WO2006001095A1 - Substrate dome rotating mechanism - Google Patents

Substrate dome rotating mechanism Download PDF

Info

Publication number
WO2006001095A1
WO2006001095A1 PCT/JP2005/000851 JP2005000851W WO2006001095A1 WO 2006001095 A1 WO2006001095 A1 WO 2006001095A1 JP 2005000851 W JP2005000851 W JP 2005000851W WO 2006001095 A1 WO2006001095 A1 WO 2006001095A1
Authority
WO
WIPO (PCT)
Prior art keywords
dome
substrate
side gear
vacuum
base
Prior art date
Application number
PCT/JP2005/000851
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Fuse
Tatsumi Abe
Masayuki Takimoto
Hiroyuki Komuro
Kazuhito Aonahata
Original Assignee
Showa Shinku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co., Ltd. filed Critical Showa Shinku Co., Ltd.
Priority to CN2005800131933A priority Critical patent/CN1946873B/en
Publication of WO2006001095A1 publication Critical patent/WO2006001095A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Definitions

  • the present invention relates to a rotating mechanism for a substrate dome mounted on a vacuum apparatus.
  • the vacuum vapor deposition method is a film forming method in which a vapor deposition material is evaporated in a state where a vacuum chamber is evacuated in advance to a high vacuum region, and a vapor deposition material is deposited on a substrate surface.
  • a vapor deposition material is evaporated in a state where a vacuum chamber is evacuated in advance to a high vacuum region, and a vapor deposition material is deposited on a substrate surface.
  • the evaporation distribution of the evaporation material in the vacuum chamber is not uniform, so a dome shape called a substrate dome is maintained.
  • the present invention relates to a rotation mechanism of a rotation drive type substrate dome connected to a drive source with the center of the dome as a rotation axis.
  • FIG. 5 shows a schematic configuration diagram of an optical thin film vacuum deposition apparatus as an example of a vacuum apparatus equipped with a rotation drive type substrate dome.
  • the vacuum chamber body 40 is filled with the substrate 11, the substrate dome 12 on which the substrate 11 is mounted, the substrate dome rotating mechanism 42, the substrate heating heater 47 for heating the substrate 11, the deposition material 43, and the deposition material.
  • a crucible 44, an electron gun 45 that heats the vapor deposition material 43 to the evaporation temperature, a shutter 46 that closes when the vapor deposition is completed and shields the vapor deposition material are arranged.
  • the substrate 11 is set on the substrate dome 12, and the vapor deposition material 43 is placed in the crucible 44 .
  • the substrate dome 12 is rotated by the substrate dome rotating mechanism 42, and the substrate 11 is heated using the substrate heating heater 47.
  • the electron gun 45 irradiates the deposition material 43 with an electron beam, and raises the deposition material 43 to the evaporation temperature.
  • the shutter 46 is opened, the vapor deposition material 43 scatters in the vacuum chamber 40 and deposits on the substrate 11 to form a thin film.
  • FIG. 5 A conventional substrate dome rotating mechanism will be described with reference to FIGS. 5 and 6.
  • FIG. 5 A conventional substrate dome rotating mechanism will be described with reference to FIGS. 5 and 6.
  • the substrate dome rotation mechanism 42 is connected to the dome side gear 2, the rotation shaft 6 fixed to the dome side gear 2, the thrust bearing mechanism 51 that is connected to the dome side gear 2 and receives a load in the load direction, and the rotation shaft 6 It consists of a radial bearing mechanism 52 that receives a load in the circumferential direction, a thrust bearing mechanism 51, a bearing 53 that supports the radial bearing mechanism 52, and a dome catcher 10 that is fixed to the dome side gear 2 by the Bonoleto 55.
  • the rotating mechanism 42 is configured to rotate when 2 is rotated by receiving transmission from the driving source side gear 15 connected to the driving source 41.
  • the substrate dome 12 is connected to the rotation mechanism 42 by being fixed to the dome catcher 10 with bolts 56, and rotates at a predetermined rotational speed together with the dome side gear 2. Since the rotating shaft 6, the dome catcher 10, and the substrate dome 12 are attached to the dome side gear 2, a vertical thrust load is applied.
  • a thrust bearing mechanism 51 is arranged to receive the load in the thrust direction. Further, a radial bearing mechanism 52 is disposed to receive a lateral load during rotation.
  • FIG. 7 a shows a schematic diagram of the thrust bearing mechanism 51.
  • the thrust bearing mechanism includes a steel ball 20, a lubricant 21, a plurality of steel balls 20, and an annular groove 22 that accommodates the lubricant 21.
  • FIG. 7 b is a schematic sectional view of the steel ball 20, and FIG.
  • the 7 c is a schematic sectional view of the lubricant 21.
  • the steel ball 20 is made of, for example, iron, and the lubricant 21 is made of, for example, tungsten disulfide. The material may be selected as appropriate.
  • the thrust bearing mechanism 51 has been described above for illustration, but the components are the same even if the radial bearing mechanism 52 is used.
  • the bearing 53 serves as a receiver for the thrust bearing mechanism 51 and the radial bearing mechanism 52, and rotatably supports the dome side gear 2, the substrate dome 12, and the like inside the vacuum chamber 40.
  • the bearing 53 is fitted into the upper force of the base 50 and is fixed by the bolt 54 from the opposite direction to the substrate dome 12.
  • the substrate dome 12 is removed downward from the dome catcher 10, and then the film thickness (not shown) disposed above the rotating mechanism 42 is disposed.
  • Remove peripheral mechanisms such as the monitor mechanism and heater, 50, and the rotating mechanism 42 as a whole was removed from above the base 50.
  • the rotating mechanism 42 was attached from above the base 50 before the peripheral mechanism was attached, and the substrate dome 12 was attached below the base 50.
  • Patent Document 1 JP 2001-73136 A
  • FIG. 8 shows a state when the thrust bearing mechanism 51 shown in FIG. 7 is consumed by rotation.
  • Lubricant 21 has the effect of forming a lubrication film on the surface of steel ball 20 and annular groove 22 and rotating steel ball 20 smoothly. It may cause the occurrence and the life of the bearing. Further, when the lubricant 21 is consumed due to rotation, there is a problem that the consumed lubricant 21 becomes dust 60 and accumulates in the annular groove 22.
  • the dust 60 includes not only the lubricant 21 but also iron scraps due to the wear of the steel ball 20, and if such dust 60 accumulates in the annular groove 22, the steel ball 20 does not rotate smoothly and hinders rotation. Let's do it.
  • the bearing mechanism Since the same problem occurs in the radial bearing mechanism 52, the bearing mechanism requires maintenance work such as periodic replacement of lubricant and cleaning of rotating parts.
  • the conventional rotating mechanism has the disadvantage that the bearing cannot be removed without removing the peripheral mechanism. This is because a plurality of mechanisms that need to be placed close to the substrate dome, such as a film thickness monitoring mechanism and heater, are placed in a limited space above the substrate dome, and a space for maintenance cannot be secured. .
  • the substrate heater is disposed above the bearing. For this reason, there was a problem that the consumption of the lubricant was accelerated by heating.
  • the dome side gear and the board dome are fixed by bolting, but there is a problem that the board dome cannot be accurately positioned by bolting. If the center of the dome side gear and the center of the substrate dome do not coincide, the substrate dome itself swings left and right during rotation. When film formation was performed in this state, the vapor deposition material did not adhere uniformly to the substrate mounted on the substrate dome, leading to deterioration of the film thickness distribution.
  • the conventional rotating mechanism has a problem with respect to its height.
  • a film thickness monitor mechanism for measuring the film thickness is generally placed above the substrate dome rotation mechanism, but the substrate dome is rotated so that the monitor does not shade the evaporation source. It was necessary to make the height of the mechanism as thin as possible.
  • a first aspect of the present invention includes a vacuum chamber, a base fixed inside the vacuum chamber, a rotation mechanism attached to the base, and a substrate on which a film formation substrate is mounted and rotated horizontally by the rotation mechanism.
  • This is a vacuum device composed of a dome, in which the rotation mechanism is configured to be removable from the base toward the bottom of the vacuum chamber.
  • the rotation mechanism is arranged so as to have at least the same rotation center as the rotation center of the dome substrate, and the dome side gear and base that are rotated horizontally by the power from the drive source provided outside the rotation mechanism.
  • the support means comprises support means for supporting the dome side gear and holding means for attaching the substrate dome to the dome side gear so that the outer diameter of the dome side gear is smaller than the inner diameter of the base.
  • the support means is attached to the lower end of the base.
  • the support means comprises at least a rotating shaft fixed to the dome side gear concentrically with the dome side gear, and a bearing disposed concentrically with the dome side gear and attached to the base. Is configured to be attached to the lower end of the base.
  • the supporting means is a concentric circle disposed with the dome side gear, supported by the bearing to support the dome side gear, and a radial bearing disposed concentrically with the dome side gear and in contact with the rotating shaft. It was set as the composition which consists of.
  • the second aspect of the present invention includes a vacuum chamber, a base fixed inside the vacuum chamber, and a base attached to the base. And a vacuum device comprising a substrate dome mounted with a film formation substrate and rotated horizontally by the rotation mechanism so that the rotation mechanism has at least the same center of rotation as the rotation center of the dome substrate.
  • a dome-side gear that is arranged and rotated horizontally by power from a drive source provided outside the rotation mechanism, a support means for supporting the dome-side gear with respect to the base, and a substrate dome is attached to the dome-side gear
  • the support means is arranged concentrically with the dome side gear and is supported by the bearing to support the dome side gear, and the support means is arranged concentrically with the dome side gear and contacts the rotating shaft. It is a vacuum device consisting of radial bearings.
  • the thrust bearing and the radial bearing are arranged on substantially the same plane.
  • the configuration is such that the width in the height direction of the surface cut by the thrust bearing overlaps the width in the height direction of the surface cut by the radial bearing.
  • a third aspect of the present invention includes a vacuum chamber, a base fixed inside the vacuum chamber, a rotation mechanism attached to the base, and a substrate drain mounted with a film formation substrate and rotated horizontally by the rotation mechanism.
  • a vacuum device having a rotating mechanism comprising a plurality of balls housed in an annular groove and a bearing made of lubricating oil, and a dust receiver covering at least a part of the substrate dome is disposed above the substrate dome. It is a vacuum device.
  • a dome heater for heating the deposition substrate was used as a dust receiver.
  • a dome heater for heating the deposition substrate is fixed to the base.
  • the rotating mechanism further includes a rotating shaft fixed to the dome side gear concentrically with the dome side gear, and a bearing arranged concentrically with the dome side gear and attached to the base. It has a protrusion extending in the direction, and the dust receiver is composed of a groove provided in the protrusion.
  • a dish screw is used in at least one place of the holding means.
  • a fourth aspect of the present invention is arranged in a vacuum chamber, a substrate dome on which a film formation substrate is mounted, a rotation mechanism that is disposed immediately above the substrate dome and rotates the substrate dome, and a top plate of the vacuum chamber. It is a method of assembling and disassembling a vacuum apparatus comprising a base that attaches at least a rotating mechanism to the inside of the vacuum chamber, and is a method of attaching and detaching at least the rotating mechanism to the bottom surface of the vacuum chamber. Further In a vacuum apparatus further comprising a fixture for fixing the rotation mechanism and the substrate dome, at least one of the fixture and the rotation mechanism or between the fixture and the substrate dome is fixed with a countersunk screw, and the substrate dome is positioned. I did it.
  • a fifth aspect of the present invention includes a vacuum chamber, an evaporation source for filling a film forming material, a substrate dome on which the film forming substrate is mounted and disposed opposite to the film forming material, and disposed immediately above the substrate dome.
  • Film formation with the substrate dome rotated in a vacuum mechanism consisting of a rotation mechanism that rotates the substrate dome and a rotation mechanism or rotation mechanism and a base that is mounted on the top plate of the vacuum chamber and attaches the substrate dome to the inside of the vacuum chamber
  • the present invention it is possible to efficiently assemble and disassemble the rotating mechanism even in a limited space, so that it is possible to improve maintainability and workability. In addition, it can contribute to the improvement of film formation accuracy by preventing the core dome from running out, preventing contamination by dust generated by the bearing force, and reducing the thickness of the rotating mechanism.
  • FIG. 1 Schematic sectional view of the rotation mechanism of the present invention
  • FIG. 2 is a schematic plan view of the rotation mechanism of the present invention.
  • Thrust bearing mechanism Radial bearing mechanism Bearing 54 volts
  • FIGS. 1 to 4 An embodiment of the substrate dome rotation mechanism according to the present invention will be described with reference to FIGS. 1 to 4. However, the same reference numerals are given to the same parts as in the prior art, and the description will be omitted.
  • the rotating mechanism shown in FIGS. 1 to 4 is mounted on a vacuum apparatus as shown in FIG. 5, for example. However, the operation related to vacuum film formation is the same as the conventional one, and the description thereof is omitted.
  • FIG. 1 shows a dome side gear 2, a rotating shaft 6, a dome catcher 10, a thrust bearing mechanism 3, a radial bearing mechanism 4, a rotating mechanism 14 constituted by a bearing 5, a base 1 for fixing the rotating mechanism 14,
  • a schematic sectional view of a drive source side gear 15 for driving the rotating mechanism 14, a substrate dome 12, a film forming substrate 11 mounted on the substrate dome 12, and a heater dome 13 for heating the substrate is shown.
  • FIG. 2 is a schematic plan view of the rotating mechanism shown in FIG. 1 as viewed from above.
  • the rotating mechanism 14 shown in FIGS. 1 and 2 is designed so that the inner diameter of the base 1 fixedly arranged in the vacuum chamber is larger than the outer diameter of the dome side gear 2, and the bearing 5 is located with respect to the base 1.
  • the direction force of the board dome 12 is fitted, and the base 1 and the bearing 5 are fixed by the bolt 7 with the direction force of the board dome 12 as well.
  • the bearing 5 fixes the thrust bearing mechanism 3 and the radial bearing mechanism 4 and supports the dome side gear 2 and the rotating shaft 6 so that the rotating mechanism 14 can be removed downward by removing the bolt 7. It becomes.
  • the rotating mechanism 14 can be assembled and disassembled without removing the peripheral mechanism, and the workability during maintenance and the like can be significantly improved.
  • the force base 1 using the disk-shaped base 1 whose inner diameter is larger than the outer diameter of the dome side gear 2 has any shape as long as it has a space for fitting the dome side gear 2. It doesn't matter.
  • FIG. 3 shows a schematic diagram of the thrust bearing mechanism 3 and the radial bearing mechanism 4.
  • the thrust bearing mechanism 3 and the radial bearing mechanism 4 are arranged concentrically in the same plane, and are constituted by a steel ball 20 and a lubricant 21 accommodated in an annular groove 22. By using the lubricant 21, rotation can be performed smoothly.
  • Lubricant 2 1 does not need to be used if it is a bearing mechanism that does not have a large load, such as
  • the thrust bearing mechanism 3 and the radial bearing mechanism 4 in the same plane, the height of the rotating mechanism 14 is reduced, and the film thickness monitoring mechanism and the film forming film disposed above the rotating mechanism 14 are formed. The distance from the substrate can be reduced.
  • the total weight of the rotating mechanism 14 can be reduced by reducing the height of the dome catcher 10, for example, by reducing the height of the dome catcher 10, and the rotating mechanism 14 can be removed downward or attached from below. It is possible to reduce labor and improve safety.
  • the heater dome 13 is disposed immediately below the rotation mechanism 14 in the embodiment.
  • the heater dome 13 may be fixed to the base 1.
  • the heater dome 13 that catches the substrate dome from the outer peripheral direction of the rotating mechanism 14 is received, so that it is possible to prevent dust from adhering to the substrate 11 during film formation.
  • the heater dome 13 is directly above the rotating mechanism, there is a problem that the heater dome 13 heats the lubricant and expedites wear. There is also an effect of extending the life of the lubricant 21.
  • the heater dome 13 for heating the substrate necessary for film formation is also used as a backing plate for dust countermeasures, it is possible to take dust countermeasures without adding any component parts. You may arrange a countermeasure plate separately.
  • FIG. 4 shows a detailed view of a portion 60 surrounded by a broken-line circle in FIG.
  • the bearing 5 is provided with a stopper 30 for preventing the dome side gear 2 from being pulled upward.
  • the stopper 30 is provided with a groove 31 to receive dust generated from the steel ball 20 and the lubricant 21.
  • the structure is as follows. As a result, contamination of the substrate 11 can be further prevented.
  • the rotating shaft 6 and the dome catcher 10 are fixed to the dome side gear 2, the thrust bearing mechanism 3 and the radial bearing mechanism 4 are assembled on the bearing 5, and the dome side gear 2 is assembled to the thrust bearing mechanism 3 and the radial bearing mechanism.
  • the bearing 5 is fixed to the base 1 with the bolt 7.
  • countersunk screws 8 are used to fix dome side gear 2 and dome catcher 10.
  • the board dome 12 with the board 11 mounted is removed. Attach to the track catcher 10 and fix it with countersunk screws 9 to align the core.
  • the dome side gear 2 is rotated at a predetermined rotation speed by the motor of the driving source.
  • the dome catcher 10 and the substrate dome 12 are unfixed, and the bolt 7 of the bearing 5 is removed, so that the rotating mechanism 14 can be removed downward. Since the rotating mechanism 14 can be disassembled without removing other components, particularly peripheral mechanisms (not shown) above the rotating mechanism, workability during maintenance can be significantly improved.
  • the film forming method capable of implementing the apparatus and method of the present invention is not limited to the vapor deposition method, and the sputtering method and the ion plating method. And so on.

Abstract

A vacuum device enabling the efficient assembly and disassembly of a rotating mechanism even in a limited space for excellent maintainability and workability. The vacuum device prevents a substrate dome from running out, prevents contamination by dust from bearings, and increases a film-forming accuracy by reducing the thickness of the rotating mechanism. The vacuum device comprises a vacuum tank, a base fixed to the inside of the vacuum tank, the rotating mechanism mounted on the base, and the substrate dome carrying the film-forming substrate and horizontally rotated by the rotating mechanism. The rotating mechanism is formed detachable from the base in the direction of the bottom face of the vacuum tank.

Description

明 細 書  Specification
基板ドーム回転機構  Substrate dome rotation mechanism
技術分野  Technical field
[0001] 本発明は、真空装置に搭載される基板ドームの回転機構に関するものである。  The present invention relates to a rotating mechanism for a substrate dome mounted on a vacuum apparatus.
背景技術  Background art
[0002] 真空蒸着法とは、真空槽内部をあらかじめ高真空領域まで排気した状態で蒸着材 料を蒸発させ、基板表面に蒸着材料を堆積させる成膜方法をいう。成膜の効率をあ げるためには複数の基板を同時に蒸着することが求められるが、真空槽内部におけ る蒸着材料の蒸発分布は一様ではないため、基板ドームと呼ばれるドーム形状の保 持具に複数の基板を搭載し、かつドームを回転することで各基板の膜厚分布を一様 に保つことが一般的に行なわれている。本発明は、ドームの中心を回転軸として駆動 源に接続される回転駆動型基板ドームの回転機構に関するものである。  [0002] The vacuum vapor deposition method is a film forming method in which a vapor deposition material is evaporated in a state where a vacuum chamber is evacuated in advance to a high vacuum region, and a vapor deposition material is deposited on a substrate surface. In order to increase the efficiency of film formation, it is required to deposit multiple substrates at the same time. However, the evaporation distribution of the evaporation material in the vacuum chamber is not uniform, so a dome shape called a substrate dome is maintained. Generally, it is common practice to keep a uniform film thickness distribution on each substrate by mounting a plurality of substrates on the fixture and rotating the dome. The present invention relates to a rotation mechanism of a rotation drive type substrate dome connected to a drive source with the center of the dome as a rotation axis.
[0003] 図 5に回転駆動型基板ドームを搭載した真空装置の一例として光学薄膜用真空蒸 着装置の概略構成図を示す。  FIG. 5 shows a schematic configuration diagram of an optical thin film vacuum deposition apparatus as an example of a vacuum apparatus equipped with a rotation drive type substrate dome.
[0004] 真空槽本体 40には基板 11、基板 11を搭載する基板ドーム 12、基板ドーム回転機 構 42、基板 11を加熱するための基板加熱用ヒーター 47、蒸着材料 43、蒸着材料を 充填する坩堝 44、蒸着材料 43を蒸発温度まで加熱する電子銃 45、蒸着完了時に 閉じ蒸着材料を遮蔽するシャッター 46などが配置される。  [0004] The vacuum chamber body 40 is filled with the substrate 11, the substrate dome 12 on which the substrate 11 is mounted, the substrate dome rotating mechanism 42, the substrate heating heater 47 for heating the substrate 11, the deposition material 43, and the deposition material. A crucible 44, an electron gun 45 that heats the vapor deposition material 43 to the evaporation temperature, a shutter 46 that closes when the vapor deposition is completed and shields the vapor deposition material are arranged.
[0005] 同図に示す装置により蒸着を行なう場合は、まず基板ドーム 12に基板 11を設置し 、蒸着材料 43を坩堝 44に入れる。真空槽 40内を図示しない排気系によって高真空 状態としてから、基板ドーム回転機構 42により基板ドーム 12を回転させ、基板加熱 用ヒーター 47用いて基板 11を加熱する。真空度及び基板温度が目標値に到達した 時点で電子銃 45から電子ビームを蒸着材料 43へ照射し、蒸着材料 43を蒸発温度 まで昇温させる。シャッター 46を開くと蒸着材料 43は真空槽 40内を飛散し、基板 11 上に堆積することで薄膜を形成する。膜厚が目標値に到達した時点でシャッター 46 を閉じ、電子銃 45や基板加熱用ヒーター 47などを停止させ、冷却後真空槽内に大 気を導入した後薄膜が形成された基板 11を取り出せばよい。 上記の真空蒸着装置は、例えば特許文献 1などに開示される。 When vapor deposition is performed using the apparatus shown in FIG. 1, first, the substrate 11 is set on the substrate dome 12, and the vapor deposition material 43 is placed in the crucible 44 . After the inside of the vacuum chamber 40 is brought into a high vacuum state by an exhaust system (not shown), the substrate dome 12 is rotated by the substrate dome rotating mechanism 42, and the substrate 11 is heated using the substrate heating heater 47. When the degree of vacuum and the substrate temperature reach the target values, the electron gun 45 irradiates the deposition material 43 with an electron beam, and raises the deposition material 43 to the evaporation temperature. When the shutter 46 is opened, the vapor deposition material 43 scatters in the vacuum chamber 40 and deposits on the substrate 11 to form a thin film. When the film thickness reaches the target value, the shutter 46 is closed, the electron gun 45 and the substrate heater 47 are stopped, and after cooling, air is introduced into the vacuum chamber and the substrate 11 with the thin film formed can be taken out. That's fine. The above vacuum deposition apparatus is disclosed in, for example, Patent Document 1.
[0006] 図 5及び図 6を参照に、従来の基板ドーム回転機構を説明する。 A conventional substrate dome rotating mechanism will be described with reference to FIGS. 5 and 6. FIG.
基板ドーム回転機構 42は、ドーム側歯車 2、ドーム側歯車 2に固定される回転軸 6、 ドーム側歯車 2に接合して荷重方向の負荷を受けるスラストベアリング機構 51、回転 軸 6に接合して円周方向の負荷をうけるラジアルベアリング機構 52、スラストべアリン グ機構 51及びラジアルベアリング機構 52を支える軸受 53、ボノレト 55によりドーム側 歯車 2に固定されるドームキャッチャー 10とにより構成され、ドーム側歯車 2が駆動源 41に接続する駆動源側歯車 15からの伝達を受けて回転することにより、回転機構 4 2が回転する構造となっている。  The substrate dome rotation mechanism 42 is connected to the dome side gear 2, the rotation shaft 6 fixed to the dome side gear 2, the thrust bearing mechanism 51 that is connected to the dome side gear 2 and receives a load in the load direction, and the rotation shaft 6 It consists of a radial bearing mechanism 52 that receives a load in the circumferential direction, a thrust bearing mechanism 51, a bearing 53 that supports the radial bearing mechanism 52, and a dome catcher 10 that is fixed to the dome side gear 2 by the Bonoleto 55. The rotating mechanism 42 is configured to rotate when 2 is rotated by receiving transmission from the driving source side gear 15 connected to the driving source 41.
[0007] 基板ドーム 12はボルト 56によりドームキャッチャー 10に固定されることで回転機構 42に接続され、ドーム側歯車 2と共に所定の回転数で回転をする。ドーム側歯車 2に は回転軸 6、ドームキャッチャー 10、及び基板ドーム 12が取付けられるため、縦方向 のスラスト荷重が力かることになる。このスラスト方向の荷重を受けるためにスラストべ ァリング機構 51が配置される。また、回転時の横方向の荷重を受けるためにラジアル ベアリング機構 52が配置される。図 7aに、スラストベアリング機構 51の概略図を示す 。スラストベアリング機構は、スチールボール 20、潤滑材 21、複数のスチールボール 20及び潤滑材 21を収容する環状溝 22により構成される。図 7bはスチールボール 2 0概略断面図であり、図 7cは潤滑材 21の概略断面図である。スチールボール 20は 例えば鉄等により構成され、潤滑材 21は例えば二硫化タングステン等により構成さ れる力 その材質は適宜選択すればよい。以上、例示のためにスラストべァリング機 構 51を説明したが、ラジアルベアリング機構 52におレ、ても構成部品は同様である。 軸受 53はスラストベアリング機構 51及びラジアルベアリング機構 52の受けとしての役 割を果たし、ドーム側歯車 2や基板ドーム 12等を真空槽 40内部に回転自在に支持 している。軸受 53は、ベース 50の上方力 嵌めこまれ、基板ドーム 12と逆の方向か らボルト 54により固定される。 The substrate dome 12 is connected to the rotation mechanism 42 by being fixed to the dome catcher 10 with bolts 56, and rotates at a predetermined rotational speed together with the dome side gear 2. Since the rotating shaft 6, the dome catcher 10, and the substrate dome 12 are attached to the dome side gear 2, a vertical thrust load is applied. A thrust bearing mechanism 51 is arranged to receive the load in the thrust direction. Further, a radial bearing mechanism 52 is disposed to receive a lateral load during rotation. FIG. 7 a shows a schematic diagram of the thrust bearing mechanism 51. The thrust bearing mechanism includes a steel ball 20, a lubricant 21, a plurality of steel balls 20, and an annular groove 22 that accommodates the lubricant 21. FIG. 7 b is a schematic sectional view of the steel ball 20, and FIG. 7 c is a schematic sectional view of the lubricant 21. The steel ball 20 is made of, for example, iron, and the lubricant 21 is made of, for example, tungsten disulfide. The material may be selected as appropriate. The thrust bearing mechanism 51 has been described above for illustration, but the components are the same even if the radial bearing mechanism 52 is used. The bearing 53 serves as a receiver for the thrust bearing mechanism 51 and the radial bearing mechanism 52, and rotatably supports the dome side gear 2, the substrate dome 12, and the like inside the vacuum chamber 40. The bearing 53 is fitted into the upper force of the base 50 and is fixed by the bolt 54 from the opposite direction to the substrate dome 12.
[0008] 例えば、メンテナンス等で図に示す回転機構 42を分解する場合には、まず、ドーム キャッチャー 10から基板ドーム 12を下方に取外した後、回転機構 42の上方に配置 される図示しない膜厚モニタ機構やヒーター等の周辺機構を取外し、軸受 53とべ一 ス 50とを取外し、回転機構 42を一体としてベース 50の上方から取外していた。組立 する場合には、周辺機構の取付け前に回転機構 42をベース 50の上方から取付け、 ベース 50の下方に基板ドーム 12を取り付けていた。 [0008] For example, when disassembling the rotating mechanism 42 shown in the figure for maintenance or the like, first, the substrate dome 12 is removed downward from the dome catcher 10, and then the film thickness (not shown) disposed above the rotating mechanism 42 is disposed. Remove peripheral mechanisms such as the monitor mechanism and heater, 50, and the rotating mechanism 42 as a whole was removed from above the base 50. When assembling, the rotating mechanism 42 was attached from above the base 50 before the peripheral mechanism was attached, and the substrate dome 12 was attached below the base 50.
特許文献 1:特開 2001-73136号公報  Patent Document 1: JP 2001-73136 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 図 8は、図 7に示すスラストベアリング機構 51が回転により消耗した際の様子を示す 。潤滑材 21は、スチールボール 20及び環状溝 22の表面に潤滑膜を形成しスチー ルボール 20を滑らかに回転させるという効果を有するため、スチールボール 20の回 転により潤滑材 21が消耗すると、異音発生の原因やベアリング寿命を早める原因と なってしまう。また、回転により潤滑材 21が消耗すると、消耗した潤滑剤 21が粉塵 60 となって環状溝 22に溜まってしまうという問題が発生する。粉塵 60には、潤滑材 21 のみならずスチールボール 20の磨耗による鉄くずも含まれ、このような粉塵 60が環 状溝 22に溜まるとスチールボール 20が円滑に回転しなくなり回転の支障となってし まう。ラジアルベアリング機構 52においても同様の問題が発生するため、ベアリング 機構には定期的な潤滑材の交換や回転部の清掃等のメンテナンス作業が必要とさ れる。し力 従来の回転機構は、周辺機構を取外さなくてはベアリングを取外すこと ができないという不都合があった。これは、基板ドーム上方の限られた空間に、膜厚 モニタ機構やヒーター等、基板ドームに近接配置の必要がある機構が複数配置され るためであり、メンテナンス用の空間が確保できないためである。  FIG. 8 shows a state when the thrust bearing mechanism 51 shown in FIG. 7 is consumed by rotation. Lubricant 21 has the effect of forming a lubrication film on the surface of steel ball 20 and annular groove 22 and rotating steel ball 20 smoothly. It may cause the occurrence and the life of the bearing. Further, when the lubricant 21 is consumed due to rotation, there is a problem that the consumed lubricant 21 becomes dust 60 and accumulates in the annular groove 22. The dust 60 includes not only the lubricant 21 but also iron scraps due to the wear of the steel ball 20, and if such dust 60 accumulates in the annular groove 22, the steel ball 20 does not rotate smoothly and hinders rotation. Let's do it. Since the same problem occurs in the radial bearing mechanism 52, the bearing mechanism requires maintenance work such as periodic replacement of lubricant and cleaning of rotating parts. The conventional rotating mechanism has the disadvantage that the bearing cannot be removed without removing the peripheral mechanism. This is because a plurality of mechanisms that need to be placed close to the substrate dome, such as a film thickness monitoring mechanism and heater, are placed in a limited space above the substrate dome, and a space for maintenance cannot be secured. .
[0010] 潤滑材力 発生する粉塵は、回転部に留まって回転の支障となるば力りでなぐ真 空槽内に舞い落ちて成膜の支障となるという問題もあった。図 8を参照すると、環状 溝 22に溜まった粉塵 60の一部は下方にこぼれ落ちてしまっている。図 6を参照する と、スラストベアリング機構 51及びラジアルベアリング機構 52の直下には基板ドーム が配置されるため、こぼれ落ちた粉塵 60の一部は基板ドームに舞い落ちてしまって いた。基板ドームに粉塵が舞い落ちると、成膜の際に蒸発材料と共に粉塵が成膜基 板に付着してしまい、膜質の悪化に繋がってしまっていた。  [0010] Lubricant force The dust generated has fallen into the vacuum chamber where the dust stays in the rotating part and hinders rotation, which also hinders film formation. Referring to FIG. 8, a part of the dust 60 accumulated in the annular groove 22 has fallen down. Referring to FIG. 6, since the substrate dome is arranged immediately below the thrust bearing mechanism 51 and the radial bearing mechanism 52, a part of the spilled dust 60 has fallen into the substrate dome. When the dust falls on the substrate dome, the dust adheres to the film formation substrate together with the evaporation material during film formation, leading to deterioration of the film quality.
[0011] また、従来の回転機構では、ベアリングの上方に基板加熱ヒーターが配置されてい たため、加熱により潤滑材の消耗を早めてしまっていたという問題もあった。 [0011] Further, in the conventional rotating mechanism, the substrate heater is disposed above the bearing. For this reason, there was a problem that the consumption of the lubricant was accelerated by heating.
[0012] 更に、従来機構では、ドーム側歯車と基板ドームとの固定をボルト締めにより行なつ ているが、ボルト締めでは基板ドームの正確な位置出しができなという問題もあった。 ドーム側歯車の中心と基板ドームの中心が一致しないと、回転の際に基板ドーム自 体が左右に振れて回転してしまう。この状態で成膜を行なうと、蒸着材料が基板ドー ムに搭載されている基板に均一に付着しなくなり、膜厚分布の悪化に繋がってしまつ ていた。  Furthermore, in the conventional mechanism, the dome side gear and the board dome are fixed by bolting, but there is a problem that the board dome cannot be accurately positioned by bolting. If the center of the dome side gear and the center of the substrate dome do not coincide, the substrate dome itself swings left and right during rotation. When film formation was performed in this state, the vapor deposition material did not adhere uniformly to the substrate mounted on the substrate dome, leading to deterioration of the film thickness distribution.
[0013] カロえて、従来の回転機構ではその高さに関しても課題があった。基板ドーム回転機 構の上方には、膜厚を計測するための膜厚モニタ機構が配置されることが一般的で あるが、モニタが蒸発源に対して影にならないように、基板ドームの回転機構の高さ をできる限り薄くする必要があった。  [0013] The conventional rotating mechanism has a problem with respect to its height. A film thickness monitor mechanism for measuring the film thickness is generally placed above the substrate dome rotation mechanism, but the substrate dome is rotated so that the monitor does not shade the evaporation source. It was necessary to make the height of the mechanism as thin as possible.
課題を解決するための手段  Means for solving the problem
[0014] 本発明の第 1の側面は、真空槽、真空槽内部に固定されるベース、ベースに取り付 けられる回転機構、及び、成膜基板が搭載され回転機構によって水平に回転される 基板ドームからなる真空装置であって、回転機構をベースから真空槽底面方向に着 脱可能な構成とした真空装置である。ここで、回転機構が少なくとも、ドーム基板の回 転中心と同じ回転中心を持つように配置され、回転機構外部に設けられた駆動源か らの動力により水平に回転されるドーム側歯車、ベースに対してドーム側歯車を支持 するための支持手段、及び、基板ドームを該ドーム側歯車に取り付けるための保持 手段からなり、ドーム側歯車の外径が該ベースの内径よりも小さくなるようにした。さら に、支持手段がベースの下端に取り付けられる構成とした。具体的には、支持手段が 、少なくとも、ドーム側歯車と同心円状に該ドーム側歯車に固定される回転軸、及び、 ドーム側歯車と同心円状に配置され、ベースに取り付けられる軸受からなり、軸受が ベースの下端に取り付けられる構成とした。またさらに、支持手段が、ドーム側歯車と 同心円状に配置され、軸受に支持されドーム側歯車を支持するスラストベアリング、 及び、ドーム側歯車と同心円状に配置され、回転軸と接触するラジアルベアリングか らなる構成とした。 [0014] A first aspect of the present invention includes a vacuum chamber, a base fixed inside the vacuum chamber, a rotation mechanism attached to the base, and a substrate on which a film formation substrate is mounted and rotated horizontally by the rotation mechanism. This is a vacuum device composed of a dome, in which the rotation mechanism is configured to be removable from the base toward the bottom of the vacuum chamber. Here, the rotation mechanism is arranged so as to have at least the same rotation center as the rotation center of the dome substrate, and the dome side gear and base that are rotated horizontally by the power from the drive source provided outside the rotation mechanism. On the other hand, it comprises support means for supporting the dome side gear and holding means for attaching the substrate dome to the dome side gear so that the outer diameter of the dome side gear is smaller than the inner diameter of the base. In addition, the support means is attached to the lower end of the base. Specifically, the support means comprises at least a rotating shaft fixed to the dome side gear concentrically with the dome side gear, and a bearing disposed concentrically with the dome side gear and attached to the base. Is configured to be attached to the lower end of the base. Furthermore, the supporting means is a concentric circle disposed with the dome side gear, supported by the bearing to support the dome side gear, and a radial bearing disposed concentrically with the dome side gear and in contact with the rotating shaft. It was set as the composition which consists of.
[0015] 本発明の第 2の側面は、真空槽、真空槽内部に固定されるベース、ベースに取り付 けられる回転機構、及び、成膜基板が搭載され回転機構によって水平に回転される 基板ドームからなる真空装置であって、回転機構が少なくとも、ドーム基板の回転中 心と同じ回転中心を持つように配置され、回転機構外部に設けられた駆動源からの 動力により水平に回転されるドーム側歯車、ベースに対してドーム側歯車を支持する ための支持手段、及び、基板ドームをドーム側歯車に取り付けるための保持手段から なり、支持手段が、ドーム側歯車と同心円状に配置され軸受に支持されドーム側歯 車を支持するスラストベアリング、及び、ドーム側歯車と同心円状に配置され回転軸と 接触するラジアルベアリングからなる真空装置である。 [0015] The second aspect of the present invention includes a vacuum chamber, a base fixed inside the vacuum chamber, and a base attached to the base. And a vacuum device comprising a substrate dome mounted with a film formation substrate and rotated horizontally by the rotation mechanism so that the rotation mechanism has at least the same center of rotation as the rotation center of the dome substrate. A dome-side gear that is arranged and rotated horizontally by power from a drive source provided outside the rotation mechanism, a support means for supporting the dome-side gear with respect to the base, and a substrate dome is attached to the dome-side gear The support means is arranged concentrically with the dome side gear and is supported by the bearing to support the dome side gear, and the support means is arranged concentrically with the dome side gear and contacts the rotating shaft. It is a vacuum device consisting of radial bearings.
[0016] さらに、上記第 1の側面及び第 2の側面において、スラストベアリングとラジアルベア リングとが略同一平面上に配置される構成とした。また、スラストベアリングが切る面の 高さ方向の幅とラジアルベアリングが切る面の高さ方向の幅とが重なる部分を持つよ うに配置される構成とした。  [0016] Further, in the first side face and the second side face, the thrust bearing and the radial bearing are arranged on substantially the same plane. In addition, the configuration is such that the width in the height direction of the surface cut by the thrust bearing overlaps the width in the height direction of the surface cut by the radial bearing.
[0017] 本発明の第 3の側面は、真空槽、真空槽内部に固定されるベース、ベースに取り付 けられる回転機構、成膜基板が搭載され回転機構によって水平に回転される基板ド ーム、並びに、回転機構が環状溝に収容した複数のボール及び潤滑油により構成さ れるベアリングからなる真空装置であって、基板ドームの上方に基板ドームの少なくと も一部分を覆う粉塵受けを配置した真空装置である。ここで、成膜基板加熱用のドー ムヒーターを粉塵受けとした。さらに、成膜基板加熱用のドームヒーターがベースに固 定される構成とした。また、回転機構は、さらに、ドーム側歯車と同心円状にドーム側 歯車に固定される回転軸、及び、ドーム側歯車と同心円状に配置され、ベースに取り 付けられる軸受からなり、回転軸が外周方向に伸びる突起部を有し、粉塵受けを突 起部に設けられた溝で構成した。  [0017] A third aspect of the present invention includes a vacuum chamber, a base fixed inside the vacuum chamber, a rotation mechanism attached to the base, and a substrate drain mounted with a film formation substrate and rotated horizontally by the rotation mechanism. And a vacuum device having a rotating mechanism comprising a plurality of balls housed in an annular groove and a bearing made of lubricating oil, and a dust receiver covering at least a part of the substrate dome is disposed above the substrate dome. It is a vacuum device. Here, a dome heater for heating the deposition substrate was used as a dust receiver. In addition, a dome heater for heating the deposition substrate is fixed to the base. The rotating mechanism further includes a rotating shaft fixed to the dome side gear concentrically with the dome side gear, and a bearing arranged concentrically with the dome side gear and attached to the base. It has a protrusion extending in the direction, and the dust receiver is composed of a groove provided in the protrusion.
[0018] さらにまた、上記第 1から第 3の側面において、保持手段の少なくとも 1箇所に皿ビ スを用いる構成とした。 [0018] Furthermore, in the first to third aspects, a dish screw is used in at least one place of the holding means.
[0019] 本発明の第 4の側面は、真空槽、成膜基板が搭載される基板ドーム、基板ドームの 直上に配置され基板ドームを回転させる回転機構、及び、真空槽の天板に配置され 少なくとも回転機構を真空槽の内部に取り付けるベースからなる真空装置の組立分 解方法であって、少なくとも回転機構を真空槽底面側に着脱する方法である。さらに 、回転機構と基板ドームと固定する固定具をさらに有する真空装置において、固定 具と回転機構間、又は、固定具と基板ドーム間の少なくとも一方を皿ビスで固定し、 基板ドームの位置出しを行なうようにした。 [0019] A fourth aspect of the present invention is arranged in a vacuum chamber, a substrate dome on which a film formation substrate is mounted, a rotation mechanism that is disposed immediately above the substrate dome and rotates the substrate dome, and a top plate of the vacuum chamber. It is a method of assembling and disassembling a vacuum apparatus comprising a base that attaches at least a rotating mechanism to the inside of the vacuum chamber, and is a method of attaching and detaching at least the rotating mechanism to the bottom surface of the vacuum chamber. further In a vacuum apparatus further comprising a fixture for fixing the rotation mechanism and the substrate dome, at least one of the fixture and the rotation mechanism or between the fixture and the substrate dome is fixed with a countersunk screw, and the substrate dome is positioned. I did it.
[0020] 本発明の第 5の側面は、真空槽、成膜材料を充填する蒸発源、成膜基板が搭載さ れ該成膜材料に対向配置される基板ドーム、基板ドームの直上に配置され基板ドー ムを回転させる回転機構、及び、真空槽の天板に配置され回転機構又は回転機構 及び基板ドームを真空槽の内部に取り付けるベースからなる真空装置における基板 ドームを回転させた状態で成膜基板に成膜材料を堆積させる成膜方法であって、回 転機構と該基板ドームの間に設けられた粉塵受けにより回転機構から発生する粉塵 を受ける成膜方法である。 [0020] A fifth aspect of the present invention includes a vacuum chamber, an evaporation source for filling a film forming material, a substrate dome on which the film forming substrate is mounted and disposed opposite to the film forming material, and disposed immediately above the substrate dome. Film formation with the substrate dome rotated in a vacuum mechanism consisting of a rotation mechanism that rotates the substrate dome and a rotation mechanism or rotation mechanism and a base that is mounted on the top plate of the vacuum chamber and attaches the substrate dome to the inside of the vacuum chamber A film forming method for depositing a film forming material on a substrate, wherein the dust generated from the rotating mechanism is received by a dust receiver provided between the rotating mechanism and the substrate dome.
発明の効果  The invention's effect
[0021] 本発明により、限られたスペースでも効率良く回転機構の組立分解を行なうことが 可能になるため、メンテナンス性及び作業性を向上させることが可能となる。また、基 板ドームの芯振れ防止、ベアリング力 発生する粉塵による汚染防止、及び回転機 構の薄型化を図ることにより成膜精度の向上にも貢献することができる。  [0021] According to the present invention, it is possible to efficiently assemble and disassemble the rotating mechanism even in a limited space, so that it is possible to improve maintainability and workability. In addition, it can contribute to the improvement of film formation accuracy by preventing the core dome from running out, preventing contamination by dust generated by the bearing force, and reducing the thickness of the rotating mechanism.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の回転機構概略断面図  [0022] [FIG. 1] Schematic sectional view of the rotation mechanism of the present invention
[図 2]本発明の回転機構概略平面図  FIG. 2 is a schematic plan view of the rotation mechanism of the present invention.
[図 3]ベアリング機構概略図  [Figure 3] Bearing mechanism schematic
[図 4]ストッパー概略図  [Figure 4] Stopper schematic
[図 5]光学薄膜製造装置の構成概略図  [Fig. 5] Schematic configuration of optical thin film manufacturing equipment
[図 6]従来の回転機構概略図  [Figure 6] Schematic diagram of conventional rotating mechanism
[図 7]スラストベアリング機構概略図  [Figure 7] Schematic diagram of thrust bearing mechanism
[図 8]消耗後のスラストベアリング機構概略図  [Figure 8] Schematic diagram of thrust bearing mechanism after wear
符号の説明  Explanation of symbols
[0023] 1 ベース [0023] 1 base
2 ドーム側歯車  2 Dome side gear
3 スラストベアリング機構 ラジアルベアリング機構 軸受 3 Thrust bearing mechanism Radial bearing mechanism Bearing
回転軸 Axis of rotation
ボルト Bolt
皿ビス Countersunk screw
皿ビス Countersunk screw
ドームキャッチャー 成膜基板 Dome catcher Deposition substrate
基板ドーム Board dome
ヒータードーム 回転機構 Heater dome rotation mechanism
駆動源側歯車 スチ一/レボーノレ 潤滑材 Drive source side gear STI / LEBONORE Lubricant
ストッパー stopper
Groove
真空槽 Vacuum chamber
駆動源 Driving source
回転機構 Rotating mechanism
蒸着材料 Vapor deposition material
坩堝 Crucible
電子銃 Electron gun
シャッター Shutter
基板加熱ヒーター ベース Substrate heater base
スラストベアリング機構 ラジアルベアリング機構 軸受 54 ボルト Thrust bearing mechanism Radial bearing mechanism Bearing 54 volts
55 ボルト  55 volts
56 ボノレト  56 Bonoreto
60 粉塵  60 dust
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 図 1乃至図 4を参照に本発明に係る基板ドーム回転機構の実施例を説明するが、 従来と同様の部分には同一符号を付して説明を省略する。図 1乃至図 4に示す回転 機構は、例えば図 5に示される様な真空装置に搭載されるが、真空成膜に関する動 作は従来と同様であるため説明を省略する。  An embodiment of the substrate dome rotation mechanism according to the present invention will be described with reference to FIGS. 1 to 4. However, the same reference numerals are given to the same parts as in the prior art, and the description will be omitted. The rotating mechanism shown in FIGS. 1 to 4 is mounted on a vacuum apparatus as shown in FIG. 5, for example. However, the operation related to vacuum film formation is the same as the conventional one, and the description thereof is omitted.
[0025] 図 1に、ドーム側歯車 2、回転軸 6、ドームキャッチャー 10、スラストベアリング機構 3 、ラジアルベアリング機構 4、軸受 5により構成される回転機構 14、回転機構 14を固 定するベース 1、回転機構 14を駆動する駆動源側歯車 15、基板ドーム 12、基板ドー ム 12に搭載される成膜基板 11、基板加熱用のヒータードーム 13の概略断面図を示 す。図 2は、図 1に示す回転機構を上方から見た概略平面図である。  [0025] Fig. 1 shows a dome side gear 2, a rotating shaft 6, a dome catcher 10, a thrust bearing mechanism 3, a radial bearing mechanism 4, a rotating mechanism 14 constituted by a bearing 5, a base 1 for fixing the rotating mechanism 14, A schematic sectional view of a drive source side gear 15 for driving the rotating mechanism 14, a substrate dome 12, a film forming substrate 11 mounted on the substrate dome 12, and a heater dome 13 for heating the substrate is shown. FIG. 2 is a schematic plan view of the rotating mechanism shown in FIG. 1 as viewed from above.
[0026] 図 1乃至図 2に示す回転機構 14は、真空槽に固定配置されるベース 1の内径をド ーム側歯車 2の外径よりも大きく設計し、軸受 5をベース 1に対して基板ドーム 12の方 向力 嵌めこみ、ベース 1と軸受 5とを基板ドーム 12の方向力もボルト 7により固定す ることを特徴とする。軸受 5がスラストベアリング機構 3及びラジアルベアリング機構 4を 固定し、ドーム側歯車 2及び回転軸 6を回転自在に支持することにより、ボルト 7を外 せば回転機構 14を全て下方に取外すことが可能となる。これにより、周辺機構を取 外すことなく回転機構 14の組立分解を行なうことができ、メンテナンス時等の作業性 を著しく向上させることが可能となった。実施例では、内径がドーム側歯車 2の外径よ りも大きい円盤形状のベース 1を用いている力 ベース 1は、ドーム側歯車 2を嵌めこ むスペースを有すればどのような形状であっても構わない。  The rotating mechanism 14 shown in FIGS. 1 and 2 is designed so that the inner diameter of the base 1 fixedly arranged in the vacuum chamber is larger than the outer diameter of the dome side gear 2, and the bearing 5 is located with respect to the base 1. The direction force of the board dome 12 is fitted, and the base 1 and the bearing 5 are fixed by the bolt 7 with the direction force of the board dome 12 as well. The bearing 5 fixes the thrust bearing mechanism 3 and the radial bearing mechanism 4 and supports the dome side gear 2 and the rotating shaft 6 so that the rotating mechanism 14 can be removed downward by removing the bolt 7. It becomes. As a result, the rotating mechanism 14 can be assembled and disassembled without removing the peripheral mechanism, and the workability during maintenance and the like can be significantly improved. In the embodiment, the force base 1 using the disk-shaped base 1 whose inner diameter is larger than the outer diameter of the dome side gear 2 has any shape as long as it has a space for fitting the dome side gear 2. It doesn't matter.
[0027] 図 3に、スラストベアリング機構 3及びラジアルベアリング機構 4の概略図を示す。ス ラストベアリング機構 3及びラジアルベアリング機構 4は同一平面内に同心円状に配 置され、環状溝 22に収容されるスチールボール 20と潤滑材 21とにより構成される。 潤滑材 21を使用することにより回転が円滑に行なわれるようになるが、例えばラジア ルベアリング機構 4のように負荷があまり大きくないベアリング機構であれば潤滑材 2 1は用いなくても構わなレ、。実施例で、スラストベアリング機構 3とラジアルベアリング 機構 4とを同一平面内に配置することにより、回転機構 14の高さを縮め、回転機構 1 4の上方に配置される膜厚モニタ機構と成膜基板との距離を近づけることが可能とな る。また、この薄型化に伴レ、、例えばドームキャッチャー 10を低背化すること等により 、回転機構 14の総重量を軽くすることができ、回転機構 14を下方に外す、又は、下 方から取り付ける際の労力軽減や安全性向上を図ることができる。 FIG. 3 shows a schematic diagram of the thrust bearing mechanism 3 and the radial bearing mechanism 4. The thrust bearing mechanism 3 and the radial bearing mechanism 4 are arranged concentrically in the same plane, and are constituted by a steel ball 20 and a lubricant 21 accommodated in an annular groove 22. By using the lubricant 21, rotation can be performed smoothly. Lubricant 2 1 does not need to be used if it is a bearing mechanism that does not have a large load, such as In the embodiment, by arranging the thrust bearing mechanism 3 and the radial bearing mechanism 4 in the same plane, the height of the rotating mechanism 14 is reduced, and the film thickness monitoring mechanism and the film forming film disposed above the rotating mechanism 14 are formed. The distance from the substrate can be reduced. In addition, the total weight of the rotating mechanism 14 can be reduced by reducing the height of the dome catcher 10, for example, by reducing the height of the dome catcher 10, and the rotating mechanism 14 can be removed downward or attached from below. It is possible to reduce labor and improve safety.
[0028] ベアリング機構に使用されるスチールボール 20及び潤滑材 21は回転により磨耗し て粉塵が発生するため、実施例では回転機構 14の直下にヒータードーム 13を配置 した。ヒータードーム 13はベース 1に固定すればよい。これにより、粉塵が発生しても 回転機構 14の外周方向から基板ドームに舞い落ちることなぐヒータードーム 13が受 け止めるため、成膜時の基板 11へのゴミの付着を防ぐことが可能となる。また、ヒータ 一ドーム 13が回転機構の直上にあると、ヒータードーム 13が潤滑材を加熱して消耗 を早めてしまうという問題がある力 ヒータードーム 13が回転機構 14の直下に配置さ れることで潤滑材 21の寿命を延長させるという効果も奏する。実施例では成膜に必 要な基板加熱用のヒータードーム 13を粉塵対策用の受け板と兼用しているため、構 成部品を追加することなく粉塵対策を行なうことが可能となるが、粉塵対策用の受け 板を別に配置しても構わなレ、。  [0028] Since the steel ball 20 and the lubricant 21 used in the bearing mechanism are worn by rotation and generate dust, the heater dome 13 is disposed immediately below the rotation mechanism 14 in the embodiment. The heater dome 13 may be fixed to the base 1. As a result, even if dust is generated, the heater dome 13 that catches the substrate dome from the outer peripheral direction of the rotating mechanism 14 is received, so that it is possible to prevent dust from adhering to the substrate 11 during film formation. . In addition, if the heater dome 13 is directly above the rotating mechanism, there is a problem that the heater dome 13 heats the lubricant and expedites wear. There is also an effect of extending the life of the lubricant 21. In the example, since the heater dome 13 for heating the substrate necessary for film formation is also used as a backing plate for dust countermeasures, it is possible to take dust countermeasures without adding any component parts. You may arrange a countermeasure plate separately.
[0029] 図 4に図 1に破線円で囲んだ部分 60の詳細図を示す。軸受 5には、ドーム側歯車 2 が上方に抜けることを防止するためのストッパー 30が設けられる力 実施例ではストツ パー 30に溝 31を設け、スチールボール 20及び潤滑材 21から発生する粉塵を受け る構造とした。これにより基板 11の汚染を更に防止することが可能となる。  FIG. 4 shows a detailed view of a portion 60 surrounded by a broken-line circle in FIG. The bearing 5 is provided with a stopper 30 for preventing the dome side gear 2 from being pulled upward. In the embodiment, the stopper 30 is provided with a groove 31 to receive dust generated from the steel ball 20 and the lubricant 21. The structure is as follows. As a result, contamination of the substrate 11 can be further prevented.
[0030] 以下、図 1乃至図 4に示す回転機構の組立動作を説明する。  Hereinafter, the assembly operation of the rotation mechanism shown in FIGS. 1 to 4 will be described.
まず、ドーム側歯車 2に回転軸 6及びドームキャッチャー 10を固定し、軸受 5上にス ラストベアリング機構 3及びラジアルベアリング機構 4を組立て、スラストベアリング機 構 3にドーム側歯車 2を、ラジアルベアリング機構 4に回転軸 6を接合させた状態で軸 受 5をボルト 7によりベース 1に固定する。このとき、ドーム側歯車 2とドームキャッチャ 一 10との固定には皿ビス 8を使用する。次に、基板 11を搭載した基板ドーム 12をド ームキャッチャー 10に取付け、皿ビス 9で固定し、芯だしを行なう。駆動源のモーター によりドーム側歯車 2を所定の回転数で回転をさせる。ドーム側歯車 2とドームキヤッ チヤ一 10との接続、及びドームキャッチャー 10と基板ドーム 12との接続に皿ビス 8, 9を使用することにより、ドーム側歯車 2の中心と基板ドーム 12の中心とを正確に合わ せ、基板ドーム 12を芯振れなく回転させることが可能となる。実施例で皿ビス 8, 9を 使用することにより、メンテナンス時の作業者による個人差を解消し、芯振れを解消し て、成膜時における膜厚分布の悪化を防止することが可能となった。 First, the rotating shaft 6 and the dome catcher 10 are fixed to the dome side gear 2, the thrust bearing mechanism 3 and the radial bearing mechanism 4 are assembled on the bearing 5, and the dome side gear 2 is assembled to the thrust bearing mechanism 3 and the radial bearing mechanism. With the rotary shaft 6 joined to 4, the bearing 5 is fixed to the base 1 with the bolt 7. At this time, countersunk screws 8 are used to fix dome side gear 2 and dome catcher 10. Next, the board dome 12 with the board 11 mounted is removed. Attach to the track catcher 10 and fix it with countersunk screws 9 to align the core. The dome side gear 2 is rotated at a predetermined rotation speed by the motor of the driving source. By using countersunk screws 8 and 9 to connect the dome side gear 2 and the dome catcher 10 and between the dome catcher 10 and the board dome 12, the center of the dome side gear 2 and the center of the board dome 12 are It is possible to rotate the substrate dome 12 without centering and align accurately. By using countersunk screws 8 and 9 in the examples, it is possible to eliminate individual differences among workers during maintenance, eliminate core runout, and prevent deterioration in film thickness distribution during film formation. It was.
[0031] 分解時はドームキャッチャー 10と基板ドーム 12との固定を外し、軸受 5のボルト 7を 取外すことで回転機構 14一体を下方に取外すことができる。他の構成部品、特に回 転機構上方の図示されていない周辺機構を取り外すことなく回転機構 14を分解でき るため、メンテナンス時の作業性を著しく向上させることが可能となる。  [0031] At the time of disassembly, the dome catcher 10 and the substrate dome 12 are unfixed, and the bolt 7 of the bearing 5 is removed, so that the rotating mechanism 14 can be removed downward. Since the rotating mechanism 14 can be disassembled without removing other components, particularly peripheral mechanisms (not shown) above the rotating mechanism, workability during maintenance can be significantly improved.
[0032] 上記実施例では蒸着法を用レ、た成膜について説明したが、本発明装置および方 法を実施可能な成膜方法は蒸着法に限られるものではなぐスパッタリング法、イオン プレーティング法等多数あげられる。  [0032] Although the film forming method using the vapor deposition method has been described in the above embodiments, the film forming method capable of implementing the apparatus and method of the present invention is not limited to the vapor deposition method, and the sputtering method and the ion plating method. And so on.

Claims

請求の範囲 The scope of the claims
[1] 真空槽、該真空槽内部に固定されるベース、該ベースに取り付けられる回転機構、 及び、成膜基板が搭載され該回転機構によって水平に回転される基板ドームからな る真空装置であって、  [1] A vacuum apparatus comprising a vacuum chamber, a base fixed inside the vacuum chamber, a rotating mechanism attached to the base, and a substrate dome mounted with a film formation substrate and rotated horizontally by the rotating mechanism. And
該回転機構を該ベースから該真空槽底面方向に着脱可能な構成としたことを特徴 とする真空装置。  A vacuum apparatus characterized in that the rotating mechanism is configured to be detachable from the base toward the bottom of the vacuum chamber.
[2] 請求項 1記載の真空装置であって、  [2] The vacuum apparatus according to claim 1,
該回転機構が少なくとも、  The rotation mechanism is at least
該ドーム基板の回転中心と同じ回転中心を持つように配置され、該回転機構外部 に設けられた駆動源からの動力により水平に回転されるドーム側歯車、  A dome-side gear that is arranged to have the same rotation center as the rotation center of the dome substrate, and is rotated horizontally by power from a drive source provided outside the rotation mechanism;
該ベースに対して該ドーム側歯車を支持するための支持手段、及び、  Support means for supporting the dome side gear with respect to the base; and
該基板ドームを該ドーム側歯車に取り付けるための保持手段からなり、 該ドーム側歯車の外径が該ベースの内径よりも小さいことを特徴とする真空装置。  A vacuum device comprising holding means for attaching the substrate dome to the dome side gear, wherein an outer diameter of the dome side gear is smaller than an inner diameter of the base.
[3] 請求項 2記載の真空装置であって、  [3] The vacuum apparatus according to claim 2,
該支持手段が該ベースの下端に取り付けられることを特徴とする真空装置。  A vacuum apparatus, wherein the support means is attached to the lower end of the base.
[4] 請求項 2又は請求項 3記載の真空装置であって、  [4] The vacuum apparatus according to claim 2 or claim 3,
該支持手段が、少なくとも、  The support means is at least
該ドーム側歯車と同心円状に該ドーム側歯車に固定される回転軸、及び、 該ドーム側歯車と同心円状に配置され、該ベースに取り付けられる軸受からなり、 該軸受が該ベースの下端に取り付けられることを特徴とする真空装置。  A rotating shaft fixed to the dome side gear concentrically with the dome side gear, and a bearing arranged concentrically with the dome side gear and attached to the base, the bearing being attached to the lower end of the base A vacuum device characterized in that
[5] 請求項 4記載の真空装置であって、 [5] The vacuum device according to claim 4,
該支持手段が、さらに、  The support means further comprises:
該ドーム側歯車と同心円状に配置され、該軸受に支持され該ドーム側歯車を支持 するスラストベアリング、及び、  A thrust bearing arranged concentrically with the dome side gear, supported by the bearing and supporting the dome side gear; and
該ドーム側歯車と同心円状に配置され、該回転軸に設置されるラジアルベアリング 力 なることを特徴とする真空装置。  A vacuum apparatus characterized by being arranged concentrically with the dome side gear and having a radial bearing force installed on the rotating shaft.
[6] 真空槽、該真空槽内部に固定されるベース、該ベースに取り付けられる回転機構、 及び、成膜基板が搭載され該回転機構によって水平に回転される基板ドームからな る真空装置であって、 [6] A vacuum chamber, a base fixed inside the vacuum chamber, a rotation mechanism attached to the base, and a substrate dome mounted with a film formation substrate and rotated horizontally by the rotation mechanism. A vacuum device,
該回転機構が少なくとも、  The rotation mechanism is at least
該ドーム基板の回転中心と同じ回転中心を持つように配置され、該回転機構外部 に設けられた駆動源からの動力により水平に回転されるドーム側歯車、  A dome-side gear that is arranged to have the same rotation center as the rotation center of the dome substrate, and is rotated horizontally by power from a drive source provided outside the rotation mechanism;
該ベースに対して該ドーム側歯車を支持するための支持手段、及び、  Support means for supporting the dome side gear with respect to the base; and
該基板ドームを該ドーム側歯車に取り付けるための保持手段からなり、 該支持手段が、  It comprises holding means for attaching the substrate dome to the dome side gear, and the support means
該ドーム側歯車と同心円状に配置され、該軸受に支持され該ドーム側歯車を支持 するスラストベアリング、及び、該ドーム側歯車と同心円状に配置され、該回転軸に設 置されるラジアルベアリングからなることを特徴とする真空装置。  A thrust bearing arranged concentrically with the dome side gear and supported by the bearing to support the dome side gear; and a radial bearing arranged concentrically with the dome side gear and arranged on the rotating shaft. The vacuum apparatus characterized by becoming.
[7] 請求項 5又は請求項 6記載の真空装置であって、 [7] The vacuum device according to claim 5 or claim 6,
該スラストベアリングと該ラジアルベアリングとが略同一平面上に配置されたことを特 徴とする真空装置。  A vacuum apparatus characterized in that the thrust bearing and the radial bearing are arranged on substantially the same plane.
[8] 請求項 5又は請求項 6記載の真空装置であって、 [8] The vacuum device according to claim 5 or claim 6,
該スラストベアリングが切る面の高さ方向の幅と該ラジアルベアリングが切る面の高 さ方向の幅とが重なる部分を持つように配置されたことを特徴とする真空装置。  A vacuum apparatus, wherein the thrust bearing is arranged so that a width in a height direction of a surface cut by the thrust bearing overlaps a width in a height direction of a surface cut by the radial bearing.
[9] 真空槽、該真空槽内部に固定されるベース、該ベースに取り付けられる回転機構、 成膜基板が搭載され該回転機構によって水平に回転される基板ドーム、並びに、該 回転機構が環状溝に収容した複数のボール及び潤滑油により構成されるベアリング 力 なる真空装置であって、 [9] A vacuum chamber, a base fixed inside the vacuum chamber, a rotation mechanism attached to the base, a substrate dome mounted with a film formation substrate and rotated horizontally by the rotation mechanism, and the rotation mechanism having an annular groove A vacuum device having a bearing force composed of a plurality of balls and lubricating oil contained in
該基板ドームの上方に該基板ドームの少なくとも一部分を覆う粉塵受けを配置した ことを特徴とする真空装置。  A vacuum apparatus, wherein a dust receiver covering at least a part of the substrate dome is disposed above the substrate dome.
[10] 請求項 9記載の真空装置であって、 [10] The vacuum device according to claim 9,
該粉塵受けは該成膜基板加熱用のドームヒーターであることを特徴とする真空装置  The vacuum apparatus, wherein the dust receiver is a dome heater for heating the film formation substrate
[11] 請求項 10記載の真空装置であって、 [11] The vacuum apparatus according to claim 10,
該成膜基板加熱用のドームヒーターが該ベースに固定されたことを特徴とする真空 装置。 A vacuum apparatus, wherein the dome heater for heating the deposition substrate is fixed to the base.
[12] 請求項 9から請求項 11いずれか一項に記載の真空装置であって、 該回転機構は、さらに、 [12] The vacuum apparatus according to any one of claims 9 to 11, wherein the rotation mechanism further includes:
該ドーム側歯車と同心円状に該ドーム側歯車に固定される回転軸、及び、 該ドーム側歯車と同心円状に配置され、該ベースに取り付けられる軸受からなり、 該回転軸が外周方向に伸びる突起部を有し、  A rotation shaft fixed to the dome side gear concentrically with the dome side gear, and a protrusion arranged concentrically with the dome side gear and attached to the base, the protrusion extending in the outer circumferential direction Part
該粉塵受けは該突起部に設けられた溝であることを特徴とする真空装置。  The vacuum apparatus, wherein the dust receiver is a groove provided in the protrusion.
[13] 請求項 3から請求項 12いずれか一項に記載の真空装置であって、 [13] The vacuum apparatus according to any one of claims 3 to 12,
該保持手段の少なくとも 1箇所に皿ビスを用いたことを特徴とする真空装置。  A vacuum apparatus characterized in that a countersunk screw is used in at least one place of the holding means.
[14] 真空槽、成膜基板が搭載される基板ドーム、該基板ドームの直上に配置され該基 板ドームを回転させる回転機構、及び、該真空槽の天板に配置され少なくとも該回転 機構を該真空槽の内部に取り付けるベースからなる真空装置の組立分解方法であつ て、 [14] A vacuum chamber, a substrate dome on which the film formation substrate is mounted, a rotation mechanism that is disposed immediately above the substrate dome and rotates the substrate dome, and at least the rotation mechanism that is disposed on the top plate of the vacuum chamber. A method for assembling and disassembling a vacuum device comprising a base attached to the inside of the vacuum chamber,
少なくとも該回転機構を該真空槽底面側に着脱することを特徴とする組立分解方 法。  An assembling / disassembling method, wherein at least the rotating mechanism is attached to and detached from the bottom surface side of the vacuum chamber.
[15] 請求項 14記載の組立分解方法であって、  [15] The assembly and disassembly method according to claim 14,
該回転機構と該基板ドームと固定する固定具をさらに有する真空装置において、 該固定具と該回転機構間、又は、該固定具と該基板ドーム間の少なくとも一方を皿 ビスで固定し、該基板ドームの位置出しを行なうことを特徴とする組立分解方法。  A vacuum apparatus further comprising a fixing device for fixing the rotating mechanism and the substrate dome, wherein at least one of the fixing device and the rotating mechanism or between the fixing device and the substrate dome is fixed with a countersunk screw, and the substrate An assembly / disassembly method characterized by positioning a dome.
[16] 真空槽、成膜材料を充填する蒸発源、成膜基板が搭載され該成膜材料に対向配 置される基板ドーム、該基板ドームの直上に配置され該基板ドームを回転させる回転 機構、及び、該真空槽の天板に配置され該回転機構又は回転機構及び基板ドーム を該真空槽の内部に取り付けるベースからなる真空装置における該基板ドームを回 転させた状態で該成膜基板に該成膜材料を堆積させる成膜方法であって、 該回転機構と該基板ドームの間に設けられた粉塵受けにより該回転機構力 発生 する粉塵を受けることを特徴とする成膜方法。 [16] A vacuum chamber, an evaporation source for filling the film forming material, a substrate dome mounted with the film forming substrate and disposed opposite to the film forming material, and a rotating mechanism disposed immediately above the substrate dome and rotating the substrate dome And the rotation mechanism or the rotation mechanism and a base that attaches the rotation mechanism and the substrate dome to the inside of the vacuum chamber. A film forming method for depositing the film forming material, wherein the dust generated by the rotating mechanism force is received by a dust receiver provided between the rotating mechanism and the substrate dome.
PCT/JP2005/000851 2004-06-25 2005-01-24 Substrate dome rotating mechanism WO2006001095A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800131933A CN1946873B (en) 2004-06-25 2005-01-24 Substrate dome rotating mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-187285 2004-06-25
JP2004187285A JP4002959B2 (en) 2004-06-25 2004-06-25 Substrate dome rotation mechanism

Publications (1)

Publication Number Publication Date
WO2006001095A1 true WO2006001095A1 (en) 2006-01-05

Family

ID=35776645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000851 WO2006001095A1 (en) 2004-06-25 2005-01-24 Substrate dome rotating mechanism

Country Status (4)

Country Link
JP (1) JP4002959B2 (en)
KR (1) KR100855174B1 (en)
CN (1) CN1946873B (en)
WO (1) WO2006001095A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138276A (en) * 2006-12-05 2008-06-19 Tsukishima Kikai Co Ltd Vacuum film deposition system
CN104651795B (en) * 2015-03-10 2017-01-11 丹阳市鼎新机械设备有限公司 Turntable for vacuum lens coating machine
JP6019310B1 (en) * 2015-04-16 2016-11-02 ナルックス株式会社 Vapor deposition apparatus and manufacturing method including film forming process by vapor deposition apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429654U (en) * 1990-06-27 1992-03-10
JPH0835065A (en) * 1994-07-22 1996-02-06 Murata Mfg Co Ltd Vacuum film forming device
JP2001073136A (en) * 1999-09-08 2001-03-21 Showa Shinku:Kk Optical thin film producing system
US6294025B1 (en) * 1996-11-01 2001-09-25 THEVA DüNNSCHICHTTECHNIK GMBH Device for producing oxidic thin films

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853267B2 (en) * 1990-05-25 1999-02-03 本田技研工業株式会社 Integrated planetary gear transmission using three sets of planetary gear trains
KR960013625B1 (en) * 1992-12-22 1996-10-10 재단법인 한국전자통신연구소 Vacuum heat deposition device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429654U (en) * 1990-06-27 1992-03-10
JPH0835065A (en) * 1994-07-22 1996-02-06 Murata Mfg Co Ltd Vacuum film forming device
US6294025B1 (en) * 1996-11-01 2001-09-25 THEVA DüNNSCHICHTTECHNIK GMBH Device for producing oxidic thin films
JP2001073136A (en) * 1999-09-08 2001-03-21 Showa Shinku:Kk Optical thin film producing system

Also Published As

Publication number Publication date
CN1946873A (en) 2007-04-11
CN1946873B (en) 2010-09-29
JP2006009082A (en) 2006-01-12
KR20070024518A (en) 2007-03-02
JP4002959B2 (en) 2007-11-07
KR100855174B1 (en) 2008-08-29

Similar Documents

Publication Publication Date Title
WO2006001095A1 (en) Substrate dome rotating mechanism
KR101036426B1 (en) Bias Sputter Device
JP2007243060A (en) Gas-phase growth equipment
US9765427B2 (en) Vapor phase growth apparatus
US6776848B2 (en) Motorized chamber lid
US8137511B2 (en) Film forming apparatus and film forming method
CN114107931B (en) semiconductor chamber
US20030146085A1 (en) Single piece pod shield for vertical plenum wafer processing machine
CN211689222U (en) Drum-type magnetron sputtering film coating machine
JP2006128561A (en) Substrate rolling mechanism and film formation device with it
US8113455B2 (en) Device for grinding input material
KR101584116B1 (en) Apparatus for MOCVD
US9605714B2 (en) Machining apparatus for machining end face of tapered roller and grinding wheel body
US6032884A (en) Replaceable shear edge for a star-type feeder
FI120630B (en) A method for installing or replacing a refiner sharpener
KR20170021327A (en) Rotation mechanism and film thickness monitor including same
KR100307074B1 (en) Deposition chamber having a separator to protect target surfaces from contamination and a shutter for multi-substrates
CN220767162U (en) Semiconductor material film plating device
CN220827454U (en) Coating chamber and coating equipment
CA2589323C (en) Replaceable shear edge for a star-type feeder
JP7212662B2 (en) Conveying apparatus, film forming apparatus, film forming method, and electronic device manufacturing method
KR20070018696A (en) Vacuum-Coating Machine with Motor-Driven Rotary Cathode
CN112824556A (en) Substrate turnover device for ARC coating production line
SU1186374A1 (en) Installation for centrifugal bimetal deposition on components
KR200387137Y1 (en) Lens loading for optical lens coating

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067022026

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580013193.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067022026

Country of ref document: KR

122 Ep: pct application non-entry in european phase