WO2006008074A1 - Gentherapie solider tumore durch retrovirale, mit arenavirus-glykoprotein pseudotypisierte vektoren - Google Patents

Gentherapie solider tumore durch retrovirale, mit arenavirus-glykoprotein pseudotypisierte vektoren Download PDF

Info

Publication number
WO2006008074A1
WO2006008074A1 PCT/EP2005/007687 EP2005007687W WO2006008074A1 WO 2006008074 A1 WO2006008074 A1 WO 2006008074A1 EP 2005007687 W EP2005007687 W EP 2005007687W WO 2006008074 A1 WO2006008074 A1 WO 2006008074A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cells
lcmv
packaging cells
glycoprotein
Prior art date
Application number
PCT/EP2005/007687
Other languages
English (en)
French (fr)
Inventor
Dorothee Von Laer
Hrvoje Miletic
Yvonne Fischer
Original Assignee
Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus
Vision 7 Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Vision 7 Gmbh filed Critical Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus
Priority to US11/632,302 priority Critical patent/US20080124308A1/en
Priority to EP05759743A priority patent/EP1778295A1/de
Publication of WO2006008074A1 publication Critical patent/WO2006008074A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2026IL-4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/50Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15032Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15051Methods of production or purification of viral material
    • C12N2740/15052Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/10011Arenaviridae
    • C12N2760/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6072Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses

Definitions

  • the present invention relates to the use of packaging cells which produce retroviral virions pseudotyped with arenavirus glycoprotein for the preparation of a pharmaceutical composition for the gene therapy of solid tumors. Furthermore, the invention also relates to the use of the virions produced by these packaging cells for the preparation of a pharmaceutical composition for the gene therapy of solid tumors. Furthermore, packaging cells which are suitable for this use, as well as pharmaceutical compositions containing them, are the subject of the invention. Retroviral vectors are increasingly used in the prior art, for example for gene transfer in genetic or medical research or in gene therapy approaches (cf., for example, C. Baum et al., In Seminars in Oncology: Gene Therapy of Cancer: Translational approaches from preclinical studies to clinical implementations., eds.
  • the retroviral vectors are mostly derived from murine leukemia viruses (MLV) and contain all the sequences necessary for the integration of the LTR regions and the für-element responsible for the packaging.
  • the regions coding for the virus proteins are replaced by foreign genes and control sequences which one wishes to introduce into human cells.
  • the vectors are produced in so-called helper cell lines (packaging cell lines) which generally contain a copy of the coding regions of a complete retrovirus genome. It synthesizes all proteins necessary for replication and infection, but can not package its genomic viral RNA into particles because it has a defect in the ⁇ sequences.
  • the retroviral vectors are introduced into these helper cells and transcribed, the transgenic mRNA formed can interact through its own ⁇ -region with the structural proteins of the helper virus and be packaged into particles.
  • the recombinant virions which have no genetic information for virus components, adsorb onto their cells via their surface proteins, the capsids are taken up into the cytoplasm, and the transgenic RNA is overwritten into double-stranded DNA and integrated into the host cell genome.
  • the advantage of this system is the stable integration of the foreign genes, which are passed on to the daughter cells during divisions.
  • Retroviral vectors mediate a stable, coolinear integration (ie without recombinations and rearrangement of the coding sequences in the vector genome) and thereby a long-term Expression of the transgene.
  • long-term gene expression is only possible through the episomal herpesvirus vectors or the adeno-associated virus vectors (AAV vectors).
  • AAV vectors adeno-associated virus vectors
  • the packaging systems packaging cell lines
  • AAV vectors also have a low packaging capacity (about 5 kb for AAV versus about 10-12 kb for retroviral vectors).
  • the vector genome which contains retroviral cis elements, is formed by transcription.
  • This genomic vector transcript encodes the gene to be transferred but not retroviral proteins. However, it is incorporated into the packaging lines by means of the gag, pol and env gene products from the packaging cell into an infectious but non-replicable virion.
  • This virion can then be used as a retroviral vector for the transfer of the transgene integrated into the vector genome into the desired target cells, without there being any further multiplication of the vector. In other words, the viral vector can infect the target cells but can not multiply there.
  • retroviral packaging systems Two basic types of retroviral packaging systems are known in the art (JM Wilson, Clin Exp Immunol 107 Suppl 1 (1997) 31-32, C. Baum et al (1998), loc cit). On the one hand oncoretrovirale packaging systems are used. MLV packaging cell lines contain the retroviral genes gag, pol and env (FIG. 1), and the sequences required for packaging the retroviral RNA are deleted (C. Baum et al. (1998), loc. Cit.).
  • Lentivi are ren complex retroviruses that express a number of regulatory genes in addition to the gag, pol and env gene products. Examples of lentiviruses from which packaging systems have been derived are the "human immunodeficiency virus".
  • HIV Simian Immunodeficiency Virus
  • EIAV Equine Infectious Anemia Virus
  • FV Feline Immunodeficiency Virus
  • lentiviral vectors can also infect quiescent cells.
  • the vector genome can only be transported into the cell nucleus during cell division, ie when the nuclear membrane is dissolved.
  • packaging systems derived from lentiviruses have disadvantages which are expressed in a comparatively low titer and lower safety. Due to the complex genome structure, cis and trans elements in the genome can not be clearly separated from each other. In the packaging constructs which express lentiviral gag, pol and env genes, therefore, there are also important cis-regulatory sequences (eg parts of the Packaging signal), which must also be contained in the vector genome.
  • the vectors can be pseudotyped with the rhabdoviral G protein of vesicular choriomeningitis virus (VSV) (Emi et al., J. Virol. 65 (1991) 1202-1207; JC Burns et al., PNAS 90 (1993) 8033-8037; T. Friedmann et al., Nat. Med. 1 (1995) 275 Laer et al., J. Virol 72 (1998) 1424-1430; RA Weiss (1993), In: JA Levy (ed.), The Retroviridae, Plenum Press, New York).
  • VSV vesicular choriomeningitis virus
  • Such retroviral vectors pseudotyped with VSV G protein have already been used in the prior art for the therapy of solid tumors.
  • Use of these vectors for the gene transfer of the herpes simplex virus thymidine kinase (HSV-tk) with subsequent gancyclovir treatment in a rat glioma model showed a high efficiency of the transduction and a good therapeutic effect (Galipeau et al. , Cancer Res. 59 (1999) 2384-2394).
  • a major problem with pseudotyping with VSV-G is the toxicity of the VSV G protein.
  • the administration of virions alone is often insufficient to effectively treat a solid tumor to ensure sufficient transduction of all tumor cells.
  • the invention relates to packaging cells that produce retroviral arenavirus glycoprotein-pseudotyped virions and are useful in capable of infiltrating solid tumors, and the use of these packaging cells for the preparation of a pharmaceutical composition for the gene therapy of solid tumors.
  • a pharmaceutical composition comprising the packaging cells of the invention.
  • packaging cell lines hitherto used for gene therapy do not invade solid tumors, but are located only in the periphery of the tumor.
  • some primary cells ie non-immortalized cells after removal ex vivo or after culture which does not significantly contribute to cell differentiation
  • cell lines derived therefrom by cultivation under certain conditions, especially stem cells are able to infiltrate solid tumors.
  • the ability to infiltrate solid tumors is reflected in the fact that in a period of about 1 to 5 days, preferably up to 20 days after injection of the cells in a solid tumor or in the immediate vicinity of at least 50%, preferably at least 60%, most preferably at least 70 or at least 80% of the cells to be detected are located within the tumor. Preferably, at least 50%, most preferably at least 75% of the tumor mass is infiltrated. In detail, a suitable test is described in the examples section.
  • stem cells are understood as meaning both multipotent and pluripotent stem cells. These can be prepared by known methods. However, it is preferable to use adult stem cells as packaging cells in order to avoid ethical problems when using embryonic stem cells to avoid.
  • the stem cells that have already undergone fundamental differentiation include, for example, mesenchymal stem cells (MSC).
  • MSC mesenchymal stem cells
  • MSCs of various origins have the ability to infiltrate solid tumors, especially brain tumors.
  • a particular suitability for this purpose has also been demonstrated for multipotent adult progenitor cells (MAPC).
  • MSC mesenchymal stem cells
  • MSC multipotent adult progenitor cells
  • the generation of such cells is known in the art (eg Y. Jiang et al., Nature 418 (2992) 41-49).
  • the use of MSC and / or MAPC as packaging cells for the preparation of a pharmaceutical composition for the treatment of solid tumors is therefore a preferred embodiment of the invention.
  • T lymphocytes that carry a T cell receptor that specifically recognizes a tumor antigen can infiltrate solid tumors.
  • Tumor infiltrating lymphocytes can be e.g. after resection of a tumor isolate from this. It has already been attempted to exploit the migration properties of these cells therapeutically, by e.g. the immunostimulatory gene IL-2 was introduced into tumor infiltrating lymphocytes (TIL).
  • TIL tumor infiltrating lymphocytes
  • Such transgenic TILs have in some cases been able to mediate a regression of tumors (S.A. Rosenberg et al., N. Engl. J. of Med. 319 (1988) 1676-1680).
  • Tumor-infiltrating lymphocytes can also be used as packaging cells in the context of this invention.
  • packaging cells for gene therapy derived from the species to be treated.
  • the packaging cells are of human origin. It is possible to use autologous cells as packaging cells. Since the cells remain only temporarily in the tumor, it is also possible to take very good allogeneic cells. Out For safety reasons (formation of allogenic neoplasia from the packaging cells is unlikely) and for reasons of simplified production (finished medicinal product versus individual formulation) an allogeneic cell would be preferable. Some inflammation is even more beneficial.
  • a prerequisite that enables gene therapy of tumors with viral vectors is the specificity of the transduction of the tumor cells by the vectors.
  • Nonspecific transduction of non-tumor cells leads to side effects in the context of gene therapy, since gene therapy generally aims at the destruction of the transduced cells.
  • the infiltration of the packaging cells according to the invention into the tumor therefore reduces the probability that the virions produced by the packaging cells transduce cells outside the tumor.
  • the therapeutically applicable genes transmitted by the retroviral vector are under the expression control of a promoter that is specifically activated in tumor cells, in contrast to the use of constitutive promoters. In this case, however, it must be tested to what extent the tumor-specific promoter actually leads to expression in the tumor cells, while surrounding cells do not activate this promoter.
  • LCMV glycoprotein Another crucial factor for the specificity of transduction, however, is the tropism of the virions. This is essentially determined by the envelope protein of the virus. In previous experiments, a very broad spectrum of target cells was found for retroviral vectors pseudotyped with LCMV glycoprotein (W. Beyer et al., J. Virol 76 (2002) 1488-1495). Fibroblast cell lines, epithelial cell lines, glioma and neuroblastoma cell lines, myeloid progenitor cell lines lines, a hepatoma cell line and thymus cell line from the species human, hamster, dog and mouse could be transduced with high efficiency from the vectors pseudotyped with LCMV glycoprotein.
  • retroviral vectors pseudotyped with arenavirus glycoprotein in particular with LCMV glycoprotein, specifically transduce brain tumors in vivo.
  • the invention therefore relates to the use of retroviral virions pseudotyped with arenavirus glycoprotein for the preparation of a pharmaceutical composition for the gene therapy of solid tumors, in particular of brain tumors.
  • the use of virions is particularly recommended for smaller or well-vascularized tumors, since the amount of virions introduced in one or more applications may suffice to transduce a sufficient amount of tumor cells, with as complete as possible transduction of all tumor cells being preferred.
  • packaging cells which produce retroviral pseudotyped virions with arenavirus glycoprotein (in particular LCMV glycoprotein) for the preparation of the pharmaceutical composition for the treatment of solid tumors
  • the invention is therefore also the use of packaging cells producing retroviral virion pseudotyped with arenavirus glycoprotein (especially LCMV glycoprotein) for the preparation of a pharmaceutical composition for gene therapy of brain tumors.
  • packaging cells capable of infiltrating brain tumors is preferred for the preparation of a pharmaceutical composition for gene therapy of brain tumors.
  • the application of the packaging cells or the vector is either by stereotactic injection or by introduction into the interior or injection into the wall of the resection cavity after surgical removal of the tumor.
  • solid tumors are understood as meaning all tumors which are not of hematopoietic origin, for example carcinomas, e.g. Breast carcinoma, or sarcoma.
  • the tumor may be, for example, a glioma, neuroblastoma, oligodendroglioma or astrocytoma.
  • the tumor may be benign, but the tumor is preferably malignant, especially a malignant glioma.
  • Malignant gliomas are the most common type of brain tumor and most often lead to the death of patients (Y. Kew et al., Curr Opin., Neurol., 16 (2003) 665-670). Both solid primary tumors and individual tumor cells and metastases emanating therefrom are referred to as solid tumors in the context of this invention.
  • the packaging cells according to the invention produce retro ⁇ viral, with Arenavirus glycoprotein, in particular LCMV glyco ⁇ protein, pseudotyped virions.
  • these virions in vivo specifically infect the cells of a brain tumor.
  • the virions do not infect neurons in tumor therapy in vivo.
  • the virions in tumor therapy in vivo infect only a small proportion of astrocytes, preferably less than 15%, less than 10% or less than 5% of the surrounding astrocytes.
  • astrocytes preferably less than 15%, less than 10% or less than 5% of the surrounding astrocytes.
  • even single metastatic tumor cells were infected by the virions. This high specificity for the tumor cells makes the virions particularly suitable for the treatment of tumors, in particular of solid tumors and in particular of brain tumors.
  • an arenavirus glycoprotein e.g. from Lassa or LCMV. It is possible or even preferable to use a glycoprotein of other LCMV or Lassa strains instead of the wild-type glycoprotein.
  • a glycoprotein of other LCMV or Lassa strains instead of the wild-type glycoprotein.
  • slight variations in the gp nucleic acid sequence or in the amino acid sequence of the expressed envelope protein in various strains can considerably alter the cell tropism (host cell spectrum) (M. Matloubian et al., J. Virol. 67 (1993) 7340-7349 MN Teng, J. Virol 70 (1996) 8438-8443; King et al., J. Virol 64 (1990) 5611-5616). It is thus possible according to the invention a more targeted transduction of the desired cell type.
  • GP variants glycoprotein variants
  • Such variants are e.g. in M. Matloubian et al. , J. Virol 67 (1993) 7340-7349 or M.N. Teng et al. , J. Virol. 70 (1996) 8438-8443.
  • the tropism of variants with respect to a particular tumor type can be tested experimentally, as shown by way of example for glioblastomas.
  • Wild-type LCMV can also infect various cell types from different tissues and species. It has been shown that at least alpha-dystroglycan, which is a broad expression Borrow et al., J. Virol 66 (1992) 7270-7281; W. Cao et al., Science 282 (1998) 2079-2081). In the flexibility of tropism by mutations of the glycoprotein, therefore, an indication can be seen that the glycoproteins could bind to different, closely related receptors or a receptor with different post-translational modifications.
  • the envelope proteins of the arenaviruses are initially expressed as a precursor polypeptide, GP-C, which is cleaved post-translationally into GP-1 and GP-2 by a cellular protease.
  • GP-1 interacts with the receptor alpha-dystroglycan
  • GP-2 contains the peptide responsible for the fusion and the transmembrane domain.
  • the ⁇ rp genes of the more neurotropic LCMV strain Armstrong, L (ARM) (Villarete, L., et al., J. Virol. 68 (1994) 7490-7496) (for SEQ ID NO: 4 coding region, see Annex to the Sequence Listing, TO SEQ ID NO: 3).
  • the more hematotropic strain WE V. Romanowski et al., Virus Res. 3, (1985) 101-114) (SEQ ID NO: 1) is used.
  • LCMV-WE-HPIopt a variant of LCMV-WE-HPI
  • SEQ ID NO: 27 a variant of LCMV-WE-HPI
  • Such optimization of GP expression may improve pseudotyping, with the additional support of at least one other LCMV protein being dispensed with.
  • a preferred variant is the LCMV glycoprotein WE-HPI described in the context of the present invention.
  • the coding nucleic acid sequence gp (open reading frame (ORF) shown in SEQ ID NO: 25) contains mutations at positions 281, 329, 385, 397, 463, 521, 543, 631, 793 compared to the LCMV strain WE, 1039, 1363 and 1370 and thus has over the glycoprotein of LCMV strain WE amino acid substitutions at the positions 94, 110, 129, 133, 155, 174, 181, 211, 265, 347, 455 and 457.
  • ORF open reading frame
  • the invention therefore further relates to the use of a variant of the lymphocytic Chroriomeningitis virus containing the gene gp coding for the sequence shown in SEQ ID NO: 26 or a part thereof, wherein the gp gene preferably has the sequence shown in SEQ ID NO: 25 having shown sequence or a part thereof.
  • This virus variant as well as the last-mentioned nucleic and amino acid sequences are, e.g. starting from the LCMV variant WE, by methods well known to those skilled in the art (e.g., by introducing point mutations).
  • LCMV comprises, as already mentioned, in addition to the LCMV wild type, other LCMV strains, in particular LCMV-WE-HPI (see SEQ ID NO: 25) or the artificially produced codon-optimized and "splice-corrected" variant LCMV-WE-HPlopt (see SEQ ID NO 27).
  • a glycoprotein may be used wherein the nucleotide sequence of the glycoprotein gene is at least 80% homologous to the amino acid sequence of the glycoprotein of LCMV wild-type or LCMV-WE, LCMV-WE-HPI, LCMV-WE-HPI opt or Lassa virus (see SEQ ID NOS: 1, 25, 27, 28).
  • the homology is at least 90%, at least 95% or about 99%.
  • a particular embodiment of this invention relates to packaging cells for gene therapy of solid tumors comprising one or more expression cassettes for the retroviral genes, pol, and further comprising a gene encoding arenavirus glycoprotein, wherein the arenavirus glycoprotein is, in particular, Lassa virus glycoprotein.
  • glycoprotein expression vectors are generally suitable, which allow a high stable gene expression in eukaryotic cells.
  • choice of the expression vector is decisive for the packaging of the retroviral pseudotypes only insofar as it must ensure a high and stable level of expression, ie. an expression level that is high enough to allow the formation of pseudotypes and that is durable (stable) without the promoter shutting down.
  • CMV promoter ( ⁇ -globin-intron-2) - (gp) - (SV40 poly A-signal)
  • CMV Promoter Cytomegalovirus Promoter
  • betaglobin intron 2 (Jeffreys, A.J. et al., Cell 12 (1977) 1097-1108)
  • EF-lalpha promoter SEQ ID NO: 9 (S. Mizushima, Nucleic Acids Res. 18 (1990) 5322, T. Uetsuki, J. Biol. Chem. 264 (1989) 5791-5798).
  • G-CSF poly A signal (S. Mizushima, Nucleic Acids Res. 18 (1990) 5322, T. Uetsuki, J. Biol. Chem. 264 (1989) 5791-5798).
  • gp (LCMV): cf. e.g. SEQ ID NO: 1, 3, for SEQ ID NO: 4 kodie ⁇ render area (see also Appendix to the sequence protocol).
  • Exemplary sequences for such expression plasmids are deposited in the EMBL database under accession numbers AJ318512 (pHCMV-LCMV-GP (WE), AJ318513 (pHCMV-LCMV-GP (WE-HPI).
  • an episomal EBV expression vector (Epstein-Barr virus, cf F. Langle-Rouault et al., Virol 72 (7) (1998) 6181-5) (pCep4) from Invitrogen also shows high expression and therefore comes in the context of the present invention is preferably considered.
  • Retroviruses pseudotyped with the Arenavirus Lymphocytic Chorio- ninging Virus (LCMV) and suitable retroviral packaging systems are known in the prior art (EP 1 006 196, Miletic et al., J. Virol. 73 (1999) 6114-6116).
  • the LCMV glycoprotein pseudotyped vectors described therein are suitable for use in the preparation of a pharmaceutical composition for gene therapy of brain tumors.
  • packaging cells are generally used which are deficient for the retroviral envelope protein env, so that virions are only produced if a coat protein is provided elsewhere, eg by infection of the cells with the virus, eg with LCMV. or by trans ⁇ tion with a plasmid with an expression cassette for the corresponding coat protein, for example, the glycoprotein of the LCMV.
  • LCMV pseudotyped vectors show similar efficiency in production and stability.
  • LCMV glycoprotein can generate stable packaging cell lines expressing the glycoprotein constitutively, since this protein does not have a cytopathic effect.
  • the pseudotyped virions are also stable enough for a high concentration by ultracentrifugation, so that LCMV-pseudotyped retroviral vectors have basic prerequisites for the suitability for gene therapy.
  • the retrovirus pseudotyped with the arenavirus glycoprotein may be an onkoretrovirus or a lentivirus.
  • a commonly used onkoretrovirus is eg MLV (murine leukemia virus), in particular MoMLV (Moloney MLV).
  • a lentivirus in particular HIV (human immunodeficiency virus), SIV (simian immunodeficiency virus) is used.
  • deficiency virus), EIAV (equine infectious anemia virus) or FIV (feion immunodeficiency virus) as lentiviruses can also transduce quiescent cells.
  • the packaging cells comprise the retroviral genes (the sequences given here relate, for example, to MoMLV, the sequences of the genes of other retroviruses are also known in the prior art) gag (coding region for SEQ ID NO: 12, see Appendix to the Sequence Listing, SEQ ID NO: 11), pol (coding for SEQ ID NO: 13 range, see Appendix to the Sequenz ⁇ protocol, TO SEQ ID NO: 11) and optionally the retroviral gene env (SEQ ID NO: 14 coding range; Attachment to the Sequence Listing, SEQ ID NO: 11) and / or regulatory retroviral genes (in the case of lentiviral packaging systems, for example, the gene coding for the lentiviral Rev protein, which prevents splicing of the retroviral genomic RNA) and, furthermore, that for the glycoproteins GP- I and GP-2 of an arenavirus-encoding gene gp (LCMV: eg coding for SEQ ID NO: 4, see attachment to the sequence listing, TO SEQ ID NO
  • the packaging systems may also contain the gag and pol gene products of lentiviruses.
  • efficient production of infectious lentivirus vectors may be required, in addition to accessory lentiviral genes such as rev (coding region for SEQ ID NO: 21, see Appendix to the Sequence Listing, SEQ ID NO: 15) or tat (for SEQ ID NO 20 coding region, see attachment to the Sequence Listing, SEQ ID NO: 15) in HIV vectors.
  • retrovirus glycoproteins can be used for pseudotyping in all lentiviral packaging systems.
  • the packaging cells according to the invention preferably comprise one or more expression cassettes for the retroviral genes gag, pol, a gene coding for an arenavirus glycoprotein and also a retroviral gene transfer vector for packaging into the pseudotyped virions, the at least one therapeutically applicable transgene and / or marker gene. Further, the packaging cells may also comprise the gene tat, rev and / or env. Also included are nucleic acid sequences that have deviations (point mutations, deletions) in the sequences (derivatives). Preferably, the nucleic acids have a homology of at least 70%, at least 80%, preferably at least 90 or 95% to the original nucleic acid.
  • pseudo-type packaging systems comprising, in addition to the gp gene product (SEQ ID NO: 4), one or more additional genes of arenaviruses, e.g. LCMV, such as, for example, the nucleoprotein-encoding gene np (LCMV: coding region for SEQ ID NO: 5, see attachment to the sequence listing, TO SEQ ID NO: 3), the gene encoding a protein of unknown function, e.g. (LCMV: coding region for SEQ ID NO: 8, see attachment to the sequence listing, to SEQ ID NO: 6) and the coding for the RNA polymerase gene 1 (LCMV: SEQ ID NO: 7 coding region, see Appendix to the sequence listing, TO SEQ ID NO: 6).
  • LCMV the nucleoprotein-encoding gene np
  • LCMV coding region for SEQ ID NO: 8
  • coding for the RNA polymerase gene 1 LCMV: SEQ ID NO: 7 coding region, see Appendix to the sequence listing, TO SEQ ID
  • genes can, according to a particular embodiment of the invention, e.g. from the WE or Armstrong strain of the LCMV.
  • the complete sequences of the genes np, z and / or 1 can be used (SEQ ID NOs: s.o.) or parts thereof can be used.
  • the packaging cells according to the invention can therefore in addition to the gp gene of the LCMV at least one gene selected from the group consisting of the coding for the nucleoprotein gene np, the for the RNA polymerase encoding gene 1 and the coding for a protein of unknown function z gene of the LCMV.
  • the packaging cells according to the invention and the virions used in the context of the invention comprise at least one therapeutically applicable transgene and / or marker gene.
  • a therapeutically applicable marker gene is understood to mean a gene that can be used in tumor therapy to inhibit or kill the growth of tumor cells directly or indirectly.
  • the suicide gene herpes simplex thymidine kinase (HSV-tk) and / or cytosine deaminase can be used.
  • HSV-tk makes the transfected cells sensitive to gancyclovir.
  • a therapeutically applicable gene can have an immunostimulatory effect. Such an effect has e.g. IL-4 or Flt3L.
  • the marker gene is lacZ, an antibiotic resistance gene, such as e.g. neo, and / or a gene for a fluorescent protein, e.g. eGFP (enhanced green fluorescent protein).
  • the therapeutically applicable transgene and / or marker gene is expressed specifically in the cells of the tumor after the therapy.
  • the invention further relates to the use of the packaging cells or the virions for producing a pharmaceutical composition, which further comprises suitable excipients and / or excipients.
  • the invention also provides a pharmaceutical composition which is suitable for gene therapy of solid tumors and which comprises packaging cells which produce pseudotyped vectors with arenavirus glycoprotein and are infiltrating packaging cells and / or are pseudotyped with Lassa virus glycoprotein.
  • the pharmaceutical composition may further comprise suitable excipients and / or carriers.
  • the packaging cells or virions are formulated so that they can be introduced directly into the tumor, for example by injection into the tumor or its direct environment. In a brain tumor, intracranial injection is suitable. However, it is also possible to choose an indirect administration since the infiltrating packaging cells migrate specifically into the tumor and the virions have a high specificity for the tumor cells.
  • the packaging cells or virions can be administered intravenously (iv). Particularly preferred is an application after resection of a tumor in which the pharmaceutical composition is placed in the resection cavity or its immediate environment.
  • Example 1 Generation of packaging cells and virions
  • Rat multipotent adult progenitor cells (Fischer rats, Sprague-Dawley rats) are obtained by known methods (Y. Jiang et al., Nature 418 (2992) 41-49).
  • These cells are transfected with the expression vector pGag-Pol-IRES-bsr (S. Morita et al., Gene Therapy 7 (2000) 1063-1066) and selected with blasticidin for 10 days.
  • the resulting cell pool stably expresses MoMLVgagpol.
  • Stable LCMV-GP expression in this cell pool is achieved by transduction with the lentiviral self-inactivating (SIN) vector SEW / GPopt.
  • the lentiviral SIN vector SEW / GPopt was developed on the basis of the vector pHR'SIN.cPPT-SEW (C. Demaison et al., Hum. Gene Ther. 13 (2002) 803-813), in which the GFP gene is produced by the codon-optimized LCMV-WE-HPIopt was replaced.
  • lentiviral SEW / GPopt vectors 5 ⁇ g SEW / GPopt with 5 ⁇ g pRSVrev and 15 ⁇ g pMDLg / RRE (T.
  • LCMV glycoprotein was harvested 5 ⁇ 10 5 cells, pelleted and incubated with a monoclonal antibody against LCMV-GP1 (M. Bruns et al., Virology 130 (1983) 247-251). After 20 minutes of incubation on ice, the cells were washed three times with phosphate buffered saline (PBS). and incubated for a further 20 minutes in a 1:10 dilution of a PE-labeled goat anti-mouse antibody (Dako, Glostrup, Denmark). After three final washes in PBS, the cells were analyzed by FACScalibur instrument (Becton Dickinson, Heidelberg).
  • LCMV pseudotype Production of LCMV pseudotype.
  • a retroviral vector e.g. MP71EGFP (A. Schambach et al., Molecular Therapy 2 (2000) 435-445), transduced.
  • retroviral MP7IEGFP vector supernatants were produced by cotransfection of 293T cells with pGag-Pol-IRES-bsr (12 ⁇ g), MP71EGFP (7 ⁇ g) pHCMV-LCMV-GP (WE-HPI) (2 ⁇ g).
  • the expression plasmid pHCMV-LCMV-GP (WE-HPI) was determined on the basis of the known sequence of the WE-HPI strain (SEQ ID NO: 26; EMBL database accession no. AJ297484) and the pHCMV expression vector (V. Romanowski et al , Virus Res. 3 (1985) 101-114; J. -K.Yee, Methods Cell Biol. 43 (1994) 99-112) (WR Beyer et al., J. Virol. 75 (2001) 1061- 1064; EMBL database accession no. AJ318513).
  • the retroviral vector MP71EGFP was packaged into infectious particles using the GagPol and LCMV-GP proteins present in the stable-expressing cell pools.
  • the MAPC cells are suitable as packaging cells.
  • DsRed in a pMP71 vector framework was kindly provided by Norbert Dinauer.
  • 9L cells were seeded in 24-well (well) plates at a density of 5x10 4 cells / well. After 4 hours, retroviral supernatants were added to package the pMP71 DsRed vector. The plates were centrifuged for 1 hour at 1000xg. The transduction of the cells was repeated 16 hours after the first transduction.
  • the expression of DsRed was confirmed by fluorescence microscopy (Nicon Eclipse TE300, Dusseldorf, Germany).
  • DsRed expressing individual clones 100 transduced 9L cells were plated in 10 cm dishes and colonies were grown. DsRed-positive colonies were identified by fluorescence microscopy and transferred to separate wells of 24-well plates. The level of expression of isolated clones was determined by flow cytometry with a FACS calibur (Becton Dickinson, San Jose, California). For in vivo implantation, a clone containing 95% DsRed-positive cells was selected. Transient production of pseudotypes of anti-viral vectors.
  • Lentiviral vectors were produced by transient transfections of 293T cells. Sixteen hours prior to transfection, 5 x 10 6 cells were seeded in 10 cm diameter culture vessels in DMEM / FBS. One hour prior to transfection, the culture medium was changed to 10 ml DMEM / FBS / PS per vessel, with 25 ⁇ M chloroquine, 50 U penicillin / ml, 50 ⁇ g / ml streptomycin (PS, Gibco-Invitrogen). For the transfection of a culture vessel then 5 ug pRRL.
  • a mixture containing 450 ⁇ l of the plasmid in ddH 2 O and 50 ⁇ l of 2.5 M CaCl 2 was mixed well and then added dropwise to 500 ⁇ l of double HEPES-buffered saline (280 mM NaCl, 100 mM HEPES, 1.5 mM Na 2 HPO 4 , pH 7.1). After vortexing, the precipitate was added immediately to the cultures. The medium was changed after eight hours against 10 ml per vessel DMEM / FBS / PS with 20 mM HEPES. Vector-containing supernatants were collected 24 hours after transfection and every 8-16 hours thereafter for a period of 2 days.
  • the cell culture supernatants were pooled and filtered through a 0.22 ⁇ m pore size MILEX GP filter (Millipore, Bedford, Mass.).
  • MILEX GP filter Millipore, Bedford, Mass.
  • the vector supernatants were concentrated by ultracentrifugation at 19,500 rpm for 2 hours in an SW28 rotor (Beckman Instruments, California).
  • Vektortitration Lentiviral vector titers were obtained by transduction of different cell lines. Serial dilutions of cell supernatants were prepared and 0.5 ml of each dilution was added to 5 x 10 4 cells and seeded in a well of a 24-well plate four hours prior to transduction. The plates were at 1000 g for one hour centrifuged. Cells were assayed for GFP expression by flow cytometry 65 hours after transduction with a FACSCalibur (Becton Dickinson, San Jose, California). Titers were calculated from the dilutions that resulted in 0.5% to 20% eGFP positive cells, a range of the linear relation between vector usage and percentage of transduced cells, as multiple integrations of vector into the target cell are normally not expected.
  • Rat hippocampal neuron culture Primary hippocampal neuronal cell cultures were prepared as previously described (Neumann et al., Science 269 (1995) 549-552). Essentially, hippocampi were isolated from the entire brain of Wistar rats on day 16 of embryonic development, the meninges were removed. The trimmed tissue was dissociated by trituration with a sterile Pasteur pipette. 5 x 10 4 cells per ml were added to four-chamber slides pretreated with poly-L-ornithine (0.5 mg / ml, Sigma, St. Louis, MO) in 0.15 M boric acid.
  • poly-L-ornithine 0.5 mg / ml, Sigma, St. Louis, MO
  • Cells were cultured in chemically defined medium containing basal Eagle medium (BME, Invitrogen, Gaithersburg, MD) supplemented with B27 (2% v / v, Invitrogen) and glucose (1% v / v), 45%. , Sigma).
  • BME basal Eagle medium
  • B27 2% v / v, Invitrogen
  • glucose 1% v / v
  • E 1 Ur rat astrocytes enriched glial cell culture Wistar rats hippocampi were isolated on day 16 of embryonic development and dissociated into single cell suspensions as described for the neuronal hippocampal preparation. Cells were plated in 50 ml tissue culture flasks pretreated with poly-L-lysine (5 ⁇ g / ml, Sigma). The cells were cultured in serum containing medium with MEM-D-valine (Invitrogen), 10% heat-inactivated FCS (Pan System, Würzburg, Germany) and 1% L-glutamine.
  • Glial cells enriched for astrocytes were cultured for 10-20 days and then supplemented in BME with B27 supplement (2% (v / v), Invitrogen) and glucose (1% (v / v), 45%, Sigma) at a density of 2 x 10 4 cells / ml plated in Viercrocottmaschinerägern before transduction. 7
  • the relative numbers of the transduced (eGFP-positive) and untransduced (eGFP-negative) neuronal (beta-tubulin-III positive) and astrocytic (GFAP-positive) cells were determined by fluorescence microscopy by counting 10 camera fields for each pseudotype.
  • Intracranial 9L Ds Red tumors were established by injecting 1 x 10 5 9L Ds Red cells (in 5 ⁇ l PBS) into the right striatum using a Hamilton syringe in a stereotactic apparatus (Stoelting, IL). The coordinates used were 4 mm lateral to the bregma and 5 mm deep to the dural surface.
  • the rats were anesthetized and lentiviral vector pseudotypes with titers in the range of 2 x 10 6 to 1 x 10 7 transducing units (TU) / ml were obtained using the same stereotactic coordinates and at 1 mm distance
  • the sections were examined under a fluorescence microscope (Zeiss, Jena, Germany). The transduction efficiencies in infected tumor regions were estimated (0-10%, 10-50% and 50-100%). In addition, the sections were analyzed with Confocal Laser Scanning Microscopy (Leica, UK).
  • the transduction efficiency of both VSV G and LCMV GP pseudotyped lentiviral vectors in the rat glioma cell lines 9L and 9LDsred (used for tumor implantation) compared in vitro.
  • the human epithelial cell line TE671 which could be transduced by both VSV G and LCMV pseudotyped vectors, as shown in a previous study (Beyer et al., 2002, loc. Cit.), was used as an infection control. End point dilutions were carried out with 9L, 9LDsred and TE671 cells, and the percentage of transduced cells was measured by flow cytometric analysis.
  • both vectors transduced 9L cells, VSV G pseudotypes with a higher efficiency (Table 1).
  • the relative transduction compared to TE671 was 0.65 for LCMV and 1.91 for VSV G pseudotypes.
  • the transduction efficiencies for 9L and 9LDsred tumor cells did not differ significantly in vitro (Table 1).
  • Table 1 Vector titers of pseudotyped lentiviral vectors versus TE671 and glioma cell lines
  • VSV G pseudotypes transduce cultured neurons and astrocytes more efficiently than LCMV GP pseudotypes.
  • VSV G pseudotypes transduced astrocytes (85.5%) and neurons (62.5%) to a greater degree than G62 cells (56.9%).
  • rat astrocytes or neurons were transduced with 3 x 10 4 to 8 x 10 4 eGFP TU from LCMV GP or VSV G pseudotyped lentiviral vectors.
  • the cells were analyzed by fluorescence microscopy after staining with monoclonal anti-GFAP antibodies against astrocytes or anti-beta-tubulin III antibodies against neurons. The results represent the average cell counts and standard deviations from 10 randomly selected camera fields.
  • VSV 6 and LCMV GP pseudotypes show a different tropism to normal brain cells in vivo
  • LCMV GP and VSV G pseudotypes were injected into striatum and hippocampus of Fischer rats.
  • the relative proportion of transduced cell types was analyzed by immunofluorescence staining with cell-specific markers and confocal microscopy.
  • LCMV GP pseudotypes almost exclusively transduced astrocytes in both brain regions, as demonstrated by staining with antibodies to GFAP (Fig. 2A-C). This observation could be confirmed even in regions of high neuron density ( Figure 2D-F). Transduction of neurons was rare.
  • VSV G pseudotypes infected neurons very efficiently, and the estimated ratio of transduced neurons to astrocytes was 3: 1 in both brain regions ( Figure 2 GI 7 KM, NP).
  • LCMV-GP pseudotypes show a specific and efficient transduction of glial tumor cells in vivo
  • the tropism of the various pseudotypes was examined in a rat glioma model.
  • the in vivo growth characteristics of the gene-labeled OLDsred glioma cell line used for tumor implantation differed from those of the parental cell line 9L.
  • Two weeks after tumor cell implantation in Fischer rats were histologically examined for their size and size by light (9L) or fluorescence microscopy OLDsRed) on their ability to penetrate into the brain parenchyma.
  • 9L and 9LDsRed tumors did not differ in size and both infiltrated normal brain to the same extent. With the DsRed marker even single tumor cells could be detected, which migrated into the brain parenchyma.
  • LCMV GP pseudotypes specifically infected the glioma cells (Fig.l DF). Even single infiltrating tumor cells were transduced by this vector pseudotype (Fig. EI). Only a few reactive astrocytes in the area of the tumor bed were GFP positive, as demonstrated by staining with antibodies to GFAP. Neurons in infiltrating tumor regions were not infected. VSV G pseudotypes showed a different transduction pattern: solid tumor was transduced to a much lesser extent (0-10%) than with the LCMV GP pseudotypes (Fig. 1 KM).
  • Red fluorescent protein-expressing tumor cells (9L RFP) were stereotactically implanted into Fischer rats intracranially (protocol see Example 2). On day 5, cells of the cell line to be examined were implanted. These cells were transfected with green fluorescent protein (eGFP). On day 8, the brain was removed and histological examination performed. The following hematopoietic and non-hematopoietic cell lines were examined for their ability to migrate:
  • NSC Neural stem cells
  • MSC Mesincheal stem cells
  • + and - indicate the ability of the cell type to specifically infiltrate the tumor.
  • the investigated tumor cell lines are not able to infiltrate into the tumor. In some cases, some cells remain at the center of the tumor but become apoptotic. The majority of the cells are rings However, individual cells were also detectable in healthy brain tissue far away from the tumor.
  • the stem cell lines derived from primary cells are able to infiltrate the tumor. In MSC, however, part of the cells infiltrate the tumor only superficially.
  • Optimal infiltration is observed using MAPC.
  • MAPC For NSC, such specific infiltration has been observed earlier.
  • primary NSCs are capable of only a few divisions ex vivo and must first be genetically transformed (eg by SV40 large T) for the establishment of stable lines. Thus, NSCs can only be used after irradiation of the cells.
  • MAPC on the other hand, can perform over 80 divisions ex vivo without transforming.
  • the experiment shows the suitability of stem cells to be used as infiltrating packaging cells in the gene therapy of solid tumors.
  • Figure 1 Solid and infiltrating regions of rat glioma were efficiently transduced by LCMV GP pseudotyped lentiviral vectors.
  • Intracranial 9LDsRed gliomas were infected 7 days after tumor implantation with LCMV GP or VSV G pseudotyped lentiviral vectors expressing eGFP and analyzed on day 14 with confocal laser scanning microscopy.
  • FIG. 2 Neurons and astrocytes were transduced in vivo by VSV G pseudotyped lentiviral vectors.
  • rat brain was infected with LCMV GP or VSV G pseudotyped vectors expressing eGFP. Transduction of neurons and astrocytes was analyzed after staining with antibodies to NeuN and GFRP at day 14 by confocal laser scanning microscopy.
  • ORGANISM lymphocytic choriomeningitis virus virus ; ssRNA negative-strand viruses; Arenaviridae;
  • KEYWORDS envelope protein nucleoprotein
  • viruses ssRNA negative-strand viruses
  • Arenaviridae Arenaviridae
  • REFERENCE 1 bases 1 to 3376
  • TITLE virus-lymphocyte interactions IV. Molecular characterization of
  • KEYWORDS L protein RNA polymerase. SOURCE Lymphocytic choriomeningitis virus (strain Armstrong 53b) RNA.
  • viruses ssRNA negative-beach viruses, - Arenaviridae
  • lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase JOURNAL Virology 169 (2), 377-384 (1989) MEDLINE 89204909
  • Eukaryotae mitochondrial eukaryotes; Metazoa; Chordata; Vertebrata; Eutheria; Primates; catarrhines; Hominids; Homo.
  • REFERENCE 1 bases 1 to 4695
  • TITLE Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha
  • Retroviral taxonomy Retroviral taxonomy, protein structure, sequences, and genetic maps
  • Retroid viruses Retroviridae
  • lentivirus Primate lentivirus group.
  • REFERENCE 1 bases 1 to 9709
  • pNL4-3 is a recombinant (infectious) proviral clone that contains DNA from HIV isolates NY5 (5 'half) and BRU (3' half).
  • the site of recombination is the Eco RI site at positions 5743-5748.
  • the BRU, SC, SF2, MAL and ELI isolates are the length and sequence of the coding region.
  • the vpr coding region of these isolates is about 18 amino acid residues longer than the vp coding region of the IHb isolates.
  • this shift is due to a single base deletion (with respect to Illb's) at position 5770.
  • the sequence at this position is 'atttc' in HIVNL43 and 'attttc' in HIVHXB2.
  • the original BRU clone, sequenced by Wain-Hobson, et al. (Cell 40, 9-17 (1985)) and the BRU portion of the pNL4-3 recombinant clones are different clones from the same BRU isolates.
  • Two changes in the FEATURES produced changes in amino acid sequences.
  • the revision at position 2421 changes one amino acid residue from 'R' to 1 G 'in the pol coding region.
  • the revision at positions 8995-9000 changes three amino acid residues from 'AHT' to 1 VTP 'in the nef coding region.
  • FEATURES Location / Qualifiers source 1..9709
  • CDS join (5830..6044,8369..8414)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Verpackungszellen, die retrovirale, mit Arenavirus-Glykoprotein pseudotypisierte Virionen produzieren, zur Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie solider Tumore. Weiterhin betrifft die Erfindung auch die Verwendung der Virionen, die von diesen Verpackungszellen produziert werden, für die Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie solider Tumore. Ferner sind Verpackungszellen, die für diese Verwendung geeignet sind, sowie diese enthaltende pharmazeutische Zusammensetzungen Gegenstand der Erfindung.

Description

Gentherapie solider Tumore durch retrovirale, mit Arenavirus- Glykoprotein pseudotypisierte Vektoren
Die vorliegende Erfindung betrifft die Verwendung von Ver¬ packungszellen, die retrovirale, mit Arenavirus-Glykoprotein pseudotypisierte Virionen produzieren, zur Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie solider Tumore. Weiterhin betrifft die Erfindung auch die Verwendung der Virionen, die von diesen Verpackungszellen produziert werden, für die Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie solider Tumore. Ferner sind Verpackungszellen, die für diese Verwendung geeignet sind, sowie diese enthaltende pharmazeutische Zusammensetzungen Gegenstand der Erfindung. Retrovirale Vektoren finden im Stand der Technik zunehmend Ver¬ wendung, beispielsweise für den Gentransfer in der gentechni¬ schen bzw. medizinischen Forschung oder bei gentherapeutischen Ansätzen (vgl. z.B. C. Baum et al. in Seminars in Oncology: Gene Therapy of Cancer: Translational approaches from preclinical studies to clinical implementations. , eds. Gerson, & Lattime, Academic Press, 1998) . Die retroviralen Vektoren sind meist von murinen Leukämieviren (MLV) abgeleitet und enthalten alle für die Integration notwendigen Sequenzen der LTR-Regionen und das für die Verpackung verantwortliche ψ-Element. Die für die Virus¬ proteine kodierenden Bereiche sind durch Fremdgene und Kontroll- Sequenzen ersetzt, die man in menschliche Zellen einbringen möchte. Die Vektoren werden in sogenannten Helferzelllinien (Verpackungszelllinien) hergestellt, die im Allgemeinen eine Ko¬ pie der kodierenden Bereiche eines kompletten Retrovirusgenoms enthalten. Es synthetisiert alle für die Replikation und Infektion notwendigen Proteine, kann jedoch seine genomische Virus-RNA nicht in Partikel verpacken, da es einen Defekt in den ψ-Sequenzen aufweist. Werden die retroviralen Vektoren in diese Helferzellen eingebracht und transkribiert, kann die gebildete transgene mRNA durch die ihr eigene ψ-Region mit den Struktur¬ proteinen des Helfervirus interagieren und zu Partikeln verpackt werden. Die rekombinanten Virionen, die keinerlei Erbinformation für Viruskomponenten besitzen, adsorbieren über ihre Oberflä¬ chenproteine an Zellen, die Capside werden in das Cytoplasma aufgenommen, und die transgene RNA wird in doppelsträngige DNA überschrieben und ins Wirtszellgenom integriert. Der Vorteil dieses Systems ist die stabile Integration der Fremdgene, die bei Teilungen auf die Tochterzellen weitergegeben werden. Nach¬ teilig ist die Retroviren eigene unspezifische Integration an willkürlichen Stellen des Zellgenoms.
Retrovirale Vektoren vermitteln eine stabile, kolineare Integra¬ tion (d.h. ohne Rekombinationen und Rearrangierung der kodieren¬ den Sequenzen im Vektorgenom) und dadurch eine langfristige Expression des Transgens. Eine langfristige Genexpression ist sonst bislang nur noch durch die episomalen Herpesvirusvektoren oder die Adeno-associated virus-Vektoren (AAV-Vektoren) möglich. Für die letztgenannten Vektorsysteme sind die VerpackungsSysteme (Verpackungszelllinien) jedoch noch nicht optimiert. AAV- Vektoren weisen ferner eine geringe Verpackungskapazität (ca. 5 kb für AAV gegenüber ca. 10-12 kb für retrovirale Vektoren) auf.
In Verpackungszellen wird das Vektorgenom, das retrovirale cis- Elemente enthält, durch Transkription gebildet. Dieses genomische Vektortranskript kodiert für das zu transferierende Gen, aber nicht für retrovirale Proteine. Es wird jedoch in den Verpackungslinien mit Hilfe der gag-, pol- und env-Genprodukte aus der Verpackungszelle in ein infektiöses, aber nicht replikationsfähiges Virion eingebaut. Dieses Virion kann dann als retroviraler Vektor zum Transfer des in das Vektorgenom integrierten Transgens in die gewünschten Zielzellen eingesetzt werden, ohne daß es dort zur weiteren Vermehrung des Vektors kommt. Mit anderen Worten, der virale Vektor kann die Zielzellen infizieren, sich dort aber nicht weiter vermehren.
Die Entwicklung retroviraler VerpackungsSysteme ist bereits weit fortgeschritten, und Vektorüberstände, die frei von replika- tionskompetenten Viren sind, können in großen Mengen unter GMP- Bedingungen (Good manufacturing practice,- Richtlinie der Kommis¬ sion zur Festlegung der Grundsätze und Leitlinien der guten Her¬ stellungspraxis (GMP) für bestimmte Arzneimittel zur Anwendung beim Menschen (91/356/EWG) vom 13.6.91) hergestellt werden. Vektoren auf Basis des murinen Leukämievirus (MLV-Vektoren) wurden bereits mehrfach in klinischen Studien eingesetzt (P. Chu et al., J. Mol. Med. 76 (1998) 184-192) .
Im Stand der Technik sind zwei grundsätzliche Typen retroviraler VerpackungsSysteme bekannt (J.M. Wilson, Clin. Exp. Immunol 107 Suppl. 1 (1997) 31-32; C. Baum et al. (1998) , loc. cit.) . Zum einen werden oncoretrovirale Verpackungssysteme verwendet. MLV-Verpackungszelllinien enthalten die retroviralen Gene gag, pol und env (Abb. 1) , und die für die Verpackung der retrovi¬ ralen RNA erforderliche Sequenzen sind deletiert (C. Baum et al. (1998) , loc. cit. ) .
Der zweite Typ der bekannten VerpackungsSysteme leitet sich von den Lentiviren ab (R. Carroll et al. , J. Virol. 68 (1994) 6047-6051; P. Corbeau et al. , Proc. Natl. Acad. Sei. USA 93
(1996) 14070-14075; L. Naldini et al. , Science 272 (1996) 263-267; C. Parolin et al. , J. Virol. 68 (1994) 3888-3895; J. Reiser et al. , Proc. Natl. Acad. Sei. USA 93 (1996) 15266-15271; J.H. Richardson et al. , J. Gen. Virol. 76 (1995) 691-696; T. Shimada et al., J. Clin. Invest. 88 (1991) 1043-1047) . Lentivi¬ ren sind komplexe Retroviren, die zusätzlich zu den gag-, pol- und env-Genprodukten noch eine Reihe regulatorischer Gene exprimieren. Beispiele für Lentiviren, aus denen Verpackungs- Systeme abgeleitet wurden, sind das „Humane Immundefizienzvirus"
(HIV) , das „Simian Immundefizienzvirus" (SIV) , das „Equine infektiöse Anämievirus" (EIAV) und das „Feline Immundefizienz¬ virus" (FIV) . Der Aufbau der lentiviralen VerpackungsSysteme ähnelt prinzipiell demjenigen der MLV-Vektoren.
Vorteil der lentiviralen Vektoren ist, daß sie auch ruhende Zellen infizieren können. Bei MLV-Vektoren hingegen kann das Vektorgenom nur während der Zellteilung in den Zellkern trans¬ portiert werden, d.h. wenn die Kernmembran aufgelöst ist. Aller¬ dings weisen von Lentiviren abgeleitete Verpackungssysteme aufgrund des komplexen Aufbaus des lentiviralen Genoms Nachteile auf, die sich in einem vergleichsweise geringen Titer und einer geringeren Sicherheit äußern. Durch den komplexen Genomaufbau lassen sich eis- und trans-Elemente im Genom nicht klar von ein¬ ander trennen. In den Verpackungskonstrukten, die lentivirale gag-, pol- und env-Gene exprimieren, befinden sich daher auch wichtige cis-regulatorische Sequenzen (z.B. Teile des VerpackungsSignals) , die auch im Vektor-Genom enthalten sein müssen. Durch diese Homologien kann es zu Rekombinationen zwischen Vektorgenom und den Verpackungskonstrukten und damit zur Freisetzung replikationskompetenter Retroviren (z.B. einem HIV-Wildtypvirus, was hochgradig unerwünscht wäre) kommen, so daß diese Systeme von der Sicherheit her nicht mit MLV-Verpackungslinien vergleichbar sind. Nicht alle Lentiviren sind jedoch für Menschen bzw. die zu behandelnde Spezies infektiös, so dass sich durch die Auswahl eines geeigneten, für die Spezies nicht infektiösen Retrovirus die Sicherheit des Systems erhöhen läßt, da in diesem Fall eine Rekombination unwahrscheinlich ist.
Um das Problem zu lösen, dass retrovirale Vektoren meist nur in unzureichenden Titern produziert werden und durch die Instabilität ihrer Hüllproteine nicht weiter aufkonzentriert oder ohne Verlust der Infektiosität aufgereinigt werden können, können die Vektoren mit dem rhabdoviralen G-Protein von Vesikulärem Choriomeningitisvirus (VSV) pseudotypisiert werden (Emi et al. , J. Virol. 65 (1991) 1202-1207; J. C. Burns et al. , PNAS 90 (1993) 8033-8037; T. Friedmann et al. , Nat. Med. 1 (1995) 275-277; D. von Laer et al. , J. Virol. 72 (1998) 1424- 1430; R.A. Weiss (1993), In: J.A. Levy (ed.), The Retroviridae, Plenum Press, New York) .
Derartige, mit VSV G-Protein pseudotypisierte retrovirale Vekto¬ ren wurden im Stand der Technik bereits zur Therapie solider Tumore eingesetzt. Verwendung dieser Vektoren zum Gentransfer der Herpes simplex-Virus Thymidinkinase (HSV-tk) mit anschlies- sender Gancyclovir-Behandlung in einem Ratten-Gliom-Modell zeig¬ te eine hohe Effizienz der Transduktion und eine gute therapeu¬ tische Wirkung (Galipeau et al. , Cancer Res. 59 (1999) 2384- 2394) . Ein Hauptproblem bei der Pseudotypisierung mit VSV-G ist jedoch die Toxizität des VSV G-Proteins. Zusätzlich reicht für die effektive Therapie eines soliden Tumors die Gabe von Virionen alleine oft nicht aus, um eine ausreichende Transduktion aller Tumorzellen zu gewährleisten. Faktoren, die hier eine Rolle spielen, sind vor allem die Größe des Tumors, aber auch seine Vaskularisierung. Daher wurden im Stand der Technik bereits Versuche unternommen, in denen anstelle der Virionen die diese produzierenden Verpackungszellen verabreicht wurden. Dazu wurden klassische Verpackungszelllinien wie Fibroblasten, die amphotrope MLV- Vektoren freisetzen, verwendet. Diese Versuche ergaben eine verbesserte, jedoch noch nicht ausreichende, therapeutisch wirksame Transduktion des Tumorgewebes (z.B. Shand N, Weber F, Mariani L, Bernstein M, Gianella-Borradori A, Long Z, Sorensen AG, Barbier N., Hum Gene Ther. 1999 Sep 20;10 (14) :2325-35. A phase 1-2 clinical trial of gene therapy for recurrent glio- blastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir, GLI328 European-Canadian Study Group) . Insgesamt ist der Mangel an klinischem Erfolg der Gentherapie von Gliomen mit retroviralen Vektoren nicht auf die Ineffektivität der therapeutischen Ge¬ ne, sondern auf die mangelnde Gentransfereffizienz zurück¬ zuführen.
Somit stellt sich für den Fachmann die Aufgabe, zur Herstellung einer gentherapeutischen pharmazeutischen Zusammensetzung, vor allem zur Gentherapie solider Tumore, geeignete Systeme zur Verfügung zu stellen, die die Nachteile der im Stand der Technik üblichen Systeme vermeiden und geeignet sind, effektiv und trotzdem gezielt Tumorzellen zu transduzieren.
Diese Aufgabe wird von dem Gegenstand der nachfolgenden Patentansprüche gelöst. Insbesondere betrifft die Erfindung Verpackungszellen, die retrovirale, mit Arenavirus- Glykoprotein pseudotypisierte Virionen produzieren und die in der Lage sind, solide Tumore zu infiltrieren, sowie die Verwendung dieser Verpackungszellen zur Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie solider Tumore. Es wird ferner eine pharmazeutische Zusammensetzung bereitgestellt, die die erfindungsgemäßen Verpackungszellen umfasst .
Es konnte nunmehr festgestellt werden, dass bisher für die Gentherapie verwendete Verpackungszelllinien nicht in solide Tumoren eindringen, sondern sich nur in der Peripherie des Tumors befinden. Im Gegensatz dazu wurde erfindungsgemäß überraschenderweise festgestellt, dass einige primäre Zellen (d.h. nicht immortalisierte Zellen nach der Entnahme ex vivo oder nach einer Kultivierung, die nicht wesentlich zur Differenzierung der Zellen beiträgt) oder davon durch Kultivierung unter bestimmten Bedingungen abgeleitete Zelllinien, vor allem Stammzellen, in der Lage sind, solide Tumore zu infiltrieren.
Die Fähigkeit, solide Tumore zu infiltrieren, spiegelt sich darin wieder, dass sich in einem Zeitraum von ca. 1 bis 5 Tagen, bevorzugt auch bis zu 20 Tage nach Injektion der Zellen in einen soliden Tumor oder in dessen unmittelbare Umgebung mindestens 50 %, bevorzugt mindestens 60 %, am meisten bevorzugt mindestens 70 oder mindestens 80 % der nachzuweisenden Zellen innerhalb des Tumors befinden. Dabei sind bevorzugt mindestens 50 %, am meisten bevorzugt mindestens 75 % der Tumormasse infiltriert. Im Detail ist ein geeigneter Test im Beispielteil beschrieben.
Besonders positive Migrationseigenschaften weisen Stammzellen auf. Unter Stammzellen werden im Rahmen dieser Erfindung sowohl multipotente als auch pluripotente Stammzellen verstan¬ den. Diese können nach bekannten Verfahren hergestellt werden. Bevorzugt ist jedoch die Verwendung adulter Stammzellen als Verpackungszellen, um ethische Probleme bei Verwendung embryo- naler Stammzellen zu vermeiden. Zu den Stammzellen, die bereits eine grundlegende Differenzierung durchlaufen haben, zählen beispielsweise mesenchymale Stammzellen (MSC) . Experimente zeigen, dass MSC verschiedener Herkunft die Fähigkeit besitzen, solide Tumore, insbesondere Hirntumore, zu infiltrieren. Eine besondere Eignung zu diesem Zweck wurde auch für multipotente adulte Progenitorzellen (MAPC) gezeigt. Die Generierung derartiger Zellen ist im Stand der Technik bekannt (z.B. Y. Jiang et al. , Nature 418 (2992)41-49) . Die Verwendung von MSC und/oder MAPC als Verpackungszellen für die Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung solider Tumore ist daher eine bevorzugte Ausführungsform der Erfindung.
Im Stand der Technik ist weiterhin bekannt, dass z.B. T- Lymphozyten, die einen T-Zell-Rezeptor tragen, der spezifisch ein Tumorantigen erkennt, solide Tumore infiltrieren können. Tumor-infiltrierende Lymphozyten lassen sich z.B. nach der Resektion eines Tumors aus diesem isolieren. Es wurde bereits versucht, die Migrationseigenschaften dieser Zellen therapeu¬ tisch auszunutzen, indem z.B. das immunstimulierende Gen IL-2 in Tumor-infiltrierende Lymphocyten (TIL) eingebracht wurde. Derartige transgene TIL konnten in einigen Fällen eine Regres¬ sion von Tumoren (S.A. Rosenberg et al., N. Engl. J. of Med. 319 (1988) 1676-1680) vermitteln. Auch Tumor-infiltrierende Lymphozyten können im Rahmen dieser Erfindung als Verpackungszellen eingesetzt werden.
Bevorzugt werden, um xenogene Immunreaktionen gegen die Verpackungszellen zu minimieren, zur Gentherapie Verpackungs¬ zellen verwendet, die aus der zu behandelnden Spezies stammen. Vorzugsweise sind die Verpackungszellen humanen Ursprungs. Es ist möglich, autologe Zellen als Verpackungszellen zu verwenden. Da die Zellen nur vorübergehend im Tumor verbleiben, kann man auch sehr gut allogene Zellen nehmen. Aus Sicherheitsgründen (Entstehung einer allogenen Neoplasie aus den Verpackungszellen ist unwahrscheinlich) und Gründen der vereinfachten Herstellung (Fertigarzneimittel versus Individualrezeptur) wäre eine allogene Zelle zu bevorzugen. Etwas Inflammation ist sogar eher förderlich.
Eine Voraussetzung, die eine Gentherapie von Tumoren mit viralen Vektoren ermöglicht, ist die Spezifität der Trans¬ duktion der Tumorzellen durch die Vektoren. Eine unspezifische Transduktion von nicht-Tumorzellen führt im Rahmen der Gentherapie zu Nebenwirkungen, da die Gentherapie im allgemeinen auf die Zerstörung der transduzierten Zellen abzielt. Die Infiltration der erfindungsgemäßen Verpackungs¬ zellen in den Tumor verringert daher die Wahrscheinlichkeit, dass die von den Verpackungszellen produzierten Virionen Zellen ausserhalb des Tumors transduzieren.
Eine erhöhte Spezifität und eine Verringerung von Nebenwirkungen läßt sich weiterhin dadurch erreichen, dass die durch den retroviralen Vektor übertragenen therapeutisch anwendbaren Gene unter der Expressionskontrolle eines Promotors stehen, der spezifisch in Tumorzellen aktiviert wird, im Gegensatz zur Verwendung konstitutiver Promotoren. In diesem Fall muss jedoch ausgetestet werden, in wie weit der Tumor-spezifische Promotor tatsächlich zu einer Expression in den Tumorzellen führt, während umliegende Zellen diesen Promotor nicht aktivieren.
Eine weiterer entscheidender Faktor für die Spezifität der Transduktion ist jedoch der Tropismus der Virionen. Dieser wird im wesentlichen durch das Hüllprotein des Virus bestimmt. In bisherigen Versuchen wurde ein sehr breites Spektrum an Zielzellen für retrovirale, mit LCMV-Glykoprotein pseudotypi- sierte Vektoren gefunden (W. Beyer et al. , J. Virol 76 (2002) 1488-1495) . Fibroblastenzelllinien, Epitheliale Zelllinien, Glioma- und Neuroblastomazelllinien, myeloide Progenitorzell- linien, eine Hepatomazelllinie und Thymuszelllinie aus den Spezies Mensch, Hamster, Hund und Maus ließen sich mit hoher Effizienz von den mit LCMV Glykoprotein pseudotypisierten Vektoren transduzieren. Auch primäre Glioblastomzellen und Oligodendrogliomzellen konnten erfolgreich transduziert werden. Verschiedene Autoren haben bereits die in vivo Trans- duktionsmuster retroviraler Vektoren, die mit verschiedenen Glykoproteinen, u.a. mit LCMV-Glykoprotein, pseudotypisiert waren, in Gehirn untersucht. Es wurde, wenn auch mit geringerer Effezienz als mit andern Vektoren, z.B. VSV G- Protein pseudotypisierten Vektoren, eine Transduktion verschiedener Zellen des Striatum, Thalamus und Corpus callosum gefunden (D. Watson et al . , Mol. Ther. 5 (2002) 528- 537; L. -F. Wong et al. , Mol. Ther. 9 (2004) 101-111) .
Überraschenderweise konnte nun gezeigt werden, dass retro- virale, mit Arenavirus-Glykoprotein, insbesondere mit LCMV- Glykoprotein pseudotypisierte Vektoren in vivo spezifisch Hirntumore transduzieren. Gegenstand der Erfindung ist daher die Verwendung retroviraler, mit Arenavirus-Glykoprotein pseudotypisierter Virionen zur Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie solider Tumore, insbesondere von Hirntumoren. Die Verwendung von Virionen ist insbesondere bei kleineren oder gut vaskulari- sierten Tumoren empfehlenswert, da hier die bei einer oder mehreren Applikationen eingebrachte Menge an Virionen zur Transduktion einer ausreichenden Menge an Tumorzellen aus¬ reichen kann, wobei eine möglichst vollständige Transduktion aller Tumorzellen bevorzugt ist. Um die Anzahl der Applikationen zu begrenzen, ist es, vor allem bei größeren Tumoren, empfehlenswert, zur Herstellung der pharmazeutischen Zusammensetzung zur Behandlung solider Tumore Verpackungs¬ zellen zu verwenden, die retrovirale, mit Arenavirus- Glykoprotein (insbesondere LCMV-Glykoprotein) pseudotypisierte Virionen produzieren. Gegenstand der Erfindung ist daher auch die Verwendung von Verpackungszellen, die retrovirale, mit Arenavirus-Glykoprotein (insbesondere LCMV-Glykoprotein) pseudotypisierte Virionen produzieren, zur Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie von Hirn¬ tumoren. Insbesondere ist die Verwendung von Verpackungs- zellen, die in der Lage sind, Hirntumore zu infiltrieren, zur Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie von Hirntumoren bevorzugt. Die Applikation der Verpackungszellen oder des Vektors erfolgt entweder durch stereotaktische Injektion oder durch Einbringen in den Innenraum oder Injektion in die Wand der Resektionshöhle nach operativer Entfernung des Tumors .
Unter soliden Tumoren werden im Rahmen dieser Erfindung alle Tumore verstanden, die nicht hämatopoetischen Ursprungs sind, also beispielsweise Karzinome, z.B. Mamma-Karzinom, oder Sar¬ kome. Der Tumor kann beispielsweise ein Gliom, Neuroblastom, Oligodendrogliom oder Astrocytom sein. Der Tumor kann gutartig sein, bevorzugt ist der Tumor jedoch maligne, insbesondere ein malignes Gliom. Maligne Gliome stellen den am häufigsten vorkommenden Hirntumor dar und führen besonders oft zum Tod der Patienten (Y. Kew et al. , Curr. Opin. Neurol. 16 (2003) 665-670) . Sowohl solide Primärtumore als auch einzelne daraus auswandernde Tumorzellen und Metastasen werden im Rahmen dieser Erfindung als solide Tumore bezeichnet.
Die erfindungsgemäßen Verpackungszellen produzieren retro¬ virale, mit Arenavirus-Glykoprotein, insbesondere LCMV-Glyko¬ protein, pseudotypisierte Virionen.
Experimente haben gezeigt, dass diese Virionen in vivo spezifisch die Zellen eines Hirntumors infizieren. Insbe¬ sondere infizieren die Virionen bei der Tumortherapie in vivo keine Neuronen. Darunter wird im Rahmen dieser Erfindung verstanden, dass bei Injektion in einen Hirntumor weniger als 5 %, bevorzugt weniger als 2 %, fast keine oder keine der umliegenden Neuronen infiziert werden. Weiterhin infizieren die Virionen bei der Tumortherapie in vivo nur zu einem geringen Teil Astrozyten, bevorzugt weniger als 15 %, weniger als 10 % oder weniger als 5 % der umliegenden Astrocyten. Hingegen wurden sogar einzelne metastasierende Tumorzellen von den Virionen infiziert. Diese hohe Spezifität für die Tumorzellen macht die Virionen besonders zur Behandlung von Tumoren, vor allem von soliden Tumoren und insbesondere von Hirntumoren, geeignet.
Im Rahmen der vorliegenden Erfindung wird zur Pseudotypisierung ein Arenavirus-Glykoprotein, z.B. von Lassa oder LCMV, einge¬ setzt. Dabei ist es möglich oder kann sogar bevorzugt sein, statt des Wildtyp-Glykoproteins ein Glykoprotein anderer LCMV- oder Lassa-Stämme einzusetzen. So können leichte Variationen in der gp-Nukleinsäuresequenz bzw. in der Aminosäure-Sequenz des exprimierten Hüllproteins in verschiedenen Stämmen den ZeIl- tropismus (Wirtszellspektrum) erheblich verändern (M. Matloubian et al., J. Virol. 67 (1993) 7340-7349; M.N. Teng, J. Virol. 70 (1996) 8438-8443; King et al. , J.Virol 64 (1990) 5611-5616) . Es wird damit erfindungsgemäß eine gezieltere Transduktion des gewünschten Zelltyps ermöglicht. Gemäß einer bevorzugten Aus¬ führungsform der Erfindung kann es daher von Vorteil sein, VerpackungsSysteme mit verschiedenen Glykoprotein-Varianten (GP-Varianten) für unterschiedliche Anwendungen, wie die Therapie unterschiedlicher solider Tumore, herzustellen. Der¬ artige Varianten sind z.B. in M. Matloubian et al. , J. Virol 67 (1993) 7340-7349 oder M.N. Teng et al. , J. Virol. 70 (1996) 8438-8443 offenbart. Der Tropismus von Varianten bezüglich eines bestimmten Tumortyps lässt sich experimentell, wie beispielhaft für Glioblastome gezeigt, testen.
Auch Wildtyp-LCMV kann verschiedene Zelltypen aus unterschied¬ lichen Geweben und Spezies infizieren. Es wurde gezeigt, dass zumindest alpha-Dystroglykan, das eine breite Expression zeigt, ein Rezeptor für LCMV sein kann (P. Borrow et al . , J. Virol. 66 (1992) 7270-7281; W. Cao et al. , Science 282 (1998) 2079-2081) . In der Flexibilität des Tropismus durch Mutationen des Glykoproteins kann daher ein Hinweis gesehen werden, dass die Glykoproteine an verschiedene, eng verwandte Rezeptoren oder einen Rezeptor mit unterschiedlichen post-translationalen Modifikationen binden könnten.
Die Hüllproteine der Arenaviren werden zunächst als Precursor- Polypeptid exprimiert, GP-C, das durch eine zelluläre Protease post-translational in GP-I und GP-2 gespalten wird. Dabei interagiert GP-I mit dem Rezeptor alpha-Dystroglykan, während GP-2 das für die Fusion verantwortliche Peptid und die Trans¬ membran-Domäne enthält.
Im Rahmen der vorliegenden Erfindung kann von den ςrp-Genen des eher neurotropen LCMV-Stammes Armstrong, L(ARM) (L. Villarete et al., J. Virol. 68 (1994) 7490-7496) (für SEQ ID NO: 4 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 3) ausgegangen werden. Vorzugsweise wird der eher hämato- tropen Stammes WE (V. Romanowski et al. , Virus Res. 3, (1985) 101-114) (SEQ ID NO: 1) verwendet. Besonders bevorzugt ist die Pseudotypisierung mit einer Variante von LCMV-WE-HPI (LCMV-WE- HPIopt, siehe SEQ ID NO: 27) , in der die Benutzung der Kodons optimiert wurde und "kryptische Spleiß-Regionen" entfernt wurden, um eine verbesserte Expression zu erzielen.
Durch eine solche Optimierung der GP-Expression kann die Pseudotypisierung verbessert werden, wobei auf eine zusätzliche Unterstützung durch mindestens ein weiteres LCMV-Protein verzichtet werden kann.
Eine bevorzugte Variante ist das im Rahmen der vorliegenden Erfindung beschriebene LCMV Glykoprotein WE-HPI. Die kodierende Nukleinsäuresequenz gp (Open reading frame (ORF) in SEQ ID NO: 25 dargestellt) enthält gegenüber dem LCMV-Stamm WE Mutationen an den Positionen 281, 329, 385, 397, 463, 521, 543, 631, 793, 1039, 1363 und 1370 und besitzt somit gegenüber dem Glykoprotein vom LCMV-Stamm WE Aminosäureaustäusche an den Positionen 94, 110, 129, 133, 155, 174, 181, 211, 265, 347, 455 und 457. Diese GP-Variante mit der in SEQ ID NO: 26 gezeigten Aminosäuresequenz weist den Vorteil auf, daß sie auch ohne zusätzliche LCMV-HiIfs- proteine stabil ist und gegenüber dem Stamm WE eine verbesserte Pseudotypisierung bewirkt. Es wurde gezeigt, dass nur eine der Mutationen, die die zunächst veröffentlichte Sequenz des LCMV- Glykoproteins LCMV-WE gegenüber der neu klonierten Sequenz LCMV-WE-HPI enthält, eine Leucin => Prolin-Mutation an Aminosäure 110, die Prozessierung des exprimierten Proteins und damit die Expression auf der Oberfläche von Zellen beein¬ trächtigte (W. Beyer et al . , J. Virol. 75 (2001) 1061-1064) . Varianten mit dieser Mutation sollten daher bevorzugt nicht für die Pseudotypisierung verwendet werden.
Die Erfindung betrifft daher ferner die Verwendung einer Variante des Lymphozytären Chroriomeningitis Virus, die das Gen gp enthält, das für die in SEQ ID NO: 26 dargestellte Sequenz oder einen Teil derselben kodiert, wobei das gp-Gen vorzugsweise die in SEQ ID NO: 25 dargestellte Sequenz oder einen Teil derselben aufweist. Ferner ist erfindungsgemäß ein Protein mit der in SEQ ID NO: 26 gezeigten Aminosäuresequenz oder einem Teil derselben eingeschlossen sowie eine für dieses Protein kodieren¬ de Nukleinsäuresequenz, vorzugsweise die in SEQ ID NO: 25 dargestellte Sequenz oder ein Teil derselben. Diese Virus- Variante sowie die letztgenannten Nuklein- und Aminosäure¬ sequenzen sind, z.B. ausgehend von der LCMV-Variante WE, durch dem Fachmann allgemein bekannte Verfahren (z.B. durch Einführung von Punktmutationen) erhältlich.
„LCMV" umfaßt erfindungsgemäß, wie bereits erwähnt, also neben dem LCMV Wildtyp auch andere LCMV-Stämme, insbesondere LCMV-WE- HPI (siehe SEQ ID NO: 25) oder die künstlich hergestellte kodonoptimierte und „spleißbereinigte" Variante LCMV-WE-HPlopt (siehe SEQ ID NO 27) . Insbesondere kann im Rahmen der Erfindung für die Pseudotypisierung ein Glykoprotein verwendet werden, bei dem die Nukleotidsequenz des Glykoproteingens für ein Glykoprotein mit mindestens 80 % Homologie zu der Aminosäure- sequenz des Glykoproteins von LCMV-Wildtyp oder von LCMV-WE, LCMV-WE-HPI, LCMV-WE-HPIopt oder Lassa-Virus kodiert (siehe SEQ ID NOS: 1, 25, 27, 28) . Bevorzugt beträgt die Homologie mindestens 90 %, mindestens 95 % oder etwa 99 %.
Eine besondere Ausführungsform dieser Erfindung betrifft Verpackungszellen zur Gentherapie solider Tumore, die ein oder mehrere Expressionskassetten für die retroviralen Gene gag, pol und ferner ein für Arenavirus-Glykoprotein kodierendes Gen umfassen, wobei das Arenavirus-Glykoprotein insbesondere Lassa-Virus Glykoprotein ist.
Zur Expression des Glykoproteins eignen sich allgemein Expressionsvektoren, die eine hohe stabile Genexpression in eukaryontisehen Zellen ermöglichen. Die Wahl des Expressionsvek¬ tors ist für die Verpackung der retroviralen Pseudotypen jedoch nur insoweit entscheidend, als er ein hohes und stabiles Expressionsniveau gewährleisten muß, d.h. ein Expressionsniveau, das hoch genug ist, um die Bildung von Pseudotypen zu ermöglichen, und das dauerhaft (stabil) ist, ohne daß es zum Abschalten des Promoters kommt.
Erfindungsgemäß besonders bevorzugt sind die folgenden beiden Expressionskassetten(S. Mizushima, Nucleic Acids Res. 18 (1990) 5322, T. Uetsuki, J. Biol. Chem. 264 (1989) 5791-5798) :
(CMV-Promoter) -- (ß-Globin-Intron-2) -- (gp) -- (SV40 poly A-Signal)
und
(EF-lalpha-Promoter) -- {gp) -- (poly-A-Signal des G-CSF-Genes) .
Die Sequenzen für die Bestandteile der Expressionskassetten sind im Sequenzprotokoll dargestellt oder allgemein bekannt: Cytomegalovirus-Promoter (CMV-Promoter) : (M. Boshart et al. , Cell 41 (1958) 521-530; F. Langle-Rouault et al. , Virol. 72(7) 6181-5 (1998))
betaglobin-Intron-2: (Jeffreys, A.J. et al., Cell 12 (1977) 1097-1108)
SV40 poly A-Signal: (M. Boshart et al., Cell 41 (1958) 521-530; F. Langle-Rouault et al. , Virol. 72(7) 6181-5 (1998))
EF-lalpha-Promoter: SEQ ID NO: 9 (S. Mizushima, Nucleic Acids Res. 18 (1990) 5322, T. Uetsuki, J. Biol. Chem. 264 (1989) 5791-5798) .
G-CSF poly A-Signal: (S. Mizushima, Nucleic Acids Res. 18 (1990) 5322, T. Uetsuki, J. Biol. Chem. 264 (1989) 5791-5798) .
gp (LCMV) : vgl. z.B. SEQ ID NO: 1, 3, für SEQ ID NO: 4 kodie¬ render Bereich (siehe auch Anlage zum Sequenz- Protokoll) .
gp (Lassa) : vgl. SEQ ID NO 28
Beispielhafte Sequenzen für derartige Expressionsplasmide sind in der EMBL Datenbank unter den Zugangsnummern AJ318512 (pHCMV- LCMV-GP(WE), AJ318513 (pHCMV-LCMV-GP(WE-HPI) hinterlegt.
Änderungen in den jeweiligen Nukleinsäuresequenzen sind möglich, solange die Funktionalität der Expressionskassetten erhalten bleibt, d.h. deren erfindungsgemäße Verwendung die Pseudo- typisierung der Verpackungszellen ermöglicht und auch die Trans- fektion der Zielzellen und die stabile Integration der Transgene in das Wirtsgenom nicht behindert.
Ferner zeigt auch ein episomaler EBV-Expressionsvektor (Epstein- Barr-Virus; vgl. F. Langle-Rouault et al. , Virol. 72(7) (1998) 6181-5) (pCep4) der Firma Invitrogen hohe Expression und kommt daher im Rahmen der vorliegenden Erfindung bevorzugt in Betracht. Retroviren, die mit dem Arenavirus Lymphozytärer Chorio- meningitisvirus (LCMV) pseudotypisiert sind, und dafür geeignete retrovirale VerpackungsSysteme sind im Stand der Technik bekannt (EP 1 006 196; Miletic et al. , J. Virol. 73 (1999) 6114-6116) . Die dort beschriebenen, mit LCMV-Glyko- protein pseudotypisierten Vektoren sind für die Verwendung zur Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie von Hirntumoren geeignet. Für die Pseudo- typisierung werden im allgemeinen Verpackungszellen verwendet, die für das retrovirale Hüllprotein env defizient sind, so dass nur dann Virionen produziert werden, wenn ein Hüllprotein anderweitig zur Verfügung gestellt wird, z.B. durch Infektion der Zellen mit dem Virus, z.B. mit LCMV, oder durch Trans¬ duktion mit einem Plasmid mit einer Expressionskassette für das entsprechende Hüllprotein, z.B. das Glykoprotein des LCMV.
Im Vergleich zu Vektoren, die das oft verwendete Amphotrophe murine Leukämivirus-Hüllprotein (A-MLVenv) oder VSV-G ent¬ halten, zeigt sich bei LCMV-pseudotypisierten Vektoren eine ähnliche Effizienz in der Produktion und Stabilität. Es können jedoch - im Gegensatz zu VSV-G - mit LCMV Glykoprotein stabi¬ le, das Glykoprotein konstitutiv exprimierende Verpackungs- zelllinien generiert werden, da dieses Protein nicht cytopath- isch wirkt. Die pseudotypisierten Virionen sind auch stabil genug für eine starke Aufkonzentrierung durch Ultrazentrifuga- tion, so dass LCMV-pseudotypisierte retrovirale Vektoren Grundvoraussetzungen für die Eignung zur Gentherapie auf¬ weisen.
Das Retrovirus, das mit dem Arenavirus-Glykoprotein pseudo¬ typisiert ist, kann ein Onkoretrovirus oder ein Lentivirus sein. Ein häufig verwendetes Onkoretrovirus ist z.B. MLV (Murines Leukämivirus) , insbesondere MoMLV (Moloney MLV) . Vorzugsweise verwendet man jedoch ein Lentivirus, insbesondere HIV (Humanes Immunodefizienzvirus) , SIV (Simian Immuno- defizienzvirus) , EIAV (Equines Infektiöses Anämievirus) oder FIV (Feiines Immunodefizienzvirus) , da Lentiviren auch ruhende Zellen transduzieren können.
Die Verpackungszellen umfassen die retroviralen Gene (die hier angegebenen Sequenzen beziehen sich beispielhaft auf MoMLV, die Sequenzen der Gene anderer Retroviren sind ebenfalls im Stand der Technik bekannt) gag (für SEQ ID NO: 12 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 11), pol (für SEQ ID NO: 13 kodierender Bereich; vgl. Anlage zum Sequenz¬ protokoll, ZU SEQ ID NO: 11) und gegebenenfalls das retrovirale Gen env (für SEQ ID NO: 14 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 11) und/oder regulatorische retrovirale Gene (im Falle lentiviraler Verpackungssysteme z.B. das für das lentivirale Rev-Protein kodierende Gen, das ein Spleißen der retroviralen genomischen RNA verhindert) und ferner das für die Glykoproteine GP-I und GP-2 eines Arenavirus kodierende Gen gp (LCMV: z.B. für SEQ ID NO: 4 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 3; Lassa: SEQ ID NO: 28) oder einen Teil desselben. Gemäß einer besonderen Ausführungsform können die Verpackungssysteme auch die gag- und pol-Genprodukte von Lentiviren enthalten. In diesem Zusammenhang könnte es für eine effiziente Produktion infektiöser Lentivirusvektoren erforderlich sein, zusätzlich akzessorische lentivirale Gene wie rev (für SEQ ID NO: 21 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 15) oder tat (für SEQ ID NO: 20 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 15) bei HIV-Vektoren zu exprimieren. Im Rahmen der vorliegenden Erfindung können Arenavirus-Glykoproteine in allen lentiviralen Verpackungs- systemen zur Pseudotypisierung eingesetzt werden.
Die erfindungsgemäßen Verpackungszellen umfassen bevorzugt ein oder mehrere Expressionskassetten für die retroviralen Gene gag, pol, ein für ein Arenavirus-Glykoprotein kodierendes Gen und ferner einen retroviralen Gentransfervektor zur Verpackung in die pseudotypisierten Virionen, der mindestens ein thera¬ peutisch anwendbares Transgen und/oder Markergen. Ferner können die Verpackungszellen auch das Gen tat, rev und/oder env umfassen. Ferner eingeschlossen sind Nukleinsäuresequenzen, die Abweichungen (Punktmutationen, Deletionen) in den Sequenzen aufweisen (Derivate) . Bevorzugt haben die Nukleinsäuren eine Homologie von mindestens 70 %, mindestens 80 %, bevorzugt mindestens 90 oder 95 % zu der ursprünglichen Nukleinsäure. Ent¬ scheidend ist, dass bei der erfindungsgemäßen Verwendung die Pseudotypisierung von retroviralen Gentransferpartikeln gewähr¬ leistet bleibt und auch die Transduktion der Zielzellen sowie die stabile Integration der Transgene in das Wirtsgenom nicht behindert wird. Im folgenden sollen diese Derivate stets mit- umfaßt sein, wenn ein beliebiges Gen als solches erwähnt wird.
Erfindungsgemäß werden ferner Pseudotyp-Verpackungssysteme bereitgestellt, in denen neben dem gp-Genprodukt (SEQ ID NO: 4) ein oder mehrere weitere Gene von Arenaviren, z.B. LCMV exprimiert werden, wie zum Beispiel das für das Nukleoprotein kodierende Gen np (LCMV: für SEQ ID NO: 5 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 3), das für ein Protein mit unbekannter Funktion kodierenden Gen z (LCMV: für SEQ ID NO: 8 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 6) und das für die RNA- Polymerase kodierende Gen 1 (LCMV: für SEQ ID NO: 7 kodierender Bereich; vgl. Anlage zum Sequenzprotokoll, ZU SEQ ID NO: 6) .
Diese Gene können gemäß einer besonderen Ausführungsform der Erfindung z.B. vom WE- oder Armstrong-Stamm des LCMV stammen. In diesem Zusammenhang können entweder die vollständigen Sequenzen der Gene np, z und/oder 1 eingesetzt werden (SEQ ID NOs: s.o.) oder Teile derselben verwendet werden.
Die erfindungsgemäßen Verpackungszellen können daher zusätzlich zu dem gp-Gen des LCMV mindestens ein Gen aus der Gruppe bestehend aus dem für das Nukleoprotein kodierenden Gen np, dem für die RNA-Polymerase kodierenden Gen 1 und dem für ein Protein mit unbekannter Funktion kodierenden Gen z des LCMV umfassen.
Die erfindungsgemäßen Verpackungszellen und die im Rahmen der Erfindung verwendeten Virionen umfassen mindestens ein thera¬ peutisch anwendbares Transgen und/oder Markergen. Unter einem therapeutisch anwendbaren Markergen wird dabei ein Gen verstanden, das in der Tumortherapie dazu verwendet werden kann, um direkt oder indirekt das Wachstum von Tumorzellen zu hemmen oder diese zu töten. Beispielsweise kann das Suizid-Gen Herpes simplex-Thymidinkinase (HSV-tk) und/oder Cytosin-Deami- nase verwendet werden. HSV-tk macht die damit transfizierten Zellen empfindlich gegenüber Gancyclovir. Weiterhin kann ein therapeutisch anwendbares Gen immunstimulatorisch wirken. Eine solche Wirkung haben z.B. IL-4 oder Flt3L. Auch eine Therapie mit B7 oder IL-2 kann zur Regression von Tumoren führen, wie für Hirntumore beispielhaft von T. Lichtor et al. gezeigt wurde (J. Neurooncol 63 (2003) 247-259) . Bei der Therapie maligner Gliome wurden u.a. Erfolge bei einer Expression von Antisense-DNA erzielt, die z.B. gegen TGF-beta gerichtet ist (K. Lou, Ann. Med. 36 (2004) 2-8) . Weitere Gene, die therapeutisch zur Tumortherapie verwendet werden können, sind z.B. in Y. Kew et al. , Curr. Opin. Neurol. 16 (2003) 665-670, beschrieben. Selbstverständlich können auch zwei oder mehr therapeutisch anwendbare Gene, sowie gegebenenfalls zusätzlich ein oder mehrere Markergene umfasst sein.
Bevorzugt ist das Markergen lacZ, ein Antibiotikaresistenzgen, wie z.B. neo, und/oder ein Gen für ein Fluoreszenz-Protein, wie z.B. eGFP (enhanced green fluorescent protein) . Vorzugs¬ weise wird das therapeutisch anwendbare Transgen und/oder Markergen nach der Therapie spezifisch in den Zellen des Tumors exprimiert.
Die Erfindung betrifft weiterhin die Verwendung der Verpackungszellen bzw. der Virionen zur Herstellung einer pharmazeutischen Zusammensetzung, die ferner geeignete Hilfs- stoffe und/oder Trägerstoffe umfaßt. Gegenstand der Erfindung ist auch eine pharmazeutische Zusammensetzung, die zur Gen¬ therapie solider Tumore geeignet ist und die Verpackungszellen umfasst, die mit Arenavirus-Glykoprotein pseudotypisierte Vektoren produzieren und infiltrierende Verpackungszellen sind und/oder mit Lassa-Virus-Glykoprotein pseudotypisiert sind. Die pharmazeutische Zusammensetzung kann ferner geeignete Hilfsstoffe und/oder Trägerstoffe umfassen.
Bevorzugt werden die Vepackungszellen oder Virionen so formuliert, dass sie direkt in den Tumor eingebracht werden können, beispielsweise durch Injektion in den Tumor oder seine direkte Umgebung. Bei einem Hirntumor ist eine intracraniale Injektion geeignet. Es ist jedoch auch möglich, eine indirekte Verabreichung zu wählen, da die infiltrierenden Verpackungs¬ zellen spezifisch in den Tumor einwandern und die Virionen eine hohe Spezifität für die Tumorzellen aufweisen. Beispielsweise können die Verpackungszellen oder Virionen intravenös (i.v.) verabreicht werden. Besonders bevorzugt ist eine Applikation nach Resektion eines Tumors, bei der die pharmazeutische Zusammensetzung in die Resektionshöhle oder ihre direkte Umgebung gegeben wird.
Beispiele
Beispiel 1: Generierung von Verpackungszellen und Virionen
Produktion von Verpackungszellen. Multipotente adulte Progenitorzellen (MAPC) aus Ratten (Fischer-Ratten, Sprague- Dawley-Ratten) werden nach bekannten Verfahren gewonnen (Y. Jiang et al. , Nature 418 (2992)41-49) .
Diese Zellen werden mit dem Expressionsvektor pGag-Pol-IRES-bsr (S. Morita et al. , Gene Therapy 7 (2000) 1063-1066) transfiziert und mit Blasticidin 10 Tage lang selektioniert. Der daraus resultierende Zellpool exprimiert stabil MoMLVgagpol.
Stabile LCMV-GP Expression in diesem Zellpool wird durch Transduktion mit dem lentiviralen selbstinaktivierenden (SIN) Vektor SEW/GPopt erzielt. Der lentivirale SIN Vektor SEW/GPopt wurde auf Basis des Vektors pHR'SIN.cPPT-SEW (C. Demaison et al., Hum. Gene Ther. 13 (2002) 803-813) entwickelt, in dem das GFP-Gen durch das kodonoptimierte LCMV-WE-HPIopt ersetzt wurde. Zur Produktion lentiviraler SEW/GPopt-Vektoren wurden 5μg SEW/GPopt mit 5μg pRSVrev und 15μg pMDLg/RRE (T. DuIl et al. , Journal of Virology 72 (1998) 8463-8471) in 293T Zellen kotransfiziert. Zellkulturüberstände wurden 48 bzw. 72 Stunden nach Transfektion abgenommen und direkt zur Transduktion MoMLVgagpol exprimierender MAPC-Zellpools verwendet. Drei Tage nach der Transduktion wurden die Zellpools mittels Durchfluss- zytometrie auf Expression von LCMV-GP untersucht.
Durchflußzytometrische Analyse der LCMV-GP-Expression. Zur
Analyse der Expression des LCMV Glykoproteins wurden 5 x 105 Zellen geerntet, pelletiert und mit einem monoklonalen Anti¬ körper gegen LCMV-GPl inkubiert (M. Bruns et al. , Virology 130 (1983) 247-251) . Nach 20-minütiger Inkubation auf Eis wurden die Zellen dreimal mit phosphatgepufferter Kochsalzlösung (PBS) gewaschen und für weitere 20 Minuten in einer 1:10 Verdünnung eines PE-markierten Ziege Anti-Maus Antikörpers inkubiert (Dako, Glostrup, Dänemark) . Nach drei abschließenden Waschschritten in PBS wurden die Zellen mittels eines FACScalibur Geräts analysiert (Becton Dickinson, Heidelberg) .
Produktion von LCMV Pseudotypβn. Zur Untersuchung der Vektorproduktion in stabil MoMLVgasgpol und LCMV-GPopt exprimierenden Zellpools wurden diese zunächst mit einem retroviralen Vektor, z.B. MP71EGFP (A. Schambach et al. Molecular Therapy 2 (2000) 435-445), transduziert.
Dafür wurden retrovirale MP7IEGFP-Vektorüberstände durch Kotransfektion von 293T Zellen mit pGag-Pol-IRES-bsr (12μg) , MP71EGFP (7μg) pHCMV-LCMV-GP (WE-HPI) (2μg) produziert. Das Expressionsplasmid pHCMV-LCMV-GP (WE-HPI) wurde auf Basis der bekannten Sequenz des WE-HPI-Stammes (SEQ ID NO: 26; EMBL database accession no. AJ297484) und dem pHCMV Expressions¬ vektors (V. Romanowski et al. , Virus Res. 3 (1985) 101-114; J. -K. Yee, Methods Cell Biol. 43 (1994) 99-112) entwickelt (W.R. Beyer et al. , J. Virol. 75 (2001) 1061-1064; EMBL database accession no. AJ318513) .
Fünf Tage nach Transduktion der Verpackungszellen mit MP71EGFP werden Zellkulturüberstände der stabil exprimierenden Pools abgenommen und je 0,5ml auf 5 x 104 Indikatorzellen transfe¬ riert. Expression des EGFP-Proteins (enhanced green fluo¬ rescence protein) in den Indikatorzellen wurde drei Tage später mittels Durchflusszytometrie bestimmt.
Der retrovirale Vektor MP71EGFP wurde mit Hilfe der GagPol- und LCMV-GP-Proteine, die in den stabil exprimierenden Zellpools vorhanden sind, in infektiöse Partikel verpackt. Die MAPC-Zellen sind als Verpackungszellen geeignet. Beispiel 2 : Selektive Transduktion von Tumoren
Material und Methoden
Zelllinien. 9L Ratten-Gliosarcom- , 294 humane Nieren- und TE671 humane Fibroblasten-Zellinien wurden von der American Type Culture Collection erhalten. G62 humane Gliom-Zellen wurden freundlicherweise von M. Westphal (Universitätskranken¬ haus Eppendorf, Deutschland) zur Verfügung gestellt. Die Zellen wurden in DMEM, ergänzt durch 10 % Fetales Kälberserum und Penicillin/Streptomycin in einer feuchten Atmosphäre bei 5 % CO2 kultiviert.
Transduktion von 9L Zellen mit DsRed. DsRed in einem pMP71- Vektorgerüst wurde freundlicherweise von Norbert Dinauer zur Verfügung gestellt. Zur Transduktion der 9L Zellen mit DsRed wurdeen 9L Zellen in 24-Well (Loch) -Platten in einer Dichte von 5xlO4 Zellen/well ausgesäat. Nach 4 Stunden wurden retrovirale Überstände zur Verpackung des pMP71 DsRed Vektors hinzugefügt. Die Platten wurden für 1 Stunde bei 1000xg zentrifugiert. Die Transduktion der Zellen wurde 16 Stunden nach der ersten Transduktion wiederholt. Die Expression von DsRed wurde fluoreszenzmikroskopisch bestätigt (Nicon Eclipse TE300, Düsseldorf, Deutschland) . Zur Isolation DsRed exprimierender einzelner Klone wurden 100 transduzierte 9L Zellen in 10 cm Schalen ausplattiert und Kolonien wachsen gelassen. DsRed-positive Kolonien wurden mit Fluoreszenz- Mikroskopie identifiziert und in getrennte Wells von 24-WeIl- Platten übertragen. Das Expressionsniveau isolierter Klone wurde durchflußcytometrisch mit einem FACS-Calibur bestimmt (Becton Dickinson, San Jose, Californien) . Zur in vivo Implantation wurde ein Klon ausgewählt, der 95 % DsRed- positive Zellen enthielt. Transientβ Produktion von Pseudotypen lβntiviraler Vektoren.
Lentivirale Vektoren wurden durch transiente Transfektionen von 293T Zellen produziert. 16 Stunden vor der Transfektion wurden 5 x 106 Zellen in Kulturgefäßen mit 10 cm Durchmesser in DMEM/FBS ausgesät. Eine Stunde vor der Transfektion wurde das Kulturmedium gegen 10 ml DMEM/FBS/PS pro Gefäß ausgewechselt, mit 25 μM Chloroquin, 50 U Penicillin /ml, 50 μg/ml Strepto- mycin (PS, Gibco-Invitrogen) . Für die Transfektion eines Kulturgefäßes wurden dann 5 μg pRRL. sinCMVeGFPpre, 5 μg pRSV- Rev, 15 μg pMDLg/pRRE (DuIl et al. , J. Virol. 72 (1998) 8463- 8471) , und 1-2 μg eines pHCMV Expressionsplasmids für das Glykoprotein des LCMV, pHCMV-LCMV-GP (WE-HPI) (W.R. Beyer et al., J. Virol. 75 (2001) 1061-1064) , verwendet. Eine Mischung, die 450 μl des Plasmids in ddH2O und 50 μl 2,5 M CaCl2 enthielt, wurde gut gemischt und dann tropfenweise zu 500 μl zweifach HEPES-gepufferter Salzlösung (280 mM NaCl, 100 mM HEPES, 1,5 mM Na2HPO4, pH 7,1) hinzugefügt. Nach dem Vortexen wurde der Niederschlag sofort zu den Kulturen hinzugefügt. Das Medium wurde nach acht Stunden gegen 10 ml pro Gefäß DMEM/FBS/PS mit 20 mM HEPES ausgetauscht. Vektorenthaltende Überstände wurden 24 Stunden nach der Transfektion und danach alle 8-16 Stunden für einen Zeitraum von 2 Tagen gesammelt. Die Zellkulturüberstände wurden gepoolt und durch einen MILEX GP Filter mit 0,22 μm Porengröße (Millipore, Bedford, Mass.) filtriert. Für in vivo und in vitro (kultivierte Gehirnzellen) Anwendungen, wurden die Vektorüberstände durch Ultrazentrifu- gation bei 19.500 rpm für 2 Stunden in einem SW28-Rotor (Beckmann Instruments, Kalifornien) konzentriert.
Vektortitration. Lentivirale Vektortiter wurden duch Transduktion verschiedener Zelllinien bestirnt. Serielle Verdünnungen der Zellüberstände wurden hergestellt und 0,5 ml jeder Verdünnung wurden zu 5 x 104 Zellen hinzugefügt und in einem Well einer 24-Wellplatte vier Stunden vor der Transduktion ausgesät. Die Platten wurden für eine Stunde bei 1000 g zentrifugiert. Die Zellen wurden 65 Stunden nach der Transduktion durchflusscytometrisch mit einem FACSCalibur (Becton Dickinson, San Jose, Kalifornien) auf GFP-Expression untersucht. Die Titer wurden aus den Verdünnungen errechnet, die zu 0,5% bis 20% eGFP positiven Zellen führten, einem Bereich der linearen Relation zwischen Vektoreinsatz und Prozentsatz transduzierter Zellen, da multiple Integrationen von Vektor in die Zielzelle normalerweise nicht erwartet werden.
Ratten-Hippocampus Neuronen Kultur. Primäre Hippocampus Neuronen Zellkulturen wurden, wie bereits beschrieben, hergestellt (Neumann et al. , Science 269 (1995) 549-552) . Im wesentlichen wurden Hippocampi aus dem gesamten Hirn von Wistarratten an Tag 16 der Embryonalentwicklung isoliert, die Hirnhaut wurde entfernt. Das beschnittene Gewebe wurde durch Zerreiben mit einer sterilen Pasteurpipette dissoziiert. 5 x 104 Zellen pro ml wurden in Vierkammerobjektträger, die mit Poly-L-Ornithin (0,5 mg/ml, Sigma, St. Louis, MO) in 0,15 M Borsäure vorbehandelt wurden, gegeben. Die Zellen wurden in chemisch definiertem Medium kultiviert, das basales Eagle-Medium (BME, Invitrogen, Gaithersburg, MD) mit B27 Ergänzung (2% (v/v) , Invitrogen) und Glucose (1% (v/v), 45%, Sigma) enthielt.
E1Ur Ratten-Astrozyten angereicherte Gliazellkultur. Hippocampi von Wistarratten wurden an Tag 16 der Embryonalentwicklung isoliert und, wie für die neuronale Hippocampuszubereitung beschrieben, in Einzelzellsuspensionen dissoziiert. Zellen wurden in 50 ml Gewebekulturflaschen ausplattiert, die mit PoIy- L-Lysin (5 μg/ml, Sigma) vorbehandelt wurden. Die Zellen wurden in Serum kultiviert, das Medium mit MEM-D-Valin (Invitrogen) , 10% durch Hitze inaktiviertem FCS (Pan System, Würzburg, Deutschland) und 1% L-Glutamin enthielt. Für Astrozyten angereicherte Gliazellen wurden für 10-20 Tage kultiviert und dann in BME mit B27 Ergänzung (2% (v/v) , Invitrogen) und Glucose (1% (v/v) , 45%, Sigma) in einer Dichte von 2 x 104 Zellen/ml in Vierkammerobjekträgern vor der Transduktion ausplattiert. 7
Insgesamt waren, wie mit einer Immunomarkierung mit Kaninchen¬ antikörpern gegen GFAP (10μg/ml, Dako, Glostrup, Dänemark) bestimmt wurde, 94% (+3% SD) der Zellen Astrozyten.
Transduktion kultivierter Gehirnzellen. 14 Tage nach dem Ausplattieren wurden Neuronen und Astrozyten mit lentiviralen pseudotypisierten Vektoren transduziert, die das eGFP Markergen trugen. Zwei Tage nach der Transduktion wurden die Zellen in 4% Paraformaldehyd fixiert und mit monoklonalem Maus-Anti-beta- Tubulin-III Antikörper (Sigma) auf Neuronen und monoklonalem Kaninchen-Anti-GFAP Antikörper (Dako) auf Astrozyten gefärbt. Die Zellen wurden über Nacht bei 4° C mit dem Primärantikörper inkubiert. Cy3-Ziege-Anti-Maus und Cy3-Ziege-Anti-Kaninchen wurden als Sekundärantikörper für zwei Stunden bei Raum¬ temperatur verwendet. Die relativen Zahlen der transduzierten (eGFP-positiven) und untransduzierten (eGFP-negativen) neurona¬ len (beta-Tubulin-III positiven) und astrozytären (GFAP- positiven) Zellen wurde fluoreszenzmikroskopisch durch das Auszählen von 10 Kamerafeldern für jeden Pseudotyp bestimmt.
Tumorimplantation und Einbringen lentiviraler Vektoren
Erwachsene weibliche Fischer 344 Raten (Harlan Winkelmann, Borchen, Deutschland) wurden durch i.p. Injektion von Ketamin
(50 mg/kg) und Xylazin (2 mg/kg) anästhetisiert. Intracraniale 9L Ds Red-Tumoren wurden etabliert, indem 1 x 105 9L Ds Red- Zellen (in 5μl PBS) unter Verwendung einer Hamilton-Spritze in einem stereotaktischen Apparat (Stoelting, IL) in das rechte Striatum injiziert wurden. Die verwendeten Koordinaten waren 4 mm lateral gegenüber dem Bregma und in 5 mm Tiefe gegenüber der duralen Oberfläche. 6 Tage nach der Tumorimplantation wurden die Ratten anästhetisiert und lentivirale Vektor- Pseudotypen mit Titern im Bereich von 2 x 106 bis 1 x 107 transduzierenden Units (TU) /ml wurden unter Verwendung derselben stereotaktischen Koordinaten und in 1 mm Entfernung
(7 verschiedene Orte) injiziert. Ein Gesamtvolumen von 10 μl wurde in jeden Tumor injiziert. Fischerratten, die keine Tumorzellen erhielten, wurden anästhetisiert und lentivirale Pseudotypen wurden in das rechte Striatum oder den rechten Hippocampus injiziert. Die für die Hippocampusregion verwendeten Koordinaten waren 4,5 mm lateral gegenüber dem Bregma, 5,5 mm hinter der coronalen Platte und 3 mm tief gegenüber der duralen Oberfläche.
Analyse von Rattengehirn auf Transduktion durch Lentiviren. 7
(tumortragende Ratten) und 14 Tage (Ratten ohne Tumor) nach dem Einbringen des lentiviralen Vektors wurden die Tiere euthanisiert und mit 4% Paraformaldehyd durchströmt. Das Gehirn wurde entfernt, 3 Tage in 30% Sucrose suspendiert und dann in mit flüssigem Stickstoff gekühltem Isopentan schock¬ gefroren. Coronale Sektionen (12 μm) wurden mit einem Cryostat hergestellt und entweder mit Kaninchen-Anti-GFAP-Antikörpern (Dako, Hamburg, Deutschland) auf Astrozyten oder Maus-Anti- NeuN-Antikörpern (Chemicon, Hofheim, Deutschland) auf Neuronen gefärbt. Primäre Antikörper wurden über Nacht bei 4° C inku¬ biert. Cy3-Ziege-Anti-Maus und Cy3-Ziege-Anti-Kaninchen (Dia¬ nova, Hamburg, Deutschland) wurden als Sekundärantikörper für zwei Stunden bei Raumtemperatur benutzt. Die Sektionen wurden unter einem Floureszenz-Mikroskop untersucht (Zeiss, Jena, Deutschland) . Die Transduktionseffizienzen in infizierten Tumorregionen wurden geschätzt (0-10%, 10-50% und 50-100%) . Zusätzlich wurden die Sektionen mit Confokaler Laser Scanning Mikroskopie (Leica, UK) analysiert.
Ergebnisse
Mit LCMV GP- und VSV G-pseudotypisierte lentivirale Vektoren transduzieren 9L Tumorzellen in vitro
Es wurde die Transduktionseffizienz sowohl VSV G- als auch LCMV GP-pseudotypisierter lentiviraler Vektoren in den Ratten- gliomzelllinien 9L und 9LDsred (verwendet für Tumorimplan¬ tation) in vitro verglichen. Die humane epitheliale Zelllinie TE671, die sowohl durch mit VSV G als auch mit LCMV pseudotypisierte Vektoren transduziert werden konnte, wie in einer vorherigen Untersuchung gezeigt (Beyer et al. , 2002, Loc. cit.) , wurde als Infektionskontrolle verwendet. Es wurden Endpunktverdünnungen mit 9L, 9LDsred und TE671-Zellen durch¬ geführt, und der Prozentsatz transduzierter Zellen wurde mittels durchflusszytometrischer Analyse gemessen. Beide Vektoren transduzierten 9L Zellen, VSV G-Pseudotypen jedoch mit einer höheren Effizienz (Tabelle 1) . Die relative Transduktion im Vergleich zu TE671 war für LCMV 0,65 und für VSV G Pseudotypen 1,91. Weiterhin unterschieden sich die Transduktionseffizienzen für 9L und 9LDsred Tumorzellen in vitro nicht signifikant (Tabelle 1) .
Tabelle 1: Vektortiter pseudotypisierter lentiviraler Vektoren gegenüber TE671 und Gliom-Zelllinien
Zelllinie LCMV GP VSV G
(Zahl der Pseudotyp Titer Titer gegnüber Pseudotyp Titer Titer gegenüber
Experimente) [TU/ml] (± SD) TE671 (± SD) [tu/ml] (± SD) TE671 (± SD)
TE671 (4) 2,75 (± 1 ,07) x 104 1 6,08 (± 6,00) x 104 1
9L (4) 1,80 (± 0,78) x 104 0,65 (± 0.03) 8,83 (± 5,81) x 104 1 ,91 (± 0,63)
9LDsRed (2) 1,29 (± 1 ,00) x 104 0,35 (± 0,21) 8,35 (± 5,97) x 104 1 ,89 (± 0,07)
Zellinien wurden mit LCMV GP- oder VSV G-pseudotypisierten lentiviralen Vektoren transduziert, die eGFP verpackten. Die Titer wurden durch FACS Analyse gemessen. Die Ergebnisse stellen Durchschnitt und Standardabweichung von mindestens zwei Experimenten dar. VSV G-Pseudotypen transduzieren kultivierte Neuronen und Astrozyten effizienter als LCMV GP Pseudotypen.
Um den Tropismus beider pseudotypisierter Vektoren für normale Gehirnzellen in vitro zu analysieren, wurden kultivierte Neuronen und Astrozyten, die aus 16 Tage alten embryonalen Wistarratten durch Endpunktverdünnungen gewonnen wurden, infiziert. Die humane Gliom-Zelllinie G62, von der in einer vorhergehenden Untersuchung bereits gezeigt wurde, dass sie von beiden Pseudotypen infiziert werden kann, wurde als Infektionskontrolle verwendet. VSV G-Pseudotypen transdu- zierten GFAP-positive Astrozyten und beta-Tubulin-III-positive Neuronen auf einem höheren Niveau als LCMV-Pseudotypen
(Tabelle 2) . Insbesondere war die Transduktionseffizienz für Neuronen deutlich unterschiedlich: VSV G-Pseudotypen transduzierten 62,5%, während LCMV Pseudotypen nur 2,2% der gezählten Neuronen infizierten. Zusätzlich zeigten LCMV GP- Pseudotypen einen höheren Grad der Transduktion der humanen Gliom-Zelllinie G62 (89,5%) als von kultivierten Astrozyten
(71,7%) und Neuronen (2,2%) . Im Gegensatz dazu transduzierten VSV G-Pseudotypen Astrozyten (85,5%) und Neuronen (62,5%) zu einem höheren Grad als G62-Zellen (56,9%) .
Tabelle 2:
Figure imgf000031_0001
Kultivierte Ratten-Astrozyten oder -Neuronen wurden mit 3 x 104 bis 8 x 104 eGFP TU von mit LCMV GP- or VSV G-pseudotypisierten lentiviralen Vektoren transduziert. Die Zellen wurden fluo¬ reszenzmikroskopisch nach Färbung mit monoklonalen anti-GFAP Antikörpern gegen Astrozyten oder Anti-beta-Tubulin-III- Antikörpern gegen Neuronen analysiert. Die Ergebnisse stellen die durchschnittlichen Zellzahlen und Standardabweichungen aus 10 zufällig ausgewählten Kamerafeldern dar.
VSV 6- und LCMV GP-Pseudotypen zeigen einen unterschiedlichen Tropismus gegenüber normalen Gehirnzellen in vivo
Die in vitro Ergebnisse wurden in einem Rattenmodell bestätigt. Zu diesem Zweck wurden LCMV GP- und VSV G- Pseudotypen in Striatum und Hippocampus von Fischerratten injiziert. Der relative Anteil der transduzierten Zelltypen wurde durch Immunfloureszenzfärbung mit zellspezifischen Markern und confokaler Mikroskopie analysiert. LCMV GP- Pseudotypen transduzierten in beiden Gehirnregionen fast ausschließlich Astrozyten, wie mit der Färbung mit Antikörpern gegen GFAP gezeigt werden konnte (Fig.2A-C) . Diese Beobachtung konnte sogar in Regionen mit hoher Neuronendichte bestätigt werden (Fig. 2D-F) . Transduktion von Neuronen kamen selten vor. Im Gegensatz dazu infizierten VSV G-Pseudotypen Neuronen sehr effizient und das geschätzte Verhältnis transduzierter Neuronen gegenüber Astrozyten war in beiden Gehirnregionen 3 : 1 (Fig.2 G-I7 K-M, N-P) .
LCMV-GP-Pseudotypen zeigen eine spezifische und effiziente Transduktion glialer Tumorzellen in vivo
Schließlich wurde der Tropismus der verschiedenen Pseudotypen in einem Rattengliom-Modell untersucht. Zunächst wurde getestet, ob die in vivo Wachstumscharakteristika der genmarkierten, für die Tumorimplantation verwendeten Gliom- Zelllinie OLDsred) sich von denen der parentalen Zelllinie 9L unterschieden. Zwei Wochen nach i.e. Tumorzellimplantation in Fischerratten wurden die etablierten Tumore histologisch auf ihre Größe und durch Licht (9L) oder Floureszenzmikroskopie OLDsRed) auf ihre Fähigkeit, in das Hirnparenchym einzu¬ dringen, untersucht. 9L und 9LDsRed-Tumore zeigten keine Unterschiede in ihrer Größe, und beide infiltrierten zu einem gleichen Ausmaß normales Gehirn. Mit dem DsRed Marker konnten sogar einzelne Tumorzellen detektiert werden, die in das Gehirnparenchym einwanderten.
Um die Transduktion der 9LDsRed Tumore in vivo durch beide Pseudotypen zu analysieren, erhielten zwei Gruppen weiblicher Fischerratten, die 9LDsRed Tumore trugen, LCMV GP- und VSV G- Pseudotypen injiziert. Um die Transduktion des soliden Tumors und der infiltrierenden Gliom-Zellen zu messen, wurden die Injektionen in dem Zentrum des Tumors und 1 mm entfernt gesetzt. Die Transduktionseffizienzen der infizierten Tumorregionen wurden wie oben beschrieben geschätzt. LCMV GP- Pseudotypen zeigten eine sehr effiziente Transduktion des soliden Tumors: 50-100% der Tumorzellen waren in Tumor¬ regionen, in die Vektorüberstände injiziert wurden, GFP- positiv (Fig.l A-C) . In den infiltrierenden Regionen der 9LDsRed Tumore infizierten LCMV GP-Pseudotypen spezifisch die Gliomzellen (Fig.l D-F) . Selbst einzelne infiltrierende Tumorzellen wurden durch diesen Vektorpseudotypen transduziert (Fig.l E-I) . Nur wenige reaktive Astrozyten in dem Bereich des Tumorbettes waren GFP-positiv, wie durch Färbung mit Antikörpern gegen GFAP gezeigt werden konnte. Neuronen in infiltrierenden Tumorregionen waren nicht infiziert. VSV G- Pseudotypen zeigten ein unterschiedliches Transduktionsmuster: Solider Tumor wurde zu einem deutlich geringeren Ausmaß (0- 10%) transduziert als mit den LCMV GP Pseudotypen (Fig.l K-M) . Im Gegensatz dazu waren viele normale Gehirnzellen, einschl. Neuronen und reaktive Astrozyten in der infiltrierenden Region -und um das Gehirnparenchym herum GFP-positiv, während nur selten Tumorzellen transduziert waren (Fig.l N-P) . Die Versuche zeigen also, dass bei intracranialer Applikation lentiviraler Vektoren, die mit LCMV Glykoprotein pseudotypisiert waren, spezifisch Tumorzellen infiziert wurden. Obwohl bei in vitro Versuchen und auch bei der Verabreichung der LCMV GP-pseudotypisierten Vektoren in Gehirn, in denen keine Tumore vorlagen, durchaus Astrozyten und, wenn auch zu einem geringen Prozentsatz, Neuronen infiziert wurden, kann bei der Behandlung von Tumoren in vivo eine hervorragende Spezifität der Transduktion mit dem in den pseudotypisierten Vektoren enthaltenen Transgen erreicht werden.
Beispiel 3: Migrationsstudien
Material und Methoden
Rotfluoreszierendes Protein exprimierende Tumorzellen (9L RFP) wurden Fischerratten stereotaktisch intracranial implantiert (Protokoll siehe Beispiel 2) . An Tag 5 wurden Zellen der zu untersuchenden Zelllinie implantiert. Diese Zellen waren mit grünfloureszierendem Protein (eGFP) transfiziert. An Tag 8 wurde das Gehirn entnommen und eine histologische Untersuchung durchgeführt. Es wurden folgende hämatopoetische und nicht- hämatopoetische Zelllinien auf ihre Migrationsfähigkeit untersucht:
> K562 (human, Chronisch Myeloide Leukämie-ZeIllinie)
> U937 (human, Monozyten)
> Raji (human, B-Zelllinie)
> Jurkat (human, T-Zelllinie)
> 3T3 (murin, Fibroblasten)
Weiterhin wurden verschiedene Stammzellen, die nach im Stand der Technik bekannten Verfahren hergestellt wurden, auf ihre Migrationsfähigkeit untersucht. Es wurden Multiple adulte Progenitorzellen (MAPC aus Fischerratten, fMAPC) (Young et al., Nature 418 (2002) 41-49), SdMSC (mesenchymale Stammzellen aus Sprague-Dawly-Ratten) , sowie murine mesenchymale Stamm¬ zellen (mMSC) (P. Tropelet al. , Exp Cell Res. 2004 May 1;295 (2) :395-406) und murine neurale Stammzellen (C17-2 Zelllinie: A.B. Brown et al. , Hum Gene Ther. 2003 Dec 10;14 (18) :1777-85) . getestet.
Die Fähigkeit verschiedener Zellen, den soliden Tumor spezifisch zu infiltrieren, ist in Tabelle 3 gezeigt.
Tabelle 3:
Neurale Stammzellen (NSC) , murin +++
Mesinchemale Stammzellen (MSC) , murin und Ratte
Mulitpotente adulte Progenitorzellen (MAPC) , Ratte +++ (Fisher, Sprague Dawly)
K562, humane Chronisch Myeloide Leukämie-Zelllinie
Jurkat, humane T-Zelllinie
Raji, humane B-Zelllinie
U937, humane monozitäre Zelllinie
293, humane Nierenepithelzelllinie
TE671, humane Fibroblastenzelllinie
3T3 murine Fibroblastenzelllinie
+ und - zeigen die Fähigkeit des Zelltyps an, den Tumor spezifisch zu infiltrieren.
Wie in der Tabelle gezeigt, sind die untersuchten Tumor-Zell¬ linien nicht in der Lage, in den Tumor zu infiltrieren. In einigen Fällen verbleiben einige Zellen im Zentrum des Tumors, werden jedoch apoptotisch. Die Mehrzahl der Zellen ist rings um den Tumor angeordnet, einzelne Zellen waren jedoch auch im gesunden Gehirngewebe weit entfernt vom Tumor nachweisbar. Die aus primären Zellen gewonnenen Stammzelllinien sind in der Lage, den Tumor zu infiltrieren. Bei den MSC infiltriert ein Teil der Zellen den Tumor jedoch nur oberflächlich. Eine optimale Infiltration ist bei Verwendung von MAPC zu beobachten. Für NSC wurde eine solche spezifische Infiltration schon früher beobachtet. Primäre NSC sind ex vivo jedoch nur zu wenigen Teilungen fähig und müssen für die Anlage stabiler Linien erst genetisch (z.B. durch SV40 large T) transformiert werden. Somit können NSC nur nach Bestrahlung der Zellen eingesetzt werden. MAPC hingegen können über 80 Teilungen ex vivo vollziehen, ohne zu transformieren.
Der Versuch zeigt die Eignung von Stammzellen, als infiltrierende Verpackungszellen bei der Gentherapie solider Tumore eingesetzt zu werden.
Legenden der Abbildungen:
Figur 1: Solide und infiltrierende Regionen eines Rattenglioms wurden effizient durch LCMV GP-pseudotypisierte lentivirale Vektoren transduziert.
Intracraniale 9LDsRed Gliome wurden 7 Tage nach der Tumor¬ implantation mit LCMV GP- oder VSV G-pseudotypisierten lenti- viralen Vektoren infiziert, die eGFP exprimierten, und an Tag 14 mit confokaler Laserscanning-Mikroskopie analysiert.
(A) 50-100% des soliden Tumors waren durch LCMV GP- pseudotypisierte Vektoren transduziert.
(B) Solider Tumor, der DsRed exprimiert.
(C) Zusammengeführte Bilder von (A) und (B) .
(D) Transfektion infiltrierender Gliom-Regionen durch LCMV GP- pseudotypisierte Vektoren. (E) Infiltrierende Gliom-Regionen, die DsRed expritnieren.
(F) Zusammengeführte Bilder von (D) und (E) .
(G) Einzelne infiltrierende Tumorzellen, transduziert durch LCMV GP-pseudotypisierte Vektoren.
(H) Einzelne infiltrierende Tumorzellen, die DsRed exprimieren.
(I) Zusammengeführte Bilder von (G) und (H) .
(K) 0-10% des soliden Tumors wurden durch VSV G- pseudotypisierte Vektoren transduziert. (L) Solider Tumor, der DsRed exprimiert. (M) Zusammengeführte Abbildungen von (K) und (L) (N) Infiltrierende Gliom-Regionen, transduziert duch VSV G- pseudotypisierte Vektoren.
(O) Infiltrierende Gliom-Regionen, die DsRed exprimieren. (P) Zusammengeführte Abbildung von (N) und (O) . Originalvergrößerung 20 x.
Figur 2 : Neuronen und Astrozyten wurden durch VSV G- pseudotypisierte lentivirale Vektoren In vivo transduziert.
Normales Rattenhirn wurde mit LCMV GP- oder VSV G- pseudotypisierten Vektoren infiziert, die eGFP exprimierten. Die Transduktion von Neuronen und Astrozyten wurde nach Färbung mit Antikörpern gegen NeuN und GFRP an Tag 14 durch confokale Laserscanning-Mikroskopie analysiert.
(A) Transduktion von Astrozyten im Striatum durch LCMV GP- pseudotypisierte Vektoren.
(B) Astrozyten im Striatum, die GFAP exprimieren.
(C) Zusammengeführte Abbildungen von (A) und (B) .
(D) In Bereichen mit großer Neuronendichte (Hippocampus) wurden Neuronen nicht transduziert, jedoch einzelne Astrozyten.
(E) Hippocampusneuronen, die NeuN exprimieren.
(F) Zusammengeführte Abbildungen von (D) und (E) .
(G) Transduktion von Hippocampus-Neuronen durch VSV G- pseudotypisierte Vektoren.
(H) Hippocampus-Neuronen, die NeuN exprimieren. (I) Zusammengeführte Abbildungen (G) und (H) .
(K) Transduktion von Striatum-Neuronen durch VSV G-pseudo- typisierte Vektoren.
(L) Striatum-Neuronen, die NeuN exprimieren. (M) Zusammengeführte Abbildungen von (K) und (L) . (N) Hippocampus-Astrozyten, transduziert durch VSV G-pseudo- typisierte Vektoren.
(O) Hippocampus-Astrozyten, die GFAP exprimieren. (P) Zusammengeführte Abbildungen von (N) und (O) .
Originalvergrößerung 40 x.
ANLAGE ZUM SEQUENZPROTOKOLL
(Anmerkung: Die folgenden Angaben sind der Datenbank des National Institute of Health (NIH), U.S.A., entnommen. Die ursprünglich darin enthaltenen Nuklein- und Aminosäuresequenzen wurden durch den Verweis auf die ent¬ sprechende SEQ ID NO. (numerische Kennzahl <400> nach WIPO Standard ST. 25) des Sequenzprotokolls ersetzt.)
ZU SEQ ID NQ: 1
LOCUS LCVSRNA 3375 bp ss-RNA VRL 15-JUN-1989
DEFINITION Lymphocytic choriomeningitis virus S RNA, complete cds.
ACCESSION M22138
NID g331379
KEYWORDS S RNA; small RNA.
SOURCE Lymphocytic choriomeningitis virus (strain WE) , cDNA to viral
RNA.
ORGANISM Lymphocytic choriomeningitis virus Viruses; ssRNA negative-strand viruses; Arenaviridae;
Arenavirus;
1-LCMV-LASV complex.
REFERENCE 1 (bases 1 to 3375) AUTHORS Romanowski,V., Matsuura,Y. and Bishop,D.H.L. TITLE Complete sequence of the S RNA of Lymphocytic choriomeningitis virus (WE strain) compared to that of Pichinde arenavirus
JOURNAL Virus Res. 3, 101-114 (1985) MEDLINE 86046554 FEATURES Location/Qualifiers source 1..3375
/organism="Lymphocytic choriomeningitis virus"
/db_xref="taxon:11623"
CDS 78..1574
/note="S protein"
/codon_start=l
/db_xref="PID:g331380"
/translation=SEQ ID NO: 2
BASE COUNT 881 a 786 c 725 g 983 t
ZU SEQ ID NQ: 3
LOCUS LCVGPNP 3376 bp SS-RNA VRL 15-JUN-1989
DEFINITION Lymphocytic choriomeningitis virus envelope glycoprotein (GP-C) and nucleoprotein (NP) genes, complete cds.
ACCESSION M20869
NID g331358
KEYWORDS envelope protein; nucleoprotein.
SOURCE Lymphocytic choriomeningitis virus (strain Armstrong 53b) , cDNA to viral RNA.
ORGANISM Lymphocytic choriomeningitis virus
Viruses; ssRNA negative-strand viruses; Arenaviridae;
Arenavirus;
1-LCMV-LASV complex.
REFERENCE 1 (bases 1 to 3376) AUTHORS Salvato,M., Shimomaye,E. , Southern, P. and θldstone,M.B.A.
TITLE Virus-lymphocyte interactions: IV. Molecular characterization of
LCMV Armstrong (CTL+) small genomic segment and that of its variant, clone 13 (CTL-)
JOURNAL Virology 164, 517-522 (1988) MEDLINE 88219540 FEATURES Location/Qualifiers source 1..3376
/organism="Lymphocytic choriomeningitis virus"
/db_xref="taxon:11623"
CDS 78..1574
/note="envelope glycoprotein"
/codon_start=l
/db_xref="PID:g331359"
/translation=SEQ ID NO: 4
Variation 856
/note="t in ARM 53b; c in ARM 53b Clone 13" Variation 1298
/note="t in ARM 53b; c in ARM 53b Clone 13" CDS complement (1639..3315)
/note="nucleoprotein"
/codon_start=l
/db_xref="PID:g331360"
/translation=SEQ ID NO: 5
BASE COUNT 868 a 809 c 748 g 951 t
ZU SEQ ID NQ: 6
LOCUS LCVLPY 6680 bp SS-RNA VRL 17-MAY-1995
DEFINITION Lymphocytic choriomeningitis virus putative RNA Polymerase L gene, complete cds.
ACCESSION J04331 NID g331368
KEYWORDS L protein; RNA Polymerase. SOURCE Lymphocytic choriomeningitis virus (strain Armstrong 53b) RNA.
ORGANISM Lymphocytic choriomeningitis virus
Viruses; ssRNA negative-Strand viruses,- Arenaviridae;
Arenavirus;
1-LCMV-LASV comp1ex. REFERENCE 1 (bases 1 to 6680)
AUTHORS Salvato,M., Shimomaye,E. and θldstone,M.B.
TITLE The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA Polymerase JOURNAL Virology 169 (2), 377-384 (1989) MEDLINE 89204909
COMMENT Draft entry and Computer-readable sequence of [1] kindly submitted by M.Salvato, 18-JAN-1989. FEATURES Location/Qualifiers source 1..6680
/organism="Lymphocytic choriomeningitis virus" /strain="Armstrong 53b" /db_xref="taxon: 11623" CDS 33..6665
/codon_start=l /product="L protein" /db_xref="PID:g331369" /translation=SEQ ID NO: 7 CDS complement(6371..6658)
/note="ORF; putative" /codon_start=l /product="unknown protein" /db_xref="PID:g808709" /translation=SEQ ID NO: 8 BASE COUNT 2065 a 1153 c 1543 g 1919 t ZU SEQ ID NO : 9
LOCUS HUMEFlA 4695 bp DNA PRI 07-NOV-1994
DEFINITION Human elongation factor EF-1-alpha gene, complete cds.
ACCESSION J04617 J04616
NID gl81962
KEYWORDS elongation factor.
SOURCE Human placenta DNA, clone pEFGl, and fibroblast cell line GM
637, cDNA to mRNA, (library of H.Okayama), clone pAN7. ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata; Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE 1 (bases 1 to 4695)
AUTHORS Uetsuki,T., Naito,A., Nagata,S. and KaziroJ.
TITLE Isolation and characterization of the human chromosomal gene for Polypeptide chain elongation factor-1 alpha
JOURNAL J. Biol. Chem. 264 (10) , 5791-5798 (1989) MEDLINE 89174636 COMMENT Draft entry and Computer-readable sequence for [1] kindly provided by S.Nagata, 20-JAN-1989.
FEATURES Location/Qualifiers source 1..4695
/organism="Homo sapiens"
/db_xref="taxon: 9606"
/map="Unassigned" misc_binding 205..214
/bound_moiety="SpI" misc_binding 320..328
/bound_moiety="SpI" misc_binding 332..340
/bound_moiety="SpI"
TATA_signa1 546..552 pprriimm__ttrranscript 576..4087
/note="EF-l-alpha mRNA and introns" intron 609..1551
/note="EF-l-alpha intron A" misc_binding 983..992
/bound_moiety="SpI" misc_binding 1026..1034
/bound_moiety="SpI" misc_binding 1122..1131
/bound_moiety="SpI" misc_binding 1132..1141
/bound_moiety="SpI" misc_binding 1240..1249
/bound_moiety="SpI" misc_binding 1302..1308
/bound_moiety="ApI" exon <1582..1725
/gene="EEFlA"
/note="elongation factor EF-1-alpha"
/number=2 gene jθin(1582..1725,2092..2271,2377..2673,2757..2907,
2995..3251,3341..3575, 3671..3795)
/gene="EEFlA" CDS join(1582..1725,2092..2271,2377..2673,2757..2901,
2995..3251,3341..3575, 3671..3795)
/gene="EEFlA"
/note="elongation factor EF-1-alpha"
/codon_start=l
/db xref="GDB:G00-118-791" /db_xref="PlD:gl81963" /translation=SEQ ID NO: 10 intron 1726..2091
/note="EF-l-alpha intron B" exon 2092..2271 /gene="EEFlA" /number=3 intron 2272..2376
/note="EF-l-alpha intron C" exon 2377..2673 /gene="EEFlA" /number=4 intron 2674..2756
/note="EF-I-alpha intron D" exon 2757..2907 /gene="EEFlA" /number=5 intron 2908..2994
/note="EF-l-alpha intron E" exon 2995..3251 /gene="EEFlA" /number=6 intron 3252..3340
/note="EF-I-alpha intron F" exon 3341..3575 /gene="EEFlA" /number=7 intron 3576..3670
/note="EF-l-alpha intron G" exon 3671..>3795 /gene="EEFlA"
/note="elongation factor EF-1-alpha' /number=8
BASE COUNT 1200 a 989 c 1235 g 1271 t
ZU SEQ ID NO : 11
LOCUS AF033811 8332 bp RNA VRL 05-FEB-1998 .
DEFINITION Moloney murine leukemia virus, complete genome. ACCESSION AF033811 NID g2801468 KEYWORDS
SOURCE Moloney murine leukemia virus. ORGANISM Moloney murine leukemia virus
Viruses,- Retroid viruses; Retroviridae; Mammalian type C retroviruses; 1-Mammalian type C virus group. REFERENCE 1 (bases 1 to 8332) AUTHORS Petropoulos,C.J. TITLE Appendix 2: Retroviral taxonomy, protein structure, sequences, and genetic maps
JOURNAL (in) Coffin,J.M. (Ed.); RETROVIRUSES: 757;
CoId Spring Harbor Laboratory Press, CoId Spring Harbor, New York, NY, USA (1997) REFERENCE 2 (bases 1 to 8332) AUTHORS Chappey,C. TITLE Direct Submission JOURNAL Submitted (12-NOV-1997) NIH, NLM, Rockville Pike, Bethesda, MD
20894, USA
FEATURES Location/Qualifiers source 1..8332
/organism="Moloney murine leukemia virus" /db_xref="taxon:11801" mRNA 1..8332
/gene="gag-pol" mRNA join(l..205,5491..8332)
/gene="env" /product="gPr80" 51UTR 69..145 gene 357..1973
/gene="gag" CDS 357..1973
/gene="gag" /codon_start=l /product="Pr65" /db_xref="PID:g2801469" /translation=SEQ ID NO: 12
CDS join(357..1970, 1974..5573)
/gene="gag-pol" /codon_start=l /product="Prl80" /db_xref="PID:g2801471" /translation=SEQ ID NO: 13 mat_peptide 360..749
/gene="gag" /product="pl5 MA" mat_peptide 750..1001 /gene="gag" /product="ppl2" mat_peptide 1002..1790 /gene="gag" /product="p30 CA" mat_peptide 1791..1958 /gene="gag" /product="plO NC" mat_peptide join(1959..1970,1974. .2336) /product="pl4 PR" gene 1970..5573 /gene="pol" mat _jρeptide 2337..4349
/gene="pol"
/product="p80 RT" mat_peptide 4350..5570
/gene="pol"
/product="p46 IN" CDS 5513..7510
/gene="env"
/codon_start=1
/product="gPr80"
/db_xref = " PID : g2801470 "
/translation=SEQ ID NO: 14 mat _jpeptide 5612..6919
/product="gp70 SU" mat_peptide 6920..7507
/product="pl5E" mat_peptide 6920..7507
/product="pl2E TM" 3 ' UTR 7818 . . 8264
BASE COUNT 2143 a 2395 c 2025 g 1769 t
ZU SEQ ID NO: 15
LOCUS HIVNL43 9709 bp SS-RNA VRL 15-JUN-1989
DEFINITION Human immunodeficiency virus type 1, NY5/BRU (LAV-I) recombinant clone pNL4-3. ACCESSION M19921 NID g328415 KEYWORDS SOURCE Human immunodeficiency virus type 1 (HIV-I) , NY5/BRU (LAV-I) recombinant clone pNL4-3. ORGANISM Human immunodeficiency virus type 1
Viruses; Retroid viruses; Retroviridae; Lentivirus; Primate lentivirus group. REFERENCE 1 (bases 1 to 9709)
AUTHORS Adachi,A. , Gendelman,H.E. , Koenig,S., Folks,T., Willey,R.,
Rabson,A. and Martin,M.A.
TITLE Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone JOURNAL J. Virol. 59, 284-291 (1986) MEDLINE 86281827 REFERENCE 2 (bases 1 to 9709)
AUTHORS Buckler,C.E. , Buckler-White,A.J. , Willey,R.L. and McCoy,J. JOURNAL Unpublished (1988) REFERENCE 3 (sites)
AUTHORS Dai,L.C, Littaua,R., Takahashi,K. and Ennis,F.A. TITLE Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 resultis in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes
JOURNAL J. Virol. 66, 3151-3154 (1992) MEDLINE 92219406 COMMENT [3] sites; revisions of [3] .
Clean copy of sequence [3] kindly provided by Chuck Buckler, NIAID, Bethesda, MD, 24-JUN-1988. The construction of pNL4-3 has been described in [1] . pNL4-3 is a recombinant (infectious) proviral clone that contains DNA from HIV isolates NY5 (5' half) and BRU (3 'half) . The site of recombination is the EcoRI site at positions 5743-5748.
The length and sequence of the vpr coding region corresponds to that of the BRU, SC, SF2, MAL and ELI isolates. The vpr coding region of these isolates is about 18 amino acid residues longer than the vpr coding region of the IHb isolates. In HIVNL43, this shift is due to a Single base deletion (with respect to the Illb's) at position 5770. The sequence at this position is 'atttc' in HIVNL43 and 'attttc' in HIVHXB2.
The original BRU clone, sequenced by Wain-Hobson, et al. (Cell 40, 9-17 (1985)), and the BRU portion of the pNL4-3 recombinant clone are different clones from the same BRU isolate. Two of the revisions reported in the FEATURES produced changes in amino acid sequences. The revision at position 2421 changes one amino acid residue from 'R' to 1G' in the pol coding region. The revision at positions 8995-9000 changes three amino acid residues from 'AHT' to 1VTP' in the nef coding region. FEATURES Location/Qualifiers source 1..9709
/organism="Human immunodeficiency virus type 1"
/db_xref="taxon:11676" LTR 1..634
/note="5' LTR" repeat_region 454..550
/note="R repeat 5' copy" prim_transcript 455..9626
/note="tat, rev, nef subgenomic mRNA" intron 744..5776
/note="tat, rev, nef mRNA intron 1"
CDS 790..2292
/note="gag polyprotein"
/codon_start=l
/db_xref="PID:g328418"
/translation=SEQ ID NO: 16
CDS 2085..5096
/partial
/note= "pol polyprotein (NH2 -terτninus uncertain) "
/codon_start=l
/db_xref="PID:g328419"
/translation=SEQ ID NO: 17
CDS 5041..5619
/note="vif protein"
/codon_start=l
/db_xref="PID:g328420"
/translation=SEQ ID NO: 18
CDS 5559..5849
/note="vpr protein"
/codon_start=l
/db_xref="PID:g328421"
/translation=SEQ ID NO: 19 misc feature 5743..5748
/note="EcoRI site of recombination"
CDS join(5830..6044,8369..8414)
/note="tat protein"
/codon_start=l
/db_xref="PID:g328416"
/translation=SEQ ID NO: 20
CDS join(5969..6044,8369..8643)
/note="rev protein"
/codon_start=l
/db_xref="PID:g328417"
/translation=SEQ ID NO: 21 intron 6045..8368
/note="tat cds intron 2" intron 6045..8368
/note="tat, rev, nef mRNA intron 2" intron 6045..8368 /note="rev cds intron 2" CDS 6061..6306
/note="γpu protein"
/codon_start=l
/db_xref=MPID:g328422"
/translation=SEQ ID NO: 22 CDS 6221..8785
/note="envelope polyprotein"
/codon_start=l
/db_xref="PID:g328423"
/translation=SEQ ID NO: 23 CDS 8787..9407
/note="nef protein"
/codon_start=l
/db_xref="PID:g328424"
/translation=SEQ ID NO: 24

Claims

Patentansprüche
1. Verwendung von Verpackungszellen, die retrovirale, mit Arenavirus-Glykoprotein pseudotypisierte Virionen produ¬ zieren, zur Herstellung einer pharmazeutischen Zusammen¬ setzung zur Gentherapie solider Tumore, dadurch gekenn¬ zeichnet, dass die Verpackungszellen in der Lage sind, solide Tumore zu infiltrieren.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass die Verpackungszellen Stammzellen sind.
3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, dass die Stammzellen mesenchymale Stammzellen (MSC) oder multipotente adulte Progenitorzellen (MAPC) sind.
4. Verwendung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Verpackungszellen ein oder mehrere Expressionskassetten für die retroviralen Gene gag, pol, ein für ein Arenavirus-Glykoprotein kodierendes Gen und ferner einen retroviralen Gentransfervektor zur Verpackung in die pseudotypisierten Virionen umfassen, der mindestens ein therapeutisch anwendbares Transgen und/oder Markergen umfaßt.
5. Verwendung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Verpackungszellen ferner das Gen tat, rev und/oder env umfassen.
6. Verwendung nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Verpackungszellen aus der zu behandelnden Spezies stammen.
7. Verwendung nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die Verpackungszellen humanen Ursprungs sind.
8. Verwendung nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass der Tumor ein Hirntumor ist.
9. Verwendung von Verpackungszellen, die retrovirale, mit Arenavirus-Glykoprotein pseudotypisierte Virionen produ¬ zieren, zur Herstellung einer pharmazeutischen Zusammen¬ setzung zur Gentherapie von Hirntumoren.
10. Verwendung retroviraler, mit Arenavirus-Glykoprotein pseudotypisierter Virionen zur Herstellung einer pharmazeutischen Zusammensetzung zur Gentherapie von Hirntumoren.
11. Verwendung nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass das Arenavirus LCMV oder Lassa-Virus ist.
12. Verwendung nach Anspruch 11, dadurch gekennzeichnet, dass
LCMV LCMV-Wildtyp, LCMV-WE-HPI und LCMV-WE-HPIopt umfaßt.
13. Verwendung nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass die Nukleotidsequenz des Glykoprotein- gens für ein Glykoprotein mit mindestens 80 % Homologie zu der Aminosäuresequenz des Glykoproteins von LCMV-Wildtyp, von LCMV-WE, LCMV-WE-HPI, LCMV-WE-HPIopt oder Lassa-Virus kodiert.
14. Verwendung nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass die Nukleotidsequenz des für das Glykoprotein kodierenden Gens der Sequenz von SEQ ID NO 1, SEQ ID NO 25, SEQ ID NO 27 oder SEQ ID NO 28 entspricht.
15. Verwendung nach den Ansprüchen 1 bis 14, dadurch gekenn¬ zeichnet, dass das Retrovirus ein Onkoretrovirus oder ein Lentivirus ist.
16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass das Lentivirus HIV, SIV, EIAV oder FIV ist.
17. Verwendung nach den Ansprüchen 1 bis 16, dadurch gekenn¬ zeichnet, dass das Virion mindestens ein therapeutisch anwendbares Transgen und/oder Markergen umfaßt.
18. Verwendung nach Anspruch 17, dadurch gekennzeichnet, dass das therapeutisch anwendbare Transgen das Suizid-Gen Herpes simplex-Thymidinkinase (HSV-tk) und/oder Cytosin-Deaminase, und/oder ein immunstimulatorisches Gen, wie IL-4 oder Flt3L, ist.
19. Verwendung nach Anspruch 17, dadurch gekennzeichnet, dass das Markergen lacZ, ein Antibiotikaresistenzgen und/oder ein Gen für ein Fluoreszenz-Protein ist.
20. Verwendung nach den Ansprüchen 17 bis 19, dadurch gekennzeichnet, dass das therapeutisch anwendbare Transgen und/oder Markergen nach der Therapie spezifisch in den Zellen des Tumors exprimiert werden.
21. Verwendung nach den Ansprüchen 1 bis 20, dadurch gekennzeichnet, dass der Tumor ein Gliom, Neuroblastom, Oligodendrogliom oder Astrocytom ist.
22. Verwendung nach den Ansprüchen 1 bis 21, dadurch gekennzeichnet, dass der Tumor maligne ist.
23. Verwendung nach den Ansprüchen 1 bis 22, dadurch gekennzeichnet, dass der Tumor ein malignes Gliom ist.
24. Verwendung nach den Ansprüchen 1 bis 23, dadurch gekennzeichnet, dass die pharmazeutische Zusammensetzung ferner geeignete Hilfsstoffe und/oder Trägerstoffe umfaßt.
25. Verpackungszellen zur Gentherapie solider Tumore, die retrovirale, mit Arenavirus-Glykoprotein pseudotypisierte Virionen produzieren, dadurch gekennzeichnet, dass die Zellen in der Lage sind, solide Tumore zu infiltrieren.
26. Verpackungszellen nach Anspruch 25, dadurch gekennzeichnet, dass sie ein oder mehrere Expressionskassetten für die retroviralen Gene gag, pol und ferner ein für ein Arena- virus-Glykoprotein kodierendes Gen umfassen.
27. VerpackungsZeilen nach Anspruch 26, dadurch gekennzeichnet, dass die Verpackungszellen primäre Zellen oder Stammzellen sind.
28. Verpackungszellen nach Anspruch 27, dadurch gekennzeichnet, dass die Stammzellen mesenchymale Stammzellen (MSC) oder multipotente adulte Progenitorzellen (MAPC) sind.
29. Verpackungszellen nach den Ansprüchen 25 bis 28, dadurch gekennzeichnet, dass das Arenavirus LCMV oder Lassa-Virus ist.
30. Verpackungszellen nach Anspruch 29, dadurch gekennzeichnet, dass LCMV LCMV-Wildtyp, LCMV-WE-HPI und LCMV-WE-HPIopt umfaßt.
31. Verpackungszellen nach den Ansprüchen 25 bis 30, dadurch gekennzeichnet, dass die Nukleotidsequenz des Glykoprotein- gens für ein Glykoprotein mit mindestens 80 % Homologie zu der Aminosäuresequenz des Glykoproteins von LCMV-Wildtyp, von LCMV-WE, LCMV-WE-HPI, LCMV-WE-HPIopt oder Lassa-Virus kodiert.
32. Verpackungszellen nach den Ansprüchen 25 bis 30, dadurch gekennzeichnet, dass die Nukleotidsequenz des für das Glykoprotein kodierenden Gens der Sequenz von SEQ ID NO 1, SEQ ID NO 25, SEQ ID NO 27 oder SEQ ID NO 28 entspricht.
33. Verpackungszellen zur Gentherapie solider Tumore, die retrovirale, mit Arenavirus-Glykoprotein pseudotypisierte Virionen produzieren, dadurch gekennzeichnet, dass das Arenavirus-Glykoprotein Lassa-Virus Glykoprotein ist.
34. Verpackungszellen nach Anspruch 33, dadurch gekennzeichnet, dass sie ein oder mehrere Expressionskassetten für die retroviralen Gene gag, pol und ferner ein für Lassa-Virus- Glykoprotein kodierendes Gen umfassen.
35. Verpackungszellen nach den Ansprüchen 25 bis 34, dadurch gekennzeichnet, dass sie ferner das Gen tat, rev und/oder env umfassen.
36. Verpackungszellen nach den Ansprüchen 25 bis 35, dadurch gekennzeichnet, dass sie humanen Ursprungs sind.
37. Verpackungszellen nach den Ansprüchen 25 bis 36, dadurch gekennzeichnet, dass das Retrovirus ein Onkoretrovirus oder ein Lentivirus ist.
38. Verpackungszellen nach Anspruch 37, dadurch gekennzeichnet, dass das Lentivirus HIV, SIV, EIAV oder FIV ist.
39. Verpackungszellen nach den Ansprüchen 25 bis 38, dadurch gekennzeichnet, dass sie ferner einen retroviralen Gentransfervektor zur Verpackung in pseudotypisierte Virionen umfassen, der mindestens ein therapeutisch anwendbares Transgen und/oder Markergen umfaßt.
40. Verpackungszellen nach Anspruch 39, dadurch gekennzeichnet, dass das therapeutisch anwendbare Transgen das Suizid-Gen Herpes simplex-Thymidinkinase (HSV-tk) und/oder Cytosin- Deaminase, ein immunstimulatorisches Gen, wie IL-4 oder Flt3L, ist.
41. Verpackungszellen nach Anspruch 39, dadurch gekennzeichnet, dass das Markergen lacZ, ein Antibiotikaresistenzgen und/oder ein Gen für ein Fluoreszenz-Protein ist.
42. Pharmazeutische Zusammensetzung zur Gentherapie solider
Tumore, die Verpackungszellen nach den Ansprüchen 25 bis 41 umfasst.
PCT/EP2005/007687 2004-07-16 2005-07-14 Gentherapie solider tumore durch retrovirale, mit arenavirus-glykoprotein pseudotypisierte vektoren WO2006008074A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/632,302 US20080124308A1 (en) 2004-07-16 2005-07-14 Gene Therapy of Solid Tumours by Means of Retroviral Vectors Pseudotyped With Arenavirus Glycoproteins
EP05759743A EP1778295A1 (de) 2004-07-16 2005-07-14 Gentherapie solider tumore durch retrovirale, mit arenavirus-glykoprotein pseudotypisierte vektoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004034461A DE102004034461B4 (de) 2004-07-16 2004-07-16 Gentherapie solider Tumore durch retrovirale, mit Arenavirus-Glykoprotein pseudotypisierte Vektoren
DE102004034461 2004-07-16

Publications (1)

Publication Number Publication Date
WO2006008074A1 true WO2006008074A1 (de) 2006-01-26

Family

ID=34977112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/007687 WO2006008074A1 (de) 2004-07-16 2005-07-14 Gentherapie solider tumore durch retrovirale, mit arenavirus-glykoprotein pseudotypisierte vektoren

Country Status (4)

Country Link
US (1) US20080124308A1 (de)
EP (1) EP1778295A1 (de)
DE (1) DE102004034461B4 (de)
WO (1) WO2006008074A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050860A1 (de) 2008-10-08 2010-04-15 Dorothee Von Laer LCMV-GP-VSV-Pseudotypvektoren und tumorinfiltrierende Virenproduzentenzellen zur Therapie von Tumoren
WO2013055418A3 (en) * 2011-07-11 2013-06-20 Inovio Pharmaceuticals, Inc. Cross-protective arenavirus vaccines and their method of use
US8734795B2 (en) 2008-10-31 2014-05-27 Biogen Idec Ma Inc. Light targeting molecules and uses thereof
WO2015082570A1 (en) * 2013-12-03 2015-06-11 Hookipa Biotech Ag Cmv vaccines
WO2015183895A1 (en) * 2014-05-27 2015-12-03 University Of Rochester Novel arenavirus vaccine
WO2016166285A1 (de) 2015-04-17 2016-10-20 Lang Karl Sebastian Arenaviren zur anwendung bei der behandlung und/oder vorbeugung von tumoren sowie verfahren zur herstellung von arenaviren mit (verbesserten) tumorregressiven eigenschaften
US10265357B2 (en) 2008-10-08 2019-04-23 Viratherapeutics Gmbh Compositions, methods and uses for treating solid tumors using LCMV-GP-VSV pseudotype vectors
WO2020053324A1 (en) 2018-09-12 2020-03-19 Abalos Therapeutics Gmbh Method for producing an antitumoral arenavirus as well as arenavirus mutants
WO2022053703A1 (en) 2020-09-14 2022-03-17 Boehringer Ingelheim International Gmbh Heterologous prime boost vaccine
US12024728B2 (en) 2021-09-08 2024-07-02 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome
US12123034B2 (en) 2023-08-10 2024-10-22 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101022401B1 (ko) * 2005-09-29 2011-03-15 아주대학교산학협력단 자살유전자를 발현하는 중간엽 줄기세포를 포함하는 암치료용 조성물
EP3134107B1 (de) 2014-04-24 2020-05-27 Janssen Sciences Ireland Unlimited Company Verwendung eines hiv-abgeleiteten zubehörproteins zur reaktivierung von latentem hiv

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006196A2 (de) * 1998-11-26 2000-06-07 Heinrich-Pette-Institut Retrovirale, mit LCMV-Glykoprotein pseudotypisierte Hybrid-Vektoren
US6589763B1 (en) * 1998-11-26 2003-07-08 Heinrich-Pette-Institute Retroviral hybrid vectors pseudotyped with LCMV

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218181B1 (en) * 1998-03-18 2001-04-17 The Salk Institute For Biological Studies Retroviral packaging cell line
US7135339B2 (en) * 2003-11-20 2006-11-14 University Of Iowa Research Foundation Methods for producing and using in vivo pseudotyped retroviruses using envelope glycoproteins from lymphocytic choriomeningitis virus (LCMV)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006196A2 (de) * 1998-11-26 2000-06-07 Heinrich-Pette-Institut Retrovirale, mit LCMV-Glykoprotein pseudotypisierte Hybrid-Vektoren
US6589763B1 (en) * 1998-11-26 2003-07-08 Heinrich-Pette-Institute Retroviral hybrid vectors pseudotyped with LCMV

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BEYER W R ET AL: "Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: Generation, concentration, and broad host range", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 76, no. 3, February 2002 (2002-02-01), pages 1488 - 1495, XP002323020, ISSN: 0022-538X *
BEYER W R ET AL: "Recombinant expression of lymphocytic choriomeningitis virus strain WE glycoproteins: a single amino acid makes the difference.", JOURNAL OF VIROLOGY. JAN 2001, vol. 75, no. 2, January 2001 (2001-01-01), pages 1061 - 1064, XP002347069, ISSN: 0022-538X *
MILETIC ET AL: "77. Efficient Transduction and Therapy of Malignant Glioma by Lentiviral Vectors Pseudotyped with LCMV Glycoproteins", MOLECULAR THERAPY, ACADEMIC PRESS, SAN DIEGO, CA,, US, vol. 11, 15 August 2005 (2005-08-15), pages 31 - 32, XP005015416, ISSN: 1525-0016 *
MILETIC H ET AL: "Retroviral vectors pseudotyped with lymphocytic choriomenengitis virus", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 73, no. 7, July 1999 (1999-07-01), pages 6114 - 6116, XP002135674, ISSN: 0022-538X *
MILETIC HRVOJE ET AL: "Selective transduction of malignant glioma by lentiviral vectors pseudotyped with lymphocytic choriomeningitis virus glycoproteins", HUMAN GENE THERAPY, vol. 15, no. 11, November 2004 (2004-11-01), pages 1091 - 1100, XP002347071, ISSN: 1043-0342 *
WATSON D J ET AL: "Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins", MOLECULAR THERAPY, ACADEMIC PRESS, SAN DIEGO, CA,, US, vol. 5, no. 5 Pt 1, May 2002 (2002-05-01), pages 528 - 537, XP002323022, ISSN: 1525-0016 *
WONG LIANG-FONG ET AL: "Transduction patterns of pseudotyped lentiviral vectors in the nervous system.", MOLECULAR THERAPY : THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY. JAN 2004, vol. 9, no. 1, January 2004 (2004-01-01), pages 101 - 111, XP002347070, ISSN: 1525-0016 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650649B2 (en) 2008-10-08 2017-05-16 Viratherapeutics Gmbh LCMV-GP-VSV-pseudotyped vectors and tumor-infiltrating virus-producing cells for the therapy of tumors
WO2010040526A1 (de) * 2008-10-08 2010-04-15 Von Laer, Dorothee Lcmv-gp-vsv-pseudotypvektoren und tumorinfiltrierende virenproduzentenzellen zur therapie von tumoren
US20110250188A1 (en) * 2008-10-08 2011-10-13 Dorothee Von Laer LCMV-GP-VSV-Pseudotyped Vectors and Tumor-Infiltrating Virus-Producing Cells for the Therapy of Tumors
EP2597154A1 (de) 2008-10-08 2013-05-29 Dorothee Von Laer LCMV-GP-VSV-Pseudotypvektoren und tumorinfiltrierende Virusproduzentenzellen zur Therapie von Tumoren
DE102008050860A1 (de) 2008-10-08 2010-04-15 Dorothee Von Laer LCMV-GP-VSV-Pseudotypvektoren und tumorinfiltrierende Virenproduzentenzellen zur Therapie von Tumoren
US10265357B2 (en) 2008-10-08 2019-04-23 Viratherapeutics Gmbh Compositions, methods and uses for treating solid tumors using LCMV-GP-VSV pseudotype vectors
US9963718B2 (en) 2008-10-08 2018-05-08 Viratherapeutics Gmbh LCMV-GP-VSV-pseudotyped vectors and tumor-infiltrating virus-producing cells for the therapy of tumors
US8734795B2 (en) 2008-10-31 2014-05-27 Biogen Idec Ma Inc. Light targeting molecules and uses thereof
WO2013055418A3 (en) * 2011-07-11 2013-06-20 Inovio Pharmaceuticals, Inc. Cross-protective arenavirus vaccines and their method of use
US11554169B2 (en) 2013-12-03 2023-01-17 Hookipa Biotech Gmbh CMV vaccines
AU2014359276B2 (en) * 2013-12-03 2021-01-28 Hookipa Biotech Gmbh CMV vaccines
WO2015082570A1 (en) * 2013-12-03 2015-06-11 Hookipa Biotech Ag Cmv vaccines
EP3904522A1 (de) * 2013-12-03 2021-11-03 Hookipa Biotech GmbH Cmv-impfstoffe
US10111945B2 (en) 2013-12-03 2018-10-30 Hookipa Biotech Gmbh CMV vaccines
WO2015183895A1 (en) * 2014-05-27 2015-12-03 University Of Rochester Novel arenavirus vaccine
US10342861B2 (en) 2014-05-27 2019-07-09 University Of Rochester Arenavirus vaccine
WO2016166285A1 (de) 2015-04-17 2016-10-20 Lang Karl Sebastian Arenaviren zur anwendung bei der behandlung und/oder vorbeugung von tumoren sowie verfahren zur herstellung von arenaviren mit (verbesserten) tumorregressiven eigenschaften
DE102015207036A1 (de) 2015-04-17 2016-10-20 Karl Sebastian Lang Arenaviren zur Anwendung bei der Behandlung und/oder Vorbeugung von Tumoren sowie Verfahren zur Herstellung von Arenaviren mit (verbesserten) tumorregressiven Eigenschaften
CN108025054A (zh) * 2015-04-17 2018-05-11 卡尔·塞班斯坦·兰 用于治疗和/或预防肿瘤的沙粒病毒和用于制备具有(改善的)肿瘤消退性能的沙粒病毒的方法
US11801294B2 (en) 2015-04-17 2023-10-31 Abalos Therapeutics Gmbh Method of enhancing innate immune responses against a tumor comprising administering lymphocytic choriomeningitis virus (LCMV)
EP4019533A1 (de) 2018-09-12 2022-06-29 Abalos Therapeutics GmbH Verfahren zur herstellung eines antitumoralen arenavirus sowie von arenavirusmutanten
WO2020053324A1 (en) 2018-09-12 2020-03-19 Abalos Therapeutics Gmbh Method for producing an antitumoral arenavirus as well as arenavirus mutants
US12129281B2 (en) 2018-09-12 2024-10-29 Abalos Therapeutics Gmbh Method for producing an antitumoral arenavirus as well as arenavirus mutants
WO2022053703A1 (en) 2020-09-14 2022-03-17 Boehringer Ingelheim International Gmbh Heterologous prime boost vaccine
US12024728B2 (en) 2021-09-08 2024-07-02 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome
US12031162B2 (en) 2021-09-08 2024-07-09 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome
US12037617B2 (en) 2021-09-08 2024-07-16 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome
US12123034B2 (en) 2023-08-10 2024-10-22 Flagship Pioneering Innovations Vi, Llc Methods and compositions for modulating a genome

Also Published As

Publication number Publication date
EP1778295A1 (de) 2007-05-02
DE102004034461A1 (de) 2006-02-09
DE102004034461B4 (de) 2008-02-07
US20080124308A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2006008074A1 (de) Gentherapie solider tumore durch retrovirale, mit arenavirus-glykoprotein pseudotypisierte vektoren
DE69830798T2 (de) Retrovirale vektoren, die funktionelle spleiss-donor- und spleiss-akzeptor-stellen enthalten
DE69631795T2 (de) Vektor und verfahren zur einbringung von nukleinsäure in sich nicht teilende zellen
DE69838758T2 (de) Verfahren und mittel zur herstellung von sicheren, rekombinanten lentivirusvektoren mit hohem titer
AU2005266221B2 (en) Non-integrative and non-replicative lentivirus, preparation and uses thereof
JP4390860B2 (ja) レンチウイルスをベースにした遺伝子転移ベクター
DE69434860T2 (de) Herstellung von helfer-freien retroviren mit hohem titer mittels transienter transfektion
DE68929122T2 (de) Rekombinante Retroviren
DE60028066T2 (de) Lentivirale vektoren für die herstellung von immunotherapeutischen zusammensetzungen
DE69032841T2 (de) Rekombinante zellen für therapien von infektionen und hyperprolieferative störungen und deren herstellung
EP1006196B1 (de) Retrovirale, mit LCMV-Glykoprotein pseudotypisierte Hybrid-Vektoren
EP1171624B1 (de) Verfahren und mittel für die herstellung von sicheren rekombinanten lentiviralen vektoren mit hohem titer
DE69936577T2 (de) Lentivirale Verpackungszellen
DE60023600T2 (de) Replizierende retrovirale Konstrukte, ihre Herstellung und Verwendungen für den Gentransfer
WO1997012622A9 (en) Vector and method of use for nucleic acid delivery to non-dividing cells
JP2002512804A (ja) ヌクレオチド配列の導入のためのトリプレックス構造のdna配列の利用
DE69614527T2 (de) Retrovirale vektoren aus gefluegel-sarcom-leukoseviren ermoeglichen den transfer von genen in saeugetierzellen und ihre therapeutischen anwendungen
JP2003514565A (ja) 非分裂細胞を不死化する能力をもつベクター及び前記ベクターで不死化された細胞
JP2001517453A (ja) 方 法
Metharom et al. Novel bovine lentiviral vectors based on Jembrana disease virus
DE69635513T2 (de) Menschliche Pancreas Zelllinien: Entwicklungen und Anwendungen
US20240050481A1 (en) Composition for use in treating dystrophic epidermolysis bullosa
DE602004013165T2 (de) Chimärisches vektorsystem
DE69829174T2 (de) Exprimierung eines modifiziertem &#34;foamy virus envelope protein&#34; (hüllenprotein)
DE69618579T2 (de) Rekombinante dna-vektoren für die gentherapie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005759743

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005759743

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632302

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11632302

Country of ref document: US