JP2001073136A - Optical thin film producing system - Google Patents
Optical thin film producing systemInfo
- Publication number
- JP2001073136A JP2001073136A JP25461699A JP25461699A JP2001073136A JP 2001073136 A JP2001073136 A JP 2001073136A JP 25461699 A JP25461699 A JP 25461699A JP 25461699 A JP25461699 A JP 25461699A JP 2001073136 A JP2001073136 A JP 2001073136A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- dome
- thin film
- optical thin
- frequency power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Surface Treatment Of Optical Elements (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は光学薄膜製造装置
及びその構造に関するものである。The present invention relates to an optical thin film manufacturing apparatus and its structure.
【0002】[0002]
【従来の技術】光学薄膜素子は、光の干渉効果を用いる
ため誘電体の光学薄膜厚:n×d(n:屈折率、d:物
理膜厚)を観測制御して所望する特性を得る事が必要で
ある。一般的な応用製品としては、メガネやCDピック
アップ等の各種レンズ、及びOA機器のフロントパネル
等に施される反射防止膜、更に液晶ビジョン用のダイク
ロイック(2色分解)ミラーや、照明用のコールドミラ
ー、及び建材用窓ガラス等に施される熱反射膜などがあ
る。又、産業用としては、最近特に伸張著しい移動体通
信と共に、今後大きく伸張すると期待されるLAN等の
光通信、又超LSIデバイスの微細パターン形成の要で
あるステッパ光源の極狭帯域フィルターとして用いられ
るバンドパスフィルター(BPF)、DVD用偏向分離
膜フィルター(PBS)等が代表的光学薄膜素子として
上げられる。このような光学薄膜業界、電子部品関連業
界においては、ガラス、半導体、金属、セラミックス等
の基板材料上に、高充填密度の光学薄膜を短時間で効率
良く成膜する技術が強く望まれている。2. Description of the Related Art An optical thin film element uses an optical interference effect to obtain desired characteristics by observing and controlling the thickness of an optical thin film of a dielectric material: nxd (n: refractive index, d: physical thickness). is necessary. Commonly applied products include various lenses such as glasses and CD pickups, anti-reflective coatings applied to the front panel of OA equipment, dichroic (two-color separation) mirrors for liquid crystal vision, and cold lights for lighting. There is a mirror and a heat reflection film applied to a window glass for building materials. For industrial use, in addition to mobile communication, which is particularly remarkable in recent years, it is used as an optical communication such as LAN, which is expected to greatly expand in the future, and as a very narrow band filter of a stepper light source which is a key to forming a fine pattern of an ultra LSI device. Band pass filters (BPF), DVD deflection separation film filters (PBS), and the like can be cited as typical optical thin film elements. In the optical thin film industry and the electronic component-related industry, there is a strong demand for a technique for efficiently forming an optical thin film having a high packing density on a substrate material such as glass, semiconductor, metal, and ceramics in a short time. .
【0003】従来この種の薄膜は、蒸発源として10-4
Pa程度まで排気させた高真空容器内の下部に設置した
2電極間を短絡させる様に配置されたモリブデンやタン
グステンの板上に蒸発物質を置き、2電極間に交流電力
(直流電圧でも可能)を印加し加熱させ蒸発させる抵抗
加熱蒸発源や、電子銃を用い熱電子を蒸発物質に収束さ
せて加熱させ蒸発させる電子銃加熱蒸発源を使用し、こ
れら蒸発源に対向した場所に配置した基板に成膜する真
空蒸着法、又は、10-4Pa程度まで排気させた高真空
容器内の下部にイオンを発生させるイオン生成装置(イ
オンガン)やプラズマを発生させるプラズマ生成装置
(プラズマガン)を配置し、イオンガンやプラズマガン
からイオンやプラズマを生成させながら真空蒸着法と併
用する成膜法によって製造されるのが一般的であった。Conventionally, this type of thin film has been used as an evaporation source at 10 -4.
An evaporating substance is placed on a molybdenum or tungsten plate arranged so as to short-circuit between the two electrodes installed in the lower part of the high vacuum vessel evacuated to about Pa, and AC power is applied between the two electrodes (DC voltage is also possible) The substrate is placed at a position facing these evaporation sources, using a resistance heating evaporation source that applies heat and evaporates, or an electron gun heating evaporation source that heats and condenses thermal electrons to an evaporating substance using an electron gun. Vacuum evaporation method for forming a film on the surface, or an ion generator (ion gun) for generating ions and a plasma generator (plasma gun) for generating plasma are arranged in the lower part of a high vacuum container evacuated to about 10 -4 Pa. However, they are generally manufactured by a film forming method used in combination with a vacuum evaporation method while generating ions or plasma from an ion gun or a plasma gun.
【0004】図1は、イオンやプラズマを生成しながら
の成膜法の概略図を示したもので、真空排気口(2)と
ガス導入口(3)を備えた真空槽(1)の内部には、基
板(4)を取付けた基板ドーム(5)と、対向する位置
に蒸発源(6)及びイオンガン(7)、熱電子放出機構
(8)が設けられ、絶縁体(9)中を通る導線で設置さ
れている該基板ドーム(5)は、加熱ヒータドーム(2
3)により加熱され、又、図示しない外部の基板ドーム
回転用モータから基板ドーム回転機構を介して回転す
る。又、該基板ドーム(5)と蒸発源(6)の間には可
動自在にシャッター(10)が設けられ、更にモニタ筒
(17)に設置されたモニタリング基板(11)に堆積
する光学薄膜を外部の光学式膜厚計(12)で観測制御
しながら所望の光学薄膜を得ようとするものである。FIG. 1 is a schematic view of a film forming method for generating ions and plasma, and shows the inside of a vacuum chamber (1) having a vacuum exhaust port (2) and a gas inlet (3). Is provided with a substrate dome (5) on which a substrate (4) is mounted, an evaporation source (6), an ion gun (7), and a thermoelectron emission mechanism (8) at opposing positions. The substrate dome (5), which is provided with a conducting wire passing therethrough, has a heater dome (2).
The substrate is heated by 3) and is rotated by an external substrate dome rotation motor (not shown) via a substrate dome rotation mechanism. A shutter (10) is movably provided between the substrate dome (5) and the evaporation source (6), and furthermore, an optical thin film deposited on a monitoring substrate (11) provided on a monitor tube (17) is provided. This is to obtain a desired optical thin film while controlling the observation with an external optical film thickness meter (12).
【0005】あらかじめ真空槽(1)を高真空領域(1
0-4Pa程度)まで真空排気口(2)を介してクライオ
ポンプ等のポンプ(図示していない)により排気する。
その後ガス導入口(3)からArや酸素等の放電用ガス
を20sccm程度イオンガン(7)へ導入する。更に
真空槽(1)へ酸素ガスなどを所望圧力(8×10-3〜
3×10-2Pa程度)まで導入する。この状態で蒸発源
(図示しない)から電力(600W〜3600W)を供
給し、更にイオンガン(7)へ電力を供給して放電させ
る。前記イオンガンから出射されたイオン電流を基板上
に適宜制御して照射する。ここで蒸発源シャッター(1
0)を解放しモニタリング基板(11)に堆積する光学
薄膜を光学式膜厚計(12)で観測制御しながら成膜
し、所望の膜厚で蒸発源シャッター(10)を閉じて成
膜を完了する。[0005] The vacuum chamber (1) is previously set in a high vacuum region (1).
It is evacuated to about 0 -4 Pa) by a pump (not shown) such as a cryopump through the vacuum exhaust port (2).
Thereafter, a discharge gas such as Ar or oxygen is introduced into the ion gun (7) from the gas inlet (3) at a rate of about 20 sccm. Further, oxygen gas or the like is supplied to the vacuum chamber (1) at a desired pressure (8 × 10 −3 to
(About 3 × 10 -2 Pa). In this state, electric power (600 W to 3600 W) is supplied from an evaporation source (not shown), and electric power is further supplied to the ion gun (7) to discharge. The ion current emitted from the ion gun is irradiated onto the substrate while being appropriately controlled. Here, the evaporation source shutter (1
0) is released and an optical thin film to be deposited on the monitoring substrate (11) is formed while observing and controlling with an optical film thickness meter (12), and the evaporation source shutter (10) is closed at a desired film thickness to form a film. Complete.
【0006】一方、金属薄膜製造装置において、プラス
チック、ガラス、セラミックス等の絶縁物材料の上に、
付着性の良い金属被膜を生成する装置として、特公昭5
1−23376号に示される様に、蒸発源から蒸発した
粒子を、高密度のプラズマ中を通過させる事により正イ
オン化し、高周波電圧(13MHz程度)を基板に印加
する事により基板上に誘起される直流負電界により加速
させ、基板表面に突入せしめ薄膜を生成するようにした
構成で、粒子のイオンを基板表面の数原子層まで侵入さ
せる事が出来、金属被膜の付着性を著しく改善したとい
う事例が紹介されている。On the other hand, in a metal thin film manufacturing apparatus, an insulating material such as plastic, glass, ceramics, etc.
As a device for producing a metal film with good adhesion,
As shown in Japanese Patent No. 1-2376, particles evaporated from an evaporation source are converted into positive ions by passing through a high-density plasma, and are induced on the substrate by applying a high-frequency voltage (about 13 MHz) to the substrate. By accelerating with a DC negative electric field, it is made to penetrate the substrate surface and generate a thin film, which allows particles of ions to penetrate to several atomic layers on the substrate surface, significantly improving the adhesion of the metal film. Examples are introduced.
【0007】光学薄膜素子は一般に、真空蒸着法により
高/低屈折率の誘電体膜が交互にガラス等の基板上に積
層されており、素子によっては50層以上に及ぶ場合が
ある。このため、薄膜の充填密度(Packing density)
が低いと湿度(H2O)の影響により経時変化が生じや
すく安定な性能は得られにくい。真空蒸着法で20〜3
0層程度を成膜した近赤外域BPFの場合、温度湿度の
環境変化(例:25℃50%→80℃95%)により、
分光特性が長波長側へ50nm程度移動する(波長シフ
ト)。例えば光通信の分野で使用する光学薄膜素子が波
長シフトする事によって通信に支障を与えたり、通信不
可能になる等の問題がある。In general, an optical thin film element is formed by alternately laminating dielectric films having a high / low refractive index on a substrate such as glass by a vacuum evaporation method. Therefore, the packing density of the thin film
When the value is too low, a change over time tends to occur due to the influence of humidity (H 2 O), and stable performance is hardly obtained. 20-3 by vacuum evaporation
In the case of a near-infrared region BPF in which about 0 layers are formed, due to environmental changes in temperature and humidity (for example, 25 ° C. 50% → 80 ° C. 95%),
The spectral characteristic moves to the longer wavelength side by about 50 nm (wavelength shift). For example, there is a problem that a shift in wavelength of an optical thin film element used in the field of optical communication hinders communication or disables communication.
【0008】光学薄膜の充填密度の向上を図る手段とし
て、前述のようなイオンガンやプラズマガンからのイオ
ンやプラズマを基板に照射させながら真空蒸着法と併用
する方式がある。装置内部にイオン生成装置(イオンガ
ン)やプラズマ生成装置(プラズマガン)を設置し、イ
オンやプラズマを併用しながら成膜する事によって、波
長シフト量の少ない(1nm程度のシフト量)光学薄膜
を得る事ができる。しかし、イオンガンやプラズマガン
を使用するとイオンやプラズマの放出分布に指向性が生
じるので、イオンガンやプラズマガン生成装置に対向配
置された基板ドーム上で成膜された薄膜の屈折率に不均
一な分布が生じる。イオンガンやプラズマガンを使用し
た場合、屈折率が実用上均一となるエリアは、基板ドー
ム中心部のみ(基板ドーム全面積の10〜20%)でし
か所望する特性の薄膜を得る事が出来ない。As a means for improving the packing density of the optical thin film, there is a method in which the substrate is irradiated with ions or plasma from an ion gun or a plasma gun as described above, and is used together with a vacuum deposition method. By installing an ion generator (ion gun) or plasma generator (plasma gun) inside the apparatus and forming a film while using both ions and plasma, an optical thin film with a small wavelength shift amount (shift amount of about 1 nm) is obtained. Can do things. However, when using an ion gun or plasma gun, the emission distribution of ions or plasma has directivity, so the refractive index of the thin film formed on the substrate dome facing the ion gun or plasma gun generator is not uniform. Occurs. When an ion gun or a plasma gun is used, a thin film having desired characteristics can be obtained only in the central portion of the substrate dome (10 to 20% of the entire area of the substrate dome), where the refractive index is practically uniform.
【0009】又成膜処理時間も真空蒸着法よりかなり長
時間を要し、例えば30層程度のBPSフィルター成膜
時には、真空蒸着法では蒸発速度が高屈折率物質:0.
5nm/s、低屈折率物質:1.0nm/s程度で成膜
し1工程2時間くらいの時間で済むのに対し、イオンガ
ンやプラズマガンを使用した場合の成膜速度は、高屈折
率物質:0.1nm/s、低屈折率物質:0.5nmn
/s程度で成膜するために1工程10時間と真空蒸着法
と比較して約5倍の時間を要するため、所望の光学薄膜
素子を生産効率良く形成する事は非常に困難であった。
特公昭51−23376号に示される装置では基板ドー
ム上部にシールドが設けられている。基板ヒータドーム
がシールド上部にある場合、基板を300℃程度に加熱
して生成を実施すると、板上のシールドが熱遮蔽し基板
温度上昇を防げる問題がある。[0009] Also, the film formation processing time is considerably longer than that of the vacuum evaporation method. For example, when forming a BPS filter of about 30 layers, the evaporation rate of the vacuum evaporation method is high refractive index material: 0.
5 nm / s, low-refractive-index substance: a film is formed at about 1.0 nm / s, and it takes about 2 hours for one process. On the other hand, when an ion gun or a plasma gun is used, the film-forming speed is high. : 0.1 nm / s, low refractive index substance: 0.5 nm
It takes 10 hours per process to form a film at about / s, which is about 5 times as long as the vacuum deposition method. Therefore, it is very difficult to form a desired optical thin film element with high production efficiency.
In the device disclosed in Japanese Patent Publication No. 51-23376, a shield is provided above the substrate dome. When the substrate heater dome is located above the shield, if the substrate is heated to about 300 ° C. to perform the generation, the shield on the plate is thermally shielded and there is a problem that the substrate temperature can be prevented from rising.
【0010】又、基板を300℃程度に加熱すると回転
する基板ドームへ高周波を印加するコンタクト(リン青
銅のバネ材等)が熱を受けて歪む。熱歪を受けたコンタ
クトはスプリング効果がなくなり基板ドームに対して接
触抵抗が増大し、高周波電力を供給できなくなるという
問題がある。光学用の成膜装置は、膜厚を観測制御する
光学式膜厚計とモニタリング基板が装備される。この場
合モニタリング基板には高周波電力が印加されていない
ので基板ドーム上の基板と屈折率の違いが生じるという
問題がある。When the substrate is heated to about 300 ° C., a contact (phosphor bronze spring material or the like) for applying a high frequency to the rotating substrate dome is distorted due to heat. There is a problem in that a contact that has received thermal strain loses the spring effect, increases the contact resistance to the substrate dome, and cannot supply high-frequency power. The optical film forming apparatus is equipped with an optical film thickness meter for observing and controlling the film thickness and a monitoring substrate. In this case, since no high-frequency power is applied to the monitoring substrate, there is a problem that a difference in refractive index from the substrate on the substrate dome occurs.
【0011】[0011]
【発明の概要】本発明は上記のような問題点を解決しよ
うとするもので、高充填密度で所望する特性を持つ光学
薄膜素子を短時間で効率良く生産する事の出来る光学薄
膜製造装置を提供する事を目的とするものである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an optical thin film manufacturing apparatus capable of efficiently producing an optical thin film element having desired characteristics at a high packing density in a short time. It is intended to provide.
【0012】本発明は、前記特公昭51−23376号
に示されるような高周波(RF)電力を基板へ印加して
付着性の良い金属薄膜を得るという考え方を、光学(誘
電体)薄膜を製造する装置にも摘要しようとするもので
ある。高充填密度の光学薄膜を得る際、イオンやプラズ
マを併用しながら成膜する方式の装置を大型化しようと
する場合、設置するイオンガンまたはプラズマガンを複
数台必要とするため、価格的にも実用的ではない。そこ
で、基板ドームに直接高周波(周波数13MHz帯)を
印加する方式(直接RF基板印加方式)に着目した。直
接RF基板印加方式の原理は、グロー放電中の電子とイ
オンの易動度の差等から生ずる基板に誘起される負の自
己バイアスにより加速されたイオンを膜表面上に射突さ
せ、膜の充填密度を向上させようとするものである。The present invention is based on the idea that a high-frequency (RF) power is applied to a substrate to obtain a metal film with good adhesion as disclosed in Japanese Patent Publication No. 51-23376. It is intended to be applied to a device that performs the above. When obtaining an optical thin film with a high packing density, when trying to increase the size of an apparatus that forms a film while using both ions and plasma, multiple ion guns or plasma guns need to be installed. Not a target. Therefore, attention was paid to a method of directly applying a high frequency (frequency band of 13 MHz) to the substrate dome (direct RF substrate application method). The principle of the direct RF substrate application method is that ions accelerated by the negative self-bias induced on the substrate caused by the difference in mobility between electrons and ions during glow discharge are projected on the film surface, The purpose is to improve the packing density.
【0013】具体的には、回転する基板ドームへ高周波
電力を印加すると共に、本発明装置が従来の真空蒸着法
としても使用可能とするために基板を加熱する機構を装
備しているが、該基板ドームが高温状態でも効率良く高
周波電力を印加する為に、自己潤滑材の2硫化タングス
テン(WS2)や2硫化モリブデン(MoS2)から成る
コンタクトを介して高周波電力給電機構を備えている。
基板ドームへ印加する高周波電力と同じ電力をモニタリ
ング基板へ供給する際に、異常放電を抑制する為に、絶
縁部材を使用してモニタ筒及びモニタセットプレートを
真空槽から絶縁する構造としている。又、基板ドームと
基板加熱ヒータドーム間での異常放電を抑制する為に、
両者の間に取付けたシールドをメッシュ構造としてい
る。使用するメッシュは基板温度を効率良く上昇させる
ためにメッシュの目の開きを大きくしたいが、メッシュ
の目の開きを大きくし過ぎると放電に対するシールド効
果がなくなる不具合が発生する。これらの理由から、使
用するメッシュは#9メッシュ(目の開き:約2mm)
から#2.5メッシュ(目の開き:約9mm)で、この
メッシュを使用した事により効率良く基板加熱ができ
る。更に、基板ドーム外周部におけるプラズマ密度の違
いによる基板ドーム外周部の屈折率を改善する為に、基
板ドームと外周のシールドとの間隔を可変する機構を設
けた。Specifically, a mechanism is provided for applying high-frequency power to the rotating substrate dome and for heating the substrate so that the apparatus of the present invention can be used as a conventional vacuum deposition method. In order to efficiently apply high frequency power even when the substrate dome is in a high temperature state, a high frequency power supply mechanism is provided via a contact made of self-lubricating material tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ).
When supplying the same power as the high frequency power applied to the substrate dome to the monitoring substrate, the monitor cylinder and the monitor set plate are insulated from the vacuum chamber using an insulating member in order to suppress abnormal discharge. Also, in order to suppress abnormal discharge between the substrate dome and the substrate heater dome,
The shield attached between them has a mesh structure. It is desired to increase the mesh size of the mesh to be used in order to efficiently raise the substrate temperature. However, if the mesh size is too large, a problem occurs in that the shielding effect against discharge is lost. For these reasons, the mesh used is # 9 mesh (opening of the eyes: about 2 mm)
To # 2.5 mesh (opening: about 9 mm), and by using this mesh, the substrate can be efficiently heated. Further, in order to improve the refractive index of the outer peripheral portion of the substrate dome due to the difference in plasma density at the outer peripheral portion of the substrate dome, a mechanism for changing the interval between the substrate dome and the outer peripheral shield is provided.
【0014】[0014]
【発明の実施の形態】実施例の構成の説明 以下、この発明の実施例を図面に基づいて説明する。
尚、図1の前記従来構成と同一、もしくは均等なものは
同一符号を付すものとする。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.
The same or equivalent components as those of the conventional configuration shown in FIG. 1 are denoted by the same reference numerals.
【0015】図2は、本発明の光学薄膜製造装置の概略
構成図を示す。同図において符号(1)は真空排気口
(2)とガス導入口(3)を備えた真空槽を示し、該真
空槽(1)の内部には、基板(4)を取付けた基板ドー
ム(5)及びメッシュ構造としたシールド(13)と、
対向する位置に蒸発源(6)及び熱電子放出機構(8)
が設けられる。該基板ドーム(5)と蒸発源(6)の間
には可動自在にシャッター(10)が設けられ、該基板
ドーム(5)へは、外部の高周波電源(14)からマッ
チングボックス(15)を介して高周波電力給電機構
(16)から高周波電力が供給される。この時、該基板
ドーム(5)は、図示しない外部の基板ドーム回転用モ
ータから基板ドーム回転機構を介して回転する。該基板
ドーム(5)の近傍に設けられたモニタリング基板(1
1)に堆積する光学薄膜を外部の光学式膜厚計(12)
で観測制御しながら所望の光学薄膜を得ようとするもの
である。FIG. 2 is a schematic structural view of an optical thin film manufacturing apparatus according to the present invention. In the figure, reference numeral (1) denotes a vacuum chamber provided with a vacuum exhaust port (2) and a gas inlet (3), and inside the vacuum chamber (1), a substrate dome (4) on which a substrate (4) is mounted. 5) and a shield (13) having a mesh structure;
Evaporation source (6) and thermoelectron emission mechanism (8) at opposing positions
Is provided. A shutter (10) is movably provided between the substrate dome (5) and the evaporation source (6), and a matching box (15) is connected to the substrate dome (5) from an external high-frequency power supply (14). High-frequency power is supplied from the high-frequency power supply mechanism (16) via the power supply. At this time, the substrate dome (5) is rotated by an external substrate dome rotation motor (not shown) via a substrate dome rotation mechanism. The monitoring board (1) provided near the board dome (5)
The optical thin film deposited on 1) is transferred to an external optical film thickness meter (12).
It is intended to obtain a desired optical thin film while controlling the observation in.
【0016】図3は、高周波電力給電機構(16)の詳
細図である。同図において符号(17)はモニタ筒を示
し、モニタ筒(17)の内部にはモニタリング基板(1
1)をセットする構造である、モニタ筒(17)はモニ
タセットプレート(22)から絶縁部材(18)を使用
し電気的に絶縁する機構とした。図3の斜線部分は高周
波が印加される部分を示した。高周波は自己潤滑材の2
硫化タングステン(WS2)コンタクト(21)を使用
して、スプリングSで基板ドーム(5)へWS2コンタ
クト(21)を圧接する事で、回転する基板ドーム
(5)へ効率よく印加できる構造となっている。FIG. 3 is a detailed view of the high-frequency power supply mechanism (16). In the figure, reference numeral (17) indicates a monitor tube, and a monitoring board (1) is provided inside the monitor tube (17).
The monitor cylinder (17), which is a structure for setting 1), has a mechanism for electrically insulating the monitor set plate (22) from the monitor set plate (22) by using an insulating member (18). The hatched portion in FIG. 3 indicates a portion to which a high frequency is applied. High frequency is self-lubricating 2
By using a tungsten sulfide (WS 2 ) contact (21) to press the WS 2 contact (21) against the substrate dome (5) with a spring S, a structure can be efficiently applied to the rotating substrate dome (5). Has become.
【0017】図4は、モニタ筒(17)を絶縁部材(1
8)、絶縁部材(19)、及び絶縁部材(20)でモニ
タセットプレート(22)に取付ける詳細図である。同
図において符号(17)はモニタ筒を示し、モニタ筒の
内部にモニタリング基板(11)をセットする。モニタ
筒(17)はモニタセットプレート(22)から絶縁部
材(18)を使用し電気的に絶縁する機構とし、更に異
常放電を防止するため、絶縁部材(19)絶縁部材(2
0)を使用し真空槽からも電気的に絶縁する機構とし
た。図4の斜線部分は絶縁部材を示した。FIG. 4 shows that the monitor tube (17) is connected to an insulating member (1).
FIG. 8 is a detailed view of attaching to the monitor set plate (22) with the insulating member (19) and the insulating member (20). In the figure, reference numeral (17) indicates a monitor tube, and a monitoring board (11) is set inside the monitor tube. The monitor cylinder (17) has a mechanism for electrically insulating the monitor set plate (22) from the monitor set plate (22) by using an insulating member (18). In order to prevent abnormal discharge, the insulating member (19) and the insulating member (2) are used.
0) and a mechanism to electrically insulate from the vacuum chamber. The hatched portions in FIG. 4 indicate the insulating members.
【0018】図5は、基板ドーム(5)とメッシュ構造
のシールド(13)との間隔を可変する詳細図を示す。
シールド(13)は板状の構造物をネジで基板加熱ヒー
タドーム(23)及び真空槽(1)に固定している。基
板ドーム(5)との間隔を変更する場合は、シールド
(13)の板に開けられた長穴(a)の固定位置を変え
て止め直す事で、縦方向に間隔を可変でき真空槽(1)
の長穴(b)の固定位置を止め直す事で左右方向に可変
できる構造としている。FIG. 5 is a detailed view showing a variable distance between the substrate dome (5) and the shield (13) having a mesh structure.
The shield (13) fixes a plate-like structure to the substrate heater dome (23) and the vacuum chamber (1) with screws. When changing the gap with the substrate dome (5), the gap can be changed in the vertical direction by changing the fixing position of the long hole (a) formed in the plate of the shield (13) and stopping again. 1)
The fixed position of the long hole (b) can be changed in the left-right direction by stopping the fixing position again.
【0019】実施例の作用・動作の説明 図2の構成において、真空槽(1)の内部をあらかじめ高
真空領域(5×10-4Pa程度)まで真空排気口(2)
により排気する。その後ガス導入口(3)から放電用ガ
ス(この場合は酸素)を圧力で8×10-3〜3×10-2
Pa程度導入する。基板ドーム(5)に2硫化タングス
テン(WS2 )コンタクト(21)によって高周波電力
を印加(50W〜3KW)すると、基板ドーム(陰極電
極)と蒸発源(6)との空間にグロー放電が発生しプラ
ズマ状態になる。該基板ドーム(5)に取付けられた基
板(4)の表面には自己誘起された負の直流電界が生ず
る。プラズマ化された放電用ガスは、基板表面に自己誘
起された負の直流電界によって加速され、基板表面に突
入する。この状態で蒸発源(6)に電力(600W〜3
600W)を供給し、蒸発源シャッター(10)を解放
すると、蒸発源(6)から蒸発した蒸発粒子は、このプ
ラズマ中を通過して基板に到達する。モニタリング基板
(11)に堆積する薄膜を光学式膜厚計(12)で観測
制御し、所望の膜厚になったところで蒸発源シャッター
(10)を閉じる。プラズマ放電空間の中に多くの高速
粒子が存在する。この高速粒子が基板ドーム(5)や基
板(4)に薄膜形成中に衝突し、運動エネルギーを与え
る効果や、原子拡散と化合促進などによる効果が高充填
密度の薄膜を得られる理由と考えられる。 Description of the operation and operation of the embodiment In the configuration shown in FIG. 2, the inside of the vacuum chamber (1) is evacuated to a high vacuum area (about 5 × 10 −4 Pa) in advance.
To exhaust. Thereafter, a discharge gas (in this case, oxygen) is supplied from the gas inlet (3) at a pressure of 8 × 10 −3 to 3 × 10 −2.
About Pa is introduced. 2 tungsten sulfide on a substrate dome (5) (WS 2) applying a high-frequency power by the contact (21) (50W~3KW) Then, glow discharge is generated in the space between the substrate dome (cathode) and the evaporation source (6) It becomes a plasma state. A self-induced negative DC electric field is generated on the surface of the substrate (4) attached to the substrate dome (5). The plasmatized discharge gas is accelerated by the negative direct-current electric field self-induced on the substrate surface and rushes into the substrate surface. In this state, electric power (600 W to 3
When the evaporation source shutter (10) is released and the evaporation source shutter (10) is released, the evaporated particles evaporated from the evaporation source (6) pass through the plasma and reach the substrate. The thin film deposited on the monitoring substrate (11) is observed and controlled by an optical film thickness meter (12), and when the film thickness reaches a desired value, the evaporation source shutter (10) is closed. There are many fast particles in the plasma discharge space. These high-speed particles collide with the substrate dome (5) or the substrate (4) during the formation of the thin film, and the effect of imparting kinetic energy and the effect of promoting atomic diffusion and compounding are considered to be the reasons for obtaining a thin film with high packing density. .
【0020】図6は、従来のイオンやプラズマを併用し
ながらイオンガンを使用した成膜法と、本発明の直接R
F基板印加の光学薄膜製造装置を用いて成膜した場合の
屈折率の比較データを表すものである。基板ドーム直径
600mmを用いて直径76.2mmの基板上に厚さ2
00nmの5酸化タンタル(Ta2O5)を酸素雰囲気に
よる圧力1.3×10-2Pa、高周波電力1KW、蒸発
速度0.5nm/sの条件で成膜した場合を示す。屈折
率分布は小数点以下3桁目の屈折率が判定できるように
エリプソメータ(観測波長:632.8nm)により測
定した。図6の横軸は基板ドーム中心からの距離を、縦
軸は屈折率を示す。従来のイオンやプラズマを併用しな
がらの成膜法の場合、基板全体にわたっての屈折率分布
は約0.1で有ったものが、本発明の光学薄膜製造装置
の場合、屈折率分布は0.003と大きく改善された。FIG. 6 shows a conventional film forming method using an ion gun while using both ions and plasma, and the direct R method of the present invention.
FIG. 9 shows comparison data of refractive indexes when a film is formed using an optical thin film manufacturing apparatus applied with an F substrate. Using a substrate dome diameter of 600 mm, a thickness of 2
A case where a film of tantalum pentoxide (Ta 2 O 5 ) having a thickness of 00 nm is formed under the conditions of a pressure of 1.3 × 10 −2 Pa in an oxygen atmosphere, a high-frequency power of 1 kW, and an evaporation rate of 0.5 nm / s is shown. The refractive index distribution was measured with an ellipsometer (observation wavelength: 632.8 nm) so that the refractive index at the third digit after the decimal point could be determined. The horizontal axis in FIG. 6 indicates the distance from the center of the substrate dome, and the vertical axis indicates the refractive index. In the case of the conventional film forming method using both ions and plasma, the refractive index distribution over the entire substrate was about 0.1, but in the case of the optical thin film manufacturing apparatus of the present invention, the refractive index distribution was 0. 0.003.
【0021】図7は、絶縁部材を使用してモニタ筒(1
7)及びモニタセットプレート(22)を真空槽(1)
から絶縁する事で、高周波電力を安定に供給できる事を
表したものである。プラズマ発生用の高周波電源(1
4)は、インピーダンスが50Ωのケーブルで出力す
る。ところが負荷(高周波電力給電機構(16)、基板
ドーム(5)等)インピーダンスは50Ωではなく、ケ
ーブルを負荷に直接接続するとインピーダンスのミスマ
ッチングによるRF電力の反射を生じ効率よく負荷への
電力供給ができなく、高周波電源内部で出力損失が増大
し、異常な電圧が発生して電源を損傷する可能性があ
る。この反射電力を減少させる目的でインピーダンス整
合を行うためにマッチングボックス(15)がある。マ
ッチングボックス(15)は2つのバリコンの調整によ
り真空槽内部の機構・構造変化や成膜条件の変化により
負荷インピーダンスが広範囲に変動してもインピーダン
スマッチングを可能にしている。本発明では、基板ドー
ムへ印加する高周波電力と同じ高周波の電力をモニタリ
ング基板(11)へも印加する際に、異常放電を制御す
る為に、絶縁部材を使用してモニタ筒(17)及びモニ
タセットプレート(22)を真空槽(1)から絶縁する
構造とした事で効率よく高周波を基板ドーム(5)へ給
電する事ができた。例として、基板ドーム直径760m
mを用いて、酸素雰囲気による圧力2.7〜1.3×10
-2Pa、高周波出力1.5KWを連続して印加した際、
モニタ筒(17)のみ絶縁した場合は高周波印加10分
後から異常放電が発生し22分で高周波放電が持続しな
く(使用不可能)なった。一方モニタ筒(17)とモニ
タセットプレート(22)を真空槽(1)から絶縁する
機構を採用した事で、高周波を30分以上連続印加して
も安定して電力を供給する事ができた。図7の横軸は時
間を、縦軸は高周波反射電力を示す。FIG. 7 shows a monitor tube (1) using an insulating member.
7) and monitor set plate (22) to vacuum chamber (1)
This indicates that high-frequency power can be supplied stably by insulating it from. High frequency power supply for plasma generation (1
4) Output with a cable having an impedance of 50Ω. However, the impedance of the load (the high-frequency power supply mechanism (16), the substrate dome (5), etc.) is not 50Ω. When a cable is directly connected to the load, RF power is reflected due to impedance mismatching, and power is efficiently supplied to the load. Otherwise, the output loss increases inside the high-frequency power supply, and an abnormal voltage may be generated to damage the power supply. There is a matching box (15) for performing impedance matching for the purpose of reducing the reflected power. The matching box (15) enables impedance matching by adjusting two variable condensers even if the load impedance fluctuates over a wide range due to a change in the mechanism / structure inside the vacuum chamber or a change in film forming conditions. According to the present invention, when the same high-frequency power as the high-frequency power applied to the substrate dome is also applied to the monitoring substrate (11), in order to control abnormal discharge, the monitor cylinder (17) and the monitor are provided using insulating members. Since the set plate (22) was insulated from the vacuum chamber (1), high frequency power could be efficiently supplied to the substrate dome (5). As an example, substrate dome diameter 760m
m, the pressure in the oxygen atmosphere is 2.7 to 1.3 × 10
-2 Pa, when high frequency output 1.5KW is applied continuously,
When only the monitor tube (17) was insulated, abnormal discharge occurred 10 minutes after high-frequency application, and the high-frequency discharge was not maintained (unusable) in 22 minutes. On the other hand, by adopting a mechanism that insulates the monitor cylinder (17) and the monitor set plate (22) from the vacuum chamber (1), power can be supplied stably even when a high frequency is continuously applied for 30 minutes or more. . In FIG. 7, the horizontal axis represents time, and the vertical axis represents high-frequency reflected power.
【0022】図8は、回転する基板ドーム(5)が高温
状態でも効率良く高周波電力を印加する為に、自己潤滑
材の2硫化タングステン(WS2)コンタクト(21)
から成る高周波電力給電機構(16)を使用する事で基
板ドームが高温状態でも安定に高周波電力を給電できる
事を示したものである。電力の供給部材としては、銅
(Cu)製の接点バネ(Cuコンタクト)がある。しか
し基板温度が上昇し180℃以上でCuコンタクトの劣
化が始まり、200℃以上で高周波放電が持続しなく
(使用不能)になる。本発明では自己潤滑材2硫化タン
グステン(WS2)コンタクト(21)を採用する事に
より基板(4)が300℃以上の高温状態でも効率良く
高周波電力を印加する事ができた。図8の横軸は基板温
度を、縦軸は高周波反射電力を示す。FIG. 8 shows a self-lubricating tungsten disulfide (WS 2 ) contact (21) for efficiently applying high frequency power even when the rotating substrate dome (5) is in a high temperature state.
It is shown that high-frequency power can be stably supplied even when the substrate dome is in a high-temperature state by using the high-frequency power supply mechanism (16) composed of. As a power supply member, there is a contact spring (Cu contact) made of copper (Cu). However, the substrate temperature rises, and the deterioration of the Cu contact starts at 180 ° C. or higher, and the high frequency discharge does not continue (cannot be used) at 200 ° C. or higher. In the present invention, by employing the self-lubricating tungsten disulfide (WS 2 ) contact (21), high-frequency power can be efficiently applied even when the substrate (4) is in a high temperature state of 300 ° C. or higher. The horizontal axis in FIG. 8 shows the substrate temperature, and the vertical axis shows the high-frequency reflected power.
【0023】図9は、基板ドーム(5)と基板加熱ヒー
タドーム(23)間での異常放電を制御する為に、両者
の間に取付けたシールド(3)をメッシュ構造として、
効率良く基板加熱できる事を示したものである。基板ド
ーム直径760mmを用いて、ドーム上に直径30mm
のガラス基板を設置し、温度調節器に温度を設定する事
で、基板加熱ヒータドーム(23)に供給する電力を自
動制御しながら加熱する。基板温度測定は非接触で計測
可能な放射温度計にて測定した。シールドが板状(厚
さ:1〜2mm、材質:ステンレス)の場合、シールド
が無い時に比較し150℃低い温度であった。本発明で
は、シールドをメッシュ構造とする事でシールドが無い
時とほぼ同じ10℃低い温度と改善する事ができた。図
9の横軸は温度調節器設定温度を、縦軸は基板温度を示
す。FIG. 9 shows a shield (3) attached between the substrate dome (5) and the substrate heater dome (23) in a mesh structure in order to control abnormal discharge.
This shows that the substrate can be efficiently heated. Using a substrate dome diameter of 760 mm, a diameter of 30 mm
By setting the glass substrate and setting the temperature in the temperature controller, heating is performed while automatically controlling the power supplied to the substrate heating heater dome (23). The substrate temperature was measured with a radiation thermometer capable of non-contact measurement. When the shield was plate-shaped (thickness: 1 to 2 mm, material: stainless steel), the temperature was 150 ° C. lower than when there was no shield. In the present invention, by making the shield a mesh structure, it was possible to improve the temperature to about 10 ° C. lower than that without the shield. The horizontal axis in FIG. 9 indicates the temperature controller set temperature, and the vertical axis indicates the substrate temperature.
【0024】図10は、従来のイオンやプラズマを併用
しながらの成膜法を用いて成膜した場合の波長移動量
(波長シフト量)を表すものである。基板ドーム直径6
00mmを用いて直径30mmの基板上にTa2O5 と
SiO2薄膜を交互に25層堆積した。酸素雰囲気によ
る圧力2.7〜1.3×10-2Pa、アノード出力900
mA、900V、蒸発速度Ta2O5 0.1nm/sと
SiO2 0.1nm/sの条件で成膜した。波長シフト
量の測定は環境試験をする前後において分光透過率測定
を実施し、その分光特性のズレ量から判断し評価した。
環境試験方法は、温度85℃、湿度95%の雰囲気に1
000時間成膜した基板を放置した。図10の横軸は波
長を、縦軸は透過率を示す。従来のイオンやプラズマを
併用しながらの成膜法の場合、波長シフト量は、1〜2
nmであった。FIG. 10 shows a wavelength shift amount (wavelength shift amount) when a film is formed by a conventional film forming method using both ions and plasma. Substrate dome diameter 6
Twenty-five layers of Ta 2 O 5 and SiO 2 thin films were alternately deposited on a substrate having a diameter of 30 mm by using 00 mm. Oxygen atmosphere pressure 2.7 ~ 1.3 × 10 -2 Pa, anode output 900
mA, 900V, was formed under the conditions of evaporation rate Ta 2 O 5 0.1nm / s and SiO 2 0.1nm / s. For the measurement of the wavelength shift amount, a spectral transmittance measurement was performed before and after the environmental test, and evaluation was made by judging from a shift amount of the spectral characteristics.
The environmental test method is as follows.
The substrate on which the film was formed for 000 hours was left. The horizontal axis in FIG. 10 indicates the wavelength, and the vertical axis indicates the transmittance. In the case of the conventional film forming method using both ions and plasma, the wavelength shift amount is 1 to 2
nm.
【0025】図11は、本発明の光学薄膜製造装置を用
いて成膜した場合の波長移動量(波長シフト量)を表す
ものである。基板ドーム直径600mmを用いて直径3
0mmの基板上にTa2O5 とSiO2薄膜を交互に25
層堆積した。酸素雰囲気による圧力2.7〜1.3×10
-2Pa、高周波出力1KW、蒸発速度Ta2O5 0.5
nm/sとSiO2 0.6nm/sの条件で成膜した。
波長シフト量の測定は環境試験をする前後において分光
透過率測定を実施し、その分光特性のズレ量から判断し
評価した。環境試験方法は、温度85℃、湿度95%の
雰囲気に1000時間成膜した基板を放置した。図11
の横軸は波長を、縦軸は透過率を示す。本発明の光学薄
膜製造装置で成膜した場合の波長シフト量は0.1nm
以下であった。波長シフト量をイオンやプラズマを併用
しながらの成膜法と本発明の光学薄膜製造装置で成膜し
た場合で比較すると、従来のイオンやプラズマを併用し
ながらの成膜法のシフト量は1〜2nmで有ったもの
が、本発明の光学薄膜製造装置の場合は0.1nm以下
と1/10に大きく改善された。FIG. 11 shows the wavelength shift (wavelength shift) when a film is formed using the optical thin film manufacturing apparatus of the present invention. Diameter 3 using 600mm substrate dome
25 mm of Ta 2 O 5 and SiO 2 thin films are alternately formed on a 0 mm substrate.
Layer deposited. Oxygen atmosphere pressure 2.7 ~ 1.3 × 10
-2 Pa, high frequency output 1 KW, evaporation rate Ta 2 O 5 0.5
The film was formed under the conditions of nm / s and 0.6 nm / s of SiO 2 .
For the measurement of the wavelength shift amount, a spectral transmittance measurement was performed before and after the environmental test, and evaluation was made by judging from a shift amount of the spectral characteristics. In the environmental test method, a substrate formed in an atmosphere at a temperature of 85 ° C. and a humidity of 95% was left for 1000 hours. FIG.
The horizontal axis indicates the wavelength, and the vertical axis indicates the transmittance. The wavelength shift amount when the film is formed by the optical thin film manufacturing apparatus of the present invention is 0.1 nm.
It was below. When the amount of wavelength shift is compared between the film formation method using both ions and plasma and the film formation using the optical thin film manufacturing apparatus of the present invention, the shift amount of the conventional film formation method using both ions and plasma is 1 However, in the case of the optical thin film manufacturing apparatus according to the present invention, the value was greatly reduced to 0.1 nm or less, that is, 1/10.
【0026】図12は、従来のイオンやプラズマを併用
しながらの成膜法と、本発明の光学薄膜製造装置を用い
て成膜した場合の成膜処理時間を比較したものである。
基板ドーム直径760mmを用いて波長:λ=600n
m程度のPBSフィルターをTa2O5 とSiO2を用い
交互で20層それぞれの成膜手法で堆積した。一方イオ
ンやプラズマを併用しながらの成膜法は、酸素雰囲気に
よる圧力2.7〜1.3×10-2Pa、アノード出力90
0mA、900V、蒸発速度Ta2O5 0.1nm/s
とSiO2 0.2nm/sの条件で成膜した。本発明の
成膜条件は、酸素雰囲気による圧力2.7〜1.3×10
-2Pa、高周波出力1KW、蒸発速度Ta2O5 0.5
nm/sとSiO2 1.0nm/sの条件で成膜した。
図12の横軸は成膜手法を、縦軸は時間を示す。FIG. 12 shows a comparison between a conventional film forming method using both ions and plasma and a film forming process time when a film is formed using the optical thin film manufacturing apparatus of the present invention.
Wavelength: λ = 600n using substrate dome diameter of 760mm
About 20 m of PBS filters were alternately deposited using Ta 2 O 5 and SiO 2 by a film forming method of 20 layers. On the other hand, the film forming method using ions and plasma together has a pressure of 2.7 to 1.3 × 10 −2 Pa in an oxygen atmosphere and an anode output of 90.
0 mA, 900 V, evaporation rate Ta 2 O 5 0.1 nm / s
And SiO 2 were formed under the conditions of 0.2 nm / s. The film forming conditions of the present invention are as follows: a pressure of 2.7 to 1.3 × 10
-2 Pa, high frequency output 1 KW, evaporation rate Ta 2 O 5 0.5
The film was formed under the conditions of nm / s and SiO 2 1.0 nm / s.
The horizontal axis in FIG. 12 indicates a film forming method, and the vertical axis indicates time.
【0027】イオンやプラズマを併用しながらの成膜法
と本発明の光学薄膜製造装置でそれぞれ成膜した場合の
成膜処理時間を比較すると、成膜準備と基板取り出し時
間はほぼ同一の合計1.5時間である。成膜時間は従来
のイオンやプラズマを併用しながらの成膜法の場合は1
0時間程度で有ったものが、本発明の光学薄膜製造装置
の場合は2時間で成膜処理時間は1/5と大きく改善さ
れた。Comparing the film forming method using both ions and plasma with the film forming processing time when the film is formed by the optical thin film manufacturing apparatus of the present invention, the film forming preparation and the substrate taking out time are almost the same, ie, 1 times. .5 hours. The film formation time is 1 in the case of the conventional film formation method using both ions and plasma.
In the case of the optical thin film manufacturing apparatus of the present invention, the time was about 0 hour, but in the case of the optical thin film manufacturing apparatus of the present invention, the film forming processing time was greatly improved to 2/5 in 1/5.
【0028】図13は本発明の装置で、ドームとシール
ド間隔を変化させて成膜した場合のドーム内屈折率分布
を示したものである。基板ドーム直径1150mmを用
い、酸素雰囲気による圧力2.7×10-2Pa、高周波
出力3KW、蒸発速度0.3nm/s、の条件でTiO
2 を200nm成膜した。図13の横軸は、基板ドーム
中心からの距離を、縦軸は、屈折率を示す。基板ドーム
とシールドとの間隔を30mm及び60mmでそれぞれ
成膜した場合のドーム内屈折率分布を比較すると、基板
ドーム中心から約500mmまではほぼ同一の屈折率値
2.399〜2.406を示しているが、ドームとシール
ドとの間隔が60mmの場合基板ドーム中心から500
〜540mmでは屈折率が2.385と極端に低下して
いる。屈折率が低下する理由は基板ドーム中心部と周辺
部でのプラズマ密度の違いで発生する。今回シールドと
の間隔を可変できる機構とし、ドームとシールドとの間
隔を30mmとする事で屈折率2.404と基板ドーム
中心から約500mmまでの屈折率値とほぼ同程度まで
改善する事ができた。FIG. 13 shows the refractive index distribution in the dome when the film is formed by changing the distance between the dome and the shield in the apparatus of the present invention. Using a substrate dome diameter of 1150 mm, TiO under the conditions of a pressure of 2.7 × 10 −2 Pa in an oxygen atmosphere, a high-frequency output of 3 KW, and an evaporation rate of 0.3 nm / s.
2 was deposited to a thickness of 200 nm. The horizontal axis in FIG. 13 indicates the distance from the center of the substrate dome, and the vertical axis indicates the refractive index. Comparing the refractive index distribution in the dome when the distance between the substrate dome and the shield is 30 mm and 60 mm, respectively, shows almost the same refractive index value from 2.399 to 2.406 from the center of the substrate dome to about 500 mm. However, when the distance between the dome and the shield is 60 mm, 500 mm from the center of the substrate dome
At 率 540 mm, the refractive index is extremely low at 2.385. The reason for the decrease in the refractive index is caused by the difference in plasma density between the central part and the peripheral part of the substrate dome. This time, the distance between the shield and the shield can be changed, and by setting the distance between the dome and the shield to 30 mm, the refractive index of 2.404 can be improved to about the same value as the refractive index from the center of the substrate dome to about 500 mm. Was.
【0029】本発明の構造は高周波を基板印加する様な
成膜装置全てに転用可能である。図14はスパッタリン
グ装置へ転用した例を示したもので、図2で示した本発
明の光学薄膜製造装置との大きな違いは、高周波及び直
流電力を電源切替スイッチ(26)を経てスパッタリン
グターゲット(24)へ印加する様な構造としたスパッ
タリング装置である。The structure of the present invention can be applied to all film forming apparatuses that apply a high frequency to a substrate. FIG. 14 shows an example in which the present invention is applied to a sputtering apparatus. The major difference from the optical thin film manufacturing apparatus of the present invention shown in FIG. 2 is that high frequency and DC power are supplied to a sputtering target (24) via a power supply switch (26). This is a sputtering apparatus having a structure for applying a voltage to the sputtering apparatus.
【0030】[0030]
【発明の効果】本発明では、回転する基板ドームへ高周
波電力を直接印加すると共に、本発明の高周波電力給電
機構や、異常放電を抑制するための絶縁構造、効率良く
基板加熱を行うためのシールドのメッシュ構造、更に基
板ドームと外周のシールド間隔を可変する機構等を採用
した事によって、基板ドーム内屈折率分布が、従来は
0.1であったものが0.003へ改善され、又波長移
動量(波長シフト量)も、従来は1〜2nmであったも
のが0.1nmへ、1/10に改善。更に成膜処理時間
も、従来10時間必要としたものが2時間へ、1/5に
短縮された。この様に本発明によって、高充填密度の光
学(誘電体)薄膜を基板ドーム内全域で良好な屈折率を
誇る光学薄膜素子を短時間で効率よく生産する事が可能
となり、光学及び電子デバイス製品の生産性を著しく向
上した。その工業的価値は非常に顕著である。According to the present invention, high-frequency power is directly applied to the rotating substrate dome, the high-frequency power supply mechanism of the present invention, an insulating structure for suppressing abnormal discharge, and a shield for efficiently heating the substrate are provided. By adopting a mesh structure and a mechanism for varying the shield distance between the substrate dome and the outer periphery, the refractive index distribution in the substrate dome has been improved from 0.1 to 0.003 and the wavelength The movement amount (wavelength shift amount) has been improved from 1 to 2 nm in the past to 0.1 nm to 1/10. Further, the film formation processing time, which conventionally required 10 hours, was shortened to 2 hours and 1/5. As described above, according to the present invention, an optical (dielectric) thin film having a high packing density can be efficiently produced in a short time and efficiently in an optical thin film element having a good refractive index over the entire area of the substrate dome. Significantly improved productivity. Its industrial value is very significant.
【図1】従来構成の説明図。FIG. 1 is an explanatory diagram of a conventional configuration.
【図2】本発明の光学薄膜製造装置の概要説明図。FIG. 2 is a schematic explanatory view of an optical thin film manufacturing apparatus of the present invention.
【図3】本発明の高周波電力供給部の詳細説明図。FIG. 3 is a detailed explanatory diagram of a high-frequency power supply unit of the present invention.
【図4】本発明のモニタリング基板取付部の詳細説明
図。FIG. 4 is a detailed explanatory view of a monitoring board mounting portion of the present invention.
【図5】本発明の基板ドームとシールドとの間隔可変部
の詳細説明図。FIG. 5 is a detailed explanatory view of a variable distance section between the substrate dome and the shield according to the present invention.
【図6】従来方法と本発明との基板ドーム内屈折率分布
比較データ。FIG. 6 shows comparison data of the refractive index distribution in the substrate dome between the conventional method and the present invention.
【図7】絶縁個所の違いによる耐久性の効果を比較した
説明図。FIG. 7 is an explanatory diagram comparing the effects of durability due to differences in insulation locations.
【図8】コンタクト部材の違いによる耐熱性を比較した
説明図。FIG. 8 is an explanatory diagram comparing heat resistance due to differences in contact members.
【図9】シールド形状の違いによる基板温度の上昇効果
を比較した説明図。FIG. 9 is an explanatory diagram comparing the effect of increasing the substrate temperature due to the difference in the shield shape.
【図10】従来方法の環境試験前後における分光特性比
較図。FIG. 10 is a comparison diagram of spectral characteristics before and after an environmental test according to a conventional method.
【図11】本発明の環境試験前後における分光特性比較
図。FIG. 11 is a comparison diagram of spectral characteristics before and after an environmental test of the present invention.
【図12】従来方法と本発明の成膜処理時間比較図。FIG. 12 is a diagram showing a comparison between a conventional method and a film forming time of the present invention.
【図13】本発明でドームと外周シールド間隔を可変し
た場合のドーム中心からの距離と屈折率の関係を示す
図。FIG. 13 is a view showing the relationship between the distance from the center of the dome and the refractive index when the distance between the dome and the outer peripheral shield is changed in the present invention.
【図14】スパッタリング装置へ転用した例を示す図。FIG. 14 is a diagram showing an example in which the present invention is diverted to a sputtering apparatus.
1 真空槽 2 真空排気口 3 ガス導入口 4 基板 5 基板ドーム 6 蒸発源 7 イオンガン 8 熱電子放出機構 9 基板ドーム回転機構 10 シャッター 11 モニタリング基板 12 光学式膜厚計 13 シールド 14 高周波電源 15 マッチングボックス 16 高周波電力給電機構 17 モニタ筒 18 絶縁部材(a) 19 絶縁部材(b) 20 絶縁部材(c) 21 2硫化タングステン(WS2)コンタクト 22 モニタセットプレート 23 基板加熱ヒータドーム 24 スパッタリングターゲット 25 直流電源 26 電源切替スイッチDESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Vacuum exhaust port 3 Gas inlet 4 Substrate 5 Substrate dome 6 Evaporation source 7 Ion gun 8 Thermoelectron emission mechanism 9 Substrate dome rotation mechanism 10 Shutter 11 Monitoring board 12 Optical film thickness gauge 13 Shield 14 High frequency power supply 15 Matching box 16 High frequency power supply mechanism 17 Monitor cylinder 18 Insulating member (a) 19 Insulating member (b) 20 Insulating member (c) 21 Tungsten disulfide (WS 2 ) contact 22 Monitor set plate 23 Substrate heater dome 24 Sputtering target 25 DC power supply 26 Power switch
【手続補正書】[Procedure amendment]
【提出日】平成11年10月4日(1999.10.
4)[Submission date] October 4, 1999 (1999.10.
4)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】全図[Correction target item name] All figures
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】 FIG.
【図2】 FIG. 2
【図3】 FIG. 3
【図5】 FIG. 5
【図4】 FIG. 4
【図6】 FIG. 6
【図7】 FIG. 7
【図8】 FIG. 8
【図9】 FIG. 9
【図10】 FIG. 10
【図11】 FIG. 11
【図12】 FIG.
【図13】 FIG. 13
【図14】 FIG. 14
フロントページの続き (72)発明者 永井 和芳 神奈川県相模原市大野台2−27−2 株式 会社昭和真空内 Fターム(参考) 2K009 AA00 AA02 BB02 CC00 DD03 DD04 4K029 BC07 DA08 DA10 DD02 EA01 EA06 JA02 Continued on the front page (72) Inventor Kazuyoshi Nagai 2-27-2 Ohnodai, Sagamihara-shi, Kanagawa F-term in Showa Vacuum Co., Ltd. (Reference) 2K009 AA00 AA02 BB02 CC00 DD03 DD04 4K029 BC07 DA08 DA10 DD02 EA01 EA06 JA02
Claims (5)
いて、高充填密度の光学薄膜を基板ドーム全面で得る為
に、高周波電力を基板ドームに直接印加する機構を取付
けた事を特徴とする光学薄膜製造装置。1. An apparatus for manufacturing an optical (dielectric) thin film, wherein a mechanism for directly applying high-frequency power to the substrate dome is provided in order to obtain an optical thin film having a high packing density over the entire surface of the substrate dome. Optical thin film manufacturing equipment.
良く高周波電力を印加する為に、自己潤滑材から成る高
周波電力給電機構を備えた事を特徴とする請求項1記載
の光学薄膜製造装置。2. The optical thin film manufacturing apparatus according to claim 1, further comprising a high-frequency power supply mechanism made of a self-lubricating material for applying high-frequency power efficiently even when the rotating substrate dome is in a high temperature state.
電力をモニタリング基板へも印加する際に、異常放電を
抑制する為に、絶縁部材を使用してモニタ筒及びモニタ
セットプレートを真空槽から絶縁する構造とした事を特
徴とする請求項1記載の光学薄膜製造装置。3. When the same power as the high-frequency power applied to the substrate dome is also applied to the monitoring substrate, an insulating member is used to insulate the monitor cylinder and the monitor set plate from the vacuum chamber in order to suppress abnormal discharge. 2. The optical thin film manufacturing apparatus according to claim 1, wherein the optical thin film manufacturing apparatus has a structure.
の異常放電を抑制する為に、両者の間に取付けたシール
ドをメッシュ構造として、効率良く基板加熱できる事を
特徴とする請求項1記載の光学薄膜製造装置。4. The substrate according to claim 1, wherein the shield attached between the substrate dome and the substrate heater dome has a mesh structure so that the substrate can be efficiently heated to suppress abnormal discharge. Optical thin film manufacturing equipment.
率を改善する為に、基板ドームと外周のシールド間隔を
可変する事が出来る機構を備えた事を特徴とする請求項
1記載の光学薄膜製造装置。5. The apparatus according to claim 1, further comprising a mechanism that can change a shield distance between the substrate dome and the outer periphery in order to improve a refractive index of the substrate placed on the outer periphery of the substrate dome. Optical thin film manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25461699A JP4482972B2 (en) | 1999-09-08 | 1999-09-08 | Optical thin film manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25461699A JP4482972B2 (en) | 1999-09-08 | 1999-09-08 | Optical thin film manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001073136A true JP2001073136A (en) | 2001-03-21 |
JP4482972B2 JP4482972B2 (en) | 2010-06-16 |
Family
ID=17267519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25461699A Expired - Fee Related JP4482972B2 (en) | 1999-09-08 | 1999-09-08 | Optical thin film manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4482972B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6963457B1 (en) | 2004-07-30 | 2005-11-08 | Minebea Co., Ltd. | Color wheel of segment type |
WO2006001095A1 (en) * | 2004-06-25 | 2006-01-05 | Showa Shinku Co., Ltd. | Substrate dome rotating mechanism |
WO2006006263A1 (en) * | 2004-07-12 | 2006-01-19 | Showa Shinku Co., Ltd. | Vacuum device where power supply mechanism is mounted and power supply method |
US6999253B1 (en) | 2004-09-02 | 2006-02-14 | Minebea Co., Ltd. | Color wheel assembly with color wheel attached directly to driving motor |
US7113353B2 (en) | 2004-09-02 | 2006-09-26 | Minebea Co., Ltd. | Method of fixing color wheel to motor |
US7187509B2 (en) | 2005-02-10 | 2007-03-06 | Minebea Co., Ltd. | Color wheel and manufacturing method of same |
US7199952B2 (en) | 2004-12-10 | 2007-04-03 | Minebea Co., Ltd. | Color wheel, and color wheel assembly incorporating same |
US7268961B2 (en) | 2004-11-09 | 2007-09-11 | Minebea Co., Ltd. | Color wheel, and method and jig for producing same |
JP2007270336A (en) * | 2006-03-31 | 2007-10-18 | Showa Shinku:Kk | Film deposition system and film deposition method |
JP2007270332A (en) * | 2006-03-31 | 2007-10-18 | Showa Shinku:Kk | Vacuum deposition apparatus |
USRE39979E1 (en) | 2003-06-06 | 2008-01-01 | Minebea Co., Ltd. | Color wheel including light deflecting means |
US7333278B2 (en) | 2003-06-05 | 2008-02-19 | Minebea Co., Ltd. | Manufacturing method of color wheel, and color wheel fabricated thereby and incorporated in color wheel assembly and image display apparatus |
JP2008063631A (en) * | 2006-09-08 | 2008-03-21 | Showa Shinku:Kk | Vacuum apparatus having power-feeding mechanism mounted thereon and power-feeding method |
JP2008144192A (en) * | 2006-12-06 | 2008-06-26 | Showa Shinku:Kk | Vacuum vapor-deposition apparatus and method for controlling the same |
US7399087B2 (en) | 2004-12-06 | 2008-07-15 | Minebea Co., Ltd. | Segment type color wheel and manufacturing method of same |
US7486455B2 (en) | 2004-08-06 | 2009-02-03 | Minebea Co., Ltd. | Color wheel with segment fixing mechanisms, and manufacturing method of same |
US7675661B2 (en) | 2005-02-04 | 2010-03-09 | Seiko Epson Corporation | Printing based on motion picture |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104498878B (en) * | 2014-12-12 | 2017-06-30 | 电子科技大学 | A kind of method for preparing molybdenum disulfide film |
-
1999
- 1999-09-08 JP JP25461699A patent/JP4482972B2/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7333278B2 (en) | 2003-06-05 | 2008-02-19 | Minebea Co., Ltd. | Manufacturing method of color wheel, and color wheel fabricated thereby and incorporated in color wheel assembly and image display apparatus |
USRE39979E1 (en) | 2003-06-06 | 2008-01-01 | Minebea Co., Ltd. | Color wheel including light deflecting means |
KR100855174B1 (en) * | 2004-06-25 | 2008-08-29 | 가부시키가이샤 쇼와 신쿠 | Vacuum device comprising substrate dome, assembling and disassembling method thereof, and film-forming method in vacuum device |
WO2006001095A1 (en) * | 2004-06-25 | 2006-01-05 | Showa Shinku Co., Ltd. | Substrate dome rotating mechanism |
WO2006006263A1 (en) * | 2004-07-12 | 2006-01-19 | Showa Shinku Co., Ltd. | Vacuum device where power supply mechanism is mounted and power supply method |
US7806985B2 (en) | 2004-07-12 | 2010-10-05 | Showa Shinku Co., Ltd. | Vacuum device where power supply mechanism is mounted and power supply method |
KR100855173B1 (en) * | 2004-07-12 | 2008-08-29 | 가부시키가이샤 쇼와 신쿠 | Vacuum device where power supply mechanism is mounted and power supply method |
US6963457B1 (en) | 2004-07-30 | 2005-11-08 | Minebea Co., Ltd. | Color wheel of segment type |
US7869151B2 (en) | 2004-08-06 | 2011-01-11 | Mineba Co., Ltd. | Color wheel with segment fixing mechanisms, and manufacturing method of same |
US7486455B2 (en) | 2004-08-06 | 2009-02-03 | Minebea Co., Ltd. | Color wheel with segment fixing mechanisms, and manufacturing method of same |
US6999253B1 (en) | 2004-09-02 | 2006-02-14 | Minebea Co., Ltd. | Color wheel assembly with color wheel attached directly to driving motor |
US7113353B2 (en) | 2004-09-02 | 2006-09-26 | Minebea Co., Ltd. | Method of fixing color wheel to motor |
US7268961B2 (en) | 2004-11-09 | 2007-09-11 | Minebea Co., Ltd. | Color wheel, and method and jig for producing same |
US7399087B2 (en) | 2004-12-06 | 2008-07-15 | Minebea Co., Ltd. | Segment type color wheel and manufacturing method of same |
US7199952B2 (en) | 2004-12-10 | 2007-04-03 | Minebea Co., Ltd. | Color wheel, and color wheel assembly incorporating same |
US7675661B2 (en) | 2005-02-04 | 2010-03-09 | Seiko Epson Corporation | Printing based on motion picture |
US7187509B2 (en) | 2005-02-10 | 2007-03-06 | Minebea Co., Ltd. | Color wheel and manufacturing method of same |
JP2007270336A (en) * | 2006-03-31 | 2007-10-18 | Showa Shinku:Kk | Film deposition system and film deposition method |
JP2007270332A (en) * | 2006-03-31 | 2007-10-18 | Showa Shinku:Kk | Vacuum deposition apparatus |
JP4737760B2 (en) * | 2006-03-31 | 2011-08-03 | 株式会社昭和真空 | Vacuum deposition equipment |
JP2008063631A (en) * | 2006-09-08 | 2008-03-21 | Showa Shinku:Kk | Vacuum apparatus having power-feeding mechanism mounted thereon and power-feeding method |
JP2008144192A (en) * | 2006-12-06 | 2008-06-26 | Showa Shinku:Kk | Vacuum vapor-deposition apparatus and method for controlling the same |
Also Published As
Publication number | Publication date |
---|---|
JP4482972B2 (en) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001073136A (en) | Optical thin film producing system | |
EP0940481B1 (en) | Method and apparatus for forming a thin film of a metal compound | |
EP1350864A2 (en) | Method for forming a thin film of a composite metal compound and apparatus for carrying out the method | |
EP1640474B1 (en) | Thin film forming device | |
JP3774353B2 (en) | Method and apparatus for forming metal compound thin film | |
JP4713461B2 (en) | Titanium oxide transparent film having at least one of aluminum and aluminum oxide and having a rutile structure | |
US6494997B1 (en) | Radio frequency magnetron sputtering for lighting applications | |
JPH08188873A (en) | Method and apparatus for forming multi-layer optical film | |
JP2006515827A (en) | Permeable zirconium oxide-tantalum and / or tantalum oxide coating | |
JP2006515827A5 (en) | ||
CN112501578A (en) | Coating quality control method of gradient coating machine | |
JP2002339084A (en) | Metal film and metal film coated member | |
JP3513474B2 (en) | Large diameter ion source | |
JP3735462B2 (en) | Method and apparatus for forming metal oxide optical thin film | |
JP2001355068A (en) | Sputtering apparatus, and deposited film forming method | |
JP2005076095A (en) | Thin film deposition system and thin film deposition method | |
JP3958878B2 (en) | Vacuum deposition system | |
JP4022849B2 (en) | Method for producing metal oxide film-coated member | |
Volpian et al. | Magnetron technology of production of gradient optical coatings | |
JP4483159B2 (en) | Method and apparatus for controlling film thickness distribution in optical thin film manufacturing apparatus | |
JPS596376A (en) | Sputtering apparatus | |
TWI417410B (en) | A manufacturing method of electric conduction film | |
JP2007314891A (en) | Metal oxide film-coated member | |
JP4480336B2 (en) | Dielectric thin film manufacturing method and manufacturing apparatus | |
JPH06450Y2 (en) | Coil movable ion plating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100315 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4482972 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |