WO2006001257A1 - 芳香族カーボネートの工業的製造方法 - Google Patents

芳香族カーボネートの工業的製造方法 Download PDF

Info

Publication number
WO2006001257A1
WO2006001257A1 PCT/JP2005/011283 JP2005011283W WO2006001257A1 WO 2006001257 A1 WO2006001257 A1 WO 2006001257A1 JP 2005011283 W JP2005011283 W JP 2005011283W WO 2006001257 A1 WO2006001257 A1 WO 2006001257A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
carbonate
inner diameter
aromatic
distillation column
Prior art date
Application number
PCT/JP2005/011283
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to EA200700125A priority Critical patent/EA011128B1/ru
Priority to EP05751464A priority patent/EP1762560A4/en
Priority to CN200580021061A priority patent/CN100594208C/zh
Priority to US11/630,324 priority patent/US20070260095A1/en
Priority to BRPI0512550A priority patent/BRPI0512550B1/pt
Priority to JP2006528522A priority patent/JP4192195B2/ja
Publication of WO2006001257A1 publication Critical patent/WO2006001257A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an industrial process for producing aromatic carbonates. More specifically, the aromatic carbonate useful as a raw material for the transesterification polycarbonate is obtained by subjecting the dialkyl carbonate and the aromatic monohydroxy compound to a transesterification reaction in a continuous multi-stage distillation column in the presence of a catalyst.
  • the present invention relates to a method for industrially producing carbonate in large quantities.
  • Aromatic carbonate is important as a raw material for producing aromatic polycarbonate, which is the most demanding engineering plastic, without using toxic phosgene.
  • a method for producing an aromatic carbonate a method of reacting an aromatic monohydroxy compound with phosgene has been known for a long time, and various studies have been made recently.
  • chlorinated impurities that are difficult to separate in the aromatic carbonate produced by this method, and as such, it cannot be used as a raw material for aromatic polycarbonate. Can not. This is because this chlorine-based impurity significantly inhibits the polymerization reaction of the transesterification polycarbonate carried out in the presence of a very small amount of a basic catalyst.
  • Lewis acids such as transition metal halides or compounds that generate Lewis acids
  • Patent Document 1 JP-A-51-105032, JP-A-56-123948, JP-A-56-123949 (West Germany) Patent Publication No. 2528412, British Patent No. 149 9530, U.S. Pat.No. 4,182,726), Japanese Patent Laid-Open No. 51-75044 (West German Patent Publication No. 2552907, U.S. Pat. No. 4045464)
  • Tin compounds such as organotin alkoxides and organotinoxides
  • Patent Document 2 JP 54-48733 A (West German Patent Publication No.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 57-176932, Japanese Unexamined Patent Publication No. 1-93560, metals such as copper, iron, zirconium, etc.
  • Patent Document 5 JP-A-57-183745
  • titanate esters Patent Document 6
  • Patent Document 6 JP-A-58-185536 (US Pat. No. 4410464)
  • JP-A-1 ⁇ See 265062 Lewis acid and protonic acid mixture
  • Patent Document 7 Japanese Unexamined Patent Publication No. 60173016 (US Pat. No. 4,609,501)
  • Sc, Mo, Mn, Bi, Te, etc. Patent Document 8: see JP-A-1-265064
  • ferric acetate Patent Document 9: see JP-A-61-172852
  • catalyst development alone cannot solve the problem of unfavorable equilibrium, there are a large number of issues to consider in order to achieve an industrial production method for mass production, including examination of reaction methods.
  • Patent Document 10 Japanese Patent Laid-Open No. 54-48732 (West German Patent Publication No. 736063). No. 4, US Pat. No. 4,252,737)), and by-product methanol is adsorbed and removed by molecular sieve (Patent Document 11: Japanese Patent Laid-Open No. 58-18553). No. 6 (see US Pat. No. 410464) has been proposed.
  • Patent Document 12 JP-A-56-123948 (US Pat. No. 4,182,726)), JP-A-56-25138, JP-A-60-169444 ( Example of US Pat. No. 4,554,110), Example of JP-A-60-169445 (US Pat. No. 4,552,704), JP-A-60-173016 (US Pat. No. 4,609,501) ), Examples of JP-A 61-172852, Examples of JP-A 61-291545, Examples of JP-A 62-277345).
  • reaction systems are basically batch system force switching systems.
  • the inventors of the present invention continuously supply dialkyl carbonate and aromatic hydroxy compound to a multistage distillation column, and continuously react in the column in the presence of a catalyst to produce by-produced alcohol.
  • a low-boiling component containing nitrogen is continuously extracted by distillation, and a component containing the generated alkylaryl carbonate is extracted from the bottom of the column (see Patent Document 13: Japanese Patent Publication No. Hei 3-291257).
  • Low-boiling components including dialkyl force-bonate as a by-product are continuously extracted by distillation, and the produced diaryl carbonate is removed.
  • Reactive distillation method see Patent Document 14: Japanese Patent Laid-Open No. 4-9358 in which the components contained are extracted from the bottom of the column. These reactions are performed using two continuous multistage distillation columns. There, di ⁇ reel carbonate while sleeping by-product dialkyl carbonate efficiently to recycle
  • a reactive distillation method for continuously producing a carbonate see Patent Document 15: JP-A-4-211038, a dialkyl carbonate and an aromatic hydroxy compound are continuously fed to a multistage distillation column, The liquid flowing down is extracted from the middle outlet of the distillation column and from the side outlet provided in the Z or the lowest stage, introduced into a reactor provided outside the distillation tower, reacted, and then extracted.
  • a reactive distillation method in which a reaction is carried out both in the reactor and in the distillation column by being introduced into a circulation inlet provided in a stage higher than the stage having the mouth Patent Document 16: JP-A-4- 224547, JP-A-4-230242, JP-A-4235951))), etc.
  • Patent Document 16 JP-A-4- 224547, JP-A-4-230242, JP-A-4235951)
  • the reactive distillation method is useful for these transesterification reactions. The first time in the world to disclose that.
  • Patent Documents 17 to 32 Patent Document 17: International Publication No. 00Z18720 (U.S. Pat. No. 5,362,901); Patent Document 18: Italian Patent 01255746) Patent Document 19: JP-A-6-9506 (European Patent 0560159, US Pat. No. 5,282,965); Patent Document 20: JP-A-6-41022 (European Patent 0572870, US Patent No. 5 362901); Patent Document 21: JP-A-6-157424 (European Patent 0582931, US Pat. No.
  • Patent Document 22 Japanese Patent Laid-Open No. 7-304713
  • Patent Document 23 Japanese Patent Laid-Open No. 9-40616
  • Patent Document 24 Japanese Patent Laid-Open No. 9-59225
  • Patent Document 25 Japanese Patent Laid-Open No. 9-110805
  • Patent Document 27 JP-A-9-173819
  • Patent Document 28 JP-A-9-176094, JP-A 2000-191596, JP-A 2000-191597
  • Patent Document 29 Special Kaihei 9-194436 (European Patent 0785184, US Pat. No. 5,705,673)
  • Patent Document 30 International Publication No.
  • Patent Document 31 JP 2001-64234, JP 2001-6423-5
  • Patent Document 32 International Publication No. 02Z40439 (US Pat. No. 6,596,894, US No. 6596895, US Pat. No. 6600061))).
  • the applicant of the present invention is a high-boiling point containing a catalyst component as a method for stably producing a high-purity aromatic carbonate for a long time without requiring a large amount of catalyst.
  • a method of separating the substance after reacting with the active substance and recycling the catalyst component see Patent Document 31: JP 2001-64234 A, JP 2001-64235 A), and polyvalent aroma in the reaction system In which the group hydroxy compound is maintained at a mass ratio of 2.0 or less with respect to the catalyst metal (Patent Document 32: International Publication No. 02Z40439 (US Pat. No. 6,596,894, US Pat. No. 6596895, US Pat. No. 6600061) Proposal)) was proposed.
  • the present inventors use a method in which 70 to 99% by mass of phenol produced as a by-product in the polymerization process is used as a raw material to produce diphenol carbonate by a reactive distillation method, and this is used as a polymerization raw material for aromatic polycarbonate.
  • Patent Document 33 International Publication No. 97Z11049 (European Patent No. 0855384, US Patent No. 5872275)).
  • Patent Document 35 Japanese Patent Laid-Open No. 9-255772 (European Patent No. 0892001, US Patent Permission No. 5747609 specification)
  • Patent Documents 33 and 34 Japanese Patent Laid-Open No. 11-92429 (European Patent No. 1016648). In the specification, US Pat. No. 6,622,210).
  • H 1200 cm
  • D 20 cm
  • n 50
  • Q 86 kgZhr
  • methylphenol The amount of aromatic carbonate combined with dicarbonate and diphenol carbonate was only about 10 kgOhr, which was not enough on an industrial scale.
  • the problem to be solved by the present invention is to select aromatic carbonate from dialkyl carbonate and aromatic monohydroxy compound using a continuous multistage distillation column on an industrial scale of 1 ton or more per hour. • To provide a specific method that can be manufactured stably over a long period of time with high productivity.
  • the continuous multi-stage distillation column has a structure having end plates above and below a cylindrical body having a length L (cm) and an inner diameter D (cm), and an internal having n stages inside.
  • the aromatic carbonate is produced continuously and the production volume is less than 1 ton per hour.
  • Dialkyl carbonate and aromatic monohydroxy compound are used as raw materials, and the raw materials are continuously supplied into a continuous multistage distillation column in which a catalyst is present, and reaction and distillation are simultaneously performed in the column to produce alcohol.
  • Aromatic carbonates are removed by a reactive distillation method in which a low-boiling reaction mixture containing sucrose is continuously withdrawn in the form of gas from the top of the tower, and a high-boiling reaction mixture containing aromatic carbonates is continuously withdrawn in the form of a liquid from the bottom of the tower.
  • a reactive distillation method in which a low-boiling reaction mixture containing sucrose is continuously withdrawn in the form of gas from the top of the tower, and a high-boiling reaction mixture containing aromatic carbonates is continuously withdrawn in the form of a liquid from the bottom of the tower.
  • the continuous multi-stage distillation column has a structure having end plates above and below a cylindrical body having a length L (cm) and an inner diameter D (cm), and an internal having n stages inside.
  • the tray is a perforated plate tray having a perforated plate portion and a downcomer portion.
  • an aromatic carbonate having a high selectivity of 95% or more, preferably 97% or more, more preferably 99% or more from a dialkyl carbonate and an aromatic monohydroxy compound On an industrial scale of over 1 ton per hour, preferably over 2 ton per hour, more preferably over 3 ton per hour, over 2000 hours, preferably over 3000 hours, more preferably over 5000 hours. It was found that it can be stably produced for a long period of time longer than the time.
  • the dialkyl carbonate used in the present invention is represented by the general formula (8).
  • R 1 represents an alkyl group having 1 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, or an aralkyl group having 6 to 10 carbon atoms.
  • R 1 include methyl, ethyl, propyl (each isomer), allyl, butyl (each isomer), butenyl (each isomer), pentyl (each isomer), hexyl (each isomer).
  • Heptyl (each isomer), octyl (each isomer), nonyl (each isomer), decyl (each isomer), an alkyl group such as cyclohexylmethyl; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclo Examples include alicyclic groups such as heptyl; aralkyl groups such as benzyl, phenethyl (each isomer), phenylpropyl (each isomer), phenylbutyl (each isomer), and methylbenzyl (each isomer). .
  • alkyl groups, alicyclic groups, and aralkyl groups may be substituted with other substituents such as a lower alkyl group, a lower alkoxy group, a cyano group, a halogen, or the like, or an unsaturated bond. You may have.
  • dialkyl carbonate having R 1 examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diaryl carbonate, dibutenyl carbonate (each isomer), and dibutyl.
  • R 1 is preferably a dialkyl carbonate composed of an alkyl group having 4 or less carbon atoms not containing halogen, particularly preferably! / Is dimethyl carbonate, which is preferably used in the present invention.
  • dialkyl carbonates are preferred among the preferred dialkyl carbonates, more preferred are dialkyl carbonates produced in a state that is substantially free of halogens, for example, alkylene carbonates substantially free of halogens. Alcohol power substantially free of halogen is also produced.
  • the aromatic monohydroxy compound used in the present invention is represented by the following general formula (9), and if the hydroxyl group is directly bonded to the aromatic group, It can be anything.
  • Ar 1 represents an aromatic group having 5 to 30 carbon atoms.
  • aromatic monohydroxy compounds having Ar 1 include phenol; talesol (each isomer), xylenol (each isomer), trimethylphenol (each isomer), tetramethylphenol (each isomer), Ethylphenol (each isomer), propylphenol (each isomer), butylphenol (each isomer), jetylphenol (each isomer), methylethylphenol (each isomer), methylpropylphenol (Each isomer), dipropylphenol (each isomer), methylbutanol (each isomer), pentylphenol (each isomer), hexylphenol (each isomer), cyclohexylphenol (each isomer) Alkylphenols such as methoxyphenol (each isomer), ethoxyphenol (each isomer), etc.
  • Arylalkylphenols such as phenol-propylphenol (isomers) Naphthol (each isomer) and various substituted naphthols; heteroaromatic monohydroxy compounds such as hydroxypyridine (each isomer), hydroxycoumarin (each isomer), hydroxyquinoline (each isomer) Etc. are used.
  • aromatic monohydroxy compounds in which Ar 1 also has an aromatic group having 6 to 10 carbon atoms are particularly preferably used in the present invention. Preference is given to phenol.
  • aromatic monohydroxy compounds those that are preferably used in the present invention are those that do not substantially contain halogen.
  • the amount ratio of the dialkyl carbonate and the aromatic monohydroxy compound used as a raw material in the present invention is such that the dialkyl carbonate has a molar ratio of 0.4 to 4 with respect to the aromatic monohydroxy compound. It is necessary. Outside this range, the amount of unreacted raw material that remains is large with respect to the predetermined production amount of the target aromatic carbonate, which is not efficient and requires a lot of energy to recover them. In this sense, this molar ratio is preferably 0.5 to 3 forces, more preferably 0.8 to 2.5 forces, and even more preferably ⁇ ⁇ , 1.0 to 2.0.
  • the aromatic carbonate produced in the present invention is an alkylaryl carbonate, diaryl carbonate obtained by transesterification of a dialkyl carbonate and an aromatic monohydroxy compound, and these It is a mixture of In this ester exchange reaction, one or two alkoxy groups of the dialkyl carbonate are exchanged with the aryloxy group of the aromatic monohydroxy compound to leave the alcohols, and the generated alkyl aryl carbonate between two molecules.
  • mainly alkylaryl carbonate is obtained.
  • This alkylaryl carbonate is further converted into an aromatic monohydroxy compound and ester.
  • Diaryl carbonate can be obtained by carrying out a sulfur exchange reaction or a disproportionation reaction. Since this diaryl carbonate does not contain any halogen, it is important as a raw material for the industrial production of polycarbonate by the ester exchange method.
  • dialkyl carbonate and the aromatic monohydroxy compound used as raw materials in the present invention may each be highly pure or may contain other compounds.
  • It may contain compounds or reaction by-products generated in the process or Z and other processes.
  • these raw materials are newly recovered from dialkyl carbonates and aromatic monohydroxy compounds introduced into the reaction system, and those recovered from this step or Z and other steps. It is preferable to use it.
  • such recovered material containing other compounds can also be used as a raw material.
  • the reaction product is contained in the raw material. It may contain a small amount of methyl alcohol, methylphenol carbonate and diphenol carbonate, or it may contain a reaction by-product, a high-boiling point by-product!
  • the catalyst used in the present invention is selected from the following compounds, for example.
  • Lead compounds > Lead oxides such as PbO, PbO and PbO; Lead sulfides such as PbS and Pb S; Pb (0
  • lead hydroxides such as Pb 2 O (OH); Na PbO, K PbO, NaHPbO, KHPbO, etc.
  • Lead salts such as PbO and CaPbO; Lead carbonates such as PbCO and 2PbCO 'Pb (OH)
  • Ph represents a full group.
  • acac represents a cetylacetone chelate ligand
  • Alkali metal complexes such as Li (acac) and LiN (C H);
  • Zinc complex such as Zn (acac);
  • Zirconium complexes such as Zr (acac) and zirconocene;
  • Lewis acids > A1X, TiX, TiX, VOX, VX, ZnX, FeX, SnX (where
  • X is halogen, acetoxy group, an alkoxy group, or an aryloxy group.
  • Lewis acids such as) and transition metal compounds that generate Lewis acids;
  • a metal-containing compound such as is used as a catalyst may be solid catalysts fixed in a multistage distillation column, or may be soluble catalysts that dissolve in the reaction system.
  • organic compounds in which these catalyst components are present in the reaction system for example, aliphatic alcohols, aromatic monohydroxy compounds, alkylaryl carbonates, diaryl carbonates, dialkyl carbonates, etc. It may be one that has reacted, or it may have been heat-treated with raw materials or products prior to the reaction.
  • catalysts When the present invention is carried out with a soluble catalyst that dissolves in the reaction system, these catalysts preferably have high solubility in the reaction solution under the reaction conditions.
  • Preferred catalysts in this sense include, for example, PbO, Pb (OH) ⁇ Pb (OPh); TiCl, Ti (OMe), (MeO ) Ti (OPh), (MeO) Ti (OPh), (MeO) Ti (OPh), Ti (OPh); SnCl, Sn (OP
  • Examples thereof include those treated with a diol or a reaction solution.
  • FIG. 1 is a schematic view of a continuous multistage distillation column for carrying out the production method according to the present invention.
  • the continuous multi-stage distillation column 10 used in the present invention has end plate parts 5 above and below a cylindrical body part 7 having a length L (cm) and an inner diameter D (cm), and the number of stages n therein.
  • a gas outlet 1 with an inner diameter d (cm) at the top of the column or near the top of the column, and a liquid with an inner diameter d (cm) at the bottom of the column or near the bottom of the column.
  • first inlets 3 below the inlet 1 and in the upper part of the tower and in the Z or middle part, and one or more second inlets above the liquid outlet 2 and below the tower.
  • first inlets 3 below the inlet 1 and in the upper part of the tower and in the Z or middle part
  • second inlets above the liquid outlet 2 and below the tower.
  • the arrangement of the internal 6 is not limited to the configuration shown in FIG.
  • the continuous multi-stage distillation column according to the present invention is a combination of conditions necessary for allowing the reaction to proceed stably and with high selectivity, not just simple distillation functional conditions.
  • top of the tower or near the top of the tower means a portion of about 0.25 L downward from the top of the tower, and the term “bottom of the tower or near the bottom of the tower” It means the part up to about 0.25L from the bottom of the tower. “L” is as defined above.
  • L (cm) is less than 1500, the reaction rate decreases, the target production volume cannot be achieved, and in order to reduce the equipment cost while securing the reaction rate that can achieve the target production volume, L must be 8000 or less.
  • a more preferable range of L (cm) is 2000 ⁇ L ⁇ 6 000, and further preferably 2500 ⁇ L ⁇ 5000.
  • D (cm) is smaller than 100, the target production volume cannot be achieved, and in order to reduce the equipment cost while achieving the target production volume, D must be 2000 or less. is there.
  • a more preferable range of D (cm) is 150 ⁇ D ⁇ 1000, and more preferably 200 ⁇ D ⁇ 800.
  • LZD When LZD is smaller than 2 or larger than 40, stable operation becomes difficult. Especially when LZD is larger than 40, the pressure difference between the top and bottom of the tower becomes too large, so that long-term stable operation becomes difficult. Because the temperature at the bottom must be increased, side reactions are likely to occur. Decreases selectivity.
  • the more preferable range of LZD is 3 ⁇ LZD ⁇ 30, and more preferably 5 ⁇ LZD ⁇ 15.
  • n is less than 20, the reaction rate decreases, the target production volume cannot be achieved, and the facility cost can be reduced while securing the reaction rate that can achieve the target production volume. It is necessary to make n smaller than 120. Furthermore, if n is greater than 120, the pressure difference between the top and bottom of the column becomes too large, and long-term stable operation becomes difficult, and the temperature at the bottom of the column must be increased. Decreases selectivity.
  • a more preferable range of n is 30 ⁇ n ⁇ 100, and more preferably 40 ⁇ n ⁇ 90.
  • D / d force is smaller, not only will the equipment cost increase, but a large amount of gas components will be discharged out of the system, which makes stable operation difficult. It becomes relatively small, and the reaction rate is lowered just as stable operation becomes difficult.
  • a more preferred range for D / d is 8 ⁇ D / d ⁇ 25, and even more preferred is 10 ⁇ D / d ⁇ 20.
  • 2 is 5 ⁇ D / d ⁇ 18, more preferably 7 ⁇ D / d ⁇ 15.
  • long-term stable operation means that the operation can be continued in a steady state based on the operation condition where there is no piping clogging or erosion for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more. This means that a predetermined amount of aromatic carbonate is produced while maintaining high selectivity.
  • the present invention is characterized in that aromatic carbonate is stably produced for a long period of time with high selectivity at a high productivity of 1 ton or more per hour, preferably 2 ton or more per hour, Preferably, 3 tons or more of aromatic carbonate is produced per hour.
  • L, D, LZD, n, D / d, and D / d of the continuous multistage distillation column are each
  • the present invention provides L, D, L / D, n, D / d, D / d force of the continuous multistage distillation column, 2500 ⁇ L ⁇ 5000, 200 ⁇ D ⁇ 800, 5
  • the selectivity of the aromatic carbonate in the present invention refers to a reacted aromatic monohydroxy compound, and in the present invention, the selectivity is usually high as 95% or more, preferably 97%. As described above, a high selectivity of 99% or more can be achieved.
  • the continuous multistage distillation column used in the present invention is preferably a distillation column having a tray and Z or packing as an internal.
  • the term “internal” as used in the present invention means a portion where the gas-liquid contact is actually performed in the distillation column.
  • a tray for example, a foam tray, a perforated plate tray, a valve tray, a counter-flow tray, a super flake tray, a max flack tray, etc. are preferred packings such as Raschig rings, Lessing rings, and pole rings. , Berle saddles, Interlocks saddles, Dixon packing, McMahon packing, Helicac etc. Better ,.
  • a multi-stage distillation column having both a tray part and a packed part can also be used.
  • the term “internal plate number n” in the present invention means the number of trays in the case of trays, and the theoretical plate number in the case of packing.
  • the reaction between the dialkyl carbonate of the present invention and the aromatic monohydroxy compound has an extremely small equilibrium constant and a slow reaction rate. Therefore, as a continuous multistage distillation column used for reactive distillation, the internal is a tray. It has been found that a trayed distillation column is more preferred. Furthermore, it has been found that a perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. And the perforated plate tray is It has also been found that it is preferred to have 100-1000 holes per part area lm 2 ! /. More preferably, the number of holes is 120 to 900 per lm 2 , and more preferably 150 to 800.
  • the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and still more preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 100 to 1000 holes per area lm 2 of the perforated plate portion and the cross-sectional area per hole is 0.5 to 5 cm 2 . It has been found preferable. It has been found that the object of the present invention can be achieved more easily by adding the above conditions to a continuous multistage distillation column.
  • the raw material dialkyl carbonate and the aromatic monohydroxy compound are continuously fed into a continuous multistage distillation column in which a catalyst is present, and the reaction and distillation are simultaneously performed in the column! ⁇
  • the low boiling point reaction mixture containing the generated alcohols is continuously withdrawn from the top of the column in a gaseous state, and the high boiling point reaction mixture containing aromatic carbonates is continuously withdrawn in the form of a liquid from the bottom of the column.
  • Group carbonates are produced continuously.
  • This raw material contains reaction by-products such as alcohols, alkylaryl carbonates, diaryl carbonates, alkylaryl ethers, and high-boiling compounds as reaction products! / Is as described above. Considering the equipment and cost for separation and purification in other steps, in the case of the present invention which is actually carried out industrially, it is preferable to contain a small amount of these compounds. .
  • the gas outlet at the upper part of the distillation column is used. It may be supplied in liquid and Z or gaseous form from one or several inlets installed in the upper or middle part of the tower at the bottom, but the raw material rich in aromatic monohydroxy compounds is distilled. Gas supplied from the inlet at the top of the tower in liquid form and containing raw material containing a large amount of dialkyl carbonate above the liquid outlet at the bottom of the distillation tower and at the bottom of the tower. It is also preferable to supply in the form.
  • any method may be used for allowing the catalyst to exist in the continuous multistage distillation column.
  • the continuous multistage distillation is not limited. Inside distillation column There is a method to fix it in the tower by installing it on the stage or by installing it in the form of packing.
  • a catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or this catalyst solution may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the present invention is usually expressed as a ratio to the total mass of raw materials, which varies depending on the type of catalyst used, the type of raw material and its ratio, the reaction temperature, and the reaction conditions such as reaction pressure. 0.0001 to 30% by mass, preferably 0.005 to 0% by mass, more preferably 0.001 to 1% by mass.
  • the reaction time of the transesterification reaction carried out in the present invention is considered to correspond to the average residence time of the reaction liquid in the continuous multistage distillation column, which is the internal shape and number of stages of the distillation column, the feed rate of the raw material Depending on the type and amount of the catalyst, reaction conditions, etc., it is usually 0.1 to 10 hours, preferably 0.3 to 5 hours, more preferably 0.5 to 3 hours.
  • the reaction temperature varies depending on the type of raw material compound used and the type and amount of the catalyst, but is usually 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. If the reaction temperature is high, side reactions are liable to occur. For example, by-products such as alkyl aryl ethers increase, which is not preferable. In this sense, the preferred reaction temperature is 130 to 280. C, more preferably 150-260. C, more preferably 180-250. C range.
  • the reaction pressure varies depending on the type and composition of the starting material and the compound used, the reaction temperature, etc., and may be any of 1S reduced pressure, normal pressure, and pressurized, usually 0.1 to 2 X 10 7 Pa, preferably Is carried out in the range of 10 5 to: L0 7 Pa, more preferably 2 ⁇ 10 5 to 5 ⁇ 10 6 .
  • the material constituting the continuous multistage distillation column used in the present invention is preferably stainless steel from the viewpoint of the quality of the aromatic carbonate produced mainly by a metal material such as carbon steel and stainless steel.
  • the halogen content was measured by an ion chromatography method.
  • Phenol Z dimethyl carbonate 1. 9 (mass ratio) Power 1 was continuously introduced at a flow rate of 50 tons Zhr in liquid form from the top of the distillation column.
  • a raw material 2 having a dimethyl carbonate Z phenol 3.6 (mass ratio) force was continuously introduced in a gaseous state from the lower inlet of the distillation column at a flow rate of 50 tons Zhr.
  • the catalyst was Pb (OPh), and the top force of the column was also introduced so that the reaction solution was about lOOppm.
  • Pb OPh
  • a long-term continuous operation was performed under these conditions. After 500 hours, 1000 hours, and 2000 hours, the production volume per hour is 8.3 tons, 8.3 tons, and 8.3 tons of methylphenol, and 1 hour of diphenyl carbonate.
  • the production volume per unit is 0.4 tons, 0.4 tons, and 0.4 tons, and the combined selectivity of methylphenol carbonate and diphenol carbonate is 98%, 98%, and 98%. It was stable. In addition, the produced aromatic carbonate was substantially free of halogen (lppb or less).
  • a long-term continuous operation was performed under these conditions. After 500 hours, 1000 hours, and 2000 hours, the production per hour is 12.8 ⁇ , 12.8 ⁇ , 1 2.8 metric tons of methylphenol carbonate. The production per hour is 0.4 ton, 0.4 ton, and 0.4 ton, and the combined ratio of methyl phenol carbonate and diphenol carbonate is 99%, 99%, 99%, It was very stable. In addition, the produced aromatic strength boronate was substantially free of halogen (lppb or less).
  • aromatic carbonate is converted from a dialkyl carbonate and an aromatic monohydroxy compound using a continuous multistage distillation column on an industrial scale of 1 ton or more per hour with a high selectivity. It is suitable as a specific method that can be stably produced for a long time with high productivity.
  • FIG. 1 is a schematic view of a continuous multistage distillation column for carrying out the present invention.
  • An internal is installed inside the trunk.
  • the symbols used in Figure 1 are as follows: 1 Gas outlet, 2 Liquid outlet, 3 Inlet, 4 Inlet, 5 End plate, 6 Internal, 7 Body part, 10
  • Continuous multistage distillation column L barrel length (cm), D barrel inner diameter (cm c ⁇ inner diameter of the gas outlet (cm), d inner diameter of the liquid outlet (cm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 本発明が解決しようとする課題は、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とから連続多段蒸留塔を用いて芳香族カーボネートを、1時間あたり1トン以上の工業的規模で、高選択率・高生産性で長期間安定的に製造できる具体的な方法を提供することにある。反応蒸留法による芳香族カーボネート類の製造方法に関する多くの提案があるが、これらは全て小規模、短期間の実験室的レベルのものであり、工業的規模の大量生産を可能とする具体的な方法や装置の開示は全くなかった。本発明では特定の連続多段蒸留塔が提供され、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とから、1時間あたり1トン以上の工業的規模で、高選択率・高生産性で芳香族カーボネートを長期間安定的に製造できる具体的な方法が提供される。    

Description

明 細 書
芳香族カーボネートの工業的製造方法
技術分野
[0001] 本発明は、芳香族カーボネートの工業的製造法に関する。さらに詳しくは、ジアル キルカーボネートと芳香族モノヒドロキシィ匕合物とを、触媒を存在させた連続多段蒸 留塔内でエステル交換反応に付し、エステル交換法ポリカーボネートの原料として有 用な芳香族カーボネートを工業的に大量に製造する方法に関する。
背景技術
[0002] 芳香族カーボネートは、最も需要の多いエンジニアリングプラスチックである芳香族 ポリカーボネートを、有毒なホスゲンを用いな 、で製造するための原料として重要で ある。芳香族カーボネートの製法として、芳香族モノヒドロキシィ匕合物とホスゲンとの 反応による方法が古くから知られており、最近も種々検討されている。しかしながら、 この方法はホスゲン使用の問題に加え、この方法によって製造された芳香族カーボ ネートには分離が困難な塩素系不純物が存在しており、そのままでは芳香族ポリ力 ーボネートの原料として用いることはできない。なぜならば、この塩素系不純物は極 微量の塩基性触媒の存在下で行うエステル交換法ポリカーボネートの重合反応を著 しく阻害し、たとえば、 lppmでもこのような塩素系不純物が存在すると殆ど重合を進 行させることができない。そのため、エステル交換法ポリカーボネートの原料とするに は、希アルカリ水溶液と温水による十分な洗浄と油水分離、蒸留などの多段階の面 倒な分離 ·精製工程が必要であり、さら〖こ、このような分離 ·精製工程での加水分解口 スゃ蒸留ロスのため収率が低下するなど、この方法を経済的に見合った工業的規模 で実施するには多くの課題がある。
[0003] 一方、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応 による芳香族カーボネートの製造方法も知られている。し力しながら、これらのエステ ル交換反応は全て平衡反応であって、しカゝもその平衡が原系に極端に偏って ヽるこ とに加えて反応速度が遅いことから、この方法によって芳香族カーボネート類を工業 的に大量に製造するのは多大な困難を伴っていた。これを改良するために、いくつ かの提案がなされているが、その大部分は、反応速度を高めるための触媒開発に関 するものである。このタイプのエステル交換反応用触媒として数多くの金属化合物が 提案されている。例えば、遷移金属ハライド等のルイス酸又はルイス酸を生成させる 化合物類 (特許文献 1 :特開昭 51— 105032号公報、特開昭 56— 123948号公報、 特開昭 56— 123949号公報(西独特許公開公報第 2528412号、英国特許第 149 9530号明細書、米国特許第 4182726号明細書)、特開昭 51— 75044号公報 (西 独特許公開公報第 2552907号、米国特許第 4045464号明細書)参照)、有機スズ アルコキシドゃ有機スズォキシド類等のスズィ匕合物(特許文献 2:特開昭 54— 48733 号公報 (西独特許公開公報第 2736062号)、特開昭 54— 63023号公報、特開昭 6 0— 169444号公報(米国特許第 4554110号明細書;)、特開昭 60— 169445号公 報 (米国特許第 4552704号明細書)、特開昭 62— 277345号公報、特開平 1 26 5063号公報参照)、アルカリ金属又はアルカリ土類金属の塩類及びアルコキシド類 ( 特許文献 3 :特開昭 57— 176932号公報参照)、鉛化合物類 (特許文献 4 :特開昭 5 7— 176932号公報、特開平 1— 93560号公報参照)、銅、鉄、ジルコニウム等の金 属の錯体類 (特許文献 5:特開昭 57— 183745号公報参照)、チタン酸エステル類 ( 特許文献 6:特開昭 58— 185536号公報 (米国特許第 4410464号明細書)、特開 平 1― 265062号公報参照)、ルイス酸とプロトン酸の混合物(特許文献 7:特開昭 60 173016号公報(米国特許第 4609501号明細書)参照)、 Sc、 Mo、 Mn、 Bi、 Te 等の化合物 (特許文献 8:特開平 1― 265064号公報参照)、酢酸第 2鉄 (特許文献 9 :特開昭 61— 172852号公報参照)等が提案されている。しかしながら、触媒開発だ けでは、不利な平衡の問題を解決できないので、大量生産を目的とする工業的製造 法にするためには、反応方式の検討を含め、非常に多くの検討課題がある。
また、反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香 族カーボネート類の収率を向上させる試みもなされている。例えば、ジメチルカーボ ネートとフエノールの反応において、副生してくるメタノールを共沸形成剤とともに共 沸によって留去する方法 (特許文献 10 :特開昭 54— 48732号公報 (西独特許公開 公報第 736063号、米国特許第 4252737号明細書)参照)、副生してくるメタノール をモレキュラーシーブで吸着させて除去する方法 (特許文献 11:特開昭 58— 18553 6号公報 (米国特許第 410464号明細書)参照)が提案されている。また、反応器の 上部に蒸留塔を設けた装置によって、反応で副生してくるアルコール類を反応混合 物から分離させながら同時に蒸発してくる未反応原料との蒸留分離を行う方法も提 案されている(特許文献 12 :特開昭 56— 123948号公報 (米国特許第 4182726号 明細書)の実施例、特開昭 56— 25138号公報の実施例、特開昭 60— 169444号 公報 (米国特許第 4554110号明細書)の実施例、特開昭 60— 169445号公報 (米 国特許第 4552704号明細書)の実施例、特開昭 60— 173016号公報 (米国特許第 4609501号明細書)の実施例、特開昭 61— 172852号公報の実施例、特開昭 61 - 291545号公報の実施例、特開昭 62— 277345号公報の実施例参照)。
[0005] し力しながら、これらの反応方式は基本的にはバッチ方式力 切り替え方式である。
触媒開発による反応速度の改良もこれらのエステル交換反応に対しては限度があり 、反応速度が遅いことから、連続方式よりもバッチ方式の方が好ましいと考えられてい たからである。これらのなかには、連続方式として蒸留塔を反応器の上部に備えた連 続攪拌槽型反応器 (CSTR)方式も提案されて!ヽるが、反応速度が遅!ヽことや反応 器の気液界面が液容量に対して小さいことから反応率を高くできないなどの問題が ある。従って、これらの方法で芳香族カーボネートを連続的に大量に、長期間安定的 に製造するという目的を達成することは困難であり、経済的に見合う工業的実施にい たるには、なお多くの解決すべき課題が残されている。
[0006] 本発明者等は、ジアルキルカーボネートと芳香族ヒドロキシィ匕合物を連続的に多段 蒸留塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するアルコー ルを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したアルキルァ リールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 13 :特 開平 3— 291257号公報参照)、アルキルァリールカーボネートを連続的に多段蒸留 塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するジアルキル力 ーボネートを含む低沸成分を蒸留によって連続的に抜き出すと共に、生成したジァリ ールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 14:特開 平 4— 9358号公報参照)、これらの反応を 2基の連続多段蒸留塔を用いて行い、副 生するジアルキルカーボネートを効率的にリサイクルさせながらジァリールカーボネ ートを連続的に製造する反応蒸留法 (特許文献 15 :特開平 4— 211038号公報参照 )、ジアルキルカーボネートと芳香族ヒドロキシィ匕合物等を連続的に多段蒸留塔に供 給し、塔内を流下する液を蒸留塔の途中段及び Z又は最下段に設けられたサイド抜 き出し口より抜き出し、蒸留塔の外部に設けられた反応器へ導入して反応させた後 に、該抜き出し口のある段よりも上部の段に設けられた循環用導入口へ導入すること によって、該反応器内と該蒸留塔内の両方で反応を行う反応蒸留法 (特許文献 16 : 特開平 4— 224547号公報、特開平 4— 230242号公報、特開平 4 235951号公 報参照) )等、これらのエステル交換反応を連続多段蒸留塔内で反応と蒸留分離とを 同時に行う反応蒸留法を開発し、これらのエステル交換反応に対して反応蒸留方式 が有用であることを世界で初めて開示した。
本発明者等が提案したこれらの反応蒸留法は、芳香族カーボネート類を効率よぐ かつ、連続的に製造することを可能とする初めてのものであり、その後これらの開示 をベースとする同様な反応蒸留方式が数多く提案されるようになった (特許文献 17〜 32参照;特許文献 17 :国際公開第 00Z18720号公報 (米国特許第 5362901号 明細書);特許文献 18 :イタリア特許第 01255746号公報;特許文献 19 :特開平 6— 9506号公報(欧州特許 0560159号明細書、米国特許第 5282965号明細書);特 許文献 20 :特開平 6— 41022号公報 (欧州特許 0572870号明細書、米国特許第 5 362901号明細書);特許文献 21 :特開平 6— 157424号公報(欧州特許 0582931 号明細書、米国特許第 5334742号明細書)、特開平 6— 184058号公報 (欧州特 許 0582930号明細書、米国特許第 5344954号明細書);特許文献 22 :特開平 7— 304713号公報;特許文献 23:特開平 9—40616号公報;特許文献 24:特開平 9 - 59225号公報;特許文献 25:特開平 9 - 110805号公報;特許文献 26:特開平 9 - 165357号公報;特許文献 27:特開平 9— 173819号公報;特許文献 28:特開平 9 — 176094号公報、特開 2000— 191596号公報、特開 2000— 191597号公報; 特許文献 29 :特開平 9— 194436号公報 (欧州特許 0785184号明細書、米国特許 第 5705673号明細書);特許文献 30 :国際公開第 00Z18720公報 (米国特許第 6 093842号明細書;);特許文献 31 :特開 2001— 64234号公報、特開 2001— 6423 5号公報;特許文献 32:国際公開第 02Z40439公報 (米国特許第 6596894号、米 国特許第 6596895号、米国特許第 6600061号明細書))。
[0008] また、本出願人は、反応蒸留方式にお!、て、多量の触媒を必要とせずに高純度芳 香族カーボネートを長時間、安定に製造できる方法として、触媒成分を含む高沸点 物質を作用物質と反応させた上で分離し、触媒成分をリサイクルする方法 (特許文献 31 :特開 2001— 64234号公報、特開 2001— 64235号公報参照)や、反応系内の 多価芳香族ヒドロキシ化合物を触媒金属に対して質量比で 2. 0以下に保ちながら行 う方法 (特許文献 32:国際公開第 02Z40439公報 (米国特許第 6596894号、米国 特許第 6596895号、米国特許第 6600061号明細書)参照)を提案した。さらに、本 発明者等は、重合工程で副生するフエノールの 70〜99質量%を原料として用いて、 反応蒸留法でジフエ-ルカーボネートを製造しこれを芳香族ポリカーボネートの重合 原料とする方法をも提案した (特許文献 33:国際公開第 97Z11049公報 (欧州特許 0855384号明細書、米国特許第 5872275号明細書)参照)。
[0009] し力しながら、これら反応蒸留法による芳香族カーボネート類の製造を提案する全 ての先行文献には、工業的規模の大量生産 (例えば、 1時間あたり 1トン以上)を可能 とする具体的な方法や装置の開示は全くなぐまたそれらを示唆する記述もない。例 えば、ジメチルカーボネートとフエノールから主としてメチルフエ-ルカーボネート(M PC)を製造するために開示された反応蒸留塔の高さ (H: cm)、直径 (D: cm)、段数 (n)と反応原料液導入量 (Q : kgZhr)に関する記述は、次表のとおりである。
[0010] [表 1]
Figure imgf000007_0001
〔特許文献 35〕:特開平 9— 255772号公報 (欧州特許 0892001号明細書、米国特 許第 5747609号明細書)
[0011] すなわち、この反応を反応蒸留方式で実施するにあたり用いられた連続多段蒸留 塔の最大のものは、本出願人が特許文献 33、 34 (特開平 11— 92429号公報 (欧州 特許 1016648号明細書、米国特許第 6262210号明細書)参照)において開示した ものである。このようにこの反応用に開示されて 、る連続多段蒸留塔における各条件 の最大値は、 H= 1200cm, D = 20cm、 n= 50 (特許文献 23)、 Q = 86kgZhrであ り、メチルフエ-ルカーボネートとジフエ-ルカーボネートを合わせた芳香族カーボネ ートの生産量は約 lOkgZhrに過ぎず、工業的規模の生産量ではな力つた。
発明の開示
発明が解決しょうとする課題
[0012] 本発明が解決しょうとする課題は、ジアルキルカーボネートと芳香族モノヒドロキシ 化合物とから連続多段蒸留塔を用いて芳香族カーボネートを、 1時間あたり 1トン以 上の工業的規模で、高選択率 ·高生産性で長期間安定的に製造できる具体的な方 法を提供することにある。
課題を解決するための手段
[0013] 本発明者らが連続多段蒸留塔を用いる芳香族カーボネート類の製造方法を開示し て以来、反応蒸留法による芳香族カーボネート類の製造方法に関する多くの提案が あるが、これらは全て小規模、短期間の実験室的レベルのものであり、工業的規模の 大量生産を可能とする具体的な方法や装置の開示は全くな力つた。そこで、本発明 者等は、 1時間あたり 1トン以上の工業的規模で、高選択率'高生産性で芳香族カー ボネートを長期間安定的に製造できる具体的な方法を見出すべき検討を重ねた結 果、本発明に到達した。
[0014] すなわち、本発明の第一の態様では、
1.原料としてのジアルキルカーボネートと芳香族モノヒドロキシィ匕合物からの芳香族 カーボネートの製造方法であって、
(i)該原料を、触媒が存在する連続多段蒸留塔内に連続的に供給する工程と、
(ii)アルコール類と芳香族カーボネート類を生成するように、該原料を反応させる 工程と、 (iii)生成するアルコール類を含む低沸点反応混合物を塔上部からガス状で連続 的に抜出すとともに、生成する芳香族カーボネート類を含む高沸点反応混合物を塔 下部より液状で連続的に抜出す工程と、を含み、
(a)該原料のジアルキルカーボネートと芳香族モノヒドロキシ化合物とのモル比が 0 . 4〜4であり、
(b)該連続多段蒸留塔は、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下に鏡 板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部また はそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔 の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部およ
2
び Zまたは中間部に少なくとも 1つの導入口、該液抜出し口より上部であって塔の下 部に少なくとも 1つの導入口を有するものであって、
(1)長さ L (cm)が式(1)を満足するものであり、
1500 ≤ L ≤ 8000 式(1)
(2)塔の内径 D (cm)が式(2)を満足するものであり、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、
2 ≤ L/D ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであり、
20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するもので あり、
5 ≤ D/d ≤ 30 式(5)
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するものであ
2
る、
3 ≤ D/d ≤ 20 式(6)
2
ことを特徴とする方法、 2.前記工程 (ii)にて、蒸留も同時に行われることを特徴とす る前項 1記載の方法、
3.該芳香族カーボネートが連続的に製造され、その生産量が、 1時間あたり 1トン以 上であることを特徴とする前項 1または 2記載の方法、
を提供する。
また、本発明の第二の態様では、
4.ジアルキルカーボネートと芳香族モノヒドロキシ化合物とを原料とし、この原料を触 媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留を同時に 行 ヽ、生成するアルコール類を含む低沸点反応混合物を塔上部よりガス状で連続的 に抜出し、芳香族カーボネート類を含む高沸点反応混合物を塔下部より液状で連続 的に抜出す反応蒸留方式によって、芳香族カーボネート類を連続的に製造するにあ たり、
(a)該連続多段蒸留塔内に連続的に供給される該原料において、ジアルキルカー ボネートと芳香族モノヒドロキシ化合物とのモル比が 0. 4〜4であり、
(b)該連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下に鏡 板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部また はそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔 の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部およ
2
び Zまたは中間部に少なくとも一つの導入口、該液抜出し口より上部であって塔の 下部に少なくとも一つの導入口を有するものであって、
(1)長さ L (cm)が式(1)を満足するものであり、
1500 ≤ L ≤ 8000 式(1)
(2)塔の内径 D (cm)が式(2)を満足するものであり、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、
2 ≤ L/D ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであり、
20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するもので あり、
5 ≤ D/d ≤ 30 式(5) (6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するものであ
2
る、
3 ≤ D/d ≤ 20 式(6)
2
ことを特徴とする芳香族カーボネートの工業的製造法、
5.該芳香族カーボネートの生産量が、 1時間あたり 1トン以上であることを特徴とする 前項 5記載の方法、
6.該 dと該 dが式(7)を満足することを特徴とする前項 1〜6のいずれかに記載の方
1 2
法、
1 ≤ d /d ≤ 5 式(7)、
2 1
7.該連続多段蒸留塔の L、 D、 LZD、 n、 D/d、 D/d がそれぞれ、 2000≤L≤
1 2
6000、 150≤D≤1000, 3≤L/D≤30, 30≤n≤100, 8≤D/d≤25、 5≤D/d≤ 18であることを特徴とする前項 1〜6のいずれかに記載の方法、
2
8.該連続多段蒸留塔の L、 D、 LZD、 n、 D/d、 D/d がそれぞれ、 2500≤L≤
1 2
5000、 200≤D≤800, 5≤L/D≤15, 40≤n≤90, 10≤D/d≤25、 7≤D/d≤ 15であることを特徴とする前項 1〜7のいずれかに記載の方法、
2
9.該連続多段蒸留塔が、該インターナルとしてトレイおよび Zまたは充填物を有す る蒸留塔であることを特徴とする請求項 1〜8のいずれかに記載の方法、
10.該連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔である ことを特徴とする前項 9記載の方法、
11.該トレイが多孔板部とダウンカマー部を有する多孔板トレイであることを特徴とす る前項 9または 10記載の方法、
12.該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: L000個の孔を有するもの であることを特徴とする前項 11記載の方法、
13.該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前 項 11または 12記載の方法、
を提供する。
さらに、本発明の第三の態様では、
14.前項 1〜13のいずれか一に記載の方法で製造され、ハロゲン含有量が 0. Ipp m以下である芳香族カーボネート、
を提供する。
発明の効果
[0017] 本発明を実施することによって、ジアルキルカーボネートと芳香族モノヒドロキシィ匕 合物とから、 95%以上、好ましくは 97%以上、さらに好ましくは 99%以上の高選択 率で、芳香族カーボネートを、 1時間あたり 1トン以上、好ましくは 1時間あたり 2トン以 上、さらに好ましくは 1時間あたり 3トン以上の工業的規模で、 2000時間以上、好まし くは 3000時間以上、さらに好ましくは 5000時間以上の長期間、安定的に製造でき ることが見出された。
発明を実施するための最良の形態
[0018] 以下、本発明について具体的に説明する。
本発明で用いられるジアルキルカーボネートとは、一般式(8)で表されるものである。
R'OCOOR1 (8)
ここで、 R1は炭素数 1〜10のアルキル基、炭素数 3〜10の脂環族基、炭素数 6〜1 0のアラールキル基を表す。このような R1としては、例えば、メチル、ェチル、プロピル (各異性体)、ァリル、ブチル (各異性体)、ブテニル (各異性体)、ペンチル (各異性 体)、へキシル (各異性体)、ヘプチル (各異性体)、ォクチル (各異性体)、ノニル (各 異性体)、デシル(各異性体)、シクロへキシルメチル等のアルキル基;シクロプロピル 、シクロブチル、シクロペンチル、シクロへキシル、シクロへプチル等の脂環族基;ベ ンジル、フ ネチル(各異性体)、フ ニルプロピル(各異性体)、フ ニルブチル(各 異性体)、メチルベンジル (各異性体)等のアラールキル基が挙げられる。なお、これ らのアルキル基、脂環族基、アラールキル基において、他の置換基、例えば低級ァ ルキル基、低級アルコキシ基、シァノ基、ハロゲン等で置換されていてもよいし、不飽 和結合を有していてもよい。
[0019] このような R1を有するジアルキルカーボネートとしては、例えば、ジメチルカーボネ ート、ジェチルカーボネート、ジプロピルカーボネート(各異性体)、ジァリルカーボネ ート、ジブテニルカーボネート(各異性体)、ジブチルカーボネート (各異性体)、ジぺ ンチルカーボネート(各異性体)、ジへキシルカーボネート(各異性体)、ジヘプチル カーボネート (各異性体)、ジォクチルカーボネート(各異性体)、ジノニルカーボネー ト(各異性体)、ジデシルカーボネート (各異性体)、ジシクロペンチルカーボネート、 ジシクロへキシノレカーボネート、ジシクロへプチノレカーボネート、ジベンジノレカーボネ ート、ジフエネチルカーボネート(各異性体)、ジ(フエ-ルプロピル)カーボネート(各 異性体)、ジ(フエ-ルブチル)カーボネート(各異性体)ジ(クロ口ベンジル)カーボネ ート(各異性体)、ジ (メトキシベンジル)カーボネート(各異性体)、ジ (メトキシメチル) カーボネート、ジ (メトキシェチル)カーボネート(各異性体)、ジ (クロロェチル)カーボ ネート (各異性体)、ジ (シァノエチル)カーボネート (各異性体)等が挙げられる。
[0020] これらの中で、本発明において好ましく用いられるのは、 R1がハロゲンを含まない炭 素数 4以下のアルキル基からなるジアルキルカーボネートであり、特に好まし!/、のは ジメチルカーボネートである。また、好ましいジアルキルカーボネートのなかで、さらに 好ま 、のは、ハロゲンを実質的に含まな!/、状態で製造されたジアルキルカーボネ ートであって、例えばハロゲンを実質的に含まないアルキレンカーボネートとハロゲン を実質的に含まないアルコール力も製造されたものである。
[0021] 本発明で用いられる芳香族モノヒドロキシィ匕合物とは、下記一般式 (9)で表されるも のであり、芳香族基に直接ヒドロキシル基が結合しているものであれば、どの様なもの であってもよい。
Ar'OH (9)
ここで Ar1は炭素数 5〜30の芳香族基を表す。このような Ar1を有する芳香族モノヒ ドロキシ化合物としては、例えば、フエノール;タレゾール(各異性体)、キシレノール( 各異性体)、トリメチルフ ノール (各異性体)、テトラメチルフ ノール (各異性体)、ェ チルフ ノール(各異性体)、プロピルフ ノール(各異性体)、ブチルフ ノール(各 異性体)、ジェチルフヱノール (各異性体)、メチルェチルフエノール (各異性体)、メ チルプロピルフエノール(各異性体)、ジプロピルフエノール(各異性体)、メチルブチ ルフ ノール(各異性体)、ペンチルフ ノール(各異性体)、へキシルフ ノール(各 異性体)、シクロへキシルフェノール (各異性体)等の各種アルキルフエノール類;メト キシフヱノール (各異性体)、エトキシフヱノール (各異性体)等の各種アルコキシフエ ノール類;フエ-ルプロピルフエノール(各異性体)等のァリールアルキルフエノール 類;ナフトール (各異性体)及び各種置換ナフトール類;ヒドロキシピリジン (各異性体) 、ヒドロキシクマリン (各異性体)、ヒドロキシキノリン (各異性体)等のへテロ芳香族モノ ヒドロキシィ匕合物類等が用いられる。これらの芳香族モノヒドロキシィ匕合物の中で、本 発明において好ましく用いられるのは、 Ar1が炭素数 6から 10の芳香族基力もなる芳 香族モノヒドロキシィ匕合物であり、特に好ましいのはフエノールである。また、これらの 芳香族モノヒドロキシィ匕合物の中で、本発明において好ましく用いられるのは、ハロゲ ンを実質的に含まないものである。
[0022] 本発明で原料として用いられるジアルキルカーボネートと芳香族モノヒドロキシィ匕合 物の量比は、ジアルキルカーボネートが、芳香族モノヒドロキシ化合物に対して、モル 比で、 0. 4〜4であることが必要である。この範囲外では、 目的とする芳香族カーボネ ートの所定生産量に対して、残存する未反応の原料が多くなり、効率的でないし、ま たそれらを回収するために多くのエネルギーを要する。この意味で、このモル比は、 0 . 5〜3力好ましく、 0. 8〜2. 5力より好ましく、さらに好まし ヽの ίま、 1. 0〜2. 0である
[0023] 本発明においては、 1時間あたり 1トン以上の芳香族カーボネートを連続的に製造 するのである力 そのために連続的に供給される芳香族モノヒドロキシィ匕合物の最低 量は、製造すべき芳香族カーボネートの量 (Ρトン Zhr)に対して、通常 13Pトン Zhr 、好ましくは、 10Pトン Zhr、より好ましくは 7Pトン Zhrである。さらに好ましい場合は、 7Pトン Zhrよりも少なくできる。
[0024] 本発明にお 、て製造される芳香族カーボネートとは、ジアルキルカーボネートと芳 香族モノヒドロキシィ匕合物とがエステル交換反応によって得られるアルキルァリール カーボネート、ジァリールカーボネート、およびこれらの混合物のことである。このエス テル交換反応においては、ジアルキルカーボネートの 1つまたは 2つのアルコキシ基 が芳香族モノヒドロキシィ匕合物のァリーロキシ基と交換されアルコール類を離脱する 反応と、生成したアルキルァリールカーボネート 2分子間のエステル交換反応である 不均化反応によってジァリールカーボネートとジアルキルカーボネートに変換される 反応が含まれている。本発明では、主としてアルキルァリールカーボネートが得られ るが、このアルキルァリールカーボネートをさらに芳香族モノヒドロキシ化合物とエステ ル交換反応をさせるか、不均化反応をさせることによって、ジァリールカーボネートと することができる。このジァリールカーボネートは、ハロゲンを全く含まないため、エス テル交換法でポリカーボネートを工業的に製造するときの原料として重要である。
[0025] なお、本発明で原料として用いられるジアルキルカーボネートと芳香族モノヒドロキ シ化合物はそれぞれ純度の高 、ものであっても 、 、が、他の化合物を含むものであ つてもよく、例えば、この工程または Zおよび他の工程で生成する化合物や反応副 生物を含むものであってもよい。工業的に実施する場合、これらの原料として、新規 に反応系に導入されるジアルキルカーボネートと芳香族モノヒドロキシィ匕合物にカロえ 、この工程または Zおよび他の工程から回収されたものをも使用することが好ましい。 本発明の方法では、他の化合物を含むこのような回収されたものも原料として用いる ことができる。従って例えば本発明において、ジアルキルカーボネートとしてジメチル カーボネートを、芳香族モノヒドロキシィ匕合物としてフエノールを原料にして、メチルフ ェニルカーボネートおよびジフエニルカーボネートを製造する場合、その原料中に反 応生成物であるメチルアルコールや、メチルフエ-ルカーボネートおよびジフエ-ル カーボネートを少量含んでいてもよぐさらには反応副生物であるァ-ソ一ルゃ高沸 点副生物を含んで!、てもよ ヽ。
[0026] 本発明で使用される触媒としては、例えば下記の化合物から選択される。
く鉛化合物 >PbO、 PbO、 Pb O等の酸化鉛類; PbS、 Pb S等の硫化鉛類; Pb (0
2 3 4 2
H)、 Pb O (OH)等の水酸化鉛類; Na PbO、 K PbO、 NaHPbO、 KHPbO等
2 2 2 2 2 2 2 2 2 2 の亜ナマリ酸塩類; Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、 C
2 3 2 2 4 2 3 2 6 4 4 a PbO、 CaPbO等の鉛酸塩類; PbCO、 2PbCO 'Pb (OH)等の鉛の炭酸塩及
2 4 3 3 3 2
びその塩基性塩類; Pb (OCOCH )、Pb (OCOCH )、Pb (OCOCH ) -PbO - 3H
3 2 3 4 3 2
O等の有機酸の鉛塩及びその炭酸塩や塩基性塩類; Bu Pb、 Ph Pb、 Bu PbCl、 P
2 4 4 3 h PbBr、 Ph Pb (又は Ph Pb )、 Bu PbOH、 Ph PbO等の有機鉛化合物類(Buは
3 3 6 2 3 3
ブチル基、 Phはフ -ル基を示す。); Pb (OCH )、 (CH 0) Pb (OPh)、 Pb (OPh
3 2 3
)等のアルコキシ鉛類、ァリールォキシ鉛類; Pb—Na、 Pb— Ca、 Pb— Ba、 Pb— Sn
2
、 Pb— Sb等の鉛の合金類;ホウェン鉱、センァェン鉱等の鉛鉱物類、及びこれらの 鉛化合物の水和物; く銅族金属の化合物〉 CuCl、 CuCl、 CuBr、 CuBr、 Cul、 Cul、 Cu (OAc) 、 C
2 2 2 2 u (acac) 、ォレイン酸銅、 Bu Cu、 (CH O) Cu、 AgNO、 AgBr、ピクリン酸銀、 Ag
2 2 3 2 3
C H CIO、 [AuC≡C-C (CH ) ]n、 [Cu (C H ) C1]等の銅族金属の塩及び錯体
6 6 4 3 3 7 8 4
(acacはァセチルアセトンキレート配位子を表す。);
くアルカリ金属の錯体〉 Li(acac)、 LiN (C H )等のアルカリ金属の錯体;
4 9 2
く亜鉛の錯体〉 Zn(acac)等の亜鉛の錯体;
2
くカドミウムの錯体〉 Cd (acac)等のカドミウムの錯体;
2
<鉄族金属の化合物〉 Fe (C H ) (CO)、Fe (CO)、Fe (C H ) (CO)、Co (メシ
10 8 5 5 4 6 3 チレン) (PEt Ph) 、 CoC F (CO)、 Ni- π— C H NO、フエ口セン等の鉄族金属
2 2 2 5 5 7 5 5
の錯体;
くジルコニウム錯体〉 Zr(acac) ,ジルコノセン等のジルコニウムの錯体;
4
くルイス酸類化合物〉 A1X、 TiX , TiX、 VOX、 VX、 ZnX、 FeX、 SnX (ここで
3 3 4 3 5 2 3 4
Xはハロゲン、ァセトキシ基、アルコキシ基、ァリールォキシ基である。)等のルイス酸 及びルイス酸を発生する遷移金属化合物;
く有機スズ化合物〉(CH ) SnOCOCH、(C H ) SnOCOC H、 Bu SnOCOC
3 3 3 2 5 3 6 5 3
H、 Ph SnOCOCH、 Bu Sn(OCOCH ) 、 Bu Sn (OCOC H ) 、 Ph SnOCH
3 3 3 2 3 2 2 11 23 2 3 3
、(C H ) SnOPh、 Bu Sn (OCH )、 Bu Sn (OC H ) , Bu Sn (OPh) 、 Ph Sn(
2 5 3 2 3 2 2 2 5 2 2 2 2
OCH )、(C H ) SnOH、 Ph SnOH、 Bu SnO、 (C H ) SnO、 Bu SnCl、 BuS
3 2 2 5 3 3 2 8 17 2 2 2 nO (OH)等の有機スズィ匕合物;
等の金属含有化合物が触媒として用いられる。これらの触媒は多段蒸留塔内に固定 された固体触媒であっても ヽし、反応系に溶解する可溶性触媒であってもよ 、。
[0027] もちろん、これらの触媒成分が反応系中に存在する有機化合物、例えば、脂肪族 アルコール類、芳香族モノヒドロキシ化合物類、アルキルァリールカーボネート類、ジ ァリールカーボネート類、ジアルキルカーボネート類等と反応したものであってもよ!/ヽ し、反応に先立って原料や生成物で加熱処理されたものであってもよい。
[0028] 本発明を反応系に溶解する可溶性触媒で実施する場合は、これらの触媒は、反応 条件にお 、て反応液への溶解度の高!、ものであることが好ま 、。この意味で好まし い触媒としては、例えば、 PbO、 Pb (OH)ゝ Pb (OPh) ; TiCl、 Ti(OMe) 、 (MeO )Ti (OPh) 、 (MeO) Ti (OPh) 、(MeO) Ti (OPh)、 Ti (OPh) ; SnCl、 Sn (OP
3 2 2 3 4 4 h) 、 Bu SnO、 Bu Sn (OPh) ; FeCl、 Fe (OH) 、 Fe (OPh)等、又はこれらをフエ
4 2 2 2 3 3 3
ノール又は反応液等で処理したもの等が挙げられる。
[0029] 図 1は、本発明に係る製造法を実施する連続多段蒸留塔の概略図である。ここで、 本発明において用いられる連続多段蒸留塔 10とは、長さ L (cm)、内径 D (cm)の円 筒形の胴部 7の上下に鏡板部 5を有し、内部に段数 nをもつインターナル 6を有する 構造をしており、塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口 1 と、塔底部またはそれに近い塔の下部に内径 d (cm)の液抜出し口 2と、該ガス抜出
2
し口 1より下部であって塔の上部および Zまたは中間部に 1つ以上の第一の導入口 3 と、該液抜出し口 2より上部であって塔の下部に 1つ以上の第二の導入口 4と、を有 するものであるが、蒸留だけでなく反応も同時に行って、 1時間あたり 1トン以上の芳 香族カーボネートを長期間安定的に製造できるものとするには種々の条件を満足さ せることが必要である。なお、図 1は、本発明に係る連続多段蒸留塔の一の実施態様 であるため、インターナル 6の配置は、図 1に示す構成に限定されるものではない。
[0030] 本発明に係る連続多段蒸留塔は、単なる蒸留機能力 の条件だけではなぐ安定 的に高選択率で反応を進行させるために必要とされる条件とが複合したものであり、
[0031] 具体的には、
(1)長さ L (cm)が式(1)を満足するものであって、
1500 ≤ L ≤ 8000 式(1)
(2)塔の内径 D (cm)が式(2)を満足するものであって、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであって、
2 ≤ L/D ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであって、
20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口 1の内径 d (cm)の比力 式(5)を満足するもの であって、
5 ≤ D/d ≤ 30 式(5) (6)塔の内径 D (cm)と液抜出し口 2の内径 d (cm)の比力 式(6)を満足するもので
2
あって、
3 ≤ D/d ≤ 20 式(6)
2
であることが必要である。
なお、本発明で用いる用語「塔頂部またはそれに近い塔の上部」とは、塔頂部から 下方に約 0. 25Lまでの部分を意味し、用語「塔底部またはそれに近い塔の下部」と は、塔底部から上方に約 0. 25Lまでの部分を意味する。また、「L」は、前述の定義と おりである。
[0032] 式(1)、(2)、(3)、(4)、(5)および (6)を同時に満足する連続多段蒸留塔を用い ることによって、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とから 1時間あ たり 1トン以上の工業的規模で、高選択率'高生産性で、例えば 2000時間以上、好 ましくは 3000時間以上、さらに好ましくは 5000時間以上の長期間、安定的に製造 できることが見出されたのである。本発明の方法を実施することによって、このような 優れた効果を有する工業的規模での芳香族カーボネートの製造が可能になった理 由は明らかではないが、式(1)〜(6)の条件が組み合わさった時にもたらされる複合 効果のためであると推定される。なお、各々の要因の好ましい範囲は下記に示される
[0033] L (cm)が 1500より小さいと、反応率が低下するため目的とする生産量を達成でき ないし、目的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 L を 8000以下にすることが必要である。より好ましい L (cm)の範囲は、 2000≤L ≤6 000 であり、さらに好ましくは、 2500≤L≤5000 である。
[0034] D (cm)が 100よりも小さいと、目的とする生産量を達成できないし、目的の生産量 を達成しつつ設備費を低下させるには、 Dを 2000以下にすることが必要である。より 好ましい D (cm)の範囲は、 150≤D≤1000 であり、さらに好ましくは、 200≤D≤8 00 である。
[0035] LZDが 2より小さい時や 40より大きい時は安定運転が困難となり、特に 40より大き いと塔の上下における圧力差が大きくなりすぎるため、長期安定運転が困難となるだ けでなぐ塔下部での温度を高くしなければならないため、副反応が起こりやすくなり 選択率の低下をもたらす。より好ましい LZDの範囲は、 3≤LZD≤30 であり、さら に好ましくは、 5≤LZD≤15 である。
[0036] nが 20より小さ 、と反応率が低下するため目的とする生産量を達成できな 、し、目 的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 nを 120より も小さくすることが必要である。さらに、 nが 120よりも大きいと塔の上下における圧力 差が大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度 を高くしなければならないため、副反応が起こりやすくなり選択率の低下をもたらす。 より好ましい nの範囲は、 30≤n≤100 であり、さらに好ましくは、 40≤n≤90 であ る。
[0037] D/d力 より小さいと設備費が高くなるだけでなく大量のガス成分が系外に出や すくなるため、安定運転が困難になり、 30よりも大きいとガス成分の抜出し量が相対 的に小さくなり、安定運転が困難になるだけでなぐ反応率の低下をもたらす。より好 ましい D/dの範囲は、 8≤D/d≤25 であり、さらに好ましくは、 10≤D/d≤20 である。
[0038] D/d力^より小さいと設備費が高くなるだけでなく液抜出し量が相対的に多くなり
2
、安定運転が困難になり、 20よりも大きいと液抜出し口や配管での流速が急激に速く なりエロージョンを起こしやすくなり装置の腐食をもたらす。より好ましい DZdの範囲
2 は、 5≤D/d≤18 であり、さらに好ましくは、 7≤D/d≤15 である。
2 2
[0039] さらに本発明では該 dと該 dが式(7)を満足する場合、さらに好ましいことがわかつ
1 2
た。
1 ≤ d /d ≤ 5 式(7)
2 1
[0040] 本発明でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上、配管のつまりやエロージョンがなぐ運転条件に基づい た定常状態で運転が継続でき、高選択率を維持しながら、所定量の芳香族カーボネ ートが製造されて 、ることを意味する。
[0041] 本発明は、 1時間あたり 1トン以上の高生産性で芳香族カーボネートを高選択率で 長期間安定的に生産することを特徴としているが、好ましくは 1時間あたり 2トン以上、 さらに好ましくは 1時間あたり 3トン以上の芳香族カーボネートを生産することにある。 また、本発明は、該連続多段蒸留塔の L、 D、 LZD、 n、 D/d、 D/d がそれぞれ
1 2
、 2000≤L≤ 6000、 150≤D≤1000, 3≤L/D≤30, 30≤n≤100, 8≤ D/d≤25、 5≤D/d≤ 18の場合は、 1時間あたり 2トン以上、好ましくは 1時間
1 2
あたり 2. 5トン以上、さらに好ましくは 1時間あたり 3トン以上の芳香族カーボネートを 製造することを特徴とするものである。さらに、本発明は、該連続多段蒸留塔の L、 D 、 L/D, n、 D/d、 D/d 力それぞれ、 2500≤L≤ 5000、 200≤D≤ 800、 5
1 2
≤LZD≤15、 40≤n≤90、 10≤D/d≤25, 7≤DZd≤ 15の場合は、 1時
1 2
間あたり 3トン以上、好ましくは 1時間あたり 3. 5トン以上、さらに好ましくは 1時間あた り 4トン以上の芳香族カーボネートを製造することを特徴とするものである。
[0042] 本発明でいう芳香族カーボネートの選択率とは、反応した芳香族モノヒドロキシィ匕 合物に対するものであって、本発明では通常 95%以上の高選択率であり、好ましく は 97%以上、さらに好ましくは 99%以上の高選択率を達成することができる。
[0043] 本発明で用いられる連続多段蒸留塔は、インターナルとしてトレイおよび Zまたは 充填物を有する蒸留塔であることが好ましい。本発明でいうインターナルとは、蒸留 塔において実際に気液の接触を行わせる部分のことを意味する。このようなトレイとし ては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、向流トレイ、スーパーフラックト レイ、マックスフラックトレイ等が好ましぐ充填物としては、ラシヒリング、レッシングリン グ、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキング、マクマ ホンパッキング、ヘリパック等の不規則充填物やメラパック、ジェムパック、テクノバック 、フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッド等の 規則充填物が好まし 、。トレイ部と充填物の充填された部分とを合わせ持つ多段蒸 留塔も用いることができる。なお、本発明でいう用語「インターナルの段数 n」とは、トレ ィの場合は、トレイの数を意味し、充填物の場合は、理論段数を意味する。
[0044] 本発明のジアルキルカーボネートと芳香族モノヒドロキシ化合物との反応は、平衡 定数が極端に小さぐし力も反応速度が遅いので、反応蒸留に用いる連続多段蒸留 塔としては、インターナルがトレイである棚段式蒸留塔がより好ま 、ことが見出され た。さらに、該トレイが多孔板部とダウンカマー部を有する多孔板トレイが機能と設備 費との関係で特に優れていることが見出された。そして、該多孔板トレイが該多孔板 部の面積 lm2あたり 100〜1000個の孔を有して!/、ることが好まし!/、ことも見出された 。より好ましい孔数は該面積 lm2あたり 120〜900個であり、さらに好ましくは、 150〜 800個である。また、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であるこ とが好ましいことも見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2で あり、さらに好ましくは 0. 9〜3cm2である。さらには、該多孔板トレイが該多孔板部の 面積 lm2あたり 100〜1000個の孔を有しており、かつ、孔 1個あたりの断面積が 0. 5 〜5cm2である場合、特に好ましいことが見出された。連続多段蒸留塔に上記の条件 を付加することによって、本発明の課題が、より容易に達成されることが判明したので ある。
[0045] 本発明を実施する場合、原料であるジアルキルカーボネートと芳香族モノヒドロキシ 化合物とを触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と 蒸留を同時に行!ヽ、生成するアルコール類を含む低沸点反応混合物を塔上部よりガ ス状で連続的に抜出し、芳香族カーボネート類を含む高沸点反応混合物を塔下部よ り液状で連続的に抜出すことにより芳香族カーボネート類が連続的に製造される。こ の原料中には、反応生成物であるアルコール類、アルキルァリールカーボネート、ジ ァリールカーボネートやアルキルァリールエーテルや高沸点化合物などの反応副生 物が含まれて!/、ても ヽことは前述のとおりである。他の工程での分離'精製にかか る設備、費用のことを考慮すれば、実際に工業的に実施する本発明の場合は、これ らの化合物を少量含んで 、ることが好まし 、。
[0046] また、本発明にお!/、て、原料であるジアルキルカーボネートと芳香族モノヒドロキシ 化合物を連続多段蒸留塔内に連続的に供給するには、蒸留塔の上部のガス抜出し 口よりも下部であるが塔の上部または中間部に設置された 1箇所または数箇所の導 入口から、液状および Zまたはガス状で供給してもよいし、芳香族モノヒドロキシ化合 物を多く含む原料を蒸留塔の上部の導入口から液状で供給し、ジアルキルカーボネ ートを多く含む原料を蒸留塔の下部の液抜出し口よりも上部であって塔の下部に設 置された導入口カゝらガス状で供給することも好まし 、方法である。
[0047] 本発明にお 、て、連続多段蒸留塔内に触媒を存在させる方法はどのようなもので あってもよいが、触媒が反応液に不溶解性の固体状の場合は、連続多段蒸留塔内 の段に設置する、充填物状にして設置するなどによって塔内に固定させる方法など がある。また、原料や反応液に溶解する触媒の場合は、蒸留塔の中間部より上部か ら蒸留塔内に供給することが好ましい。この場合、原料または反応液に溶解させた触 媒液を原料と一緒に導入してもよ 、し、原料とは別の導入口カゝらこの触媒液を導入し てもよい。本発明で用いる触媒の量は、使用する触媒の種類、原料の種類やその量 比、反応温度並びに反応圧力などの反応条件の違いによっても異なる力 原料の合 計質量に対する割合で表して、通常、 0. 0001〜30質量%、好ましくは 0. 005-1 0質量%、より好ましくは 0. 001〜1質量%で使用される。
[0048] 本発明で行われるエステル交換反応の反応時間は連続多段蒸留塔内での反応液 の平均滞留時間に相当すると考えられるが、これは蒸留塔のインターナルの形状や 段数、原料供給量、触媒の種類や量、反応条件などによって異なるが、通常 0. 1〜 10時間、好ましくは 0. 3〜5時間、より好ましくは 0. 5〜3時間である。
[0049] 反応温度は、用いる原料化合物の種類や触媒の種類や量によって異なるが、通常 100〜350°Cである。反応速度を高めるためには反応温度を高くすることが好ま 、 力 反応温度が高いと副反応も起こりやすくなり、例えば、アルキルァリールエーテル などの副生が増えるので好ましくない。このような意味で、好ましい反応温度は 130 〜280。C、より好ましくは 150〜260。C、さらに好ましくは、 180〜250。Cの範囲であ る。また、反応圧力は、用いる原料ィ匕合物の種類や組成、反応温度などにより異なる 1S 減圧、常圧、加圧のいずれであってもよぐ通常 0. 1〜2 X 107Pa、好ましくは、 1 05〜: L07Pa、より好ましくは 2 X 105〜5 X 106の範囲で行われる。
[0050] 本発明で用いられる連続多段蒸留塔を構成する材料は、主に炭素鋼、ステンレス スチールなどの金属材料である力 製造する芳香族カーボネートの品質の面からは 、ステンレススチーノレが好ましい。
[0051] 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではない。
実施例
[0052] ハロゲン含有量は、イオンクロマトグラフィー法で測定した。
<連続多段蒸留塔 > 図 1に示されるような L = 3300cm、 D = 500cm, L/D=6. 6、 n=80、 D/d = 17、 D/d = 9 である連続多段蒸留塔を用いた。なお、この実施例では、インター
2
ナルとして、孔 1個あたりの断面積 =約 1. 5cm2,孔数 =約 250個/ m2を有する多 孔板トレイを用いた。
[0053] [実施例 1]
<反応蒸留 >
フエノール Zジメチルカーボネート = 1. 9 (質量比)力 なる原料 1を蒸留塔の上部 導入ロカゝら液状で 50トン Zhrの流量で連続的に導入した。一方、ジメチルカーボネ ート Zフエノール = 3. 6 (質量比)力 なる原料 2を蒸留塔の下部導入口からガス状 で 50トン Zhrの流量で連続的に導入した。蒸留塔に導入された原料のモル比は、ジ メチルカーボネート Zフエノール = 1. 35であった。この原料にはハロゲンは実質的 に含まれていな力つた (イオンクロマトグラフィーでの検出限界外で lppb以下)。触媒 は Pb (OPh) として、反応液中に約 lOOppmとなるように塔の上部力も導入された。
2
塔底部の温度が 225°Cで、塔頂部の圧力が 7 X 105Paの条件下で連続的に反応蒸 留が行われた。 24時間後には安定的な定常運転が達成できた。塔底部から連続的 に抜出された液には、メチルフエ-ルカーボネートが 18. 2質量0 /0、ジフエ-ルカ一 ボネートが 0. 8質量%含まれていた。メチルフエ-ルカーボネートの 1時間あたりの生 産量は 9. 1トン、ジフエ-ルカーボネートの 1時間あたりの生産量は 0. 4トンであるこ とがわかった。反応したフエノールに対して、メチルフエ-ルカーボネートとジフエ-ル カーボネートを合わせた選択率は 99%であった。
[0054] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後の 1時間あたりの生産量は、メチルフエ-ルカーボネー 卜力 9.讣ン、 9.讣ン、 9.讣ン、 9.讣ン、 9. 讣ンであり、ジフエ-ルカーボネー卜 の 1時間あたりの生産量は 0. 4卜ン、 0. 4卜ン、 0. 4卜ン、 0. 4卜ン、 0. 4卜ンであり、メ チルフエ-ルカーボネートとジフエ-ルカーボネートを合わせた選択率は 99%、 99 %、 99%、 99%、 99%、 99%、であり、非常に安定していた。また、製造された芳香 族カーボネートには、ハロゲンは実質的に含まれていな力つた(lppb以下)。
[0055] [実施例 2] 実施例 1と同じ連続多段蒸留塔を用いて、下記の条件で反応蒸留を行った。 フエノール Zジメチルカーボネート = 1. 1 (質量比)力 なる原料 1を蒸留塔の上部 導入ロカも液状で 40トン Zhrの流量で連続的に導入した。一方、ジメチルカーボネ ート Zフエノール = 3. 9 (質量比)力 なる原料 2を蒸留塔の下部導入口からガス状 で 43トン Zhrの流量で連続的に導入した。蒸留塔に導入された原料のモル比は、ジ メチルカーボネート Zフエノール = 1. 87であった。この原料にはハロゲンは実質的 に含まれていな力つた (イオンクロマトグラフィーでの検出限界外で lppb以下)。触媒 は Pb (OPh) として、反応液中に約 250ppmとなるように塔の上部から導入された。
2
塔底部の温度が 235°Cで、塔頂部の圧力が 9 X 105Paの条件下で連続的に反応蒸 留が行われた。 24時間後には安定的な定常運転が達成できた。塔底部から連続的 に抜出された液には、メチルフエ-ルカーボネートが 20. 7質量0 /0、ジフエ-ルカ一 ボネートが 1. 0質量%含まれていた。メチルフエ-ルカーボネートの 1時間あたりの生 産量は 8. 3トン、ジフエ-ルカーボネートの 1時間あたりの生産量は 0. 4トンであるこ とがわかった。反応したフエノールに対して、メチルフエ-ルカーボネートとジフエ-ル カーボネートを合わせた選択率は 98%であった。
[0056] この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 の 1時間あたりの生産量は、メチルフエ-ルカーボネー卜力 8. 3卜ン、 8. 3卜ン、 8. 3 トンであり、ジフエニルカーボネートの 1時間あたりの生産量は 0. 4トン、 0. 4トン、 0. 4トンであり、メチルフエ-ルカーボネートとジフエ-ルカーボネートを合わせた選択率 は 98%、 98%、 98%であり、非常に安定していた。また、製造された芳香族カーボ ネートには、ハロゲンは実質的に含まれていな力つた(lppb以下)。
[0057] [実施例 3]
実施例 1と同じ連続多段蒸留塔を用いて、下記の条件で反応蒸留を行った。 フエノール Zジメチルカーボネート = 1. 7 (質量比)力 なる原料 1を蒸留塔の上部 導入ロカゝら液状で 86トン Zhrの流量で連続的に導入した。一方、ジメチルカーボネ ート Zフエノール = 3. 5 (質量比)力 なる原料 2を蒸留塔の下部導入口からガス状 で 90トン Zhrの流量で連続的に導入した。蒸留塔に導入された原料のモル比は、ジ メチルカーボネート Zフエノール = 1. 44であった。この原料にはハロゲンは実質的 に含まれていな力つた (イオンクロマトグラフィーでの検出限界外で lppb以下)。触媒 は Pb (OPh) として、反応液中に約 150ppmとなるように塔の上部力も導入された。
2
塔底部の温度が 220°Cで、塔頂部の圧力が 8 X 105Paの条件下で連続的に反応蒸 留が行われた。 24時間後には安定的な定常運転が達成できた。塔底部から連続的 に抜出された液には、メチルフエ-ルカーボネートが 15. 8質量0 /0、ジフエ-ルカ一 ボネートが 0. 5質量%含まれていた。メチルフエ-ルカーボネートの 1時間あたりの生 産量は 12. 8トン、ジフエ-ルカーボネートの 1時間あたりの生産量は 0. 4トンである ことがわかった。反応したフエノールに対して、メチルフエ-ルカーボネートとジフエ- ルカーボネートを合わせた選択率は 99%であった。
[0058] この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 の 1時間あたりの生産量は、メチルフエ-ルカーボネー卜力 12. 8卜ン、 12. 8卜ン、 1 2. 8トンであり、ジフエニルカーボネートの 1時間あたりの生産量は 0. 4トン、 0. 4トン 、 0. 4トンであり、メチルフエ-ルカーボネートとジフエ-ルカーボネートを合わせた選 択率は 99%、 99%、 99%であり、非常に安定していた。また、製造された芳香族力 ーボネートには、ハロゲンは実質的に含まれていなかった(lppb以下)。
産業上の利用可能性
[0059] 本発明は、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とから連続多段蒸 留塔を用いて芳香族カーボネートを、 1時間あたり 1トン以上の工業的規模で、高選 択率 ·高生産性で長期間安定的に製造できる具体的な方法として好適である。 図面の簡単な説明
[0060] [図 1]本発明を実施する連続多段蒸留塔の概略図である。胴部内部にはインターナ ルが設置されている。 なお、図 1にて使用した符号の説明は、以下のとおりである; 1 ガス抜出し口、 2 液抜出し口、 3 導入口、 4 導入口、 5 鏡板部、 6 インターナ ル、 7 胴体部分、 10 連続多段蒸留塔、 L 胴部長さ (cm)、D 胴部内径 (cm c^ ガス抜出し口の内径 (cm)、d 液抜出し口の内径 (cm)。

Claims

請求の範囲 原料としてのジアルキルカーボネートと芳香族モノヒドロキシィ匕合物からの芳香族力 ーボネートの製造方法であって、 (i)該原料を、触媒が存在する連続多段蒸留塔内に連続的に供給する工程と、(ii)アルコール類と芳香族カーボネート類を生成するように、該原料を反応させる 工程と、 (iii)生成するアルコール類を含む低沸点反応混合物を塔上部からガス状で連続 的に抜出すとともに、生成する芳香族カーボネート類を含む高沸点反応混合物を塔 下部より液状で連続的に抜出す工程と、を含み、 (a)該原料のジアルキルカーボネートと芳香族モノヒドロキシ化合物とのモル比が 0 . 4〜4であり、 (b)該連続多段蒸留塔は、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下に鏡 板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部また はそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔 の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部およ 2 び Zまたは中間部に少なくとも 1つの導入口、該液抜出し口より上部であって塔の下 部に少なくとも 1つの導入口を有するものであって、 (1)長さ L (cm)が式(1)を満足するものであり、 1500 ≤ L ≤ 8000 式(1) (2)塔の内径 D (cm)が式(2)を満足するものであり、 100 ≤ D ≤ 2000 式(2) (3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、 2 ≤ L/D ≤ 40 式(3) (4)段数 nが式 (4)を満足するものであり、 20 ≤ n ≤ 120 式(4) (5)塔の内径 D (cm)とガス抜出し口の内径 d (cm)の比力 式(5)を満足するもので あり、 5 ≤ D/d ≤ 30 式(5) (6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するものであ 2 る、 3 ≤ D/d ≤ 20 式(6) 2 ことを特徴とする方法。 [2] 前記工程 (ii)にて、蒸留も同時に行われることを特徴とする請求項 1記載の方法。 [3] 該芳香族カーボネートが連続的に製造され、その生産量が、 1時間あたり 1トン以上 であることを特徴とする請求項 1または 2記載の方法。 [4] ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とを原料とし、この原料を触 媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留を同時に 行 ヽ、生成するアルコール類を含む低沸点反応混合物を塔上部よりガス状で連続的 に抜出し、芳香族カーボネート類を含む高沸点反応混合物を塔下部より液状で連続 的に抜出す反応蒸留方式によって、芳香族カーボネート類を連続的に製造するにあ たり、 (a)該連続多段蒸留塔内に連続的に供給される該原料において、ジアルキルカー ボネートと芳香族モノヒドロキシ化合物とのモル比が 0. 4〜4であり、 (b)該連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部の上下に鏡 板部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔頂部また はそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔 の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部およ 2 び Zまたは中間部に少なくとも一つの導入口、該液抜出し口より上部であって塔の 下部に少なくとも一つの導入口を有するものであって、
(1)長さ L (cm)が式(1)を満足するものであり、
1500 ≤ L ≤ 8000 式(1)
(2)塔の内径 D (cm)が式(2)を満足するものであり、
100 ≤ D ≤ 2000 式(2)
(3)長さ L (cm)と塔の内径 D (cm)の比が、式(3)を満足するものであり、
2 ≤ L/D ≤ 40 式(3)
(4)段数 nが式 (4)を満足するものであり、 20 ≤ n ≤ 120 式(4)
(5)塔の内径 D (cm)とガス抜出し口の内径 (cm)の比が、式(5)を満足するもので あり、
5 ≤ D/d ≤ 30 式(5)
(6)塔の内径 D (cm)と液抜出し口の内径 d (cm)の比力 式(6)を満足するものであ
2
る、
3 ≤ D/d ≤ 20 式(6)
2
ことを特徴とする芳香族カーボネートの工業的製造法。
[5] 該芳香族カーボネートの生産量が、 1時間あたり 1トン以上であることを特徴とする 請求項 5記載の方法。
[6] 該 dと該 dが式(7)を満足することを特徴とする請求項 1〜6のいずれかに記載の
1 2
方法。
1 ≤ d /d ≤ 5 式(7)。
2 1
[7] 該連続多段蒸留塔の L、 D、 LZD、 n、 D/d、 D/d がそれぞれ、 2000≤ L≤ 6
1 2
000、 150≤D≤1000, 3≤L/D≤30, 30≤n≤100, 8≤D/d≤25、 5≤D/d≤ 18であることを特徴とする請求項 1〜6のいずれかに記載の方法。
2
[8] 該連続多段蒸留塔の L、 D、 LZD、 n、 D/d、 D/d がそれぞれ、 2500≤ L≤ 5
1 2
000、 200≤D≤800, 5≤L/D≤15, 40≤n≤90, 10≤D/d≤25、 7 ≤D/d≤ 15であることを特徴とする請求項 1〜7のいずれかに記載の方法。
2
[9] 該連続多段蒸留塔が、該インターナルとしてトレイおよび Zまたは充填物を有する 蒸留塔であることを特徴とする請求項 1〜8のいずれかに記載の方法。
[10] 該連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔であること を特徴とする請求項 10記載の方法。
[11] 該トレイが多孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする 請求項 9または 10記載の方法。
[12] 該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: L000個の孔を有するもので あることを特徴とする請求項 11記載の方法。
[13] 該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求 項 11または 12記載の方法。
[14] 請求項 1〜13のいずれかに記載の方法で製造され、ハロゲン含有量が 0. Ippm 以下である芳香族カーボネート。
PCT/JP2005/011283 2004-06-25 2005-06-20 芳香族カーボネートの工業的製造方法 WO2006001257A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EA200700125A EA011128B1 (ru) 2004-06-25 2005-06-20 Способ промышленного получения ароматического карбоната
EP05751464A EP1762560A4 (en) 2004-06-25 2005-06-20 PROCESS FOR PRODUCING AROMATIC CARBONATE AT THE INDUSTRIAL SCALE
CN200580021061A CN100594208C (zh) 2004-06-25 2005-06-20 芳香族碳酸酯的工业制备方法
US11/630,324 US20070260095A1 (en) 2004-06-25 2005-06-20 Process for the Industrial Production of Aromatic Carbonate
BRPI0512550A BRPI0512550B1 (pt) 2004-06-25 2005-06-20 processo para a produção de um carbonato aromático e carbonato aromático
JP2006528522A JP4192195B2 (ja) 2004-06-25 2005-06-20 芳香族カーボネートの工業的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-188465 2004-06-25
JP2004188465 2004-06-25

Publications (1)

Publication Number Publication Date
WO2006001257A1 true WO2006001257A1 (ja) 2006-01-05

Family

ID=35781735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011283 WO2006001257A1 (ja) 2004-06-25 2005-06-20 芳香族カーボネートの工業的製造方法

Country Status (7)

Country Link
US (1) US20070260095A1 (ja)
EP (1) EP1762560A4 (ja)
JP (1) JP4192195B2 (ja)
CN (1) CN100594208C (ja)
BR (1) BRPI0512550B1 (ja)
EA (1) EA011128B1 (ja)
WO (1) WO2006001257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224511B2 (ja) * 2004-07-13 2009-02-18 旭化成ケミカルズ株式会社 芳香族カーボネート類を工業的に製造する方法
WO2006006566A1 (ja) * 2004-07-13 2006-01-19 Asahi Kasei Chemicals Corporation 芳香族カーボネート類の工業的製造法
BRPI0513225A (pt) * 2004-07-14 2008-04-29 Asahi Kasei Chemicals Corp processo para a produção de um carbonato aromático, e, carbonato potássio, aparelho de destilação reativa
EP1767517A4 (en) * 2004-07-14 2008-08-20 Asahi Kasei Chemicals Corp INDUSTRIAL PROCESS FOR THE PREPARATION OF AROMATIC CARBONATE
CN101006045B (zh) 2004-08-25 2010-12-01 旭化成化学株式会社 高纯度碳酸二苯酯的工业制备方法
KR100898536B1 (ko) 2004-10-14 2009-05-20 아사히 가세이 케미칼즈 가부시키가이샤 고순도 디아릴카보네이트의 제조 방법
WO2008099370A2 (en) * 2007-02-16 2008-08-21 Sabic Innovative Plastics Ip Bv Process for manufacturing dimethyl carbonate
WO2008099369A2 (en) * 2007-02-16 2008-08-21 Sabic Innovative Plastics Ip Bv Process for manufacturing dimethyl carbonate
DE102008029514A1 (de) 2008-06-21 2009-12-24 Bayer Materialscience Ag Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
DE102009016853A1 (de) 2009-04-08 2010-10-14 Bayer Materialscience Ag Verfahren zur Herstellung von Diaryl- oder Alkylarylcarbonaten aus Dialkylcarbonaten
DE102010042937A1 (de) 2010-10-08 2012-04-12 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
EP2650278A1 (de) 2012-04-11 2013-10-16 Bayer MaterialScience AG Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040439A2 (en) * 2000-11-15 2002-05-23 General Electric Company Method for the continuous production of aromatic carbonates
JP2003300936A (ja) * 2002-04-09 2003-10-21 Mitsui Chemicals Inc ジアルキルカーボネートとグリコールの連続同時製造方法
JP2004131421A (ja) * 2002-10-10 2004-04-30 Mitsubishi Chemicals Corp 芳香族カーボネート類の製造方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182726A (en) * 1974-06-25 1980-01-08 Snamprogetti, S.P.A. Process for the preparation of aromatic carbonates
IT1025961B (it) * 1974-11-25 1978-08-30 Snam Progetti Processo per la preparazione di carbonati aromatici
DE2736063A1 (de) * 1977-08-10 1979-02-22 Bayer Ag Verfahren zur herstellung aromatischer kohlensaeureester
US4410464A (en) * 1982-03-15 1983-10-18 General Electric Company Diaryl carbonate process
US4609501A (en) * 1983-12-27 1986-09-02 General Electric Company Process for the preparation of aromatic carbonates
US4552704A (en) * 1983-12-27 1985-11-12 General Electric Company Process for the production of aromatic carbonates
US4554110A (en) * 1983-12-27 1985-11-19 General Electric Company Process for the preparation of aromatic carbonates
US5210268A (en) * 1989-12-28 1993-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Process for continuously producing an aromatic carbonate
DE69117174T2 (de) * 1990-11-29 1996-07-04 Nitto Denko Corp Filtrationsfilm für flüssigkeiten sowie diesen film verwendende filtervorrichtung
GB2255972A (en) * 1991-04-12 1992-11-25 Davy Res & Dev Ltd Production of diaryl carbonates.
DE4129316A1 (de) * 1991-09-03 1993-03-04 Bayer Ag Verfahren zur kontinuierlichen herstellung von dialkylcarbonaten
DE4207853A1 (de) * 1992-03-12 1993-09-16 Bayer Ag Verfahren zur herstellung von aromatischen carbonaten
DE4216121A1 (de) * 1992-05-15 1993-11-18 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Dialkylcarbonaten
DE4218061A1 (de) * 1992-06-01 1993-12-02 Bayer Ag Verfahren zur Herstellung von organischen Carbonaten mit mindestens einer aromatischen Estergruppe
DE4226755A1 (de) * 1992-08-13 1994-02-17 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
DE4226756A1 (de) * 1992-08-13 1994-02-17 Bayer Ag Verfahren zur Herstellung von Dicarbonaten
DE4420778A1 (de) * 1994-06-15 1995-12-21 Bayer Ag Verfahren zur Reinigung von Diphenylcarbonat
WO1997011049A1 (fr) * 1995-09-22 1997-03-27 Asahi Kasei Kogyo Kabushiki Kaisha Procede de preparation de carbonate aromatique
IT1282363B1 (it) * 1996-01-16 1998-03-20 Enichem Spa Procedimento continuo per la preparazione di fenil metil carbonato
SG52906A1 (en) * 1996-01-17 1998-09-28 Asahi Chemical Ind Method for producing an aromatic polycarbonate having improved melt stability
JP4112048B2 (ja) * 1997-09-16 2008-07-02 旭化成ケミカルズ株式会社 芳香族カーボネート類の製法
TW568898B (en) * 1998-06-10 2004-01-01 Asahi Chemical Ind Method for continuously producing a dialkyl carbonate and a diol
US5990362A (en) * 1998-08-31 1999-11-23 General Electric Company Method for preparing bisphenol A
US6093842A (en) * 1998-09-25 2000-07-25 General Electric Company Process for continuous production of carbonate esters
JP3674687B2 (ja) * 1999-03-03 2005-07-20 旭化成ケミカルズ株式会社 ジアルキルカーボネートとジオールを連続的に製造する方法
US6294684B1 (en) * 1999-12-08 2001-09-25 General Electric Company Method and apparatus for the continuous production of diaryl carbonates
CN1900139B (zh) * 2000-12-07 2012-11-14 奇派特石化有限公司 制造缩聚物的方法
US6774256B2 (en) * 2001-06-22 2004-08-10 Exxonmobil Chemical Patents Inc. Low corrosive integrated process for preparing dialkyl carbonates
MY139064A (en) * 2001-11-13 2009-08-28 Shell Int Research METHOD FOR THE CATALYTIC CONVERSION OF ALKYLENE CARBONATE WITH Mg, A1 MIXED (HYDR) OXIDE CATALYST AND ITS USE THEREFORE
AU2003206228A1 (en) * 2002-02-05 2003-09-02 Lg Chem, Ltd. Continuous method for preparing aromatic carbonate using a heterogeneous catalyst and a reaction apparatus for the same
US7141641B2 (en) * 2003-06-26 2006-11-28 General Electric Company Method and apparatus for production of alkyl aryl ether and diaryl carbonate
WO2006001256A1 (ja) * 2004-06-25 2006-01-05 Asahi Kasei Chemicals Corporation 芳香族カーボネートの工業的製造法
JP4224511B2 (ja) * 2004-07-13 2009-02-18 旭化成ケミカルズ株式会社 芳香族カーボネート類を工業的に製造する方法
WO2006006566A1 (ja) * 2004-07-13 2006-01-19 Asahi Kasei Chemicals Corporation 芳香族カーボネート類の工業的製造法
EP1767517A4 (en) * 2004-07-14 2008-08-20 Asahi Kasei Chemicals Corp INDUSTRIAL PROCESS FOR THE PREPARATION OF AROMATIC CARBONATE
BRPI0513225A (pt) * 2004-07-14 2008-04-29 Asahi Kasei Chemicals Corp processo para a produção de um carbonato aromático, e, carbonato potássio, aparelho de destilação reativa
CN101006045B (zh) * 2004-08-25 2010-12-01 旭化成化学株式会社 高纯度碳酸二苯酯的工业制备方法
EA200700530A1 (ru) * 2004-09-02 2007-08-31 Асахи Касеи Кемикалз Корпорейшн Промышленный способ получения высокочистого дифенилкарбоната
CN101010285B (zh) * 2004-09-03 2011-03-16 旭化成化学株式会社 高纯度碳酸二芳基酯的工业制备方法
BRPI0514888B1 (pt) * 2004-09-17 2015-06-09 Asahi Kasei Chemicals Corp Processo industrial para a separação de um álcool subproduzido em um caso de produção em massa contínua de um carbonato aromático em uma escala industrial
US20080223711A1 (en) * 2004-09-27 2008-09-18 Asahi Kasei Chemicals Corporation Industrial Process for Production of Aromatic Carbonate
KR100898536B1 (ko) * 2004-10-14 2009-05-20 아사히 가세이 케미칼즈 가부시키가이샤 고순도 디아릴카보네이트의 제조 방법
US20070260084A1 (en) * 2004-10-22 2007-11-08 Shinsuke Fukuoka Industrial Process for Production of High-Purity Diaryl Carbonate
TW200726745A (en) * 2005-12-16 2007-07-16 Asahi Kasei Chemicals Corp Industrial process for production of aromatic carbonate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040439A2 (en) * 2000-11-15 2002-05-23 General Electric Company Method for the continuous production of aromatic carbonates
JP2003300936A (ja) * 2002-04-09 2003-10-21 Mitsui Chemicals Inc ジアルキルカーボネートとグリコールの連続同時製造方法
JP2004131421A (ja) * 2002-10-10 2004-04-30 Mitsubishi Chemicals Corp 芳香族カーボネート類の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1762560A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Also Published As

Publication number Publication date
EA011128B1 (ru) 2008-12-30
EP1762560A4 (en) 2008-05-07
CN1972894A (zh) 2007-05-30
EP1762560A1 (en) 2007-03-14
JPWO2006001257A1 (ja) 2008-04-17
CN100594208C (zh) 2010-03-17
JP4192195B2 (ja) 2008-12-03
US20070260095A1 (en) 2007-11-08
BRPI0512550A (pt) 2008-03-25
BRPI0512550B1 (pt) 2015-09-08
EA200700125A1 (ru) 2007-06-29

Similar Documents

Publication Publication Date Title
JP4166258B2 (ja) 芳香族カーボネートの工業的製造法
WO2006001257A1 (ja) 芳香族カーボネートの工業的製造方法
JP4224103B2 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4224511B2 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4224510B2 (ja) 芳香族カーボネート類の工業的製造法
JP4224104B2 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4174540B2 (ja) 副生アルコール類の工業的分離方法
JP4174541B2 (ja) 副生アルコール類を工業的に分離する方法
JP4229395B2 (ja) 芳香族カーボネートの工業的製造方法
JP4292211B2 (ja) 高純度ジアリールカーボネートの工業的製造方法
WO2006033291A1 (ja) 副生アルコール類の工業的分離装置
KR100846331B1 (ko) 방향족 카보네이트류를 공업적으로 제조하는 방법
KR100846333B1 (ko) 방향족 카보네이트류를 공업적으로 제조하는 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528522

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3699/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005751464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11630324

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067027041

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580021061.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200700125

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020067027041

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005751464

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11630324

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0512550

Country of ref document: BR