WO2006006460A1 - 超音波撮像装置 - Google Patents

超音波撮像装置 Download PDF

Info

Publication number
WO2006006460A1
WO2006006460A1 PCT/JP2005/012456 JP2005012456W WO2006006460A1 WO 2006006460 A1 WO2006006460 A1 WO 2006006460A1 JP 2005012456 W JP2005012456 W JP 2005012456W WO 2006006460 A1 WO2006006460 A1 WO 2006006460A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
phasing
imaging apparatus
reflected echo
ultrasonic imaging
Prior art date
Application number
PCT/JP2005/012456
Other languages
English (en)
French (fr)
Inventor
Ryuichi Shinomura
Katsunori Asafusa
Mitsuhiro Oshiki
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US11/571,782 priority Critical patent/US20080294050A1/en
Priority to JP2006528927A priority patent/JPWO2006006460A1/ja
Publication of WO2006006460A1 publication Critical patent/WO2006006460A1/ja
Priority to US13/241,105 priority patent/US20120073374A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/5208Constructional features with integration of processing functions inside probe or scanhead
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52095Details related to the ultrasound signal acquisition, e.g. scan sequences using multiline receive beamforming
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays

Definitions

  • the present invention relates to an ultrasonic imaging apparatus, and more particularly to a technique suitable for transmitting and receiving ultrasonic waves by an ultrasonic probe formed by arranging a plurality of transducers.
  • An ultrasonic imaging apparatus emits ultrasonic waves to a subject from a plurality of transducers arranged on an ultrasonic probe, and constructs an ultrasonic image based on reflected echo signals generated by the subject force.
  • transmission means for giving focus control by giving a predetermined delay to the drive signal supplied to each transducer of the probe, and the reflected echo signal output from each transducer force are received and phased and added.
  • Receiving means is provided.
  • the transmission means and the reception means require a circuit for each transducer, the circuit scale increases.
  • An object of the present invention is to realize an ultrasonic imaging apparatus that avoids S / N degradation of an ultrasonic image while suppressing an increase in the size of a transmission / reception circuit.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-256933
  • Patent Document 2 US Patent US5229933
  • An ultrasonic probe in which a plurality of transducers for transmitting and receiving ultrasonic waves to and from a subject are arrayed, transmission means for supplying a drive signal to each transducer, and reception by each transducer
  • An ultrasonic imaging apparatus comprising: receiving means for receiving a wave-like reflected echo signal after phasing addition; and an image processing unit for reconstructing an ultrasonic image based on the received reflected echo signal! Oh! Then, the transmitting means divides the plurality of vibrators into a plurality of sets and assigns the vibrators belonging to the same set. Supply a common drive signal.
  • the transmission means transmits an ultrasonic wave from each transducer by inputting a common drive signal for each group. Further, the transmission means selects all or a predetermined set of the plurality of sets, supplies a driving signal to a vibrator belonging to the selected set, and performs focus control in units of the selected set. To do. Alternatively, the transmission means thins out the transducers belonging to the same set, inputs a drive signal, and transmits ultrasonic waves.
  • the bundling portion for assembling the plurality of transducers is provided in a casing of the ultrasonic probe.
  • the vibrator is formed by fine processing by a semiconductor process.
  • the number of transducers belonging to the set to which the common drive signal is input by the transmission means increases for each set as it goes toward the center of the ultrasonic aperture of the ultrasonic probe.
  • the receiving means divides the plurality of vibrators into a plurality of groups, and first phasing and adding means for phasing and adding the reflected echo signals output from the transducer force belonging to each of the groups; And second phasing / adding means for phasing / adding each reflected echo signal output from the first phasing / adding means.
  • the first phasing and adding means is provided in a housing of the ultrasonic probe.
  • the number of vibrators belonging to the set to which the reflection echo signal is phased and added by the first phasing addition means is the number of vibrators belonging to the set to which the common drive signal is input by the transmission means. And different.
  • the number of transducers belonging to the set to which the reflected echo signal is phased and added by the first phasing addition means is the same as the number of transducers belonging to the set to which the common drive signal is input by the transmission means. is there.
  • the number of vibrators belonging to the set to which the reflected echo signal is phased and added by the first phasing and adding means increases for each set as it goes toward the center of the ultrasonic aperture of the ultrasonic probe. Become. 10.
  • the receiving means receives all reflected echo signals.
  • the receiving means performs tilt delay and concave focus delay to form a double beam.
  • the first phasing / adding means performs an inclination delay
  • the second phasing / adding means is a concave surface.
  • An orcas delay is performed to form a double beam.
  • the first phasing / adding means performs concave focus delay
  • the second phasing / adding means performs tilt delay to form a double beam.
  • FIG. 1 is a block diagram of an ultrasonic imaging apparatus according to an embodiment to which the present invention is applied.
  • FIG. 2 is a diagram showing an array of transducers of the ultrasonic probe in FIG.
  • FIG. 3 A configuration diagram of the bundling portion of FIG. 1 is shown.
  • FIG. 4 is a diagram for explaining a reception process of a reflected echo signal according to an embodiment to which the present invention is applied.
  • FIG. 5 is another example of an ultrasonic probe to which the present invention is applied.
  • FIG. 7 is a diagram for explaining a technique for forming a double beam.
  • FIG. 8 is a diagram for explaining a technique for forming a double beam.
  • FIG. 1 is a block diagram of an ultrasonic imaging apparatus to which the present invention is applied. As shown in FIG. 1, the ultrasonic imaging apparatus is configured by connecting an ultrasonic probe 10 to an apparatus main body 14 via a plurality of cables 12.
  • the ultrasonic probe 10 is formed by two-dimensionally arranging a plurality (eg, 1024) of transducers 16 that transmit and receive ultrasonic waves to and from a subject. Are divided into multiple n (eg 256) groups.
  • a bundling unit 18 that supplies a common drive signal to the transducers 16 belonging to the same set and performs the first phasing addition for each set on the reflected echo signal output from the transducer 16 is an ultrasonic probe.
  • N are arranged in the housing of the child 10.
  • Each of the bundling portions 18 is connected to, for example, four vibrators belonging to each group via wiring.
  • the apparatus body 14 includes a transmission unit 20 that outputs a drive signal to each bundling unit 18, a wave receiving circuit unit 22 that receives a reflected echo signal output from the bundling unit 18, and an output from the wave receiving circuit unit 22.
  • An analog-to-digital converter (hereinafter referred to as ADC unit 24) that converts the reflected echo signal to be converted into a digital signal according to the control command of the clock unit, and the reflected echo signal output from the ADC unit 24
  • the bundling unit 18, the receiving circuit unit 22, the ADC unit 24, the second phasing and adding unit 26, and the signal processing unit 28 are collectively referred to as a receiving unit.
  • a display unit 30 that displays a three-dimensional ultrasonic image output from the signal processing unit 28 and a control unit that outputs a control command to each unit are provided.
  • the transmission means 20 includes a wave phasing unit 32 that performs focus control by giving a predetermined delay to each of a plurality of drive signals, and each bundling unit that drives each of the drive signals focus-controlled by the wave phasing unit 32 18 is provided with a transmission circuit section 34 that outputs to 18.
  • the transmission phasing unit 32 has n transmission phasing circuits, and the transmission circuit unit 34 has n transmission circuits.
  • Each transmission phasing circuit of the transmission circuit section 34 is connected to each bundle section 18 via a single cable 12.
  • the receiving circuit unit 22 includes n receiving circuits that receive the reflected echo signals output from each of the bundling units 18.
  • the receiving circuit includes a preamplifier and an attenuation of a signal in the depth direction. It consists of a TGC (Time Gain Compensation) circuit that compensates for this.
  • the ADC unit 24 has n ADC circuits that convert each reflected echo signal output from the receiving circuit unit 22 into a digital signal.
  • Each receiving circuit of the receiving circuit unit 22 is connected to each bundling unit 18 via a single cable 12.
  • the second phasing and adding means 26 adds a digital phasing unit 36 for phasing each reflected echo signal output from the ADC unit 24, and a reflected echo signal output from the digital phasing unit 36.
  • the adder circuit 38 is provided.
  • the digital phasing unit 336 has n digital phasing circuits.
  • FIG. 2 is a diagram showing an arrangement of the transducers 16 of the ultrasonic probe shown in FIG.
  • 1024 transducers 16 are arranged in a square shape, such as 32 ⁇ 32 (32 in the X direction and 32 in the Y direction).
  • the two-dimensionally arranged transducers 16 are divided into 256 sets T1 to T256 so that four transducers arranged in 2 X 2 (2 in the X direction and 2 in the Y direction) belong to the same set. Each is divided into squares.
  • the plurality of transducers 16 are divided into 16 blocks in the X direction as well as being divided into 16 blocks in the X direction, resulting in pseudo 256 transducers.
  • the arrangement position of the transducers is represented as (x, y) .
  • four transducers belonging to the set T1 in FIG. 2 are represented by transducers (1, 1), (1, 2), They are called (2, 1) and (2, 2).
  • the vibrators belonging to the same set The number can be changed, and the blocks may be divided into 9 squares and 16 squares. The block may be divided into rectangles.
  • FIG. 3 is a diagram showing, as an example, the configuration of the bundle portion 18 connected to each vibrator belonging to the yarn T1.
  • the bundling portions 18 corresponding to the other groups are similarly configured.
  • the bundling portion 18 has two terminals T and R on the device body 14 side, and four terminals SI and 1 on the vibrator (1, 1) to (2, 2) side. S2, S3, S4.
  • the terminal T is connected to the cable 12 and is branched into four lines in the bundled portion 18, and each branched line is connected to the vibrator (1 , 1) to (2, 2).
  • the vibrators (1, 1) to (2, 2) are connected to the delay circuit 44 via the receiving switch 42, respectively.
  • an adder circuit 46 for adding the reflected echo signals output from the delay circuits 44 and an amplifier circuit 48 for amplifying the reflected echo signals output by the adder circuit 46 are provided.
  • the delay circuit 44 and the adder circuit 46 are collectively referred to as first phasing and adding means.
  • the delay circuit 44 may be an analog sample circuit (eg, CCD, switched capacitor, analog memory), an LC delay line, or a ⁇ modulator. You may use what was formed by.
  • the ⁇ modulator consists of an integrator circuit ( ⁇ ), a quantum oscillator, and a latch. A single input terminal force analog signal is input to the integrator, and the signal output from the integrator is A-D converted. Output a single output terminal force.
  • the ultrasonic emission side of the ultrasonic probe 10 is brought into contact with, for example, the body surface of the subject.
  • the operator input In response to the command, for example, 256 drive signals are generated.
  • Each of the generated drive signals is given a predetermined delay by the transmission phasing unit 32 in accordance with a preset focus point of the ultrasonic beam.
  • Each delayed drive signal is subjected to processing such as amplification by the transmission circuit unit 34 and then output to each bundling unit 18.
  • the drive signal input to the terminal T of each bundling section 18 is supplied as a drive signal common to the vibrators belonging to each group from the terminals S1 to S4 via the transmission switch 40.
  • the common drive signal A is supplied to the vibrators (1, 1) to (2, 2) belonging to the same set T1.
  • a drive signal B having a phase different from that of the drive signal A is supplied to each transducer belonging to another set (for example, the set T2 adjacent to the set T).
  • a common drive signal is input to each of the yarns T1 to T256, ultrasonic waves are transmitted from each transducer 16, and a transmitted beam is formed by the transmitted ultrasonic waves.
  • a transmitted beam is formed by the transmitted ultrasonic waves.
  • the generated reflected echo signal is received by each of the transducers 16 of the ultrasonic probe 10.
  • the received reflected echo signal is output from each transducer 16 to each bundling section 18 in units of sets.
  • the output reflected echo signal is phased and added by the bundling unit 18 and then subjected to amplification processing.
  • the reflected echo signals output from the transducers (1, 1) to (2, 2) belonging to the same set T1 are input to the terminals S1 to S4 of the bundling unit 18, respectively.
  • Each input reflected echo signal is phased by the delay circuit 44.
  • Each phased reflected echo signal is added by the adder circuit 46.
  • the added reflected echo signal is amplified by the amplification circuit 48 and then output from the terminal R.
  • the reflected echo signal output from the bundling unit 18 is amplified and TGC corrected by the receiving circuit unit 22 and then converted to a digital signal by the ADC unit 24.
  • the digitized reflected echo signal is phased by the digital phasing unit 36 and then added by the adding circuit 38.
  • the added reflected echo signal is subjected to signal processing such as various filtering processing and envelope processing by the signal processing unit 28.
  • the signal processing unit 28 can also perform blood flow signal processing such as CFM (Color Flow Mapping) and Doppler processing.
  • the reflected echo signal output from the signal processing unit 28 is stored as three-dimensional volume data in a memory or the like.
  • the stored volume data is read as appropriate, and a 3D ultrasound image is reconstructed based on the read data.
  • Reconstructed 3D ultrasound image Is converted to a display signal by a digital scan converter (DSC) and then displayed on the display unit.
  • DSC digital scan converter
  • transducer groups for example, transducers (1, 1) to (2, 2)
  • the same set for example, set T1
  • the number of sets (for example, 256) of transmission phasing circuits for the transmission phasing section 32 and the transmission circuit of the transmission circuit section 34 can be provided. As a result, the circuit scale can be reduced.
  • the sensitivity of the reflected echo signal processed by the receiving means is improved, so that the ultrasonic image S / N can be increased.
  • FIG. 4A The horizontal axis in Figures 4A to 4C is the time axis.
  • FIG. 4A an example in which a plurality of Z transducers are arranged side by side is used. Note that the vibrators (1, 1) to (2, 2) in FIG. 4A correspond to those in FIG.
  • the arrival time the time for the reflected echo signal generated from the point P to reach each transducer (hereinafter referred to as the arrival time). Is different.
  • the sampling interval of the sampling clock of the ADC unit 24 is 50 ns
  • the sample interval (delay interval) of the digital sample delay of the digital phasing unit 36 is 50 ns.
  • FIG. 4B is a diagram showing the delay time of the reflected echo signal output from each transducer (1, 1) to (2, 2).
  • FIG. 4C is a diagram illustrating a delay process by the delay circuit 44.
  • the delay time is 5.00 s, as shown in Fig. 4B. Yes.
  • the delay time of the reflected echo signal of the transducer (1, 2) is 4.99 s
  • the delay time of the reflected echo signal of the transducer (2, 1) is 4.98 s
  • the reflected echo signal of the transducer (2, 2) The delay time is 4.975 s.
  • the time difference between the delay time of the reflected echo signal of each transducer (1, 1) to (2, 1) and the delay time of the reflected echo signal of the transducer (2, 2) is obtained.
  • the time difference between the reflected echo signal delay time 5.00 s of the transducer (1, 1) and the reflected echo signal delay time 4.975 s of the transducer (2, 2) is calculated to be 25 ns.
  • the time difference between the delay time of the reflected echo signal of the transducer (1, 2) 4.99 ⁇ s and the delay time of the reflected echo signal of the transducer (2, 2) 4.975 s is calculated to be 15 ns. Also, the time difference between the reflected echo signal delay time 4.98 s of the transducer (1, 2) and the reflected echo signal delay time 4.975 ⁇ s of the transducer (2, 2) is 5 ns.
  • a small delay amount considering the delay interval 50ns of the digital phasing unit 36 (that is, a delay smaller than the delay interval 50ns) Amount). For example, the remainder when the delay time 4.975 s of the reflected echo signal of the transducer (2, 2) is divided by the delay interval 50 ns is obtained as the minute delay amount 25 ns.
  • a power obtained by adding a time difference between the obtained minute delay amount 25 ns and the delay time of the reflected echo signal of the transducer (2, 2) is the delay amount of each reflected echo signal.
  • the reflected echo signal of the transducer (1, 1) is delayed by 50 ns (time difference 25 ns + minute delay amount 25 ns) by the delay circuit 44.
  • the reflected echo signal of the transducer (1, 2) is 40 ns (time difference 15 ns + minute delay amount 25 ns), and the reflected echo signal of the transducer (2, 1) is 30 ns (time difference 5 ns + minute delay amount 25 ns).
  • the reflected echo signal of (2, 2) is delayed by 25ns (time difference 0ns + minute delay amount 25ns).
  • time difference 0ns + minute delay amount 25ns the time difference between each delayed reflected echo signal and the reflected echo signal of transducer Z is 4.95 s.
  • Each delayed echo signal delayed in this way is subjected to calorific calculation by the adder circuit 46 and then output to the receiving circuit unit 22 via the amplifier circuit 48.
  • the reflected echo signals received by each transducer are bundled for each of the groups T1 to T256 by the plurality of bundling portions 18.
  • the minute delay amount of 25 ns can be given to each reflected echo signal by implementing an interpolation processing function in the digital phasing unit 36 of the apparatus body 14 instead of the delay circuit 44.
  • FIG. 4D is a diagram showing processing for phasing the reflected echo signal phased and added by the processing of FIG. 4C by the digital phasing unit 36.
  • the reflected echo signals output from the transducers (1, 1) to (2, 2) are processed by the delay circuit 44 and the adder circuit 46 of the bundling unit 18 as shown in FIG. 22 and the ADC section 24 to output to the digital phasing section 36.
  • Output The reflected echo signal is delayed by 4.95 s (delay interval 50 ns ⁇ 99 samples) by the digital phasing unit 36 as shown in FIG. 4D.
  • the reflected echo signals output from the transducers (1, 1) to (2, 2) are phased with reference to the reflected echo signal of the transducer Z.
  • the reflected echo signals output from the transducer 16 are bundled for each of the groups T1 to T256 by the bundling portions 18, and the bundled reflected echo signals are phased by the digital phasing portion 36.
  • the reflected echo signals are bundled in pairs by the first phasing and adding means (the delay circuit 44 and the addition circuit 46 of the bundling unit 18). ) Only the digital phasing circuit (phasing channel) of the digital phasing unit 36 is required, and the circuit scale can be reduced. As a result, the number of phasing channels in the device main body 14 is designed to be small for a one-dimensional array type ultrasonic probe! Even when the device main body 14 has a two-dimensional array type ultrasonic probe 10 Can be connected. In short, by controlling the transducer 16 of the ultrasonic probe 10 for each pair, the number of reflected echo signals output from the ultrasonic probe 10 is matched to the phasing channel of the main unit 14. Can do.
  • the number of phasing channels in the apparatus main body is designed to be 256.
  • the ultrasonic probe 10 in which 1024 transducers are arranged can be connected to the apparatus main body having the phasing channel via the 256 cables 12. In this way, the number of phasing channels is relatively small! / And the number of transducers is relatively large!
  • the ultrasonic probe can be connected to the apparatus body.
  • a plurality of bundling portions 18 are provided in the casing of the ultrasonic probe 10, and the reflected echo signals are bundled by the bundling portions 18 and output to the apparatus main body 14 side. Therefore, the number of wires can be reduced because the ultrasonic probe 10 and the cable 12 of the apparatus main body 14 need only be arranged in the number of pairs (for example, 256).
  • the ultrasonic wave when an ultrasonic wave is emitted, the ultrasonic wave is emitted by, for example, 256 transducers that are regarded as pseudo.
  • the reflected echo signal when receiving a reflected echo signal, the reflected echo signal is received by, for example, 1024 transducers. Therefore, since the transducer pitch is different between transmission and reception, the generation position of the grating lobe generated due to the ultrasonic transmission and the grating lobe generated due to the ultrasonic reception are different. This Therefore, the increase in grating lobes can be suppressed, and the S / N of the ultrasonic image can be improved.
  • the generation position of the grating lobe can be expressed by Equation (1).
  • is the wavelength of the ultrasonic wave
  • 0 is the angle of the grating lobe
  • 0 0 is the beam scanning angle
  • pitch is the pitch width of the transducer.
  • FIG. 5 shows another example of the ultrasonic probe.
  • the ultrasonic probe is arranged with a plurality of transducer elements 50 having a hexagonal plate-like microstructure arranged in a honeycomb shape (hexagonal shape) instead of the plurality of transducers in Fig. 2. May be.
  • the reflected echo signals output from the seven vibration elements 50-1 to 50-7 can be bundled by the bundling portion 18.
  • seven delay circuits 44 are provided in the bundling portion 18.
  • cMut Capative M lcromacnined Ultrasonic Transducer: ⁇ Trans.Ultras on. Ferroelect. Freq. And ontr.Vol45 pp. Can be applied.
  • cMut is a micro-vibration element whose electromechanical coupling coefficient changes according to the magnitude of the applied voltage.
  • the form of the vibrator or vibration element is not limited to the form of the present embodiment, but is formed of lead zirconate titanate (for example, PZT), a laminated vibrator, or a composite piezoelectric material. Things may apply.
  • the present invention can also be applied when a one-dimensional array type ultrasonic probe is used.
  • the present invention when using an ultrasonic probe having a relatively large number of transducers, it is possible to correct a non-uniform sound speed and form a good image while suppressing an increase in circuit scale. it can
  • FIGS. 6A to 6C are other examples of the bundling portion. As shown in FIG. 6A, the bundling portion 52 differs from the bundling portion 18 in FIG.
  • the transducer T (1, 1) to the terminal T belongs to the same set T1 by removing the transmission switch 40. It is in the direct connection to (2, 2).
  • Other configurations are the same as the bundling portion 18 in FIG. 3B.
  • the receiving switch 42 is opened when each transducer force ultrasonic wave is emitted. As a result, the same transmission signal is transmitted to each transducer (1, 1) to (2, 2). Therefore, the delay circuit 44 and the like can be protected while reducing the circuit scale.
  • the bundling portion 54 is different from the bundling portion 52 in FIG. 6A in that the terminal T is connected to each transducer (1, 1) to (2, 2) via the transmission / reception separating circuit 58. ) And the receiving switch 42 is removed, and the input side of the delay circuit 44 is connected to the transmission / reception separating circuit 58.
  • the drive signal input to the terminal T is supplied to each vibrator by the transmission / reception separating circuit 58.
  • the reflected echo signal from which each transducer force is also output is input to the delay circuit 44 by the transmission / reception separation circuit 585.
  • the load on the transmission system circuit and the reception system circuit can be reduced by electrically separating the transmission system circuit and the reception system circuit.
  • the bundling portion 56 is different from the bundling portion 54 in FIG. 6B in that the terminal T is connected only to the vibrator (1, 1) via the transmission / reception separating circuit 58. There is.
  • the vibrator (1, 1) is connected to the delay circuit 44 via the transmission / reception separating circuit 58, but the other vibrators (1, 2) to (2, 2) are directly connected to the delay circuit 44. ing. That is, this is an example in which the transducer is configured as a sparse type only for ultrasonic transmission.
  • transducers for example, transducers (1, 2) to (2, 2) among transducers (for example, transducers (1, 1) to (2, 2)) belonging to the same set T1 Therefore, it is possible to further reduce the circuit scale, and by appropriately using such a bundling portion 56, the number of vibrators to which drive signals are input can be increased. It can be gradually increased toward the center of the ultrasonic aperture of the acoustic probe 10. In this way, the side lobe caused by the ultrasonic waves transmitted and received from the transducer near the end of the ultrasonic aperture is reduced. In short, a good ultrasonic transmission beam can be formed by weighting the ultrasonic transmission.
  • the transducer (1, 1) to (2, 2) is turned on / off by controlling the transmission switch 40 or the transmission / reception separation circuit 58, so that it can be exceeded within the same set T1. Weight can be applied to the transmission of sound waves.
  • a buffer circuit or a preamplifier may be provided on the input side or output side of the delay circuit 44.
  • the transmission means 20 selects all or a predetermined set of the plurality of sets T1 to T256, and supplies a drive signal to the transducers belonging to the selected set via the bundling unit 18. Thus, focus control can be performed for the selected set unit.
  • the transmission block and the reception block may be configured separately. It is also possible to enlarge the block toward the center. Since the delay difference is smaller at the center, the bundling amount can be increased at the center.
  • FIG. 7 is a diagram for explaining a technique for forming a double beam.
  • the technology to form a double beam is a technique that forms a received beam in multiple directions (for example, two directions Rl and R2) with respect to the direction ⁇ of the ultrasonic transmission beam. It is.
  • a double beam is formed as shown in the upper part of FIG.
  • An ultrasonic wave is emitted from the ultrasonic probe 10, and a transmitted beam in the direction T is formed by the emitted ultrasonic wave.
  • the reflected echo signal output from each transducer 16 performs a concave focus delay 55 in the delay circuit 44 of the bundling unit 18 and is dynamically focused. Or it may be fixed focus.
  • Gradient delays 56 and 57 predetermined by the digital phasing unit 36 are given to the reflected echo signals output from the bundling units 18.
  • the tilt delay is, for example, a predetermined delay amount for forming a received beam.
  • the tilt delay is for forming two received beams in different directions a and b. .
  • the delay circuit of the bundling unit 18 is bundled by giving an inclination delay 50 in the transmission direction, and the digital phasing unit 36 of the main unit is concave in the directions a and b.
  • Four Cass delays 51 and 52 are performed dynamically. It may be time division processing or parallel processing.
  • a plurality of received beams can be formed with a single transmitted beam, so that the ultrasonic imaging time can be shortened.
  • a receiving phasing unit for direction R1 and a receiving phasing unit for direction R2 are provided in parallel. It may be.
  • the direction of the received beam formed by the digital phasing unit 36 is not limited to the two-dimensional plane including the direction T1 of the transmission beam, and a plurality of directions may be formed in an isotropic direction around the direction T1. it can.
  • the number of transducers belonging to the set to which the common drive signal is input by the transmission unit and the number of transducers belonging to the set to which the reflected echo signals are bundled by the bundling unit 18 are the same.
  • the power may be different.
  • the circuit scale can be appropriately reduced while considering the S / N necessary for the ultrasonic image according to the imaging region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 回路規模の増大を抑えつつ、超音波像のS/Nの劣化を回避する超音波撮像装置を実現するため、被検体との間で超音波を送受する複数の振動子を配列してなる超音波探触子と、各振動子に駆動信号を供給する送信手段と、各振動子により受波された反射エコー信号を整相加算して受信する受信手段と、該受信された反射エコー信号に基づいて超音波像を再構成する画像処理部を備えた超音波撮像装置において、送信手段は、複数の振動子を複数の組に分け、同じ組に属する振動子に共通の駆動信号を供給するとともに組単位でフォーカス制御する。

Description

超音波撮像装置
技術分野
[0001] 本発明は、超音波撮像装置に係り、複数の振動子を配列してなる超音波探触子に より超音波を送受するのに好適な技術に関する。
背景技術
[0002] 超音波撮像装置は、超音波探触子に配列した複数の振動子から被検体に対し超 音波を射出し、被検体力 発生した反射エコー信号に基づき超音波像を構成する。 この超音波撮像装置においては、探触子の各振動子に供給する駆動信号に所定 遅延を与えてフォーカス制御する送信手段と、各振動子力 出力された反射エコー 信号を受信して整相加算する受信手段が設けられる。しかし、送信手段および受信 手段は、振動子ごとに回路が必要になるため、回路規模が増大する。
受波整相回路において隣接した素子を 1つのブロックとして、ブロック内の素子間遅 延を行い、ブロック間の長時間遅延を整相することが行われる (例えば、特許文献 1、 特許文献 2参照)。し力しながら、これら特許文献には、送波回路についての構成は 開示されていないため、送信回路の縮小は実現できないため、送受回路縮小の実現 はできない。
[0003] 本発明の課題は、送受回路規模の増大を抑えつつ、超音波像の S/Nの劣化を回 避する超音波撮像装置を実現することにある。
特許文献 1:特開平 5-256933号公報
特許文献 2:米国特許 US5229933号公報
発明の開示
[0004] 被検体との間で超音波を送受する複数の振動子を配列してなる超音波探触子と、 前記各振動子に駆動信号を供給する送信手段と、前記各振動子により受波された 反射エコー信号を整相加算して受信する受信手段と、該受信された反射エコー信号 に基づ!/ヽて超音波像を再構成する画像処理部を備えた超音波撮像装置にお!ヽて、 前記送信手段は、前記複数の振動子を複数の組に分け、同じ組に属する振動子に 共通の駆動信号を供給する。
[0005] ここで、送信手段に関して記載する。前記送信手段は、前記組ごとに共通の駆動信 号を入力させることにより、各振動子から超音波を送信させる。また前記送信手段は 、前記複数の組のうち全ての組又は所定の組を選択し、該選択された組に属する振 動子に駆動信号を供給して、前記選択された組単位でフォーカス制御する。或いは 、前記送信手段は、同じ組に属する前記振動子を間引いて駆動信号を入力させ、超 音波を送信させる。これら前記複数の振動子を前記組み分ける束ね部は、前記超音 波探触子の筐体内に設けられる。
前記振動子は、半導体プロセスによる微細加工により形成される。前記送信手段によ り前記共通の駆動信号が入力される組に属する振動子の数は、前記超音波探触子 の超音波口径の中心に向うにつれて前記組ごとに多くなる。
[0006] 次に、受信手段に関して記載する。前記受信手段は、前記複数の振動子を複数の 組に分け、該各組に属する振動子力 出力される反射エコー信号を前記組ごとに整 相加算する第 1の整相加算手段と、前記第 1の整相加算手段から出力される各反射 エコー信号を整相加算する第 2の整相加算手段とを有してなる。前記第 1の整相加算 手段は、前記超音波探触子の筐体内に設けられる。
[0007] 前記第 1の整相加算手段により反射エコー信号が整相加算される組に属する振動 子の数は、前記送信手段により前記共通の駆動信号が入力される組に属する振動 子の数と異なる。前記第 1の整相加算手段により反射エコー信号が整相加算される 組に属する振動子の数は、前記送信手段により前記共通の駆動信号が入力される 組に属する振動子の数と同数である。
[0008] 前記第 1の整相加算手段により反射エコー信号が整相加算される組に属する振動 子の数は、前記超音波探触子の超音波口径の中心に向うにつれて前記組ごとに多 くなる。前記束ね部と前記第 1の整相加算手段は、共通の回路内で構成されることを 特徴とする請求項 5及び 9記載の超音波撮像装置。前記受信手段は、反射エコー信 号全て受信する。
[0009] 前記受信手段は、傾斜遅延及び凹面フォーカス遅延を行!、、複ビームを形成させ る。前記第 1の整相加算手段は傾斜遅延を行い、前記第 2の整相加算手段は凹面フ オーカス遅延を行い、複ビームを形成させる。前記第 1の整相加算手段は凹面フォー カス遅延を行い、前記第 2の整相加算手段は傾斜遅延を行い、複ビームを形成させ る。
図面の簡単な説明
[0010] [図 1]本発明を適用した一実施形態の超音波撮像装置のブロック図である。
[図 2]図 1の超音波探触子の振動子の配列を示す図である。
[図 3]図 1の束ね部の構成図を示している。
[図 4]本発明を適用した一実施形態の反射エコー信号の受信処理について説明する 図である。
[図 5]本発明を適用した超音波探触子の他の例である。
[図 6]束ね部の他の例である。
[図 7]複ビームを形成する技術を説明するための図である。
[図 8]複ビームを形成する技術を説明するための図である。
発明を実施するための最良の形態
[0011] 本発明を適用した超音波撮像装置の一実施形態について図 1ないし図 4を参照し て説明する。図 1は、本発明を適用した超音波撮像装置のブロック図である。図 1に示 すように、超音波撮像装置は、超音波探触子 10が複数のケーブル 12を介して装置本 体 14に接続して構成される。
[0012] 超音波探触子 10は、被検体との間で超音波を送受する複数 (例えば、 1024個)の振 動子 16を二次元配列して形成されており、複数の振動子 16は複数 n (例えば、 256)の 組に分けられている。また、同じ組に属する振動子 16に共通の駆動信号を供給する とともに、振動子 16から出力される反射エコー信号に対し組ごとに第 1の整相加算を 行う束ね部 18が超音波探触子 10の筐体内に n個配設されている。なお、束ね部 18の それぞれは、各組に属する例えば 4つの振動子に配線を介して接続されて 、る。
[0013] 装置本体 14は、各束ね部 18に駆動信号を出力する送信手段 20と、束ね部 18から 出力される反射エコー信号を受信する受波回路部 22と、受波回路部 22から出力され る反射エコー信号をクロック部の制御指令に応じてディジタル信号に変換するアナ口 グディジタル変換部 (以下、 ADC部 24)と、 ADC部 24から出力される反射エコー信号を 整相加算する第 2の整相加算手段 26と、整相加算処理された反射エコー信号に基づ V、て三次元超音波像を再構成する画像処理部としての信号処理部 28を備えて ヽる。 なお、束ね部 18、受波回路部 22、 ADC部 24、第 2の整相加算手段 26、信号処理部 28 を含めて受信手段と総称する。また、信号処理部 28から出力された三次元超音波像 を表示する表示部 30や、各部に制御指令を出力する制御部が配設されている。
[0014] 送信手段 20は、複数の駆動信号にそれぞれ所定の遅延を与えてフォーカス制御 する送波整相部 32と、送波整相部 32によりフォーカス制御された各駆動信号を各束 ね部 18に出力する送波回路部 34を備えている。なお、送波整相部 32は、 n個の送波 整相回路を有し、送波回路部 34は、 n個の送波回路を有する。送波回路部 34の各送 波整相回路は、単一のケーブル 12を介して各束ね部 18に接続している。
[0015] 受波回路部 22は、束ね部 18のそれぞれから出力される反射エコー信号を受波する n個の受波回路を有し、受波回路は、プリアンプや、深度方向の信号の減衰を補正 する TGC(Time gain compensation)回路などから構成されている。 ADC部 24は、受波 回路部 22から出力される各反射エコー信号をディジタル信号に変換する n個の ADC 回路を有する。受波回路部 22の各受波回路は、単一のケーブル 12を介して各束ね 部 18に接続されている。
[0016] 第 2の整相加算手段 26は、 ADC部 24から出力される各反射エコー信号を整相する ディジタル整相部 36と、ディジタル整相部 36から出力される反射エコー信号を加算す る加算回路 38を備えている。ディジタル整相部 336は、 n個のディジタル整相回路を有 している。
[0017] 図 2は、図 1の超音波探触子の振動子 16の配列を示す図である。図 2に示すように、 1024個の振動子 16は、 32 X 32(X方向に 32個、 Y方向に 32個)のように正方形に配列 される。二次元配列された振動子 16は、 2 X 2(X方向に 2個、 Y方向に 2個)に配列する 4個の振動子が同じ組に属するように、 256個の組 T1〜T256にそれぞれ正方形に分 けられている。要するに、複数の振動子 16は、 X方向に 16のブロックに分けられると共 に Υ方向に 16のブロックに分けられるため、擬似的に 256個の振動子となる。なお、説 明の便宜上、振動子の配列位置を (x、 y)と表し、例えば、図 2の組 T1に属する 4個の 振動子を振動子 (1、 1), (1、 2), (2、 1), (2、 2)と称する。また、同じ組に属する振動子の 数については変更することができ、 9個の正方形、 16個の正方形にブロックを分けて もよい。なお、ブロックの分け方は長方形であってもよい。
[0018] 図 3は、糸且 T1に属する各振動子に接続する束ね部 18の構成を一例として示す図で ある。他の組に対応する束ね部 18も同様に構成されている。図 3Aに示すように、束ね 部 18は、装置本体 14側に 2本の端子 T, Rを有し、振動子 (1、 1)〜(2、 2)側に 4本の端 子 SI, S2, S3, S4を有している。また、図 3Bに示すように、端子 Tは、ケーブル 12に接 続されると共に、束ね部 18内で 4本の線に分岐し、分岐した各線が送波スィッチ 40を 介して振動子 (1、 1)〜(2、 2)にそれぞれ接続している。また、振動子 (1、 1)〜(2、 2)は、 受波スィッチ 42を介して、遅延回路 44にそれぞれ接続されている。また、各遅延回路 44から出力される反射エコー信号を加算する加算回路 46と、加算回路 46力 出力さ れる反射エコー信号を増幅する増幅回路 48が配設されている。遅延回路 44と加算回 路 46を含んで第 1の整相加算手段と総称する。
[0019] このような束ね部 18では、振動子 (1、 1)〜(2、 2)力も超音波を射出するとき、制御指 令に応じて、送波スィッチ 40が閉じられると共に受波スィッチ 42が開放されることによ り、端子 Tと振動子 (1、 1)〜(2、 2)が接続する。また、振動子 (1、 1)〜(2、 2)により超音波 を受波するときは、制御指令に応じて、送波スィッチ 40が開放されると共に受波スイツ チ 42が開放されることにより、振動子 (1、 1)〜(2、 2)と遅延回路 44が接続する。このよう な制御によって、送波回路部 34と受波回路部 22が電気的に分離されるため、送波回 路部 34と受波回路部 22が保護される。
