WO2006006246A1 - 舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面締固方法 - Google Patents

舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面締固方法 Download PDF

Info

Publication number
WO2006006246A1
WO2006006246A1 PCT/JP2004/010052 JP2004010052W WO2006006246A1 WO 2006006246 A1 WO2006006246 A1 WO 2006006246A1 JP 2004010052 W JP2004010052 W JP 2004010052W WO 2006006246 A1 WO2006006246 A1 WO 2006006246A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
shape
road surface
pavement
dimensional position
Prior art date
Application number
PCT/JP2004/010052
Other languages
English (en)
French (fr)
Inventor
Junji Ambo
Gorou Ushikubo
Sachio Takahashi
Tatsuaki Shimizu
Original Assignee
Nippo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippo Corporation filed Critical Nippo Corporation
Priority to PCT/JP2004/010052 priority Critical patent/WO2006006246A1/ja
Priority to JP2006527673A priority patent/JP4212627B2/ja
Publication of WO2006006246A1 publication Critical patent/WO2006006246A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ

Definitions

  • Pavement material leveling device and pavement material leveling method Pavement material leveling device and pavement material leveling method, and compaction device and pavement surface compaction method
  • the present invention relates to a technique for easily building a paved road surface into a desired shape.
  • a pavement leveling device used when building a pavement road surface spreads the pavement material by pressing the pavement material on the road surface with the bottom surface of the screed while traveling in the road surface extension direction.
  • a paved road surface may be constructed so that the cross-sectional shape in the crossing direction of the road surface is inclined in a curved line and continuously changes along the road surface extending direction.
  • paved road surfaces with intentionally corrugated cross-sections may be built as a means to reduce vehicle speed.
  • the road surface is divided into meshes, and the height of the road surface from the reference surface is set in advance as the road surface shape for each of the divided portions, and the pavement leveling device is set. The position of the road is measured, and the operation of the screed is controlled so as to match the shape of the road surface corresponding to that position, and the paving material is leveled.
  • the conventional pavement leveling device uses a rotary encoder that detects the amount of rotation of the wheel that rotates as it travels, and measures the travel distance from the reference construction start point. , Seeking self position.
  • a compacting device using GPS has been publicly known as described in Japanese Patent Laid-Open No. 2003-138569 in order to compact a paved road surface with a rolling roller. Yes.
  • This compacting device measures the three-dimensional position using GPS, and calculates the height of the compaction surface from the reference surface from the three-dimensional position. Then, the height from the reference surface is compared with the road surface height from the preset reference surface, and the difference is displayed for each position of the paved road surface divided into blocks.
  • the operator must run the compaction device to compact the paved road surface so that this difference is eliminated, and it is not easy to build a desired road surface shape. could not.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-27627
  • an object of the present invention is to provide a technique capable of easily constructing a paved road surface having a desired shape with high accuracy.
  • the three-dimensional position is determined according to the three-dimensional position of the vehicle body measured by GPS.
  • the feature is that the shape of the bottom surface of the screed is deformed to match the target shape of the paved road surface corresponding to the position.
  • a screed is composed of a plurality of plate-like members arranged side by side in the left-right direction of the vehicle body, and adjacent plate-like members connected to each other so that they can rotate with respect to each other. What is necessary is just to comprise so that the shape of a bottom face may deform
  • the present invention provides a pavement corresponding to a three-dimensional position according to the three-dimensional position of the vehicle body measured by GPS when the pavement surface is compacted by a rolling roller while running the compacting device. It is characterized in that the shape of the rolling surface of the rolling roller is deformed so as to coincide with the target shape of the road surface.
  • a plurality of the compaction rollers may be provided so as to be able to swing on a surface perpendicular to the longitudinal direction of the vehicle body, and the shape of the compaction surface may be deformed when the compaction roller swings.
  • the target shape of the paved road surface at a position advanced a predetermined distance is compared with the current bottom surface of the screed or the shape of the rolling surface of the rolling roller, and the difference is calculated while the vehicle travels a predetermined distance. It is preferable to gradually change the shape of the bottom surface or the rolling surface so as to eliminate it.
  • the lateral tilt angle of the vehicle body is obtained, and the 3D position of the left and right rear end points of the bottom surface of the screed is calculated based on the three-dimensional position of the vehicle body and the lateral tilt angle of the vehicle body.
  • the shape of the bottom surface of the screed may be deformed so that the shape of the bottom surface of the screed represented by the connected straight line matches the target shape of the paved road surface.
  • the force calculated from the difference between the three-dimensional positions of the vehicle bodies measured by the mobile stations provided at least two apart from the vehicle body in the lateral direction may be detected by providing a posture jay port on the vehicle body.
  • the traveling direction of the vehicle body is obtained, and based on the three-dimensional position of the vehicle body and the traveling direction of the vehicle body, the grounding line of the rolling roller in a state where the rolling surface is on a plane and parallel to the vehicle body is obtained.
  • the shape of the compaction surface of the compaction roller may be deformed so that the shape of the compaction surface of the compaction roller represented by this ground line matches the target shape of the paved road surface.
  • a posture gyro may be provided for detection.
  • the three-dimensional position of the vehicle body is corrected in accordance with position information measured by a fixed station provided at a known position.
  • the present invention when pavement material is spread or the pavement road surface is compacted, according to the three-dimensional position of the vehicle body, it matches the target shape of the pavement road surface corresponding to the three-dimensional position. Since the shape of the bottom surface of the screed or the rolling surface of the rolling roller is automatically deformed, the paved road surface can be easily constructed to the target shape.
  • the target shape of the paved road surface at a position advanced by a predetermined distance is compared with the current bottom surface of the screed or the shape of the rolling surface of the rolling roller, and the difference between the vehicle body traveling a predetermined distance is compared.
  • the paved road surface can be constructed smoothly.
  • FIG. 1 is a structural diagram of an asphalt finisher to which the present invention is applied when an inclined paved road surface is constructed.
  • FIG. 2 is a structural view of the above screed.
  • FIG. 3 shows the target shape of the paved road surface stored in the storage device same as above, (a) is a top view, and (b) is a cross-sectional view.
  • FIG. 4 is an explanatory diagram of a positioning method of the three-dimensional position of the vehicle body.
  • FIG. 5 is a flowchart showing a first embodiment of control in the computer.
  • FIG. 6 is an explanatory diagram of a method for calculating the left and right rear end points of the screed and the cross-sectional shape of the paved road surface, and (a) is when leveling with an asphalt fischer (B) is a cross-sectional view of the pavement.
  • FIG. 7 is a flowchart showing control for calculating the left and right rear end points of the screed and the shape of the cross section of the paved road surface in the computer same as above.
  • FIG. 8 is a flowchart showing a second embodiment of control in the computer.
  • FIG. 9 is a flowchart showing a third embodiment of control in the computer.
  • FIG. 10 is a structural diagram of a compacting device to which the present invention is applied, wherein (a) is a front view and (b) is a right side view.
  • the paved road surface 1 of the automobile test course has a section in which the cross-sectional shape in the crossing direction of the road surface is inclined in a curved line. Furthermore, the paved road surface 1 may have a section in which the cross-sectional shape continuously changes along the road surface extending direction.
  • the asphalt finisher 2 used to construct such a paved road surface 1 includes a screed that presses the paved material on the bottom surface of the vehicle body 3 that can travel on the road surface such as the paved road surface 1 and its road surface base. 4 is installed.
  • the asphalt finisher 2 is supplied with paving material from an asphalt stat force 5. Further, the asphalt finisher 2 is supported by a winch tractor 7 that travels along the upper end 6 of the left and right end portions of the inclined road surface so as not to fall down on the inclined road surface. . Asphalt finisher 2 can also be supported by a support carriage that runs along the lower end. In this case, asphalt stat force 5 travels in front of asphalt finisher 2. While supplying paving material.
  • the screed 4 is connected to the tip of an arm 8 that is supported by the vehicle body 3 so as to be swingable in the vertical direction. Further, the asphalt finisher 2 is provided with a screed position adjusting device that automatically adjusts the vertical position of the screed 4.
  • the screed position adjusting device detects the difference in the upper and lower positions of the upper surface of the mold frame and the bottom surface of the screed 4 installed so as to extend in the road surface extending direction, and detects the difference between the bottom surface of the screed 4 and the upper surface of the mold frame.
  • the arm 8 is swung so that the screed 4 moves up and down with respect to the vehicle body 3 so that the positions in the vertical direction coincide with each other.
  • the bottom surface of the screed 4 is formed by arranging a plurality of plate-like screed units 20 in a row in the left-right direction of the vehicle body 3. Screed Adjacent ends of the knit 20 are connected to each other by a hinge 21 so as to be rotatable.
  • the outer end portion of the screed unit 20 disposed on the outermost side in the left-right direction of the vehicle body 3 is pivotally supported via a link 23 by a frame 22 pivotally supported at the tip of the arm 8.
  • the hinge 21 is fixed to a bracket 25 provided with a screw hole 24.
  • a screw 27 that is rotationally driven by a motor 26 fixed to the frame 22 is screwed into the screw hole 24.
  • the end of the screed unit 20 moves up and down with respect to the frame 22 when the motor 26 rotates forward or reverse. Therefore, by appropriately operating each motor 26, the bottom surface of the screed 4 can be formed into an arbitrary shape such as a straight line shown in FIG. Furthermore, in order to detect the vertical shift amount (hereinafter referred to as the actual shift amount) of the bottom surface of the end of the screed unit 20 from the straight line A connecting the left and right rear end points GL and GR of the bottom surface of the screed 4, respectively.
  • the motor 26 is provided with a potentiometer 28 for detecting the number of rotations of the screw 27.
  • the asphalt finisher 2 is provided with a computer 30 (control device) including a storage device 29 that stores a target shape of the paved road surface 1 corresponding to a three-dimensional position.
  • the computer 30 inputs a three-dimensional position of the vehicle body 3 from a mobile station 31 (to be described later) and an actual shift amount from each potentiometer 28, and drives and controls the motor 26, respectively.
  • a virtual reference line D extending in the road surface extending direction is set, for example, a set travel line of an automobile in an automobile test course.
  • the target shape of paved road surface 1 is, for example, the three-dimensional position of each intersection when paving road surface 1 is divided into a mesh shape by lines parallel to and perpendicular to reference line D, and at intersection Da on reference line D. It is represented by the direction E in which the reference line D extends. At this time, the position of the intersection Da on the reference line D is expressed in three-dimensional coordinates. Further, the position of the intersection not on the reference line D is represented by a vertical distance Za and a horizontal distance La from the reference line D on the cross section F perpendicular to the reference line D.
  • the vehicle body 3 of the asphalt finisher 2 is provided with a mobile station 31 that receives radio waves from the GPS artificial satellite 32 and measures the three-dimensional position of the vehicle body 3.
  • a base station 33 serving as a fixed station for receiving a radio wave from the GPS satellite 32 and measuring its own three-dimensional position is provided at a known position near the vehicle test course. Base station 33 Then, the difference between the measured three-dimensional position and the known position is calculated, and this difference is transmitted as correction data to the mobile station 31 by radio.
  • the mobile station 31 adds correction data to the measured 3D position of the vehicle body 3 for correction, and transmits the 3D position of the vehicle body 3 to the computer 30.
  • control methods are described. After storing the target shape of the paved road surface 1 in the storage device 29, the control is started by operating the asphalt finisher 2. This control is repeated every predetermined time.
  • step 1 abbreviated as “S1” in the figure, the same applies hereinafter
  • the corrected vehicle body from the mobile station 31 is corrected.
  • Step 2 based on the position data, the three-dimensional positions of the left and right rear end points GL and GR of the bottom surface of the screed 4 and the shape of the cross section F of the paved road surface 1 passing through the rear end of the screed 4 are calculated. Call the subroutine (see Figure 7).
  • step 3 a straight line in which the shape of the bottom surface of the screed 4 matches the cross section F from the three-dimensional position of the left and right rear end points GL and GR calculated in step 2 and the shape of the transverse surface F.
  • the vertical shift amount (hereinafter referred to as the target shift amount) of the end of the screed unit 20 from A is calculated.
  • step 4 the actual shift amounts are input from the potentiometers 28, and the motors 26 are operated so that the actual shift amount and the target shift amount match each other. Then go to END
  • step 11 the three-dimensional position of the point H on the reference line D closest to the mobile station 31 is obtained based on the position data input from the mobile station 31.
  • Step 12 the horizontal distance Lb to the point H force mobile station 31 is obtained.
  • step 13 the direction E in which the reference line D extends at the point H is read from the storage device 29. At this time, if the point H does not coincide with any of the points Da, read the direction E at the point Da closest to the point H.
  • the point Hb on the reference line D which is the distance Lc in the opposite direction of the direction E from the point H, is obtained.
  • Distance Lc is mobile station 31 and screed 4 This is the distance in the longitudinal direction of the vehicle body 3 between the rear end of the vehicle body 3 and the vehicle.
  • the intersection point on the cross section F perpendicular to the reference line D is read from the storage device 29, and the three-dimensional position of the intersection point is obtained from the intersection point and the three-dimensional coordinates of the point Hb.
  • the shape of the cross section F passing through the rear end of the screed 4 is obtained.
  • the shape of the cross section F may be obtained by complementing the shape of the cross section passing through the point Da before and after the point Hb.
  • Step 14 when the left and right rear end points GL, GR of the screed 4 are moved in the left-right direction while touching the cross section F, the mobile station 31 and the reference line D in the direction perpendicular to the reference line D Find the three-dimensional position of the left and right rear end points GL and GR so that the horizontal distance force Lb is. Then, the processing of this subroutine is terminated.
  • the target shape of the paved road surface 1 is stored in the storage device 29.
  • the leveling work is performed by running the asphalt finisher 2 along the reference line D on the road surface while supplying the paving material from the asphalt stat force 5.
  • the position data input from the mobile station 31 that is, the corrected three-dimensional position of the vehicle body 3, the three-dimensional position of the vehicle body 3 from the target shape of the paved road surface 1 stored in the storage device 29.
  • the shape of the cross section F corresponding to is calculated, and the three-dimensional positions of the left and right rear end points GL and GR are calculated.
  • the target shift amount is calculated from the shape of the cross section F and the three-dimensional positions of the left and right rear end points GL and GR, and each screed unit 20 moves up and down so that the actual shift amount matches this target shift amount.
  • Each motor 26 is controlled to operate.
  • each screed unit 20 automatically moves up and down in accordance with the driving of the finisher 2 and the paved road surface 1 is constructed so as to match the target shape.
  • the paved road surface 1 can be easily constructed in a target shape.
  • the three-dimensional position of the vehicle body 3 is corrected by the correction data transmitted from the base station 33, the delay error generated when the satellite radio wave passes through the atmosphere and the ionosphere, the error due to the satellite arrangement, and the reception The influence of the error of the machine itself can be reduced.
  • the three-dimensional positions of the left and right rear end points GL and GR of the screen are calculated based on the position data input from the mobile station 31 each time. Compared with, the positioning error is not accumulated. As a result, the finishing error of the paved road surface 1 due to the positioning error of the three-dimensional position of the vehicle body 3 can be reduced, and the paved road surface 1 having a desired shape can be constructed with high accuracy.
  • the monitor device connected to the computer 30 may display the distance between the reference line D and the vehicle body 3. As a result, the operator can confirm the left-right deviation from the target running line of the asphalt finisher 2, so that the deviation can be reduced by operating the asphalt finisher 2.
  • the storage device 29 stores the target shape of the paved road surface 1 and then starts the control by operating the asphalt finisher 2. Further, this control is repeated every predetermined time as in the first embodiment.
  • step 21 the corrected three-dimensional position of the vehicle body 3 is input from the mobile station 31 as position data.
  • step 22 based on the position data input in step 21, a subroutine for calculating the three-dimensional positions of the left and right rear end points GL and GR of the screed 4 and the shape of the cross section F (see FIG. 7) Call.
  • step 23 the three-dimensional position of the left rear end point GL of the screed 4 calculated in step 22 is stored as the first start point and the second start point, respectively.
  • step 24 a position advanced by a predetermined distance L1 along the reference line D from the left rear end point GL calculated in step 22 is obtained. Next, pass through this position and find the intersection on the cross section perpendicular to the reference line D. By connecting this intersection, it passes through the rear end of the screed 4 when it has traveled a predetermined distance L 1 from the left rear end point GL. Find the shape of the cross section. Then, from the shape of this cross section and the left and right rear end points GL, GR and the three-dimensional position of the left and right rear end points GL, GR when proceeding a predetermined distance L1 along the reference line D, the target at the end of each screed unit 20 Each shift amount is calculated.
  • step 25 the potentiometer 28 force and the actual shift amount at the end of the screed unit 20 are input. [0051] In step 26, the difference between the target shift amount and the actual shift amount is calculated, and the necessary shift amount M at the end of each screed unit 20 is calculated.
  • the distance L2 is the distance between points where the screed unit 20 is moved by the minimum shift amount N in the vertical direction. This point is provided at a position obtained by dividing the predetermined distance L1 into equal intervals.
  • step 28 the corrected three-dimensional position of the vehicle body 3 is input from the mobile station 31 as position data.
  • step 29 based on the position data input in step 28, a subroutine (see FIG. 7) for calculating the three-dimensional positions of the left and right rear end points GL and GR and the shape of the cross section F is called. .
  • step 30 based on the three-dimensional position of the left rear end point GL calculated in step 29, it is determined whether or not the asphalt finisher 2 has traveled a distance L2 from the second start point. If so, go to step 31. If not, return to step 28.
  • step 31 the motor 26 is operated so that the screed unit 20 moves by the minimum shift amount N.
  • step 32 the corrected three-dimensional position of the vehicle body 3 is input from the mobile station 31 as position data.
  • step 33 based on the position data input in step 32, a subroutine (see FIG. 7) for calculating the three-dimensional positions of the left and right rear end points GL and GR and the shape of the cross section F is called. .
  • step 34 the 3D position of the left rear end point GL calculated in step 33 is updated as the second start point.
  • step 35 based on the three-dimensional position of the left rear end point GL calculated in step 33, it is determined whether or not the asphalt finisher 2 has traveled a predetermined distance L1 from the first start point. When driving, proceed to END. If not, return to step 28.
  • the asphalt finisher 2 has advanced a predetermined distance L1.
  • the target shift amount at the position and the current actual shift amount are compared, and the screed unit 20 is moved every minimum shift amount N so that the difference disappears while the asphalt fischer 2 travels the predetermined distance L1.
  • Leveling is performed.
  • the screed unit 20 is gradually moved up and down while the asphalt finisher 2 travels the predetermined distance L1, so that the paved road surface 1 is smooth. Building power S.
  • the right rear end point GR of the force screed 4 using the left rear end point GL of the screen 4 and the mobile station 31 Use the location of the offset part on the Fast Finisher 2, like this.
  • the process may proceed to END after step 31 of the second embodiment.
  • the next distance L2 and the distance to the point where the screed unit 20 is moved up and down next to the fi mouth are sequentially calculated. Therefore, even when the road surface inclination angle changes while the asphalt finisher 2 travels the predetermined distance L1, the shape of the bottom surface of the screed 4 deforms flexibly in response to the change.
  • the paved road surface 1 can be constructed in a shape closer to the shape.
  • At least two mobile stations 31 are provided in the vehicle body 3 so as to be separated from each other in the left-right direction of the vehicle body 3, and the inclination angle of the vehicle body 3 in the left-right direction is determined by the difference between the three-dimensional positions measured by the mobile station 31. You can calculate it.
  • a posture gyro may be provided on the vehicle body 3 to detect the lateral inclination angle of the vehicle body 3. At these times, the three-dimensional positions of the left and right rear end points GL and GR on the bottom surface of the screed 4 are directly calculated based on the tilt angle in the left-right direction and the three-dimensional position of the vehicle body 3 measured by the mobile station 31.
  • the motor 26 is operated and controlled so that the straight line A connecting the left and right rear end points GL and GR matches the target shape of the paved road surface 1.
  • the processing on the computer 30 is simplified and the load on the computer 30 is reduced.
  • the computer 30 and the posture gyro for calculating the left-right direction tilt angle of the vehicle body 3 at these times correspond to the tilt angle detecting device.
  • the traveling direction of the vehicle body 3 can be detected. Therefore, even if the traveling direction of the vehicle body 3 is shifted to the left and right from the target travel line, the screed 4 The right and left rear end points of GL and GR can be obtained with high accuracy. As a result, the shape of the bottom surface of the screed 4 can be more optimally deformed so as to match the target shape of the paved road surface 1 stored in advance, so that the paved road surface can be constructed with higher accuracy.
  • the method of dividing the paved road surface 1 and the predetermined distance L1 can be arbitrarily set. Furthermore, it is possible to spread and level the paving material while running the asphalt finisher 2 in a direction that is not parallel to the reference line D by appropriately setting the way of dividing the paved road surface 1 and the predetermined distance L1.
  • the embodiment described above relates to a pavement material leveling device that spreads a pavement material.
  • the present invention can be applied to a compacting device that compacts a pavement road surface.
  • the compaction device is provided with a plurality of rolling rollers 40 arranged side by side in the left-right direction of the vehicle body 41.
  • the shaft of the rolling roller 40 is straight in the left-right direction of the vehicle body 41, that is, from the state in which the rolling surface 40a of the rolling roller 40 is on a plane and parallel to the vehicle body 41, the longitudinal direction of the vehicle body 41 Each can swing on a vertical surface. Then, by swinging the rolling roller 40, the shape of the rolling surface 40a of the rolling roller 40 can be deformed.
  • the target shape of the paved road surface is stored in the storage device and is based on the three-dimensional position of the vehicle body 41 input from the mobile station 31 provided in the vehicle body 41.
  • the shape of the cross section passing through the ground line of the rolling roller 40 is calculated.
  • the swinging motion of the rolling roller 40 is controlled so that the shape of the rolling surface 40a matches the target shape of the paved road surface.
  • the compaction device may reciprocate back and forth while changing the traveling direction of the vehicle body 41 with respect to the road surface extension direction of the paved road surface. Therefore, an attitude gyro as a traveling direction detection device may be provided on the vehicle body 41 to detect the traveling direction of the vehicle body 41. Based on the traveling direction of the vehicle body 41 and the three-dimensional position of the vehicle body 41, the grounding line of the rolling roller 40 in a state where the rolling surface 40a is on the plane and parallel to the vehicle body 41 is calculated. As a result, the ground wire of the rolling roller 40 can be obtained with high accuracy, so that the rolling surface 40a can be deformed into a more suitable shape, and the paved road surface can be compacted with higher accuracy.
  • At least two mobile stations 31 are provided in the vehicle body 41 so as to be separated from each other in the front-rear direction of the vehicle body 41, and the differential force of the measured three-dimensional position. May be calculated.
  • the traveling direction of the vehicle body 41 may be calculated from the past transition of the position of the vehicle body 41. Note that the computer that calculates the traveling direction of the vehicle body 41 at these times corresponds to the traveling direction detection device.
  • the present invention is used to construct the paved road surface 1 of the automobile test course.
  • the cross-sectional shape in the road surface extension direction is a wavy shape.
  • it can also be used when building a paved road surface with a special shape, such as when building a paved road surface having a phase difference in the left-right direction.
  • the pavement material leveling device and the pavement leveling method, the compacting device, and the paved road surface compaction method according to the present invention have a curved cross-sectional shape, particularly as in an automobile test course. This is useful when building a paved road surface that inclines in a continuous manner and changes continuously along the road surface extension direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Abstract

 GPSにより測位された舗装材敷均装置の3次元位置に応じて、3次元位置に対応した舗装路面の目標形状と一致するようにスクリードの底面の形状を変形しつつ路面上に供給された舗装材を敷き均す。または、GPSにより測位された締固装置の3次元位置に応じて、3次元位置に対応した舗装路面の目標形状と一致するように転圧ローラの転圧面の形状を変形しつつ舗装路面を締め固める。これらにより、舗装路面を目標形状に容易に構築することができる。

Description

明 細 書
舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面 締固方法
技術分野
[0001] 本発明は、舗装路面を所望の形状に容易に構築する技術に関する。
背景技術
[0002] 舗装路面を構築するときに用いられる舗装材敷均装置は、路面延長方向に走行し つつスクリードの底面で路面上の舗装材を押圧することにより、舗装材を敷き均す。
[0003] ところで、 自動車テストコースにおいては、路面横断方向の断面形状が曲線状に傾 斜するとともに路面延長方向に沿って連続的に変化するように舗装路面が構築され る場合がある。また、学校や病院の周辺または事故の多い地域などの道路において は、 自動車の速度を抑制するための手段として意図的にその断面を特殊な波形形 状にした舗装路面が構築される場合がある。これらのような舗装路面を構築するとき には、例えば、路面をメッシュ状に区切り、その区切った箇所毎に基準面からの路面 高さを路面形状として予め設定しておき、舗装材敷均装置の位置を測位しつつその 位置に対応した路面形状に一致するようにスクリードの作動を制御して、舗装材の敷 均しを行っている。
[0004] このとき、従来の舗装材敷均装置は、その走行に伴って回転する車輪の回転量を 検出するロータリエンコーダを用いて、基準となる施工開始点からの走行距離を測定 することにより、自己の位置を求めていた。
[0005] し力しながら、この方法では、ロータリエンコーダの検出精度の低さや、走行距離が 長くなるに伴って累積される誤差により、舗装材敷均装置の位置を正確に測定でき ない恐れがあった。その結果、所望の形状に舗装路面を構築することができずに舗 装路面の品質を確保できない恐れがあった。
[0006] 一方、舗装路面を転圧ローラにより締め固めるために、特開 2003-138569号公 報に記載されているように、 GPS (Global Positioning System)を利用した締固 装置が公知となっている。 [0007] この締固装置は、 GPSを利用してその 3次元位置を測位し、この 3次元位置からそ の転圧面の基準面からの高さを演算する。そして、この基準面からの高さと、予め設 定された基準面からの路面高さと、を比較し、その差をブロック状に分けた舗装路面 の位置毎に表示する。し力 ながら、このような装置では、この差がなくなるように、ォ ペレ一タが締固装置を走行させて舗装路面を締め固めなければならず、容易に所望 の路面形状に構築することはできなかった。
特許文献 1:特開 2000 - 27627号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は以上のような従来の問題点に鑑み、精度良く所望の形状の舗装路面を容 易に構築可能な技術を提供することを目的とする。
課題を解決するための手段
[0009] 本発明は、舗装材敷均装置を路面上で走行させながら路面上に供給された舗装 材を敷き均すときに、 GPSにより測位された車体の 3次元位置に応じて、 3次元位置 に対応した舗装路面の目標形状と一致するようにスクリードの底面の形状を変形させ ることを特徴とする。スクリードは、複数の板状部材を車体の左右方向に連ねて並べ るとともに隣り合った板状部材を相互に回動自在に夫々連結して構成され、板状部 材の端部が車体に対し上下方向に夫々移動することにより底面の形状が変形するよ うに構成すればよい。
[0010] 一方、本発明は、締固装置を走行させながら転圧ローラにより舗装路面を締め固め るときに、 GPSにより測位された車体の 3次元位置に応じて、 3次元位置に対応した 舗装路面の目標形状と一致するように転圧ローラの転圧面の形状を変形させることを 特徴とする。転圧ローラは、車体の前後方向に対して垂直な面上で揺動可能に複数 設けられ、転圧ローラが揺動することにより転圧面の形状が変形するように構成すれ ばよい。
[0011] このとき、所定距離進んだ位置での舗装路面の目標形状と現在のスクリードの底面 または転圧ローラの転圧面の形状とを比較し、車体が所定距離を走行する間にその 差をなくすように、底面または転圧面の形状を徐々に変形させるとよい。 [0012] また、車体の左右方向傾斜角を求め、車体の 3次元位置と車体の左右方向傾斜角 とに基づいてスクリードの底面の左右後端点の 3次元位置を演算し、この左右後端点 を結んだ直線で表されるスクリードの底面の形状が舗装路面の目標形状と一致する ように、スクリードの底面の形状を変形させてもよい。車体の左右方向傾斜角を求め るには、例えば、車体の左右方向に離間して車体に少なくとも 2つ設けた移動局によ つて夫々測位した車体の 3次元位置の差から演算する力、、または車体に姿勢ジャィ 口を設けて検出すればよい。
[0013] また、車体の進行方向を求め、車体の 3次元位置と車体の進行方向とに基づいて、 転圧面が平面上にあって車体と平行である状態での転圧ローラの接地線を演算し、 この接地線で表される転圧ローラの転圧面の形状が舗装路面の目標形状と一致す るように、転圧ローラの転圧面の形状を変形させてもよい。車体の進行方向を求める には、例えば、車体の前後方向に離間して車体に少なくとも 2つ設けた移動局によつ て夫々測位した車体の 3次元位置の差から演算する力、または車体に姿勢ジャイロ を設けて検出すればよい。
[0014] 更に、車体の 3次元位置は、既知の位置に設けられた固定局により測位された位 置情報に応じて補正されることが望ましい。
発明の効果
[0015] 本発明によれば、舗装材を敷き均すときまたは舗装路面を締め固めるときに、車体 の 3次元位置に応じて、 3次元位置に対応した舗装路面の目標形状と一致するように スクリードの底面または転圧ローラの転圧面の形状が自動的に変形するので、舗装 路面を目標形状に容易に構築することができる。
[0016] また、所定距離進んだ位置での舗装路面の目標形状と現在のスクリードの底面ま たは転圧ローラの転圧面の形状とを比較し、車体が所定距離を走行する間にその差 をなくすように、底面または転圧面の形状を徐々に変形することにより、舗装路面を 滑らかに構築することができる。
[0017] 更に、車体の 3次元位置を、既知の位置に設けられた固定局により測位された位置 情報に応じて補正することにより、 GPSの衛星電波が大気圏や電離層を通過すると きに発生する遅延誤差、衛星配置による誤差および受信機自体の誤差などの影響 を低減させることができる。
図面の簡単な説明
[0018] [図 1]図 1は、傾斜した舗装路面を構築しているときの、本発明を適用したアスファルト フィニッシャの構造図である。
[図 2]図 2は、同上のスクリードの構造図である。
[図 3]図 3は、同上の記憶装置に記憶する舗装路面の目標形状を示し、(a)は上面図 、 (b)は横断面図である。
[図 4]図 4は、同上の車体の 3次元位置の測位方法の説明図である。
[図 5]図 5は、同上のコンピュータにおける制御の第 1の実施形態を示すフローチヤ一 トである。
[図 6]図 6は、同上のスクリードの左右後端点と舗装路面の横断面の形状とを演算す る方法の説明図であり、(a)はアスファルトフイエッシャにより敷き均しているときの舗 装路面の上面図、(b)はその横断面図である。
[図 7]図 7は、同上のコンピュータにおけるスクリードの左右後端点と舗装路面の横断 面の形状とを演算する制御を示すフローチャートである。
[図 8]図 8は、同上のコンピュータにおける制御の第 2の実施形態を示すフローチヤ一 トである。
[図 9]図 9は、同上のコンピュータにおける制御の第 3の実施形態を示すフローチヤ一 トである。
[図 10]図 10は、本発明を適用した締固装置の構造図であり、(a)は正面図、(b)は右 側面図である。
符号の説明
[0019] 1 舗装路面
2 アスファルトフィニッシャ
3、 41 車体
4 スクリード
20 スクリードユニット
29 記憶装置 30 コンピュータ
31 移動局
33 基地局
40 転圧ローラ
40a 転圧面
発明を実施するための最良の形態
[0020] 以下、添付された図面を参照して本発明を詳述する。
[0021] 図 1に示すように、 自動車テストコースの舗装路面 1には、路面横断方向の断面形 状が曲線状に傾斜する区間がある。更に、舗装路面 1には、その断面形状が路面延 長方向に沿って連続的に変化する区間が存在する場合もある。
[0022] このような舗装路面 1を構築するために用いられるアスファルトフィニッシャ 2には、 舗装路面 1やその路面基盤等の路面上を走行可能な車体 3に、その底面で舗装材 を押圧するスクリード 4が搭載されている。
[0023] アスファルトフィニッシャ 2には、アスファルトスタツ力 5から舗装材が供給される。また 、アスファルトフィニッシャ 2は、傾斜した路面上を下方へ転落しないように、傾斜した 路面の左右方向端部のうち上方側の端部 6に沿って走行するウィンチトラクタ 7によ つて支持されている。なお、ァスファノレトフィニッシャ 2は、下方側の端部に沿って走 行する支持台車により支持することもでき、その場合、アスファルトスタツ力 5は、ァス フアルトフィニッシャ 2の前方を走行しながら舗装材を供給する。
[0024] スクリード 4は、車体 3に上下方向に揺動可能に支持されたアーム 8の先端に連結さ れている。更に、アスファルトフィニッシャ 2には、スクリード 4の上下方向位置を自動 的に調節するスクリード位置調節装置が設けられている。スクリード位置調節装置は 、路面延長方向に延びるように設置された型枠などの上面とスクリード 4の底面との上 下方向の位置の差を検出し、スクリード 4の底面と型枠などの上面とでその上下方向 の位置が一致するように、アーム 8を揺動させてスクリード 4を車体 3に対して上下方 向に移動させるものである。
[0025] スクリード 4は、図 2に示すように、複数の板状のスクリードユニット 20が車体 3の左 右方向に一列に連なって並べられることにより、その底面が形成される。スクリードュ ニット 20の隣り合った端部同士は、蝶番 21により相互回動自在に連結される。車体 3 の左右方向の最も外側に配置されるスクリードユニット 20の外側端部は、アーム 8の 先端に枢支されたフレーム 22に、リンク 23を介して枢支される。蝶番 21は、ネジ穴 2 4が設けられたブラケット 25に固定される。ネジ穴 24には、フレーム 22に固定された モータ 26により回転駆動するネジ 27が螺合される。そして、モータ 26が正転または 逆転することにより、スクリードユニット 20の端部がフレーム 22に対して上下方向に移 動する。従って、各モータ 26を適宜作動させることにより、スクリード 4の底面を、図中 Aに示す直線状や Bに示す曲線状のような任意の形状にすることができる。更に、ス クリード 4の底面の左右後端点 GL、 GRを結んだ直線 Aからの、スクリードユニット 20 の端部の底面の上下方向シフト量 (以下、実シフト量という)を検出するために、夫々 のモータ 26には、ネジ 27の回転数を検出するポテンショメータ 28が設けられている
[0026] アスファルトフィニッシャ 2には、 3次元位置に対応した舗装路面 1の目標形状を記 憶する記憶装置 29を内蔵したコンピュータ 30 (制御装置)が設けられている。コンビ ユータ 30は、後述する移動局 31から車体 3の 3次元位置と、各ポテンショメータ 28か ら実シフト量と、を入力し、モータ 26を夫々駆動制御する。
[0027] 図 3に示すように、舗装路面 1上には、例えば自動車テストコースにおける自動車の 設定走行線のような、路面延長方向に延びる仮想的な基準線 Dが設定されている。 舗装路面 1の目標形状は、例えば、舗装路面 1を基準線 Dに平行な線と垂直な線と でメッシュ状に区切ったときの各交点の 3次元位置と、基準線 D上の交点 Daにおける 基準線 Dが延びる方向 Eと、により表される。このとき、基準線 D上の交点 Daの位置 は 3次元座標で表される。また、基準線 D上にない交点の位置は、基準線 Dに垂直 な横断面 F上での基準線 Dからの鉛直方向距離 Za及び水平方向距離 Laにより表さ れる。
[0028] 図 4に示すように、アスファルトフィニッシャ 2の車体 3には、 GPS用人工衛星 32から 電波を受信して車体 3の 3次元位置を測位する移動局 31が設けられている。また、 自 動車テストコース近傍の既知の位置に、 GPS用人工衛星 32から電波を受信して自 己の 3次元位置を測位する固定局としての基地局 33が設けられている。基地局 33は 、測位した自己の 3次元位置と既知の位置との差を演算し、この差を補正データとし て無線によって移動局 31に送信する。移動局 31は、測位した車体 3の 3次元位置に 補正データを加えて補正し、コンピュータ 30に車体 3の 3次元位置を送信する。
[0029] 次に、図 5及び図 6を用いて、第 1の実施形態としてのコンピュータ 30によるモータ
26の制御方法を述べる。記憶装置 29に、舗装路面 1の目標形状を記憶させた後に 、アスファルトフィニッシャ 2を走行操作することにより制御が開始される。なお、この制 御は所定時間毎に繰り返される。
[0030] ステップ 1 (図では「S1」と略記する。以下同様)では、移動局 31から補正後の車体
3の 3次元位置を位置データとして入力する。
[0031] ステップ 2では、位置データに基づいて、スクリード 4の底面の左右後端点 GL、 GR の 3次元位置と、スクリード 4の後端を通る舗装路面 1の横断面 Fの形状と、を演算す るサブルーチン(図 7参照)をコールする。
[0032] ステップ 3では、ステップ 2にて演算された左右後端点 GL、 GRの 3次元位置と横断 面 Fの形状とから、スクリード 4の底面の形状が横断面 Fと一致するような、直線 Aから のスクリードユニット 20の端部の上下方向シフト量 (以下、 目標シフト量という)を夫々 演算する。
[0033] ステップ 4では、各ポテンショメータ 28から、実シフト量を夫々入力し、実シフト量と 目標シフト量とがー致するように、モータ 26を夫々作動させる。その後、 ENDに進む
[0034] ここで、図 6及び図 7を用いて、スクリード 4の左右後端点 GL、 GRの 3次元位置と横 断面 Fの形状とを演算するサブルーチンを説明する。
[0035] ステップ 11では、移動局 31から入力した位置データに基づいて、移動局 31に最も 近い基準線 D上の地点 Hの 3次元位置を求める。
[0036] ステップ 12では、地点 H力 移動局 31までの水平距離 Lbを求める。
[0037] ステップ 13では、地点 Hにおける基準線 Dが延びる方向 Eを記憶装置 29から読み 出す。このとき、地点 Hが地点 Daのいずれかと一致していないときは、地点 Hに最も 近い地点 Daにおける方向 Eを読み出せばよレ、。次に、地点 Hから方向 Eの逆方向に 距離 Lc戻った、基準線 D上の地点 Hbを求める。距離 Lcは、移動局 31とスクリード 4 の後端との間の、車体 3の前後方向の距離である。そして、地点 Hbを通過するととも に基準線 Dに垂直な横断面 F上の交点を記憶装置 29から読み出し、この交点と地点 Hbの 3次元座標とにより交点の 3次元位置を求め、交点を結ぶことによってスクリード 4の後端を通過する横断面 Fの形状を求める。このとき、地点 Hbが地点 Daのいずれ 力、と一致しないときは、地点 Hbの前後の地点 Daを通過する横断面の形状を補完し て横断面 Fの形状を求めるとよい。
[0038] ステップ 14では、スクリード 4の左右後端点 GL、 GRを横断面 F上に接しながら左右 方向に移動させたときに、基準線 Dに垂直な方向での移動局 31と基準線 Dとの水平 距離力 Lbとなるような、左右後端点 GL、 GRの 3次元位置を求める。そして、このサブ ルーチンの処理を終了する。
[0039] 以上のような構成のアスファルトフィニッシャ 2の動作について説明する。
[0040] まず、記憶装置 29に、舗装路面 1の目標形状を記憶させる。
[0041] そして、アスファルトスタツ力 5から舗装材を供給しつつ、アスファルトフィニッシャ 2を 路面上で基準線 Dに沿って走行させることにより、敷均作業が行われる。
[0042] このとき、移動局 31から入力した位置データ、即ち補正された車体 3の 3次元位置 に基づいて、記憶装置 29に記憶された舗装路面 1の目標形状から車体 3の 3次元位 置に対応した横断面 Fの形状が求められるとともに、左右後端点 GL、 GRの 3次元位 置が演算される。そして、横断面 Fの形状と左右後端点 GL、 GRの 3次元位置とから 目標シフト量が夫々演算され、実シフト量がこの目標シフト量と一致するように各スク リードユニット 20が上下動すベぐ各モータ 26が作動制御される。これにより、ァスフ アルトフィニッシャ 2の走行に応じて、各スクリードユニット 20が自動的に上下動し、 目 標形状と一致するように舗装路面 1が構築される。これにより、舗装路面 1を目標形状 に容易に構築することができる。
[0043] 車体 3の 3次元位置は基地局 33から送信された補正データによって補正されるの で、衛星電波が大気圏や電離層を通過するときに発生する遅延誤差、衛星配置によ る誤差および受信機自体の誤差などの影響を低減させることができる。また、スクリー ドの左右後端点 GL、 GRの 3次元位置は、移動局 31からその都度入力された位置 データに基づいて演算されるので、従来のロータリエンコーダによる車体位置の測位 と比べて、その測位誤差が累積されることがない。これらにより、車体 3の 3次元位置 の測位誤差による舗装路面 1の仕上誤差を低減でき、所望の形状の舗装路面 1を精 度良く構築することができる。
[0044] 更に、コンピュータ 30に接続されたモニタ装置に、基準線 Dと車体 3との距離を表 示させるとよレ、。これにより、オペレータは、アスファルトフィニッシャ 2の目標とする走 行線からの左右方向のずれを確認できるので、アスファルトフィニッシャ 2を走行操作 することによって、そのずれを少なくさせることができる。
[0045] 次に、図 8を用いて、第 2の実施形態としてのコンピュータ 30によるモータ 26の制御 方法を述べる。記憶装置 29に、舗装路面 1の目標形状を記憶させた後に、ァスファ ノレトフィニッシャ 2を走行操作することにより制御が開始されることは、第 1の実施形態 と同様である。また、この制御は所定時間毎に繰り返されることも、第 1の実施形態と 同様である。
[0046] ステップ 21では、移動局 31から補正後の車体 3の 3次元位置を位置データとして 入力する。
[0047] ステップ 22では、ステップ 21にて入力された位置データに基づいて、スクリード 4の 左右後端点 GL、 GRの 3次元位置と横断面 Fの形状とを演算するサブルーチン(図 7 参照)をコールする。
[0048] ステップ 23では、ステップ 22にて演算されたスクリード 4の左後端点 GLの 3次元位 置を第 1の始点及び第 2の始点として夫々記憶する。
[0049] ステップ 24では、ステップ 22にて演算された左後端点 GLから基準線 Dに沿って所 定距離 L1進んだ位置を求める。次に、この位置を通過するとともに基準線 Dに垂直 な横断面上の交点を求め、この交点を結ぶことによって左後端点 GLから所定距離 L 1進んだときのスクリード 4の後端を通過する横断面の形状を求める。そして、この横 断面の形状と左右後端点 GL、 GRから基準線 Dに沿って所定距離 L1進んだときの 左右後端点 GL、 GRの 3次元位置とから、各スクリードユニット 20の端部の目標シフト 量を夫々演算する。
[0050] ステップ 25では、各ポテンショメータ 28力、らスクリードユニット 20の端部の実シフト 量を入力する。 [0051] ステップ 26では、 目標シフト量と実シフト量との差を演算し、各スクリードユニット 20 の端部の必要シフト量 Mを夫々演算する。
[0052] ステップ 27では、ステップ 26にて演算された必要シフト量 Mと所定距離 L1とスクリ ードユニット 20が上下方向に移動可能な最小シフト量 Nとから、 L2 = L1/ (M/N) で求められる距離 L2を演算する。距離 L2は、スクリードユニット 20を上下方向に最 小シフト量 N移動させる地点間の距離である。この地点は、所定距離 L1の間を等間 隔に分割した位置に設けられる。
[0053] ステップ 28では、移動局 31から補正後の車体 3の 3次元位置を位置データとして 入力する。
[0054] ステップ 29では、ステップ 28にて入力された位置データに基づいて、左右後端点 GL、 GRの 3次元位置と横断面 Fの形状とを演算するサブルーチン(図 7参照)をコー ルする。
[0055] ステップ 30では、ステップ 29にて演算された左後端点 GLの 3次元位置に基づいて 、アスファルトフィニッシャ 2が第 2の始点から距離 L2走行したか否かを判定する。走 行したときは、ステップ 31に進む。走行していないときは、ステップ 28に戻る。
[0056] ステップ 31では、スクリードユニット 20が最小シフト量 N移動するように、モータ 26を 作動させる。
[0057] ステップ 32では、移動局 31から補正後の車体 3の 3次元位置を位置データとして 入力する。
[0058] ステップ 33では、ステップ 32にて入力された位置データに基づいて、左右後端点 GL、 GRの 3次元位置及び横断面 Fの形状を演算するサブルーチン(図 7参照)をコ ールする。
[0059] ステップ 34では、ステップ 33にて演算された左後端点 GLの 3次元位置を第 2の始 点として更新する。
[0060] ステップ 35では、ステップ 33にて演算された左後端点 GLの 3次元位置に基づいて 、アスファルトフィニッシャ 2が第 1の始点から所定距離 L1走行したか否かを判定する 。走行したときは、 ENDに進む。走行していないときは、ステップ 28に戻る。
[0061] このように制御することによって、アスファルトフィニッシャ 2が所定距離 L1進んだ位 置における目標シフト量と現在の実シフト量とを比較し、アスファルトフイエッシャ 2が 所定距離 L1走行する間にその差がなくなるように、スクリードユニット 20を最小シフト 量 N毎に移動させて、敷均しが行われる。これにより、 目標シフト量と実シフト量との 差が大きい場合でも、アスファルトフィニッシャ 2が所定距離 L1だけ走行する間にスク リードユニット 20を徐々に上下方向に移動させるので、舗装路面 1を滑らかに構築す ること力 Sできる。
[0062] なお、本実施形態では、第 1の始点及び第 2の始点を設定、更新するため、スクリー ド 4の左後端点 GLを用いた力 スクリード 4の右後端点 GRや移動局 31のような、ァス フアルトフィニッシャ 2上にあるレ、ずれの部位の位置を用いてもょレ、。
[0063] また、図 9に示すように、コンピュータ 30によるモータ 26の制御方法の第 3の実施形 態として、第 2の実施形態のステップ 31の後に ENDに進むようにしてもよレ、。これに より、アスファルトフィニッシャ 2が距離 L2走行する毎に、次の距離 L2、 fi口ち次にスク リードユニット 20を上下方向に移動させる地点までの距離が順次演算される。従って 、アスファルトフィニッシャ 2が所定距離 L1走行するまでの間に、路面傾斜角が変化 しているときであっても、その変化に柔軟に対応してスクリード 4の底面の形状が変形 するので、 目標形状により近い形状に舗装路面 1を構築することができる。
[0064] また、車体 3に移動局 31を車体 3の左右方向に離間して少なくとも 2つ設け、この移 動局 31により測位した夫々の 3次元位置の差より車体 3の左右方向傾斜角を演算し てもよレ、。あるいは、車体 3に姿勢ジャイロを設け、車体 3の左右方向傾斜角を検出し てもよレ、。これらのとき、この左右方向傾斜角と移動局 31により測位された車体 3の 3 次元位置とに基づいて、スクリード 4の底面の左右後端点 GL、 GRの 3次元位置を直 接演算する。そして、左右後端点 GL、 GRを結んだ直線 Aが舗装路面 1の目標形状 と一致するように、モータ 26を作動制御する。このようにすれば、コンピュータ 30での 処理が簡単になり、コンピュータ 30の負荷が軽減される。なお、これらのときの、車体 3の左右方向傾斜角を演算するコンピュータ 30と姿勢ジャイロとは、傾斜角検出装置 に該当する。
[0065] また、車体 3に姿勢ジャイロを設けた場合には、車体 3の進行方向を検出することが できるので、車体 3の進行方向が目標走行線より左右にずれた場合でも、スクリード 4 の左右後端点 GL、 GRの 3次元位置を精度良く求めることができる。これにより、予め 記憶させた舗装路面 1の目標形状に一致するように、スクリード 4の底面の形状をより 最適に変形できるので、舗装路面をより精度良く構築することができる。
[0066] なお、舗装路面 1の区切り方や所定距離 L1は、任意に設定することができる。更に 、舗装路面 1の区切り方や所定距離 L1を適宜設定することにより、基準線 Dに対して 平行ではない方向にアスファルトフィニッシャ 2を走行させながら舗装材を敷き均すこ とも可能である。
[0067] また、以上の実施形態は、舗装材を敷き均す舗装材敷均装置に関するものである 力 舗装路面を締め固める締固装置に対して本発明を適用することができる。
[0068] 図 10に示すように、締固装置には、転圧ローラ 40が車体 41の左右方向に複数並 ベて設けられている。転圧ローラ 40の軸は、車体 41の左右方向に一直線状になる 状態、即ち転圧ローラ 40の転圧面 40aが平面上にあって車体 41と平行である状態 から、車体 41の前後方向に垂直な面上で夫々揺動可能になっている。そして、転圧 ローラ 40を揺動させることにより、転圧ローラ 40の転圧面 40aの形状を変形すること ができる。
[0069] 本発明の締固装置では、アスファルトフィニッシャと同様に、記憶装置に舗装路面 の目標形状を記憶し、車体 41に設けられた移動局 31から入力する車体 41の 3次元 位置に基づレ、て転圧ローラ 40の接地線を通過する横断面の形状を演算する。そし て、転圧面 40aの形状が舗装路面の目標形状と一致するように、転圧ローラ 40の揺 動作動を制御する。
[0070] 締固装置は、舗装路面の路面延長方向に対して車体 41の進行方向を変えながら 前後に往復移動する場合がある。従って、車体 41に進行方向検出装置としての姿 勢ジャイロを設けて、車体 41の進行方向を検出してもよレ、。そして、この車体 41の進 行方向と車体 41の 3次元位置とに基づいて、転圧面 40aが平面上にあって車体 41と 平行である状態での転圧ローラ 40の接地線を演算する。これにより、転圧ローラ 40 の接地線が精度良く求められるので、転圧面 40aをより適した形状に変形でき、舗装 路面をより精度良く締め固めることができる。この他に、移動局 31を車体 41の前後方 向に離間して車体 41に少なくとも 2つ設け、測位された 3次元位置の差力 車体 41 の進行方向を演算してもよい。あるいは、車体 41の位置の過去の推移から車体 41の 進行方向を演算してもよい。なお、これらのときの、車体 41の進行方向を演算するコ ンピュータは、進行方向検出装置に該当する。
[0071] また、以上の実施形態では、 自動車テストコースの舗装路面 1を構築するために、 本発明を用いたが、例えば、走行速度を抑制するために、路面延長方向の断面形状 が波形形状であって左右方向に位相差をもつ舗装路面を構築するときのような、特 殊形状の舗装路面を構築するときにも用いることができる。
産業上の利用可能性
[0072] 以上のように、本発明にかかる舗装材敷均装置及び舗装材敷均方法、並びに、締 固装置及び舗装路面締固方法は、特に、自動車テストコースのように断面形状が曲 線状に傾斜するとともに路面延長方向に沿って連続的に変化する舗装路面を構築 する場合に有用である。

Claims

請求の範囲
[1] 路面上を走行しながら路面上に供給された舗装材を敷き均す舗装材敷均装置で あって、
前記路面上を走行可能な車体と、底面の形状を変形しつつ前記路面上の舗装材 を押圧するスクリードと、 GPSにより前記車体の 3次元位置を測位する移動局と、 3次 元位置に対応した舗装路面の目標形状を記憶する記憶装置と、制御装置と、を含ん で構成され、
前記制御装置は、前記スクリードの底面の形状が前記目標形状と一致するように、 前記移動局により測位された前記車体の 3次元位置に応じて前記底面の形状の変 形作動を制御すること
を特徴とする舗装材敷均装置。
[2] 前記制御装置は、前記車体が所定距離進んだ位置での前記舗装路面の目標形 状と前記底面の形状とを比較し、前記車体が前記所定距離を走行する間にその差を なくすように、前記底面の形状を徐々に変形させることを特徴とする請求の範囲第 1 項記載の舗装材敷均装置。
[3] 前記車体の左右方向傾斜角を検出する傾斜角検出装置を備え、
前記制御装置は、前記移動局により測位された前記車体の 3次元位置と、前記傾 斜角検出装置により検出された前記左右方向傾斜角と、に基づいて前記スクリード の底面の左右後端点の 3次元位置を演算し、前記左右後端点を結んだ直線で表さ れる前記底面の形状が前記目標形状と一致するように、前記底面の形状の変形作 動を制御することを特徴とする請求の範囲第 1項記載の舗装材敷均装置。
[4] 前記移動局は、前記車体の左右方向に離間して前記車体に少なくとも 2つ設けら れ、
前記傾斜角検出装置は、前記移動局により夫々測位された前記車体の 3次元位置 の差に基づいて前記左右方向傾斜角を演算することを特徴とする請求の範囲第 3項 記載の舗装材敷均装置。
[5] 前記傾斜角検出装置は、少なくとも前記車体の左右方向傾斜角を検出する姿勢ジ ャイロであることを特徴とする請求の範囲第 3項記載の舗装材敷均装置。
[6] 前記車体の 3次元位置は、既知の位置に設けられた固定局により測位された位置 情報に応じて補正されることを特徴とする請求の範囲第 1項記載の舗装材敷均装置
[7] 前記スクリードは、複数の板状部材を前記車体の左右方向に連ねて並べるとともに 隣り合った前記板状部材を相互に回動自在に夫々連結して構成され、前記板状部 材の端部が前記車体に対し上下方向に夫々移動することにより前記底面の形状が 変形することを特徴とする請求の範囲第 1項記載の舗装材敷均装置。
[8] 舗装路面を締め固める締固装置であって、
前記舗装路面上を走行可能な車体と、転圧面の形状を変形しつつ前記舗装路面 を締め固める転圧ローラと、 GPSにより前記車体の 3次元位置を測位する移動局と、 3次元位置に対応した舗装路面の目標形状を記憶する記憶装置と、制御装置と、を 含んで構成され、
前記制御装置は、前記転圧面の形状が前記目標形状と一致するように、前記移動 局により測位された前記車体の 3次元位置に応じて前記転圧面の形状の変形作動 を制御すること
を特徴とする締固装置。
[9] 前記制御装置は、前記車体が所定距離進んだ位置での前記舗装路面の目標形 状と前記転圧面の形状とを比較し、前記車体が前記所定距離を走行する間にその 差をなくすように、前記転圧面の形状を徐々に変形させることを特徴とする請求の範 囲第 8項記載の締固装置。
[10] 前記車体の進行方向を検出する進行方向検出装置を備え、
前記制御装置は、前記移動局により測位された前記車体の 3次元位置と、前記進 行方向検出装置により検出された前記車体の進行方向と、に基づいて、前記転圧面 が平面上にあって車体と平行である状態での前記転圧ローラの接地線を演算し、前 記接地線が前記目標形状と一致するように、前記転圧面の形状の変形作動を制御 することを特徴とする請求の範囲第 8項記載の締固装置。
[11] 前記移動局は、車体の前後方向に離間して車体に少なくとも 2つ設けられ、
前記進行方向検出装置は、前記移動局により夫々測位された前記車体の 3次元位 置の差に基づいて、前記車体の進行方向を演算することを特徴とする請求の範囲第
10項記載の締固装置。
[12] 前記進行方向検出装置は、少なくとも前記車体の進行方向を検出する姿勢ジャィ 口であることを特徴とする請求の範囲第 10項記載の締固装置。
[13] 前記車体の 3次元位置は、既知の位置に設けられた固定局により測位された位置 情報に応じて補正されることを特徴とする請求の範囲第 8項記載の締固装置。
[14] 前記転圧ローラは、前記車体の前後方向に対して垂直な面上で揺動可能に複数 設けられ、前記転圧ローラが揺動することにより前記転圧面の形状が変形することを 特徴とする請求の範囲第 8項記載の締固装置。
[15] 底面の形状が変形可能なスクリードを備えた舗装材敷均装置を走行させながら舗 装材を敷き均す舗装材敷均方法であって、
GPSにより測位された前記舗装材敷均装置の 3次元位置に応じて、舗装路面の目 標形状と一致するように前記スクリードの底面の形状を変形させることを特徴とする舗 装材敷均方法。
[16] 転圧面の形状が変形可能な転圧ローラを備えた締固装置を走行させながら舗装路 面を締め固める舗装路面締固方法であって、
GPSにより測位された前記締固装置の 3次元位置に応じて、舗装路面の目標形状 と一致するように前記転圧面の形状を変形させることを特徴とする舗装路面締固方 法。
PCT/JP2004/010052 2004-07-14 2004-07-14 舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面締固方法 WO2006006246A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/010052 WO2006006246A1 (ja) 2004-07-14 2004-07-14 舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面締固方法
JP2006527673A JP4212627B2 (ja) 2004-07-14 2004-07-14 舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面締固方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/010052 WO2006006246A1 (ja) 2004-07-14 2004-07-14 舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面締固方法

Publications (1)

Publication Number Publication Date
WO2006006246A1 true WO2006006246A1 (ja) 2006-01-19

Family

ID=35783612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010052 WO2006006246A1 (ja) 2004-07-14 2004-07-14 舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面締固方法

Country Status (2)

Country Link
JP (1) JP4212627B2 (ja)
WO (1) WO2006006246A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014508A1 (de) * 2006-03-22 2007-09-27 Kimag Gmbh Vorrichtung und Verfahren zum Fertigen eines parabolischen Straßenbelagprofils
EP1840506A1 (en) * 2006-03-31 2007-10-03 Topcon Positioning Systems, Inc. Virtual profilograph for road surface quality assessment
JP2010031535A (ja) * 2008-07-28 2010-02-12 Sumitomo (Shi) Construction Machinery Co Ltd 道路舗装機械のスクリード上下調整装置
WO2016009515A1 (ja) * 2014-07-16 2016-01-21 株式会社Nippo 舗装材の敷き均し装置及び舗装材の敷き均し方法
CN106801374A (zh) * 2017-01-16 2017-06-06 特路(北京)科技有限公司 用于摊铺机的熨平系统
CN106835903A (zh) * 2017-01-16 2017-06-13 特路(北京)科技有限公司 摊铺机及铺路系统
JP2017115387A (ja) * 2015-12-24 2017-06-29 株式会社Nippo 建設機械自動制御システム
CN107968697A (zh) * 2016-10-19 2018-04-27 深圳超级数据链技术有限公司 重叠复用系统的译码方法和装置
JP2018204361A (ja) * 2017-06-07 2018-12-27 日本道路株式会社 スクリードおよびアスファルトフィニッシャ
CN115491952A (zh) * 2022-09-30 2022-12-20 湖南交通国际经济工程合作有限公司 一种公路路基路面智慧压实监控系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240306A (ja) * 1989-03-13 1990-09-25 Nippon Hodo Co Ltd 湾曲面仕上装置
JPH05324073A (ja) * 1992-05-18 1993-12-07 Sanin Kensetsu Kogyo Kk 自動追尾式土木工事方法
JPH08199508A (ja) * 1995-01-25 1996-08-06 Nippon Hodo Co Ltd 斜面施工装置の車輪シフト制御装置
JPH08260419A (ja) * 1995-03-27 1996-10-08 Sanin Kensetsu Kogyo Kk 土木用敷均し装置
JPH09151414A (ja) * 1995-11-22 1997-06-10 Kumagai Gumi Co Ltd 締固め監視装置
JPH10219614A (ja) * 1997-02-04 1998-08-18 Fujita Corp 車両の自動走行制御方法およびシステム
JPH11508336A (ja) * 1995-06-20 1999-07-21 キャタピラー インコーポレイテッド 切削勾配制御装置
JP2002339314A (ja) * 2001-05-14 2002-11-27 Topcon Corp アスファルトフィニッシャの舗装厚制御装置及びアスファルトフィニッシャ及び舗装施工システム
JP2003315038A (ja) * 2002-04-19 2003-11-06 Tasada Kosakusho:Kk 車載式路面地形測定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240306A (ja) * 1989-03-13 1990-09-25 Nippon Hodo Co Ltd 湾曲面仕上装置
JPH05324073A (ja) * 1992-05-18 1993-12-07 Sanin Kensetsu Kogyo Kk 自動追尾式土木工事方法
JPH08199508A (ja) * 1995-01-25 1996-08-06 Nippon Hodo Co Ltd 斜面施工装置の車輪シフト制御装置
JPH08260419A (ja) * 1995-03-27 1996-10-08 Sanin Kensetsu Kogyo Kk 土木用敷均し装置
JPH11508336A (ja) * 1995-06-20 1999-07-21 キャタピラー インコーポレイテッド 切削勾配制御装置
JPH09151414A (ja) * 1995-11-22 1997-06-10 Kumagai Gumi Co Ltd 締固め監視装置
JPH10219614A (ja) * 1997-02-04 1998-08-18 Fujita Corp 車両の自動走行制御方法およびシステム
JP2002339314A (ja) * 2001-05-14 2002-11-27 Topcon Corp アスファルトフィニッシャの舗装厚制御装置及びアスファルトフィニッシャ及び舗装施工システム
JP2003315038A (ja) * 2002-04-19 2003-11-06 Tasada Kosakusho:Kk 車載式路面地形測定装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014508A1 (de) * 2006-03-22 2007-09-27 Kimag Gmbh Vorrichtung und Verfahren zum Fertigen eines parabolischen Straßenbelagprofils
EP1840506A1 (en) * 2006-03-31 2007-10-03 Topcon Positioning Systems, Inc. Virtual profilograph for road surface quality assessment
US7689351B2 (en) 2006-03-31 2010-03-30 Topcon Positioning Systems, Inc. Virtual profilograph for road surface quality assessment
JP2010031535A (ja) * 2008-07-28 2010-02-12 Sumitomo (Shi) Construction Machinery Co Ltd 道路舗装機械のスクリード上下調整装置
WO2016009515A1 (ja) * 2014-07-16 2016-01-21 株式会社Nippo 舗装材の敷き均し装置及び舗装材の敷き均し方法
JPWO2016009515A1 (ja) * 2014-07-16 2017-05-25 株式会社Nippo 舗装材の敷き均し装置及び舗装材の敷き均し方法
JP2017115387A (ja) * 2015-12-24 2017-06-29 株式会社Nippo 建設機械自動制御システム
CN107968697A (zh) * 2016-10-19 2018-04-27 深圳超级数据链技术有限公司 重叠复用系统的译码方法和装置
CN106801374A (zh) * 2017-01-16 2017-06-06 特路(北京)科技有限公司 用于摊铺机的熨平系统
CN106835903A (zh) * 2017-01-16 2017-06-13 特路(北京)科技有限公司 摊铺机及铺路系统
JP2018204361A (ja) * 2017-06-07 2018-12-27 日本道路株式会社 スクリードおよびアスファルトフィニッシャ
CN115491952A (zh) * 2022-09-30 2022-12-20 湖南交通国际经济工程合作有限公司 一种公路路基路面智慧压实监控系统

Also Published As

Publication number Publication date
JP4212627B2 (ja) 2009-01-21
JPWO2006006246A1 (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
US11313679B2 (en) Self-propelled civil engineering machine system with field rover
US6227761B1 (en) Apparatus and method for three-dimensional contouring
AU2006219886B2 (en) Method and system for controlling a construction machine
US20050265785A1 (en) Apparatus and method for three-dimensional contouring
US11001977B2 (en) Paving machine for applying varying crown profiles
CN113005868B (zh) 利用铣刨鼓来铣刨交通区域的方法和执行该方法的铣刨机
WO2006006246A1 (ja) 舗装材敷均装置及び舗装材敷均方法、並びに、締固装置及び舗装路面締固方法
EP3795748A1 (en) Levelling system for a road construction machine
JP2020514161A (ja) スマートステアリング制御を有する舗装機械
JP7191736B2 (ja) アスファルトフィニッシャ及びスクリード制御方法
BR102022004393A2 (pt) Método de pavimentação de uma superfície de rodovia e sistema de pavimentação asfáltica
JP2021167560A (ja) 横断プロファイル制御を備えた路面仕上げ機
US11479927B2 (en) Adjustable control point for asphalt paver
CN110552274B (zh) 用于铺路机控制的系统和方法
JPH04179710A (ja) 敷均し機械における舗装厚制御方法
JPH042122B2 (ja)
JP7033506B2 (ja) 転圧機械
WO2022210978A1 (ja) アスファルトフィニッシャ、及び路面舗装システム
JPH04179711A (ja) 敷均し機械における舗装厚制御方法
CN117107592A (zh) 道路机械及道路机械的支援系统
JPH04179707A (ja) 敷均し機械における舗装厚制御方法
JPS63210302A (ja) 3次元曲面の舗装装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527673

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase