WO2006001187A1 - ディスク状記録媒体、ディスク装置及び光ディスクの製造方法 - Google Patents

ディスク状記録媒体、ディスク装置及び光ディスクの製造方法 Download PDF

Info

Publication number
WO2006001187A1
WO2006001187A1 PCT/JP2005/010795 JP2005010795W WO2006001187A1 WO 2006001187 A1 WO2006001187 A1 WO 2006001187A1 JP 2005010795 W JP2005010795 W JP 2005010795W WO 2006001187 A1 WO2006001187 A1 WO 2006001187A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide groove
light
recording medium
disc
disk
Prior art date
Application number
PCT/JP2005/010795
Other languages
English (en)
French (fr)
Inventor
Ariyoshi Nakaoki
Masanobu Yamamoto
Kimihiro Saito
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US11/628,357 priority Critical patent/US20080062854A1/en
Publication of WO2006001187A1 publication Critical patent/WO2006001187A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/006Overwriting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24056Light transmission layers lying on the light entrance side and being thinner than the substrate, e.g. specially adapted for Blu-ray® discs
    • G11B7/24059Light transmission layers lying on the light entrance side and being thinner than the substrate, e.g. specially adapted for Blu-ray® discs specially adapted for near-field recording or reproduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Definitions

  • the present invention relates to a disk-shaped recording medium, a disk device, and an optical disk manufacturing method.
  • the present invention relates to a disk-shaped recording medium that optically records or reproduces an information signal using near-field light, and a disk device that records or reproduces an information signal on the disk-shaped recording medium. Relates to a method of manufacturing an optical disk as an information recording medium.
  • 100-300Gbpsi is said to be the limit due to the superparamagnetic effect and difficulty in controlling the gap width of the magnetic head, and optically assisted magnetic recording is expected to exceed this limit.
  • optical recording using near-field light is expected to increase the recording density.
  • This near-field light is non-propagating light that exists in a region below the diffraction limit of light around a minute aperture or minute object.
  • the near-field light propagates into the object and induces an interaction.
  • it can be realized by further miniaturizing the size of the minute aperture or the minute object.
  • high-density optical recording can be performed.
  • information is recorded and reproduced by making a single optical spot follow a guide groove (Group: Groove) or ⁇ (Land: Land) in the same manner as DVD. .
  • the recording area recorded on the optical recording medium is formed along the group, and one guide groove is configured to correspond to the light spot by the near-field light. ing. For this reason, when a large number of light spots are formed on the optical recording medium to improve the recording density, a number of groups corresponding to the formed light spots are required. In reality, it is not easy to cut a group corresponding to such a large number of light spots in a spiral shape with a fine pitch.
  • a concave portion is formed on the surface of the optical recording medium. Sometimes it ends up. If such a concave portion is formed, it becomes a barrier when recording / reproducing processing by near-field light is performed.
  • the present invention has been proposed in view of the above-described problems, and an object of the present invention is to perform high-density recording of information signals on a disc-shaped recording medium that can be recorded and reproduced by near-field light.
  • an object of the present invention is to perform high-density recording of information signals on a disc-shaped recording medium that can be recorded and reproduced by near-field light.
  • it is also possible to provide a powerful disk-shaped recording medium.
  • the present invention writes information signals on a substrate on which guide grooves are formed in a disc-shaped recording medium in which guide grooves for tracking control are formed on tracks in a rewritable area where information signals can be rewritten.
  • information signals can be rewritten by multi-beam near-field light at least in a rewritable area, and a guide groove is formed on the outermost surface of the disc-shaped recording medium.
  • a concave portion is formed in accordance with the position where the head is located.
  • the present invention also relates to a disk device that records or reproduces information on a disk-shaped recording medium in which a guide groove for tracking control is formed on each track in a rewritable area where information signals can be rewritten.
  • a control unit having a two-axis actuator for causing near-field light as an information signal to bleed into a rewritable region with a multi-beam, and a drive control unit for moving the two-axis actuator to a desired track position.
  • the control unit includes a recording layer for writing information signals at least in a rewritable area on the substrate on which the guide groove is formed, and a guide groove is formed, and a recess is formed on the outermost surface according to the position.
  • a two-axis actuating device is provided via a drive control unit so that the spot arrays by near-field light are arranged according to the recesses. That controls the mediator.
  • a recording layer for writing information signals is laminated on a substrate on which guide grooves are formed, and this recording layer is at least in a rewritable area.
  • the information signal can be rewritten by the multi-field near-field light, and a concave portion is formed on the surface according to the position where the guide groove is formed on the outermost surface.
  • a high-density recording process can be realized by forming a plurality of light spots of near-field light. In other words, when reproducing and recording using near-field light, the distance (air layer) from the lens that emits the light beam to the outermost surface of the disk affects the signal intensity.
  • the present invention is useful when applied to an optical disc that uses a multi-beam and reproduces or records information by a near field.
  • FIG. 1 is a block circuit diagram showing an optical recording apparatus to which the present invention is applied.
  • FIG. 2 is a side view showing a lens block provided in the optical recording apparatus.
  • FIG. 3 is a characteristic diagram showing the relationship between the amount of return light and the distance between gaps.
  • FIG. 4 is a partial cross-sectional view showing an optical disc on which signals are recorded by an optical recording apparatus to which the present invention is applied.
  • FIG. 5 is a cross-sectional view showing an example in which multi-field near-field light is oozed out from a signal recording surface in a lens block mounted on an optical recording apparatus to which the present invention is applied.
  • FIG. 6 is a diagram showing a light spot formed by the near-field light from the lens block force and the like in FIG.
  • FIG. 7 is a plan view showing an optical disk formed by meandering guide grooves.
  • FIG. 8 is a plan view showing an example in which four light spots are formed on the optical disc at a time.
  • FIGS. 9A to 9G are cross-sectional views showing the optical disc manufacturing process in the order of steps.
  • FIG. 9A shows a state in which the surface of the glass master is polished and cleaned
  • FIG. 9B shows a photo on the surface of the cleaned glass master.
  • Fig. 9C shows the state where the resist is applied.
  • FIG. 9D shows a state in which the group pattern is recorded by irradiating on the photoresist
  • FIG. 9D shows a state in which the glass master is developed
  • FIG. 9E shows a nickel-deposited layer formed by depositing nickel on the surface of the glass master.
  • FIG. 9F shows a state in which a disc substrate is formed by a stamper formed of a nickel plating layer
  • FIG. 9G shows an optical disc on which a recording layer and a protective film are formed.
  • the optical recording apparatus 1 is an apparatus in which an optical disk 2 is detachable as a recording medium, and a spindle motor 3 that rotationally drives the detachable optical disk 2 and signal recording on the optical disk 2.
  • the optical head 4 that irradiates the laser beam onto the surface 2a and detects the return light reflected by the signal recording surface force of the optical disc 2, and the control signal S based on the return light detected by the optical head 4 respectively.
  • a gap control unit 6 for generating.
  • a disk table for mounting the optical disk 2 is integrally attached to the spindle motor 3.
  • the spindle motor 3 is driven to rotate at a constant linear velocity (CLV) or constant angular velocity (CAV), for example, based on a spindle drive signal to which a system controller force (not shown) is also supplied.
  • CLV constant linear velocity
  • CAV constant angular velocity
  • the optical head 4 emits a light beam to each recording layer of the optical disc 2 that is rotated by driving of the spindle motor 3, and detects the return light reflected by the signal recording surface 2a of the optical disc 2 and is not shown. Output to the signal processor. At this time, the optical head 4 is controlled so as to emit laser light having an optimum wavelength for the optical disk 2 depending on the type of the optical disk 2 to be rotated.
  • the gap control unit 6 generates a control signal S based on the gap error signal GE transmitted from the optical head 4 and outputs it to the optical head 4. That is, the control signal S can be used to finely adjust the objective lens included in the optical head 4 in the direction of approaching and separating from the optical disk 2.
  • the optical head 4 is connected to the optical disk 2 by an access mechanism (not shown).
  • the optical head 4 is controlled to move so that the optical head 4 is positioned on a predetermined recording track of the optical disk 2.
  • optical head 4 used in the optical recording apparatus 1 to which the present invention is applied will be described in more detail.
  • this optical head 4 includes an APC (Automatic Power Controller) 42 that controls the drive current of a semiconductor laser that can emit multi-beam laser light, and a holder 43 that supports each semiconductor laser.
  • the beam splitter 44 disposed in the optical path of the multi-beam laser beam emitted from the semiconductor laser, the collimator lens 45 that converts the laser beam transmitted through the beam splitter 44 into parallel light, and the collimator lens 45 Mirror 46 disposed in the optical path of the laser beam made parallel by the laser beam, the 1Z4 wavelength plate 47 on which the laser beam reflected by this mirror 46 is incident, and the laser beam that has passed through this 1Z4 wavelength plate 47 Is received on the signal recording surface 2a of the optical disk 2, the condensing lens 55 that collects the return light reflected from the signal recording surface 2a of the optical disc 2, and the return light.
  • a light receiving element 56 that.
  • a semiconductor laser 71 that emits multi-beam laser light having a predetermined wavelength force is attached to the holder 43.
  • This semiconductor laser 71 is a light-emitting element using semiconductor recombination light emission.
  • the semiconductor laser 71 emits a laser beam based on an information signal supplied from the information source 58 after the drive current is controlled by the APC 42 so that the output of the laser beam becomes constant.
  • the beam splitter 44 transmits the laser light emitted from the semiconductor laser 71 and guides it to the optical disk 2, and reflects the return light reflected from the optical disk 2 and guides it to the light receiving element 56.
  • Laser light that is divergent light that has passed through the beam splitter 44 is converted into parallel light from the collimator lens 45 and passes through the 1Z4 wavelength plate 47.
  • the beam splitter 44 uses a polarization beam splitter when the laser light emitted from the semiconductor laser 71 has polarization, so that the return light reflected from the optical disc 2 returns to the semiconductor laser 71. Can be prevented.
  • the mirror 46 bends the optical path by reflecting the laser beam that has passed through the beam splitter 44. As a result, the laser beam is transmitted from the optical disc 2 positioned below the optical head 4. Irradiation is almost perpendicular to the recording surface 2a.
  • the 1Z4 wavelength plate 47 gives a phase difference of ⁇ 2 to the passing laser beam.
  • the linearly polarized laser beam emitted from the semiconductor laser 71 passes through the 1Z4 wavelength plate 47 and becomes circularly polarized. Further, the circularly polarized laser beam that returns after being reflected from the optical disc 2 becomes linearly polarized light when it passes through the 1Z4 wavelength plate 47.
  • the lens block 38 is disposed in the optical path of the laser light reflected by the mirror 46, and has a function of condensing the laser light and irradiating it on the signal recording surface 2a of the optical disc 2.
  • the lens block 38 is supported by a biaxial actuator provided in the lens block 38 so as to be movable in two axial directions, ie, a direction approaching and separating from the optical disc 2 and a radial direction of the optical disc 2.
  • the lens block 38 is moved by a two-axis actuator based on the control signal S generated by the return light from the optical disc 2, and focusing control is realized.
  • Each laser beam condensed on the signal recording surface 2a of the optical disc 2 is reflected by the signal recording surface 2a and becomes parallel light by passing through the lens block 38. Then, the return light that is reflected back by the optical disk 2 is passed through the collimator lens 45 through the 1Z4 wavelength plate 47 to become focused light, and is reflected by the beam splitter 44.
  • the light receiving element 56 reflects the laser beam reflected by the beam splitter 44, receives the laser beam condensed by the condenser lens 55, and photoelectrically converts the laser beam to generate a gap error signal GE, which will be described later, and sends this to the gap control unit 6. Supply.
  • the light receiving element 56 reflects the laser beam reflected by the beam splitter 44, receives the laser beam condensed by the condenser lens 55, and photoelectrically converts the laser beam to generate a gap error signal GE, which will be described later, and sends this to the gap control unit 6. Supply.
  • the light receiving element 56 reflects the laser beam reflected by the beam splitter 44, receives the laser beam condensed by the condenser lens 55, and photoelectrically converts the laser beam to generate a gap error signal GE, which will be described later, and sends this to the gap control unit 6. Supply.
  • the light receiving element 56 reflects the laser beam reflected by the beam splitter 44, receives the laser beam condensed by the
  • the lens block 38 is disposed in the optical path of the laser light reflected from the mirror 46.
  • the objective lens 62, the SIL (Solid Immersion Lens) 63, the lens folder 64, and 2 A shaft actuator 65 is provided.
  • the objective lens 62 is an aspheric lens having a function of condensing laser light and supplying it to the SIL 63. It is.
  • the SIL63 is a high-refractive-index lens having a shape obtained by cutting out a part of a spherical lens.
  • the SIL 63 is disposed close to the signal recording surface 2a, and the laser beam supplied from the objective lens 62 is incident on the spherical surface side and is focused on the central portion of the surface (end surface) opposite to the spherical surface.
  • a SIM Solid Immersion Mirror
  • a reflecting mirror may be used as an alternative to the SIL 63 described above.
  • the lens folder 64 holds the objective lens 62 and the SIL 63 in a predetermined positional relationship.
  • the SIL 63 is held by the lens folder 64 so that the spherical surface faces the objective lens 62 and the surface (end surface) opposite to the spherical surface faces the signal recording surface 2a of the optical disc 2.
  • the lens folder 64 by arranging the SIL 63 having a high refractive index between the objective lens 62 and the signal recording surface 2a by the lens folder 64, a numerical aperture NA larger than the numerical aperture of the objective lens 62 alone can be obtained.
  • the spot size of the laser light emitted from the lens is inversely proportional to the numerical aperture NA of the lens. Therefore, the objective lens 62 and SIL 63 can be used to make the laser light with a smaller spot size.
  • the two-axis actuator 65 operates the lens fonter 64 in the focus direction according to the control voltage output as the control signal S from the gap control unit 6.
  • the evanescent light defined in the lens block 38 is light that is incident on the end face of the SIL 63 at an angle larger than the critical angle and has also exuded the reflection boundary surface force of the laser light totally reflected. End face force of SI L63
  • the signal recording surface 2a of the optical disc 2 is in the -field (near field) described later, the above-mentioned evanescent light oozing out from the end surface of the SIL63 is applied to the signal recording surface 2a. It will be.
  • d ⁇ ⁇ ⁇ 2 The area defined as d ⁇ ⁇ ⁇ 2 is -field, that is, the gap d defined by the distance between the signal recording surface 2a of the optical disc 2 and the end face of SIL63 satisfies d ⁇ ⁇ ⁇ 2,
  • the state in which the evanescent light oozes out from the end surface to the signal recording surface 2a of the optical disc 2 is referred to as a -field state.
  • a state in which the gap d satisfies d> ⁇ 2 and no evanescent light oozes out on the signal recording surface 2a is referred to as a far field state.
  • the amount of light returned in the far field is a constant value.
  • the gap can be controlled to be constant. That is, if the control is performed so that the return light amount becomes the control target value P as shown in FIG. 3, the gap d can be held at a constant distance.
  • NA is 1.0. If it is above, it becomes possible to exude near field light.
  • the gap d in the lens block 38 having the above-described constituent force is brought close to the signal recording surface 2a until ⁇ a2 or less, if a land is provided as an alternative to this guide groove, it collides with this during scanning. Since there is a possibility, the effect of the present invention becomes more remarkable by making the guide groove concave.
  • the focus control can be performed by using the two-axis actuator 65, the recording by the near-field light in which the position of the objective lens with respect to the light spot is strictly required. Realize more reliable processing during playback It becomes possible to show.
  • the optical disc 2 is formed by laminating at least a recording layer 83 on a substrate 81 on which guide grooves 81a are formed.
  • the substrate 81 is made of polycarbonate, for example.
  • the guide groove 81a formed on the substrate 81 can be easily cut to have a width of nanometer size by exposure using, for example, an electron beam. That is, the substrate 81 can be easily manufactured using the current mastering apparatus.
  • the recording layer 83 is composed of a phase change recording film made of a material such as GeSbTe, and when it is composed of a magneto-optical recording film, it also has a material force such as TbFeCo.
  • a minute recess 85a is further formed on the outermost surface of the optical disc 2 in accordance with the position where the guide groove 81a is formed.
  • a resist or the like by using a solid and inorganic film such as a diamond-like carbon (DLC) film or an ultraviolet-curing resin for the layers up to the outermost surface of the optical disk 2 Compared to the above, the recess 85a can be formed efficiently.
  • DLC diamond-like carbon
  • the optical recording apparatus 1 is advantageous in that the ratio of the guide groove 81a to the number of light spots to be formed can be reduced as much as possible, and the recording density can be increased.
  • the size of the recess 85a is not limited to a powerful size, for example, having a depth of 30 nm and a width of about 80 nm.
  • the recording process can be realized by forming a light spot of near-field light on the optical disk 2 having the recess 85a formed on the outermost surface.
  • Various operations can be performed following the powerful recess 85a. Acquisition of the signal of the guide track using the recess 85a can also be realized.
  • the position of the recess 85a can be increased by forming it according to the position of the guide groove 81a. Benefits come out.
  • FIG. 5 shows an example in which the multi-beam near-field light oozes out from the signal recording surface 2a in the lens block 38 having the above-described constituent force.
  • the near-field light based on the first laser light L1 indicated by a solid line is applied to the point P on the signal recording surface 2a.
  • the near-field light based on the second laser light L2 indicated by the dotted line in the multi-beam laser light is applied to the point q on the signal recording surface 2a.
  • FIG. 6 also shows the light spot Sp formed by the near-field light from the lens block force, and also the force in the D direction in FIG. As shown in FIG.
  • the light spots Sp of the multi-beams are arranged in a row so as to sandwich a guide groove 81a perpendicular to the disc traveling direction A of the optical disc 2.
  • the angle ⁇ with respect to the straight guide groove 81a connecting the centers P of the light spots Sp may be any value.
  • the width of the guide groove 81a is set to d or less so that the tracking information can be obtained. It is possible to detect the changing power of the amount of light based on the light spot Sp. For example, it is possible to obtain such tracking information by detecting a push-pull signal.
  • the guide groove 81a is meandering as shown in FIG. May be formed. That is, by causing the guide groove 81a to meander based on information such as a clock and an address, the signal is detected by the light spot array SL composed of two light spots Sp formed so as to straddle the powerful guide groove 81a. It is also possible. That is, by calculating the deviation of the return light from the guide groove 81a with the two light spots Sp and applying it to the two-axis actuator 65 as an error signal, the tracking as described above is realized.
  • the optical disc 2 By causing the light spot Sp to follow the guide groove 81a in this way, for example, when the guide groove 81a is drawn in a spiral shape, the optical disc 2 is rotated once in FIG. 6 and FIG. The light spot row SL moves from the position indicated by the solid line to the position indicated by the dotted line.
  • the pitch between the guide grooves 81a may be controlled to be n X d in the case of forming a light spot array composed of n light spots.
  • FIG. 8 shows an example in which four light spots Sp are formed on the optical disc 2 at a time.
  • two light spots Sp are formed on each side so as to sandwich the guide groove 81a.
  • the number of light spots Sp formed on both sides of the guide groove 81a is preferably 1: 1, but the ratio is not limited to this and may be any ratio.
  • one light spot Sp may be configured at one end side of the guide groove 81a, and three light spots Sp may be configured at a ratio of 1: 3 on the other end side.
  • the light spots Sp are formed according to the guide groove 8 la, a configuration in which four light spots Sp are arranged only on one end side of the guide groove 81a may be adopted. Furthermore, the number of the light spots Sp may be any as long as it is plural.
  • the optical spot is controlled by controlling the distance between the guide grooves 81a to be equal to the n X d formula force 4d, that is, the distance between the four spots.
  • G The irradiation positions of Sp do not overlap each other, and the recording / reproducing process on the optical disc 2 can be performed efficiently.
  • a glass master 101 is prepared, and the surface of the glass master 101 is polished and cleaned.
  • a photoresist 102 is applied to the surface of the cleaned glass master 101.
  • the laser beam 103 modulated with the group information is condensed by the objective lens 104 and irradiated onto the photoresist 102 to record the group pattern.
  • Near-field light can also be used as the laser light applied to the dies 102.
  • the glass master 101 is developed as shown in FIG. 9D. At this time, for example, only the photoresist 102 in the portion irradiated with the laser light is dissolved by the developer. As a result, a pattern corresponding to the pattern formed on the recording surface is formed on the glass master 101.
  • nickel is vapor-deposited on the surface of the glass master 101 having a pattern formed on the surface to form a nickel plating layer 117. Thereafter, the nickel-plated layer 117 is pulled away from the glass master 101 so that the concavo-convex pattern formed on the glass master 101 is transferred to the nickel-plated layer 117.
  • the nickel-plated layer 117 to which the concavo-convex pattern is transferred is used as a stamper for molding a disk substrate constituting the optical disk.
  • a stamper 127 constituted by the nickel plating layer 117 is mounted on, for example, a mold apparatus for injection molding, and a synthetic resin material is molded using this mold apparatus.
  • the composite soot material is formed, as shown in FIG. 9F, the disk substrate 112 to which the group pattern 112a which is the uneven pattern formed on the surface of the stamper 127 is transferred is formed.
  • a recording film 105 is formed on the surface of the disk substrate 112 on which the group pattern 112a is formed, and then a transparent protective film 106 is formed so as to cover the recording film 105.
  • An optical disc 107 for recording is formed.
  • the recording layer 105 is formed using a material that enables recording of an information signal by irradiating a light beam or rewrite of the information signal.
  • the recording layer 105 is composed of a phase change recording film made of a material such as GeSbTe, or a magneto-optical recording film having a material force such as TbFeCo.
  • the protective film 106 is preferably formed of a solid and inorganic film such as a diamond-like carbon (DLC) film. Further, the protective film 106 may be formed by ultraviolet curing resin.
  • DLC diamond-like carbon
  • the near field is not limited to the case where a force is described that describes an example in which a signal can be recorded based on two modes of the near field and the far field. Only to near-field light based on mode You may apply to the apparatus which can record a signal more.
  • the optical recording apparatus 1 to which the present invention is applied may adopt a configuration in which a signal recorded on the optical disc 2 can be reproduced.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Head (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

 本発明は、情報信号の書換えが可能な光ディスクであり、情報信号の書換えが可能な書換可能領域のトラックに各々トラッキング制御用の案内溝(81a)が形成され、案内溝(81a)が形成された基板上には、情報信号を書き込むための記録層(83)が積層されている。この記録層(83)は、少なくとも情報信号の書換可能な領域においてマルチビームの近接場光により情報信号の書換えが可能とされ、最表面には、案内溝(81a)が形成されている位置に応じて凹部(85a)が形成されている。

Description

ディスク状記録媒体、ディスク装置及び光ディスクの製造方法 技術分野
[0001] 本発明は、近接場光を用いて光学的に情報信号の記録又は再生を行うディスク状 記録媒体、このディスク状記録媒体に対し情報信号の記録又は再生を行うディスク装 置に関し、さらには、情報記録媒体としての光ディスクの製造方法に関する。
本出願は、日本国において 2004年 6月 28日に出願された日本特許出願番号 200 4—190250を基礎として優先権を主張するものであり、この出願は参照することによ り、本出願に援用される。
背景技術
[0002] 従来、磁気記録媒体や光記録媒体の高密度化、大容量化の研究が進められ、高 密度化、大容量ィ匕を図った記録媒体が提供されている。この種の記録媒体のうち、 光記録媒体においては、 DVD (Digital Versatile Disc)が提供され、さらに、 DVDの 数倍以上の記録密度を有する次世代型の DVDの開発も進められている。一方、ハ ードディスク磁気記録装置 (HDD)の記録密度も年々増加して!/ヽる。
ところで、画像情報のデジタル化や高精細化、光通信の高速度化に伴い、さらなる ストレージの大容量化、高密度化が求められており、 2010年には lTbits/ (inch) 2の 記録密度の達成が期待されて 、る。
ハードディスク磁気記録装置では、超常磁性効果や、磁気ヘッドのギャップ幅の制 御の困難性から、 100〜300Gbpsiが限界といわれ、その限界を超えるものとして、光 アシスト磁気記録が期待されて 、る。
光記録媒体にぉ 、ては、近接場光を利用した光記録が記録密度の高度化を図る 上で期待されている。この近接場光とは、微小開口や微小物体の周囲において光の 回折限界以下の領域内に存在する非伝播光である。他の物体を当該微小開口ゃ微 小物体の回折限界以下の距離まで近接させると、近接場光は当該物体内へ伝播す るとともに相互作用を誘起させる。このような近接場光を滲出させるためには、微小開 口や微小物体のサイズをより微細化することにより実現することができる。また、この 滲出させた近接場光を光記録媒体に照射することにより高密度の光記録を行うことが 可能となる。この近接場光を用いた光記録においては、 DVD等と同様に単一光スポ ットを案内溝 (グループ: Groove)又は畝 (ランド: Land)に追従させて、情報の記録や 再生を行う。
上述した近接場光を用 、て光記録媒体上に情報を記録するためには、グループの 形成されていない平滑な書換可能領域に対してこれを実行する必要があり、特に高 密度に情報を記録するためには、力かる平滑な書換可能領域の面積を増加させる 必要がある。
従来の光記録媒体にぉ 、ては、光記録媒体上に記録される記録領域がグループ に沿うように形成され、近接場光による光スポットに対して 1つの案内溝が対応するよ うに構成されている。このため、記録密度を向上させるベく光記録媒体上に数多くの 光スポットを形成させた場合には、形成した光スポットに応じた数のグループが必要と なる。現実的にこのような数多くの光スポットに対応したグループをスパイラル状に細 か ヽピッチでカッティングするのは容易ではな 、。
通常、光記録媒体上においてグループを 2本並列で形成させるためには、カツティ ング時も 2本のビームを使用し、又は高速カッティング用の光ビームをゥォブルさせる ことで、これを擬似的に実現する必要があるが、必要なグループが 3本、 4本と増えて V、くにつれて、作製の難易度が増すと!、う問題点がある。
力かる問題を解決すベぐこの近接場光を用いた光記録の高密度化と転送レートの 向上を図った光記録媒体、記録再生装置等が、特開 2003— 272176号公報等に おいて提案されている。この公報には、スイングアームに取り付けられた摺動若しくは 浮上型のスライダによる制御方法が開示されている。かかる従来例においては、対物 レンズが光記録媒体の面に倣って駆動されるため、独立して配置されている光軸に 対して、力かる対物レンズが傾いたり位置がずれたりすることが予想される。特に、近 接場光による記録再生を行う場合においては、光記録媒体の表面並びに近接場光 の光スポットに対する対物レンズの位置が厳格に求められるため、より信頼性の高い 記録再生処理を行う上で障壁になる場合も考えられる。
また、記録再生処理の一工程においては、光記録媒体の表面に凹部が形成されて しまう場合もある。このような凹部が形成されてしまうと、近接場光による記録再生処 理を行う場合にぉ 、てかえって障壁となってしまう。
発明の開示
発明が解決しょうとする課題
本発明は、上述した問題点に鑑みて提案されたものであり、その目的とするところは 、近接場光による記録再生可能なディスク状記録媒体において、情報信号の高密度 な記録を行うことができることに加え、表面に形成された凹部を有効活用することによ り、これに追従させた各種処理を実行することが可能なディスク状記録媒体を提供す ることにあり、また力かるディスク状記録媒体が挿入された場合に、情報信号の高密 度な記録処理を安定して実行可能なディスク装置を提供することにある。
本発明は、情報信号の書換えが可能な書換可能領域のトラックに各々トラッキング 制御用の案内溝が形成されたディスク状記録媒体において、案内溝が形成された基 板上には、情報信号を書き込むための記録層が積層され、記録層は、少なくとも書 換可能領域においてマルチビームの近接場光により情報信号の書換えが可能とされ 、当該ディスク状記録媒体の最表面には、案内溝が形成されている位置に応じて凹 部が形成されている。
また、本発明は、情報信号の書換えが可能な書換可能領域のトラックに各々トラッ キング制御用の案内溝が形成されたディスク状記録媒体に対し情報の記録又は再 生を行うディスク装置にぉ ヽて、情報信号としての近接場光をマルチビームで書換可 能領域に滲出させるための 2軸ァクチユエータと、 2軸ァクチユエータを所望のトラック 位置へ移動させるための駆動制御部とを有する制御部とを備え、制御部は、案内溝 が形成された基板上に、少なくとも書換可能領域において情報信号を書き込むため の記録層が積層され、さらに案内溝が形成されて 、る位置に応じて最表面に凹部が 形成されて ヽるディスク状記録媒体が挿入された場合には、近接場光によるスポット 列が凹部に応じて配列されるように駆動制御部を介して 2軸ァクチユエータを制御す る。
本発明に係るディスク状記録媒体は、案内溝が形成された基板上に、情報信号を 書き込むための記録層が積層され、この記録層は、少なくとも書換可能領域におい てマルチビームの近接場光により情報信号の書換え可能とされ、最表面には、案内 溝が形成されている位置に応じて表面に凹部を形成しているので、マルチビームの 近接場光により情報信号の書換えを行う際に、近接場光の光スポットを複数形成させ ることにより高密度の記録処理を実現することができる。すなわち、近接場光を用いて 再生、記録を行う場合にには、光ビーム^^光するレンズからディスク最表面の距離 (空気層)が信号の強度に影響を与える。このため、案内溝を凹状にし、保護膜をこ のグループに沿った形で形成することにより空気層の厚さが厚くなり、案内溝の信号 が得やすくなる。さらに、記録面を凸形状とし、案内溝を所定間隔としてマルチビーム 用とすることにより、レンズより近い位置で記録部が広く形成されることになり、近接場 形成しやすい記録面とすることができる。このため、本発明は、マルチビームを用い、 近接場による情報の再生又は記録を行う光ディスクに適用して有用である。
本発明のさらに他の目的、本発明によって得られる具体的な利点は、以下におい て図面を参照して説明される実施に形態から一層明らかにされるであろう。
図面の簡単な説明
[図 1]図 1は、本発明を適用した光記録装置を示すブロック回路図である。
[図 2]図 2は、光記録装置が備えるレンズブロックを示す側面図である。
[図 3]図 3は、戻り光量とギャップ間距離との関係を示す特性図である。
[図 4]図 4は、本発明を適用した光記録装置により信号の記録が行われる光ディスク を示す部分断面図である。
[図 5]図 5は、本発明を適用した光記録装置に搭載されるレンズブロックにおいて、マ ルチビームの近接場光を信号記録面に対して滲出する例を示す断面図である。
[図 6]図 6は、レンズブロック力ゝらの近接場光により形成される光スポットを図 5中 D方 向力 示す図である。
[図 7]図 7は、案内溝を蛇行して形成した光ディスクを示す平面図である。
[図 8]図 8は、光スポットを光ディスク上に一度に 4つ形成した例を示す平面図である。
[図 9]図 9A〜図 9Gは光ディスクの製造工程を工程順に示す断面図であって、図 9A はガラス原盤の表面を研磨洗浄する状態を示し、図 9Bは洗浄したガラス原盤の表面 にフォトレジストを塗布した状態を示し、図 9Cはグループ情報で変調したレーザ光を フォトレジスト上に照射し、グループパターンを記録した状態を示し、図 9Dはガラス原 盤を現像処理した状態を示し、図 9Eはガラス原盤の表面にニッケルを蒸着し-ッケ ルメツキ層を形成した状態を示し、図 9Fはニッケルメツキ層により構成されたスタンパ によりディスク基板を成形した状態を示し、図 9Gは記録層及び保護膜が形成された 光ディスクを示す。
発明を実施するための最良の形態
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
まず、本発明を適用したディスク装置を説明する。光記録装置 1は、図 1に示すよう に、記録媒体として光ディスク 2を着脱可能とした装置であって、着脱可能とされた光 ディスク 2を回転駆動させるスピンドルモータ 3と、光ディスク 2の信号記録面 2a上にレ 一ザ光を照射するとともに、光ディスク 2の信号記録面力 反射される戻り光を検出す る光学ヘッド 4と、光学ヘッド 4により検出された戻り光に基づいてそれぞれ制御信号 Sを生成するギャップ制御部 6とを備えている。
スピンドルモータ 3には、光ディスク 2を装着するディスクテーブルが一体的に取り付 けられる。スピンドルモータ 3は、図示しないシステムコントローラ力も供給されるスピ ンドル駆動信号に基づき、駆動軸を例えば、線速度一定 (CLV:Constant Linear Vel ocity)、又は角速度一定(CAV: Constant Angular Velocity)で回転駆動させことによ り、ディスクテーブル上に装着された光ディスク 2を回転する。
光学ヘッド 4は、スピンドルモータ 3の駆動により回転操作される光ディスク 2の各記 録層に光ビーム^^光し、光ディスク 2の信号記録面 2aにて反射された戻り光を検出 して図示しない信号処理部へ出力する。この際、光学ヘッド 4は、回転操作される光 ディスク 2の種類によって、その光ディスク 2に最適な波長のレーザ光を出射するよう に制御される。
また、ギャップ制御部 6は、光学ヘッド 4から送信されるギャップエラー信号 GEに基 づいて制御信号 Sを生成し、これを光学ヘッド 4へ出力する。即ち、この制御信号 S により、光学ヘッド 4の備える対物レンズを光ディスク 2に近接離間する方向へ微調整 することができる。
この光記録装置 1では、図示しないアクセス機構により、光学ヘッド 4を光ディスク 2 の径方向に送り操作し、さらに、光学ヘッド 4が光ディスク 2の所定の記録トラック上に 位置するように移動制御する。
次に、本発明を適用した光記録装置 1に用いられる光学ヘッド 4を更に詳しく説明 する。
この光学ヘッド 4は、図 1に示すように、マルチビームのレーザ光を出射可能な半導 体レーザの駆動電流を制御する APC (Automatic Power Controller) 42と、各半導体 レーザを支持するホルダ 43と、この半導体レーザから出射されたマルチビームのレ 一ザ光の光路中に配されたビームスプリッタ 44と、このビームスプリッタ 44を透過した レーザ光を平行光とするコリメータレンズ 45と、このコリメータレンズ 45により平行光と されたレーザ光の光路中に配設されたミラー 46と、このミラー 46により反射されたレ 一ザ光が入射する 1Z4波長板 47と、この 1Z4波長板 47を通過したレーザ光を光デ イスク 2の信号記録面 2a上に集光するレンズブロック 38と、光ディスク 2の信号記録面 2aから反射して戻ってきた戻り光を集光する集光レンズ 55と、戻り光を受光する受光 素子 56とを備えている。
ホルダ 43には、所定の波長力 なるマルチビームのレーザ光を出射する半導体レ 一ザ 71が取り付けられている。この半導体レーザ 71は、半導体の再結合発光を利用 した発光素子である。この半導体レーザ 71は、レーザ光の出力が一定になるように A PC42により駆動電流が制御された上で、情報源 58から供給される情報信号に基づ くレーザ光を出射する。
ビームスプリッタ 44は、半導体レーザ 71から出射されたレーザ光を透過させて光デ イスク 2に導くとともに、光ディスク 2から反射して戻ってくる戻り光を反射して受光素子 56へと導く。このビームスプリッタ 44を透過した発散光であるレーザ光は、コリメータ レンズ 45〖こより平行光とされ、 1Z4波長板 47を透過する。なお、ビームスプリッタ 44 は、半導体レーザ 71から出射されたレーザ光が偏光を有する場合に、偏光ビームス プリッタを用いることで、光ディスク 2から反射して戻ってくる戻り光が半導体レーザ 71 に戻ることを防止することができる。
ミラー 46は、ビームスプリッタ 44を透過したレーザ光を反射されることにより光路を 折り曲げる。これにより、レーザ光は、光学ヘッド 4の下方に位置する光ディスク 2の信 号記録面 2aに対して略垂直に照射されることになる。
1Z4波長板 47は、通過するレーザ光に π Ζ2の位相差を与えるものである。半導 体レーザ 71から出射された直線偏光のレーザ光は、 1Z4波長板 47を通過して円偏 光となる。また光ディスク 2を反射して戻ってくる円偏光のレーザ光は、この 1Z4波長 板 47を通過した場合に、直線偏光となる。
レンズブロック 38は、ミラー 46を反射したレーザ光の光路中に配設されており、この レーザ光を集光して光ディスク 2の信号記録面 2a上に照射させる機能を有する。この レンズブロック 38は、自身が備える 2軸ァクチユエータによって、光ディスク 2に近接 離間する方向及び光ディスク 2の径方向の 2軸方向に移動可能に支持されている。 そして、このレンズブロック 38は、光ディスク 2からの戻り光により生成された制御信号 Sに基づいて、 2軸ァクチユエータにより移動動作され、フォーカシング制御が実現さ れること〖こなる。
光ディスク 2の信号記録面 2a上に集光された各レーザ光は、この信号記録面 2aで 反射され、レンズブロック 38を通過することにより平行光となる。そして、光ディスク 2 力 反射して戻ってくる戻り光は、 1Z4波長板 47を介してコリメータレンズ 45を通過 することにより集束光とされ、ビームスプリッタ 44を反射する。
また、受光素子 56は、ビームスプリッタ 44を反射し、集光レンズ 55により集光された レーザ光を受光して光電変換して後述するギャップエラー信号 GEを生成し、これを ギャップ制御部 6へ供給する。ちなみに、この受光素子 56上においてマルチビーム のレーザ光の光スポットに対応した数の検出パターンを作製しておくことにより、それ ぞれ独立した信号として取得することが可能となる。この受光素子 56に形成された検 出パターンを最適化することにより、例えばプッシュプル法に基づ 、て光スポットを読 み取ることも可能となる。
次に、レンズブロックの詳細について更に詳しく説明する。レンズブロック 38は、ミラ 一 46を反射したレーザ光の光路中に配設されており、図 2に示すように、対物レンズ 62と、 SIL (Solid Immersion Lens) 63と、レンズフォルダ 64と、 2軸ァクチユエータ 65 とを備えている。
対物レンズ 62は、レーザ光を集光して SIL63に供給する機能を有する非球面レン ズである。 SIL63は、球形レンズの一部を平面にして切り取った形状をした高屈折率 のレンズである。 SIL63は、信号記録面 2aに近接配置され、対物レンズ 62から供給 されたレーザ光を球面側力 入射し、球面と反対側の面 (端面)の中央部に集束させ る。
なお、このレンズブロック 38では、上述した SIL63の代替として、反射ミラーが形成 された SIM (Solid Immersion Mirror)を用いてもよい。
レンズフォルダ 64は、対物レンズ 62と、 SIL63とを所定の位置関係で保持している 。 SIL63は、レンズフォルダ 64によって、球面側が対物レンズ 62と対向するように、ま た球面と反対側の面 (端面)が光ディスク 2の信号記録面 2aと対向するように保持さ れる。
このように、レンズフォルダ 64によって対物レンズ 62と、信号記録面 2aとの間に高 屈折率の SIL63を配置することで、対物レンズ 62のみの開口数よりも大きな開口数 NAを得ることができる。一般に、レンズから照射されるレーザ光のスポットサイズは、 レンズの開口数 NAに反比例することから、対物レンズ 62、 SIL63によって、より微小 なスポットサイズのレーザ光にすることができる。
2軸ァクチユエータ 65は、ギャップ制御部 6から制御信号 Sとして出力される制御電 圧に応じてフォーカス方向にレンズフオノレダ 64を動作させる。
レンズブロック 38において定義されるエバネセント光は、 SIL63の端面に臨界角以 上の角度で入射され全反射したレーザ光の反射境界面力も滲み出した光である。 SI L63の端面力 光ディスク 2の信号記録面 2aから、後述する-ァフィールド (近接場) 内にある場合に、 SIL63の端面より滲み出した上述のエバネセント光は、信号記録 面 2aに照射されることになる。
続いて、ユアフィールドについて説明をする。一般に、ユアフィールドは、図 2に示 すように SIL63の端面力ら、光ディスク 2における信号記録面 2aまでの距離(ギャップ )を(1としたとき、 SIL63に入射されたレーザ光の波長えによって d≤ λ Ζ2と定義され る領域が-ァフィールドである。即ち、光ディスク 2の信号記録面 2aと、 SIL63の端面 との距離で定義されるギャップ dが、 d≤ λ Ζ2を満たし、 SIL63の端面からエバネセ ント光が光ディスク 2の信号記録面 2aに滲み出す状態を-ァフィールド状態といい、 ギャップ dが、 d> λ Ζ2を満たし、信号記録面 2a上にエバネセント光が滲み出さない 状態をファーフィールド状態と 、う。
ところで、ファーフィールド状態である場合、 SIL63の端面に臨界角以上の角度で 入射されたレーザ光は、全て反射されて戻り光となる。したがって、図 3に示すように ファーフィールド状態での戻り光量は、一定値となっている。
一方、ユアフィールド状態である場合、 SIL63の端面に臨界角以上の角度で入射 されたレーザ光の一部は、上述したように、 SIL63の端面つまり反射境界面において 、エバネセント光として光ディスク 2の信号記録面 2aに滲み出す。したがって、図 3に 示すように全反射されたレーザ光の戻り光量は、ファーフィールド状態のときょり減少 することになる。また、この-ァフィールド状態における戻り光量は、 SIL63端面とディ スク 2との距離に依存して減少する。
なお、ユアフィールド状態である場合において、戻り光量がギャップ長に対して線形 に変化する線形領域と、非線形に変化する非線形領域とに分類することができる。し たがって、 SIL63の端面の位置が-ァフィールド状態にあり、かつ線形領域に属する 場合には、戻り光量を受光素子 56により受光して光電変換してギャップエラー信号 G Eを生成し、これに基づきフィードバックサーボを行うことにより、ギャップを一定に制 御することが可能となる。即ち、図 3に示すように戻り光量が制御目標値 Pになるよう に制御を行えば、ギャップ dを一定の距離に保持することが可能となる。
ちなみに、このレンズフォルダを構成する対物レンズ 62、 SIL63の組み合わせによ り、 NA= 1. 83の高 NA状態を形成している力 力かる場合に限定されるものではな ぐ NAが 1. 0以上であれば、近接場光を滲出させることが可能となる。
上述した構成力もなるレンズブロック 38におけるギャップ dを λ Ζ2以下となるまで 信号記録面 2aへ近接させることから、この案内溝の代替として畝 (ランド: Land)を設 けると走査時にこれに衝突する可能性もあることから、案内溝を凹状にすることで、本 発明の効果がより顕著になる。
このように、本発明を適用した光記録装置 1では、 2軸ァクチユエータ 65を用いるこ とによりフォーカス制御を行うことができるため、光スポットに対する対物レンズの位置 が厳格に求められる近接場光による記録再生において、より信頼性の高い処理を実 現することが可能となる。
次に、本発明を適用した光記録装置 1により情報信号を記録する光ディスク 2の詳 細な構成につき説明をする。
この光ディスク 2は、より簡略に示すと例えば図 4に示すように、案内溝 81aが形成さ れた基板 81上に、少なくとも記録層 83が積層されてなる。
基板 81は、例えばポリカーボネートからなる。この基板 81に形成された案内溝 81a は、例えば電子線等を用いて露光することにより容易にナノメータサイズの幅となるよ うにカッティングすることが可能となる。即ち、この基板 81は現状のマスタリング装置を 用いて容易に作製することができる。
また、記録層 83は、 GeSbTe等の材料カゝらなる相変化記録膜で構成され、またこれ を光磁気記録膜で構成する場合には、例えば TbFeCo等の材料力もなる。
この光ディスク 2の最表面には、案内溝 81aが形成されている位置に応じて微小な 凹部 85aがさらに形成されている。特に光ディスク 2の最表面に至るまでの層をダイヤ モンド状カーボン(DLC : Diamond Like Carbon)膜等のような固形かつ無機系の膜や 紫外線硬化榭脂を用いることにより、レジスト等を使用する場合と比較して凹部 85aを 効率的〖こ形成させることができる。
なお、近接場光を用いて高密度の光記録を行う場合には、この凹部 85aの領域を 極力少なくすることにより、平坦な部分の面積を増カロさせることが望ましいが、マルチ ビームを利用する光記録装置 1では、形成させる光スポットの数に対する案内溝 81a の割合を極力減らすことができる点において有利となり、記録密度を高めることも可 能となる。
ちなみに、この凹部 85aのサイズは、例えば深さが 30nmであり、幅が約 80nmで構 成される力 力かるサイズに限定されるものではない。
即ち、本発明を適用した光記録装置 1では、最表面に凹部 85aが形成された光ディ スク 2に対して近接場光の光スポットを形成させることにより記録処理を実現すること ができることに加え、力かる凹部 85aに追従させた各種動作を実行させることができる 。この凹部 85aを利用したガイドトラックの信号の取得をも実現することができる。特に 、この凹部 85aの位置は、上述した案内溝 81aの位置に応じて形成させることでかか るメリットが出てくる。
このような構成カゝらなる光ディスク 2に対して、光記録装置 1により、近接場光をマル チビームで照射する場合につき説明をする。
図 5は、上述した構成力もなるレンズブロック 38において、マルチビームの近接場 光を信号記録面 2aに対して滲出させる例を示している。マルチビームのレーザ光の うち実線で示される第 1のレーザ光 L1に基づく近接場光は、信号記録面 2aにおける 点 Pへ照射されることになる。またこのマルチビームのレーザ光のうち点線で示される 第 2のレーザ光 L2に基づく近接場光は、信号記録面 2aにおける点 qへ照射される。 図 6は、レンズブロック力ゝらの近接場光により形成される光スポット Spを図 5中 D方向 力も示している。マルチビームの各光スポット Spは、図 6に示すように、光ディスク 2の ディスク進行方向 Aに対して垂直な案内溝 81aを挟むようにして一列に配置される。 この光スポット Spの中心 Pを結ぶ直線の案内溝 81aに対する角度 φはいかなる値で あってもよい。力かる場合には角度 φを予め識別しておくことにより、各光スポット Sp の距離を取得することが可能となり、後段の信号処理における有利性を確保すること ができる。
この図 6において、マルチビームの各光スポット Sp間の、光ディスク 2の径方向 Bに おける距離を dとした場合に、この案内溝 81aの幅を d以下とすることにより、トラツキン グ情報を両光スポット Spに基づく光量の変化力 検出することが可能となり、例えば プッシュプル信号を検出することによりかかるトラッキング情報を得ることも可能となる ちなみに、この案内溝 81aは、図 7に示すように蛇行されて形成されていてもよい。 即ち、クロックやアドレス等の情報に基づいて案内溝 81aを蛇行させることにより、力 力る案内溝 81aを跨ぐようにして形成された 2つの光スポット Spからなる光スポット列 S Lにより、信号検出することも可能となる。即ち、この 2つの光スポット Spにより戻り光の 案内溝 81aとのズレ分を算出し、それを誤差信号として 2軸ァクチユエータ 65に与え ることにより上述の如きトラッキングが実現される。
このようにして案内溝 81aに光スポット Spを追従させることにより、例えば螺旋状に 案内溝 81aが描かれている場合には、光ディスク 2を 1周させた後には、図 6、図 7に 実線で示される位置から点線で示される位置まで光スポット列 SLが移動することにな る。
なお、この案内溝 81a間のピッチは、 n個の光スポットからなる光スポット列を形成さ せる場合において、 n X dとなるように制御してもよい。これにより、形成させる光スポッ ト Spの中心 Pを結ぶ直線が仮に案内溝 81 aに対して垂直方向となる場合であつても 、光スポット Spの照射位置が互いに重なり合うことがなくなり、光ディスク 2への記録再 生処理を効率よく行うことが可能となる。
また、光スポット Spを光ディスク 2上に一度に 4つ形成させる例を図 8に示す。この図 8に示されるように、案内溝 81aを挟むようにして両側に 2つずつ光スポット Spが形成 されている。案内溝 81aが螺旋状に描かれている場合には、光ディスク 2を 1周させた 後には、図 8に示す実線で示される位置カゝら点線で示される位置まで光スポット Spが 移動することになる。なお、案内溝 81aの両側に形成される光スポット Spの数は 1 : 1 の比になるのが望ましいが、これに限定されるものではなぐいかなる比で構成されて いてもよい。例えば、案内溝 81aの一端側に 1つの光スポット Spが、他端側には 3つ の光スポット Spが 1 : 3の比で構成されていてもよい。また、光スポット Spは、案内溝 8 laに応じて形成されているものであれば、案内溝 81aの一端側のみに 4つ並べる構 成であってもよい。さらに、この光スポット Spの数は複数であればいかなるものであつ てもよい。
光スポット Spを光ディスク 2上に一度に 4つ形成させる場合も同様に n X dの式力 4 d、即ち 4つ分のスポット間隔以上に案内溝 81aの間隔を制御することにより、光スポ ット Spの照射位置が互いに重なり合うことがなくなり、光ディスク 2への記録再生処理 を効率よく行うことが可能となる。
次に、本発明を適用した記録用の光ディスクの製造工程を説明する。
本発明が適用される光ディスク 2を製造するには、図 9Aに示すように、ガラス原盤 1 01を用意し、このガラス原盤 101の表面を研磨洗浄する。次いで、図 9Bに示すよう に、洗浄したガラス原盤 101の表面にフォトレジスト 102を塗布する。次いで、図 9C に示すように、グループ情報で変調したレーザ光 103を対物レンズ 104により集光し てフォトレジスト 102上に照射し、グループパターンを記録する。この場合に、フオトレ ジスト 102に照射するレーザ光としては、近接場光を用いることも可能である。
上述したようにグループパターンを露光記録した後、図 9Dに示すように、ガラス原 盤 101を現像処理する。このとき、例えば、レーザ光が照射された部分のフォトレジス ト 102のみが現像液により溶解される。この結果、ガラス原盤 101上には、記録面に 形成されるパターンに対応するパターンが形成される。
次に、図 9Eに示すように、現像を行って表面にパターンが形成されたガラス原盤 1 01の表面に、ニッケルを蒸着し、ニッケルメツキ層 117を形成する。その後、この-ッ ケルメツキ層 117をガラス原盤 101から引き離すことで、ガラス原盤 101上に形成され た凹凸パターンがニッケルメツキ層 117に転写される。凹凸パターンが転写された- ッケルメツキ層 117は、光ディスクを構成するディスク基板を成形するためのスタンパ として用いられる。
ニッケルメツキ層 117により構成されたスタンパ 127を、例えば射出成形用の金型 装置に装着し、この金型装置を用いて合成樹脂材料を成形する。合成榭材料が成 形されると、図 9Fに示すように、スタンパ 127の表面に形成された凹凸パターンであ るグループパターン 112aが転写されたディスク基板 112が形成される。
このディスク基板 112のグループパターン 112aが形成された面上に記録膜 105を 形成し、さら〖こ、記録膜 105を覆って透明な保護膜 106を被着形成することによって 、図 9Gに示すような記録用の光ディスク 107が形成される。
この光ディスク 107において、記録層 105は、光ビームの照射によって情報信号の 記録を可能とし、又は情報信号の書換えを可能とする材料を用いて形成される。例 えば、記録層 105は、 GeSbTe等の材料カゝらなる相変化記録膜より構成され、又は T bFeCo等の材料力もなる光磁気記録膜により構成される。
また、ここで、保護膜 106は、ダイヤモンド状カーボン(DLC : Diamond Like Carbon) 膜等のような固形かつ無機系の膜により形成することが望ましい。また、保護膜 106 は、紫外線硬化榭脂により形成したものであってもよ 、。
なお、本発明を適用した光記録装置 1では、ユアフィールドと、ファーフィールドの 2 つのモードに基づいて信号を記録することができる例について説明をした力 かかる 場合に限定されるものではなぐニァフィールドのみのモードに基づいて近接場光に より信号を記録できる装置に適用してもよい。また、本発明を適用した光記録装置 1 により、光ディスク 2に記録されている信号を再生できる構成を採用してもよいことは 勿論である。
なお、本発明は、図面を参照して説明した上述の実施例に限定されるものではなく
、添付の請求の範囲及びその主旨を逸脱することなぐ様々な変更、置換又はその 同等のものを行うことができることは当業者にとって明らかである。

Claims

請求の範囲
[1] 1.情報信号の書換えが可能な書換可能領域のトラックに各々トラッキング制御用の 案内溝が形成されたディスク状記録媒体にぉ ヽて、
上記案内溝が形成された基板上には、上記情報信号を書き込むための記録層が 積層され、
上記記録層は、少なくとも書換可能領域にぉ 、てマルチビームの近接場光により 上記情報信号の書換えが可能とされ、
当該ディスク状記録媒体の最表面には、上記案内溝が形成されて 、る位置に応じ て凹部が形成されていることを特徴とするディスク状記録媒体。
[2] 2.上記案内溝は、上記マルチビームの近接場光のスポット間隔 d以下の幅で構成さ れ、上記スポットの数 nとしたとき d X n以上のピッチで構成されてなることを特徴とする 請求の範囲第 1項記載のディスク状記録媒体。
[3] 3.当該ディスク状記録媒体の最表面に至るまでの層は、ダイヤモンド状カーボン (D
LC;Diamond Like Carbon)膜で構成されていることを特徴とする請求の範囲第 1項記 載のディスク状記録媒体。
[4] 4.上記案内溝は、蛇行させて形成されてなることを特徴とする請求の範囲第 1項記 載のディスク状記録媒体。
[5] 5.情報信号の書換えが可能な書換可能領域のトラックに各々トラッキング制御用の 案内溝が形成されたディスク状記録媒体につき記録 Z再生処理するディスク装置に おいて、
上記情報信号としての近接場光をマルチビームで上記書換可能領域に滲出させる ための 2軸ァクチユエータと、当該 2軸ァクチユエータを所望のトラック位置へ移動さ せるための駆動制御部とを有する制御手段とを備え、
上記制御手段は、上記案内溝が形成された基板上に、少なくとも書換可能領域に おいて上記情報信号を書き込むための記録層が積層され、さらに上記案内溝が形 成されて!/ヽる位置に応じて最表面に凹部が形成されて!ヽるディスク状記録媒体が挿 入された場合には、上記近接場光によるスポット列が上記凹部に応じて配列されるよ うに、上記駆動制御部を介して上記 2軸ァクチユエータを制御することを特徴とするデ イスク装置。
[6] 6.上記制御手段における 2軸ァクチユエータは、供給された光を集光させるとともに 上記近接場光を滲出させるための対物レンズを備え、上記対物レンズの開ロスイツ チ NAは、 1.0以上であることを特徴とする請求の範囲第 5項記載のディスク装置。
[7] 7.近接場光を用いたマルチビームによる書換可能な領域を有する光ディスクの製造 方法において、
上記書換可能な領域に形成されるトラックに各々トラッキング制御用の案内溝を基 板上に形成し、
上記案内溝が形成された上記基板上に、少なくとも書換可能な領域においてマル チビームの近接場光により情報信号を記録するための記録層を形成し、
上記基板の表面には、上記案内溝が形成されて 、る位置に応じて凹部を形成する ことを特徴とする光ディスクの製造方法。
PCT/JP2005/010795 2004-06-28 2005-06-13 ディスク状記録媒体、ディスク装置及び光ディスクの製造方法 WO2006001187A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/628,357 US20080062854A1 (en) 2005-06-13 2005-06-13 Disc Recording Medium, Disc Drive, and Manufactuing Method of Optical Disc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004190250A JP2006012336A (ja) 2004-06-28 2004-06-28 ディスク状記録媒体、ディスク装置
JP2004-190250 2004-06-28

Publications (1)

Publication Number Publication Date
WO2006001187A1 true WO2006001187A1 (ja) 2006-01-05

Family

ID=35779390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010795 WO2006001187A1 (ja) 2004-06-28 2005-06-13 ディスク状記録媒体、ディスク装置及び光ディスクの製造方法

Country Status (4)

Country Link
JP (1) JP2006012336A (ja)
CN (1) CN1977317A (ja)
TW (1) TWI291692B (ja)
WO (1) WO2006001187A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076686A (ja) * 2009-10-01 2011-04-14 Sony Corp 記録装置、記録方法、光記録媒体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176023A (ja) * 1997-12-16 1999-07-02 Hitachi Maxell Ltd 光デイスクならびに光デイスク装置
JP2001176128A (ja) * 1999-12-14 2001-06-29 Ricoh Co Ltd 光記録再生媒体、その製造方法およびその光記録再生方法
JP2001250275A (ja) * 2000-03-01 2001-09-14 Tosoh Corp 表面再生型光記録媒体
JP2001256687A (ja) * 2000-03-08 2001-09-21 Tosoh Corp 光記録媒体
JP2002074703A (ja) * 2000-09-01 2002-03-15 Sony Corp トラック誤差信号検出方法とその装置、光学ピックアップ、トラッキング制御装置、光学式記録・再生装置
JP2003331471A (ja) * 2002-05-07 2003-11-21 Ricoh Co Ltd 表面型相変化記録媒体、及びそれを用いた光記録システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138626A (ja) * 1987-11-26 1989-05-31 Victor Co Of Japan Ltd 情報信号の光学的記録再生方式
JP2808579B2 (ja) * 1990-11-09 1998-10-08 日本電気ホームエレクトロニクス株式会社 光ディスクのトラッキング制御方法
JPH04339320A (ja) * 1990-12-19 1992-11-26 General Electric Co <Ge> 光学ディスクとそのトラッキングおよび読み取り装置
JP3005648B2 (ja) * 1991-04-25 2000-01-31 日本電気ホームエレクトロニクス株式会社 光ディスク記録方法および光ディスク装置
JPH08321084A (ja) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd 記録媒体のトラッキング方法
JP2002319153A (ja) * 2001-04-19 2002-10-31 Sony Corp 信号再生装置及びその信号検出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176023A (ja) * 1997-12-16 1999-07-02 Hitachi Maxell Ltd 光デイスクならびに光デイスク装置
JP2001176128A (ja) * 1999-12-14 2001-06-29 Ricoh Co Ltd 光記録再生媒体、その製造方法およびその光記録再生方法
JP2001250275A (ja) * 2000-03-01 2001-09-14 Tosoh Corp 表面再生型光記録媒体
JP2001256687A (ja) * 2000-03-08 2001-09-21 Tosoh Corp 光記録媒体
JP2002074703A (ja) * 2000-09-01 2002-03-15 Sony Corp トラック誤差信号検出方法とその装置、光学ピックアップ、トラッキング制御装置、光学式記録・再生装置
JP2003331471A (ja) * 2002-05-07 2003-11-21 Ricoh Co Ltd 表面型相変化記録媒体、及びそれを用いた光記録システム

Also Published As

Publication number Publication date
TWI291692B (en) 2007-12-21
JP2006012336A (ja) 2006-01-12
CN1977317A (zh) 2007-06-06
TW200614204A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
US20060023577A1 (en) Optical recording and reproduction method, optical pickup device, optical recording and reproduction device, optical recording medium and method of manufacture the same, as well as semiconductor laser device
EP0414380A2 (en) Optical recording and reproducing apparatus
JP2007519163A (ja) 事前フォーマット済み線状光データ記憶媒体
US8111604B2 (en) Fabrication method of multilayer optical record medium and recording apparatus for multilayered optical record medium
US20110103211A1 (en) Optical recording medium, method of manufacturing optical recording medium, recording method and reproducing method
CN102576556A (zh) 光记录介质和光记录介质的制造方法
CN101521028B (zh) 光学拾取设备以及记录再生装置
US20120281513A1 (en) Recording apparatus, recording method, and optical recording medium
JP2006040446A (ja) 光ディスク及び情報再生装置
WO2003073420A1 (en) Optical recording medium, its recording/reproducing apparatus, its storage apparatus, and its recording/reproducing method
JP3368422B2 (ja) レンズ装置、これを用いた光学ヘッドおよび光ディスク装置
JPH11213419A (ja) 光学ヘッドおよび光学記録再生装置
JP4354075B2 (ja) 複合磁気ヘッド装置、それを用いた情報記録再生装置および記録媒体
CN102037511B (zh) 光学信息记录再生装置、光学信息记录再生方法、光学信息记录介质以及固体浸没透镜
WO2006001187A1 (ja) ディスク状記録媒体、ディスク装置及び光ディスクの製造方法
US20080062854A1 (en) Disc Recording Medium, Disc Drive, and Manufactuing Method of Optical Disc
JPH11238238A (ja) 光ヘッドおよび光ディスク装置
JP2004241088A (ja) 光記録再生方法、光記録再生装置、及び光記録媒体
JP2000030299A (ja) 記録媒体およびこれに適した情報記録再生装置に適用可能な光ヘッド装置
KR20070018990A (ko) 디스크형 기록매체, 디스크 장치 및 광디스크의 제조방법
JP2002092927A (ja) 光ピックアップ装置、光学素子の製造方法、光情報記録媒体および光ディスク装置
JPH06259813A (ja) 再生専用光ディスクの製造方法とその製造装置
JP4145514B2 (ja) 光ディスク駆動装置の制御方法、光ディスク駆動装置および光学的記録/再生装置の制御方法ならびに光学的記録/再生装置
JP2006190423A (ja) 光記録再生方法、光ピックアップ装置及び光記録再生装置
JP2005018852A (ja) 光情報記録媒体、光情報記録媒体の製造方法、光情報記録再生光学系、及び光情報記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11628357

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067025954

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580021635.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067025954

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11628357

Country of ref document: US