[0020] なお、遅延回路 44としては、アナログサンプル回路 (例えば、 CCD、スィッチドキャパ シタ、アナログメモリ)、 LC遅延線などにより構成されたものを用いてもよいし、 Δ∑変 調器などにより形成されたものを用いてもよい。 Δ∑変調器は、積分回路 (∑)と量子 ィ匕器とラッチなど力 構成され、単一の入力端子力 アナログ信号を積分器に入力し 、積分器力 出力される信号を A—D変換して単一の出力端子力 出力する。 Δ∑変 調器を遅延回路 44として適用することにより、回路規模の増大を抑えつつ、束ね部 18 で反射エコー信号をディジタルィ匕することができる。
[0021] このように構成される超音波撮像装置の動作について説明する。まず、超音波探触 子 10の超音波射出側を被検体の例えば体表に接触させる。次いで、操作者の入力 指令に応じ、例えば 256個の駆動信号が生成される。生成された各駆動信号は、予 め設定された超音波ビームのフォーカス点に応じ、送波整相部 32により所定の遅延 が与えられる。遅延された各駆動信号は、送波回路部 34により増幅などの処理が施 された後、各束ね部 18にそれぞれ出力される。各束ね部 18の端子 Tに入力した駆動 信号は、送波スィッチ 40を介して、端子 S1〜S4から各組に属する振動子に共通の駆 動信号としてそれぞれ供給される。例えば、同じ組 T1に属する振動子 (1、 1)〜(2、 2) に、共通の駆動信号 Aが供給される。同様に、他の組 (例えば、組 Tに隣接する組 T2) に属する各振動子に、駆動信号 Aと位相が異なる駆動信号 Bが供給される。要するに 、糸且 T1〜T256ごとに共通の駆動信号が入力されることによって、各振動子 16から超 音波が送波され、送波された超音波により送波ビームが形成される。このように超音 波送波ビームを形成することにより、三次元超音波走査が行われる。
[0022] 被検体力 発生した反射エコー信号は、超音波探触子 10の振動子 16のそれぞれ により受波される。受波された反射エコー信号は、各振動子 16から組単位で各束ね 部 18に出力される。出力された反射エコー信号は、束ね部 18により整相加算された 後、増幅処理が施される。例えば、同じ組 T1に属する振動子 (1、 1)〜(2、 2)から出力 された反射エコー信号は、束ね部 18の端子 S1〜S4にそれぞれ入力される。入力され た各反射エコー信号は、遅延回路 44により整相される。整相された各反射エコー信 号は、加算回路 46により加算される。加算された反射エコー信号は、増幅回路 48によ り増幅された後、端子 Rから出力される。
[0023] 束ね部 18から出力された反射エコー信号は、受波回路部 22により増幅や TGC補正 などが施された後、 ADC部 24によりディジタル信号に変換される。ディジタル化された 反射エコー信号は、ディジタル整相部 36により整相された後、加算回路 38により加算 される。加算された反射エコー信号は、信号処理部 28により各種フィルタリング処理 および包絡線処理などの信号処理が施される。なお、信号処理部 28は、 CFM(Color Flow Mapping)やドプラ処理などの血流信号処理も行うことができる。
[0024] 信号処理部 28から出力された反射エコー信号は、メモリなどに三次元ボリュームデ ータとして格納される。格納されたボリュームデータが適宜読み出され、読み出され たデータに基づき三次元超音波像が再構成される。再構成された三次元超音波像 は、ディジタルスキャンコンバータ (DSC)により表示用の信号に変換された後、表示部
30のモニタに表示される。
[0025] 本実施形態によれば、超音波の送波については、同じ組 (例えば、組 T1)の振動子 群 (例えば、振動子 (1、 1)〜(2、 2))をひとつの振動子とみなして共通の駆動信号を供 給するから、組の数 (例えば、 256)だけ送波整相部 32の送波整相回路や、送波回路 部 34の送波回路を設ければ済むことになり、回路規模を小さくすることができる。
[0026] また、すべての振動子 (例えば、 1024個の振動子)を駆動して超音波を受波すること から、受信手段により処理された反射エコー信号の感度が向上するため、超音波像 の S/Nを高くすることができる。
例えば、 1024個の振動子を二次元配列 (32 X 32)した超音波探触子の場合、送波整 相回路を振動子ごとに設けるようにすると、 1024個の回路が必要となり、回路規模が 比較的大きなものとなる。この点、本実施形態によれば、 256個の送波整相回路で済 むことから、回路規模を小さくすることができる。
[0027] 次に、図 4を参照して反射エコー信号の受信処理について説明する。図 4A〜図 4C の横軸は時間軸である。また、説明の便宜上、図 4Aに示すように、複数 Zの振動子が 横に並べて配設された例を用いる。なお、図 4Aの振動子 (1、 1)〜(2、 2)は、図 2のもの と対応している。
[0028] 図 4Aに示すように、フォーカス点 Pから各振動子までの到達距離はそれぞれ異なる から、 P点から発生した反射エコー信号が各振動子に到達する時間 (以下、到達時間 という。)が異なる。なお、本実施形態では、 ADC部 24のサンプリングクロックのサンプ ル間隔が 50nsであり、ディジタル整相部 36のディジタルサンプル遅延のサンプル間 隱遅延間隔)が 50nsとする。
[0029] 図 4Bは、各振動子 (1、 1)〜(2、 2)から出力される反射エコー信号の遅延時間を示す 図である。図 4Cは、遅延回路 44による遅延処理を示す図である。例えば、振動子 Zを 基準に設定したとき、図 4Bに示すように、振動子 Zの到達時間と振動子 (1、 1)の到達 時間の差 (以下、遅延時間という。)は 5.00 sとしている。また、振動子 (1、 2)反射ェコ 一信号の遅延時間は 4.99 s、振動子 (2、 1)の反射エコー信号の遅延時間は 4.98 s 、振動子 (2、 2)の反射エコー信号の遅延時間は 4.975 sとしている。 [0030] ここで、各振動子 (1、 1)〜(2、 1)の反射エコー信号の遅延時間と振動子 (2、 2)の反射 エコー信号の遅延時間との時間差が求められる。例えば、振動子 (1、 1)の反射エコー 信号の遅延時間 5.00 sと振動子 (2、 2)の反射エコー信号の遅延時間 4.975 sの時 間差は、 25nsと求められる。同様に、振動子 (1、 2)の反射エコー信号の遅延時間 4.99 μ sと振動子 (2、 2)の反射エコー信号の遅延時間 4.975 sの時間差は 15nsと求めら れる。また、振動子 (1、 2)の反射エコー信号の遅延時間 4.98 sと振動子 (2、 2)の反射 エコー信号の遅延時間 4.975 μ sの時間差は 5nsと求められる。
[0031] さらに、振動子 (2、 2)の反射エコー信号の遅延時間との時間差のほか、ディジタル 整相部 36の遅延間隔 50nsを考慮した微小遅延量 (つまり、遅延間隔 50nsよりも小さい 遅延量)が求められる。例えば、振動子 (2、 2)の反射エコー信号の遅延時間 4.975 s を遅延間隔 50nsで除したときの余りが微小遅延量 25nsとして求められる。
[0032] そして、求められた微小遅延量 25nsと、振動子 (2、 2)の反射エコー信号の遅延時間 との時間差を加えたもの力 各反射エコー信号の遅延量になる。例えば、振動子 (1、 1)の反射エコー信号は、遅延回路 44により 50ns (時間差 25ns +微小遅延量 25ns)だけ 遅延される。同様に、振動子 (1、 2)の反射エコー信号は 40ns (時間差 15ns +微小遅延 量 25ns)、振動子 (2、 1)の反射エコー信号は 30ns (時間差 5ns +微小遅延量 25ns)振動 子 (2、 2)の反射エコー信号は 25ns (時間差 0ns+微小遅延量 25ns)だけ遅延される。こ れによって、遅延された各反射エコー信号と振動子 Zの反射エコー信号との時間差 は、 4.95 sとなる。このように遅延された各反射エコー信号は、加算回路 46によりカロ 算された後、増幅回路 48を介して受波回路部 22に出力される。要するに、各振動子 により受波された反射エコー信号は、複数の束ね部 18により組 T1〜T256ごとに束ね られる。なお、各反射エコー信号に対し微小遅延量 25nsを付与することについては、 遅延回路 44に代えて、装置本体 14のディジタル整相部 36に補間処理機能を実装さ せること〖こより実現できる。
[0033] 図 4Dは、図 4Cの処理により整相加算された反射エコー信号をディジタル整相部 36 により整相する処理を示す図である。振動子 (1、 1)〜(2、 2)から出力された反射エコー 信号は、図 4Cに示すように、束ね部 18の遅延回路 44と加算回路 46により処理された 後、受波回路部 22と ADC部 24を介して、ディジタル整相部 36に出力される。出力され た反射エコー信号は、図 4Dに示すように、ディジタル整相部 36により 4.95 s (遅延間 隔 50ns X 99サンプル)遅延される。これによつて、振動子 (1、 1)〜(2、 2)から出力された 反射エコー信号は、振動子 Zの反射エコー信号を基準として整相される。要するに、 振動子 16から出力される反射エコー信号が各束ね部 18で組 T1〜T256ごとに束ねら れ、束ねられた各反射エコー信号がディジタル整相部 36により整相される。
[0034] 本実施形態によれば、第 1の整相加算手段 (束ね部 18の遅延回路 44及び加算回路 46)により反射エコー信号が組単位に束ねられることから、組の数 (例えば、 256)だけ ディジタル整相部 36のディジタル整相回路 (整相チャネル)を設ければ済むことになり 、回路規模を小さくすることができる。これにより、装置本体 14の整相チャネル数が 1 次元配列型の超音波探触子用に少なく設計されて!、たときでも、装置本体 14に 2次 元配列型の超音波探触子 10を接続させることができるようになる。要するに、超音波 探触子 10の振動子 16を組ごとに送受波制御することにより、超音波探触子 10力 出 力される反射エコー信号の数を装置本体 14の整相チャネルに合わせることができる。
[0035] 例えば、 256個の振動子を一次元配列してなる超音波探触子を用いる場合、装置 本体の整相チャネル数は 256に設計されるが、本実施形態によれば、 256の整相チヤ ネルを有する装置本体に、 1024個の振動子を配列してなる超音波探触子 10を 256本 のケーブル 12を介して接続させることができるようになる。このように、整相チャネル 数が比較的少な!/、装置本体に、振動子の数が比較的多!、超音波探触子を接続する ことが可能になる。
[0036] さらに、本実施形態によれば、複数の束ね部 18を超音波探触子 10の筐体内に設け 、各束ね部 18により反射エコー信号を組単位で束ねて装置本体 14側に出力すること から、超音波探触子 10と装置本体 14のケーブル 12を組の数 (例えば、 256)だけ配設 すれば済むため、配線数を低減できる。
[0037] また、図 2に示すように、超音波を射出するときは、擬似的にみなされた例えば 256 個の振動子により超音波が射出される。一方、反射エコー信号を受波するときは、例 えば 1024個の振動子により反射エコー信号が受波される。したがって、送波と受波で は振動子ピッチが異なることから、超音波送波に起因して生じるグレーティングローブ と超音波受波に起因して生じるグレーティングローブは発生位置が異なる。これによ り、グレーティングローブの増大を抑えることができるため、超音波像の S/Nを向上さ せることができる。なお、グレーティングローブの発生位置は数式 (1)で表すことができ る。 λは、超音波の波長、 0は、グレーティングローブの角度、 0 0は、ビームの走査 角、 pitchは、振動子のピッチ幅である。
Θ = sin- l( l /pitch + sin θ 0) (1)
[0038] 以上、実施形態に基づいて本発明を説明したが、これに限られるものではない。図 5は、超音波探触子の他の例である。図 5Αに示すように、超音波探触子は、図 2の複 数の振動子に代えて、六角板状の微細構造を有する複数の振動素子 50を蜂の巣形 (六角形状)に並べて配設してもよい。この場合、図 5Βに示すように、例えば 7個の振 動要素 50— 1〜50— 7から出力される反射エコー信号を束ね部 18により束ねることが できる。その場合、束ね部 18に 7つの遅延回路 44を設けるようにする。また、振動素子 50として、例えば、半導体プロセスによる微細加工により形成された cMut(Capative M lcromacnined Ultrasonic Transducer: ΙΕΆ Trans. Ultras on. Ferroelect. Freq. し ontr . Vol45 pp. 678-690 May 1998)などを適用することができる。 cMutとは、印加電圧の 大きさに応じて電気機械結合係数が変化する微細振動素子である。なお、振動子又 は振動素子の形態としては、本実施形態の形態に限らず、ジルコン酸チタン酸鉛 (例 えば、 PZT)により形成したものや、積層振動子や、複合圧電材料により形成したもの を適用してもよい。
[0039] また、二次元配列型の超音波探触子 10に本発明を適用した例を説明したが、一次 元配列型の超音波探触子を用いるときにも適用することもできる。要するに、振動子 の数が比較的多い超音波探触子を用いるときに本発明を適用することにより、回路 規模の増大を抑えつつ、音速不均一を補正して良好な画像を形成することができる
[0040] また、超音波探触子 10は、複数の振動子が矩形領域に配列して形成された場合、 矩形領域の辺に対するビームの走査方向に起因してビーム形状が異なることがある 。そこで、円形領域に複数の振動子を配列してもよい。これ〖こより、円形領域の外周 付近では振動子が接するように配列されることから、任意の方向にビーム走査したと きでも、方向依存性を低減して良好な超音波ビームを形成することができる。 [0041] 図 6A〜Cは、束ね部の他の例である。図 6Aに示すように、束ね部 52が図 3Bの束ね 部 18と異なる点は、送波スィッチ 40を取り除くことによって、端子 Tが、同じ組 T1に属 する各振動子 (1、 1)〜(2、 2)に直接に接続したことにある。他の構成は、図 3Bの束ね 部 18と同様である。本例では、各振動子力 超音波を射出するときは、受波スィッチ 4 2が開放される。これにより、同じ送波信号が各振動子 (1、 1)〜(2、 2)に伝わる。よって 、回路規模を小さくしつつ、遅延回路 44などを保護することができる。
[0042] また、図 6Bに示すように、束ね部 54が図 6Aの束ね部 52と異なる点は、端子 Tが送受 分離回路 58を介して各振動子 (1、 1)〜(2、 2)に接続すると共に、受波スィッチ 42を取り 除いて遅延回路 44の入力側を送受分離回路 58に接続したことにある。本例によれば 、端子 Tに入力された駆動信号は、送受分離回路 58により各振動子に供給される。そ して、各振動子力も出力された反射エコー信号は、送受分離回路 585により遅延回路 44に入力される。これにより、送波回路部 34などの送波系回路に反射エコー信号が 入力されることを回避できると共に、遅延回路 44などの受波系回路に駆動信号が入 力されることを回避できる。要するに、送波系回路と受波系回路を電気的に分離する ことにより、送波系回路と受波系回路の負荷を軽減させることができる。
[0043] また、図 6Cに示すように、束ね部 56が図 6Bの束ね部 54と異なる点は、端子 Tが、送 受分離回路 58を介して振動子 (1、 1)だけに接続することにある。なお、振動子 (1、 1)は 送受分離回路 58を介して遅延回路 44に接続されるが、他の振動子 (1、 2)〜(2、 2)は 遅延回路 44に直接に接続されている。すなわち、超音波の送波に関してのみ振動子 をスパース型に構成した例である。これ〖こよれば、同じ組 T1に属する振動子 (例えば 、振動子 (1、 1)〜(2、 2》のうち所定の振動子 (例えば、振動子 (1、 2)〜(2、 2》を間引い て超音波が送波される。したがって、回路規模をより一層低減することができる。また 、このような束ね部 56を適宜用いることにより、駆動信号を入力する振動子の数を超 音波探触子 10の超音波口径の中心に向うにつれて徐々に多くすることができる。こ のようにすれば、超音波口径の端付近の振動子から送受される超音波に起因するサ イドローブが低減される。要するに、超音波の送波に重みを付けることにより、良好な 超音波送ビームを形成することができる。
[0044] このような送波の重みは、図 3、図 6A、図 6Bの場合、制御部の制御により実現するこ とができる。その場合、図 6Bの送受分離回路 58は、制御指令に応じて駆動信号を遮 断する機能を有することが必要になる。また、各振動子 (1、 1)〜(2、 2)に入力する各駆 動信号の振幅を異ならせてもよい。これにより、図 3、図 6A〜図 6Cのいずれの場合で も、超音波の送波に組単位で重みを付けることができる。また、図 3Bや図 6Bの場合、 送波スィッチ 40又は送受分離回路 58を制御して各振動子 (1、 1)〜(2、 2)をオンオフす ることにより、同じ組 T1内でも超音波の送波に重みを付けることができる。また、遅延 回路 44の入力側または出力側にバッファ回路やプリアンプなどを配設してもよい。
[0045] また、送信手段 20は、複数の組 T1〜T256のうち全ての組又は所定の組を選択し、 その選択された組に属する振動子に束ね部 18を介して駆動信号を供給して、選択さ れた組単位でフォーカス制御することもできる。
[0046] また、送波ブロックと受波ブロックを別の構成とすることでも良い。また、中心ほどブ ロックを大きくすることでも良い。中心ほど、遅延差が小さいことから、中心ほど束ね量 を増やせる。
[0047] 図 7は、複ビームを形成する技術を説明するための図である。複ビームを形成する 技術とは、図 7に示すように、超音波送波ビームの方向 Τに対し異なる複数の方向 (例 えば、 Rl、 R2の二つの方向)に受波ビームを形成するものである。
[0048] 例えば、図 8上段に示されるようにして複ビームを形成する。超音波探触子 10から 超音波を射出し、射出された超音波により方向 Tの送波ビームが形成される。そして 、各振動子 16から出力される反射エコー信号が束ね部 18の遅延回路 44で凹面フォ 一カス遅延 55を行い、ダイナミックフォーカスされる。または、固定フォーカスでも良い 。各束ね部 18から出力される各反射エコー信号に対し、ディジタル整相部 36により予 め決められた傾斜遅延 56、 57が付与される。傾斜遅延とは、例えば受波ビームを形 成するために予め決められた遅延量であり、本例の場合、方向 a, bの異なる方向の 2 つの受波ビームを形成するためのものである。このような傾斜遅延力 ディジタル整 相部 36により時分割で付与されることにより、例えば方向 Rl、 R2の受波ビームがほぼ 同時に形成される。
[0049] また、図 8下段に示されるよう、束ね部 18の遅延回路で送波方向の傾斜遅延 50を与 えて束ね、本体装置のディジタル整相部 36で方向 a, bそれぞれの方向に凹面フォー カス遅延 51、 52をダイナミックに行う。それは、時分割処理でも並列処理でもよい。
[0050] このような複ビームを形成する技術を適用すれば、 1本の送波ビームで複数の受波 ビームを形成することができるから、超音波撮像時間を短縮することができる。また、 各反射エコー信号に対しディジタル整相部 36により時分割に傾斜遅延を与えること に代えて、方向 R1用の受波整相部と方向 R2用の受波整相部を並列に設けるようにし てもよい。また、ディジタル整相部 36により形成する受波ビームの方向は、送波ビー ムの方向 T1を含む二次元平面内に限られず、方向 T1周りの等方的な方向に複数形 成することができる。これにより、二次元配列型の超音波探触子 10によって三次元的 に超音波走査するときでも、複ビームを形成することができる。また、遅延回路 44とし て Δ∑変調器を用いた場合は、各 Δ∑変調器を時分割制御することにより複ビーム を形成することができる。
[0051] また、本実施形態では、送信手段により共通の駆動信号が入力される組に属する 振動子と、束ね部 18により反射エコー信号が束ねられる組に属する振動子の数は同 じである力 異なるようにしてもよい。これにより、撮像部位に応じて超音波像に必要 な S/Nを考慮しながら、回路規模を適宜減らすことができる。

Claims

請求の範囲
[1] 被検体との間で超音波を送受する複数の振動子を配列してなる超音波探触子と、 前記各振動子に駆動信号を供給する送信手段と、前記各振動子により受波された 反射エコー信号を整相加算して受信する受信手段と、該受信された反射エコー信号 に基づ!/ヽて超音波像を再構成する画像処理部を備えた超音波撮像装置にお!ヽて、 前記送信手段は、前記複数の振動子を複数の組に分け、同じ組に属する振動子 に共通の駆動信号を供給することを特徴とする超音波撮像装置。
[2] 前記送信手段は、前記組ごとに共通の駆動信号を入力させることにより、各振動子 から超音波を送信させることを特徴とする請求項 1記載の超音波撮像装置。
[3] 前記送信手段は、前記複数の組のうち全ての組又は所定の組を選択し、該選択さ れた組に属する振動子に駆動信号を供給して、前記選択された組単位でフォーカス 制御することを特徴とする請求項 1記載の超音波撮像装置。
[4] 前記送信手段は、同じ組に属する前記振動子を間引いて駆動信号を入力させ、超 音波を送信させることを特徴とする請求項 1記載の超音波撮像装置。
[5] 前記複数の振動子を前記組み分ける束ね部は、前記超音波探触子の筐体内に設 けられることを特徴とする請求項 1乃至 4のいずれかに記載の超音波撮像装置。
[6] 前記振動子は、半導体プロセスによる微細加工により形成されることを特徴とする 請求項 1記載の超音波撮像装置。
[7] 前記送信手段により前記共通の駆動信号が入力される組に属する振動子の数は、 前記超音波探触子の超音波口径の中心に向うにつれて前記組ごとに多くなることを 特徴とする請求項 1記載の超音波撮像装置。
[8] 前記受信手段は、前記複数の振動子を複数の組に分け、該各組に属する振動子 力 出力される反射エコー信号を前記組ごとに整相加算する第 1の整相加算手段と、 前記第 1の整相加算手段力 出力される各反射エコー信号を整相加算する第 2の整 相加算手段とを有してなることを特徴とする請求項 1記載の超音波撮像装置。
[9] 前記第 1の整相加算手段は、前記超音波探触子の筐体内に設けられることを特徴 とする請求項 8記載の超音波撮像装置。
[10] 前記第 1の整相加算手段により反射エコー信号が整相加算される組に属する振動 子の数は、前記送信手段により前記共通の駆動信号が入力される組に属する振動 子の数と異なることを特徴とする請求項 8又は 9記載の超音波撮像装置。
[11] 前記第 1の整相加算手段により反射エコー信号が整相加算される組に属する振動 子の数は、前記送信手段により前記共通の駆動信号が入力される組に属する振動 子の数と同数であることを特徴とする請求項 8又は 9記載の超音波撮像装置。
[12] 前記第 1の整相加算手段により反射エコー信号が整相加算される組に属する振動 子の数は、前記超音波探触子の超音波口径の中心に向うにつれて前記組ごとに多 くなることを特徴とする請求項 8記載の超音波撮像装置。
[13] 前記束ね部と前記第 1の整相加算手段は、共通の回路内で構成されることを特徴と する請求項 5及び 9のいずれかに記載の超音波撮像装置。
[14] 前記受信手段は、反射エコー信号を全ての受信することを特徴とする請求項 1乃至
4の ヽずれかに記載の超音波撮像装置。
[15] 前記受信手段は、傾斜遅延及び凹面フォーカス遅延を行 、、複ビームを形成させ ることを特徴とする請求項 1記載の超音波撮像装置。
[16] 前記第 1の整相加算手段は傾斜遅延を行い、前記第 2の整相加算手段は凹面フォ 一カス遅延を行 ヽ、複ビームを形成させることを特徴とする請求項 8記載の超音波撮 像装置。
[17] 前記第 1の整相加算手段は凹面フォーカス遅延を行い、前記第 2の整相加算手段 は傾斜遅延を行!ヽ、複ビームを形成させることを特徴とする請求項 8記載の超音波撮 像装置。
PCT/JP2005/012456 2004-07-08 2005-07-06 超音波撮像装置 WO2006006460A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/571,782 US20080294050A1 (en) 2004-07-08 2005-07-06 Ultrasonic Imaging Apparatus
JP2006528927A JPWO2006006460A1 (ja) 2004-07-08 2005-07-06 超音波撮像装置
US13/241,105 US20120073374A1 (en) 2004-07-08 2011-09-22 Ultrasonic imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004202043 2004-07-08
JP2004-202043 2004-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/241,105 Division US20120073374A1 (en) 2004-07-08 2011-09-22 Ultrasonic imaging apparatus

Publications (1)

Publication Number Publication Date
WO2006006460A1 true WO2006006460A1 (ja) 2006-01-19

Family

ID=35783804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012456 WO2006006460A1 (ja) 2004-07-08 2005-07-06 超音波撮像装置

Country Status (3)

Country Link
US (2) US20080294050A1 (ja)
JP (1) JPWO2006006460A1 (ja)
WO (1) WO2006006460A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033571A (ja) * 2013-07-10 2015-02-19 コニカミノルタ株式会社 整相加算器、及び、超音波探触子
US9509236B2 (en) 2012-09-25 2016-11-29 Seiko Epson Corporation Integrated circuit apparatus, ultrasound measuring apparatus, ultrasound probe and ultrasound diagnosis apparatus
WO2017026278A1 (ja) * 2015-08-07 2017-02-16 株式会社日立製作所 超音波撮像装置および超音波探触子
CN108024797A (zh) * 2015-10-20 2018-05-11 株式会社日立制作所 超声波诊断装置
JP2022522241A (ja) * 2019-05-06 2022-04-14 コーニンクレッカ フィリップス エヌ ヴェ 無線周波数データを符号化及び復号するための方法及びシステム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092054A2 (en) * 2006-02-06 2007-08-16 Specht Donald F Method and apparatus to visualize the coronary arteries using ultrasound
EP2088932B1 (en) 2006-10-25 2020-04-08 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US9788813B2 (en) 2010-10-13 2017-10-17 Maui Imaging, Inc. Multiple aperture probe internal apparatus and cable assemblies
US9282945B2 (en) * 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
US9339256B2 (en) 2007-10-01 2016-05-17 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
WO2010017445A2 (en) 2008-08-08 2010-02-11 Maui Imaging, Inc. Imaging with multiple aperture medical ultrasound and synchronization of add-on systems
EP2419022B1 (en) 2009-04-14 2019-11-06 Maui Imaging, Inc. Multiple aperture ultrasound array alignment fixture
JP5414546B2 (ja) * 2010-01-12 2014-02-12 キヤノン株式会社 容量検出型の電気機械変換素子
JP6274724B2 (ja) 2010-02-18 2018-02-07 マウイ イマギング,インコーポレーテッド 多開口超音波撮像を用いた点音源送信及び音速補正
EP3563768A3 (en) 2010-10-13 2020-02-12 Maui Imaging, Inc. Concave ultrasound transducers and 3d arrays
WO2013082455A1 (en) 2011-12-01 2013-06-06 Maui Imaging, Inc. Motion detection using ping-based and multiple aperture doppler ultrasound
WO2013101988A1 (en) 2011-12-29 2013-07-04 Maui Imaging, Inc. M-mode ultrasound imaging of arbitrary paths
JP5645856B2 (ja) * 2012-01-30 2014-12-24 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 送受信回路、超音波プローブ及び超音波画像表示装置
IN2014DN07243A (ja) 2012-03-26 2015-04-24 Maui Imaging Inc
JP6270843B2 (ja) 2012-08-10 2018-01-31 マウイ イマギング,インコーポレーテッド 多数開口超音波プローブの校正
IN2015DN00764A (ja) 2012-08-21 2015-07-03 Maui Imaging Inc
JP5504357B1 (ja) * 2013-01-09 2014-05-28 日立アロカメディカル株式会社 超音波診断装置
US9510806B2 (en) 2013-03-13 2016-12-06 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
CN106794007B (zh) 2014-08-18 2021-03-09 毛伊图像公司 基于网络的超声成像系统
EP3408037A4 (en) 2016-01-27 2019-10-23 Maui Imaging, Inc. ULTRASONIC IMAGING WITH DISTRIBUTED NETWORK PROBES
US10110837B2 (en) * 2017-03-01 2018-10-23 Omnivision Technologies, Inc. Method and apparatus for data transmission in an image sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322896A (ja) * 1996-06-05 1997-12-16 Matsushita Electric Ind Co Ltd 超音波診断装置
JPH11221215A (ja) * 1997-11-24 1999-08-17 General Electric Co <Ge> 超音波イメージング・システムおよびそのトランスジューサ・アレイの作動方法
JP2000152937A (ja) * 1998-11-20 2000-06-06 Matsushita Electric Ind Co Ltd 超音波診断装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438693A (en) * 1977-09-02 1979-03-23 Hitachi Medical Corp Ultrasonic wave diagnosing device
DE3024995A1 (de) * 1980-07-02 1982-01-28 Philips Patentverwaltung Gmbh, 2000 Hamburg Ultraschall-untersuchungsanordnung
US4553437A (en) * 1984-01-30 1985-11-19 Imaging Associates Hybrid non-invasive ultrasonic imaging system
JPS61238237A (ja) * 1985-04-17 1986-10-23 株式会社東芝 超音波診断装置
US5229933A (en) * 1989-11-28 1993-07-20 Hewlett-Packard Company 2-d phased array ultrasound imaging system with distributed phasing
US5278757A (en) * 1991-11-15 1994-01-11 The Trustees Of The University Of Pennsylvania Synthetic aperture ultrasonic imaging system using a minimum or reduced redundancy phased array
US5617862A (en) * 1995-05-02 1997-04-08 Acuson Corporation Method and apparatus for beamformer system with variable aperture
JPH1062396A (ja) * 1996-08-21 1998-03-06 Furuno Electric Co Ltd 超音波走査装置、超音波診断装置、非破壊検査装置および超音波振動子アレイ
JP3244489B2 (ja) * 1999-04-26 2002-01-07 松下電器産業株式会社 超音波診断装置
JP4334671B2 (ja) * 1999-05-21 2009-09-30 株式会社日立メディコ 超音波診断装置
US6497665B1 (en) * 2000-07-14 2002-12-24 Koninklijke Philips Electronics N.V. System and method for non-linear detection of ultrasonic contrast agents at a fundamental frequency
JP4627605B2 (ja) * 2001-04-02 2011-02-09 アロカ株式会社 超音波探触子及び超音波診断装置
JP3999507B2 (ja) * 2001-12-11 2007-10-31 株式会社日立メディコ 超音波診断装置
US6865140B2 (en) * 2003-03-06 2005-03-08 General Electric Company Mosaic arrays using micromachined ultrasound transducers
US7859941B2 (en) * 2003-08-25 2010-12-28 Koninklijke Philips Electronics N.V. Transmit apodization control for microbeamformers
US20050228277A1 (en) * 2004-04-05 2005-10-13 Siemens Medical Solutions Usa, Inc. System and method for 2D partial beamforming arrays with configurable sub-array elements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322896A (ja) * 1996-06-05 1997-12-16 Matsushita Electric Ind Co Ltd 超音波診断装置
JPH11221215A (ja) * 1997-11-24 1999-08-17 General Electric Co <Ge> 超音波イメージング・システムおよびそのトランスジューサ・アレイの作動方法
JP2000152937A (ja) * 1998-11-20 2000-06-06 Matsushita Electric Ind Co Ltd 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LADABAUM I. ET AL.: "Surface Micromachined Capacitive Ultrasonic Transducers.", IEEE TRANSACTION ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL., vol. 45, no. 3, May 1998 (1998-05-01), pages 678 - 690, XP000776108 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509236B2 (en) 2012-09-25 2016-11-29 Seiko Epson Corporation Integrated circuit apparatus, ultrasound measuring apparatus, ultrasound probe and ultrasound diagnosis apparatus
JP2015033571A (ja) * 2013-07-10 2015-02-19 コニカミノルタ株式会社 整相加算器、及び、超音波探触子
US10001460B2 (en) 2013-07-10 2018-06-19 Konica Minolta, Inc. Phasing adder and ultrasound probe
WO2017026278A1 (ja) * 2015-08-07 2017-02-16 株式会社日立製作所 超音波撮像装置および超音波探触子
JPWO2017026278A1 (ja) * 2015-08-07 2018-05-31 株式会社日立製作所 超音波撮像装置および超音波探触子
US10806429B2 (en) 2015-08-07 2020-10-20 Hitachi, Ltd. Ultrasonic imaging device and ultrasonic probe
CN108024797A (zh) * 2015-10-20 2018-05-11 株式会社日立制作所 超声波诊断装置
CN108024797B (zh) * 2015-10-20 2020-12-04 株式会社日立制作所 超声波诊断装置
JP2022522241A (ja) * 2019-05-06 2022-04-14 コーニンクレッカ フィリップス エヌ ヴェ 無線周波数データを符号化及び復号するための方法及びシステム
JP7210775B2 (ja) 2019-05-06 2023-01-23 コーニンクレッカ フィリップス エヌ ヴェ 無線周波数データを符号化及び復号するための方法及びシステム

Also Published As

Publication number Publication date
JPWO2006006460A1 (ja) 2008-04-24
US20120073374A1 (en) 2012-03-29
US20080294050A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
WO2006006460A1 (ja) 超音波撮像装置
JP3862793B2 (ja) 超音波探触子及びそれを用いた超音波診断装置
JP3090718B2 (ja) 超音波診断装置
JP5432467B2 (ja) 超音波システム用の送受波回路
EP2010939B1 (en) Multi-dimensional cmut array with integrated beamformation
US7750537B2 (en) Hybrid dual layer diagnostic ultrasound transducer array
JP2789234B2 (ja) 超音波診断装置
US7963919B2 (en) Ultrasound imaging transducer array for synthetic aperture
JP6102284B2 (ja) 超音波測定装置、超音波ヘッドユニット、超音波プローブ及び超音波画像装置
JP5659564B2 (ja) 超音波探触子および超音波診断装置
WO2013145466A1 (ja) 超音波プローブおよびそれを備える超音波診断装置
JP2002209894A (ja) 超音波用探触子
JP2014518124A (ja) 2つのビーム形成器段を用いる2次元超音波診断撮像システム
JP4087762B2 (ja) 超音波診断装置
JP5776542B2 (ja) 超音波プローブおよび超音波検査装置
KR19990045153A (ko) 초음파 프로브 제조 방법, 초음파 프로브 및 초음파 영상 장치u
JP5637960B2 (ja) 超音波診断装置および超音波画像生成方法
JP2004033666A (ja) 超音波探触子および超音波診断装置
US20040193050A1 (en) Ultrasonic transmitting and receiving apparatus
JP2007029268A (ja) 超音波診断装置
JP7024549B2 (ja) 超音波センサー、及び超音波装置
JP3256698B2 (ja) 超音波診断装置
JP2004089357A (ja) 超音波用探触子及びそれを用いた超音波診断装置
WO2022230601A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP3296806B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528927

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11571782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase