WO2006003696A1 - 生菌数の計測方法及び計測装置 - Google Patents

生菌数の計測方法及び計測装置 Download PDF

Info

Publication number
WO2006003696A1
WO2006003696A1 PCT/JP2004/009195 JP2004009195W WO2006003696A1 WO 2006003696 A1 WO2006003696 A1 WO 2006003696A1 JP 2004009195 W JP2004009195 W JP 2004009195W WO 2006003696 A1 WO2006003696 A1 WO 2006003696A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
image
bacteria
trypan blue
sample
Prior art date
Application number
PCT/JP2004/009195
Other languages
English (en)
French (fr)
Inventor
Takaaki Mizutani
Naohiro Noda
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Priority to PCT/JP2004/009195 priority Critical patent/WO2006003696A1/ja
Priority to JP2006527609A priority patent/JP4449982B2/ja
Publication of WO2006003696A1 publication Critical patent/WO2006003696A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the present invention relates to a method for measuring the number of viable bacteria in a sample and a measurement apparatus therefor, and more specifically, by staining the bacteria in a sample with two kinds of fluorescent dyes,
  • the present invention relates to a method and an apparatus for measuring the number of viable bacteria that can be easily distinguished from contaminants such as dead bacteria and dust.
  • Fluorescein diacetate and propidium iodide are used as fluorescent dyes for dyeing bacteria, and the fungi are double-stained with these fluorescent dyes, and the dyed fungi are irradiated with excitation light to give fluorescein diacetate Fluorescence emission at a specific wavelength emitted by viable bacterial cells stained with, and fluorescence emission at a specific wavelength emitted by dead bacterial cells stained with propidium iodide, and detecting the number of fluorescent light emission and viable cell death.
  • a method for measuring the number of fungal cells is described.
  • Patent Document 2 includes a first step of staining the whole fungus as a specimen with a fluorescent reagent that fluoresces only dead bacteria cells, and counting the number of dead bacteria cells that have emitted fluorescence; The number measured in the second step of measuring the number of dead cells that fluoresced after sterilizing the entire fungus to be tested and then staining the entire sterilized fungus again with the fluorescent reagent. By measuring the number of viable cells and dead cells. A microorganism measuring method is disclosed.
  • Patent Document 3 discloses the intensity of fluorescence emitted from a measurement sample on which a nucleic acid fluorescent stain that stains only dead cells acts, the treatment that causes the nucleic acid fluorescent stain to act, and damages the cell membrane.
  • a method for measuring the number of viable cells and Z or cell viability characterized by measuring the intensity of the fluorescence emitted from the treated measurement sample and comparing both intensities, is disclosed.
  • Patent Document 1 Japanese Patent No. 2979383
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-169695
  • Patent Document 3 Japanese Patent Laid-Open No. 10-99096
  • Patent Document 1 has a problem in that fluorescein diacetate is decomposed and impurities other than live bacteria are stained immediately. In the case where impurities other than bacteria are included, there is a drawback that accurate viable count cannot be measured.
  • Patent Document 2 is complicated because it requires a sterilization treatment.
  • the sterilization conditions that affect the measurement affect the measurement, and the sterilization conditions need to be fully examined immediately. There were drawbacks.
  • Patent Document 3 also requires treatment for damaging the cell membrane, so that it is necessary to examine the treatment conditions as well as being complicated.
  • the measurement target is limited, such as measurement of cells having cell walls.
  • an object of the present invention is to easily discriminate between viable bacteria contained in a sample and contaminants such as dead germs and to measure the number of viable bacteria quickly, simply and accurately.
  • the object is to provide a method and an apparatus for measuring the number of viable bacteria.
  • a sample is divided into carboxyphenolase diacetate and trypan blue (Trypan blue ), And the fluorescence emitted by the sample is collected by irradiating with excitation light of carboxy fluorescein diacetate, and the collected fluorescence is captured as an image to obtain an electrical signal. It is characterized by measuring the number of viable bacteria after conversion into.
  • the viable cell can be obtained by double-staining the sample using carboxyfluorescein diacetate and trypan blue as fluorescent dyes. It is dyed only with acetate, and contaminants such as dead bacteria are stained with carboxyfluorescein diacetate and trypan blue. By irradiating this with excitation light of carboxyfluorescein diacetate, viable bacteria emit green fluorescence derived from carboxyfluorescein diacetate, and contaminants such as dead bacteria and dust are trypan blue. Since it absorbs the green fluorescence emitted from carboxyfluorescein diacetate and is excited to emit red fluorescence, viable bacteria and other impurities can be easily discriminated by the color of fluorescence. Therefore, by collecting these fluorescences, capturing them as images, and converting them into electrical signals, it is possible to measure the number of viable bacteria in a sample quickly, simply and accurately.
  • a sample is filtered through a filter to collect bacteria on the filtration surface of the filter, and an adhesive sheet is attached to the entire filtration surface. After transferring the bacteria trapped on the filter to the adhesive layer, it is preferable to stain the bacteria using Carboxy fluorescein diacetate and Trypan blue.
  • the bacteria floating in the sample can be efficiently collected by the filter, and further, the collected bacteria can be fixed to the adhesive sheet, so that the staining operation can be easily performed.
  • the number of viable bacteria can be measured accurately.
  • the fluorescence by carboxyfluorescein diacetate (Carboxy fluorescein diacetate) and the fluorescence by trypan blue are collected, and the collected fluorescence is captured as a color image to obtain carboxyfluorescein diacetate. It is preferred to distinguish between fluorescence due to (Carboxy fluorescein diacetate) and fluorescence due to Trypan blue.
  • the fluorescence of viable bacteria that are stained with trypan blue and that is difficult to stain with carboxyfluorescein diacetate is photographed in green, and impurities are carboxyfluorescein diacetate and trypan blue.
  • the ability to be dyed by both of them Trypan blue emits red fluorescence by absorbing the fluorescence emitted by carboxyfluorescein diacetate and is photographed in red. Therefore, it is possible to easily distinguish between viable bacteria and contaminants based on the color of the bright spot in the captured image, and by counting only the green bright spot in the captured image by image processing etc. The number of bacteria can be accurately measured.
  • the aperture of the photographic lens can be adjusted, or a neutral density filter can be applied.
  • the fluorescence due to a small amount of carboxyfluorescein diacetate that was not absorbed by the contaminant trypan blue can be reduced, and only the green bright spots of viable bacteria can be captured. Can be.
  • the size of the bacteria to be measured is enlarged so as to be the same size as the pixel of the image sensor or larger than the pixel of the image sensor, and the image is captured. Its image power It is preferable to measure the number of bacteria that emit light by fluorescence with carboxyfluorescein diacetate.
  • the viable cell count can be measured more accurately.
  • the viable cell count measuring device of the present invention comprises means for holding a sample, and the sample stained with carboxyfluorescein diacetate J and Trypan blue (Trypan blue). , Optical means for irradiating excitation light of Carboxy fluorescein diacetate, and light for collecting fluorescence emitted by the sample And an image capturing means for capturing the collected fluorescence as an image and converting it into an electrical signal.
  • the optical means for collecting the fluorescence emitted from the sample transmits light having a fluorescence wavelength of carboxy fluorescein diacetate.
  • it is a band-pass filter that does not transmit light having a fluorescence wavelength of Trypan blue
  • the image capturing means is preferably disposed so as to capture an image via the band filter.
  • the image capturing means is a color camera.
  • the optical element capable of enlarging the collected fluorescence image so that the size of the bacteria to be measured is the same size as the pixels of the image sensor or larger than the pixels of the image sensor.
  • the capturing means is preferably arranged to capture an image via the optical element.
  • viable bacteria and foreign substances such as dead bacteria can be regarded as fluorescence of different colors, so that they can be easily distinguished, and live bacteria in a sample can be distinguished.
  • the number of bacteria can be accurately measured.
  • FIG. 1 is a diagram showing the spectral characteristics of the excitation wavelength and fluorescence wavelength of CFDA and trypan blue.
  • FIG. 2 is a schematic diagram showing an example in which an image is captured by enlarging the size of bacteria to be measured to be larger than the pixels of the image sensor when capturing a fluorescent image of a sample.
  • FIG. 3 is a schematic diagram showing one embodiment of the viable cell count measuring apparatus of the present invention.
  • FIG. 4 is a graph showing the relationship between the number of bright spots to be fluorescently stained when stained with various concentrations of CFDA solution and trypan blue solution.
  • CFDA carboxyfluorescein diacetate
  • Trpan blue trypan blue
  • CFDA is non-fluorescent before being hydrolyzed. Since CFDA emits fluorescence when hydrolyzed by esterase present in bacteria, basically only live bacteria are stained and fluorescent. Do not stain any germs such as trash and germs. In addition, CFDA is less likely to leak from bacteria when it is degraded in live bacteria compared to fluorescein phosphate (FDA), etc. Has the advantage of excellent dyeability
  • trypan blue can stain contaminants such as dead bacteria, but viable bacteria are difficult to stain. Therefore, in the present invention, by double-staining the sample with CFDA and trypan blue, viable bacteria are stained with CFDA only, and contaminants such as dead bacteria and dust are CFD. A (—Part: stained by one.
  • a filter In order to collect bacteria in the sample, an appropriate amount of the liquid sample is filtered with a filter. This traps contaminants such as live bacteria, dead bacteria, and dust in the sample on the filter surface of the filter.
  • a black or transparent membrane filter having a pore diameter of 0.2 to 0.6 ⁇ made of a material such as polycarbonate or polyester can be used.
  • MEMBRANE FILTERS POLYCARBONATE manufactured by Toyo Roshi Kaisha, Ltd.
  • an adhesive sheet is attached to the entire filtration surface of the filter, and the bacteria trapped on the filter are transferred to the adhesive layer of the adhesive sheet.
  • the pressure-sensitive adhesive sheet has a structure in which a pressure-sensitive adhesive layer having an adhesive property sufficient to trap the bacteria trapped on the filter and having a smooth surface structure is laminated on the substrate. Things can be used.
  • the adhesive layer is sufficient to capture bacteria trapped on the filter. Although it is not particularly limited as long as it has adhesiveness, it is difficult to impregnate the adhesive layer with the fluorescent dye used for dyeing the bacteria, and it is difficult for the bacteria captured when the adhesive layer dissolves to move. It is preferable to use a water-insoluble adhesive such as an adhesive, a rubber adhesive, or a silicone adhesive.
  • acrylic pressure-sensitive adhesive examples include monomers (meth) acrylate, (meth) propyl acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, (meth) At least one (meth) atanolic acid alkyl ester such as octyl acrylate, nonyl (meth) acrylate, and decyl (meth) acrylate is used as a main component, and (meth) acrylic acid is used as a copolymerizable monomer therefor.
  • the pressure-sensitive adhesive layer made of the pressure-sensitive adhesive as described above is a thermal cross-linking agent such as isocyanate compound, organic peroxide, epoxy group-containing compound, metal chelate compound, etc. in order to improve the pressure-sensitive adhesive properties.
  • a thermal cross-linking agent such as isocyanate compound, organic peroxide, epoxy group-containing compound, metal chelate compound, etc. in order to improve the pressure-sensitive adhesive properties.
  • Examples of the rubber-based pressure-sensitive adhesive include main rubbers such as natural rubber, polyisobutylene, polyisoprene, polybutene, styrene-isoprene block copolymer, and styrene-butadiene block copolymer as tackifier resins. It is possible to use rosin resin, terpene resin, chroman-indene resin, terpene-phenol resin, and petroleum resin.
  • silicone pressure-sensitive adhesive examples include a pressure-sensitive adhesive mainly composed of dimethylpolysiloxane.
  • an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive having high transparency is more preferably used from the viewpoint that there is little influence on optical properties when acquiring a fluorescent image.
  • the thickness of the pressure-sensitive adhesive layer is preferably 5 to 100 zm from the viewpoints of adhesion to the filter, followability, and capture of bacteria and the like.
  • the range of focusing of the fluorescent image acquisition means is widened, so that more accurate image processing is possible.
  • the smoothness (unevenness difference) of the surface of the layer is preferably 20 / m or less. The smoothness can be obtained by observing the cross section of the pressure-sensitive adhesive sheet with a surface roughness needle, an electron microscope, or the like, and measuring the average height from the apex of the convex portion on the adhesive surface to the lowest point of the concave portion.
  • the base material of the pressure-sensitive adhesive sheet is not particularly limited as long as it is a flexible material that does not form large irregularities on the surface of the pressure-sensitive adhesive layer and can be freely crimped to a curved surface or a narrow surface.
  • Polyester, polyethylene, polyurethane, polychlorinated butyl, woven fabric, non-woven fabric, paper, polyethylene laminated paper, and the like can be used. Among them, polyester, polyethylene, polyvinyl chloride, and polyurethane having high smoothness are preferably used.
  • the thickness of the substrate is preferably about 5 to 200 ⁇ m as long as it has sufficient strength as a support.
  • the pressure-sensitive adhesive sheet can be produced by forming a pressure-sensitive adhesive layer made of the above-mentioned pressure-sensitive adhesive on the substrate by a known method, and in use, is cut into an arbitrary shape. be able to.
  • the bacteria transferred to the adhesive sheet are stained with CFDA solution.
  • the CFDA solution can be prepared by dissolving CF DA in a buffer solution having a pH suitable for CFDA color development so that the amount is preferably 300-3, OOO ⁇ g / mL. If the CFDA concentration is too low, viable bacteria cannot be dyed sufficiently, and if the CFDA concentration is too high, contaminants such as dead bacteria are strongly stained, and fluorescence derived from trypan blue is discriminated. Since it becomes impossible, it is not preferable.
  • a phosphate buffer of pH 6-8 preferably ⁇ 7-6-8.2.
  • the CFDA solution is preferably filtered through a 0.2 ⁇ m filter in order to prevent contamination by various bacteria.
  • a preservative such as sodium azide can be added as necessary. For example, it may be added so that the final concentration of sodium azide is about 0.1 to 5 mgZmL.
  • CFDA For staining with CFDA, spread an appropriate amount of CFDA solution on the adhesive layer (bacteria collection surface) of the adhesive sheet, spread it at 2-40 ° C for 30 seconds and 1 minute, and then add excess CFDA Rinse the solution with a washing solution.
  • a buffer solution having a pH suitable for CFDA color development is preferred, preferably pH 6-8, more preferably ⁇ 7 ⁇ 6-8.2. It is preferred to use after filtering with m finoleta.
  • the trypan blue solution is preferably a phosphate buffer solution (preferably pH 68, more preferably 3 ⁇ 4 pH 7.6-8.2), as described above.
  • a phosphate buffer solution preferably pH 68, more preferably 3 ⁇ 4 pH 7.6-8.2
  • it can be prepared by dissolving it to 300 3,000 zg / mL and then filtering through a 0.2 ⁇ m filter. At that time, it should be at least 1/10 of the above CFDA concentration. It is preferable to prepare it so that it is 1/10 to 1 time ..
  • trypan blue For staining with trypan blue, spread an appropriate amount of trypan blue solution on the adhesive layer (bacteria collection surface) of the adhesive sheet, spread it, leave it at 2-40 ° C for 1-10 seconds, and then add extra trypan blue. Wash one solution with a washing solution.
  • CFDA staining may be performed after trypan blue staining, which is not determined in the order of CFDA staining and trypan blue staining.
  • CFDA fluorescence emitted by viable bacteria is transmitted through an optical filter or the like that transmits only light of the fluorescence wavelength of CFDA.
  • the optical filter is a filter that transmits light with a wavelength of 510-550 nm and does not transmit light with a wavelength greater than 550 nm. Is preferably used.
  • viable bacteria emitting fluorescence derived from CFDA can be identified as bright spots, and the bright spots (viable bacteria) are counted.
  • the bright spots can be counted visually, for example, using commercially available image analysis software such as the trade name “Optimas” (manufactured by MEDIA CYBERNETICS).
  • a fluorescence image is taken in via a neutral density optical filter and the noise is deleted, or a threshold value is set by image processing. It is preferable to count bright spots after electrical processing.
  • image processing can be performed, for example, as in the following (a) and (e).
  • the fluorescence derived from CFDA and the fluorescence derived from trypan blue can also be captured as color images.
  • viable bacteria can be identified as bright spots emitting green fluorescence derived from CFDA, and foreign substances such as dead bacteria can be identified as bright spots emitting red fluorescence derived from trypan blue.
  • the bright spots (viable bacteria) that emit green fluorescence derived from are counted visually or using commercially available image analysis software as described above.
  • a threshold value is set by image processing that can capture a fluorescent image via a neutral density optical filter and delete the noise. Can be processed electrically.
  • the size of bacteria to be measured is the same size as the pixels of the image sensor or a size larger than the pixels of the image sensor. It is preferable to enlarge and capture an image. That is, the fluorescent image of the fungus 11 as shown in FIG. 2 (a) is converted into an optical element such as a lens so that the size of the fungus 11 is larger than one pixel 12 as shown in FIG. 2 (b). It is preferable to capture after enlarging with the.
  • the magnification should be selected appropriately according to the size of the bacteria to be measured, but usually 10 to 1000 times is sufficient.
  • the number of viable bacteria contained in the sample is calculated as follows. For example, as described in the method for measuring the total number of bacteria in the “Food Hygiene Management Guidelines (Microorganisms Version)” (supervised by the Health and Welfare Bureau of the Ministry of Health and Welfare, Japan Food Sanitation Association), a 100x objective lens is required for microscopic observation. Observe at least 16 fields of view using oil soaked and determine the total number of bright spots (viable bacteria) in the observed field (A).
  • FIG. 3 shows an embodiment of the viable cell count measuring apparatus of the present invention.
  • This measuring device 10 includes a fixed base 2, a lens barrel 3, a lens 4, a bandpass filter 5, an image capturing means 6, an excitation light source 7, a bandpass filter 8, and a dichroic mirror 9. And sample 1 (sample transferred onto adhesive tape and stained with CFDA and trypan blue) to excitation light source 7, bandpass filter 8, lens barrel 3, dichroic mirror 9, The CFDA excitation light is irradiated by the optical means that irradiates the CFDA excitation light composed of the lens 4.
  • the light emitted from the excitation light source 7 passes through a bandpass filter 8 that transmits light having a wavelength of 400 495 nm, reflects light having a wavelength of 500 ⁇ m or less, and transmits light having a wavelength exceeding 500 nm.
  • the sample 1 is irradiated with excitation light having a wavelength of 400 to 495 nm.
  • an image of the fluorescence emitted from the sample 1 is captured via an optical means that collects the fluorescence composed of the lens 4, the dichroic mirror 9, the lens barrel 3, and the bandpass filter 5. Incorporated into means 6. That is, the fluorescence image emitted from the sample 1 has the same size as the pixel of the image sensor or the size of the image sensor.
  • the lens 4 is enlarged so that it is larger than the pixel, and light with a wavelength of 510 to 550 nm is transmitted, but the wavelength is larger than 550 nm, the light is not transmitted.
  • the fluorescence of CFDA emitted from viable bacteria is captured by the image capturing means 6.
  • the image capturing means for example, a CCD camera, a color camera, a monochrome camera, or the like can be used.
  • a color camera may be used as the image capturing means 6 to capture the fluorescence derived from CFDA and the fluorescence derived from trypan blue as a color image.
  • the measurement apparatus of the present invention further includes a fluorescence image captured by the image capturing means 6.
  • a computer can be used, for example, having an image processing program and an image analysis program as described in (5) above.
  • a computer can be used.
  • Proteolytic enzyme solution Aseptically filtered 2% trypsin solution (solvent is physiological saline)
  • CFDA solution CFDA dissolved in phosphate buffer (pH 8.1) to 150, 000 ⁇ gZmL, then filtered through a 0.2 zm filter
  • Trypan blue solution Trypan blue dissolved in phosphate buffer (pH 8.1) to a concentration of 30-30,000 ⁇ gZmL, then filtered through a 0.2 zm filter.
  • microtube (1 ⁇ 5mL microcentrifuge tube made of Treffne soil, autoclave sterilization of model No.96.7246.9.01 And mixed for 10 seconds with a test tube mixer. Then, float the microtube in a constant-temperature water bath at 42 ° C and keep it warm for 10 minutes. And then centrifuged (7300 ⁇ g) at room temperature (about 25 ° C.) for 3 minutes.
  • Membrane filter with a pore size of 0.4 ⁇ m (trade name “Nucl ore Track-Etch Membrane”,
  • a cellophane tape-like non-fluorescent adhesive sheet (manufactured by Nitto Denko Corporation) is attached to the filtration surface of the membrane finisher. Were transferred to the adhesive surface of the adhesive sheet (transfer area 1 cm 2).
  • the bright spot (viable cell count) was measured with the apparatus shown in Fig. 3 (the total area of the field of view was 19.6 mm 2 ), and the CFDA concentration And the effect of trypan blue concentration on the number of bright spots measured. The results are shown in Fig. 4.
  • the number of viable bacteria visually counted with a fluorescence microscope is taken as a true value
  • the Y axis shows the number of bright spots measured with this apparatus visually counted with a fluorescence microscope. It was expressed as the relative number of bright spots obtained by dividing by the number, and the measurement error was examined.
  • the allowable measurement error is set to 1/2 to 2 times that is an allowable measurement error of a general bacterial count.
  • the measurement error refers to the range from the minimum value to the maximum value with regard to the average value as a true value.
  • Fig. 4 Using CFDA solution with a concentration of 300-3,000 gZmL, trypan blue concentration of 60-30,000 ⁇ gZmL, and staining with trypan blue solution with a concentration of 1/10 or more of the CFDA concentration By doing this, it is possible to measure the number of viable bacteria within the allowable measurement error range.
  • the CFDA concentration is 150 ⁇ g / mL, the number of bright spots when dyeing with only the CFDA solution is small and the CFDA concentration is 150 / g / mL or less, which is not suitable for measurement.
  • the CFDA concentration is 150 ⁇ g / mL
  • contaminants stained with CFDA were too fluorescent to detect viable bacteria.
  • the viable cell count measuring method and measuring apparatus of the present invention can be used for measuring the viable cell count in fields such as medicine, agricultural chemicals, food hygiene management, and research fields such as medicine, pharmacy, and biology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Signal Processing (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 本発明は、試料に含まれる生菌と、死菌やゴミ等の夾雑物とを容易に判別することができ、迅速、簡便かつ正確に生菌数を計測することができる生菌数の計測方法及び計測装置を提供する。  試料をカルボキシフルオレセインジアセテートとトリパンブルーとを用いて染色し、カルボキシフルオレセインジアセテートの励起光を照射して前記試料が発する蛍光を捕集し、前記捕集した蛍光を画像として取り込んで電気信号に変換して生菌数を計測する。また、試料を保持する手段と、カルボキシフルオレセインジアセテートとトリパンブルーで染色した前記試料に、カルボキシフルオレセインジアセテートの蛍光を発するための波長を照射する光学的手段と、前記試料が発する蛍光を捕集する光学的手段と、前記捕集した蛍光を画像として取り込んで電気信号に変換する画像取り込み手段とから生菌数の計測装置を構成する。

Description

明 細 書
生菌数の計測方法及び計測装置
技術分野
[0001] 本発明は、試料中の生菌数を計測する方法及びその計測装置に関し、詳細には、 試料中の菌等を 2種類の蛍光染料を用レ、て染色することにより、生菌と死菌ゃゴミ等 の夾雑物との判別が容易に可能で、正確に生菌数を計測できる方法及びその計測 装置に関する。
背景技術
[0002] 医薬、農薬、食品衛生管理等の分野や医学、薬学、生物学等の研究分野におい ては、品質管理、安全性や薬効の評価等のために試料に含まれる生菌数を測定す ることが多い。
[0003] 生菌数の測定方法としては、試料を希釈し、これを適当なプレート培地に播種して 培養し、出現したコロニー数を数えることにより行われることも多レ、が、培養に時間が かかったり、培地を調製する必要があるため、その実用性には問題があった。
[0004] そのため、より迅速かつ簡便に生菌数を測定する方法として、染色試薬を用いて菌 を染色して検出する様々な方法が提案されており、例えば、下記特許文献 1には、菌 類を染色する蛍光染料としてフルォレセインジアセテートとヨウ化プロピジゥムを用い 、菌類をこれらの蛍光染料で二重染色し、染色した菌類に対して励起光を照射する ことにより、フルォレセインジアセテートで染色された生菌細胞が発する特定波長の 蛍光発光と、ヨウ化プロピジゥムで染色された死菌細胞が発する特定波長の蛍光発 光とを検出して、蛍光発光の数から生菌細胞と死菌細胞の数を計測する方法が記載 されている。
[0005] また、下記特許文献 2には、死菌細胞のみを蛍光発光させる蛍光試薬で検体となる 菌類全体を染色して、蛍光発光した死菌細胞数を計測する第 1のステップと、前記検 体となる菌類全体に殺菌処理を施した上で、当該殺菌処理した菌類全体を前記蛍 光試薬で再度染色して、蛍光発光した死菌細胞数を計測する第 2ステップで計測し た数とを比較することにより、生菌細胞数及び死菌細胞数を計測することを特徴とす る微生物計測方法が開示されている。
[0006] 更に、下記特許文献 3には、死細胞のみを染色する核酸蛍光染色剤を作用させた 測定試料が発する蛍光の強度と、該核酸蛍光染色剤を作用させる処理および細胞 膜を損傷させる処理を施した測定試料が発する蛍光の強度とを各々測定し、両強度 を対比することを特徴とする生存細胞数および Zまたは細胞生存率の測定方法が開 示されている。
特許文献 1:特許 2979383号公報
特許文献 2:特開 2003 - 169695号公報
特許文献 3:特開平 10 - 99096号公報
発明の開示
発明が解決しょうとする課題
[0007] し力、しながら、上記特許文献 1に記載された方法は、フルォレセインジアセテートが 分解されやすぐ生菌以外の夾雑物も染色されてしまうため、試料に生菌と死菌と菌 以外の夾雑物とがー緒に含まれる場合は、正確な生菌数を測定できないとレ、う欠点 があった。
[0008] また、上記特許文献 2に記載された方法は、殺菌処理が必要なため煩雑であるだ けでなぐ殺菌条件が測定に影響を与えやすぐ殺菌条件を十分に検討する必要が ある等の欠点があった。
[0009] また、上記特許文献 3に記載された方法も同様に、細胞膜を損傷させる処理が必 要なため煩雑であるだけでなぐその処理条件を検討する必要があった。更に、細胞 壁を有する細胞は測定できない等、測定対象が限定されてしまうという欠点もあった
[0010] したがって、本発明の目的は、試料に含まれる生菌と、死菌ゃゴミ等の夾雑物とを 容易に判別することができ、迅速、簡便かつ正確に生菌数を計測することができる生 菌数の計測方法及び計測装置を提供することにある。
課題を解決するための手段
[0011] 上記目的を達成するため、本発明の生菌数の計測方法は、試料をカルボキシフノレ ォレセインジアセテート (Carboxy fluorescein diacetate)とトリノくンフノレ一 (Trypan blue )とを用いて染色し、カノレボキシフノレォレセインジアセテート(Carboxy fluorescein diacetate)の励起光を照射して前記試料が発する蛍光を捕集し、前記捕集した蛍光 を画像として取り込んで電気信号に変換して生菌数を計測することを特徴とする。
[0012] 本発明の生菌数の計測方法によれば、蛍光染料としてカルボキシフルォレセインジ アセテートとトリパンブルーとを用いて試料を二重染色することにより、生菌はカルボ キシフルォレセインジアセテートのみで染色され、死菌ゃゴミ等の夾雑物はカルボキ シフルォレセインジアセテートとトリパンブルーで染色される。そして、これにカルボキ シフルォレセインジアセテートの励起光を照射することにより、生菌はカルボキシフル ォレセインジアセテートに由来する緑色の蛍光を発し、死菌ゃゴミ等の夾雑物はトリ パンブルーがカルボキシフルォレセインジアセテートの発する緑色の蛍光を吸収して 励起されて赤色の蛍光を発するので、生菌とそれ以外の夾雑物を蛍光の色によって 容易に判別することができる。したがって、これらの蛍光を捕集して画像として取り込 んで電気信号に変換することにより、試料中の生菌数を迅速、簡便かつ正確に計測 すること力 Sできる。
[0013] 本発明の生菌数の計測方法においては、試料をフィルタで濾過して前記フィルタ の濾過面に菌を捕集し、前記濾過面全体に粘着シートを貼り付けて、該粘着シート の粘着層に前記フィルタ上にトラップされた菌を転写した後、該菌をカルボキシフル ォレセインシ セテート (Carboxy fluorescein diacetate)とトリノくンブノレ一 (Trypan blue )とを用いて染色することが好ましい。
[0014] この態様によれば、フィルタにより試料中に浮遊している菌を効率よく捕集すること ができ、更に捕集した菌を粘着シートに固定することができるので、染色作業を容易 に行うことができ、更に生菌数の計測も正確に行うことができる。
[0015] また、カノレボキシフノレォレセインジアセテート(Carboxy fluorescein diacetate)で染 色された生菌から発せられるカルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)の蛍光のみを捕集し、捕集した蛍光を画像として取り込むこと が好ましい。
[0016] この態様によれば、トリパンブルーに染色されにくぐカルボキシフルォレセインジァ セテートに染色される生菌の発する蛍光のみを撮影できるので、取り込んだ画像中 の輝点をカウントすることにより、生菌数を容易に計測することができる。
[0017] また、カルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)による 蛍光とトリパンブルー(Trypan blue)による蛍光とを捕集し、捕集した蛍光をカラー画 像として取り込み、カルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)による蛍光とトリパンブルー(Trypan blue)による蛍光とを区別することが好 ましい。
[0018] この態様によれば、トリパンブルーに染色されにくぐカルボキシフルォレセインジァ セテートに染色される生菌の蛍光は緑色に撮影され、夾雑物はカルボキシフルォレ セインジアセテートとトリパンブルーの両方に染色される力 カルボキシフルォレセィ ンジアセテートの発する蛍光を吸収してトリパンブルーが赤色の蛍光を発するため赤 色に撮影される。したがって、取り込んだ画像中の輝点の色により生菌と夾雑物との 区別を容易に行うことができ、画像処理等によって、取り込んだ画像中の緑色の輝点 のみをカウントすることにより、生菌数を正確に計測できる。なお、夾雑物については 、トリパンブルーに吸収されなかった微量のカルボキシフルォレセインジアセテートに よる蛍光が見られること力 Sある力 S、撮影レンズの絞りを調整したり、減光フィルタをかけ たり、あるいはトリパンブルー濃度を上げることにより、夾雑物のトリパンブルーに吸収 されなかった微量のカルボキシフルォレセインジアセテートによる蛍光を減少させるこ とができ、生菌の緑色の輝点のみを捉えられるようにすることができる。
[0019] 更に、前記捕集した蛍光を画像として取り込む際に、計測する細菌のサイズが撮像 素子の画素と同じサイズ若しくは撮像素子の画素よりも大きなサイズとなるように拡大 して画像を取り込み、その画像力 カルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)による蛍光で発光する菌数を計測することが好ましい。
[0020] この態様によれば、取り込んだ蛍光画像中の輝点(生菌)を認識しやすくなるので 生菌数をより正確に計測することができる。
[0021] また、本発明の生菌数の計測装置は、試料を保持する手段と、カルボキシフルォレ セインンアセテート (Carboxy fluorescein diacetate Jとトリノくンブノレ一 (Trypan blue)で 染色した前記試料に、カルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)の励起光を照射する光学的手段と、前記試料が発する蛍光を捕集する光 学的手段と、前記捕集した蛍光を画像として取り込んで電気信号に変換する画像取 り込み手段とを備えていることを特徴とする。
[0022] 本発明の生菌数の計測装置においては、前記試料が発する蛍光を捕集する光学 的手段は、カノレボキシフノレォレセインジアセテート(Carboxy fluorescein diacetate)の 蛍光波長の光は透過するが、トリパンブルー(Trypan blue)の蛍光波長の光は透過し ないバンドパスフィルタであり、前記画像取り込み手段は、前記バンドフィルタを介し て画像を取り込むように配置されてレ、ることが好ましレ、。
[0023] また、前記画像取り込み手段はカラーカメラであることが好ましい。
[0024] 更に、前記捕集した蛍光の画像を、計測する細菌のサイズが撮像素子の画素と同 じサイズ若しくは撮像素子の画素よりも大きなサイズとなるように拡大することができる 光学素子と、前記取り込んだ画像をカルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)による蛍光の発光を捕らえて画像処理する手段と、前記処理 した画像から輝点の数をカウントする手段とを備えており、前記画像取り込み手段は 、前記光学素子を介して画像を取り込むように配置されていることが好ましい。
発明の効果
[0025] 本発明によれば、生菌と、死菌ゃゴミ等の夾雑物とをそれぞれ異なる色の蛍光とし てとらえることができるので、それらを容易に判別することができ、試料中の生菌数を 正確に計測することができる。
図面の簡単な説明
[0026] [図 1]図 1は、 CFDAとトリパンブルーの励起波長と蛍光波長のスペクトル特性を示す 図である。
[図 2]図 2は、試料の蛍光画像を取り込む際に、計測する細菌のサイズが撮像素子の 画素よりも大きなサイズとなるように拡大して画像を取り込んだ例を示す模式図である
[図 3]図 3は、本発明の生菌数の計測装置の一実施形態を示す模式図である。
[図 4]図 4は、各種濃度の CFDA溶液とトリパンブルー溶液を用いて染色した際の、 蛍光染色される輝点数の関係を示す図である。
符号の説明 [0027] 1 試料
2 固定台
3 鏡筒
4 レンズ
5、 8 バンドパスフィルタ
6 画像取り込み手段
7 励起光源
9 ダイクロイツクミラー
10 生菌数の計測装置
11 菌
12 1つの画素
発明を実施するための最良の形態
[0028] 本発明の生菌数の計測方法においては、蛍光染料としてカルボキシフルォレセィ ンジアセテート(Carboxy fluorescein diacetate、以下 CFDAと略記する。)とトリパンブ ルー(Trypan blue)の 2種類が用いられる。
[0029] CFDAは、加水分解される前は無蛍光である力 S、菌の中に存在するエステラーゼ で加水分解されると蛍光を発するため、基本的には生菌のみが染色されて蛍光を発 し、死菌ゃゴミ等の夾雑物は染色されなレ、。また、 CFDAは、フルォレセインジァセ テート(FDA)等に比べて、生菌内で分解された際に、その分解物(カルボキシフノレ ォレセイン)が菌から漏出しにくいため、生菌の染色性に優れているという利点がある
[0030] し力、しながら、 CFDAは分解されやすぐ染色液を調製した段階で既に一部の CF DAが分解されて蛍光を発するため、 CFDAのみを用いた場合は、実際には生菌だ けでなく死菌ゃゴミ等の夾雑物も染色されて蛍光を発してしまい、生菌数を正確に計 測することが難しかった。
[0031] 一方、トリパンブルーは、死菌等の夾雑物を染色することができるが、生菌は染色さ れにくい。そこで、本発明においては、試料を CFDAとトリパンブルーとを用いて二重 染色することにより、生菌は CFDAのみで染色され、死菌ゃゴミ等の夾雑物は CFD A (—部分: 一によつて染色される。
[0032] そして、 CFDAの励起光を照射すると、 CFDAのみで染色された生菌は CFDAに 由来する緑色の蛍光(波長 480— 650nm)を発する。一方、 CFDAとトリパンブルー によって染色された死菌ゃゴミ等の夾雑物は、図 1に示すように、 CFDAの蛍光波長 とトリパンブルーの励起波長がオーバーラップするため、トリパンブルーが CFDAの 発する緑色の蛍光を吸収して励起し、赤色の蛍光(波長 550— 800nm)を発する。 したがって、蛍光の色により、生菌と死菌ゃゴミ等の夾雑物とを容易に判別することが できる。
[0033] 以下、本発明の生菌数の計測方法について詳細に説明する。
[0034] (1)菌の採取
まず、試料中の菌を採取するために、適量の液体状の試料をフィルタで濾過する。 これにより、フィルタの濾過面上に、試料中の生菌、死菌、ゴミ等の夾雑物がトラップ される。上記フィルタとしては、ポリカーボネイト、ポリエステル等の材質からなる孔径 0 . 2— 0. 6 μ ΐηの黒色若しくは透明のメンブレンフィルタを用いることができる。このよ
Figure imgf000008_0001
例 ば、商品名「Nuclepore Track-Etch MembraneJ (
Whatman製)、商品名「Isopore Membrane Filters] (MILLIPORE製)、商品名「
MEMBRANE FILTERS POLYCARBONATE」(東洋濾紙株式会社製)等の市販のも のを用いることができる。
[0035] なお、試料の種類によっては、脱脂、除タンパク、濾過、遠心分離等の前処理を行 つてから用いることが好ましぐ液体状でない試料を用いる場合は、ミキサーやストマ ッカ一等の破碎分散装置により菌を液体に抽出してから用いればよい。
[0036] (2)採取した菌の転写
次に、上記フィルタの濾過面全体に粘着シートを貼り付け、粘着シートの粘着層に フィルタ上にトラップされた菌等を転写する。
[0037] 粘着シートとしては、上記フィルタ上にトラップされた菌等を捕捉するのに十分な粘 着性を有すると共に平滑な表面構造を有する粘着層が基材上に積層された構造か らなるものを用いることができる。
[0038] また、粘着層としては、上記フィルタ上にトラップされた菌等を捕捉するのに十分な 粘着性を有していれば特に限定されないが、菌の染色に用いる蛍光染料が粘着層 に含浸しにくいこと及び粘着層が溶けて捕捉した菌等が移動しにくいことなどから、 例えば、アクリル系粘着剤やゴム系粘着剤、シリコーン系粘着剤等の非水溶性粘着 材を用いることが好ましい。
[0039] アクリル系粘着剤としては、具体的には、モノマーとして (メタ)アクリル酸ェチル、(メ タ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸へキシル、 (メタ)ァ クリル酸ォクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル等の(メタ)アタリノレ 酸アルキルエステルを主成分として少なくとも 1種類以上用い、これに共重合性モノ マーとして(メタ)アクリル酸、ィタコン酸、マレイン酸、(メタ)アクリル酸ヒドロキシェチ ノレ (メタ)アクリル酸メトキシェチル、(メタ)アクリル酸エトキシェチル、(メタ)アクリル酸 ブトキシェチル、(メタ)アクリル酸エチレングリコール等の親水性モノマーを 1種若しく は 2種以上共重合させたものを用いることができる。なお、上記のような粘着剤からな る粘着層は、その粘着特性をより良好にするためにイソシァネートィヒ合物、有機過酸 化物、エポキシ基含有化合物、金属キレート化合物等の熱架橋剤による処理を行つ たり、保形性を良好にするために紫外線、 γ線、電子線等の放射線照射による処理 を行って架橋を施すことが好ましい。
[0040] ゴム系粘着剤としては、天然ゴム、ポリイソブチレン、ポリイソプレン、ポリブテン、ス チレン一イソプレン系ブロック共重合体、スチレン一ブタジエン系ブロック共重合体等 の主ポリマーに、粘着性付与樹脂としてロジン系樹脂やテルペン系樹脂、クロマン一 インデン系樹脂、テルペン一フエノール系樹脂、石油系樹脂を配合したものを用いる こと力 Sできる。
[0041] シリコーン系粘着剤としては、ジメチルポリシロキサンを主成分とする粘着剤が例示 できる。
[0042] 本発明においては、蛍光画像取得に際して光学特性に影響が少ないという点から 、透明性の高いアクリル系粘着剤やシリコーン系粘着剤がより好ましく用いられる。
[0043] 粘着層の厚みは、フィルタへの接着性や追従性、菌等の捕捉性の点から 5— 100 z mとすることが好ましい。また、捕捉した菌等の蛍光画像の取得に際して蛍光画像 取得手段の焦点の合致範囲が広くなり、より正確な画像処理を可能とするために、粘 着層表面の平滑度(凹凸差)は 20 / m以下であることが好ましい。平滑度は、表面粗 さ針や電子顕微鏡等で粘着シートの断面を観察し、粘着剤表面の凸部の頂点から 凹部の最低点までの平均高さを測定して求めることができる。
[0044] また、粘着シートの基材は、粘着層表面に大きな凹凸を形成させず、また、曲面や 狭所表面にも自在に圧着し得る柔軟な材質であれば特に限定されず、例えば、ポリ エステル、ポリエチレン、ポリウレタン、ポリ塩化ビュル、織布、不織布、紙、ポリエチレ ンラミネート紙等を用いることができ、中でも平滑性の高いポリエステル、ポリエチレン 、ポリ塩ィ匕ビニル、ポリウレタンが好ましく用いられる。
[0045] また、基材の厚さは、支持体として十分な強度があればよぐ 5— 200 μ m程度が好 ましい。
[0046] 粘着シートは、上記粘着剤からなる粘着層を公知の方法によって上記基材上に形 成することにより製造することができ、その使用に際しては任意の形状に裁断して用 レ、ることができる。
[0047] (3) CFDA染色
上記粘着シートに転写された菌等を CFDA溶液で染色する。 CFDA溶液は、 CF DAを好ましくは 300— 3, OOO ^ g/mLとなるように、 CFDAの発色に適した pHの 緩衝液に溶解することにより調製できる。 CFDA濃度が薄すぎると生菌を十分に染 色することができず、 CFDA濃度が濃すぎると死菌ゃゴミ等の夾雑物が強く染色され てしまレ、、トリパンブルーに由来する蛍光を判別できなくなるため好ましくない。
[0048] 上記緩衝液は、 CFDAに染色された生菌の蛍光強度の減少を防止するために、 p H6— 8、好ましくは ρΗ7· 6— 8. 2のリン酸緩衝液を用いることが好ましい。
[0049] なお、 CFDA溶液は、雑菌の混入を防ぐために 0. 2 μ mのフィルタで濾過しておく ことが好ましい。また、長期保存する際には、必要に応じてアジ化ナトリウム等の防腐 剤を添加でき、例えば、アジ化ナトリウムの最終濃度が 0. 1— 5mgZmL程度になる よう添加すればよい。
[0050] CFDAによる染色は、粘着シートの粘着層(集菌面)上に、適量の CFDA溶液を滴 下して広げ、 2— 40°Cで 30秒一 3分間放置した後、余分な CFDA溶液を洗浄液で 洗い流せばよい。 [0051] 上記洗浄液としては、 CFDAの発色に適した pHの緩衝液が好ましぐ好ましくは p H6— 8、より好ましく ίま ρΗ7· 6—8. 2のリン酸緩衝夜を 0. 2 μ mのフィノレタで爐過し てから用いることが好ましい。
[0052] (4)トリパンブルー染色
上記(3)において CFDAで染色した後、トリパンブルー溶液で染色する。トリパンブ ルー溶液は、上記と同様に好ましくはリン酸緩衝液 (好ましくは pH6 8、より好ましく ¾pH7. 6— 8. 2) (こ、 トリノヽ。ンブノレ一を好ましく fま 60一 30,000 z g/mL より好まし くは 300 3,000 z g/mLとなるように溶解した後、 0. 2 μ mのフィルタで濾過するこ とにより調製できる力 その際に、上記 CFDA濃度の 10分の 1以上となるように調製 することが好ましぐ 10分の 1一 1倍となるように調製することが好ましい。トリパンブル 一の濃度が薄すぎると死菌ゃゴミ等の夾雑物を十分に染色できず、トリパンブルーの 濃度が濃すぎると生菌も染色されてしまい、死菌ゃゴミ等の夾雑物と判別できなくな るため好ましくない。なお、長期保存する際には、必要に応じてアジィ匕ナトリウム等の 防腐剤を添加できる。
[0053] トリパンブルーによる染色は、粘着シートの粘着層(集菌面)上に、適量のトリパンブ ルー溶液を滴下して広げ、 2— 40°Cで 1一 10秒間放置した後、余分なトリパンブル 一溶液を洗浄液で洗レ、流せばょレ、。
[0054] なお、 CFDA染色とトリパンブルー染色の順序に決まりはなぐトリパンブルー染色 を行った後に CFDA染色を行ってもよい。
[0055] (5)蛍光画像の取り込み及び生菌数の計測
上記のようにして CFDAとトリパンブルーで染色した粘着シートの粘着層表面に残 つた液をブロワで吹き飛ばした後、これに CFDAの励起光(波長 400 495nm)を 照射し、粘着シートの粘着層表面上の蛍光の画像を CCDカメラ、カラーカメラ、白黒 カメラ等によって取り込む。
[0056] 本発明においては、粘着シートの粘着層表面上の蛍光を白黒画像として取り込む 際に、 CFDAの蛍光波長の光のみを透過させる光学フィルタ等を介して生菌の発す る CFDAの蛍光のみを画像として取り込むことが好ましい。上記光学フィルタとしては 、波長 510— 550nmの光を透過し、波長 550nmより大きい光は透過しないフィルタ が好ましく用いられる。
[0057] 上記のようにして取り込まれた白黒画像では、 CFDAに由来する蛍光を発する生 菌が輝点として識別できるので、この輝点(生菌)をカウントする。輝点のカウントは、 目視で行ってもよぐ例えば、商品名「Optimas」 (MEDIA CYBERNETICS社製)等の 市販の画像解析ソフトを用いて行うこともできる。
[0058] なお、本発明においては、検数のノイズとなりうる微弱な発光に対しては、減光光学 フィルタを介して蛍光画像を取り込んでノイズを削除する、あるいは画像処理で閾値 を設定して電気的に処理してから輝点をカウントすることが好ましい。このような画像 処理は、例えば以下の(a) (e)のようにして行うことができる。
[0059] (a)バックグラウンドノイズを除くために所定値 (スレツショルド値)以下の画素は黒色 にする。なお、スレツショルド値は使用者が設定する。
(b)背景除去処理 (CCDカメラの不良による輝点、ステージの傾きによる輝度の違 いを補正)
(c)エッジの検出(ソーベル、プレヴィッツ等の画像処理フィルタで処理)
(d) 2値化処理
(e)各輝点のナンバリングと面積計算
を行った後、使用者が設定した所定のサイズに合致する輝点をカウントする。
[0060] また、本発明においては、 CFDAに由来する蛍光とトリパンブルーに由来する蛍光 をカラー画像として取り込むこともできる。
[0061] カラー画像では、生菌は CFDAに由来する緑色の蛍光を発する輝点として、死菌 ゃゴミ等の夾雑物はトリパンブルーに由来する赤色の蛍光を発する輝点として識別 できるので、 CFDAに由来する緑色の蛍光を発する輝点(生菌)を、 目視、あるいは 上記のような市販の画像解析ソフトを用いてカウントする。なお、上記の場合と同様に 、検数のノイズとなりうる微弱な発光に対しては、減光光学フィルタを介して蛍光画像 を取り込んでノイズを削除してもよぐ画像処理で閾値を設定して電気的に処理して あよい。
[0062] 本発明においては、蛍光画像を取り込む際に、図 2に示すように、計測する細菌の サイズが撮像素子の画素と同じサイズ若しくは撮像素子の画素よりも大きなサイズと なるように拡大して画像を取り込むことが好ましい。すなわち、図 2 (a)に示すような菌 11の蛍光画像を、図 2 (b)に示すように菌 11のサイズが一つの画素 12よりも大きな サイズとなるように、レンズ等の光学素子を用いて拡大してから取り込むことが好まし レ、。拡大倍率は、計測する細菌のサイズに応じて適宜選択すればよいが、通常、 10 一 1000倍で十分である。
[0063] 上記のようにしてカウントされた輝点(生菌)の数から、試料中に含まれる生菌数を 以下のようにして算出する。例えば、「食品衛生管理指針 (微生物版)」(厚生省生活 衛生局監修、社団法人日本食品衛生協会)の総菌数測定方法に記載されているよう に、顕微鏡観察の場合、 100倍の対物レンズを油浸して使用して 16視野以上観察し 、観察した視野の輝点(生菌)数の合計 (A)を求める。そして、測定に供した液体試 料の体積 (V)と、メンブレンフィルタの濾過面積 (Sm)と、観察視野総面積 (Sp)とか ら下記式(1)に基づレ、て試料の生菌数 (C)を算出すればょレ、。
(数 1) C=A X Sm/ (Sp X V) · · · (1)
次に、本発明の生菌数の計測装置について図面に基づいて説明する。図 3には、 本発明の生菌数の計測装置の一実施形態が示されている。
[0064] この計測装置 10は、固定台 2、鏡筒 3、レンズ 4、バンドパスフィルタ 5、画像取り込 み手段 6、励起光源 7、バンドパスフィルタ 8、ダイクロイツクミラー 9とから構成されて おり、固定台 2上に固定された試料 1 (粘着テープ上に転写され、 CFDA及びトリパン ブルーで染色された試料)に、励起光源 7、バンドパスフィルタ 8、鏡筒 3、ダイクロック ミラー 9、レンズ 4から構成される CFDAの励起光を照射する光学的手段によって CF DAの励起光が照射されるようになっている。すなわち、励起光源 7から照射された光 は、波長 400 495nmの光を透過するバンドパスフィルタ 8を通った後、波長 500η m以下の光を反射し、波長 500nmを超える光は透過するダイクロイツクミラー 9で反 射されて、波長 400— 495nmの励起光が試料 1に照射されるようになっている。
[0065] そして、前記試料 1が発する蛍光の画像は、レンズ 4、ダイクロックミラー 9、鏡筒 3、 バンドパスフィルタ 5から構成される蛍光を捕集する光学的手段を介して、画像取り 込み手段 6に取り込まれるようになつている。すなわち、前記試料 1が発する蛍光の 画像は、計測する細菌のサイズが撮像素子の画素と同じサイズ若しくは撮像素子の 画素よりも大きなサイズとなるようにレンズ 4で拡大されると共に、波長 510— 550nm の光は透過し、 550nmより波長の大きレ、光は透過しなレ、バンドパスフィルタ 5を介す ることにより、生菌から発せられる CFDAの蛍光のみが画像取り込み手段 6に取り込 まれるようになつている。
[0066] 前記画像取り込み手段としては、例えば、 CCDカメラ、カラーカメラ、白黒カメラ等 を用いることができる。なお、前記バンドパスフィルタ 5を使用しない場合は、前記画 像取り込み手段 6としてカラーカメラを用いて、 CFDAに由来する蛍光とトリパンブル 一に由来する蛍光をカラー画像として取り込めばよい。
[0067] 本発明の計測装置は、更に、前記画像取り込み手段 6に取り込まれた蛍光画像を
CFDAによる蛍光の発光を捕らえて画像処理する手段と、前記処理した画像から輝 点の数をカウントする手段を備えていることが好ましい。
[0068] 前記画像処理する手段及び前記輝点の数をカウントする手段としては、コンビユー タを用いることができ、例えば、上記(5)で説明したような画像処理プログラム及び画 像解析プログラムを有するコンピュータを用いることができる。
実施例 1
[0069] 以下の試薬を調製して用いた。
[0070] ·界面活性剤溶液: 10%トリトン X-100水溶液を無菌濾過したもの
•タンパク質分解酵素溶液: 2%トリプシン溶液 (溶媒は生理食塩水)を無菌濾過し たもの
• CFDA溶液: CFDAを 150 30, 000 μ gZmLとなるようにリン酸緩衝液(pH8. 1)に溶解した後、 0. 2 z mのフィルタで濾過したもの
•トリパンブルー溶液:トリパンブルーを 30— 30,000 μ gZmLとなるようにリン酸緩 衝液(pH8. 1)に溶解した後、 0. 2 z mのフィルタで濾過したもの
-洗浄液:リン酸緩衝液 (pH8. 1)
試料である生乳 lmLと、上記界面活性剤溶液 20 / Lと、上記タンパク質分解酵素 溶液 250 /i Lとを、マイクロチューブ(トレフネ土製 1 · 5mL微量遠心チューブ、型番 No.96.7246.9.01をオートクレーブ滅菌して使用)に入れて、試験管ミキサーで 10秒 混合した。そして、 42°Cの恒温水槽に上記マイクロチューブを浮かべ、 10分間保温 した後、室温 (約 25°C)で 3分間遠心分離(7300 X g)した。
[0071] マイクロチューブを逆さまにして上澄みを捨て、乳脂肪を滅菌済み綿棒で拭レ、て除 いた後、マイクロチューブに PBSを 100 /i L入れ、ピペットで吸引と吐出を繰返して沈 殿を懸濁した後、更に PBSを lmL入れて菌を分散させた。
[0072] 孔径 0. 4 μ mのメンブレンフィルタ(商品名「Nucl印 ore Track-Etch Membrane]、
Whatman製、直径 25mm)をセットした濾過器に、生理食塩水 10mLを入れた後、上 記試料を加えて濾過した(ファンネルの内径 8mm、濾過面積 201mm2)。
[0073] 濾過器のファンネル部分を外してメンブレンフィルタを取り出し、該メンブレンフィノレ タの濾過面にセロファンテープ状の無蛍光な粘着シート(日東電工株式会社製)を貼 り付けて、メンブレンフィルタ上の菌等を粘着シートの粘着面に転写した(転写面積 1 cm )。
[0074] そして、菌等を転写した粘着シートの粘着面に、 CFDA溶液を 300 μ L滴下して広 げ、 25°Cで 1分間静置した後、洗浄液 300 Ai Lで 3回洗浄し、余分な CFDAを洗い 流した。
[0075] 次いで、粘着シートの粘着面にトリパンブルー溶液を 300 μ L滴下して広げ、 25°C で 10秒間静置した後、洗浄液 300 μ Lで 1回洗浄した。
[0076] 粘着シートの粘着面に残った水分をブロワで吹き飛ばした後、図 3に示す装置で輝 点(生菌数)の測定 (撮影視野総面積は 19. 6mm2)を行い、 CFDA濃度とトリパンブ ルー濃度が、測定した輝点の数に与える影響を調べた。その結果を図 4に示す。
[0077] 図 4におレ、ては、蛍光顕微鏡により目視でカウントした生菌数を真値とし、 Y軸は本 装置で測定した輝点の数を、蛍光顕微鏡により目視でカウントした生菌数で除して求 めた相対的な輝点数で表し、測定誤差を調べた。本発明においては、許容測定誤 差を、一般な菌数の許容測定誤差である 1/2— 2倍とした。ここで、測定誤差とは、 平均値を真値とみなし、それに対する最小値から最大値の範囲を意味する。
[0078] 図 4力 、濃度 300— 3,000 gZmLの CFDA溶液を用レ、、トリパンブルー濃度を 60— 30,000 μ gZmLとすると共に CFDA濃度の 10分の 1以上の濃度のトリパンブ ルー溶液を用いて染色することにより、許容測定誤差の範囲内で生菌数を計測でき ること力 S分力る。 [0079] 一方、 CFDA濃度が 150 μ g/mLでは、 CFDA溶液のみで染色した際の輝点の 数が少なぐ CFDA濃度 150 / g/mL以下では測定に適さないことが分かる。また、 CFDA濃度が 30,000 /i g/mLでは、 CFDAで染色される夾雑物の蛍光が強すぎ て生菌の検出ができなかった。
産業上の利用可能性
[0080] 本発明の生菌数の計測方法及び計測装置は、医薬、農薬、食品衛生管理等の分 野や医学、薬学、生物学等の研究分野において、生菌数の測定に利用できる。

Claims

請求の範囲
[1] 試料をカルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)とトリノく ンブルー (Trypan blue)とを用いて染色し、カルボキシフルォレセインジアセテート( Carboxy fluorescein diacetate)の励起光を照射して前記試料が発する蛍光を捕集し 、前記捕集した蛍光を画像として取り込んで電気信号に変換して生菌数を計測する ことを特徴とする生菌数の計測方法。
[2] 試料をフィルタで濾過して前記フィルタの濾過面に菌を捕集し、前記濾過面全体に 粘着シートを貼り付けて、該粘着シートの粘着層に前記フィルタ上にトラップされた菌 を転写した後、該菌をカルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)とトリパンブルー(Trypan blue)とを用いて染色する請求項 1に記載の生菌 数の計測方法。
[3] カルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)で染色された 生菌力ら発せられるカルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)の蛍光のみを捕集し、捕集した蛍光を画像として取り込む請求項 1又は 2 に記載の生菌数の計測方法。
[4] カノレボキシフノレォレセインジアセテート(Carboxy fluorescein diacetate)による蛍光と トリパンブルー(Trypan blue)による蛍光とを捕集し、捕集した蛍光をカラー画像とし て取り込み、カノレボキシフノレォレセインジアセテート (Carboxy fluorescein diacetate) による蛍光とトリパンブルー(Trypan blue)による蛍光とを区別する請求項 1又は 2に 記載の生菌数の計測方法。
[5] 前記捕集した蛍光を画像として取り込む際に、計測する細菌のサイズが撮像素子の 画素と同じサイズ若しくは撮像素子の画素よりも大きなサイズとなるように拡大して画 像を取り込み、その画像からカルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)による蛍光で発光する菌数を計測する請求項 1一 4のいずれ か一つに記載の生菌数の計測方法。
[6] 試料を保持する手段と、カルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)とトリパンブノレー (Trypan blue)で染色した前記試料に、カルボキシフルォ レセインジアセテート(Carboxy fluorescein diacetate)の励起光を照射する光学的手 段と、前記試料が発する蛍光を捕集する光学的手段と、前記捕集した蛍光を画像と して取り込んで電気信号に変換する画像取り込み手段とを備えていることを特徴とす る生菌数の計測装置。
[7] 前記試料が発する蛍光を捕集する光学的手段は、カルボキシフルォレセインジァセ テート(Carboxy fluorescein diacetate)の蛍光波長の光は透過する力 トリパンブル 一(Trypan blue)の蛍光波長の光は透過しないバンドパスフィルタであり、前記画像 取り込み手段は、前記バンドパスフィルタを介して画像を取り込むように配置されてい る請求項 6に記載の生菌数の計測装置。
[8] 前記画像取り込み手段はカラーカメラである請求項 6に記載の生菌数の計測装置。
[9] 更に、前記捕集した蛍光の画像を、計測する細菌のサイズが撮像素子の画素と同じ サイズ若しくは撮像素子の画素よりも大きなサイズとなるように拡大することができる光 学素子と、前記取り込んだ画像をカルボキシフルォレセインジアセテート(Carboxy fluorescein diacetate)による蛍光の発光を捕らえて画像処理する手段と、前記処理し た画像から輝点の数をカウントする手段とを備えており、前記画像取り込み手段は、 前記光学素子を介して画像を取り込むように配置されている請求項 6— 8のいずれか 一つに記載の生菌数の計測装置。
PCT/JP2004/009195 2004-06-30 2004-06-30 生菌数の計測方法及び計測装置 WO2006003696A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/009195 WO2006003696A1 (ja) 2004-06-30 2004-06-30 生菌数の計測方法及び計測装置
JP2006527609A JP4449982B2 (ja) 2004-06-30 2004-06-30 生菌数の計測方法及び計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009195 WO2006003696A1 (ja) 2004-06-30 2004-06-30 生菌数の計測方法及び計測装置

Publications (1)

Publication Number Publication Date
WO2006003696A1 true WO2006003696A1 (ja) 2006-01-12

Family

ID=35782511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009195 WO2006003696A1 (ja) 2004-06-30 2004-06-30 生菌数の計測方法及び計測装置

Country Status (2)

Country Link
JP (1) JP4449982B2 (ja)
WO (1) WO2006003696A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035778A (ja) * 2006-08-07 2008-02-21 Hitachi Chem Co Ltd 化学発光分析方法および分析装置
JP2008035788A (ja) * 2006-08-07 2008-02-21 Nisshin Seifun Group Inc 微生物数測定のための試料の前処理方法、前処理キットおよび前処理装置
JP2008092812A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 微生物数計測方法
FR2955121A1 (fr) * 2010-01-08 2011-07-15 Millipore Corp Milieu de culture fluorescent pour la detection de microorganismes comprenant un colorant masquant la fluorescence residuelle
EP3050886A1 (en) 2015-02-02 2016-08-03 Bürkert Werke GmbH Fluorescent dyes and dye precursors
JP2018205258A (ja) * 2017-06-09 2018-12-27 株式会社シバサキ 細菌検出装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099096A (ja) * 1995-12-29 1998-04-21 Ishihara Sangyo Kaisha Ltd 生存細胞数の測定方法
JP2002034594A (ja) * 2000-07-24 2002-02-05 National Institute Of Advanced Industrial & Technology 生細胞の検出方法
JP2002505578A (ja) * 1997-06-04 2002-02-19 シュミュークス 生存細胞を数える方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099096A (ja) * 1995-12-29 1998-04-21 Ishihara Sangyo Kaisha Ltd 生存細胞数の測定方法
JP2002505578A (ja) * 1997-06-04 2002-02-19 シュミュークス 生存細胞を数える方法
JP2002034594A (ja) * 2000-07-24 2002-02-05 National Institute Of Advanced Industrial & Technology 生細胞の検出方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAHASHI K. ET AL: "Shokuhin Eisei Kanri Solution", FUJI ELECTRIC JOURNAL, vol. 75, no. 6, 2002, pages 363 - 366, XP002995700 *
YOKOYAMA S. ET AL: "3. Senjo Kensa Sonota-3.2 Saikin Jinsoku Kensa Sochi", REITO, vol. 78, no. 911, 2003, pages 38 - 41, XP002995699 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035778A (ja) * 2006-08-07 2008-02-21 Hitachi Chem Co Ltd 化学発光分析方法および分析装置
JP2008035788A (ja) * 2006-08-07 2008-02-21 Nisshin Seifun Group Inc 微生物数測定のための試料の前処理方法、前処理キットおよび前処理装置
JP2008092812A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 微生物数計測方法
FR2955121A1 (fr) * 2010-01-08 2011-07-15 Millipore Corp Milieu de culture fluorescent pour la detection de microorganismes comprenant un colorant masquant la fluorescence residuelle
EP3050886A1 (en) 2015-02-02 2016-08-03 Bürkert Werke GmbH Fluorescent dyes and dye precursors
JP2018205258A (ja) * 2017-06-09 2018-12-27 株式会社シバサキ 細菌検出装置

Also Published As

Publication number Publication date
JPWO2006003696A1 (ja) 2008-04-17
JP4449982B2 (ja) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4765467B2 (ja) 生細胞の検出方法
JP2024045407A (ja) 身体試料中の実体を検出する方法および装置
JP6314454B2 (ja) 細胞検査装置および細胞検査方法
RU2517618C2 (ru) Способ и система для определения количества культивируемых клеток
CN1218553A (zh) 检测污染物的方法
Silva et al. Cryptosporidium spp. and Giardia spp.(oo) cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays
JP2008529506A (ja) 細菌同定方法
JP4967280B2 (ja) 微生物計数装置
JPWO2003100086A1 (ja) 生細胞の計数方法および装置
JP4449982B2 (ja) 生菌数の計測方法及び計測装置
WO2004022774A1 (ja) 微生物または細胞の検出方法
JP2006509514A (ja) 細菌を同定するための方法および装置
JP4487985B2 (ja) 微生物計量装置
WO2002064818A1 (fr) Methode et appareil de discrimination immediate de microorganismes
JP2005065624A (ja) 微生物量の測定方法およびキット
JP7478443B2 (ja) 少なくとも1つの微生物を、その染色反応速度に従って検出するための方法および装置、ならびに検出支持体
US20060073470A1 (en) Method of counting microorganisms or cells
JP2011004654A (ja) 微生物検出方法
JP2016174581A (ja) 微生物検出装置、微生物検出プログラム及び微生物検出方法
JP2007097582A (ja) 微生物計数装置
JP4068419B2 (ja) 微生物検出方法及び装置
JP2007014239A (ja) 微生物検出方法および検出装置
JP2002142797A (ja) 固体表面の微生物試験法およびそのためのキット
JP2002034594A (ja) 生細胞の検出方法
JP2005278546A (ja) 生菌検出方法および生菌計数装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527609

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase