WO2006003921A1 - 微細パターン形成方法および微細パターン形成装置 - Google Patents

微細パターン形成方法および微細パターン形成装置 Download PDF

Info

Publication number
WO2006003921A1
WO2006003921A1 PCT/JP2005/011925 JP2005011925W WO2006003921A1 WO 2006003921 A1 WO2006003921 A1 WO 2006003921A1 JP 2005011925 W JP2005011925 W JP 2005011925W WO 2006003921 A1 WO2006003921 A1 WO 2006003921A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
fine pattern
patterning material
fine
resist
Prior art date
Application number
PCT/JP2005/011925
Other languages
English (en)
French (fr)
Inventor
Motoki Okinaka
Kazuhito Tsukagoshi
Yoshinobu Aoyagi
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2006003921A1 publication Critical patent/WO2006003921A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • Fine pattern forming method and fine pattern forming apparatus Fine pattern forming method and fine pattern forming apparatus
  • the present invention relates to a fine pattern forming method and a fine pattern forming apparatus, and more specifically, a fine pattern forming method and a fine pattern for forming a fine pattern having a fine concavo-convex structure on the order of nm on a patterning material. It relates to a forming apparatus.
  • nanoimprint lithography has been known as a technique for forming a fine pattern having a fine concavo-convex structure on the order of nm.
  • the nanoimprint lithography technique is, for example, as shown in FIG. 1, a mold in which a fine pattern of nm order is formed (the mold can be composed of, for example, a Si substrate) 100 And a substrate 104 such as a Si substrate coated with a resist 102 made of a resin material such as PMMA as a patterning material (Fig. 1 (a): set up) and mold 100 to 100-200 ° C By pressing against the resist 102 at a temperature of about 1 to 10 MPa (Fig. 1 (b): press), and pulling the mold 100 away from the resist 102 after a predetermined time (Fig. 1 (c): release),
  • Fig. 1 (a) set up
  • Fig. 1 (d) is an explanatory diagram showing a state in which a fine pattern of nm order formed on the mold 100 is observed with an electron microscope, and Fig. 1 (e) shows a fine pattern transferred to the resist 102. It is explanatory drawing which shows the state observed with the electron microscope. Compared to the photolithography technology that supports the current semiconductor technology, this nanoimprint lithography technology
  • the minimum dimension of the patterning currently reported is 6 nm.
  • the nanoimprint lithography technique described above is an excellent lithography technique capable of performing processing on the order of nm with a minimum dimension of, for example, 6 nm in a very short time.
  • this nanoimprint lithography technique Has a problem that patterning becomes very difficult when the aspect ratio (the ratio of the Z direction to the XY direction of the structure, that is, the ratio of the height direction to the plane direction of the fine pattern) increases.
  • the aspect ratio the ratio of the Z direction to the XY direction of the structure, that is, the ratio of the height direction to the plane direction of the fine pattern
  • the surface area of the mold increases, and the contact area between the mold and the patterning material increases, so the frictional force between them increases. For this reason, when the mold is pulled away from the patterning material, the patterning material comes to adhere to the mold, which destroys the fine pattern formed with force.
  • the most used material for coating the mold is a silane coupling agent typified by Trichlor ⁇ (1 ⁇ , 1H, 2H, 2H-perfluorooctyl) silane. This material is terminated with CF groups with very low surface energy.
  • the single molecule can be bonded to the substrate, the unevenness of the mold can be faithfully reproduced even after coating, and the fine pattern does not collapse.
  • the size of the noturn is only shown to be about 1 ⁇ m. This is because the use of an ultrasonic transducer is not suitable for patterning a structure of 1 m or less because it is difficult to control the nm order by vibration.
  • the technology using this ultrasonic transducer is still in the development stage, and the amplitude of the vibration direction is controlled on the order of nm! /, Rather than simply the Z direction (height direction of the pattern formed on the mold) It is thought that it is not effective for patterning of fine patterns on the order of nm.
  • the nanoimprint lithography technology has a soft type as described above. It is known that there are two types of methods (see Fig. 2) and hard type (see Fig. 4).
  • the soft-type nanoimprint lithography technology as shown in Figure 2,
  • the mold 200 is pushed into the resist 202 as a patterning material by air pressure or hydraulic pressure.
  • the mold 200 and the substrate 204 coated with the resist 202 are placed on top of each other (Fig. 2 (a)), and the mold 200 is pressed against the register 202 by air pressure or hydraulic pressure (Fig. 2 (b)).
  • the mold 200 is pulled away from the resist 202 using tweezers 206 or the like (FIG. 2 (c)).
  • the parallelism between the mold 200 and the resist 202 depends on the parallelism that the mold 200 and the resist 202 have.
  • the mold 200 and the substrate 204 are mirror-polished, and the resist 202 is applied onto the mirror-polished substrate 204. Therefore, the fine pattern of the concavo-convex structure of nm order formed on the mold 200 is formed. However, the mold 200 and the resist 202 are almost perfectly parallel.
  • the mold 200 is pushed into the resist 202 by air pressure or hydraulic pressure, so there is no means for pulling the mold 200 away from the resist. It is pulled away from.
  • Fig. 3 (a) is an explanatory diagram showing an example of a state in which a fine pattern having a concavo-convex structure on the order of nm formed on a mold is observed with an electron microscope at an oblique angle of 45 degrees upward.
  • 3 (b) forms a fine pattern on the resist using the mold shown in Fig. 3 (a).
  • FIG. 3 (c) is an explanatory view showing an example of a state observed with an electron microscope in plan view from above
  • FIG. 3 (c) is a fine pattern formed on the resist using the mold shown in FIG. It is explanatory drawing which shows an example of the state observed with the electron microscope by planar view from the upper direction at the time of doing.
  • the hard-type nanoimprint lithography technology has a first holder 406 and a second holder 408 made of metal facing each other in the upper and lower directions, and the first one positioned above.
  • the mold 400 is fixed to the holder 406, and the substrate 404 coated with the resist 402 is fixed to the second holder 408 (FIG. 4 (a)), and the first holder 406 and the substrate 404 to which the mold 400 is fixed are fixed.
  • the second holder 408 is driven using a motor, such as a stepping motor, and pressed while controlling the height and load, and the mold 400 is pushed into the register 402 (FIG. 4 (b)).
  • the first holder 406 to which 400 is fixed and the second holder 408 to which the substrate 404 is fixed are driven using a motor such as a stepping motor to separate the mold 400 from the resist 402. (FIG. 4 (c)).
  • a motor such as a stepping motor to separate the mold 400 from the resist 402.
  • the present invention has been made in view of the above-described demand for the conventional technology, and the purpose thereof is to realize a powerful high aspect ratio structure that cannot be achieved by the conventional technology.
  • the present invention intends to provide a fine pattern forming method and a fine pattern forming apparatus.
  • the present invention forms a gap between the mold and the resist by minutely moving the pressed mold and the patterning material relatively in a direction perpendicular to the pressing direction. It is what you do.
  • the contact area between the mold and the resist is reduced, the frictional force acting between the two is reduced, and the resist force is also applied to the mold.
  • the releasability when pulled out is improved.
  • a mold on which a fine pattern having a fine concavo-convex structure is formed is pressed against a patterning material, and the fine pattern having a fine concavo-convex structure is formed on the patterning material.
  • a first step of press-contacting a mold on which a fine pattern having a fine concavo-convex structure is formed with a patterning material, the press-contacted mold and the pattern A second step of moving the Jung material relative to the direction perpendicular to the pressure contact direction; and a third step of releasing the pressure contact between the mold and the patterning material and pulling the mold from the pattern Jung material. And having steps.
  • the second step at least one of the mold and the patterning material is moved in a predetermined direction.
  • the present invention provides a convex portion having a fine concavo-convex structure constituting the fine pattern of the mold Is configured to have a shape that is smaller and smaller in the moving direction than a concave portion of a predetermined size formed in the patterning material using the convex portion.
  • the movement amount of the movement in the second step is a difference in the movement direction between the convex portion of the mold and the concave portion of the predetermined size formed in the patterning material. It is what I did.
  • the present invention provides a micropattern forming method in which a mold having a fine pattern having a fine concavo-convex structure is pressed against a patterning material to form a fine pattern having a fine concavo-convex structure on the patterning material.
  • a moving means that moves relatively in an orthogonal direction, and the pressure between the mold and the patterning material by the pressure-contacting means is released, and the bow I pulls out the mold from the patterning material cover.
  • a punching means is provided in which a mold having a fine pattern having a fine concavo-convex structure is pressed against a patterning material to form a fine pattern having a fine concavo-convex structure on the patterning material.
  • the moving means moves at least one of the mold and the patterning material in a predetermined direction.
  • the convex portion of the fine concavo-convex structure constituting the fine pattern of the mold is moved by the moving means rather than the concave portion having a predetermined size formed on the patterning material using the convex portion.
  • the movement amount of the movement by the moving means is formed on the convex part of the mold and the patterning material. The difference in the moving direction with respect to the concave portion of the predetermined size.
  • the moving means is an XY stage on which the patterning material is placed and whose movement is controlled by the nm order.
  • FIG. 1 is an explanatory view showing a conventional nanoimprint lithography technique, (a) is a setup process, (b) is a press process, (c) is a release process, and (d) is a mold. It is explanatory drawing which shows the state which observed the fine pattern of the formed nm order with the electron microscope, (e) is explanatory drawing which shows the state which observed the fine pattern transferred to the resist with the electron microscope.
  • FIG. 2 is an explanatory view showing a nano-imprint lithography technology by a soft type.
  • FIG. 3 is an explanatory view showing the state of the mold and the resist observed with an electron microscope.
  • (A) is 45 degrees above the tilted fine pattern with a concavo-convex structure of nm order formed on the mold.
  • An explanatory diagram showing an example of the state of the force observed with an electron microscope in perspective (b) is an example of a successful pattern when a fine pattern is formed on the resist using the mold shown in (a) in plan view from above.
  • An explanatory diagram showing an example of a state observed with a microscope (c) is a failure example when a fine pattern was formed on a resist using the mold shown in (a), and was observed with an electron microscope in plan view from above. It is explanatory drawing which shows an example of a state.
  • FIG. 4 is an explanatory diagram showing nano-imprint lithography technology based on a hard type.
  • FIG. 5 is an explanatory diagram of a conceptual configuration of a fine pattern forming apparatus according to an example of an embodiment of the present invention.
  • Fig. 6 is an explanatory view showing the relationship between the convex portion of the mold and the concave portion of the resist.
  • FIG. 7 is an explanatory view showing a mold manufacturing process.
  • FIG. 8 is an explanatory view showing a fine pattern forming method according to the present invention.
  • FIG. 5 shows a conceptual configuration diagram of a fine pattern forming apparatus according to an example of the embodiment of the present invention.
  • This fine pattern forming apparatus 10 uses a hard type nanoimprint using a mold 500 formed with a fine pattern having a fine concavo-convex structure on the order of nm and a substrate 504 coated with a resist 502 as a patterning material. It is an apparatus for performing lithography technology.
  • the fine pattern forming apparatus 10 can detachably dispose the substrate 504 coated with the resist 502 and also refer to the XY direction (see the reference diagram showing the orthogonal coordinate system in FIG. 5), that is, the substrate 504.
  • XY stage 12 that can be moved in the plane direction of the XY stage 12, and a predetermined gap from the XY stage 12 along the Z direction of the XY stage 12 (see the reference diagram showing the Cartesian coordinate system in FIG. 5), that is,
  • the metal holder 14 is disposed above the XY stage 12 so as to face the XY stage 12 and the mold 500 can be detachably attached thereto, and the holder 14 is translated in a direction approaching the XY stage 12.
  • To remove the mold 500 from the resist 502 by pressing the mold 500 against the resist 502 or moving the holder 14 in a direction away from the XY stage 12 from the pressure contact state between the mold 500 and the resist 502. And a stepping motor 16.
  • the XY stage 12 includes a drive mechanism 12a in the XY direction, a heater 12b for heating the substrate 504 coated with the resist 502 placed on the XY stage 12, and a drive mechanism 12a. And a heat insulating agent 12c for heat insulation with the heater 12b.
  • Such an XY stage 12 is a so-called super-precision wing stage that can control the amount of movement in the ⁇ direction on the order of nm by the drive mechanism 12a.
  • the drive mechanism 12a of the XY stage 12 that can control the movement amount in the ⁇ direction on the nm order, for example, a drive mechanism that controls the movement amount in the XY direction using the thermal expansion of metal, or It is possible to use a drive mechanism that incorporates a piezo element with good controllability and controls movement in the XY directions by driving the piezo element.
  • the holder 14 includes a heater 14a for heating the mold 500 disposed in the holder 14.
  • the mold 500 forms the convex portion 50 Oa corresponding to the concave portion 502a constituting the fine pattern desired to be formed on the resist 502, the mold 500
  • the length L1 in the Z direction is set to coincide with the length L1 ′ in the Z direction of the recess 502a to be formed by the protrusion 500a.
  • the length L2 in the X direction and the length in the Y direction (not shown in FIG. 6) of the convex portion 500a both or at least one of them is formed by the convex portion 500a.
  • the concave portion 502a to be formed is formed to be smaller than the length in the XY direction (in FIG. 6, only the length L2 ′ in the X direction is shown and the length in the Y direction is not shown).
  • the Z-direction length L1 and the Y-direction length of the projection 500a are the Z-direction length L1 ′ and the Y-direction length of the recess 502a to be formed by the projection 500a, respectively.
  • the length L2 of the convex portion 500a in the X direction is shorter than the length L2 ′ of the concave portion 502a to be formed by the convex portion 500a by L3.
  • the mold 500 is fabricated using an electron beam lithography system (EB lithography system) and a reactive ion etching system, and then the surface is coated with Trichloro (lH, 1H, 2 H, 2H—perfluorooctyl) silane. To complete.
  • EB lithography system electron beam lithography system
  • reactive ion etching system reactive ion etching system
  • the mold 500 is manufactured according to the procedure shown in FIG.
  • an electron beam lithography resist 500-2 is applied to the Si substrate 500-1 (FIG. 7 (a)), and a pattern is formed on the electron beam lithography resist 500-2 by an electron beam using an electron beam lithography system.
  • Fig. 7 (b) Develop after drawing
  • Ni is deposited and lifted off to form a mask 500-3 (Fig. 7 (c)).
  • a reactive ion etching system is used to measure the order of nm.
  • a fine pattern with a concavo-convex structure is produced (Fig. 7 (d)).
  • the Ni mask 500-3 is peeled off using hydrochloric acid or the like (Fig. 7 (e)), and Trichloro (lH, 1H, 2H, 2H-perfluorooctyl) silan e is formed on the surface of the formed concave-convex pattern.
  • the mold 500 is completed by coating the coating agent 500-4 (Fig. 7 (f)).
  • the substrate 504 coated with the resist 502 and the mold 500 are relatively moved in the order of nm during nanoimprinting by driving the XY stage 12 in the X direction. Like to do.
  • a gap is formed between the resist 502 and the mold 500, so that the contact area between the resist 502 and the mold 500 is drastically reduced, and the frictional force acting between the resist 502 and the mold 500 is reduced. This is remarkably reduced, and the releasability when the mold 500 is extracted from the resist 502 is remarkably improved.
  • a gap is formed between the resist 502 and the mold 500 described above, even if the parallelism between the mold 500 and the resist 502 is somewhat low, there is no risk of breaking the pattern formed in the resist.
  • the nanoimprint lithography technique using the fine pattern forming apparatus 10 is performed according to the procedure shown in FIG.
  • the mold 500 and the resist 502 formed on the substrate 504 are brought into contact with each other, and the mold 500, the resist 502, and the substrate 504 are heated to a temperature equal to or higher than the glass transition point of the resist 502 (FIG. 8 ( a)).
  • the mold 500 and the resist 502 are pressed against each other (FIG. 8 (b)), and the mold 500 and the resist 502 are orthogonal to the press-contact direction in a state where the mold 500 and the resist 502 are pressed.
  • Move relative to the direction Specifically, the XY stage 10 is driven to precisely move the substrate 504 placed on the XY stage 10 in the X direction.
  • a force 502a is formed on the resist 502 by the convex 500a of the monored 500, and the resist 502 is turned (FIG. 8 (c)).
  • the Monored 500 is pulled out from the resist 502 (FIG. 8 (d)).
  • the amount of movement of the substrate 504 in the X direction by the XY stage 10 is a difference in the movement direction (X direction) between the convex portion 500a of the mold 500 and the concave portion 502a of a predetermined size formed in the resist 502. This difference is L3 in the example shown in FIG.
  • L1 can be 20 nm
  • L2 can be 10 nm
  • L3 can be 1 Onm.
  • the contact area between the mold 500 and the resist 502 is greatly reduced, and therefore, the mold can be easily peeled off from the resist 502. Further, even if the angle when the mold 500 is pulled out from the resist 502 is slightly inclined and the parallelism between the mold 500 and the resist 502 is not maintained, there is no possibility that the pattern is broken. Therefore, according to the present invention, it is possible to produce a high aspect ratio structure.
  • the force indicating the X direction as the moving direction when the mold 500 and the resist 502 are moved relatively in the direction perpendicular to the pressing direction is not limited to this.
  • the convex part 500a of the mold 500 and the concave part 5 of the resist 502 Depending on the shape of 02a, it may be moved in the Y direction, or it may be moved in any direction in the plane.
  • the force described for the example of performing patterning for forming a fine pattern on the resist 502 is not limited to this, and various patterns in various fields can be used. It can be used to form a fine pattern on the wrapping material.
  • the present invention can be used for forming a fine pattern in various fields.
  • the present invention can be used for patterning in semiconductor manufacturing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 従来の技術では達成できなかった高アスペクト比構造を実現するものであり、微細な凹凸構造を備えた微細パターンを形成されたモールドをパターニング材料に圧接して、上記パターニング材料に微細な凹凸構造を備えた微細パターンを形成する微細パターン形成方法において、微細な凹凸構造を備えた微細パターンを形成されたモールドとパターニング材料とを圧接する第1のステップと、上記圧接された上記モールドと上記パターニング材料とを圧接方向と直交する方向に相対的に移動させる第2のステップと、上記モールドと上記パターニング材料との圧接を解除して、上記パターニング材料から上記モールドを引き抜く第3のステップとを有する。

Description

微細パターン形成方法および微細パターン形成装置
技術分野
[0001] 本発明は、微細パターン形成方法および微細パターン形成装置に関し、さらに詳 細には、 nmオーダーの微細な凹凸構造を備えた微細パターンをパターユング材料 に形成する微細パターン形成方法および微細パターン形成装置に関する。
背景技術
[0002] 従来より、 nmオーダーの微細な凹凸構造を備えた微細パターンを形成する手法と して、ナノインプリントリソグラフィー技術が知られて 、る。
ここで、ナノインプリントリソグラフィー技術とは、例えば、図 1に示すように、 nmォー ダ一の微細パターンを形成したモールド (モールドは、例えば、 Si基板などにより構 成することができる。) 100と、パター-ング材料として PMMAなどの榭脂材料により 形成されたレジスト 102を塗布した Si基板などの基板 104とを準備し(図 1 (a):セット アップ)、モールド 100を 100〜200°C程度の温度かつ l〜10MPa程度の圧力でレ ジスト 102に押し付け(図 1 (b):プレス)、所定時間経過後にレジスト 102からモール ド 100を引き離すことによって(図 1 (c):リリース)、モールド 100に形成された nmォ ーダ一の微細パターンをレジスト 102に転写してパター-ングを行うというリソグラフィ 一技術である。
なお、図 1 (d)はモールド 100に形成された nmオーダーの微細パターンを電子顕 微鏡で観察した状態を示す説明図であり、図 1 (e)はレジスト 102に転写された微細 パターンを電子顕微鏡で観察した状態を示す説明図である。 こうしたナノインプリントリソグラフィー技術は、現在の半導体技術を支えているフォト リソグラフィー技術と比較すると、
(1)原理が簡単であり、プロセスがスピーディーである、
(2)有機溶媒を使ったウエットプロセスを必要としな 、ため環境にやさ 、、
(3)フォトリソグラフィー技術において用いる極めて高価なステッパー(例えば、数十 億円程度である。)と比較して、極めて安価 (例えば、 1千万円〜 1億円程度である。 ) な装置により実施することができる、
などと 、う点で極めて優れて 、る。
なお、本願発明者の知るところによれば、現在報告されているパターユングの最小 寸法は 6nmである。
[0003] ところで、上記したナノインプリントリソグラフィー技術は、非常に短時間で、例えば、 最小寸法が 6nmという nmオーダーの加工を行うことができる優れたリソグラフィー技 術であるが、一方、こうしたナノインプリントリソグラフィー技術においては、アスペクト 比 (構造物の XY方向に対する Z方向の比、即ち、微細パターンの平面方向に対する 高さ方向の比である。 )が大きくなるとパター-ングが非常に難しくなるという問題点が あり、高アスペクト比構造を備えた微細パターンを形成することが困難であるという問 題点があった。そして、この問題点は、以下の 2つの要因に起因するものと考えられ ていた。
(1)第 1の要因
モールドの高アスペクト比構造ィ匕によってモールドの表面積が増大することになり、 モールドとパター-ング材料との接触面積が増大するため両者の間の摩擦力が大き くなる。このため、モールドをパターユング材料から引き離す際にパターユング材料が モールドへ付着するようになってしま 、、せつ力べ形成した微細パターンを破壊してし まうものであった。
(2)第 2の要因
モールドをパター-ング材料に押しつけた後に、パター-ング材料力もモールドを 引き離す際に、モールドとパターユング材料とを平行に保ったまま引き離すことが困 難である。このため、モールドとパターユング材料とが非平行になって引き離されてし ま!、、せつ力べ形成した微細パターンを破壊してしまうものであった。
[0004] 現在、上記した第 1の要因ならびに第 2の要因を解決するための手法として、種々 の手法が提案されている。
まず、上記した第 1の要因、即ち、パターユング材料力 モールドを引き離す際に おけるパターユング材料のモールドへの付着による微細パターンの破壊を解決する ための手法としては、例えば、 (a)モールド表面を改質してモールドとパター-ング材料との剥離性の向上を図る
(b)超音波振動子を装置へ^ aみ込むことによって、超音波振動子の振動によって パター-ング材料からのモールドの引き抜き効果を向上させて、モールドとパター- ング材料との剥離性の向上を図る、
などの手法が提案されて 、る。
また、上記した第 2の要因、即ち、パターユング材料力もモールドを引き離す際にお けるモールドとパター-ング材料との非平行による微細パターンの破壊を解決するた めの手法としては、例えば、後述するソフトタイプと称する手法 (以下、単に「ソフトタイ プ」と称する。)ならびにハードタイプ (以下、単に「ハードタイプ」と称する。)における 手法とが提案されている。
ここで、上記した第 1の要因に関する上記(a)に示したモールド表面の改質につい て詳細に説明すると、一般に、モールドの材料としては Si、 SiO、 SiC、ダイヤモンド
2
あるいは Niなどが使用されている力 nmオーダーの凹凸を持つモールドをこのまま ノ ターニング材料に押し付けた場合には、その凹凸によりモールドの表面積が非常 に大きくなつているため、パターユング材料力 モールドを引き離す際にパターニン グ材料がモールド側に付着し、パター-ング材料にせつカゝく形成した微細パターンが 破壊されて、モールドに形成された微細パターンをパターユング材料に正確に転写 することができない。
そこで、モールドに対してコーティングを行ってモールド表面を改質し、モールドの 表面エネルギーを下げることにより、モールドへのパター-ング材料の付着を防ぐと いう手法が提案されている。
なお、モールドをコーティングする材料として最も使用されている材料は、 Trichlor ο (1Η, 1H, 2H, 2H— perfluorooctyl) silaneに代表されるシランカップリング剤で ある。この材料は、表面エネルギーが非常に低い CF基で表面が終端されている。ま
3
た、単一分子を基板と結合させることができることから、塗布後もモールドの凹凸を忠 実に再現し、微細パターンの崩れが起きな 、と 、う優れた性質を持って 、る。
し力しながら、高アスペクト比構造の場合には、モールドの表面積が非常に大きくな るため、このシランカップリング剤のみによる剥離効果のみでは、パター-ング材料の モールドへの付着を防ぐことが困難となっていることが指摘されていた。
[0006] 次に、上記した第 1の要因に関する上記 (b)に示した超音波振動子を用いるパター ユング材料からのモールドの引き抜き効果の向上について詳細に説明すると、モー ルドとパター-ング材料との剥離性を向上するために超音波振動子を装置内に組み 込み、ノターユング材料力もモールドを引き離すときに、超音波振動子によりモール ドに振動を与えて引き離すことが効果的であることが各種実験結果として報告されて いる。この際に、一般に超音波振動子に使用される周波数は、 20KHz程度である。 し力しながら、こうした超音波振動子によるパター-ング材料力ものモールドの引き 抜き効果は、モールドとパターユング材料との大きさによって効果が変化するため、 モールドとパターユング材料とに適する共振周波数をもつ超音波振動子を使用しな ければ、上記した引き抜き効果の向上を図ることができないものであった。
また、超音波振動子の振幅の大きさは制御されていないため、超音波振動子の振 動により形成された微細パターンが却って崩されてしまう恐れがあるという新たな問題 点を招来するものであった。
さらに、上記した各種実験結果の報告では、ノターンの大きさとしては 1 μ m程度も のまでしか示されていない。これは、振動による nmオーダーの制御は困難であるた め、 1 m以下の構造体のパターニングには超音波振動子の利用は不向きであるか らである。
即ち、この超音波振動子を利用する技術は未だ開発段階にあり、振動方向の振幅 を nmオーダーで制御して!/、るわけではなぐ単にモールドに形成されたパターンの Z 方向(高さ方向)に振動させているのみであって、 nmオーダーの微細パターンのパタ 一ユングに対して有効ではな 、ものと考えられて 、る。
[0007] 次に、上記した第 2の要因に関するパター-ング材料力 モールドを引き離す際に おけるモールドとパター-ング材料との非平行について説明する力 ナノインプリント リソグラフィー技術には、上記したようにソフトタイプ(図 2参照)とハードタイプ(図 4参 照)との 2種類の手法があることが知られている。
ここで、ソフトタイプによるナノインプリントリソグラフィー技術は、図 2に示すように、 モールド 200を空気圧や油圧によりパター-ング材料たるレジスト 202に対して押し 込むという手法である。このソフトタイプの場合には、モールド 200とレジスト 202を塗 布した基板 204とを重ねて置き(図 2 (a) )、空気圧や油圧によりモールド 200をレジス ト 202に押し付ける(図 2 (b) )、その後にピンセット 206などを用いてレジスト 202から モールド 200を引き離すものである(図 2 (c) )。
このため、このソフトタイプにおいては、モールド 200とレジスト 202との平行度は、 モールド 200とレジスト 202とが持っている平行度に依存することになる。
通常は、モールド 200および基板 204は鏡面研磨されており、鏡面研磨された基 板 204上にレジスト 202が塗布されることになるため、モールド 200に形成された nm オーダーの凹凸構造の微細パターンを除 、て、モールド 200とレジスト 202とはほと んど完璧な平行状態になっている。
このため、空気圧や油圧によりモールド 200をレジスト 202に押し付ける際には、モ 一ルド 200とレジスト 202とは平行状態を維持したままの状態にあるので、モールド 2 00をレジスト 202に押し付けた時点においては(図 2 (b) )、モールド 200の nmォー ダ一の凹凸構造の微細パターンはレジスト 202に完全に転写されてインプリントされ ることになる。
一方、このソフトタイプは、空気圧や油圧によりモールド 200をレジスト 202に押し込 んでいるため、モールド 200をレジストから引き離す手段を備えておらず、ピンセット 2 06などを用いて人手によりモールド 200をレジスト 202から引き離している。
従って、レジスト 202へのモールド 200の押し込みについては、レジスト 202とモー ルド 200との平行を維持して行うことができる力 レジスト 202力らモールド 200を引き 抜く人手による作業が、レジスト 202とモールド 200との平行を維持して行うことが困 難であるため、アスペクト比の小さい構造物ではパターンの崩れは小さいけれども、 アスペクト比が高くなるとパターンの崩れを回避することが極めて困難であるという問 題点があった。
なお、図 3 (a)はモールドに形成された nmオーダーの凹凸構造を備えた微細バタ ーンを斜め 45度上方力 斜視にて電子顕微鏡で観察した状態の一例を示す説明図 であり、図 3 (b)は図 3 (a)に示すモールドを用いてレジストに微細パターンを形成し た際の成功例を上方から平面視にて電子顕微鏡で観察した状態の一例を示す説明 図であり、図 3 (c)は図 3 (a)に示すモールドを用いてレジストに微細パターンを形成 した際の失敗例を上方から平面視にて電子顕微鏡で観察した状態の一例を示す説 明図である。
[0008] また、ハードタイプによるナノインプリントリソグラフィー技術は、図 4に示すように、上 下方向に対向して金属製の第 1ホルダー 406と第 2ホルダー 408とを配置し、上方に 位置する第 1ホルダー 406にモールド 400を固定するとともに、第 2ホルダー 408にレ ジスト 402を塗布した基板 404を固定し(図 4 (a) )、モールド 400を固定した第 1ホル ダー 406と基板 404を固定した第 2ホルダー 408とをステッピングモーターのようなモ 一ターなどを用いて駆動して高さと荷重を制御しながら圧接させ、モールド 400をレ ジスト 402に押し込み(図 4 (b) )、その後にモールド 400を固定した第 1ホルダー 406 と基板 404を固定した第 2ホルダー 408とをステッピングモーターのようなモーターな どを用いて駆動してレジスト 402からモールド 400を引き離すものである(図 4 (c) )。 こうしたノヽードタイプの方法においては、上下方向に対向して金属製の第 1ホルダ 一 406と第 2ホルダー 408とにモールド 400と基板 404とをそれぞれ固定しているた め、レジスト 402力 モールド 400を引き離すことは比較的容易である。
しかしながら、このハードタイプの方法においては、モールド 400とレジスト 402との 平行度は第 1ホルダー 406と第 2ホルダー 408との配置関係に依存しているため、モ 一ルド 400とレジスト 402との高い平行度を維持しながらモールド 400をレジスト 402 に押し込むことは困難であり、ソフトタイプと比較して平行度が劣るものであった。 従って、モールド 400とレジスト 402との寸法が大きくなつた場合には、レジストの一 方側のみ力 Sインプリントされて、他方側は全くインプリントされないという現象が生ずる 恐れがあった。
[0009] 即ち、上記において詳細に説明したように、従来より高アスペクト比構造の達成のた めに種々の手法が提案され検証されて!ヽるが、現在までのところ高アスペクト比構造 を実現することができていないものであり、高アスペクト比構造を実現することのできる 手法に対する極めて強!、要望があった。
[0010] なお、本願出願人が特許出願時に知って!/、る先行技術は、上記にお!、て説明した ようなものであって文献公知発明に係る発明ではないため、記載すべき先行技術情 報はない。
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、従来の技術に対する上記した要望に鑑みてなされたものであり、その目 的とするところは、従来の技術では達成できな力つた高アスペクト比構造を実現する ことのできる微細パターン形成方法および微細パターン形成装置を提供しょうとする ものである。
課題を解決するための手段
[0012] 上記目的を達成するために、本発明は、圧接したモールドとパターユング材料とを 圧接方向と直交する方向に相対的に微小移動させることにより、モールドとレジストと の間に隙間を形成するようにしたものである。
従って、本発明によれば、モールドとレジストとの間に隙間を形成することにより、モ 一ルドとレジストとの接触面積が低減されて両者の間に働く摩擦力が低下し、レジスト 力もモールドを引き抜く際の剥離性が向上する。
また、モールドとレジストとの間に隙間が形成されるため、モールドとレジストとの平 行度が多少低くても、レジストに形成されたパターンを崩す恐れはない。
[0013] 即ち、本発明は、微細な凹凸構造を備えた微細パターンを形成されたモールドを パター-ング材料に圧接して、上記パター-ング材料に微細な凹凸構造を備えた微 細パターンを形成する微細パターン形成方法にお ヽて、微細な凹凸構造を備えた微 細パターンを形成されたモールドとパター-ング材料とを圧接する第 1のステップと、 上記圧接された上記モールドと上記パターユング材料とを圧接方向と直交する方向 に相対的に移動させる第 2のステップと、上記モールドと上記パター-ング材料との 圧接を解除して、上記パターユング材料から上記モールドを引き抜く第 3のステップと を有するようにしたものである。
また、本発明は、上記第 2のステップは、上記モールドと上記パター-ング材料との 少なくとも 、ずれか一方を所定の方向に移動するようにしたものである。
また、本発明は、上記モールドの微細パターンを構成する微細な凹凸構造の凸部 は、上記凸部を用いて上記パターユング材料に形成する所定の大きさの凹部よりも、 上記移動方向にぉ 、て小さ 、形状を備えて 、るようにしたものである。
また、本発明は、上記第 2のステップにおける上記移動の移動量は、上記モールド の上記凸部と上記パターユング材料に形成する上記所定の大きさの凹部との上記移 動方向における差分であるようにしたものである。
また、本発明は、微細な凹凸構造を備えた微細パターンを形成されたモールドをパ ターニング材料に圧接して、上記パター-ング材料に微細な凹凸構造を備えた微細 ノターンを形成する微細パターン形成装置において、微細な凹凸構造を備えた微細 ノターンを形成されたモールドとパター-ング材料とを圧接する圧接手段と、上記圧 接手段により圧接された上記モールドと上記パターユング材料とを圧接方向と直交 する方向に相対的に移動する移動手段と、上記圧接手段による上記モールドと上記 パター-ング材料との圧接を解除して、上記パター-ング材料カゝら上記モールドを引 き抜く弓 Iき抜き手段とを有するようにしたものである。
また、本発明は、上記移動手段は、上記モールドと上記パターニング材料との少な くとも 、ずれか一方を所定の方向に移動するようにしたものである。
また、本発明は、上記モールドの微細パターンを構成する微細な凹凸構造の凸部 は、上記凸部を用いて上記パターユング材料に形成する所定の大きさの凹部よりも、 上記移動手段による移動方向にぉ 、て小さ!/、形状を備えて 、るようにしたものである また、本発明は、上記移動手段による上記移動の移動量は、上記モールドの上記 凸部と上記パターニング材料に形成する上記所定の大きさの凹部との上記移動方向 における差分であるようにしたものである。
また、本発明は、上記移動手段は、上記パターユング材料を載置するとともに nmォ ーダ一で移動制御する XYステージであるようにしたものである。
発明の効果
本発明は、以上説明したように構成されているので、従来の技術では達成できなか つた高アスペクト比構造を実現することのできる微細パターン形成方法および微細パ ターン形成装置を提供することができるという優れた効果を奏する。 図面の簡単な説明
[0015] [図 1]図 1は従来のナノインプリントリソグラフィー技術を示す説明図であり、(a)はセッ トアップ工程、(b)はプレス工程、(c)はリリース工程、(d)はモールドに形成された n mオーダーの微細パターンを電子顕微鏡で観察した状態を示す説明図であり、 (e) はレジストに転写された微細パターンを電子顕微鏡で観察した状態を示す説明図で ある。
[図 2]図 2は、ソフトタイプによるナノインプリントリソグラフィー技術を示す説明図である
[図 3]図 3はモールドおよびレジストを電子顕微鏡で観察した状態を示す説明図であ り、 (a)はモールドに形成された nmオーダーの凹凸構造を備えた微細パターンを斜 め 45度上方力も斜視にて電子顕微鏡で観察した状態の一例を示す説明図、 (b)は( a)に示すモールドを用いてレジストに微細パターンを形成した際の成功例を上方か ら平面視にて電子顕微鏡で観察した状態の一例を示す説明図、 (c)は (a)に示すモ 一ルドを用いてレジストに微細パターンを形成した際の失敗例を上方から平面視に て電子顕微鏡で観察した状態の一例を示す説明図である。
[図 4]図 4は、ハードタイプによるナノインプリントリソグラフィー技術を示す説明図であ る。
[図 5]図 5は、本発明の実施の形態の一例による微細パターン形成装置の概念構成 説明図である。
[図 6]図 6は、モールドの凸部とレジストの凹部との関係を示す説明図である。
[図 7]図 7は、モールドの作製プロセスを示す説明図である。
[図 8]図 8は、本発明による微細パターン形成方法を示す説明図である。
符号の説明
[0016] 10 微細パターン形成装置
12 XYステージ
12a
12b ヒーター
12c 断熱材 14 ホノレダー
14a ヒーター
16 ステッピングモータ
500 モールド
502 レジス卜
504 基板
発明を実施するための最良の形態
[0017] 以下、添付の図面を参照しながら、本発明による微細パターン形成方法および微 細パターン形成装置の実施の形態の一例を詳細に説明するものとする。
[0018] 図 5には、本発明の実施の形態の一例による微細パターン形成装置の概念構成説 明図が示されている。
この微細パターン形成装置 10は、 nmオーダーの微細な凹凸構造を備えた微細パ ターンを形成されたモールド 500とパター-ング材料としてレジスト 502を塗布した基 板 504とを用いて、ハードタイプのナノインプリントリソグラフィー技術を実施するため の装置である。
即ち、微細パターン形成装置 10は、レジスト 502を塗布した基板 504を着脱自在に 配設可能であるとともに XY方向(図 5の直交座標系を示す参考図を参照する。)、即 ち、基板 504の平面方向に移動可能な XYステージ 12と、 XYステージ 12の Z方向( 図 5の直交座標系を示す参考図を参照する。 )に沿って XYステージ 12から所定の 間隙を開けて配置、即ち、 XYステージ 12の上方において XYステージ 12と対向して 配置されるとともにモールド 500を着脱自在に配設可能な金属製のホルダー 14と、 ホルダー 14を XYステージ 12に接近する方向へ平行移動させてモールド 500をレジ スト 502に圧接したり、モールド 500とレジスト 502との圧接状態からホルダー 14を X Yステージ 12から離隔する方向へ平行移動させてモールド 500をレジスト 502から引 き抜くためのステッピングモーター 16とを有している。
[0019] ここで、 XYステージ 12は、 XY方向への駆動機構 12aと、 XYステージ 12上に載置 されたレジスト 502を塗布した基板 504を加熱するためのヒーター 12bと、駆動機構 1 2aとヒーター 12bとの間の断熱を図る断熱剤 12cとを備えている。 こうした XYステージ 12は、駆動機構 12aにより nmオーダーで ΧΥ方向への移動量 を制御することができる、所謂、超精密 ΧΥステージである。 nmオーダーで ΧΥ方向 への移動量を制御することのできる XYステージ 12の駆動機構 12aとしては、例えば 、金属の熱膨張を利用して XY方向への移動量を制御する駆動機構や、あるいは、 制御性の良いピエゾ素子を内蔵していて当該ピエゾ素子の駆動により XY方向への 移動を制御する駆動機構などを用いることができる。
また、ホルダー 14には、ホルダー 14に配設されたモールド 500を加熱するためのヒ 一ター 14aが内蔵されている。
次に、図 6を参照しながらモールド 500の構成について説明する力 モールド 500 は、レジスト 502に形成したい微細パターンを構成する凹部 502aに対応する凸部 50 Oaを形成する際に、凸部 500aの Z方向長さ L1は、凸部 500aにより形成したい凹部 502aの Z方向長さ L1 'と一致するようにする。一方、凸部 500aの X方向の長さ L2と Y方向長さ(図 6上においては、図示されてはいない。)とについては、その双方ある いは少なくともいずれか一方が、凸部 500aにより形成したい凹部 502aの XY方向長 さ(図 6上においては、 X方向長さ L2'のみ図示されており、 Y方向長さは図示されて いない。)よりも小さくなるように形成する。
なお、この図 6に示すモールド 500においては、凸部 500aの Z方向長さ L1および Y方向長さは、凸部 500aにより形成したい凹部 502aの Z方向長さ L1 'および Y方向 長さにそれぞれ一致するように形成されており、一方、凸部 500aの X方向長さ L2は 、凸部 500aにより形成したい凹部 502aの X方向長さ L2'よりも L3だけ短い長さに形 成されているものとする。
こうしたモールド 500は、電子線描画装置 (EB描画装置)および反応性イオンエツ チング装置を用いて全体の形状を作製し、その後に表面を Trichloro (lH, 1H, 2 H, 2H— perfluorooctyl) silaneによりコーティングすることにより完成する。
こうしたモールド 500の作製プロセスは、より詳細には図 7に示すような手順で作製 する。
即ち、まず、 Si基板 500— 1に電子線描画用レジスト 500— 2を塗布し(図 7 (a) )、 電子線描画装置を用いて電子線により電子線描画用レジスト 500— 2上にパターン を描画してから現像を行う(図 7 (b) )。
次に、 Niを蒸着してリフトオフ(Lift off)を行ってマスク 500— 3を形成し(図 7 (c) ) 、この Niのマスク 500— 3を用いて反応性イオンエッチング装置により nmオーダーの 凹凸構造の微細パターンを作製する(図 7 (d) )。
その後に、塩酸などを用いて Niのマスク 500— 3を剥離し(図 7 (e) )、形成された凹 凸構造のパターンの表面に Trichloro (lH, 1H, 2H, 2H-perfluorooctyl) silan eよりなるコーティング剤 500— 4をコーティングして(図 7 (f) )、モールド 500を完成す る。
以上の構成において、この微細パターン形成装置 10においては、 XYステージ 12 を X方向に駆動することにより、ナノインプリント中にレジスト 502を塗布された基板 50 4とモールド 500とを nmオーダーで相対的に移動するようにしている。
このことにより、レジスト 502とモールド 500との間に隙間が形成されることになるた め、レジスト 502とモールド 500との接触面積が激減し、レジスト 502とモールド 500と の間に働く摩擦力が著しく低減されて、レジスト 502からモールド 500を引き抜く際の 剥離性が格段に向上する。また、上記したレジスト 502とモールド 500との間に隙間 が形成されるため、モールド 500とレジスト 502との平行度が多少低くても、レジストに 形成されたパターンを崩す恐れはな 、。
より詳細には、微細パターン形成装置 10を用いたナノインプリントリソグラフィー技 術は、図 8に示すような手順により行うものである。
即ち、まず、モールド 500と基板 504上に塗布して形成されたレジスト 502とを接触 させ、モールド 500、レジスト 502および基板 504をレジスト 502のガラス転移点以上 の温度まで昇温する(図 8 (a) )。
次に、モールド 500とレジスト 502とを互いに圧接するように加圧し(図 8 (b) )、モー ルド 500とレジスト 502とを圧接した状態で、モールド 500とレジスト 502とを圧接方向 と直交する方向に相対的に移動させる。具体的には、 XYステージ 10を駆動して、 X Yステージ 10上に載置された基板 504を X方向に精密に移動する。これにより、モー ノレド 500の凸咅 500aによりレジス卜 502に 咅 502a力形成されて、レジス卜 502にノ ターニングが行われる(図 8 (c) )。このとき、モールド 500とレジスト 502との間に隙間 力生じること〖こなる。
上記のようにしてパター-ングを終了した後に、レジスト 502力らモーノレド 500を引 き抜く(図 8 (d) )。
ここで、 XYステージ 10による基板 504の X方向への移動量は、モールド 500の凸 部 500aとレジスト 502に形成する所定の大きさの凹部 502aとの移動方向(X方向) における差分である。この差分は、図 6に示す例においては、 L3となる。
また、上記したモールド 500の凸部 500aならびにレジス卜 502の凹部 502aの寸法 については、図 6に示す形状においては、例えば、 L1を 20nm、 L2を 10nm、 L3を 1 Onmとすることができる。
[0022] この本発明による微細パターンを形成する手法によれば、モールド 500とレジスト 5 02との接触面積が大幅に減少するため、レジスト 502からのモールドの剥離が極め て容易になる。また、レジスト 502からモールド 500を引き抜く際の角度が少し傾いて 、モールド 500とレジスト 502との平行が維持されなくても、パターンが崩れるおそれ はない。このため、本発明によれば、高アスペクト比構造の作製が可能になる。
[0023] なお、上記した実施の形態は、以下の(1)乃至(5)に示すように変形することができ るものである。
(1)上記した実施の形態においては、モールド 500とレジスト 502とを圧接方向と直 交する方向に相対的に移動させる際に、レジスト 502側を移動するようにしたが、これ に限られるものではないことは勿論であり、モールド 500側を移動するようにしてもよ いし、あるいは、モールド 500とレジスト 502との双方を移動するようにしてもよい。
(2)上記した実施の形態においては、モールド 500とレジスト 502とを圧接方向と直 交する方向に相対的に移動させる際の移動回数にっ 、ては、詳細には言及して 、 ないが、移動は少なくとも 1回行えばよいものである力 モールド 500の凸部 500aと レジスト 502の凹部 502aとも硬度などに応じて、所望の移動量を移動するのに複数 回に分けて移動してもよい。
(3)上記した実施の形態においては、モールド 500とレジスト 502とを圧接方向と直 交する方向に相対的に移動させる際の移動方向として X方向を示した力 これに限ら れるものではないことは勿論であり、モールド 500の凸部 500aとレジスト 502の凹部 5 02aとの形状に応じて、 Y方向に移動するようにしてもよいし、あるいは、 ΧΥ平面にお ける任意の方向に移動するようにしてもょ 、。
(4)上記した実施の形態においては、レジスト 502に微細パターンを形成するパタ 一ユングを行う例について説明した力 これに限られるものではないことは勿論であり 、種々の分野における種々のパター-ング材料に微細パターンを形成する際に用い ることがでさる。
(5)上記した実施の形態ならびに上記した(1)乃至 (4)に示す変形例は、適宜に 組み合わせるようにしてもよ!、。
産業上の利用可能性
本発明は、種々の分野における微細パターンの形成に利用することができるもので あるが、例えば、半導体製造の際のパターユングなどに利用することができるもので ある。

Claims

請求の範囲
[1] 微細な凹凸構造を備えた微細パターンを形成されたモールドをパターユング材料 に圧接して、前記パターユング材料に微細な凹凸構造を備えた微細パターンを形成 する微細パターン形成方法にぉ 、て、
微細な凹凸構造を備えた微細パターンを形成されたモールドとパターユング材料と を圧接する第 1のステップと、
前記圧接された前記モールドと前記パターニング材料とを圧接方向と直交する方 向に相対的に移動させる第 2のステップと、
前記モールドと前記パターユング材料との圧接を解除して、前記パターユング材料 から前記モールドを引き抜く第 3のステップと
を有することを特徴とする微細パターン形成方法。
[2] 請求項 1に記載の微細パターン形成方法にお!、て、
前記第 2のステップは、前記モールドと前記パターユング材料との少なくとも!/、ずれ か一方を所定の方向に移動する
ことを特徴とする微細パターン形成方法。
[3] 請求項 1または 2の 、ずれか 1項に記載の微細パターン形成方法にお!、て、
前記モールドの微細パターンを構成する微細な凹凸構造の凸部は、前記凸部を用 V、て前記パター-ング材料に形成する所定の大きさの凹部よりも、前記移動方向に お 、て小さ 、形状を備えて 、る
ことを特徴とする微細パターン形成方法。
[4] 請求項 3に記載の微細パターン形成方法にお 、て、
前記第 2のステップにおける前記移動の移動量は、前記モールドの前記凸部と前 記パターニング材料に形成する前記所定の大きさの凹部との前記移動方向における 差分である
ことを特徴とする微細パターン形成方法。
[5] 微細な凹凸構造を備えた微細パターンを形成されたモールドをパターユング材料 に圧接して、前記パターユング材料に微細な凹凸構造を備えた微細パターンを形成 する微細パターン形成装置において、 微細な凹凸構造を備えた微細パターンを形成されたモールドとパターユング材料と を圧接する圧接手段と、
前記圧接手段により圧接された前記モールドと前記パターニング材料とを圧接方 向と直交する方向に相対的に移動する移動手段と、
前記圧接手段による前記モールドと前記パターユング材料との圧接を解除して、前 記パター-ング材料力も前記モールドを引き抜く引き抜き手段と
を有することを特徴とする微細パターン形成装置。
[6] 請求項 5に記載の微細パターン形成装置において、
前記移動手段は、前記モールドと前記パターユング材料との少なくとも 、ずれか一 方を所定の方向に移動する
ことを特徴とする微細パターン形成装置。
[7] 請求項 5または 6のいずれか 1項に記載の微細パターン形成装置において、
前記モールドの微細パターンを構成する微細な凹凸構造の凸部は、前記凸部を用 V、て前記パターユング材料に形成する所定の大きさの凹部よりも、前記移動手段に よる移動方向にぉ 、て小さ 、形状を備えて 、る
ことを特徴とする微細パターン形成装置。
[8] 請求項 7に記載の微細パターン形成装置において、
前記移動手段による前記移動の移動量は、前記モールドの前記凸部と前記パター ニング材料に形成する前記所定の大きさの凹部との前記移動方向における差分で ある
ことを特徴とする微細パターン形成装置。
[9] 請求項 5、 6、 7または 8のいずれ力 1項に記載の微細パターン形成装置において、 前記移動手段は、前記パターユング材料を載置するとともに nmオーダーで移動制 御する XYステージである
ことを特徴とする微細パターン形成装置。
PCT/JP2005/011925 2004-07-01 2005-06-29 微細パターン形成方法および微細パターン形成装置 WO2006003921A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-195131 2004-07-01
JP2004195131A JP4458958B2 (ja) 2004-07-01 2004-07-01 微細パターン形成方法および微細パターン形成装置

Publications (1)

Publication Number Publication Date
WO2006003921A1 true WO2006003921A1 (ja) 2006-01-12

Family

ID=35782729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011925 WO2006003921A1 (ja) 2004-07-01 2005-06-29 微細パターン形成方法および微細パターン形成装置

Country Status (2)

Country Link
JP (1) JP4458958B2 (ja)
WO (1) WO2006003921A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951981B2 (ja) * 2006-01-23 2012-06-13 凸版印刷株式会社 インプリント用モールド及びその製造方法
KR100755007B1 (ko) * 2006-03-22 2007-09-04 (주) 비앤피 사이언스 나노 임프린트 리소그래피 방법 및 장치
JP5072247B2 (ja) * 2006-03-27 2012-11-14 キヤノン株式会社 リソグラフィ装置及び方法、並びに、デバイス製造方法
KR100815113B1 (ko) 2007-02-16 2008-03-20 한국과학기술원 몰드와 광경화성 수지의 수평 운동을 이용한 미세 구조물의제조 방법
JP5371349B2 (ja) * 2008-09-19 2013-12-18 キヤノン株式会社 インプリント装置、および物品の製造方法
JP5776491B2 (ja) 2011-10-24 2015-09-09 信越化学工業株式会社 フォトマスク用、レチクル用又はナノインプリント用のガラス基板及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065408A1 (en) * 1999-04-21 2000-11-02 Minuta Technology Co., Ltd. Method for forming a micro-pattern on a substrate
WO2001033300A2 (en) * 1999-10-29 2001-05-10 The Board Of Regents High precision orientation alignment and gap control stages for imprint lithography processes
JP2002063741A (ja) * 2001-07-12 2002-02-28 Hitachi Ltd 光ディスク
WO2004000567A1 (en) * 2002-06-20 2003-12-31 Obducat Ab Mold tool method of manufacturing a mold tool and storage medium formed by use of the mold tool
WO2004021083A1 (en) * 2002-08-27 2004-03-11 Obducat Ab Device for transferring a pattern to an object
JP2004146601A (ja) * 2002-10-24 2004-05-20 National Institute Of Advanced Industrial & Technology アクティブダブルジョイント式加圧機構

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065408A1 (en) * 1999-04-21 2000-11-02 Minuta Technology Co., Ltd. Method for forming a micro-pattern on a substrate
WO2001033300A2 (en) * 1999-10-29 2001-05-10 The Board Of Regents High precision orientation alignment and gap control stages for imprint lithography processes
JP2002063741A (ja) * 2001-07-12 2002-02-28 Hitachi Ltd 光ディスク
WO2004000567A1 (en) * 2002-06-20 2003-12-31 Obducat Ab Mold tool method of manufacturing a mold tool and storage medium formed by use of the mold tool
WO2004021083A1 (en) * 2002-08-27 2004-03-11 Obducat Ab Device for transferring a pattern to an object
JP2004146601A (ja) * 2002-10-24 2004-05-20 National Institute Of Advanced Industrial & Technology アクティブダブルジョイント式加圧機構

Also Published As

Publication number Publication date
JP2006019464A (ja) 2006-01-19
JP4458958B2 (ja) 2010-04-28

Similar Documents

Publication Publication Date Title
JP3967114B2 (ja) 加工方法
KR101340922B1 (ko) 고화된 임프린팅 재료로부터 몰드를 분리하는 기술
TWI333131B (en) Imprint lithography
US6964793B2 (en) Method for fabricating nanoscale patterns in light curable compositions using an electric field
WO2006003921A1 (ja) 微細パターン形成方法および微細パターン形成装置
JP4824789B2 (ja) インプリントリソグラフィ
US20100078854A1 (en) Nanotemplate arbitrary-imprint lithography
JP4543004B2 (ja) パタン形成方法、インプリントモールド、および磁気記録媒体の製造方法
JP4262267B2 (ja) モールド、インプリント装置及びデバイスの製造方法
JP2007083626A (ja) 微細構造転写装置
WO2007094213A1 (ja) インプリント装置及びインプリント方法
TW200538867A (en) A method of forming a deep-featured template employed in imprint lithography
WO2007111215A1 (ja) パターン転写用モールド
JPWO2007116469A1 (ja) パターン転写方法およびパターン転写装置
JP5282510B2 (ja) マイクロコンタクトプリンティング(μCP)用スタンプの製造方法
WO2005057634A1 (ja) ナノインプリントを利用するパターン形成方法および該方法を実行する装置
JP3892457B2 (ja) ナノインプリントリソグラフィ方法および基板
JP5062781B2 (ja) 超音波振動を利用したインプリント方法及び装置
JP2012236371A (ja) インプリントにおける離型方法
US9180608B2 (en) Stamp, method of manufacturing the same, and imprinting method using the stamp
JP4909219B2 (ja) 微細構造作製方法
CN111665682B (zh) 倾斜光栅的制备方法、压印模板
TW200907562A (en) Template having a silicon nitride, silicon carbide or silicon oxynitride film
JP3984935B2 (ja) 近接場露光マスク及び近接場露光マスクの製造方法
JP2008006638A (ja) インプリント用モールド及びインプリント用モールド製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase