発明に係るフルォロカーボン膜を形成した糸の斜視図である。(c)は糸の 表面に本発明に係るフルォロカーボン膜を堆積している様子を示す成膜装置の断 面図である。
符号の説明
10 揮発性の高い成分
11 揮発性の低い成分
30 プラズマ励起化学気相成長装置
33 第 1のボンべ
34 第 2のボンべ
35 昇温手段
36, 38 マスフローコントローラ
40, 50 チャンバ一
41 コィノレ
42, 52 マッチング回路
46, 56 ガス供給口
61 超臨界流体のボンべ
62 高圧ポンプ
63 加熱器
64 高圧セル
65 空間 67 温度制御装置
81 空隙
82, 92, 94 フルォロカーボン膜 83 高周波用プリント基板 91 基板 (基材)
93 糸
95a, 95b 卷芯
S 基板
A 空隙

Claims

請求の範囲
[1] チャンバ一の内部に設置した基板上に、第 1のフッ化炭素ガスと第 2のフッ化炭素ガ スとを含む混合ガスを導入し前記基板上にフルォロカーボン膜を堆積する工程 (SA 1)と、前記フルォロカーボン膜に含まれる揮発成分を選択的に除去することにより前 記フルォロカーボン膜に空隙を形成する工程 (SA2)とを含むことを特徴とするフル ォロカーボン膜の製造方法。
[2] チャンバ一の内部に設置した基板上に、第 1のフッ化炭素ガスと第 2のフッ化炭素ガ スとを含む混合ガスを導入し前記基板上にフルォロカーボン膜を堆積する工程 (SA 1)と、前記フルォロカーボン膜に含まれる揮発成分を選択的に除去することにより前 記フルォロカーボン膜に空隙を形成する工程 (SA2)とを含むことを特徴とするフル ォロカーボン膜の製造方法であって、
前記第 1のフッ化炭素ガスは炭素数 4乃至 5の含フッ素化合物であると共に、前記 第 2のフッ化炭素ガスは炭素数 6乃至 12の含フッ素化合物であることを特徴とするフ ルォロカーボン膜の製造方法。
[3] 前記第 1のフッ化炭素ガスは、ォクタフルォロシクロペンテンであることを特徴とする 請求項 2記載のフルォロカーボン膜の製造方法。
[4] 前記第 2のフッ化炭素ガスは、へキサフルォロベンゼンであることを特徴とする請求 項 2記載のフルォロカーボン膜の製造方法。
[5] 前記空隙を形成する工程 (SA2)は、超臨界流体により前記フルォロカーボン膜を洗 浄する工程を含むことを特徴とする請求項 1又は 2記載のフルォロカーボン膜の製造 方法。
[6] 前記空隙を形成する工程 (SA2)は、前記フルォロカーボン膜を加熱する工程を含 むことを特徴とする請求項 1又は 2記載のフルォロカーボン膜の製造方法。
[7] 前記チャンバ一は内部でプラズマを発生させることができるプラズマ励起チャンバ一 であることを特徴とする請求項 1又は 2記載のフルォロカーボン膜の製造方法。
[8] 前記第 1のフッ化炭素ガスは相対的に揮発性が高ぐ前記第 2のフッ化炭素ガスは相 対的に揮発性が低いことを特徴とする請求項 1又は 2記載のフルォロカーボン膜の 製造方法。
[9] 内部に微細な多数の空隙が設けられ、比誘電率が 2以下の範囲にあることを特徴と するフルォロカーボン膜。
[10] 請求項 9記載のフルォロカーボン膜からなる高周波回路用プリント基板用表面被覆 材料。
[11] 請求項 9記載のフルォロカーボン膜を含むガス吸着材。
[12] 請求項 9記載のフルォロカーボン膜を、少なくとも一部に用いた電子装置。
PCT/JP2004/016606 2004-07-22 2004-11-09 フルオロカーボン膜及びその形成方法 WO2006008841A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/536,774 US7648922B2 (en) 2004-07-22 2004-11-09 Fluorocarbon film and method for forming same
KR1020067023989A KR20070033975A (ko) 2004-07-22 2004-11-09 플루오로카본막 및 그 형성 방법
JP2006527779A JP4737552B2 (ja) 2004-07-22 2004-11-09 フルオロカーボン膜及びその形成方法
TW093134446A TW200605219A (en) 2004-07-22 2004-11-11 Fluorocarbon film and method for forming same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-214543 2004-07-22
JP2004214543 2004-07-22

Publications (1)

Publication Number Publication Date
WO2006008841A1 true WO2006008841A1 (ja) 2006-01-26

Family

ID=35784976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016606 WO2006008841A1 (ja) 2004-07-22 2004-11-09 フルオロカーボン膜及びその形成方法

Country Status (5)

Country Link
US (1) US7648922B2 (ja)
JP (1) JP4737552B2 (ja)
KR (2) KR20070033975A (ja)
TW (1) TW200605219A (ja)
WO (1) WO2006008841A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158740A (ja) * 2007-12-27 2009-07-16 Tokyo Electron Ltd プラズマエッチング方法、プラズマエッチング装置、制御プログラム及びコンピュータ記憶媒体
JP2014103165A (ja) * 2012-11-16 2014-06-05 Tokyo Electron Ltd 半導体素子の製造方法、および半導体素子の製造装置
JP2017005280A (ja) * 2007-02-19 2017-01-05 センブラント リミテッド プリント回路基板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184771A4 (en) * 2007-08-16 2010-10-20 Univ Tohoku Nat Univ Corp INTERCOULE ISOLATION FILM AND WIRING STRUCTURE, AND METHOD FOR MANUFACTURING THE SAME
KR102096952B1 (ko) * 2016-05-26 2020-04-06 세메스 주식회사 기판 처리 장치 및 방법
JP6587040B2 (ja) * 2017-06-02 2019-10-09 Agc株式会社 蒸着用含フッ素エーテル組成物、ならびに蒸着膜付き物品およびその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092804A (ja) * 1996-09-19 1998-04-10 Sony Corp 多孔質誘電体膜の製造方法
US6524963B1 (en) * 1999-10-20 2003-02-25 Chartered Semiconductor Manufacturing Ltd. Method to improve etching of organic-based, low dielectric constant materials

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402972B2 (ja) * 1996-11-14 2003-05-06 東京エレクトロン株式会社 半導体装置の製造方法
EP1045433B1 (en) * 1997-12-27 2006-05-24 Tokyo Electron Limited Boron containing fluorocarbon film and method for forming the same
JP4361625B2 (ja) * 1998-10-05 2009-11-11 東京エレクトロン株式会社 半導体装置及びその製造方法
JP3436221B2 (ja) * 1999-03-15 2003-08-11 ソニー株式会社 半導体装置の製造方法
US6440878B1 (en) * 2000-04-03 2002-08-27 Sharp Laboratories Of America, Inc. Method to enhance the adhesion of silicon nitride to low-k fluorinated amorphous carbon using a silicon carbide adhesion promoter layer
JP2002355977A (ja) * 2001-02-08 2002-12-10 Canon Inc 撥液部材、該撥液部材を用いたインクジェットヘッド、それらの製造方法及びインクの供給方法
US20040161946A1 (en) * 2002-06-24 2004-08-19 Hsin-Yi Tsai Method for fluorocarbon film depositing
US20040006249A1 (en) * 2002-07-08 2004-01-08 Showa Denko K.K., Nikon Corporation Fluorination treatment apparatus, process for producing fluorination treated substance, and fluorination treated substance
US7098149B2 (en) * 2003-03-04 2006-08-29 Air Products And Chemicals, Inc. Mechanical enhancement of dense and porous organosilicate materials by UV exposure
JP5009527B2 (ja) * 2003-08-15 2012-08-22 東京エレクトロン株式会社 半導体装置、半導体装置の製造方法及びプラズマcvd用ガス
US7041608B2 (en) * 2004-02-06 2006-05-09 Eastman Kodak Company Providing fluorocarbon layers on conductive electrodes in making electronic devices such as OLED devices
US7132374B2 (en) * 2004-08-17 2006-11-07 Cecilia Y. Mak Method for depositing porous films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092804A (ja) * 1996-09-19 1998-04-10 Sony Corp 多孔質誘電体膜の製造方法
US6524963B1 (en) * 1999-10-20 2003-02-25 Chartered Semiconductor Manufacturing Ltd. Method to improve etching of organic-based, low dielectric constant materials

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KENNETH K.S. ET AL: "Fluorcarbon dielectrics via hot filament chemical vapor deposition", JOURNAL OF FLUORINE CHEMISTRY, vol. 122, 2003, pages 93 - 96, XP004437031 *
SHIRAFUJI T. ET AL: "Plas enhanced chemical vapor deposition of thermally stabel and low dielectric constat fluorinated amorphous carbon films using low global warming potential gas C5F8", THIN SOLID FILMS, vol. 374, no. 2, 2000, pages 256 - 261, XP004237436 *
SHIRAFUJI T. ET AL: "plasma copoly merization of c6f6/c5f8 for application of low-deilectric-constant fulurinated amorphous arbon films and its gas phase diagnostics using in situ fourier taransfrom infrared spectroscopy", JAPANESE JOURNAL OF APPLIEDHYSICS, vol. 43, no. 5A, 15 May 2004 (2004-05-15), pages 2697 - 2703, XP002986400 *
TAKAHASHI K. ET AL: "Characterization of porosity and dielectric constant of fluorcarbon porous films synthesized by using plasma-enhanced chemical vapor deposition and solvent process", APPL.PHYS.LETT, vol. 82, no. 15, 14 April 2003 (2003-04-14), pages 2476 - 2478, XP012033768 *
TAKAHASHI K. ET AL: "Structure and pore formation of fluorocarbon films polymerized in plasmas", PROCEEDINGS INTERNATIONAL SYMPOSIUM ON DRY, vol. 1, 2001, pages 181 - 186, XP002986901 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005280A (ja) * 2007-02-19 2017-01-05 センブラント リミテッド プリント回路基板
JP2009158740A (ja) * 2007-12-27 2009-07-16 Tokyo Electron Ltd プラズマエッチング方法、プラズマエッチング装置、制御プログラム及びコンピュータ記憶媒体
JP2014103165A (ja) * 2012-11-16 2014-06-05 Tokyo Electron Ltd 半導体素子の製造方法、および半導体素子の製造装置

Also Published As

Publication number Publication date
KR20070033975A (ko) 2007-03-27
JPWO2006008841A1 (ja) 2008-05-01
US20070020951A1 (en) 2007-01-25
US7648922B2 (en) 2010-01-19
JP4737552B2 (ja) 2011-08-03
KR100971637B1 (ko) 2010-07-22
TW200605219A (en) 2006-02-01
KR20100003314A (ko) 2010-01-07

Similar Documents

Publication Publication Date Title
JP3930840B2 (ja) 低κ誘電性無機/有機ハイブリッドフィルム
TWI436419B (zh) A plasma etch method and a computer readable memory medium
JP2007165883A (ja) 有機シリコン酸化膜及び多層レジスト構造を形成するための方法
TW201448041A (zh) 氮化鈦之選擇性移除
KR20080002642A (ko) 밀도 및 스텝 커버리지가 개선된 비정질 탄소막 증착 방법
JP2011517848A (ja) 改善された密度および段差被覆性をもつ非晶質炭素膜を堆積させる方法
JP2006074049A (ja) フッ素ドープ低誘電率絶縁膜を形成する方法
JP2011044740A (ja) ドライエッチングガスおよびドライエッチング方法
KR102104240B1 (ko) 플라즈마 식각 방법
JPWO2014104290A1 (ja) ドライエッチング方法
JPH10242142A (ja) 半導体素子とその製造方法
WO2003031676A1 (en) Method for making carbon doped oxide film
JP2004235637A (ja) エッチストップ層の2段階形成方法
JP4015510B2 (ja) 半導体集積回路の多層配線用層間絶縁膜及びその製造方法
WO2006008841A1 (ja) フルオロカーボン膜及びその形成方法
KR102327416B1 (ko) 플라즈마 식각 방법
JP2007013173A (ja) 低誘電率及び低拡散係数を有するシリコン含有絶縁膜を形成する方法
KR102389081B1 (ko) PIPVE(perfluoroisopropyl vinyl ether)를 이용한 플라즈마 식각 방법
US6856020B2 (en) Semiconductor device and method for fabricating the same
KR100926722B1 (ko) 반도체 기판상의 실록산 중합체막 및 그 제조방법
TW200414288A (en) Method for cleaning a process chamber
KR102388963B1 (ko) 퍼플루오로프로필카비놀(Perfluoropropyl carbinol)을 이용한 플라즈마 식각 방법
KR102461689B1 (ko) 펜타플루오로프로판올(pentafluoropropanol)을 이용한 플라즈마 식각 방법
JP2005183729A (ja) 有機薄膜の形成方法
KR102328590B1 (ko) 플라즈마 식각 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007020951

Country of ref document: US

Ref document number: 10536774

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067023989

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006527779

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10536774

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067023989

Country of ref document: KR

122 Ep: pct application non-entry in european phase