WO2006001418A1 - 燃料電池用燃料貯留体 - Google Patents

燃料電池用燃料貯留体 Download PDF

Info

Publication number
WO2006001418A1
WO2006001418A1 PCT/JP2005/011732 JP2005011732W WO2006001418A1 WO 2006001418 A1 WO2006001418 A1 WO 2006001418A1 JP 2005011732 W JP2005011732 W JP 2005011732W WO 2006001418 A1 WO2006001418 A1 WO 2006001418A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
liquid
fuel cell
liquid fuel
reservoir
Prior art date
Application number
PCT/JP2005/011732
Other languages
English (en)
French (fr)
Inventor
Toshimi Kamitani
Yasunari Kabasawa
Original Assignee
Mitsubishi Pencil Co., Ltd.
Casio Computer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co., Ltd., Casio Computer Co., Ltd. filed Critical Mitsubishi Pencil Co., Ltd.
Priority to EP05765062A priority Critical patent/EP1770808A4/en
Priority to US11/629,874 priority patent/US7727657B2/en
Priority to JP2006528666A priority patent/JP4956186B2/ja
Publication of WO2006001418A1 publication Critical patent/WO2006001418A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel reservoir for a fuel cell, and more particularly, a fuel reservoir suitable for a small fuel cell used as a power source for portable electronic devices such as a mobile phone, a notebook personal computer, and a PDA. About the body.
  • a fuel cell includes a fuel cell in which an air electrode layer, an electrolyte layer, and a fuel electrode layer are stacked, a fuel supply unit for supplying fuel as a reducing agent to the fuel electrode layer, and an air electrode A battery that has an air supply part for supplying air as an oxidant to the layer, and causes an electrochemical reaction in the fuel cell by the fuel and oxygen in the air to obtain electric power outside.
  • liquid fuel cells described in each of these patent documents supply the liquid fuel from the fuel tank to the fuel electrode by capillary force, and therefore do not require a pump for pumping the liquid fuel. There is.
  • the applicant of the present application has a unit cell formed by constructing an electrolyte layer on the outer surface of a fuel electrode body made of a microcarbon porous body, and constructing an air electrode layer on the outer surface of the electrolyte layer.
  • a plurality of fuel cells connected to each other, each unit cell being connected to a fuel supply body having a permeation structure connected to a fuel storage body such as a force cartridge structure body for storing liquid fuel.
  • a direct methanol fuel cell to be supplied is filed (see, for example, Patent Document 9).
  • Patent Document 1 JP-A-5-258760 (Claims, Examples, etc.)
  • Patent Document 2 JP-A-5-307970 (Claims, Examples, etc.)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 59-66066 (Claims, Examples, etc.)
  • Patent Document 4 JP-A-6-188008 (Claims, Examples, etc.)
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-229158 (Claims, Examples, etc.)
  • Patent Document 6 Japanese Patent Laid-Open No. 2003-299946 (Claims, Examples, etc.)
  • Patent Document 7 Japanese Patent Laid-Open No. 2003-340273 (Claims, Examples, etc.)
  • Patent Document 8 Japanese Patent Laid-Open No. 2001-102069 (Claims, Examples, etc.)
  • Patent Document 9 Japanese Unexamined Patent Application Publication No. 2004-63200 (Claims, Examples, etc.)
  • the present invention has been made in view of the problems and current situation of the above-described conventional fuel cell fuel reservoir, and has been made to solve this problem. Even when the fuel reservoir is heated to a high temperature state, It can prevent boiling of liquid fuel, generation of bubbles, blowing out of fuel, etc., and also stably supply liquid fuel directly to the fuel cell body, and there is no loss of liquid fuel even when stored at high temperature And it aims at providing the fuel storage body for fuel cells which can achieve size reduction of a fuel cell.
  • a fuel reservoir that can be connected to a fuel cell main body is a fuel that contains liquid fuel.
  • the storage container, the fuel outflow portion, and a follower having specific physical properties at the rear end portion of the liquid fuel, and the fuel storage container further having a specific structure can be used to store the fuel for the target fuel cell.
  • the body was successfully obtained and the present invention was completed.
  • the present invention resides in the following (1) to (7).
  • a fuel reservoir that can be connected to a fuel cell main body, and the fuel reservoir is disposed at a fuel storage container that stores liquid fuel, a fuel outflow portion, and a rear end portion of the liquid fuel.
  • a fuel storage chamber in which the inside of the fuel container is at least sealed by the follower, and the follower in a state of being isolated and sealed from the outside air.
  • a fuel reservoir for a fuel cell comprising a pressurizing chamber in which means for pressing the body is enclosed.
  • the volatile liquid sealed in the pressurizing chamber is filled with an amount capable of obtaining a saturated vapor pressure at least the sum of the volume of the pressurizing chamber and the volume of the fuel storage chamber.
  • Fuel cell fuel reservoir
  • the fuel cell main body is constructed by constructing an electrolyte layer on the outer surface portion of the fuel electrode body, and connecting a plurality of unit cells formed by constructing an air electrode layer on the outer surface portion of the electrolyte layer.
  • the fuel reservoir for a fuel cell according to any one of (1) to (6), wherein a fuel supply body connected to the fuel reservoir is connected to the cell to supply liquid fuel.
  • the present invention even when the fuel reservoir is heated to a high temperature state, it is possible to prevent the liquid fuel from boiling, the generation of bubbles, the blowing of fuel, and the like, and directly to the fuel cell main body.
  • a fuel cell fuel storage body that can stably supply liquid fuel, lose force, lose liquid fuel even when stored at high temperatures, and reduce the size of the fuel cell.
  • FIG. 1 (a) is a schematic perspective view showing a fuel reservoir for a fuel cell according to a first embodiment of the present invention, and (b) is a partial sectional view showing an essential part of a pressurizing chamber.
  • FIG. 2 (a) to (h) show a valve body structure of a fuel outflow valve provided in the fuel outflow portion of the first embodiment of the present invention
  • (a) is a perspective view of the valve body
  • (b) ) Is a plan view of the valve body
  • (c) is a longitudinal section view of the valve body
  • (d) is a plan view of the adapter
  • (e) is a longitudinal section view of the adapter
  • (f) is a state in which the valve body is loaded on the adapter.
  • G is a longitudinal section with the valve element loaded on the adapter.
  • (H) is a partial longitudinal sectional view showing a valve body structure of a fuel outflow valve provided in the fuel outflow portion.
  • FIG. 3 is a schematic cross-sectional view showing an example of a state in which the fuel cell fuel reservoir of FIG. 1 is connected to a fuel cell body and used as a fuel cell.
  • FIG. 4 (a) and 4 (b) are a perspective view and a longitudinal sectional view for explaining the fuel battery cell 20.
  • FIG. 4 (a) and 4 (b) are a perspective view and a longitudinal sectional view for explaining the fuel battery cell 20.
  • FIG. 5 is a schematic perspective view showing a fuel reservoir for a fuel cell according to a second embodiment of the present invention.
  • FIG. 6 (a) to (c) show a fuel cell fuel reservoir according to a third embodiment of the present invention.
  • (A) is a schematic partial cross-sectional view shown in a vertical cross-sectional view.
  • (c) is a perspective view.
  • FIG. 7 is a partial schematic cross-sectional view showing how the fuel cell fuel reservoir according to the third embodiment of the present invention is used.
  • FIG. 8 is a schematic cross-sectional view showing a form before use of the fuel cell fuel reservoir of FIG. Explanation of symbols
  • FIG. 1 and 2 show a basic form (first embodiment) of a fuel cell fuel reservoir A showing a basic embodiment of the present invention.
  • a fuel reservoir A for a fuel cell is a fuel reservoir that can be connected to a fuel cell main body, a tube-type fuel storage container 10 that stores liquid fuel F, and a fuel flow
  • the outlet 11 and the trailing end 12 of the liquid fuel F are provided with a follower 12 that seals the liquid fuel F and moves as the liquid fuel F is consumed.
  • 12 is provided with a fuel storage chamber 13 sealed at least by 12 and a pressurization chamber 14 in which means for pressing the follower 12 in a state of being isolated and sealed from the outside air is enclosed.
  • the tube-type fuel storage container 10 has storage stability, durability, and gas impermeability (gas impermeability to oxygen gas, nitrogen gas, etc.) with respect to the liquid fuel to be stored. It is preferable that it is composed of light-transmitting materials so that the remaining amount of fuel can be seen.
  • the fuel container 10 for example, when light transmittance is not required, power such as metal, stainless steel, synthetic resin, glass, etc., the visibility of the remaining amount of liquid fuel described above
  • polypropylene, polybutyl alcohol, ethylene butyl alcohol copolymer resin, polyacryl-tolyl having the above characteristics.
  • a multilayer structure as long as at least one layer is made of a resin having the above-mentioned performance (gas permeability), the remaining layers can be used with ordinary resins without any problem in practical use.
  • a multi-layered tube can be manufactured by extrusion molding, injection molding, coextrusion molding, or the like.
  • the fuel outflow portion 11 includes a valve body 11a serving as a fuel outflow valve that seals communication between the inside and the outside of the cylindrical fuel storage container 10.
  • the valve body 1 la is accommodated in the fuel outflow part 11 directly or via a valve body adapter.
  • the valve body 11a has the same configuration as a member used in a writing instrument or the like, and is directly stored in the fuel storage container 10 due to atmospheric pressure, temperature change, etc., as shown in FIGS. 2 (a) to (c). This prevents foreign substances such as air entering the liquid fuel F from the vicinity of the fuel supply pipe described later.
  • the valve body 11a is a linear slit that allows the liquid storage container 12 and the inside to communicate with each other by inserting a liquid fuel supply member and supplies the liquid fuel F inside the fuel storage container 10 to the outside.
  • the valve body 1 la is compressed in the radial direction by the valve body outer edge 1 lc when the valve body 11a is stored in the fuel outflow portion 11 or the valve body adapter.
  • a compressive force acts on the communication portion 11c.
  • the communication portion 11c is elliptical as shown in FIG. 2 (b), and becomes a communication portion in the minor axis direction Y.
  • a slit l ib is provided to compress the outer edge portion 11c in the major axis direction X, and a compressive force acts in the direction in which the slit l ib is closed.
  • the communication portion 1 lb is formed by a straight slit
  • the liquid fuel supply member is inserted to connect the fuel storage container 10 to the inside, and the liquid fuel F inside the fuel storage container 10 is exchanged.
  • the structure is not particularly limited as long as the structure can be supplied to the outside, and a plurality of cross-shaped and radial slits, a structure in which a plurality of slits are formed so that each slit intersects at the same location, a circular hole shape, a rectangular hole shape, etc. There may be.
  • the linear slit is desirable.
  • the shape of the outer edge portion 11c is not particularly limited, and it can be formed in a circular shape in addition to an elliptical shape as in the above embodiment.
  • a convex tapered surface (protrusion) l id is formed toward the inside of the fuel storage container 10 so that the liquid fuel supply member can be inserted smoothly when inserted. It is preferable to do.
  • the fuel outflow portion 11 is provided with an adapter l ie as shown in FIGS. 2 (d) and 2 (e).
  • the adapter l ie is formed in a cylindrical shape and has a stopper portion 1 If, 1 on its inner peripheral surface. It consists of a main body l lg on which If is formed and a fixing member l lh formed in a cylindrical shape, and the valve body 1 la having the above configuration is sandwiched between the stopper 1 If and the fixing member 1 lh. It will be.
  • valve body 11a and the adapter l ie there is an elliptical slit valve and a circular adapter, and conversely, a circular slit valve and an elliptical valve. In this case, it is necessary to make the slit direction of the slit valve the long diameter of the adapter.
  • valve body 11a prevents the intrusion of foreign substances such as air even when it is suspended (not used). This is to prevent accidents such as fuel leakage and jetting due to an increase in pressure in the liquid fuel container 10 due to intrusion of air or the like.
  • valve body l la and the adapter l ie prevent liquid fuel leakage more effectively.
  • the above structure, etc. is made of a material having low gas permeability to the liquid fuel F, and also has a material force with a compression set of 20% or less as defined in JIS K 6262-1997. preferable.
  • valve bodies lla and adapter integrated lie has storage stability, durability, gas impermeability, and elasticity that can adhere to the fuel supply pipe with respect to the liquid fuel F to be stored.
  • polybutyl alcohol ethylene vinyl alcohol copolymer resin, polyacryl-tolyl, nylon, cellophane, polyethylene terephthalate, polycarbonate, polystyrene, polyvinyl chloride, polysalt vinylidene, Synthetic resins such as polyvinyl chloride, natural rubber, isoprene rubber, butadiene rubber, acrylonitrile butadiene rubber, 1,2-polybutadiene rubber, styrene butadiene rubber, chloroprene rubber, nitrino rubber, butyl rubber, ethylene-propylene rubber, chlorosulfonated Polyethylene rubber, acrylic rubber, epichlorohydrin Rubber, polysulfide rubber, silicone rubber, fluorine rubber, rubber such as Uretango
  • liquid fuel F to be used a methanol liquid that has the power of methanol and water can be cited, but the compound power supplied as fuel in the fuel electrode body described later can efficiently obtain hydrogen ions (H +) and electrons (e_).
  • the liquid fuel is not particularly limited as long as it can be used. Power depending on the structure of the fuel electrode body, for example, dimethyl ether (DME), ethanol solution, formic acid, hydrazine, ammonia solution, ethylene glycol, sucrose aqueous solution, hydrogenation Liquid fuels such as sodium boron can also be used.
  • DME dimethyl ether
  • ethanol solution formic acid, hydrazine, ammonia solution, ethylene glycol, sucrose aqueous solution
  • hydrogenation Liquid fuels such as sodium boron
  • the liquid fuel can be used at various concentrations depending on the structure and characteristics of the fuel cell. For example, a liquid fuel having a concentration of 1 to 100% can be used.
  • the follower 12 is in contact with the rear end surface of the liquid fuel F stored in the fuel storage container 10, seals the liquid fuel F, and moves as the fuel is consumed. This prevents the liquid fuel in the tank 10 from leaking and evaporating, and also prevents air from entering the liquid fuel.
  • the follower 12 is required not to dissolve or diffuse in the liquid fuel F.
  • liquid fuel in the fuel storage container 10 serving as a fuel storage tank leaks and evaporates, so that it cannot function as a fuel storage tank. It is conceivable that the substances constituting the follower 12 enter the fuel electrode of the fuel cell body and adversely affect the reaction. Considering these conditions, preferable characteristics and the like of the follower 12 used in the present invention are selected.
  • the follower 12 that can be used is not particularly limited as long as it has the above-mentioned characteristics.
  • petroleums such as mineral oil, polydaricol, polyester, polybutene, and silicone oil, aliphatic metal sarcophagus
  • examples thereof include those obtained by adding a solvent or the like to modified clay, silica gel, carbon black, natural or synthetic rubber, and various synthetic polymers.
  • the surface free energy is lower than that of the liquid fuel F.
  • the fuel container 10 and the follower 12 It is possible to increase the possibility of preventing liquid fuel from entering the gaps and leaking outside. In view of these conditions, the material, surface state, etc. of the follower 12 can be appropriately selected.
  • the inside of the fuel storage container 10 includes a fuel storage chamber 13 in which the liquid fuel F at least sealed by the follower 12 is stored.
  • the structure has a pressurizing chamber 14 in which means for pressing the follower 12 that is isolated and sealed from the outside air is enclosed.
  • the pressurizing chamber 14 is provided on the rear end side of the fuel storage container 10 and is formed by the upper surface of the follower 12 and a sealing body 15 having a sealing valve.
  • the space is the pressurizing chamber.
  • the pressurizing chamber 14 contains a means for pressing the follower. As the means for pressing, a volatile liquid G having a higher vapor pressure than the liquid fuel F sealed in the fuel storage chamber 13 is sealed.
  • the aqueous methanol solution is the liquid fuel F as an example
  • the liquid fuel of the present invention is not limited to this.
  • the volatile liquid G enclosed in the pressurizing chamber 14, for example, Liquid fuel F can be pressurized through the follower 12 by evaporation of the solvent vapor.
  • the air By simply enclosing air in the pressurizing chamber 14, the air expands as the temperature rises, and the force of pressurizing the liquid fuel F through the follower 12 alone is less effective for pressurization.
  • the initial pressure in the pressurizing chamber is lOlkPa
  • the pressure will only be 122kPa (l. 2 times).
  • the vapor pressure of methanol which is a liquid fuel, changes from 12 kPa to 181 kPa (10 times or more).
  • the pressurizing chamber 14 in order to prevent boiling of the liquid fuel, the pressurizing chamber 14 needs to be pressurized to a pressure higher than the vapor pressure of the liquid fuel, so that the vapor pressure is higher than the vapor pressure of the liquid fuel. It is necessary to enclose a liquid of composition.
  • vapor pressure in the present invention refers to the physical vapor pressure itself when compared at the same temperature.
  • volatile liquid defined in the present invention refers to a solvent that is a liquid at least at room temperature and normal pressure, and has a vapor pressure of 20 ° C. or less ⁇ OlkPa.
  • a liquid with a high vapor pressure means, for example, when a 50 wt% methanol aqueous solution is used, a higher concentration of methanol can be said to be a liquid with a higher vapor pressure.
  • the vapor pressure of 100% methanol is shown in Table 1 below.
  • the vapor pressure of the mixed solvent of methanol and water (methanol aqueous solution) is shown in Table 2 below.
  • a liquid having a high vapor pressure and a composition means, for example, when a 50 wt% aqueous methanol solution is used, as shown in Table 2 above, methanol having a higher concentration than this is used. Is a liquid with higher vapor pressure. It can also be seen that in the mixed solvent of methanol and water (methanol aqueous solution), the higher the methanol concentration, the higher the vapor pressure at each temperature.
  • the vapor pressure of the volatile liquid G needs to be larger (or closer) than the vapor pressure of the liquid fuel F, a liquid having a higher vapor pressure than the vapor pressure at a certain methanol concentration, The liquid must have a composition having a vapor pressure.
  • the volatile liquid G to be used is preferably a liquid having a composition in which the vapor pressure at 20 ° C. is 4 to: LOOkPa, more preferably 10 to 50 kPa.
  • Liquids with a vapor pressure of less than 4kPa at 20 ° C will not be pressurized enough to pressurize the fuel, while liquids with a pressure exceeding lOOkPa will be difficult to handle such as filling because they are gases at room temperature.
  • Table 3 shows an example of a volatile liquid having a composition of a vapor pressure of 20 ° C to 100 kPa that can be used in the present invention, but the present invention is not limited thereto.
  • the volatile liquid G sealed in the pressurizing chamber 14 is sealed in such an amount that the saturated vapor pressure can be obtained by adding at least the volume of the pressurizing chamber 14 and the volume of the fuel storage chamber 13. .
  • the required amounts of volatile liquid are XX Dg and XX D X Eml.
  • the amount of volatile liquid G required is relatively small. For example, 60wt for a fuel reservoir (tank) with a pressurized chamber volume of 20ml and liquid fuel capacity of 100ml. / c ⁇ Methanol aqueous solution filled with liquid fuel and 100wt% methanol is used to give heat resistance at 100 ° C. When 100wt% methanol is used, the amount of 100wt% methanol filled in the pressure chamber 14 is 0.19g. (0.15 ml, 0.15% with respect to liquid fuel, filled with a few drops) should be enclosed.
  • the vapor pressure at 100 ° C. of a 60 wt% aqueous methanol solution is 250 kPa. If the pressure can be increased at a pressure higher than this, boiling of the liquid fuel F to be filled can be prevented.
  • the total of the pressurized chamber 14 and the liquid fuel capacity is 120 ml.
  • the amount of methanol that can pressurize this space to 250 kPa or higher is required. Since lOOkPa is pressurized with air (strictly, air is also pressurized by heating. 100kPa ⁇ 127kPa). The remaining 150kPa will be pressurized by methanol.
  • the volatile liquid G sealed in the pressurizing chamber 14 is sealed in such an amount that the saturated vapor pressure can be obtained by adding at least the volume of the pressurizing chamber 14 and the volume of the fuel storage chamber 13. Is preferred. With this configuration, it can be changed depending on the volume, the type of liquid fuel, and the type of volatile liquid.
  • the present invention is not limited to the above examples of methanol, and the volatile liquids shown in Table 3 can be used. Further, the case where the methanol aqueous solution is used as the liquid fuel F has been described as an example. However, as the liquid fuel of the present invention, dimethyl ether (DME), ethanol solution, formic acid, hydrazine, ammonia solution, ethylene glycol, shochu, as described above. Aqueous sugar liquid and liquid fuel such as sodium borohydride are also known vapors at each temperature The volatile liquid G preferred for each liquid fuel can be used in the same manner as described above with reference to the pressure.
  • DME dimethyl ether
  • ethanol solution formic acid, hydrazine, ammonia solution, ethylene glycol, shochu, as described above.
  • Aqueous sugar liquid and liquid fuel such as sodium borohydride are also known vapors at each temperature
  • the volatile liquid G preferred for each liquid fuel can be used in the same manner as described above with reference to the pressure.
  • the sealing body 15 having the sealing valve, the volatile liquid G evaporates with the liquid fuel consumption F as described above, whereby the liquid fuel F
  • the temperature drops or the pressure becomes constant due to volatilization of the volatile liquid G When fuel is used, it can be pressurized from outside or inhaled.
  • the sealing body 15 is provided with a sealing valve that can be opened and closed.
  • This sealing valve should also be a closed valve that does not leak even under the vapor pressure of volatile liquid at 100 ° C.
  • methanol at 100 ° C is about 350 kPa, so it is sufficient if it has a pressure resistance of about 500 kPa together with air. Since this is not a very high target, any valve structure is considered to be sufficient, and as long as the valve structure satisfies this condition, the structure is not particularly limited.
  • the fuel outflow shown in Fig. 2 A valve having a slit structure having the same structure as that provided in the part 11 can be used, that is, a fuel outflow including the valve body 11a having the structure shown in FIG.
  • the part 11 can be used, and a valve shown in FIG. 6 (a valve with the direction reversed (upward)) described later can also be used.
  • the fuel cell fuel reservoir A configured as described above is freely connectable to the fuel cell main body N and is used.
  • the fuel cell main body N has an electrolyte layer 23 formed on the outer surface portion of the fuel electrode body 21 made of a fine carbon porous body, and an air electrode on the outer surface portion of the electrolyte layer 23.
  • Unit cells (fuel cells) 20 and 20 formed by constructing the layer 24, a fuel supply body 30 having a permeation structure connected to the fuel reservoir A, and an end of the fuel supply body 30 The unit cells 20 and 20 are connected in series so that fuel is sequentially supplied by the fuel supply body 30, and the fuel storage body A is replaced.
  • the cartridge structure is capable of being inserted into the support 16 of the fuel cell main body N.
  • liquid fuel F is directly stored as shown in FIG. 1, FIG. 2 (a) and FIG.
  • the fuel is supplied by the fuel supply body 30 inserted into the valve body 11a provided in the fuel outflow portion 11 at the lower part of the fuel storage container 10 for storing the liquid fuel F.
  • the fuel storage container 10 of the fuel storage body A, the valve body l la provided in the fuel outflow portion 11, and the fuel supply body 30 are joined together by fitting or the like.
  • each member is higher than the surface free energy of the liquid fuel F, the possibility of the liquid fuel F leaking easily increases easily into the gaps in the joint. Therefore, it is desirable that at least the wall surfaces of these members that are in contact with the liquid fuel F are adjusted to be lower than the surface free energy of the liquid fuel.
  • a water repellent film forming process is performed on a wall surface in contact with the liquid fuel such as the fuel container 10 by a coating using a silicon-based, key resin or fluorine-based water repellent. be able to.
  • Each fuel cell 20 as a unit cell has a fuel electrode body 21 made of a micro-columnar carbon porous body as shown in FIGS. 4 (a) and 4 (b), and fuel is supplied to the center thereof.
  • the fuel electrode body 21 has a through-hole 22 that penetrates the body 30, an electrolyte layer 23 is constructed on the outer surface of the fuel electrode body 21, and an air electrode layer 24 is constructed on the outer surface of the electrolyte layer 23.
  • a theoretical electromotive force of about 1.2 V is generated for each fuel cell 20.
  • the fine columnar carbon porous body constituting the fuel electrode body 21 may be a porous structure having minute communication holes, for example, a three-dimensional network structure or a point-sintered structure.
  • Examples include carbon composite moldings composed of amorphous carbon and carbon powder, isotropic high-density carbon moldings, carbon fiber papermaking moldings, and activated carbon moldings.
  • reaction control at the fuel electrode of a fuel cell a carbon composite molded body having fine communication holes made of amorphous carbon and carbon powder is desirable from the viewpoint of easy improvement of reaction efficiency.
  • the carbon powder used for the production of the carbon composite having a porous structural force includes highly oriented pyrolytic graphite (HOPG), quiche graphite, natural graphite, artificial graphite from the viewpoint of further improving the reaction efficiency. At least one selected from carbon nanotubes and fullerenes (single or a combination of two or more) is preferred.
  • a platinum-ruthenium (Pt—Ru) catalyst an iridium murthenium (Ir Ru) catalyst, a platinum soot (Pt—Sn) catalyst, etc. It is formed by impregnation with a solution containing a metal fine particle precursor such as metal complex or by a reduction treatment after immersion treatment or a method of electrodeposition of metal fine particles.
  • Examples of the electrolyte layer 23 include ion-exchange membranes having proton conductivity or hydroxide ion conductivity, for example, fluorine-based ion exchange membranes including naphthion (manufactured by Nafion, Du Pont). Good heat resistance and methanol crossover suppression, for example, a composite film using an inorganic compound as a proton conductive material and a polymer as a film material, specifically using zeolite as an inorganic compound, Examples of the polymer include a composite film having a styrene-butadiene rubber force and a hydrocarbon graft film.
  • the air electrode layer 24 a porous structural force or the like in which platinum (Pt), palladium (Pd), rhodium (Rh) or the like is supported by a method using a solution containing the above-mentioned metal fine particle precursor or the like.
  • platinum Pt
  • palladium Pd
  • rhodium Rh
  • Examples of the carbon porous material are as follows.
  • the fuel supply body 30 is not particularly limited as long as the fuel supply body 30 is inserted into the valve body ib of the fuel reservoir A and has a permeation structure capable of supplying the liquid fuel to each unit cell 20.
  • Felt, sponge, porous body having a capillary force composed of sintered bodies such as a sintered body of a resin particle and a sintered fiber fiber, natural fiber, animal fiber, polyacetal resin, acrylic Resin, polyester resin, polyamide resin, polyurethane resin, polyolefin resin, polybule resin, polycarbonate resin, polyether resin, polyolefin resin, etc.
  • Examples include one having one or two or more kinds of combined fiber bundles, and the porosity of these porous bodies and fiber bundles is appropriately set according to the amount supplied to each unit cell 20. is there.
  • the spent fuel storage tank 40 is arranged at the end of the fuel supply body 30. At this time, even if the spent fuel storage tank 40 is brought into direct contact with the end of the fuel supply body 30 and the spent fuel is directly occluded by the occlusion body, etc. Or a porous body or a fiber bundle may be provided as a relay core to form a spent fuel discharge passage.
  • liquid fuel supplied by the fuel supply body 30 is used for the reaction in the fuel cell 20, and the fuel supply amount is linked to the fuel consumption amount.
  • liquid fuel that is not used in the reaction can be stored in the storage tank 40 to prevent an obstructive reaction when it reaches oversupply due to operating conditions.
  • 50 connects the fuel reservoir A and the spent fuel storage tank 40, and reliably supplies liquid fuel directly from the fuel storage tank 10 to each of the unit cells 20, 20 via the fuel supply body 30. It is a powerful member such as a mesh structure.
  • the fuel cell using the fuel reservoir A configured as described above is supplied from the fuel reservoir A to the fuel supply body 30 inserted into the valve body 11a serving as a fuel outlet, and the liquid fuel is supplied by the permeation structure. It is introduced into the fuel battery cells 20 and 20.
  • the fuel reservoir A that can be connected to the fuel cell main body includes a tube-type fuel storage container 10 that stores the liquid fuel F, a fuel outflow portion 11, and a rear end portion of the liquid fuel F.
  • the liquid fuel F is sealed and provided with a follower 12 that moves as the liquid fuel F is consumed, and a fuel storage chamber 13 in which the inside of the fuel storage container 10 is sealed at least by the follower 12, and an outside air Is provided with a pressurizing chamber 14 that seals the follower 12 in a state of being isolated and sealed, so that the fuel reservoir A is heated and the temperature of the liquid fuel F is increased.
  • the opposite side of the follower 12 that seals the liquid fuel F also pushes the follower 12 in the pressurizing chamber 14. Since the volatile liquid G as a stage is heated and pressurized to the saturated vapor pressure of the liquid fuel F, And thus capable of preventing boiling body fuel F. More specifically, in the fuel cell fuel reservoir A having the structure in which the liquid fuel F according to the present invention is sealed by the follower 12, the rear end portion of the fuel storage container (tank) 11 is sealed.
  • a volatile liquid G which serves as a means to press the follower 12 having a higher vapor pressure than the liquid fuel F, is sealed in the pressurizing chamber 14, and the liquid fuel F is passed through the follower 12 by the vapor pressure of the volatile liquid G that is sealed. Can be pressurized. This prevents the liquid fuel from leaking and evaporating from the fuel reservoir A due to vaporization of the liquid fuel F that does not boil even when the temperature of the liquid fuel F reaches the boiling point under atmospheric pressure. .
  • a check valve that serves as a top closed valve Open and replace air.
  • At least the fuel electrode body 21 and Z or the fuel supply body 30 in contact with the fuel electrode body 21 has a capillary force, and this unit force causes each unit cell from the fuel storage chamber 13. It will be possible to supply fuel stably and continuously without causing backflow or disruption of liquid fuel directly to 20 and 20 respectively. More preferably, by setting the fuel electrode body 21 and ⁇ or the capillary force of the fuel supply body 30 in contact with the fuel electrode body 21 and the capillary force of the spent fuel storage tank 40, the fuel storage chamber 13, each unit cell 20, It will be possible to create a stable and continuous fuel flow without any direct backflow or disruption of liquid fuel directly from 20 to the spent fuel storage tank.
  • this fuel cell has a structure that can smoothly supply liquid fuel without vaporization without using a pump, blower, fuel vaporizer, condenser and other auxiliary devices. It is possible to reduce the size.
  • the entire fuel cell can be cartridged, and a small fuel cell that can be used as a power source for portable electronic devices such as a mobile phone and a notebook personal computer is provided. It will be.
  • the power using two fuel cells 20 is shown.
  • the number of connected fuel cells 20 (in series or parallel) is increased to obtain the required electromotive force, etc. be able to.
  • FIG. 5 shows a fuel reservoir according to the second embodiment of the present invention.
  • the same components and effects as those of the fuel cell fuel reservoir of the first embodiment are denoted by the same reference numerals as those in FIG. 1 and the description thereof is omitted.
  • the liquid fuel consumption rate is high, or a tube-type fuel container 10 having a large diameter is used to mount a large amount of liquid fuel. From the fuel reservoir ⁇ ⁇ due to the vaporization of the liquid fuel F, which makes the body follow well without causing follow-up, and does not boil even when the temperature of the liquid fuel F reaches the boiling point under atmospheric pressure 1 shows a preferred embodiment for preventing leakage and evaporation of liquid fuel.
  • the fuel storage body B of the second embodiment includes a cylindrical follow-up auxiliary member 1 as a follow-up body 12 to be used. It is different from the first embodiment only in that 2a is inserted, and is used in the same manner as in the first embodiment.
  • auxiliary member 12a for example, polypropylene, ethylene butyl alcohol copolymer resin, polyacryl-tolyl, nylon, polyethylene terephthalate, polycarbonate, polystyrene, polyvinyl chloride, polyvinyl chloride, various rubbers, etc.
  • the power can also be composed.
  • Examples of the shape of the follow-up auxiliary member 12a include a cylindrical shape, a quadrangular prism shape, a triangular prism shape, a spherical shape, or a shape similar to the cross section of the fuel reservoir, and the length thereof is 30 to 70% is preferable.
  • the fuel consumption speed is high, and the diameter of the fuel container such as a tube type is large.
  • the follower 12 in which the follow-up auxiliary member 12a is inserted moves without causing follow-up due to fuel consumption by power generation of the fuel cell.
  • the fuel reservoir liquid fuel
  • the opposite side of the follower 12 that seals the liquid fuel F will be supported.
  • the volatile liquid G which serves as a means for pressing the follower 12 in the pressurizing chamber 14
  • the boiling of the liquid fuel F is prevented. To do is to become a satire.
  • FIG. 6 shows another embodiment (third embodiment) of the fuel cell fuel reservoir according to the present invention.
  • the fuel reservoir C for a fuel cell according to the third embodiment is configured so that the fuel outflow portion 11 according to the first embodiment is made of an elastic member such as a spring member or a spring member.
  • the valve body 60 is structured to be closed by a natural body and opened by inserting a liquid fuel supply member.
  • This valve body 60 has a valve receiving portion 6 la in a main body portion 61, and a valve member 63 having a reverse T-shaped cross section is constantly biased to the valve receiving portion 61 by an elastic body 62 such as a spring member or a spring member.
  • the liquid fuel supply member 30 is closed and is opened to supply liquid fuel.
  • the sealing body 16 at the upper end has a valve body that also has the slit valve force of FIG. [0045]
  • the fuel inserted into the valve body 60 serving as the fuel outflow portion 11 in addition to the fuel reservoir C is the same as in the first embodiment.
  • the fuel reservoir C of this embodiment which is supplied to the feeder 30 and introduces liquid fuel into the fuel cells 20 and 20 by the permeation structure, is heated to a high temperature state.
  • liquid fuel can be prevented from boiling, bubble formation, fuel blowout, etc., and liquid fuel can be stably supplied directly to the fuel cell body. There is no loss and the fuel cell can be miniaturized.
  • This embodiment differs from the first embodiment in that it is connected to the fuel supply body 30 via a fuel supply pipe 31 inserted into the valve body 11a as shown in FIGS. 7 and 8. It is. Although not shown, the tip of the fuel supply body 30 (in the direction of the arrow in FIGS. 7 and 8) is connected in series or in parallel to the fuel cells 20, 20... As in the first embodiment (FIG. 3). It has a structure.
  • a fuel cell fuel reservoir that can stably supply liquid fuel directly to the battery body, eliminates the loss of liquid fuel even when stored at high temperatures, and can reduce the size of the fuel cell. Provided.
  • the fuel cell storage body of the present invention can be variously modified within the scope of the technical idea of the present invention, which is not limited to the above embodiments.
  • the fuel cell 20 may have a cylindrical shape, a prismatic shape, or a plate-like shape, and the fuel supply cell 30 may be connected not only in series but also in parallel. It may be.
  • the fuel outlet portion having the valve body 11a shown in FIGS. 2 (a) to (h) is used, but it is directly accommodated in the fuel storage tank 10 due to atmospheric pressure, temperature change, etc. Liquid This is to prevent foreign substances such as air entering the fuel F from the vicinity of the fuel supply pipe 31, and is particularly limited as long as the fuel supply 30 is inserted and liquid fuel can be supplied to the fuel supply 30. Is not to be done.
  • the direct methanol type fuel cell has been described.
  • the fuel storage body can be connected to the fuel cell main body, and the fuel storage body stores the liquid fuel in the fuel storage body.
  • a trailing body that seals the liquid fuel at the rear end of the liquid fuel and moves as the liquid fuel is consumed the present invention provides the direct methanol
  • the present invention can be suitably applied to a high molecular reforming membrane type fuel cell including a reforming type that is not limited to the type of fuel cell, and has a large capacity (for example, 100 ml or more). If the diameter of a tube-type fuel container is increased when mounting liquid fuel, the amount of the follower is increased accordingly, or a follow-up auxiliary member is inserted as in the second embodiment. To cause the follower to follow up. Nag can be good follow-up.
  • an electrolyte layer was constructed on the outer surface portion of the fuel electrode body made of a fine carbon porous body, and the fuel cell body was constructed by constructing an air electrode layer on the outer surface portion of the electrolyte layer.
  • the structure of the fuel cell main body is not particularly limited.
  • a fuel cell having a structure in which liquid fuel is infiltrated into the base material via a fuel supply body, and also has a structural force to expose the electrode surface formed on the outer surface of the base material to air The main body may be used.
  • Tube 1 Length 100mm, outer diameter 8mm, inner diameter 6mm, polypropylene extruded tube [0051] (Composition of fuel outlet)
  • Example 1 slit valve, according to figure 2
  • valve body 61 made of polypropylene, elastic body 62
  • valve body 63 Polypropylene
  • a gel-like follower (specific gravity 0.90) having the following composition was used.
  • Mineral oil Diana process oil MC—W90 (made by Idemitsu Kosan Co., Ltd.) 93 parts by weight
  • Hydrophobic silica Aerosil R-974D 6 parts by weight
  • Silicone surfactant SILWET FZ-2171 1 part by weight
  • the liquid fuel reservoir of the present invention can be used for fuel storage in a small fuel cell suitable for use as a power source for portable electronic devices such as mobile phones, notebook computers and PDAs. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Closures For Containers (AREA)

Abstract

 携帯電話、ノート型パソコン及びPDAなどの携帯用電子機器の電源として用いられるのに好適な小型の燃料電池用の燃料貯留体を提供するために、燃料電池本体に連結自在となる燃料貯留体を、液体燃料を収容するチューブ型の燃料収容容器と、燃料流出部と、液体燃料の後端部に、該液体燃料を封止すると共に、液体燃料の消費に伴い移動する追従体とから構成し、前記燃料収容容器内部が追従体により少なくとも密封された燃料貯蔵室と、外気からは隔絶密封された状態の前記追従体を押圧する手段が封入されている加圧室とを備えた構造とする。  この構造の燃料電池用の燃料貯留体は、液体燃料の沸騰、気泡の発生、燃料の吹き出し等を防止することができると共に、燃料電池本体に直接液体燃料を安定的に供給することができる。  

Description

明 細 書
燃料電池用燃料貯留体
技術分野
[0001] 本発明は、燃料電池用燃料貯留体に関し、更に詳しくは、携帯電話、ノート型パソ コン及び PDAなどの携帯用電子機器の電源として用 、られる小型の燃料電池用に 好適な燃料貯留体に関する。
背景技術
[0002] 一般に、燃料電池は、空気電極層、電解質層及び燃料電極層が積層された燃料 電池セルと、燃料電極層に還元剤としての燃料を供給するための燃料供給部と、空 気電極層に酸化剤としての空気を供給するための空気供給部とからなり、燃料と空 気中の酸素とによって燃料電池セル内で電気化学反応を生じさせ、外部に電力を得 るようにした電池であり種々の形式のものが開発されて!、る。
[0003] 近年、環境問題や省エネルギーに対する意識の高まりにより、クリーンなエネルギ 一源としての燃料電池を、各種用途に用いることが検討されており、特に、メタノール と水を含む液体燃料を直接供給するだけで発電できる燃料電池が注目されてきて!ヽ る(例えば、特許文献 1及び 2参照)。
これらの中でも、液体燃料の供給に毛管力を利用した各液体燃料電池等が知られ ている(例えば、特許文献 3〜7参照)。
これらの各特許文献に記載される液体燃料電池は、燃料タンクカゝら液体燃料を毛 管力で燃料極に供給するため、液体燃料を圧送するためのポンプを必要としないな ど小型化に際してメリットがある。
[0004] し力しながら、このような単に燃料貯蔵槽に設けられた、多孔体及び Z又は繊維束 体の毛管力だけを利用した液体燃料電池は、構成上は小型化に適するものの、燃 料極に燃料が直接液体状態で供給されるため小型携帯機器に搭載し、電池部の前 後左右や上下が絶えず変わる使用環境下では、長時間の使用期間中に燃料の追 従が不完全となり、燃料供給遮断などの弊害が発生し、電解質層への燃料供給を一 定にすることを阻害する原因となって 、る。 [0005] また、これら欠点の解決策の一つとして、例えば、液体燃料を毛管力によりセル内 に導入した後、液体燃料を燃料気化層にて気化して、使用する燃料電池システム( 例えば、特許文献 8参照)が知られているが、基本的な問題点である燃料の追従性 不足は改善されていないという課題を有し、また、この構造の燃料電池は液体を気化 させた後に燃料として用いるシステムのため、小型化が困難となるなどの課題がある このように従来の燃料電池用燃料貯留体では、燃料極に直接液体燃料を供給する 際に、燃料の供給が不安定で動作中の出力値に変動が生じたり、安定な特性を維 持したまま携帯機器への搭載が可能な程度の小型化は困難であるのが現状である。
[0006] そこで、本願出願人は、微小炭素多孔体よりなる燃料電極体の外表部に電解質層 を構築し、該電解質層の外表部に空気電極層を構築することで形成される単位セル が複数連結される燃料電池であって、上記各単位セルには液体燃料を貯蔵する力 ートリッジ構造体カゝらなる燃料貯留体に接続される浸透構造を有する燃料供給体が 連結されて液体燃料が供給される直接メタノール型燃料電池を出願して ヽる(例えば 、特許文献 9参照)。
この燃料電池は、今までにない優れた機能を有するものである力 カートリッジ型燃 料貯留体が加熱されて高温状態となった場合に、液体燃料の沸騰、気泡の発生、燃 料の吹き出しなどが若干生じるなどの課題がある。
特許文献 1 :特開平 5— 258760号公報 (特許請求の範囲、実施例等)
特許文献 2:特開平 5— 307970号公報 (特許請求の範囲、実施例等)
特許文献 3:特開昭 59— 66066号公報 (特許請求の範囲、実施例等)
特許文献 4:特開平 6— 188008号公報 (特許請求の範囲、実施例等)
特許文献 5:特開 2003— 229158号公報 (特許請求の範囲、実施例等)
特許文献 6:特開 2003 - 299946号公報 (特許請求の範囲、実施例等)
特許文献 7:特開 2003— 340273号公報 (特許請求の範囲、実施例等)
特許文献 8:特開 2001— 102069号公報 (特許請求の範囲、実施例等)
特許文献 9 :特開 2004— 63200号公報 (特許請求の範囲、実施例等)
発明の開示 発明が解決しょうとする課題
[0007] 本発明は、上記従来の燃料電池用燃料貯留体における課題及び現状に鑑み、こ れを解消するためになされたものであり、燃料貯留体が加熱されて高温状態となって も、液体燃料の沸騰、気泡の発生、燃料の吹き出し等を防止することができると共に 、燃料電池本体に直接液体燃料を安定的に供給し、し力も、高温の保管時において も液体燃料の損失がなぐかつ、燃料電池の小型化をなし得ることができる燃料電池 用燃料貯留体を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者らは、上記従来の課題等につ!、て、鋭意検討した結果、燃料電池本体に 連結自在となる燃料貯留体において、該燃料貯留体を、液体燃料を収容する燃料 収容容器と、燃料流出部と、液体燃料の後端部に、特定物性の追従体とを備えると 共に、上記燃料収容容器を更に特定の構造とすることにより、上記目的の燃料電池 用燃料貯留体が得られることに成功し、本発明を完成するに至ったのである。
[0009] すなわち、本発明は、次の(1)〜(7)に存する。
(1) 燃料電池本体に連結自在となる燃料貯留体であって、該燃料貯留体を、液体 燃料を収容する燃料収容容器と、燃料流出部と、液体燃料の後端部に、該液体燃料 を封止すると共に、液体燃料の消費に伴い移動する追従体とから構成し、前記燃料 収容容器内部が追従体により少なくとも密封された燃料貯蔵室と、外気からは隔絶 密封された状態の前記追従体を押圧する手段が封入されている加圧室とを備えたこ とを特徴とする燃料電池用燃料貯留体。
(2) 加圧室に封入される追従体を押圧する手段が、燃料貯蔵室に封入された液体 燃料よりも高!ヽ蒸気圧を持つ組成の揮発性液体からなる上記(1)記載の燃料電池用 燃料貯留体。
(3) 加圧室に封入される揮発性液体は、少なくとも加圧室の容積と燃料貯蔵室の 容積とを合計した容積を飽和蒸気圧にできる量が封入されて 、る上記(2)記載の燃 料電池用燃料貯留体。
(4) 加圧室には、空気置換可能な密閉弁が少なくとも 1つ備えている上記(1)〜(3 )の何れか一つに記載の燃料電池用燃料貯留体。 (5) 密閉弁は、揮発性液体の 100°Cにおける蒸気圧下においてもリークしない密閉 弁からなる上記 (4)記載の燃料電池用燃料貯留体。
(6) 液体燃料力メタノール液、エタノール液、ジメチルエーテル(DME)、ギ酸、ヒド ラジン、アンモニア液、エチレングリコール、ショ糖水溶液及び水素化ホウ素ナトリウム 力 選ばれる少なくとも 1種である上記(1)〜(5)の何れか一つに記載の燃料電池用 燃料貯留体。
(7) 燃料電池本体は、燃料電極体の外表部に電解質層を構築し、該電解質層の 外表部に空気電極層を構築することで形成される単位セルが複数連結されると共に 、上記単位セルには燃料貯留体に接続される燃料供給体が連結されて液体燃料が 供給される構成となる上記(1)〜(6)の何れか一つに記載の燃料電池用燃料貯留体
発明の効果
[0010] 本発明によれば、燃料貯留体が加熱されて高温状態となっても、液体燃料の沸騰 、気泡の発生、燃料の吹き出し等を防止することができると共に、燃料電池本体に直 接液体燃料を安定的に供給し、し力も、高温の保管時においても液体燃料の損失が なぐかつ、燃料電池の小型化をなし得ることができる燃料電池用燃料貯留体が提 供される。
請求項 2〜7の発明によれば、燃料貯留体が加熱されて高温状態となっても、更に 液体燃料の沸騰、気泡の発生、燃料の吹き出し等を防止することができると共に、燃 料電池本体に直接液体燃料を更に安定的に供給すると共に、高温保管時において も液体燃料の損失が極めて少ない燃料電池用燃料貯留体が得られることとなる。 図面の簡単な説明
[0011] [図 1] (a)は本発明の第 1実施形態の燃料電池用燃料貯留体を示す概略斜視図、 (b )は加圧室の要部を示す部分断面図である。
[図 2] (a)〜 (h)は本発明の第 1実施形態の燃料流出部に備わる燃料流出弁の弁体 構造を示すものであり、(a)は弁体の斜視図、(b)は弁体の平面図、(c)は弁体の縦 断面図、(d)はアダプターの平面図、(e)はアダプターの縦断面図、(f)はアダプター に弁体を装填した状態の平面図、(g)はアダプターに弁体を装填した状態の縦断面 図、 (h)は燃料流出部に備わる燃料流出弁の弁体構造を示す部分縦断面図である
[図 3]図 1の燃料電池用燃料貯留体を燃料電池本体に接続して燃料電池として使用 した状態の一例を示す概略断面図である。
[図 4] (a)及び (b)は燃料電池セル 20を説明する斜視図、縦断面図である。
[図 5]本発明の第 2実施形態の燃料電池用燃料貯留体を示す概略斜視図である。
[図 6] (a)〜 (c)は、本発明の第 3実施形態の燃料電池用燃料貯留体を示すものであ り、(a)は縦断面態様で示す概略部分断面図、(b)は弁体の縦断面図、(c)は斜視 図である。
[図 7]本発明の第 3実施形態の燃料電池用燃料貯留体の使用形態を示す部分概略 断面図である。
[図 8]図 7の燃料電池用燃料貯留体の使用前の形態を示す概略断面図である。 符号の説明
[0012] A 燃料電池用燃料貯留体
F 液体燃料
G 揮発性液体
10 燃料収容容器
11 燃料流出部
11a 弁体
12 追従体
13 燃料貯蔵室
14 加圧室
発明を実施するための最良の形態
[0013] 以下に、本発明の実施形態を図面を参照しながら詳しく説明する。
図 1〜図 2は、本発明の基本的な実施形態を示す燃料電池用燃料貯留体 Aの基 本形態 (第 1実施形態)を示すものである。
本第 1実施形態の燃料電池用燃料貯留体 Aは、燃料電池本体に連結自在となる 燃料貯留体であり、液体燃料 Fを収容するチューブ型の燃料収容容器 10と、燃料流 出部 11と、液体燃料 Fの後端部に、該液体燃料 Fを封止すると共に、液体燃料 Fの 消費に伴い移動する追従体 12とを備えると共に、前記燃料収容容器 10内部が追従 体 12により少なくとも密封された燃料貯蔵室 13と、外気からは隔絶密封された状態 の前記追従体 12を押圧する手段が封入されている加圧室 14とを備えたものである。
[0014] 上記チューブ型の燃料収容容器 10としては、収容される液体燃料に対して保存安 定性、耐久性、ガス不透過性 (酸素ガス、窒素ガス等に対するガス不透過性)、更に 、液体燃料の残量を視認できるように光線透過性があるものから構成されることが好 ましい。
燃料収容容器 10としては、例えば、光線透過性を要求されない場合であれば、ァ ルミ-ゥム、ステンレスなどの金属、合成樹脂、ガラスなどが挙げられる力 前記した 液体燃料の残量の視認性、ガス不透過性、製造や組立時のコスト低減及び製造の 容易性などから、好ましくは、上記各特性を有するポリプロピレン、ポリビュルアルコ ール、エチレン 'ビュルアルコール共重合榭脂、ポリアクリル-トリル、ナイロン、セロ ハン、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ポリ塩化ビニリデ ン、ポリ塩ィ匕ビニルなどの単独もしくは 2種以上の榭脂を含む単層構造、 2層以上の 多層構造からものが挙げられる。多層構造の場合は、少なくとも 1層が、前記した性 能 (ガス透過度)を持つ樹脂で構成されて ヽれば、残りの層は通常の榭脂でも実使 用上問題はない。このような多層構造のチューブは、押出し成形、射出成形、共押出 し成形などにより製造することができる。
[0015] 燃料流出部 11には、図 2 (a)〜(h)に示すように、筒状の燃料収容容器 10の内部 と外部との連通を封止する燃料流出弁となる弁体 11aを備えており、本実施形態で は燃料流出部 11内に弁体 1 laが直接又は弁体アダプターを介して収納される構造 となっている。この弁体 11aは、筆記具などにおいて用いられる部材と同様の構成で あり、図 2 (a)〜(c)に示すように、気圧、温度変化等により燃料収容容器 10内に直 接収容される液体燃料 Fに、後述する燃料供給管周辺より浸入する空気などの異物 を防ぐものである。
この弁体 11aは、液体燃料供給部材を挿入することで燃料収容容器 12と内部とを 連通させ、燃料収容容器 10内部の液体燃料 Fを外部へ供給させる直線状のスリット 力 なる連通部 l ibが形成されると共に、前記弁体 11aが燃料流出部 11又は弁体ァ ダブターに収納された際に、弁体外縁部 1 lcにより弁体 1 laが径方向に圧縮されるこ とで、前記連通部 11cに圧縮力が作用するようにしたものであり、本実施形態では図 2 (b)に示すように楕円状であって、短径方向 Yに連通部となるスリット l ibを設け、長 径方向 Xに外縁部 11cを圧縮するようにとしたものであり、スリット l ibが閉じる方向に 圧縮力が作用する。
[0016] なお、上記連通部 1 lbを直線状のスリットで形成したが、液体燃料供給部材を挿入 することで燃料収容容器 10と内部とを連通させ、燃料収容容器 10内部の液体燃料 Fを外部へ供給できる構造となるものであれば、特に限定されず、十字状や放射状の スリット、スリットを複数形成し各スリットが同一箇所で交差するようにした構造、円孔状 、矩形孔状であってもよい。好ましくは、上記直線状のスリットが望ましい。また、外縁 部 11cの形状は、特に限定されず、上記形態のように楕円状の他、円形状に形成す ることがでさる。
[0017] この弁体 11aの内面側には、液体燃料供給部材を挿入する際にスムーズに挿入で きるように燃料収容容器 10の内部に向かって凸状のテーパー面 (突起) l idを形成 することが好ましい。
前記燃料流出部 11には、図 2 (d) , (e)に示すようなアダプター l ieが設けられ、ァ ダプター l ieは筒状に形成され、その内周面にストッパー部 1 If, 1 Ifが形成された 本体部 l lgと、筒状に形成された固定部材 l lhとからなり、ストッパー部 1 Ifと固定部 材 1 lhとの間で上記構成の弁体 1 laを挟持してなるものである。
弁体 11aとアダプター l ieとの組合せに関して、図 2に示すように、楕円形状のスリ ット弁と円形状のアダプターの場合が挙げられ、また、逆に、円形状のスリット弁と楕 円形状のアダプターとしてもよぐこの場合、スリット弁のスリット方向をアダプターの長 径とすることが必要である。
この構造の弁体 11aにより、使用休止 (未使用)時にも空気などの異物の浸入を防 止する構造となっている。これは、空気などの浸入により液体燃料収容容器 10内の 圧力増加などによる燃料漏れ、噴出しなどの事故を防止するためである。
[0018] この弁体 l la、アダプター l ieとしては、液体燃料の漏洩をより効果的に防止する 点から、上記構造等で、液体燃料 Fに対して気体透過性の低い材料からなり、かつ、 JIS K 6262— 1997で規定される圧縮永久歪み率が 20%以下の材料力も構成さ れるものが好ましい。
これらの弁体 l la、アダプタ一体 l ieの材料としては、収容される液体燃料 Fに対し て保存安定性、耐久性、ガス不透過性、燃料供給管に密着できる弾性を有し、上記 特性を有するものであれば、特に限定されず、ポリビュルアルコール、エチレン .ビ- ルアルコール共重合榭脂、ポリアクリル-トリル、ナイロン、セロハン、ポリエチレンテレ フタレート、ポリカーボネート、ポリスチレン、ポリ塩ィ匕ビユリデン、ポリ塩化ビニルなど の合成樹脂、天然ゴム、イソプレンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴ ム、 1, 2—ポリブタジエンゴム、スチレン ブタジエンゴム、クロロプレンゴム、二トリノレ ゴム、ブチルゴム、エチレン一プロピレンゴム、クロロスルホン化ポリエチレンゴム、ァク リルゴム、ェピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴ ムなどのゴム、熱可塑性エラストマ一が挙げられ、通常の射出成形や加硫成形など によって製造することができる。
[0019] 用いる液体燃料 Fとしては、メタノールと水と力もなるメタノール液が挙げられるが、 後述する燃料電極体において燃料として供給された化合物力 効率良く水素イオン (H+)と電子 (e_)が得られるものであれば、液体燃料は特に限定されず、燃料電極 体の構造などにもよる力 例えば、ジメチルエーテル (DME)、エタノール液、ギ酸、 ヒドラジン、アンモニア液、エチレングリコール、ショ糖水溶液、水素化ホウ素ナトリウム などの液体燃料も用いることができる。
また、これらの液体燃料の濃度は、燃料電池の構造、特性等により種々の濃度の 液体燃料を用いることができ、例えば、 1〜100%濃度の液体燃料を用いることがで きる。
[0020] 追従体 12は、燃料収容容器 10に収容される液体燃料 Fの後端面に接触し、該液 体燃料 Fを封止すると共に、燃料消費に伴い移動するものであり、燃料収容容器 10 内の液体燃料が漏出、蒸発してしまうことを防止すると共に、液体燃料への空気の侵 入を防止するものである。
この追従体 12としては、液体燃料 Fに対し溶解、拡散しないことが要求される。液体 燃料 Fに対し溶解、拡散してしまうような場合、燃料貯蔵槽となる燃料収容容器 10内 の液体燃料が漏出、蒸発してしまい燃料貯蔵槽としての役割を果たせないばかりか、 液体燃料 Fによって追従体 12を構成する物質が燃料電池本体の燃料極に浸入し、 反応に悪影響が出ることが考えられる。これらの条件を勘案して、本発明に用いる追 従体 12の好ましい特性等が選択される。
[0021] 用いることができる追従体 12としては、上記特性を有するものであれば、特に限定 されず、例えば、鉱油、ポリダリコール、ポリエステル、ポリブテン、シリコーン油などの 石油類、脂肪族金属石鹼、変性クレー、シリカゲル、カーボンブラック、天然または合 成ゴムおよび各種の合成ポリマーなどに溶剤などを加えることにより増粘させたものを 挙げることができる。
好ましい追従体 12としては、表面自由エネルギーが液体燃料 Fより低いことが望ま しぐ前記した燃料収容容器 10、燃料流出部 11の弁体の場合と同様、燃料収容容 器 10と追従体 12との隙間に液体燃料が浸入、外部へ漏洩することを防止できる可 能性を高くすることができる。これらの条件を鑑み、追従体 12の材質、表面状態など を適宜選択することが可能である。
[0022] 本実施形態では、燃料収容容器 10の内部は、図 1 (a)及び (b)に示すように、追従 体 12により少なくとも密封された液体燃料 Fが収容される燃料貯蔵室 13と、外気から は隔絶密封された状態の前記追従体 12を押圧する手段が封入されている加圧室 1 4とを備えた構造となって 、る。
この加圧室 14は、燃料収容容器 10の後端部側に設けられるものであり、追従体 12 の上面と密閉弁を備えた封止体 15とにより形成されるものであり、この両者の空間部 が加圧室となるものである。
[0023] この加圧室 14には、追従体を押圧する手段が封入されている。この押圧する手段 としては、燃料貯蔵室 13に封入された液体燃料 Fよりも高い蒸気圧を持つ組成の揮 発性液体 Gが封入された構成となって 、る。
以下において、メタノール水溶液を液体燃料 Fとする場合を例にとり説明する力 本 発明の液体燃料は、これに限定されるものではな 、。
[0024] 燃料貯留体 10が加熱されたとき、加圧室 14内に封入した揮発性液体 G、例えば、 溶剤蒸気の蒸発によって、追従体 12を通して液体燃料 Fを加圧することが可能とな る。加圧室 14内に空気を封入するだけでは、温度上昇と共に空気が膨張し、追従体 12を通して液体燃料 Fを加圧することになる力 空気だけでは加圧の効果が低!、も のである。
すなわち、加圧室の初期の圧力を lOlkPaとすると、 20°C→80°Cに温度上昇して も、その圧力は、 122kPa (l. 2倍)にしかならないものである。このとき液体燃料であ るメタノール蒸気圧は、 12kPa→181kPa (10倍以上)に変化する。
この場合、液体燃料の沸騰を防止するためには、加圧室 14は液体燃料の蒸気圧 以上に加圧されていることが必要であるため、液体燃料の蒸気圧よりも、高い蒸気圧 の組成の液体を封入されて 、ることが必要である。
ここで、本発明でいう「蒸気圧」とは、同じ温度で比較したときの物理的な蒸気圧そ のものを指す。また、本発明で規定する「揮発性液体」とは、少なくとも、常温常圧下 で液体の物質であり、 20°Cの蒸気圧力 ^OlkPa以下の溶剤を指す。
一般において、「蒸気圧の高い組成の液体」とは、例えば、 50wt%メタノール水溶 液を用いるとき、これよりも高濃度のメタノールは、蒸気圧がより高い液体といえる。 以下に、 100%メタノールの蒸気圧を下記表 1に示す。また、メタノールと水の混合 溶媒 (メタノール水溶液)の蒸気圧を下記表 2示す。
[表 1]
(メタノールの蒸気圧)
温度 (で) 蒸気圧 (k P a )
0 4 . 0
2 0 1 3 . 0
4 0 3 5 . 4
6 0 8 4 . 5
8 0 1 8 0 . 8
1 0 0 3 5 0 . 0 [0026] [表 2]
(各濃度のメタノール水溶液の蒸気圧)
Figure imgf000012_0001
[0027] 本発明にお 、て、「蒸気圧の高 、組成の液体」とは、例えば、 50wt%メタノール水 溶液を用いるとき、上記表 2に示されるように、これよりも高濃度のメタノールは、蒸気 圧がより高い液体といえる。また、メタノールと水の混合溶媒 (メタノール水溶液)では 、メタノール濃度が高いほど、各温度での蒸気圧が高いことがわかる。
更に、揮発性液体 Gの蒸気圧は、液体燃料 Fの蒸気圧よりも大きい (若しくは近い) 必要があるため、あるメタノール濃度の時の蒸気圧よりも、高い蒸気圧を有する液体 、若しくは高 、蒸気圧を有する組成の液体である必要がある。
用レヽる揮発性液体 Gとしては、好ましくは、 20°Cの蒸気圧が 4〜: LOOkPa、更に好ま しくは、 10〜50kPaである組成の液体であるものが望まし 、。
20°Cの蒸気圧が 4kPa未満の液体では、燃料の加圧に十分な圧力でなぐ一方、 lOOkPaを超える液体では、常温で気体であるため、充填等の取り扱いが困難となる
[0028] 下記表 3に、本発明で用いることができる 20°Cの蒸気圧力 〜100kPaである組成 の揮発性液体の例を示すが、本発明はこれに限定されるものではな V、。 [表 3]
Figure imgf000013_0001
また、加圧室 14に封入される揮発性液体 Gは、少なくとも加圧室 14の容積と燃料 貯蔵室 13の容積とを合計した容積を飽和蒸気圧にできる量が封入されていることが 好ましい。
これにより、液体燃料 Fが残り少なくなつた状態であっても、液体燃料の沸騰を防止 することができる。必要となる揮発性液体 Gの封入量の計算式としては、加圧室 14の 容積を Aml、液体燃料容量を Bml、液体燃料のある温度での蒸気圧 CkPaとすると、 (A+B) X C/ (22. 4 X 1000) =Xmolである。
この場合、揮発性液体の分子量を D、比重を Eとすると、必要となる揮発性液体の「 量は、 XX Dg、 XX D X Emlとなる。
必要となる揮発性液体 Gの量は、比較的少ない量となる。例えば、加圧室の容積が 20ml、液体燃料容量が 100mlの燃料貯留体 (タンク)に、 60wt。/c^メタノール水溶 液の液体燃料を充填し、 100°Cでの耐熱性を付与するために、 100wt%メタノール を用いると、加圧室 14に充填する 100wt%メタノールの量は、 0. 19g (0. 15ml、液 体燃料に対して、 0. 15%、数滴充填)を封入すればよいことになる。
上記計算を更に詳述すると、 60wt%のメタノール水溶液の 100°Cでの蒸気圧は 2 50kPaである。これ以上の圧力で加圧できれば、充填される液体燃料 Fの沸騰を防 止できることとなる。液体燃料が残り少なくなつた場合を考慮し、加圧室 14と液体燃 料容量を合計すると、 120mlとなる。この空間を 250kPa以上に加圧できるメタノール 量が必要となる。空気で lOOkPa加圧されているので (厳密には空気も加熱によりカロ 圧されている。 100kPa→127kPaになっている。)残りの 150kPa分をメタノールが カロ圧することになる。 100wt%メタノールの 100°Cでの蒸気圧は当然 150kPaよりも 高いので、圧力に関しては問題ないこととなる。問題は量で満足できるかである力 1 20mlの空間に 150kPaの蒸気があるとき、その mol数は、気体の状態方程式、 PV =nRTより、 0. 00588mol ( = 0. 188g = 0. 15mol)となる。
以上により、加圧室 14に封入される揮発性液体 Gは、少なくとも加圧室 14の容積と 燃料貯蔵室 13の容積とを合計した容積を飽和蒸気圧にできる量が封入されているこ とが好ましい。この構成により、容積や液体燃料の種類、揮発性液体の種類によって 変ィ匕させることができる。
本発明は、上記メタノールの例示に限定されるものでなぐ上記表 3に示される揮発 性液体などを用いることができる。また、メタノール水溶液を液体燃料 Fとする場合を 例示して説明したが、本発明の液体燃料として、上述の如ぐジメチルエーテル (DM E)、エタノール液、ギ酸、ヒドラジン、アンモニア液、エチレングリコール、ショ糖水溶 液及び水素化ホウ素ナトリウムなどの液体燃料も各既知である各温度における蒸気 圧を参考にして上記と同様にして各液体燃料に好ましい揮発性液体 Gを使用するこ とがでさるちのである。
[0031] 上記密閉弁を備えた封止体 15により、加圧室 14を密閉しても、上述の如ぐ液体 燃料消費 Fに伴な ヽ揮発性液体 Gが蒸発することで、液体燃料 Fを排出させることが できるが、揮発性液体 Gの揮発により、温度が下がったり、圧力が一定にならなかつ たりすると不都合となるので、燃料使用時は外部から加圧したり、吸気したりできるよう に、封止体 15には、開閉できる密閉弁が設けられている。
この密閉弁は、揮発性液体の 100°Cにおける蒸気圧下においてもリークしない密 閉弁カもなるものが望まし 、。
上記例示した場合で考察すると、 100°Cのメタノールは 350kPa程度になるので、 空気と併せて 500kPa程度の耐圧性能があれば、十分となる。それほど高い目標で はないため、どのようなバルブ構造であっても十分と考えられ、この条件を満足する バルブ構造であれば、その構造は特に限定されず、例えば、図 2に示した燃料流出 部 11に備わるものと同様の構造となるスリット構造のバルブが使用でき、すなわち、 上記密閉弁を備えた封止体 16として上述の図 2に示される構造となる弁体 11aを含 む燃料流出部 11が使用でき、また、後述する図 6に示すバルブ〔向きを逆(上側)に したバルブ〕も使用することができる。
[0032] このように構成される燃料電池用燃料貯留体 Aは、図 3及び図 4に示すように、燃料 電池本体 Nに連結自在となり、使用に供されることとなる。
すなわち、燃料電池本体 Nは、図 3及び図 4に示すように、微小炭素多孔体よりなる 燃料電極体 21の外表部に電解質層 23を構築し、該電解質層 23の外表部に空気電 極層 24を構築することで形成される単位セル (燃料電池セル) 20, 20と、燃料貯留 体 Aに接続される浸透構造を有する燃料供給体 30と、該燃料供給体 30の終端に設 けられる使用済み燃料貯蔵槽 40とを備え、上記各単位セル 20、 20は直列に連結さ れて燃料供給体 30により燃料が順次供給される構造となっており、前記燃料貯留体 Aは、交換可能なカートリッジ構造体となっており、燃料電池本体 Nの支持体 16に挿 入される構造となっている。
この実施形態では、図 1、図 2 (a)及び図 3に示すように液体燃料 Fが直接貯蔵され 、液体燃料 Fを収容する燃料収容容器 10の下部に燃料流出部 11に備わる弁体 11a に挿入される燃料供給体 30により、燃料が供給されるものである。
[0033] これらの燃料貯留体 Aの燃料収容容器 10、燃料流出部 11に備わる弁体 l la、燃 料供給体 30は、嵌合などによりそれぞれ接合される。このとき、それぞれの部材が液 体燃料 Fの表面自由エネルギーよりも高い場合、接合部の隙間に入り込みやすく液 体燃料 Fが漏洩する可能性が高まってしまう。そのため、これらの部材の少なくとも液 体燃料 Fと接触する壁面には、液体燃料の表面自由エネルギーよりも低く調整されて いることが望ましい。この調整方法としては、燃料収容容器 10などの液体燃料と接触 する壁面に、シリコン系、ケィ素榭脂若しくはフッ素系の撥水剤を用いたコーティング による、撥水膜形成処理を施すことにより行うことができる。
[0034] 単位セルとなる各燃料電池セル 20は、図 4 (a)及び (b)に示すように、微小柱状の 炭素多孔体よりなる燃料電極体 21を有すると共に、その中央部に燃料供給体 30を 貫通する貫通部 22を有し、上記燃料電極体 21の外表部に電解質層 23が構築され 、該電解質層 23の外表部に空気電極層 24が構築される構造からなっている。なお、 各燃料電池セル 20の一つ当たり、理論上約 1. 2Vの起電力を生じる。
[0035] この燃料電極体 21を構成する微小柱状の炭素多孔体としては、微小な連通孔を 有する多孔質構造体であれば良ぐ例えば、三次元網目構造若しくは点焼結構造よ りなり、アモルファス炭素と炭素粉末とで構成される炭素複合成形体、等方性高密度 炭素成形体、炭素繊維抄紙成形体、活性炭素成形体などが挙げられ、好ましくは、 燃料電池の燃料極における反応制御が容易かつ反応効率の更なる向上の点で、ァ モルファス炭素と炭素粉末とからなる微細な連通孔を有する炭素複合成形体が望ま しい。
[0036] この多孔質構造力もなる炭素複合体の作製に用いる炭素粉末としては、更なる反 応効率の向上の点から、高配向性熱分解黒鉛 (HOPG)、キッシュ黒鉛、天然黒鉛、 人造黒鉛、カーボンナノチューブ、フラーレンより選ばれる少なくとも 1種 (単独または 2種以上の組合せ)が好ま Uヽ。
また、この燃料電極体 21の外表部には、白金—ルテニウム (Pt—Ru)触媒、イリジ ゥムールテニウム (Ir Ru)触媒、白金ースズ (Pt— Sn)触媒などが当該金属イオン や金属錯体などの金属微粒子前駆体を含んだ溶液を含浸ゃ浸漬処理後還元処理 する方法や金属微粒子の電析法などにより形成されている。
[0037] 電解質層 23としては、プロトン伝導性又は水酸化物イオン伝導性を有するイオン交 換膜、例えば、ナフイオン (Nafion、 Du pont社製)を初めとするフッ素系イオン交換膜 が挙げられる他、耐熱性、メタノールクロスオーバーの抑制が良好なもの、例えば、無 機化合物をプロトン伝導材料とし、ポリマーを膜材料としたコンポジット (複合)膜、具 体的には、無機化合物としてゼォライトを用い、ポリマーとしてスチレン ブタジエン 系ラバー力もなる複合膜、炭化水素系グラフト膜などが挙げられる。
また、空気電極層 24としては、白金 (Pt)、パラジウム (Pd)、ロジウム (Rh)等を上述 の金属微粒子前駆体を含んだ溶液等を用いた方法で担持させた多孔質構造力ゝらな る炭素多孔体が挙げられる。
[0038] 前記燃料供給体 30は、燃料貯留体 Aの弁体 l ib内に挿入され、該液体燃料を各 単位セル 20に供給できる浸透構造を有するものであれば特に限定されず、例えば、 フェルト、スポンジ、または、榭脂粒子焼結体、榭脂繊維焼結体などの焼結体等から 構成される毛管力を有する多孔体や、天然繊維、獣毛繊維、ポリアセタール系榭脂、 アクリル系榭脂、ポリエステル系榭脂、ポリアミド系榭脂、ポリウレタン系榭脂、ポリオレ フィン系榭脂、ポリビュル系榭脂、ポリカーボネート系榭脂、ポリエーテル系榭脂、ポ リフエ-レン系榭脂などの 1種又は 2種以上の組合せ力もなる繊維束体力もなるもの が挙げられ、これらの多孔体、繊維束体の気孔率等は各単位セル 20への供給量に 応じて適宜設定されるものである。
[0039] 使用済み燃料貯蔵槽 40は、燃料供給体 30の終端に配置されるものである。この時 、使用済み燃料貯蔵槽 40を燃料供給体 30の終端に直接接触させて使用済み燃料 を直接吸蔵体等により吸蔵させても問題な ヽが、燃料供給体 30と接触する接続部に 中綿や多孔体、または繊維束体などを中継芯として設け、使用済み燃料排出路とし てもよい。
また、燃料供給体 30により供給される液体燃料は、燃料電池セル 20で反応に供さ れるものであり、燃料供給量は、燃料消費量に連動しているため、未反応で電池の 外に排出される液体燃料は殆どなぐ従来の液体燃料電池のように、燃料出口側の 処理系を必要としないが、運転状況により供給過剰時に至った際には、反応に使用 されない液体燃料が貯蔵槽 40に蓄えられ阻害反応を防ぐことができる構造となって いる。
なお、 50は、燃料貯留体 Aと使用済み燃料貯蔵槽 40を連結すると共に、燃料貯蔵 槽 10から各単位セル 20、 20の個々に燃料供給体 30を介して直接液体燃料を確実 に供給するメッシュ構造など力 なる部材である。
このように構成される燃料貯留体 Aを用いた燃料電池は、燃料貯留体 Aから燃料流 出部となる弁体 11aに挿入された燃料供給体 30に供給され、浸透構造により、液体 燃料を燃料電池セル 20、 20内に導入するものである。
本発明では、燃料電池本体に連結自在となる燃料貯留体 Aには、液体燃料 Fを収 容するチューブ型の燃料収容容器 10と、燃料流出部 11と、液体燃料 Fの後端部に、 該液体燃料 Fを封止すると共に、液体燃料 Fの消費に伴い移動する追従体 12とを備 えると共に、前記燃料収容容器 10内部が追従体 12により少なくとも密封された燃料 貯蔵室 13と、外気からは隔絶密封された状態の前記追従体 12を押圧する手段が封 入されて!ヽる加圧室 14とを備えたものであるので、燃料貯留体 Aが加熱され液体燃 料 Fの温度がその液体燃料 Fの大気圧下での沸点以上となったとしても、液体燃料 F を封止している追従体 12の反対側も、加圧室 14内の前記追従体 12を押圧する手 段となる揮発性液体 Gが加熱され、液体燃料 Fの飽和蒸気圧以上に加圧されて ヽる ため、液体燃料 Fの沸騰を防止することができることとなる。更に詳述すると、本発明 となる液体燃料 Fを追従体 12にて封止する構造の燃料電池用燃料貯留体 Aにおい て、燃料収容容器 (タンク) 11の後端部を封止することによって液体燃料 Fよりも蒸気 圧の高い追従体 12を押圧する手段となる揮発性液体 Gを加圧室 14内に封入し、封 入した揮発性液体 Gの蒸気圧によって追従体 12を通して液体燃料 Fを加圧できる。 このことによって、液体燃料 Fの温度が大気圧下での沸点に達しても沸騰することな ぐ液体燃料 Fの気化による燃料貯留体 Aからの液体燃料の漏洩、蒸発を防止するこ とができる。特に、メタノールやエタノールを液体燃料として使用する場合には、液体 燃料の沸点が低いため、このような沸騰を防止する本発明の構造をとることが最も望 ましい形態となるものである。また、液体燃料使用時は、上端の密閉弁となる逆止弁 を開き空気置換するものである。
[0041] また、上記形態では、少なくとも、燃料電極体 21及び Z又は燃料電極体 21に接す る燃料供給体 30に毛管力が存在し、この毛管力により、燃料貯蔵室 13から各単位 セル 20、 20の個々に直接液体燃料が逆流や途絶を起こすことなぐ安定的かつ ϋ 続的に燃料を供給することができるものとなる。より好ましくは、燃料電極体 21及び Ζ 又は燃料電極体 21に接する燃料供給体 30の毛管力く使用済み燃料貯蔵槽 40の 毛管力と設定することにより、燃料貯蔵室 13、各単位セル 20、 20から使用済み燃料 貯蔵槽までの夫々に直接液体燃料が逆流や途絶を起こすことなぐ安定的かつ継続 的に燃料の流れを作ることができるものとなる。
更に、この燃料電池では、ポンプゃブロワ、燃料気化器、凝縮器等の補器を特に用 いることなぐ液体燃料を気化せずそのまま円滑に供給することができる構造となるた め、燃料電池の小型化を図ることが可能となる。
従って、この形態の燃料電池では、燃料電池全体のカートリッジィ匕が可能となり、携 帯電話やノート型パソコンなどの携帯用電子機器の電源として用いられることができ る小型の燃料電池が提供されることとなる。
なお、上記形態では、燃料電池セル 20を二つ使用した形態を示した力 燃料電池 の使用用途により燃料電池セル 20の連結(直列又は並列)する数を増加させて所要 の起電力等とすることができる。
[0042] 図 5は、本発明の第 2実施形態の燃料貯留体 Βを示すものである。以下の実施形態 において、前記第 1実施形態の燃料電池用燃料貯留体と同様の構成及び効果を発 揮するものについては、図 1と同一符号を付してその説明を省略する。
この第 2実施形態は、液体燃料の消費速度の速いものや、多量の液体燃料を搭載 するために、チューブ型等の燃料収容容器 10の径を大き 、ものを用いた場合にお いて、追従体の追従を追従切れを起こすことなぐ良好に追従させると共に、液体燃 料 Fの温度が大気圧下での沸点に達しても沸騰することなぐ液体燃料 Fの気化によ る燃料貯留体 Αからの液体燃料の漏洩、蒸発を防止するための好適な実施形態を 示すものである。
本第 2実施形態の燃料貯留体 Bは、用いる追従体 12には、筒状の追従補助部材 1 2aが挿入されている点でのみ、上記第 1実施形態と相違するものであり、上記第 1実 施形態と同様にして使用に供される。
この追従補助部材 12aとしては、例えば、ポリプロピレン、エチレン 'ビュルアルコー ル共重合榭脂、ポリアクリル-トリル、ナイロン、ポリエチレンテレフタレート、ポリカー ボネート、ポリスチレン、ポリ塩ィ匕ビユリデン、ポリ塩化ビニル、各種ゴムなど力も構成 されるものが挙げられる。
この追従補助部材 12aの形状としては、円柱状、四角柱状、三角柱状、球状若しく は燃料貯留体断面と相似形状などが挙げられ、その長さは、追従体の全長に対して 、 30〜70%とすることが好ましい。
[0043] この第 2実施形態における燃料電池本体に連結自在となる燃料貯留体 Bでは、燃 料の消費速度の速 、ものや、チューブ型等の燃料収容容器の径が大き 、ものを用 いた場合にも、上記第 1実施形態と同様に、燃料電池の発電による燃料消費に伴な い、追従補助部材 12aが挿入された追従体 12が追従切れを起こすことなく移動する ことによって液体燃料の体積減少に対応することとなり、しカゝも、燃料電池の稼動によ る燃料貯留体 (液体燃料)が加温されても、液体燃料 Fを封止している追従体 12の反 対側も、加圧室 14内の前記追従体 12を押圧する手段となる揮発性液体 Gが加熱さ れ、液体燃料 Fの飽和蒸気圧以上に加圧されているため、液体燃料 Fの沸騰を防止 することがでさるちのとなる。
[0044] 図 6は、本発明の燃料電池用燃料貯留体の他の実施形態 (第 3実施形態)を示す ものである。この第 3実施形態燃の料電池用燃料貯留体 Cは、図 6 (a)〜(c)に示す ように、上記第 1実施形態の燃料流出部 11を、スプリング部材ゃバネ部材などの弾 性体によって閉じられ、液体燃料供給部材の挿入により開かれる構造の弁体 60とし た点でのみ、上記第 1実施形態と相違するものである。
この弁体 60は、本体部 61にバルブ受け部 6 laを有し、スプリング部材ゃバネ部材 などの弾性体 62により断面逆 T字状のバルブ部材 63がバルブ受け部 61に常時付 勢されて閉じられており、液体燃料供給部材 30の挿入により開かれて液体燃料が供 給される構造となっている。なお、上端の封止体 16は、図 2のスリットバルブ力もなる 弁体を有するものである。 [0045] このように構成される燃料貯留体 Cを用いた燃料電池は、上記第 1実施形態と同様 に、燃料貯留体 Cカゝら燃料流出部 11となる弁体 60に挿入された燃料供給体 30に供 給され、浸透構造により、液体燃料を燃料電池セル 20、 20内に導入するものである この実施形態の燃料貯留体 Cも、燃料貯留体が加熱されて高温状態となっても、液 体燃料の沸騰、気泡の発生、燃料の吹き出し等を防止することができると共に、燃料 電池本体に直接液体燃料を安定的に供給し、し力も、高温の保管時においても液体 燃料の損失がなぐかつ、燃料電池の小型化をなし得ることができる。
[0046] 図 7及び図 8は、燃料電池本体への接続の他の形態を示すものである。以下の形 態において、前記第 1実施形態の燃料電池本体と同様の構成及び効果を発揮する ものについては、図 1と同一符号を付してその説明を省略する。
この形態は、図 7及び図 8に示すように、弁体 11aに挿入される燃料供給管 31を介 して燃料供給体 30に接続される点などで、上記第 1実施形態と相違するものである。 なお、図示しないが、燃料供給体 30の先端(図 7、図 8の矢印方向)には、上記第 1 実施形態(図 3)と同様に燃料電池セル 20、 20…に直列又は並列に接続される構造 となっている。
[0047] このように形態の燃料電池 Dでも、燃料貯留体が加熱されて高温状態となっても、 液体燃料の沸騰、気泡の発生、燃料の吹き出し等を防止することができると共に、燃 料電池本体に直接液体燃料を安定的に供給し、し力も、高温の保管時においても液 体燃料の損失がなぐかつ、燃料電池の小型化をなし得ることができる燃料電池用燃 料貯留体が提供される。
[0048] 本発明の燃料電池用貯留体は、上記各実施形態に限定されるものではなぐ本発 明の技術思想の範囲内で種々変更することができるものである。
例えば、燃料電池セル 20は円柱状のものを用いた力 角柱状、板状の他の形状の ものであってもよぐまた、燃料供給体 30との接続は直列接続のほか、並列接続であ つてもよい。
また、上記実施形態では、燃料流出部として図 2 (a)〜(h)に示す弁体 11aを有す るものを用いたが、気圧、温度変化等により燃料貯蔵槽 10内に直接収容される液体 燃料 Fに燃料供給管 31周辺より浸入する空気などの異物を防ぐものであり、燃料供 給体 30が挿入されて液体燃料を燃料供給体 30に供給できる構造となるものであれ ば、特に限定されるものではない。
更に、上記実施形態では、直接メタノール型の燃料電池として説明したが、燃料電 池本体に連結自在となる燃料貯留体であって、該燃料貯留体には、液体燃料を収 容する燃料収容容器と、燃料流出部と、液体燃料の後端部に、該液体燃料を封止す ると共に、液体燃料の消費に伴い移動する追従体とを備えたものであれば、本発明 は上記直接メタノール型の燃料電池に限定されるものではなぐ改質型を含む高分 子改質膜型の燃料電池にも好適に適用することができるものであり、更に、大容量( 例えば、 100ml以上)の液体燃料を搭載する場合にチューブ型等の燃料収容容器 の径を大きくした場合には、それに伴なつて追従体の量を増加させたり、または、第 2 実施形態のように追従補助部材を挿入して、追従体の追従を追従切れを起こすこと なぐ良好に追従させることができる。
更にまた、燃料電池本体として、微小炭素多孔体よりなる燃料電極体の外表部に 電解質層を構築し、該電解質層の外表部に空気電極層を構築することで燃料電池 本体を構成したが、燃料電池本体の構造は特に限定されず、例えば、電気導電性を 有する炭素質多孔体を基材とし、該基材の表面に電極 Z電解質 Z電極の各層を形 成した単位セル又は該単位セルを 2以上連結した連結体を備え、上記基材に燃料 供給体を介して液体燃料を浸透させる構成とすると共に、基材の外表面に形成され る電極面を空気に曝す構造力もなる燃料電池本体としてもよいものである。
実施例
[0049] 次に、本発明を実施例により、更に詳述するが、本発明は下記実施例に限定され るものではない。
[0050] 〔実施例 1〜2〕
下記に示す構成の燃料流出部の弁体が相違する燃料貯留体を 2種類作製し、液 体燃料(70wt%メタノール液、比重 0. 87) 2g、追従体 0. 30gを充填した。
(燃料収容容器の構成:チューブ 1、実施例 1及び 2共通)
チューブ 1 :長さ 100mm、外径 8mm、内径 6mm、ポリプロピレン製押出チューブ [0051] (燃料流出部の構成)
実施例 1 (スリット弁、図 2に準拠):
長さ 5mm、外径 6mm、内径 lmm、ブチルゴム製、スリット長さ 1. 5mm 実施例 2 (バルブ弁、図 5に準拠):
長さ 10mm、外径 6mm、内径 lmm、バルブ本体 61:ポリプロピレン製、弾性体 62
:ステンレス製スプリング、バルブ体 63:ポリプロピレン製
(追従体の組成、実施例 1及び 2共通)
以下の配合組成となるゲル状追従体 (比重 0. 90)を用いた。
鉱油:ダイアナプロセスオイル MC— W90 (出光興産社製) 93重量部 疎水性シリカ:ァエロジル R- 974D 6重量部
(日本ァエロジル社製、 BET表面積 200m2Zg)
シリコーン系界面活性剤: SILWET FZ- 2171 1重量部
(日本ュ-カー社製)
[0052] (封入する揮発性液体 G、実施例 1及び 2共通)
1000/0メタノーノレ 0. lml
(加圧室、実施例 1及び 2共通)
0. 3ml
(封止体、実施例 1及び 2共通)
図 2に準拠
[0053] 上記構成の各燃料電池用燃料貯留体を恒温槽にて 70°Cに放置して評価したとこ ろ、燃料貯留体が加熱されて高温状態となっても、液体燃料の沸騰、気泡の発生、 燃料の吹き出し等を防止することができると共に、燃料電池本体に直接液体燃料を 安定的に供給し、し力も、高温の保管時においても液体燃料の損失がないことが判 つた o
産業上の利用可能性
[0054] 本発明の液体燃料貯留体は、携帯電話、ノート型パソコン及び PDAなどの携帯用 電子機器の電源として用いられるのに好適な小型の燃料電池の燃料貯留用に用い ることがでさる。

Claims

請求の範囲
[1] 燃料電池本体に連結自在となる燃料貯留体であって、該燃料貯留体を、液体燃料 を収容する燃料収容容器と、燃料流出部と、液体燃料の後端部に、該液体燃料を封 止すると共に、液体燃料の消費に伴い移動する追従体とから構成し、前記燃料収容 容器内部が追従体により少なくとも密封された燃料貯蔵室と、外気からは隔絶密封さ れた状態の前記追従体を押圧する手段が封入されている加圧室とを備えたことを特 徴とする燃料電池用燃料貯留体。
[2] 加圧室に封入される追従体を押圧する手段が、燃料貯蔵室に封入された液体燃 料よりも高い蒸気圧を持つ組成の揮発性液体からなる請求項 1記載の燃料電池用燃 料貯留体。
[3] 加圧室に封入される揮発性液体は、少なくとも加圧室の容積と燃料貯蔵室の容積 とを合計した容積を飽和蒸気圧にできる量が封入されている請求項 2記載の燃料電 池用燃料貯留体。
[4] 加圧室には、空気置換可能な密閉弁が少なくとも 1つ備えている請求項 1〜3の何 れか一つに記載の燃料電池用燃料貯留体。
[5] 密閉弁は、揮発性液体の 100°Cにおける蒸気圧下においてもリークしない密閉弁 カゝらなる請求項 4記載の燃料電池用燃料貯留体。
[6] 液体燃料力 Sメタノール液、エタノール液、ジメチルエーテル(DME)、ギ酸、ヒドラジ ン、アンモニア液、エチレングリコール、ショ糖水溶液及び水素化ホウ素ナトリウムから 選ばれる少なくとも 1種である請求項 1〜5の何れか一つに記載の燃料電池用燃料 貯留体。
[7] 燃料電池本体は、燃料電極体の外表部に電解質層を構築し、該電解質層の外表 部に空気電極層を構築することで形成される単位セルが複数連結されると共に、上 記単位セルには燃料貯留体に接続される燃料供給体が連結されて液体燃料が供給 される構成となる請求項 1〜6の何れか一つに記載の燃料電池用燃料貯留体。
PCT/JP2005/011732 2004-06-25 2005-06-27 燃料電池用燃料貯留体 WO2006001418A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05765062A EP1770808A4 (en) 2004-06-25 2005-06-27 FUEL CELL FUEL STORAGE BODY
US11/629,874 US7727657B2 (en) 2004-06-25 2005-06-27 Fuel reservoir for fuel cell
JP2006528666A JP4956186B2 (ja) 2004-06-25 2005-06-27 燃料電池用燃料貯留体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004188178 2004-06-25
JP2004-188178 2004-06-25

Publications (1)

Publication Number Publication Date
WO2006001418A1 true WO2006001418A1 (ja) 2006-01-05

Family

ID=35781854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011732 WO2006001418A1 (ja) 2004-06-25 2005-06-27 燃料電池用燃料貯留体

Country Status (6)

Country Link
US (1) US7727657B2 (ja)
EP (1) EP1770808A4 (ja)
JP (1) JP4956186B2 (ja)
KR (1) KR100840046B1 (ja)
CN (1) CN100454642C (ja)
WO (1) WO2006001418A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015936A (ja) * 2008-07-07 2010-01-21 Casio Comput Co Ltd 燃料供給装置及び燃料供給システム
US20100279205A1 (en) * 2007-12-28 2010-11-04 Sony Corporation Fuel cartridge, fuel cell, and electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063935B2 (ja) * 2006-06-02 2012-10-31 東洋製罐株式会社 燃料電池カートリッジ用ポリエステル製容器
US8518599B2 (en) * 2010-03-02 2013-08-27 Microvast, Inc. Fuel and oxidant storage device and fuel cell system employing the same
GB2579779B (en) * 2018-12-12 2021-05-05 Dha Contracting Ltd Power generation for subsea marine applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087455A2 (en) 1999-09-21 2001-03-28 Kabushiki Kaisha Toshiba Liquid fuel-housing tank for fuel cell and fuel cell
JP2004063200A (ja) * 2002-07-26 2004-02-26 Mitsubishi Pencil Co Ltd 直接メタノール型燃料電池
JP2004247136A (ja) * 2003-02-13 2004-09-02 Nec Corp 燃料供給カートリッジ、燃料電池装置、および燃料供給方法
JP2005032598A (ja) * 2003-07-07 2005-02-03 Sony Corp 燃料タンク及びこれを用いた燃料電池システム
JP2005038803A (ja) * 2003-07-03 2005-02-10 Tokai Corp 燃料電池用燃料容器
JP2005228663A (ja) * 2004-02-16 2005-08-25 Tokai Corp 燃料電池用燃料容器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966066A (ja) 1982-10-06 1984-04-14 Hitachi Ltd 液体燃料電池
JPH05258760A (ja) 1992-03-12 1993-10-08 Hitachi Mach & Eng Ltd 液体燃料電池の運転制御方法及び装置
US5364711A (en) * 1992-04-01 1994-11-15 Kabushiki Kaisha Toshiba Fuel cell
JPH06188008A (ja) 1992-04-01 1994-07-08 Toshiba Corp 燃料電池
JPH05307970A (ja) 1992-04-30 1993-11-19 Aqueous Res:Kk 液体燃料電池
JP2001102069A (ja) 1999-09-29 2001-04-13 Toshiba Corp 燃料電池
US6916565B2 (en) * 2000-12-21 2005-07-12 Casio Computer Co., Ltd. Power supply system, fuel pack constituting the system, and device driven by power generator and power supply system
US6824905B2 (en) * 2001-01-15 2004-11-30 Casio Computer Co., Ltd. Power supply system and device driven by power supply system
MXPA02009333A (es) * 2001-01-24 2003-03-10 Casio Computer Co Ltd Sistema de suministro de energia, paquete de combustible que constituye el sistema, y dispositivo impulsado por un generador de energia y sistema de suministro de energia.
EP1313160A1 (de) * 2001-11-13 2003-05-21 SFC Smart Fuel Cell AG Vorrichtung zur Brennstoffversorgung von Brennstoffzellen
JP2003229158A (ja) 2001-11-28 2003-08-15 Casio Comput Co Ltd 電源システム及びその電源システムを備える電子機器
JP3748417B2 (ja) * 2002-03-29 2006-02-22 株式会社東芝 直接型液体燃料燃料電池発電装置およびその制御方法
JP4147803B2 (ja) 2002-04-05 2008-09-10 カシオ計算機株式会社 化学反応装置及び電源システム
US7169367B2 (en) * 2002-04-05 2007-01-30 Casio Computer Co., Ltd. Chemical reaction apparatus and power supply system
JP4290924B2 (ja) * 2002-04-23 2009-07-08 秀治 田中 燃料供給装置およびそれを用いた燃料電池システム
JP2003340273A (ja) 2002-05-30 2003-12-02 Casio Comput Co Ltd 化学反応装置及び燃料電池システム並びにその製造方法
US7316719B2 (en) * 2002-09-06 2008-01-08 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087455A2 (en) 1999-09-21 2001-03-28 Kabushiki Kaisha Toshiba Liquid fuel-housing tank for fuel cell and fuel cell
JP2001093551A (ja) * 1999-09-21 2001-04-06 Toshiba Corp 燃料電池用液体燃料収容容器および燃料電池
JP2004063200A (ja) * 2002-07-26 2004-02-26 Mitsubishi Pencil Co Ltd 直接メタノール型燃料電池
JP2004247136A (ja) * 2003-02-13 2004-09-02 Nec Corp 燃料供給カートリッジ、燃料電池装置、および燃料供給方法
JP2005038803A (ja) * 2003-07-03 2005-02-10 Tokai Corp 燃料電池用燃料容器
JP2005032598A (ja) * 2003-07-07 2005-02-03 Sony Corp 燃料タンク及びこれを用いた燃料電池システム
JP2005228663A (ja) * 2004-02-16 2005-08-25 Tokai Corp 燃料電池用燃料容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1770808A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100279205A1 (en) * 2007-12-28 2010-11-04 Sony Corporation Fuel cartridge, fuel cell, and electronic device
JP2010015936A (ja) * 2008-07-07 2010-01-21 Casio Comput Co Ltd 燃料供給装置及び燃料供給システム

Also Published As

Publication number Publication date
EP1770808A1 (en) 2007-04-04
KR20070041719A (ko) 2007-04-19
CN1977414A (zh) 2007-06-06
JPWO2006001418A1 (ja) 2008-04-17
KR100840046B1 (ko) 2008-06-19
US7727657B2 (en) 2010-06-01
CN100454642C (zh) 2009-01-21
US20080292915A1 (en) 2008-11-27
EP1770808A4 (en) 2009-05-13
JP4956186B2 (ja) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5123494B2 (ja) 燃料カートリッジ
JP4403178B2 (ja) 燃料電池用燃料貯留体
JP4956186B2 (ja) 燃料電池用燃料貯留体
JP4880230B2 (ja) 燃料カートリッジ
JP4956184B2 (ja) 燃料電池用燃料貯留体
JP4956187B2 (ja) 燃料電池
JP5099963B2 (ja) 燃料電池における液体燃料供給システム
JP4796750B2 (ja) 燃料電池
JP2007294182A (ja) 燃料電池における液体燃料供給システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528666

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2005765062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005765062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580021277.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000855

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11629874

Country of ref document: US