JP4483159B2 - Method and apparatus for controlling film thickness distribution in optical thin film manufacturing apparatus - Google Patents

Method and apparatus for controlling film thickness distribution in optical thin film manufacturing apparatus Download PDF

Info

Publication number
JP4483159B2
JP4483159B2 JP2002207355A JP2002207355A JP4483159B2 JP 4483159 B2 JP4483159 B2 JP 4483159B2 JP 2002207355 A JP2002207355 A JP 2002207355A JP 2002207355 A JP2002207355 A JP 2002207355A JP 4483159 B2 JP4483159 B2 JP 4483159B2
Authority
JP
Japan
Prior art keywords
contact
thin film
substrate
optical thin
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002207355A
Other languages
Japanese (ja)
Other versions
JP2004053681A (en
Inventor
和弘 高木
達士 石上
敏夫 笠原
清 細川
修 白井
陽彦 熱海
Original Assignee
株式会社昭和真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社昭和真空 filed Critical 株式会社昭和真空
Priority to JP2002207355A priority Critical patent/JP4483159B2/en
Publication of JP2004053681A publication Critical patent/JP2004053681A/en
Application granted granted Critical
Publication of JP4483159B2 publication Critical patent/JP4483159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学薄膜製造装置により基板に成膜される薄膜の膜厚分布を制御する方法及びその装置に関し、特に誘電体多層膜に於ける各層の膜厚を制御し、所望する多層膜を均一な膜厚分布で得る為の方法及び装置に関するものである。
【0002】
【背景技術】
【図1】は、本出願の先願である特開2001−73136号に示されている光学薄膜製造装置の概略構成図を示す。同図に於いて符号(1)は真空排気口(2)とガス導入口(3)を備えた真空槽を示し、該真空槽(1)の内部には、基板(4)を取付けた基板ドーム(5)及びメッシュ構造としたシールド(13)と、対向する位置に蒸発源(6)及び熱電子放出機構(8)が設けられている。該基板ドーム(5)と蒸発源(6)の間には可動自在にシャッター(10)が設けられ、該基板ドーム(5)へは、外部高周波電源(14)からマッチングボックス(15)を介して高周波電力給電機構(16)から高周波電力が供給される。この時、該基板ドーム(5)は、図示しない外部の基板ドーム回転機構を介して回転する。該基板ドーム(5)の近傍に設けられたモニタリング基板(11)に堆積する光学薄膜を外部の光学式膜厚計(12)で観測制御しながら基板(4)上に所望する光学薄膜を得ようとするもので有る。
【0003】
本装置の動作として、真空槽(1)の内部をあらかじめ高真空領域(5×10−4Pa程度)まで真空排気口(2)により排気する。その後ガス導入口(3)から放電用ガスを圧力で8×10−3〜3×10−2Pa程度導入する。基板ドーム(5)に高周波電力供給機構(16)によって高周波電力を印加(50W〜3kW)すると、基板ドーム(5)と蒸発源(6)との空間にグロー放電が発生しプラズマ状態となる。該基板ドーム(5)に取付けられた基板(4)の表面には自己誘起された負の直流電界が生ずる。プラズマ化された放電用ガスは、基板表面に自己誘起された負の直流電界によって加速され、基板(4)の表面に突入する。この状態で蒸発源(6)に電力(600ワット〜3600W)を供給し、蒸発源シャッター(10)を開放すると蒸発源(6)から蒸発した蒸発粒子は、このプラズマ中を通過して基板に(4)に到達する。モニタリング基板(11)に堆積する薄膜を光学式膜厚計(12)で観測制御し、所望の膜厚になったところで蒸発源シャッター(10)を閉じる。
【0004】
本装置で蒸着された光学薄膜の膜質は、高充填密度の良好な膜質となる。この理由としては、プラズマ放電空間中に多くの高速粒子が存在し、この高速粒子が基板ドーム(5)や基板(4)に薄膜形成中に衝突し、運動エネルギーを与える効果や、原子拡散と化合促進等による効果によるものと考えられる。
【0005】
上述の光学薄膜製造装置に於いては、回転数が約100rpmで回転する基板ドームに対し高い出力の高周波電力を供給しながら、放電用ガスを導入しプラズマを発生させると同時に、蒸発源材料を蒸発させる事で、基板上に成膜を行い数層の反射防止膜等を製造する装置として用いられており、その膜厚分布の保証値として約±1%を達成していた。
【0006】
一方、近年、インターネットや携帯電話等のトラフィックの急速な需要に促され、幹線系のみならず都市間を結ぶ光ファイバ伝送路の容量拡大が目覚しい。通信容量を拡大する為には、1本の光ファイバに異なる波長の光信号を乗せる波長多重方式(WDM)が有る。現在では光増幅器の広帯域化技術とあいまって高速化と高密度波長多重化(DWDM)が同時に進められている。ここで使用されるフィルターは多層膜フィルターであるが、挿入損失を少なくする等の理由により、種類や波長帯域はますます多様化してきている。このようなDWDM用バンドパスフィルター(BPF)を始めとして高度な製造技術を要する光学薄膜製造装置が強く要求されているが、前記した従来の装置では、DWDM用のBPFを製造する上での膜厚分布や歩留まり等の要求を完全に満たす事は難しかった。
【0007】
DWDM用のBPFを製造する為には、基板上に100層を超える誘電体の薄膜を成膜する必要が有る。国際電気通信連合(ITU)は、1550nmのウインドウで近接した間隔の波長セットを規格しており、この波長間隔は100GHz間隔で、約0.8nmに相当する。このチャネルのセットは、一般にITU−Tと言われ、この波長間隔を得る為にはBPFの半値幅をこの値以下にしなければならない為100層を超える多層膜となり、各層の膜厚を精度良く、しかも膜厚ムラ無く成膜しなければ、光量値の低損失なフィルターを得る事は出来ない。その為成膜中の各層の膜厚制御精度に対する要求がますます高まって来ている。例えば、ITU−T100GHzのBPFを製造する為には中心波長精度が0.1nm以下で無くては成らない。又、従来の光学フィルターでは、0.5%程度で有った膜厚制御精度を0.01%(膜厚換算で2.2nm)と極めて高くしなければ、中心波長のズレによる混信、膜厚ムラによる光量値の損失などが発生して、所望する光学特性のフィルターを得る事が出来ない。この様に膜厚分布精度の向上は非常に重要なポイントで有ると言える。
【0008】
従って、本発明の目的はDWDM用のBPFにも適用可能な膜厚分布精度を有する誘電体膜の成膜を行う方法、装置を提供することにある。
【0009】
【発明の概要】
本発明の光学薄膜製造方法及び装置においては、高周波電力を直接基板ドームに印加し、該基板ドームを約1000rpmの高速で回転しながら、基板上に蒸発物を堆積させるものであり、それによって所望する極めて均一性の高い膜厚分布の誘電体薄膜を形成する事によって高密度多重波長通信(DWDM)用のバンドパスフィルター(BPF)を得ようとするものである。
【0010】
本発明実施例装置では、高速回転する基板ドームに対して、高周波電力を供給し発生させたプラズマを安定な状態で維持する為に、回転軸に回転ユニットと磁気シールユニットを一体化した軸受けを用いて該基板ドームを高速回転すると共に、真空槽から絶縁する構造を備え;
基板ドームの高速回転と真空槽の高真空度維持の為に、回転軸に組合せアンギュラーベアリングを用いた回転ユニットと、回転軸が磁気シールの一部を構成する構造とした磁気シールユニットとをフランジ構造によって一体化した高速回転機構を備え;
高速回転する基板ドームに高周波電力を供給し安定したプラズマ状態を維持する為には異常放電の発生を抑制する必要が有るが、その為に高速回転するコンタクト軸の外周面に沿って均等な間隔を置いて、複数のコンタクトを配置する高周波電力供給機構を備え;
鉄成分を主成分とした合金に表面窒化処理を施して高硬度としたコンタクト軸に対して、該複数のコンタクトは何れも硬度の小さい銅合金製として裏面からコイルスプリングを用いて高速回転するコンタクト軸の外周面へ圧接する構成とした高周波電力供給機構を備えている。
【0011】
【実施例の説明】
本発明の実施例の設計にあたって、基板ドームを高速回転した時、その回転数が基板に堆積する薄膜の膜厚分布にどの様な影響を与えるかに付いての考察(シミュレーション)を行った。
式(1)は、基板ドーム上に取付けられた基板の膜厚分布を求める式を表す。
T/TO=cosθ×cosα×(h/l)2・・・・・式(1)
T :基板上の任意の点pでの膜厚
TO:蒸発源直上の高さhでの膜厚
θ:蒸発源からの放射角
α:基板上蒸着点の蒸発物付着角
n:蒸発係数
l:点蒸発源から点p迄の距離
【0012】
式(1)に基づき成膜開始、及び成膜終了時の基板ドーム回転角の全組合せと、回転数による積算膜厚を求め、これらを最大膜厚偏差の式(2)とする。
最大膜厚偏差(%)=(最大膜厚−最小膜厚)÷(全周平均膜厚×回転数)×100・・・式(2)
【0013】
この式(2)を用いて基板上の成膜位置の分布と基板ドームの回転数との関係に付いて表したものが【図2】である。この時のシミュレーション条件は、蒸発源偏心距離(基板ドームから垂線を下ろした位置から蒸発源迄の距離);280mm、ドーム高さ;1000mm、蒸発係数;1.8、基板位置;ドーム中心とした。横軸に基板ドームの回転数(rpm)、縦軸に最大膜厚偏差(%)を表したグラフで、基板ドーム中心から50mm、100mm、150mm、200mmに於ける最大膜厚偏差(%)をプロットしたものである。同図から基板ドームの回転数1000rpm付近では、基板ドーム中心から200mmの位置に置かれた基板でも、その最大膜厚偏差は限り無く“0”に近くなる事が判る。この様に基板を取付けた基板ドームを高速回転する事によって膜厚分布精度を向上する事が可能と成る事が判明した。
【0014】
従来の光学薄膜製造装置に於いては、前述の様に基板ドームの回転数は約100rpmで使用していたが、この従来構造そのままで基板ドームの回転数を上げていくと回転数が約300rpm位で振動と騒音が大きくなり、常用回転数1000rpm(MAX:1500rpm)としての使用は全く不可能で有る事が判明した。
【0015】
そこで本発明では、新しく高速回転機構として
【図3】に示す様に、回転ユニットと磁気シールユニットをフランジ構造を用いて一体化し、回転軸と組み合わせる構造を採用する事によって基板ドームの回転数1000rpmと言う高速回転にも安定して使用する事を実現すると共に、磁気シールによって真空槽の高真空度維持を同時に実施可能とする事が出来た。
【0016】
高速回転を行いながら基板ドームに対し安定して高周波電力を給電する為には、基板ドームに高周波電力を給電するコンタクト軸と、モーターの動力がベルトを介して伝わる回転軸との間は、電気的に絶縁する事が必要である。従ってこのコンタクト軸と回転軸との間には絶縁物を挟む事になる。所がこの絶縁物にはコンタクト軸部に給電される高周波電力によって回転軸との間に高い電位差が発生する。この電位差によって絶縁物には高い容量が帯電されると共に、高温にもなる為その熱膨張によって割れ易くなる。又高速回転による力が加わる事によっても割れが発生し易くなる。この割れは均一な膜厚分布の成膜に非常に悪影響を及ぼす。本発明では、これらの問題点を踏まえ絶縁物の材料及び構造に付いて改善を行った。
【0017】
又、約1000rpmと言う高速回転する基板ドームに対し高い出力の高周波電力を直接供給する為には、メンテナンス性、及び異常放電対策、更にはコンタクト寿命等の観点から構造上の改善が要求された。
【0018】
具体的にまずメンテナンス性に付いては、従来のコンタクトのメンテナンス方法は、【図4】に示す様にコンタクト(34)が消耗した場合は、基板ドーム(5)を真空槽から一旦外してコンタクトを交換し、再度基板ドームを取付ける必要が有ったが、新規コンタクト機構は【図5】、【図6a】及び【図6b】に示す様に、基板ドームを外す事無く簡便にコンタクト交換できる構造とした。
【0019】
次に異常放電対策の面からは、約1000rpmと言う高速回転させた時にも従来のコンタクト機構と比べて異常放電の発生を低減した機構とした。従来のコンタクト機構は、【図4】に示す様に、基板ドームの頂点に鉄成分を主成分とした金属板に取付けた銅合金製のコンタクト(34)を、裏面から一定の範囲内のバネ定数を有する板バネ(50)で押え付けながら落とし込む構造でコンタクトと基板ドームを接触させ高周波電力を給電していた。
【0020】
これに対し新規コンタクト機構は、【図5】、【図6a】及び【図6b】に示す様に、回転軸の外周面へ等間隔で複数のコンタクトを裏面から異常放電が発生し難い一定のバネ定数を有するスプリングで押え付ける構造とした。詳細には、コンタクト裏面から0.07kg×s2のバネ定数を持つコイルスプリングによってコンタクトを回転軸の外周面へ押え付ける構造とした。これは回転軸の軸振れによって生じるコンタクトとコンタクト軸との瞬間的な隙間を無くし、異常放電の発生を極力低減する事が出来る様な、最低限度のバネ定数を選定したもので有る。
【0021】
ここで例えば、基板ドームを約1000rpmで高速回転させた時に瞬間的に10μmの隙間がコンタクトとコンタクト軸の間に空いたと仮定し、従来のコンタクトと新規のコンタクトが再びコンタクト軸に接触する迄の時間に付いて考察してみると、
T:コンタクトが接触する迄の時間
k:バネ定数(kg×s2)
m:バネに掛かるコンタクト重量
x:コンタクトが接触する時のバネの縮む距離(m)
h:コンタクトとコンタクト軸が離れる距離(m)
とすると、コンタクトがコンタクト軸に再び接触する迄の時間Tは、
T={(2×h×m)÷(k×x)} ・・・・・ 式(3)
で表される。ここでまず従来構造のコンタクト機構それぞれの値、k:0.02(kg×s2)、m=0.05(kg)、x=0.01(m)、h=10×10-6(m)を式(3)に代入すると、従来構造のコンタクトがコンタクト軸に再び接触する迄の時間は、T1=0.0707(sec)と成る。
【0022】
次に同じく本発明の新規コンタクト機構それぞれの値、k:0.07(kg×s2)、m:0.0005(kg)、x:0.03(m)、h:10×10-6(m)を式(3)に代入すると、新規構造のコンタクトがコンタクト軸に再び接触する迄の時間は、T2=0.0069(sec)と成り、T2の方がT1に比べて約1/10短い。即ち本発明の新規コンタクト機構の方が従来と比べて約10倍異常放電の発生する確率が減少する事が判る。このバネ定数より大きくするとT2は更に短くなって異常放電の発生確率も減少する事になるが、コンタクトの磨耗性(寿命)と言う面ではより早く消耗する事に成り非効率的となる。
【0023】
更に、コンタクト、及びコンタクト軸の材質はコンタクト寿命から磨耗特性を考慮したものにしている。コンタクトに関しては消耗品として交換する為に電気導電性の良い事を前提に考え、硬度の小さい(柔らかい)銅合金製の材料を使用しているが、カーボン合金等の類似品でも遜色なく高周波電力を給電する事が可能で有る。一方コンタクト軸に関しては、コンタクトとは逆に硬度の大きい鉄成分を主成分とした物に表面処理として窒化処理を施したものを用いた。このコンタクト、及びコンタクト軸の材料の組合せでコンタクトの寿命が決定し、それが引いては生産性にも大きく影響すると言う大切な要素でも有る。
【0024】
【実施例の構成の説明】
以下、この発明の実施例を図面に基づいて説明する。
【図7】はこの発明の光学薄膜製造装置の概略構成図を示す。同図に於いて符号(1)は真空排気口(2)とガス導入口(3)を備えた真空槽を示し、該真空槽(1)の内部には、基板(4)を取付けた基板ドーム(5)及びメッシュ構造としたシールド(13)と、対向する位置に複数の蒸発源(6)が設けられる。
【0025】
該基板ドーム(5)と蒸発源(6)の間には複数の可動自在シャッター(10)が設けられ、該基板ドーム(5)へは、外部高周波電源(図示しない)からマッチングボックス(15)を介して高周波電力供給機構(16)から高周波電力が供給される。この時基板ドーム(5)は回転軸(23)をプーリー(22)を介してベルト(21)によってモーター(20)で回転駆動される。該基板ドーム(5)の中心に設けられた基板(4)に堆積する光学膜厚を外部の光学式膜厚計(12)及び制御装置(17)で観測制御しながら所望する光学薄膜を得ようとする物である。
【0026】
【図7】の基板ドーム(5)の回転駆動部分の概略断面構成図を【図3】に示す。同図に於いて、基板ドーム(5)は回転軸(23)をプーリー(22)を介してベルト(21)によってモーター(20)で回転駆動される事は前述した。回転軸(23)には、高速回転に於ける長寿命化を実現する為に組合せアンギュラーベアリング(26)を用いた回転ユニット(24)と、回転軸(23)が磁気シール(27)の一部を構成する構造とした磁気シールユニット(25)とが、共にフランジ構造によって複数の固定ネジ(28)によって一体化され、真空槽(1)の上部に固定される。本構成によって基板ドーム(5)の1000rpmと言う高速回転に対しても、振動・騒音も無く、又磁性流体による真空シール(27)の採用で、安定した高速回転と高真空状態を維持する事が可能と成った。
【0027】
同じく、基板ドーム(5)へ高周波電力を供給する為の概略構成図を【図5】に示す。同図に於いて、回転軸(23)には、低誘電率で熱膨張係数が小さく、且つ熱衝撃抵抗性の良いアルミナセラミックスを絶縁材料とした複数の絶縁物(30)及び(31)を介してコンタクト軸(32)が複数のネジ(33)で固定される。この絶縁構造を採用する事によって、コンタクト軸(32)は、給電プレート(39)からコンタクト(34)を経由して供給される高周波電力を、回転軸(23)と共に高速回転しながらも完全に絶縁する事が可能と成った。
【0028】
一方コンタクト軸(32)の周囲には等間隔の距離を置いた複数のコンタクト(34)が、[図6a]に示す様に、コンタクトベース(35a)(35b)上に配置される。この場合各3ヶのコンタクト(34)を取付けた該コンタクトベース(35a)及び(35b)は、コンタクト軸(32)を中心に左右から挟む形で、複数のボルト(38)によって、複数の絶縁碍子(36)を介して真空槽(1)に固定された給電ベース(37)に固定される。コンタクトベース(35a)及び(35b)には、マッチングボックス(15)から高周波電力が給電プレート(39)を経由して供給される。
【0029】
【図6b】は、該複数のコンタクト(34)が裏面から異常放電が発生し難い様な一定のバネ定数有するスプリング(40)でコンタクト軸(32)を常に押付ける状態を表したものである。
【0030】
この様な給電機構を採用する事により、高速回転する基板ドーム(5)へ異常放電が発生する事無く安定して高周波電力を供給すると共に、コンタクト(34)が消耗した場合は、従来は基板ドーム(5)を真空槽(1)から一旦取外してから交換しなければ成らなかったが、基板ドーム(5)と給電ベース(37)の間から複数のボルト(38)を取り外す事によりコンタクトベース(35a)及び(35b)毎左右に取り出す事が可能となり、コンタクト(34)のメンテナンス性の改善に繋げる事が出来た。
【0031】
【実施例の作用・動作の説明】
本発明装置の動作を【図7】に基づいて説明する。真空槽(1)の内部をあらかじめ高真空領域(5×10-4Pa程度)迄真空排気口(2)により排気する。モーター(20)を駆動し、ベルト(21)、及びプーリー(22)を介して回転軸(23)を回転する事により、アンギュラーベアリング(26)を用いた回転ユニット(24)によって、基板ドーム(5)は振動・騒音を発生する事無くスムースな高速回転を行う。この時真空槽内は、磁性流体による真空シール(27)を用いた磁気シールユニット(25)により高真空に維持される。その後ガス導入口(3)から放電用ガス(O2等)を圧力で0.01〜0.02Pa程度導入する。
【0032】
次に基板ドーム(5)に【図5】、【図6a】及び【図6b】に示す高周波電力供給機構(16)によって1〜3kWの高周波電力を印加すると、基板ドーム(5)と蒸発源(6)との空間にグロー放電が発生しプラズマ状態となる。該基板ドーム(5)に取付けられた基板(4)の表面には自己誘起された負の直流電界が生ずる。プラズマ化された放電用ガスは、基板表面に自己誘起された負の直流電界によって加速され、基板(4)の表面に突入する。
【0033】
この状態で蒸発源(6)に電力(600から3600W)を供給し、蒸発源シャッター(10)を開放すると蒸発源(6)から蒸発した蒸発粒子は、このプラズマ中を通過して基板(4)に到達する。基板(4)に堆積する薄膜を光学式膜厚計(12)で観測しながら、蒸発源(6)の切換え、蒸発源シャッター(10)の開閉等を制御装置(17)でコントロールする事によって所望する膜厚の光学多層薄膜を均一な膜厚分布で得る事が可能と成った。
【0034】
以下、本装置を用いて63層BPFの成膜を行った結果の光学特性を【図8】に示す。この時の成膜条件は、直径100mm、厚さ10mmの石英基板に対し、高屈折材料としてTa25、低屈折材料としてSiO2を、Ta25膜を1層目として交互に成膜を行った。この際の蒸着材料の膜厚制御方法は、測光波長1550nmで主に4分の1波長の透過率極値制御で光学式膜厚制御計を用いて観測制御した。また、この場合16層目および48層目はキャビティ層といわれ、それらの層のみ低屈折材料の膜厚は、測光波長1550nmで4分の6波長の膜厚を成膜した。成膜中の基板温度、圧力および基板ドームに印加する高周波電力は、基板温度が400℃、高屈折材料の圧力は2.0×10-2Pa、高周波電力は1400W、低屈折材料の圧力は1.5×10-2Pa、高周波電力は1200Wとした。
【0035】
成膜基板の中心波長分布測定の条件として、誘電体が堆積された基板を、スペクトルアナライザーにより基板中心からX軸方向およびY軸方向について20mmの位置までの中心波長分布測定を行った。
【図8】より、基板中心から20mmの範囲内の中心波長分布は1550.1nmから1550.4nmの範囲内で極めて均一性の高い分布となっている。
【0036】
【他の実施例の説明、他の用途への転用例の説明】
この基板ドームを高速回転して膜厚分布を制御する方法及び装置は、光学薄膜の製造のみならず、電子材料の薄膜製造で使用されるスパッタリング装置、及び金属、又は誘電体を蒸発材料とする通常蒸着装置でも膜厚分布精度の高い成膜が可能となり製品の分留まり向上が期待できる。特に今後の光学薄膜製造装置として注目されるイオンビームスパッタリング装置への応用も可能である。
【0037】
【発明の効果】
この発明は、膜厚に対して高い膜厚分布精度が要求される高密度多重波長通信(DWDM)用バンドパスフィルター(BPF)等を成膜する為に、基板ドームを100rpmで回転させた時と、1000rpmで回転させて成膜した時の最大膜厚偏差に関して、1000rpmで成膜した際の膜厚分布精度が100rpmで回転した場合と比較して10倍向上するという式(2)のシミュレーション結果を基に、基板ドームに高周波電力を給電しながら高速回転させる事を実現し、これによって基板上の膜厚分布精度を大きく向上させる事が出来た。
【0038】
又、高速回転中の真空槽内を高真空に維持することのできる磁性流体を用いた軸受けを使用したことで1000rpm以上の高速回転での摩擦による回転軸の劣化の抑制及び真空度の安定性を実現でき、基板ドームに対し安定した高周波電力の供給が可能と成った。
【0039】
その基板ドームに対する高周波電力給電に関しては、1000rpm以上の高速回転する基板ドームに対し高い高周波電力で供給しなければならないので、異常放電が発生しやすいためコンタクト軸の材質は電気伝導性がよく硬度の大きいものを用い、コンタクトは逆に消耗品という観点より電気伝導性の良い硬度の小さいものを用い、更にコンタククト機構については、基板ドームに対し安定な高周波電力の供給を行う上でコンタクトとコンタクト軸の接触部の密着性を考慮し異常放電を発生しにくいある一定の範囲内のバネ定数を有するコイルスプリングによりコンタクトをコンタクト軸に押え付ける構造として異常放電の発生も大きく低減する事が出来た。
以上のような新しい機構を加えたことにより膜厚分布精度の良いDWDM用バンドパスフィルターを製造する事が可能と成った。
【0040】
又、次世代の更に狭い波長間隔に対応するDWDM用バンドパスフィルターの製造にも期待が持たれる。
【図面の簡単な説明】
【図1】従来の光学薄膜製造装置の概略説明図。
【図2】本発明により所望する膜厚分布が得られる事を示す説明図。
【図3】本発明の高速回転機構部の概略説明図。
【図4】従来の高周波電力供給機構を示す概略説明図。
【図5】本発明の高周波電力供給機構の概略説明図。
【図6a】本発明の高周波電力供給機構の詳細説明図。
【図6b】本発明の高周波電力供給機構の詳細説明図。
【図7】本発明の光学薄膜製造装置を示す概略説明図。
【図8】本発明の光学薄膜製造装置を用いて製作したDWDM用BPFの光学特性図。
【符号の説明】
1.真空槽
2.真空排気口
3.ガス導口
4.基板
5.基板ドーム
6.蒸発源
8.熱電子放出機構
10.蒸発源シャッター
11.モニタリング基板
12.光学式膜厚計
13.シールド
14.高周波電源
15.マッチングボックス
16.高周波電力供給機構
17.制御装置
18.投光器
19.受光器
20.モーター
21.ベルト
22.プーリー
23.回転軸
24.回転ユニット
25.磁気シールユニット
26.組合せアンギュラーベアリング
27.磁気シール
28.固定ネジ
30.絶縁物
31.絶縁物
32.コンタクト軸
33.ネジ
34.コンタクト
35a.コンタクトベース
35b.コンタクトベース
36.絶縁碍子
37.給電ベース
38.ボルト
39.給電プレート
40.スプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for controlling the film thickness distribution of a thin film formed on a substrate by an optical thin film manufacturing apparatus, and more particularly, to control the film thickness of each layer in a dielectric multilayer film and to obtain a desired multilayer film. The present invention relates to a method and an apparatus for obtaining a uniform film thickness distribution.
[0002]
[Background]
FIG. 1 is a schematic configuration diagram of an optical thin film manufacturing apparatus disclosed in Japanese Patent Application Laid-Open No. 2001-73136, which is a prior application of the present application. In the figure, reference numeral (1) denotes a vacuum chamber provided with a vacuum exhaust port (2) and a gas introduction port (3), and a substrate (4) mounted in the vacuum chamber (1). A dome (5) and a shield (13) having a mesh structure, and an evaporation source (6) and a thermionic emission mechanism (8) are provided at opposing positions. A shutter (10) is movably provided between the substrate dome (5) and the evaporation source (6). The substrate dome (5) is connected to the substrate dome (5) from an external high frequency power source (14) via a matching box (15). Thus, high frequency power is supplied from the high frequency power supply mechanism (16). At this time, the substrate dome (5) rotates through an external substrate dome rotation mechanism (not shown). The desired optical thin film is obtained on the substrate (4) while observing and controlling the optical thin film deposited on the monitoring substrate (11) provided in the vicinity of the substrate dome (5) with an external optical film thickness meter (12). There is something to try.
[0003]
As an operation of this apparatus, the inside of the vacuum chamber (1) is evacuated in advance to a high vacuum region (about 5 × 10 −4 Pa) through a vacuum exhaust port (2). Thereafter, about 8 × 10 −3 to 3 × 10 −2 Pa of a discharge gas is introduced from the gas introduction port (3) by pressure. When high frequency power is applied to the substrate dome (5) by the high frequency power supply mechanism (16) (50 to 3 kW), glow discharge is generated in the space between the substrate dome (5) and the evaporation source (6), and a plasma state is obtained. A self-induced negative DC electric field is generated on the surface of the substrate (4) attached to the substrate dome (5). The plasma-ized discharge gas is accelerated by a negative DC electric field self-induced on the substrate surface and enters the surface of the substrate (4). In this state, when electric power (600 watts to 3600 W) is supplied to the evaporation source (6) and the evaporation source shutter (10) is opened, the evaporated particles evaporated from the evaporation source (6) pass through the plasma and reach the substrate. Reach (4). The thin film deposited on the monitoring substrate (11) is observed and controlled by the optical film thickness meter (12), and when the desired film thickness is reached, the evaporation source shutter (10) is closed.
[0004]
The film quality of the optical thin film deposited by this apparatus is a good film quality with a high packing density. This is because there are many high-speed particles in the plasma discharge space, and these high-speed particles collide with the substrate dome (5) and the substrate (4) during thin film formation, giving kinetic energy, This is thought to be due to the effects of promoting compounding.
[0005]
In the above-described optical thin film manufacturing apparatus, while supplying high output high frequency power to the substrate dome rotating at a rotation speed of about 100 rpm, a discharge gas is introduced to generate plasma, and at the same time, the evaporation source material is changed. By evaporating, it was used as an apparatus for producing several layers of antireflection films by forming a film on a substrate, and the guaranteed value of the film thickness distribution was about ± 1%.
[0006]
On the other hand, in recent years, driven by the rapid demand for traffic such as the Internet and mobile phones, the capacity of optical fiber transmission lines connecting not only trunk lines but also cities is remarkable. In order to increase the communication capacity, there is a wavelength multiplexing system (WDM) in which optical signals of different wavelengths are placed on one optical fiber. Currently, high-speed and high-density wavelength multiplexing (DWDM) are being promoted simultaneously with wideband technology of optical amplifiers. The filter used here is a multilayer filter, but the types and wavelength bands are increasingly diversified due to reasons such as reducing insertion loss. There is a strong demand for an optical thin film manufacturing apparatus that requires advanced manufacturing technology such as such a band pass filter (BPF) for DWDM. However, in the conventional apparatus described above, a film for manufacturing a BPF for DWDM is required. It was difficult to fully satisfy the requirements such as thickness distribution and yield.
[0007]
In order to manufacture a BPF for DWDM, it is necessary to form a dielectric thin film having more than 100 layers on a substrate. The International Telecommunication Union (ITU) standardizes a set of closely spaced wavelengths with a 1550 nm window, which corresponds to about 0.8 nm at 100 GHz intervals. This channel set is generally referred to as ITU-T, and in order to obtain this wavelength interval, the half-value width of the BPF must be less than or equal to this value, so that it becomes a multilayer film exceeding 100 layers, and the film thickness of each layer is accurately set. In addition, a filter with low loss of light quantity cannot be obtained unless the film is formed without unevenness. Therefore, there is an increasing demand for film thickness control accuracy of each layer during film formation. For example, in order to manufacture an ITU-T 100 GHz BPF, the center wavelength accuracy must be 0.1 nm or less. In addition, in the conventional optical filter, if the film thickness control accuracy, which was about 0.5%, is not extremely high as 0.01% (2.2 nm in terms of film thickness), interference due to deviation of the center wavelength, film The loss of the light amount value due to the thickness unevenness occurs, and thus a filter having desired optical characteristics cannot be obtained. Thus, it can be said that the improvement of the film thickness distribution accuracy is a very important point.
[0008]
Accordingly, an object of the present invention is to provide a method and apparatus for forming a dielectric film having a film thickness distribution accuracy applicable to a BPF for DWDM.
[0009]
SUMMARY OF THE INVENTION
In the optical thin film manufacturing method and apparatus of the present invention, high frequency power is directly applied to the substrate dome, and the substrate dome is rotated at a high speed of about 1000 rpm, and the evaporated material is deposited on the substrate. Thus, a bandpass filter (BPF) for high density multiple wavelength communication (DWDM) is obtained by forming a dielectric thin film having a highly uniform film thickness distribution.
[0010]
In the embodiment of the present invention, in order to maintain the plasma generated by supplying high-frequency power to the substrate dome that rotates at a high speed in a stable state, a bearing in which the rotating unit and the magnetic seal unit are integrated with the rotating shaft is provided. Using the substrate dome to rotate at a high speed and to insulate from the vacuum chamber;
In order to maintain the high-speed rotation of the substrate dome and the high vacuum of the vacuum chamber, there are a rotating unit that uses a combined angular bearing for the rotating shaft and a magnetic seal unit that has a structure in which the rotating shaft forms part of the magnetic seal. Equipped with a high-speed rotation mechanism integrated by a flange structure;
In order to supply high-frequency power to the substrate dome that rotates at high speed and maintain a stable plasma state, it is necessary to suppress the occurrence of abnormal discharge. For this purpose, even intervals along the outer peripheral surface of the contact shaft that rotates at high speed are required. A high-frequency power supply mechanism in which a plurality of contacts are arranged;
The contact shaft, which is made of a copper alloy with a low hardness, is made of a copper alloy with a low hardness, and contacts that rotate at high speed using a coil spring from the back side of the contact shaft that has been hardened by subjecting an alloy mainly composed of iron components to surface nitriding. A high-frequency power supply mechanism configured to be in pressure contact with the outer peripheral surface of the shaft is provided.
[0011]
[Explanation of Examples]
In designing the embodiment of the present invention, a study (simulation) was conducted on how the rotational speed of the substrate dome would affect the film thickness distribution of the thin film deposited on the substrate.
Expression (1) represents an expression for obtaining the film thickness distribution of the substrate mounted on the substrate dome.
T / TO = cos n θ × cos α × (h / l) 2 Equation (1)
T: film thickness TO at an arbitrary point p on the substrate TO: film thickness at a height h just above the evaporation source θ: radiation angle from the evaporation source α: vapor deposition angle n at the evaporation point on the substrate n: evaporation coefficient l : Distance from point evaporation source to point p
Based on equation (1), all combinations of substrate dome rotation angles at the start of film formation and at the end of film formation and the integrated film thickness based on the number of rotations are obtained, and these are used as equation (2) for maximum film thickness deviation.
Maximum film thickness deviation (%) = (maximum film thickness−minimum film thickness) ÷ (average film thickness on entire circumference × rotational speed) × 100 (2)
[0013]
FIG. 2 shows the relationship between the distribution of film forming positions on the substrate and the number of revolutions of the substrate dome using this equation (2). The simulation conditions at this time are the evaporation source eccentric distance (distance from the position where the perpendicular is dropped from the substrate dome to the evaporation source); 280 mm, dome height: 1000 mm, evaporation coefficient: 1.8, substrate position: dome center . The horizontal axis represents the rotation speed (rpm) of the substrate dome and the vertical axis represents the maximum film thickness deviation (%). The maximum film thickness deviation (%) at 50 mm, 100 mm, 150 mm, and 200 mm from the center of the substrate dome. It is a plot. From the figure, it can be seen that when the rotation speed of the substrate dome is around 1000 rpm, the maximum film thickness deviation is close to “0” even if the substrate is placed 200 mm from the center of the substrate dome. Thus, it has been found that the film thickness distribution accuracy can be improved by rotating the substrate dome with the substrate mounted thereon at a high speed.
[0014]
In the conventional optical thin film manufacturing apparatus, the rotation speed of the substrate dome is used at about 100 rpm as described above. However, if the rotation speed of the substrate dome is increased with this conventional structure, the rotation speed is about 300 rpm. As a result, the vibration and noise increased, and it was found that it could not be used at a regular rotational speed of 1000 rpm (MAX: 1500 rpm).
[0015]
Therefore, in the present invention, as shown in FIG. 3, as a new high-speed rotation mechanism, the rotation unit and the magnetic seal unit are integrated by using a flange structure, and a structure combined with a rotation shaft is adopted, thereby rotating the substrate dome at a rotation speed of 1000 rpm. In addition to being able to be used stably at high speeds, it was possible to maintain a high vacuum in the vacuum chamber at the same time with a magnetic seal.
[0016]
In order to stably supply high-frequency power to the substrate dome while performing high-speed rotation, there is no electrical connection between the contact shaft that supplies high-frequency power to the substrate dome and the rotation shaft that transmits the power of the motor via the belt. Must be insulated. Therefore, an insulator is interposed between the contact shaft and the rotating shaft. However, a high potential difference is generated between the insulator and the rotating shaft due to the high frequency power supplied to the contact shaft. Due to this potential difference, the insulator is charged with a high capacity and also has a high temperature, so that it easily breaks due to its thermal expansion. In addition, cracks are likely to occur due to the force applied by high-speed rotation. This crack has a very bad influence on film formation with a uniform film thickness distribution. In the present invention, the material and structure of the insulator have been improved in light of these problems.
[0017]
In addition, in order to directly supply high output high frequency power to the substrate dome that rotates at a high speed of about 1000 rpm, structural improvements were required from the viewpoints of maintainability, countermeasures against abnormal discharge, and contact life. .
[0018]
Specifically, regarding the maintenance performance, the conventional contact maintenance method is as follows. When the contact (34) is consumed as shown in FIG. 4, the substrate dome (5) is once removed from the vacuum chamber and contacted. It was necessary to replace the board dome and reattach the board dome, but the new contact mechanism can easily replace the contact without removing the board dome as shown in [Fig.5], [Fig.6a] and [Fig.6b]. The structure.
[0019]
Next, from the standpoint of countermeasures against abnormal discharge, a mechanism that reduces the occurrence of abnormal discharge as compared with the conventional contact mechanism even when rotating at a high speed of about 1000 rpm. As shown in FIG. 4, the conventional contact mechanism has a copper alloy contact (34) attached to a metal plate mainly composed of an iron component at the top of a substrate dome, and a spring within a certain range from the back surface. The contact and the substrate dome are brought into contact with each other and fed with high-frequency power in a structure in which the plate spring (50) having a constant value is pressed down while being pressed.
[0020]
On the other hand, as shown in FIG. 5, FIG. 6a and FIG. 6b, the new contact mechanism has a constant contact with a plurality of contacts at equal intervals on the outer peripheral surface of the rotating shaft, and is unlikely to cause abnormal discharge from the back surface. The structure is such that it is pressed by a spring having a spring constant. Specifically, the contact is pressed against the outer peripheral surface of the rotating shaft by a coil spring having a spring constant of 0.07 kg × s2 from the back surface of the contact. This is the selection of the minimum spring constant that eliminates the momentary gap between the contact and the contact shaft caused by the shaft swing of the rotating shaft and can reduce the occurrence of abnormal discharge as much as possible.
[0021]
Here, for example, when the substrate dome is rotated at a high speed of about 1000 rpm, it is assumed that a gap of 10 μm is instantaneously formed between the contact and the contact shaft, and until the conventional contact and the new contact come into contact with the contact shaft again. If you think about time,
T: Time until the contact comes into contact k: Spring constant (kg × s2)
m: contact weight applied to the spring x: distance the spring contracts when the contact contacts (m)
h: Distance between contact and contact axis (m)
Then, the time T until the contact comes into contact with the contact shaft again is
T = {(2 × h × m) ÷ (k × x)} Equation (3)
It is represented by Here, the values of the contact mechanisms of the conventional structure, k: 0.02 (kg × s2), m = 0.05 (kg), x = 0.01 (m), h = 10 × 10 −6 (m ) Is substituted into equation (3), the time required for the contact of the conventional structure to contact the contact shaft again is T1 = 0.0707 (sec).
[0022]
Next, the respective values of the new contact mechanism of the present invention, k: 0.07 (kg × s2), m: 0.0005 (kg), x: 0.03 (m), h: 10 × 10 −6 ( When m) is substituted into Equation (3), the time until the contact with the new structure comes into contact with the contact shaft again becomes T2 = 0.699 (sec), and T2 is about 1/10 compared with T1. short. That is, it can be seen that the novel contact mechanism of the present invention has a 10 times lower probability of occurrence of abnormal discharge than the conventional contact mechanism. If it is larger than this spring constant, T2 is further shortened and the probability of occurrence of abnormal discharge is reduced. However, in terms of the wearability (life) of the contact, it is consumed earlier and becomes inefficient.
[0023]
Furthermore, the material of the contact and the contact shaft considers the wear characteristics from the contact life. The contacts are exchanged as consumables on the premise that they have good electrical conductivity, and are made of a low hardness (soft) copper alloy material. It is possible to supply power. On the other hand, as for the contact shaft, a material having an iron component having a high hardness as a main component and subjected to nitriding as a surface treatment was used. The combination of the contact and the material of the contact shaft determines the life of the contact, which is an important factor that greatly affects the productivity.
[0024]
[Description of configuration of embodiment]
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 7 is a schematic configuration diagram of an optical thin film manufacturing apparatus according to the present invention. In the figure, reference numeral (1) denotes a vacuum chamber provided with a vacuum exhaust port (2) and a gas introduction port (3), and a substrate (4) mounted in the vacuum chamber (1). A plurality of evaporation sources (6) are provided at positions facing the dome (5) and the shield (13) having a mesh structure.
[0025]
A plurality of movable shutters (10) are provided between the substrate dome (5) and the evaporation source (6). A matching box (15) is connected to the substrate dome (5) from an external high frequency power source (not shown). The high frequency power is supplied from the high frequency power supply mechanism (16) via At this time, the substrate dome (5) is rotationally driven by the motor (20) by the belt (21) through the pulley (22) with the rotating shaft (23). A desired optical thin film is obtained while observing and controlling the optical film thickness deposited on the substrate (4) provided at the center of the substrate dome (5) with an external optical film thickness meter (12) and a control device (17). It is a thing to try.
[0026]
FIG. 3 is a schematic cross-sectional configuration diagram of the rotational drive portion of the substrate dome (5) of FIG. In the figure, the substrate dome (5) is rotationally driven by the motor (20) by the belt (21) via the pulley (22) through the rotating shaft (23) as described above. The rotating shaft (23) includes a rotating unit (24) using a combined angular bearing (26) for realizing a long life at high speed rotation, and the rotating shaft (23) of the magnetic seal (27). The magnetic seal unit (25) having a part of the structure is integrated by a plurality of fixing screws (28) together by a flange structure, and fixed to the upper part of the vacuum chamber (1). With this configuration, the substrate dome (5) can be rotated at a high speed of 1000 rpm without vibration and noise, and the vacuum seal (27) using magnetic fluid can be used to maintain a stable high-speed rotation and high vacuum. Became possible.
[0027]
Similarly, FIG. 5 shows a schematic configuration diagram for supplying high-frequency power to the substrate dome (5). In the figure, the rotating shaft (23) is provided with a plurality of insulators (30) and (31) made of alumina ceramic having a low dielectric constant, a low thermal expansion coefficient, and good thermal shock resistance. The contact shaft (32) is fixed by a plurality of screws (33). By adopting this insulating structure, the contact shaft (32) is capable of completely supplying high-frequency power supplied from the power supply plate (39) via the contact (34) while rotating at high speed together with the rotating shaft (23). It became possible to insulate.
[0028]
On the other hand, a plurality of contacts (34) spaced at equal intervals around the contact shaft (32) are arranged on the contact bases (35a) and (35b) as shown in FIG. 6a. In this case, the contact bases (35a) and (35b) to which three contacts (34) are attached are sandwiched from the left and right around the contact shaft (32), and a plurality of bolts (38) are used to provide a plurality of insulations. It fixes to the electric power feeding base (37) fixed to the vacuum chamber (1) through the insulator (36). The contact bases (35a) and (35b) are supplied with high-frequency power from the matching box (15) via the feed plate (39).
[0029]
FIG. 6b shows a state in which the contact shaft (32) is always pressed by a spring (40) having a constant spring constant such that abnormal discharge hardly occurs from the back surface of the plurality of contacts (34). .
[0030]
By adopting such a power feeding mechanism, high-frequency power is stably supplied to the substrate dome (5) that rotates at high speed without causing abnormal discharge, and when the contact (34) is consumed, a conventional substrate is used. The dome (5) must be removed from the vacuum chamber (1) and then replaced, but the contact base is removed by removing a plurality of bolts (38) from between the substrate dome (5) and the power supply base (37). Each of (35a) and (35b) can be taken out to the left and right, leading to improvement in maintainability of the contact (34).
[0031]
[Description of operation and operation of embodiment]
The operation of the apparatus of the present invention will be described with reference to FIG. The inside of the vacuum chamber (1) is evacuated in advance through a vacuum exhaust port (2) to a high vacuum region (about 5 × 10 −4 Pa). The substrate dome is driven by the rotating unit (24) using the angular bearing (26) by driving the motor (20) and rotating the rotating shaft (23) via the belt (21) and the pulley (22). (5) performs smooth high-speed rotation without generating vibration and noise. At this time, the inside of the vacuum chamber is maintained at a high vacuum by a magnetic seal unit (25) using a vacuum seal (27) with a magnetic fluid. Thereafter, a discharge gas (O2 or the like) is introduced at a pressure of about 0.01 to 0.02 Pa from the gas introduction port (3).
[0032]
Next, when high frequency power of 1 to 3 kW is applied to the substrate dome (5) by the high frequency power supply mechanism (16) shown in FIG. 5, FIG. 6a and FIG. 6b, the substrate dome (5) and the evaporation source A glow discharge is generated in the space (6) and a plasma state is obtained. A self-induced negative DC electric field is generated on the surface of the substrate (4) attached to the substrate dome (5). The plasma-ized discharge gas is accelerated by a negative DC electric field self-induced on the substrate surface and enters the surface of the substrate (4).
[0033]
In this state, when electric power (600 to 3600 W) is supplied to the evaporation source (6) and the evaporation source shutter (10) is opened, the evaporated particles evaporated from the evaporation source (6) pass through the plasma and pass through the substrate (4 ). By observing the thin film deposited on the substrate (4) with the optical film thickness meter (12), the controller (17) controls the switching of the evaporation source (6), the opening and closing of the evaporation source shutter (10), and the like. An optical multilayer thin film having a desired film thickness can be obtained with a uniform film thickness distribution.
[0034]
FIG. 8 shows optical characteristics obtained as a result of forming a 63-layer BPF using this apparatus. The film formation conditions at this time were alternately formed on a quartz substrate having a diameter of 100 mm and a thickness of 10 mm, using Ta 2 O 5 as a high refractive material, SiO 2 as a low refractive material, and a Ta 2 O 5 film as a first layer. Membrane was performed. In this case, the film thickness control method of the vapor deposition material was controlled by observation using an optical film thickness controller with a transmittance extreme value control of a quarter wavelength mainly at a photometric wavelength of 1550 nm. In this case, the 16th and 48th layers are called cavity layers, and the film thickness of the low refractive material of these layers is a film thickness of 6/4 wavelength at a photometric wavelength of 1550 nm. The substrate temperature and pressure during film formation and the high frequency power applied to the substrate dome are as follows: the substrate temperature is 400 ° C., the pressure of the high refractive material is 2.0 × 10 −2 Pa, the high frequency power is 1400 W, and the pressure of the low refractive material is 1.5 × 10 −2 Pa and high frequency power were 1200 W.
[0035]
As a condition for measuring the central wavelength distribution of the film formation substrate, the central wavelength distribution of the substrate on which the dielectric was deposited was measured from the substrate center to a position 20 mm in the X-axis direction and the Y-axis direction using a spectrum analyzer.
FIG. 8 shows that the central wavelength distribution within a range of 20 mm from the center of the substrate is a highly uniform distribution within a range of 1550.1 nm to 1550.4 nm.
[0036]
[Explanation of other examples, explanation of diversion examples for other uses]
The method and apparatus for controlling the film thickness distribution by rotating the substrate dome at a high speed is not limited to the manufacture of optical thin films, but also a sputtering apparatus used in the manufacture of thin films of electronic materials, and metals or dielectrics as evaporation materials. A film deposition with high film thickness distribution accuracy is possible even with a normal vapor deposition apparatus, and an improvement in product yield can be expected. In particular, the present invention can be applied to an ion beam sputtering apparatus that will attract attention as a future optical thin film manufacturing apparatus.
[0037]
【The invention's effect】
In the present invention, when a substrate dome is rotated at 100 rpm in order to form a bandpass filter (BPF) for high-density multi-wavelength communication (DWDM) or the like that requires high film thickness distribution accuracy with respect to the film thickness. In addition, with respect to the maximum film thickness deviation when the film is formed by rotating at 1000 rpm, the simulation of the formula (2) in which the film thickness distribution accuracy when the film is formed at 1000 rpm is improved 10 times as compared with the case where the film is rotated at 100 rpm. Based on the results, it was possible to rotate the substrate dome at high speed while supplying high-frequency power, thereby greatly improving the film thickness distribution accuracy on the substrate.
[0038]
In addition, the use of a magnetic fluid bearing that can maintain a high vacuum inside the vacuum chamber during high-speed rotation suppresses deterioration of the rotary shaft due to friction at high-speed rotation of 1000 rpm or more and stability of the degree of vacuum. This makes it possible to stably supply high-frequency power to the substrate dome.
[0039]
Regarding the high-frequency power supply to the substrate dome, since the high-frequency power must be supplied to the substrate dome that rotates at a high speed of 1000 rpm or more, abnormal discharge is likely to occur. Therefore, the material of the contact shaft has high electrical conductivity and hardness. Use a large contact, and conversely, use a contact with good electrical conductivity and low hardness from the viewpoint of consumables. Further, regarding the contact mechanism, the contact and contact shaft are used to stably supply high-frequency power to the substrate dome. In consideration of the adhesiveness of the contact portion, the occurrence of abnormal discharge can be greatly reduced by a structure in which the contact is pressed against the contact shaft by a coil spring having a spring constant within a certain range in which abnormal discharge is difficult to occur.
By adding the new mechanism as described above, it becomes possible to manufacture a bandpass filter for DWDM with good film thickness distribution accuracy.
[0040]
There is also expectation for the production of a bandpass filter for DWDM corresponding to the next-generation narrower wavelength interval.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a conventional optical thin film manufacturing apparatus.
FIG. 2 is an explanatory diagram showing that a desired film thickness distribution can be obtained by the present invention.
FIG. 3 is a schematic explanatory view of a high-speed rotation mechanism unit of the present invention.
FIG. 4 is a schematic explanatory view showing a conventional high-frequency power supply mechanism.
FIG. 5 is a schematic explanatory diagram of a high-frequency power supply mechanism of the present invention.
FIG. 6A is a detailed explanatory diagram of the high-frequency power supply mechanism of the present invention.
FIG. 6b is a detailed explanatory view of the high-frequency power supply mechanism of the present invention.
FIG. 7 is a schematic explanatory view showing an optical thin film manufacturing apparatus of the present invention.
FIG. 8 is an optical characteristic diagram of a DWDM BPF manufactured using the optical thin film manufacturing apparatus of the present invention.
[Explanation of symbols]
1. Vacuum chamber 2. 2. Vacuum exhaust port 3. Gas inlet Substrate 5. Substrate dome 6. Evaporation source8. Thermionic emission mechanism10. Evaporation source shutter 11. Monitoring board 12. 14. Optical film thickness meter Shield 14. High frequency power supply 15. Matching box 16. High-frequency power supply mechanism 17. Control device 18. Projector 19. Light receiver 20. Motor 21. Belt 22. Pulley 23. Rotating shaft 24. Rotating unit 25. Magnetic seal unit 26. Combined angular bearing 27. Magnetic seal 28. Fixing screw 30. Insulator 31. Insulator 32. Contact shaft 33. Screw 34. Contact 35a. Contact base 35b. Contact base 36. Insulator 37. Power supply base 38. Bolt 39. Feeding plate 40. spring

Claims (4)

光学薄膜製造装置であって、
真空槽(1)、
該真空槽内の基板ドーム(5)、
該真空槽の外部から該基板ドームに回転力を伝達するための回転軸(23)、
該真空槽の外壁に固定されて該回転軸が挿通され、磁気流体によって該真空槽の密を維持する磁気シールユニット(25)、及び
該回転軸の外周面を支持するために回転軸方向に離隔して設けられた複数のアンギュラーベアリング(26)を内部にみ、該磁気シールユニットに該回転軸と同軸に固定された回転ユニット(24)
を備え、該磁気シールユニットと該回転ユニットとがフランジ構造によって一体化された光学薄膜製造装置。
An optical thin film manufacturing apparatus,
Vacuum chamber (1),
A substrate dome (5) in the vacuum chamber;
A rotating shaft (23) for transmitting rotational force from the outside of the vacuum chamber to the substrate dome,
Is fixed to the outer wall of the vacuum vessel is inserted the rotary shaft, a magnetic seal unit (25) to maintain the gas-tightness of the vacuum vessel by the magnetic fluid, and the rotational axis direction to support the outer peripheral surface of the rotary shaft a plurality of viewing including angular bearing (26) therein, said magnetic seal unit which is fixed to the rotary shaft coaxially rotational unit provided in spaced (24)
An optical thin film manufacturing apparatus in which the magnetic seal unit and the rotating unit are integrated by a flange structure.
請求項1記載の光学薄膜製造装置であって、さらに、
前記回転軸と同軸に前記基板ドームに固定され、印加される高周波電力を該基板ドームに伝えるコンタクト軸(32)、及び
該コンタクト軸と該回転軸の間に挿入・固定された絶縁物(30)
を備えた光学薄膜製造装置。
The optical thin film manufacturing apparatus according to claim 1, further comprising:
A contact shaft (32) that is fixed to the substrate dome coaxially with the rotating shaft and transmits the applied high-frequency power to the substrate dome, and an insulator (30) inserted and fixed between the contact shaft and the rotating shaft )
An optical thin film manufacturing apparatus.
請求項記載の光学薄膜製造装置であって、さらに、
前記コンタクト軸の外周面に沿って配置される複数のコンタクト(34)を有する高周波電力供給機構(16)を備えた光学薄膜製造装置。
The optical thin film manufacturing apparatus according to claim 2 , further comprising:
An optical thin film manufacturing apparatus comprising a high-frequency power supply mechanism (16) having a plurality of contacts (34) arranged along an outer peripheral surface of the contact shaft.
請求項記載の光学薄膜製造装置において、前記コンタクト軸が鉄成分を主成分とした合金に表面窒化処理を施して高硬度としたコンタクト軸からなり、
前記高周波電力供給機構において、前記複数のコンタクトが銅合金製の低硬度のコンタクトからなり、該コンタクトがコイルスプリングによって該コンタクト軸の外周面に圧接されるように構成された光学薄膜製造装置。
The optical thin film manufacturing apparatus according to claim 3 , wherein the contact shaft comprises a contact shaft having a high hardness by subjecting an alloy mainly composed of an iron component to surface nitriding treatment,
In the high-frequency power supply mechanism, the plurality of contacts are made of a low-hardness contact made of a copper alloy, and the contact is pressed against the outer peripheral surface of the contact shaft by a coil spring.
JP2002207355A 2002-07-16 2002-07-16 Method and apparatus for controlling film thickness distribution in optical thin film manufacturing apparatus Expired - Fee Related JP4483159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207355A JP4483159B2 (en) 2002-07-16 2002-07-16 Method and apparatus for controlling film thickness distribution in optical thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207355A JP4483159B2 (en) 2002-07-16 2002-07-16 Method and apparatus for controlling film thickness distribution in optical thin film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2004053681A JP2004053681A (en) 2004-02-19
JP4483159B2 true JP4483159B2 (en) 2010-06-16

Family

ID=31931842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207355A Expired - Fee Related JP4483159B2 (en) 2002-07-16 2002-07-16 Method and apparatus for controlling film thickness distribution in optical thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4483159B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022627B2 (en) 2004-07-12 2007-12-19 株式会社昭和真空 Vacuum device equipped with power supply mechanism and power supply method
JP4737760B2 (en) * 2006-03-31 2011-08-03 株式会社昭和真空 Vacuum deposition equipment
JP2012145958A (en) * 2012-03-14 2012-08-02 Nippon Dempa Kogyo Co Ltd Optical element

Also Published As

Publication number Publication date
JP2004053681A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US6495010B2 (en) Differentially-pumped material processing system
JP5291875B2 (en) Plasma device
US6669824B2 (en) Dual-scan thin film processing system
JP7002655B2 (en) Shape-selective deposition of dielectric film using low-frequency bias
JP4482972B2 (en) Optical thin film manufacturing equipment
EP2302092A1 (en) Bias sputtering apparatus
JP3774353B2 (en) Method and apparatus for forming metal compound thin film
WO2013035375A1 (en) Plasma generator and cvd device
US6635155B2 (en) Method for preparing an optical thin film
TWI752765B (en) Workpiece processing chamber having a rotary microwave plasma source
JP4483159B2 (en) Method and apparatus for controlling film thickness distribution in optical thin film manufacturing apparatus
JP3513474B2 (en) Large diameter ion source
US20230067917A1 (en) Device and method for producing layers with improved uniformity in coating systems with horizontally rotating substrate and additional plasma sources
JP3735462B2 (en) Method and apparatus for forming metal oxide optical thin film
JP2005076095A (en) Thin film deposition system and thin film deposition method
JP2005228604A (en) Plasma generator
US7582185B2 (en) Plasma-processing apparatus
JP4026349B2 (en) Method for producing optical thin film
JP2004533538A (en) Double scan thin film processing system
CN112195443A (en) Film deposition system and film coating method
TW202031918A (en) Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film
WO2024127988A1 (en) Plasma processing device
TWI844252B (en) Plasma treatment equipment
JP5312138B2 (en) Sputtering method
TWI855482B (en) Plasma treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4483159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees