JP4482972B2 - Optical thin film manufacturing equipment - Google Patents

Optical thin film manufacturing equipment Download PDF

Info

Publication number
JP4482972B2
JP4482972B2 JP25461699A JP25461699A JP4482972B2 JP 4482972 B2 JP4482972 B2 JP 4482972B2 JP 25461699 A JP25461699 A JP 25461699A JP 25461699 A JP25461699 A JP 25461699A JP 4482972 B2 JP4482972 B2 JP 4482972B2
Authority
JP
Japan
Prior art keywords
substrate
dome
thin film
optical thin
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25461699A
Other languages
Japanese (ja)
Other versions
JP2001073136A (en
Inventor
清 細川
達士 石上
和芳 永井
Original Assignee
株式会社昭和真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社昭和真空 filed Critical 株式会社昭和真空
Priority to JP25461699A priority Critical patent/JP4482972B2/en
Publication of JP2001073136A publication Critical patent/JP2001073136A/en
Application granted granted Critical
Publication of JP4482972B2 publication Critical patent/JP4482972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は光学薄膜製造装置及びその構造に関するものである。
【0002】
【従来の技術】
光学薄膜素子は、光の干渉効果を用いるため誘電体の光学薄膜厚:n×d(n:屈折率、d:物理膜厚)を観測制御して所望する特性を得る事が必要である。一般的な応用製品としては、メガネやCDピックアップ等の各種レンズ、及びOA機器のフロントパネル等に施される反射防止膜、更に液晶ビジョン用のダイクロイック(2色分解)ミラーや、照明用のコールドミラー、及び建材用窓ガラス等に施される熱反射膜などがある。
又、産業用としては、最近特に伸張著しい移動体通信と共に、今後大きく伸張すると期待されるLAN等の光通信、又超LSIデバイスの微細パターン形成の要であるステッパ光源の極狭帯域フィルターとして用いられるバンドパスフィルター(BPF)、DVD用偏向分離膜フィルター(PBS)等が代表的光学薄膜素子として上げられる。
このような光学薄膜業界、電子部品関連業界においては、ガラス、半導体、金属、セラミックス等の基板材料上に、高充填密度の光学薄膜を短時間で効率良く成膜する技術が強く望まれている。
【0003】
従来この種の薄膜は、蒸発源として10-4Pa程度まで排気させた高真空容器内の下部に設置した2電極間を短絡させる様に配置されたモリブデンやタングステンの板上に蒸発物質を置き、2電極間に交流電力(直流電圧でも可能)を印加し加熱させ蒸発させる抵抗加熱蒸発源や、電子銃を用い熱電子を蒸発物質に収束させて加熱させ蒸発させる電子銃加熱蒸発源を使用し、これら蒸発源に対向した場所に配置した基板に成膜する真空蒸着法、又は、10-4Pa程度まで排気させた高真空容器内の下部にイオンを発生させるイオン生成装置(イオンガン)やプラズマを発生させるプラズマ生成装置(プラズマガン)を配置し、イオンガンやプラズマガンからイオンやプラズマを生成させながら真空蒸着法と併用する成膜法によって製造されるのが一般的であった。
【0004】
図1は、イオンやプラズマを生成しながらの成膜法の概略図を示したもので、真空排気口(2)とガス導入口(3)を備えた真空槽(1)の内部には、基板(4)を取付けた基板ドーム(5)と、対向する位置に蒸発源(6)及びイオンガン(7)、熱電子放出機構(8)が設けられ、絶縁体(9)中を通る導線で設置されている該基板ドーム(5)は、加熱ヒータドーム(23)により加熱され、又、図示しない外部の基板ドーム回転用モータから基板ドーム回転機構を介して回転する。又、該基板ドーム(5)と蒸発源(6)の間には可動自在にシャッター(10)が設けられ、更にモニタ筒(17)に設置されたモニタリング基板(11)に堆積する光学薄膜を外部の光学式膜厚計(12)で観測制御しながら所望の光学薄膜を得ようとするものである。
【0005】
あらかじめ真空槽(1)を高真空領域(10-4Pa程度)まで真空排気口(2)を介してクライオポンプ等のポンプ(図示していない)により排気する。その後ガス導入口(3)からArや酸素等の放電用ガスを20sccm程度イオンガン(7)へ導入する。更に真空槽(1)へ酸素ガスなどを所望圧力(8×10-3〜3×10-2Pa程度)まで導入する。この状態で蒸発源(図示しない)から電力(600W〜3600W)を供給し、更にイオンガン(7)へ電力を供給して放電させる。前記イオンガンから出射されたイオン電流を基板上に適宜制御して照射する。ここで蒸発源シャッター(10)を解放しモニタリング基板(11)に堆積する光学薄膜を光学式膜厚計(12)で観測制御しながら成膜し、所望の膜厚で蒸発源シャッター(10)を閉じて成膜を完了する。
【0006】
一方、金属薄膜製造装置において、プラスチック、ガラス、セラミックス等の絶縁物材料の上に、付着性の良い金属被膜を生成する装置として、特公昭51−23376号に示される様に、蒸発源から蒸発した粒子を、高密度のプラズマ中を通過させる事により正イオン化し、高周波電圧(13MHz程度)を基板に印加する事により基板上に誘起される直流負電界により加速させ、基板表面に突入せしめ薄膜を生成するようにした構成で、粒子のイオンを基板表面の数原子層まで侵入させる事が出来、金属被膜の付着性を著しく改善したという事例が紹介されている。
【0007】
光学薄膜素子は一般に、真空蒸着法により高/低屈折率の誘電体膜が交互にガラス等の基板上に積層されており、素子によっては50層以上に及ぶ場合がある。このため、薄膜の充填密度(Packing density)が低いと湿度(H2O)の影響により経時変化が生じやすく安定な性能は得られにくい。真空蒸着法で20〜30層程度を成膜した近赤外域BPFの場合、温度湿度の環境変化(例:25℃50%→80℃95%)により、分光特性が長波長側へ50nm程度移動する(波長シフト)。例えば光通信の分野で使用する光学薄膜素子が波長シフトする事によって通信に支障を与えたり、通信不可能になる等の問題がある。
【0008】
光学薄膜の充填密度の向上を図る手段として、前述のようなイオンガンやプラズマガンからのイオンやプラズマを基板に照射させながら真空蒸着法と併用する方式がある。装置内部にイオン生成装置(イオンガン)やプラズマ生成装置(プラズマガン)を設置し、イオンやプラズマを併用しながら成膜する事によって、波長シフト量の少ない(1nm程度のシフト量)光学薄膜を得る事ができる。しかし、イオンガンやプラズマガンを使用するとイオンやプラズマの放出分布に指向性が生じるので、イオンガンやプラズマガン生成装置に対向配置された基板ドーム上で成膜された薄膜の屈折率に不均一な分布が生じる。イオンガンやプラズマガンを使用した場合、屈折率が実用上均一となるエリアは、基板ドーム中心部のみ(基板ドーム全面積の10〜20%)でしか所望する特性の薄膜を得る事が出来ない。
【0009】
又成膜処理時間も真空蒸着法よりかなり長時間を要し、例えば30層程度のBPSフィルター成膜時には、真空蒸着法では蒸発速度が高屈折率物質:0.5nm/s、低屈折率物質:1.0nm/s程度で成膜し1工程2時間くらいの時間で済むのに対し、イオンガンやプラズマガンを使用した場合の成膜速度は、高屈折率物質:0.1nm/s、低屈折率物質:0.5nmn/s程度で成膜するために1工程10時間と真空蒸着法と比較して約5倍の時間を要するため、所望の光学薄膜素子を生産効率良く形成する事は非常に困難であった。特公昭51−23376号に示される装置では基板ドーム上部にシールドが設けられている。基板ヒータドームがシールド上部にある場合、基板を300℃程度に加熱して生成を実施すると、板上のシールドが熱遮蔽し基板温度上昇を防げる問題がある。
【0010】
又、基板を300℃程度に加熱すると回転する基板ドームへ高周波を印加するコンタクト(リン青銅のバネ材等)が熱を受けて歪む。熱歪を受けたコンタクトはスプリング効果がなくなり基板ドームに対して接触抵抗が増大し、高周波電力を供給できなくなるという問題がある。光学用の成膜装置は、膜厚を観測制御する光学式膜厚計とモニタリング基板が装備される。この場合モニタリング基板には高周波電力が印加されていないので基板ドーム上の基板と屈折率の違いが生じるという問題がある。
【0011】
【発明の概要】
本発明は上記のような問題点を解決しようとするもので、高充填密度で所望する特性を持つ光学薄膜素子を短時間で効率良く生産する事の出来る光学薄膜製造装置を提供する事を目的とするものである。
【0012】
本発明は、前記特公昭51−23376号に示されるような高周波(RF)電力を基板へ印加して付着性の良い金属薄膜を得るという考え方を、光学(誘電体)薄膜を製造する装置にも摘要しようとするものである。高充填密度の光学薄膜を得る際、イオンやプラズマを併用しながら成膜する方式の装置を大型化しようとする場合、設置するイオンガンまたはプラズマガンを複数台必要とするため、価格的にも実用的ではない。そこで、基板ドームに直接高周波(周波数13MHz帯)を印加する方式(直接RF基板印加方式)に着目した。直接RF基板印加方式の原理は、グロー放電中の電子とイオンの易動度の差等から生ずる基板に誘起される負の自己バイアスにより加速されたイオンを膜表面上に射突させ、膜の充填密度を向上させようとするものである。
【0013】
具体的には、回転する基板ドームへ高周波電力を印加すると共に、本発明装置が従来の真空蒸着法としても使用可能とするために基板を加熱する機構を装備しているが、該基板ドームが高温状態でも効率良く高周波電力を印加する為に、自己潤滑材の2硫化タングステン(WS2)や2硫化モリブデン(MoS2)から成るコンタクトを介して高周波電力給電機構を備えている。基板ドームへ印加する高周波電力と同じ電力をモニタリング基板へ供給する際に、異常放電を抑制する為に、絶縁部材を使用してモニタ筒及びモニタセットプレートを真空槽から絶縁する構造としている。又、基板ドームと基板加熱ヒータドーム間での異常放電を抑制する為に、両者の間に取付けたシールドをメッシュ構造としている。使用するメッシュは基板温度を効率良く上昇させるためにメッシュの目の開きを大きくしたいが、メッシュの目の開きを大きくし過ぎると放電に対するシールド効果がなくなる不具合が発生する。これらの理由から、使用するメッシュは#9メッシュ(目の開き:約2mm)から#2.5メッシュ(目の開き:約9mm)で、このメッシュを使用した事により効率良く基板加熱ができる。更に、基板ドーム外周部におけるプラズマ密度の違いによる基板ドーム外周部の屈折率を改善する為に、基板ドームと外周のシールドとの間隔を可変する機構を設けた。
【0014】
【発明の実施の形態】
実施例の構成の説明
以下、この発明の実施例を図面に基づいて説明する。尚、図1の前記従来構成と同一、もしくは均等なものは同一符号を付すものとする。
【0015】
図2は、本発明の光学薄膜製造装置の概略構成図を示す。同図において符号(1)は真空排気口(2)とガス導入口(3)を備えた真空槽を示し、該真空槽(1)の内部には、基板(4)を取付けた基板ドーム(5)及びメッシュ構造としたシールド(13)と、対向する位置に蒸発源(6)及び熱電子放出機構(8)が設けられる。該基板ドーム(5)と蒸発源(6)の間には可動自在にシャッター(10)が設けられ、該基板ドーム(5)へは、外部の高周波電源(14)からマッチングボックス(15)を介して高周波電力給電機構(16)から高周波電力が供給される。この時、該基板ドーム(5)は、図示しない外部の基板ドーム回転用モータから基板ドーム回転機構を介して回転する。該基板ドーム(5)の近傍に設けられたモニタリング基板(11)に堆積する光学薄膜を外部の光学式膜厚計(12)で観測制御しながら所望の光学薄膜を得ようとするものである。
【0016】
図3は、高周波電力給電機構(16)の詳細図である。同図において符号(17)はモニタ筒を示し、モニタ筒(17)の内部にはモニタリング基板(11)をセットする構造である、モニタ筒(17)はモニタセットプレート(22)から絶縁部材(18)を使用し電気的に絶縁する機構とした。図3の斜線部分は高周波が印加される部分を示した。高周波は自己潤滑材の2硫化タングステン(WS2)コンタクト(21)を使用して、スプリングSで基板ドーム(5)へWS2コンタクト(21)を圧接する事で、回転する基板ドーム(5)へ効率よく印加できる構造となっている。
【0017】
図4は、モニタ筒(17)を絶縁部材(18)、絶縁部材(19)、及び絶縁部材(20)でモニタセットプレート(22)に取付ける詳細図である。同図において符号(17)はモニタ筒を示し、モニタ筒の内部にモニタリング基板(11)をセットする。モニタ筒(17)はモニタセットプレート(22)から絶縁部材(18)を使用し電気的に絶縁する機構とし、更に異常放電を防止するため、絶縁部材(19)絶縁部材(20)を使用し真空槽からも電気的に絶縁する機構とした。図4の斜線部分は絶縁部材を示した。
【0018】
図5は、基板ドーム(5)とメッシュ構造のシールド(13)との間隔を可変する詳細図を示す。シールド(13)は板状の構造物をネジで基板加熱ヒータドーム(23)及び真空槽(1)に固定している。基板ドーム(5)との間隔を変更する場合は、シールド(13)の板に開けられた長穴(a)の固定位置を変えて止め直す事で、縦方向に間隔を可変でき真空槽(1)の長穴(b)の固定位置を止め直す事で左右方向に可変できる構造としている。
【0019】
実施例の作用・動作の説明
図2の構成において、真空槽(1)の内部をあらかじめ高真空領域(5×10-4Pa程度)まで真空排気口(2)により排気する。その後ガス導入口(3)から放電用ガス(この場合は酸素)を圧力で8×10-3〜3×10-2Pa程度導入する。基板ドーム(5)に2硫化タングステン(WS2 )コンタクト(21)によって高周波電力を印加(50W〜3KW)すると、基板ドーム(陰極電極)と蒸発源(6)との空間にグロー放電が発生しプラズマ状態になる。該基板ドーム(5)に取付けられた基板(4)の表面には自己誘起された負の直流電界が生ずる。プラズマ化された放電用ガスは、基板表面に自己誘起された負の直流電界によって加速され、基板表面に突入する。この状態で蒸発源(6)に電力(600W〜3600W)を供給し、蒸発源シャッター(10)を解放すると、蒸発源(6)から蒸発した蒸発粒子は、このプラズマ中を通過して基板に到達する。モニタリング基板(11)に堆積する薄膜を光学式膜厚計(12)で観測制御し、所望の膜厚になったところで蒸発源シャッター(10)を閉じる。プラズマ放電空間の中に多くの高速粒子が存在する。この高速粒子が基板ドーム(5)や基板(4)に薄膜形成中に衝突し、運動エネルギーを与える効果や、原子拡散と化合促進などによる効果が高充填密度の薄膜を得られる理由と考えられる。
【0020】
図6は、従来のイオンやプラズマを併用しながらイオンガンを使用した成膜法と、本発明の直接RF基板印加の光学薄膜製造装置を用いて成膜した場合の屈折率の比較データを表すものである。
基板ドーム直径600mmを用いて直径76.2mmの基板上に厚さ200nmの5酸化タンタル(Ta25)を酸素雰囲気による圧力1.3×10-2Pa、高周波電力1KW、蒸発速度0.5nm/sの条件で成膜した場合を示す。屈折率分布は小数点以下3桁目の屈折率が判定できるようにエリプソメータ(観測波長:632.8nm)により測定した。図6の横軸は基板ドーム中心からの距離を、縦軸は屈折率を示す。従来のイオンやプラズマを併用しながらの成膜法の場合、基板全体にわたっての屈折率分布は約0.1で有ったものが、本発明の光学薄膜製造装置の場合、屈折率分布は0.003と大きく改善された。
【0021】
図7は、絶縁部材を使用してモニタ筒(17)及びモニタセットプレート(22)を真空槽(1)から絶縁する事で、高周波電力を安定に供給できる事を表したものである。
プラズマ発生用の高周波電源(14)は、インピーダンスが50Ωのケーブルで出力する。ところが負荷(高周波電力給電機構(16)、基板ドーム(5)等)インピーダンスは50Ωではなく、ケーブルを負荷に直接接続するとインピーダンスのミスマッチングによるRF電力の反射を生じ効率よく負荷への電力供給ができなく、高周波電源内部で出力損失が増大し、異常な電圧が発生して電源を損傷する可能性がある。この反射電力を減少させる目的でインピーダンス整合を行うためにマッチングボックス(15)がある。マッチングボックス(15)は2つのバリコンの調整により真空槽内部の機構・構造変化や成膜条件の変化により負荷インピーダンスが広範囲に変動してもインピーダンスマッチングを可能にしている。本発明では、基板ドームへ印加する高周波電力と同じ高周波の電力をモニタリング基板(11)へも印加する際に、異常放電を制御する為に、絶縁部材を使用してモニタ筒(17)及びモニタセットプレート(22)を真空槽(1)から絶縁する構造とした事で効率よく高周波を基板ドーム(5)へ給電する事ができた。例として、基板ドーム直径760mmを用いて、酸素雰囲気による圧力2.7〜1.3×10-2Pa、高周波出力1.5KWを連続して印加した際、モニタ筒(17)のみ絶縁した場合は高周波印加10分後から異常放電が発生し22分で高周波放電が持続しなく(使用不可能)なった。一方モニタ筒(17)とモニタセットプレート(22)を真空槽(1)から絶縁する機構を採用した事で、高周波を30分以上連続印加しても安定して電力を供給する事ができた。図7の横軸は時間を、縦軸は高周波反射電力を示す。
【0022】
図8は、回転する基板ドーム(5)が高温状態でも効率良く高周波電力を印加する為に、自己潤滑材の2硫化タングステン(WS2)コンタクト(21)から成る高周波電力給電機構(16)を使用する事で基板ドームが高温状態でも安定に高周波電力を給電できる事を示したものである。電力の供給部材としては、銅(Cu)製の接点バネ(Cuコンタクト)がある。しかし基板温度が上昇し180℃以上でCuコンタクトの劣化が始まり、200℃以上で高周波放電が持続しなく(使用不能)になる。本発明では自己潤滑材2硫化タングステン(WS2)コンタクト(21)を採用する事により基板(4)が300℃以上の高温状態でも効率良く高周波電力を印加する事ができた。図8の横軸は基板温度を、縦軸は高周波反射電力を示す。
【0023】
図9は、基板ドーム(5)と基板加熱ヒータドーム(23)間での異常放電を制御する為に、両者の間に取付けたシールド(3)をメッシュ構造として、効率良く基板加熱できる事を示したものである。基板ドーム直径760mmを用いて、ドーム上に直径30mmのガラス基板を設置し、温度調節器に温度を設定する事で、基板加熱ヒータドーム(23)に供給する電力を自動制御しながら加熱する。基板温度測定は非接触で計測可能な放射温度計にて測定した。シールドが板状(厚さ:1〜2mm、材質:ステンレス)の場合、シールドが無い時に比較し150℃低い温度であった。本発明では、シールドをメッシュ構造とする事でシールドが無い時とほぼ同じ10℃低い温度と改善する事ができた。図9の横軸は温度調節器設定温度を、縦軸は基板温度を示す。
【0024】
図10は、従来のイオンやプラズマを併用しながらの成膜法を用いて成膜した場合の波長移動量(波長シフト量)を表すものである。基板ドーム直径600mmを用いて直径30mmの基板上にTa25 とSiO2薄膜を交互に25層堆積した。酸素雰囲気による圧力2.7〜1.3×10-2Pa、アノード出力900mA、900V、蒸発速度Ta25 0.1nm/sとSiO2 0.1nm/sの条件で成膜した。波長シフト量の測定は環境試験をする前後において分光透過率測定を実施し、その分光特性のズレ量から判断し評価した。環境試験方法は、温度85℃、湿度95%の雰囲気に1000時間成膜した基板を放置した。図10の横軸は波長を、縦軸は透過率を示す。従来のイオンやプラズマを併用しながらの成膜法の場合、波長シフト量は、1〜2nmであった。
【0025】
図11は、本発明の光学薄膜製造装置を用いて成膜した場合の波長移動量(波長シフト量)を表すものである。基板ドーム直径600mmを用いて直径30mmの基板上にTa25 とSiO2薄膜を交互に25層堆積した。酸素雰囲気による圧力2.7〜1.3×10-2Pa、高周波出力1KW、蒸発速度Ta25 0.5nm/sとSiO2 0.6nm/sの条件で成膜した。波長シフト量の測定は環境試験をする前後において分光透過率測定を実施し、その分光特性のズレ量から判断し評価した。環境試験方法は、温度85℃、湿度95%の雰囲気に1000時間成膜した基板を放置した。図11の横軸は波長を、縦軸は透過率を示す。本発明の光学薄膜製造装置で成膜した場合の波長シフト量は0.1nm以下であった。波長シフト量をイオンやプラズマを併用しながらの成膜法と本発明の光学薄膜製造装置で成膜した場合で比較すると、従来のイオンやプラズマを併用しながらの成膜法のシフト量は1〜2nmで有ったものが、本発明の光学薄膜製造装置の場合は0.1nm以下と1/10に大きく改善された。
【0026】
図12は、従来のイオンやプラズマを併用しながらの成膜法と、本発明の光学薄膜製造装置を用いて成膜した場合の成膜処理時間を比較したものである。基板ドーム直径760mmを用いて波長:λ=600nm程度のPBSフィルターをTa25 とSiO2を用い交互で20層それぞれの成膜手法で堆積した。一方イオンやプラズマを併用しながらの成膜法は、酸素雰囲気による圧力2.7〜1.3×10-2Pa、アノード出力900mA、900V、蒸発速度Ta25 0.1nm/sとSiO2 0.2nm/sの条件で成膜した。本発明の成膜条件は、酸素雰囲気による圧力2.7〜1.3×10-2Pa、高周波出力1KW、蒸発速度Ta25 0.5nm/sとSiO2 1.0nm/sの条件で成膜した。図12の横軸は成膜手法を、縦軸は時間を示す。
【0027】
イオンやプラズマを併用しながらの成膜法と本発明の光学薄膜製造装置でそれぞれ成膜した場合の成膜処理時間を比較すると、成膜準備と基板取り出し時間はほぼ同一の合計1.5時間である。成膜時間は従来のイオンやプラズマを併用しながらの成膜法の場合は10時間程度で有ったものが、本発明の光学薄膜製造装置の場合は2時間で成膜処理時間は1/5と大きく改善された。
【0028】
図13は本発明の装置で、ドームとシールド間隔を変化させて成膜した場合のドーム内屈折率分布を示したものである。基板ドーム直径1150mmを用い、酸素雰囲気による圧力2.7×10-2Pa、高周波出力3KW、蒸発速度0.3nm/s、の条件でTiO2 を200nm成膜した。図13の横軸は、基板ドーム中心からの距離を、縦軸は、屈折率を示す。基板ドームとシールドとの間隔を30mm及び60mmでそれぞれ成膜した場合のドーム内屈折率分布を比較すると、基板ドーム中心から約500mmまではほぼ同一の屈折率値2.399〜2.406を示しているが、ドームとシールドとの間隔が60mmの場合基板ドーム中心から500〜540mmでは屈折率が2.385と極端に低下している。屈折率が低下する理由は基板ドーム中心部と周辺部でのプラズマ密度の違いで発生する。今回シールドとの間隔を可変できる機構とし、ドームとシールドとの間隔を30mmとする事で屈折率2.404と基板ドーム中心から約500mmまでの屈折率値とほぼ同程度まで改善する事ができた。
【0029】
本発明の構造は高周波を基板印加する様な成膜装置全てに転用可能である。図14はスパッタリング装置へ転用した例を示したもので、図2で示した本発明の光学薄膜製造装置との大きな違いは、高周波及び直流電力を電源切替スイッチ(26)を経てスパッタリングターゲット(24)へ印加する様な構造としたスパッタリング装置である。
【0030】
【発明の効果】
本発明では、回転する基板ドームへ高周波電力を直接印加すると共に、本発明の高周波電力給電機構や、異常放電を抑制するための絶縁構造、効率良く基板加熱を行うためのシールドのメッシュ構造、更に基板ドームと外周のシールド間隔を可変する機構等を採用した事によって、基板ドーム内屈折率分布が、従来は0.1であったものが0.003へ改善され、又波長移動量(波長シフト量)も、従来は1〜2nmであったものが0.1nmへ、1/10に改善。更に成膜処理時間も、従来10時間必要としたものが2時間へ、1/5に短縮された。この様に本発明によって、高充填密度の光学(誘電体)薄膜を基板ドーム内全域で良好な屈折率を誇る光学薄膜素子を短時間で効率よく生産する事が可能となり、光学及び電子デバイス製品の生産性を著しく向上した。その工業的価値は非常に顕著である。
【図面の簡単な説明】
【図1】従来構成の説明図。
【図2】本発明の光学薄膜製造装置の概要説明図。
【図3】本発明の高周波電力供給部の詳細説明図。
【図4】本発明のモニタリング基板取付部の詳細説明図。
【図5】本発明の基板ドームとシールドとの間隔可変部の詳細説明図。
【図6】従来方法と本発明との基板ドーム内屈折率分布比較データ。
【図7】絶縁個所の違いによる耐久性の効果を比較した説明図。
【図8】コンタクト部材の違いによる耐熱性を比較した説明図。
【図9】シールド形状の違いによる基板温度の上昇効果を比較した説明図。
【図10】従来方法の環境試験前後における分光特性比較図。
【図11】本発明の環境試験前後における分光特性比較図。
【図12】従来方法と本発明の成膜処理時間比較図。
【図13】本発明でドームと外周シールド間隔を可変した場合のドーム中心からの距離と屈折率の関係を示す図。
【図14】スパッタリング装置へ転用した例を示す図。
【符号の説明】
1 真空槽
2 真空排気口
3 ガス導入口
4 基板
5 基板ドーム
6 蒸発源
7 イオンガン
8 熱電子放出機構
9 基板ドーム回転機構
10 シャッター
11 モニタリング基板
12 光学式膜厚計
13 シールド
14 高周波電源
15 マッチングボックス
16 高周波電力給電機構
17 モニタ筒
18 絶縁部材(a)
19 絶縁部材(b)
20 絶縁部材(c)
21 2硫化タングステン(WS2)コンタクト
22 モニタセットプレート
23 基板加熱ヒータドーム
24 スパッタリングターゲット
25 直流電源
26 電源切替スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical thin film manufacturing apparatus and its structure.
[0002]
[Prior art]
Since the optical thin film element uses the interference effect of light, it is necessary to obtain the desired characteristics by observing and controlling the optical thin film thickness of the dielectric: nxd (n: refractive index, d: physical film thickness). Typical applications include various lenses such as glasses and CD pickups, anti-reflective coatings applied to the front panel of OA equipment, dichroic (two-color separation) mirrors for liquid crystal vision, and cold lighting. There are heat reflection films applied to mirrors and window glass for building materials.
Also, for industrial use, it is used as an extremely narrow band filter for stepper light sources, which are the key to the formation of fine patterns of ultra LSI devices, and optical communications such as LAN that are expected to grow greatly in the future, along with mobile communications that have been particularly prominent in recent years. Bandpass filters (BPF), deflection separation membrane filters for DVD (PBS), and the like are typical optical thin film elements.
In such optical thin film industry and electronic component related industry, a technique for efficiently forming a high filling density optical thin film in a short time on a substrate material such as glass, semiconductor, metal, ceramics, etc. is strongly desired. .
[0003]
Conventionally, this type of thin film is used as an evaporation source.-FourAn evaporative substance is placed on a molybdenum or tungsten plate placed so as to short-circuit between the two electrodes installed in the lower part of the high vacuum vessel evacuated to about Pa. A resistance heating evaporation source that heats and evaporates, and an electron gun heating evaporation source that uses an electron gun to converge and heat the thermoelectrons to the evaporation substance and evaporate them, and a substrate placed at a location facing these evaporation sources Or vacuum deposition method to form a film-FourAn ion generator (ion gun) that generates ions and a plasma generator (plasma gun) that generates ions are placed in the lower part of the high vacuum chamber that is evacuated to about Pa, and ions and plasma are generated from the ion gun and plasma gun. However, it is generally manufactured by a film forming method used in combination with a vacuum evaporation method.
[0004]
FIG. 1 shows a schematic diagram of a film forming method while generating ions and plasma. In a vacuum chamber (1) having a vacuum exhaust port (2) and a gas introduction port (3), A substrate dome (5) to which a substrate (4) is attached, an evaporation source (6), an ion gun (7), and a thermionic emission mechanism (8) are provided at opposing positions. The installed substrate dome (5) is heated by the heater dome (23) and is rotated from an external substrate dome rotation motor (not shown) via a substrate dome rotation mechanism. Further, a shutter (10) is movably provided between the substrate dome (5) and the evaporation source (6), and an optical thin film deposited on the monitoring substrate (11) installed in the monitor cylinder (17). A desired optical thin film is to be obtained while controlling the observation with an external optical film thickness meter (12).
[0005]
The vacuum chamber (1) is preliminarily placed in the high vacuum region (10-FourThe air is evacuated by a pump (not shown) such as a cryopump through the vacuum exhaust port (2). Thereafter, a discharge gas such as Ar or oxygen is introduced into the ion gun (7) by about 20 sccm from the gas inlet (3). Further, oxygen gas or the like is supplied to the vacuum chamber (1) at a desired pressure (8 × 10-3~ 3x10-2Up to about Pa). In this state, electric power (600 W to 3600 W) is supplied from an evaporation source (not shown), and further, electric power is supplied to the ion gun (7) to be discharged. An ion current emitted from the ion gun is appropriately controlled and irradiated on the substrate. Here, the evaporation source shutter (10) is released and the optical thin film deposited on the monitoring substrate (11) is formed while being observed and controlled by the optical film thickness meter (12), and the evaporation source shutter (10) is formed with a desired film thickness. To complete the film formation.
[0006]
On the other hand, as shown in Japanese Examined Patent Publication No. 51-23376, as an apparatus for producing a metal film having good adhesion on an insulating material such as plastic, glass, ceramics, etc. The particles are positively ionized by passing through a high-density plasma, accelerated by a DC negative electric field induced on the substrate by applying a high-frequency voltage (about 13 MHz) to the substrate, and rushed into the surface of the substrate. It has been introduced that the ion of particles can be penetrated to several atomic layers on the surface of the substrate and the adhesion of the metal coating has been remarkably improved.
[0007]
In general, an optical thin film element is formed by alternately stacking high / low refractive index dielectric films on a substrate such as glass by a vacuum deposition method, and depending on the element, the optical thin film element may reach 50 layers or more. For this reason, if the packing density of the thin film is low, the humidity (H2O) is likely to change over time and it is difficult to obtain stable performance. In the case of a near-infrared BPF with about 20 to 30 layers formed by vacuum deposition, the spectral characteristics move about 50 nm to the long wavelength side due to environmental changes in temperature and humidity (eg, 25 ° C. 50% → 80 ° C. 95%). (Wavelength shift). For example, there is a problem that the optical thin film element used in the field of optical communication has a problem in that communication is hindered due to wavelength shift, or communication becomes impossible.
[0008]
As a means for improving the packing density of the optical thin film, there is a method used in combination with the vacuum deposition method while irradiating the substrate with ions or plasma from the ion gun or plasma gun as described above. By installing an ion generator (ion gun) or plasma generator (plasma gun) inside the apparatus and forming a film while using ions and plasma in combination, an optical thin film with a small wavelength shift amount (a shift amount of about 1 nm) is obtained. I can do things. However, if an ion gun or plasma gun is used, the ion and plasma emission distribution will be directional, so the refractive index of the thin film deposited on the substrate dome facing the ion gun or plasma gun generator will be unevenly distributed. Occurs. When an ion gun or a plasma gun is used, a thin film having desired characteristics can be obtained only in the central part of the substrate dome (10 to 20% of the total area of the substrate dome) where the refractive index is practically uniform.
[0009]
Also, the film forming process takes much longer than the vacuum evaporation method. For example, when forming a BPS filter of about 30 layers, the evaporation rate is high refractive index material: 0.5 nm / s and low refractive index material in the vacuum evaporation method. : The film is formed at about 1.0 nm / s, and it takes about 2 hours for one process. On the other hand, the film forming rate when using an ion gun or plasma gun is high refractive index material: 0.1 nm / s, low. Refractive index material: Since it takes 10 hours per process and about five times as long as the vacuum deposition method to form a film at about 0.5 nmn / s, it is necessary to form a desired optical thin film element with high production efficiency. It was very difficult. In the apparatus shown in Japanese Patent Publication No. 51-23376, a shield is provided on the upper part of the substrate dome. When the substrate heater dome is on the upper part of the shield, when the substrate is heated to about 300 ° C. and the generation is performed, the shield on the plate is thermally shielded, and there is a problem that the substrate temperature rise can be prevented.
[0010]
Further, when the substrate is heated to about 300 ° C., a contact (phosphor bronze spring material or the like) for applying a high frequency to the rotating substrate dome receives heat and is distorted. The contact subjected to the thermal strain has a problem that the spring effect is lost, the contact resistance increases with respect to the substrate dome, and high frequency power cannot be supplied. The optical film forming apparatus is equipped with an optical film thickness meter for monitoring and controlling the film thickness and a monitoring substrate. In this case, since high frequency power is not applied to the monitoring substrate, there is a problem that a difference in refractive index from the substrate on the substrate dome occurs.
[0011]
SUMMARY OF THE INVENTION
An object of the present invention is to provide an optical thin film manufacturing apparatus capable of efficiently producing an optical thin film element having a desired characteristic at a high packing density in a short time. It is what.
[0012]
The present invention is based on the idea of applying a high frequency (RF) power to a substrate to obtain a metal thin film having good adhesion as disclosed in Japanese Patent Publication No. 51-23376, to an apparatus for producing an optical (dielectric) thin film. I will try to summarize. When obtaining an optical thin film with a high packing density, if you want to increase the size of a film deposition system that uses ions and plasma in combination, you will need multiple ion guns or plasma guns to be installed, making it practical for cost. Not right. Therefore, attention was paid to a method (direct RF substrate application method) in which a high frequency (frequency 13 MHz band) is directly applied to the substrate dome. The principle of the direct RF substrate application method is that the ions accelerated by the negative self-bias induced on the substrate due to the difference in mobility of electrons and ions in the glow discharge are projected on the film surface, It is intended to improve the packing density.
[0013]
Specifically, high-frequency power is applied to the rotating substrate dome, and the apparatus of the present invention is equipped with a mechanism for heating the substrate so that it can also be used as a conventional vacuum deposition method. Self-lubricating tungsten disulfide (WS) to efficiently apply high-frequency power even at high temperatures2) And molybdenum disulfide (MoS)2A high-frequency power feeding mechanism is provided through a contact made up of In order to suppress abnormal discharge when supplying the same power as the high-frequency power applied to the substrate dome to the monitoring substrate, an insulating member is used to insulate the monitor cylinder and the monitor set plate from the vacuum chamber. Further, in order to suppress abnormal discharge between the substrate dome and the substrate heater dome, the shield attached between the two has a mesh structure. The mesh used is intended to increase the opening of the mesh in order to increase the substrate temperature efficiently. However, if the opening of the mesh is excessively increased, the shielding effect against discharge is lost. For these reasons, the mesh used is from # 9 mesh (opening: about 2 mm) to # 2.5 mesh (opening: about 9 mm), and the substrate can be heated efficiently by using this mesh. Further, in order to improve the refractive index of the outer periphery of the substrate dome due to the difference in plasma density at the outer periphery of the substrate dome, a mechanism for changing the distance between the substrate dome and the outer shield is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Explanation of configuration of the embodiment
Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to the same or equivalent thing as the said conventional structure of FIG.
[0015]
FIG. 2 shows a schematic configuration diagram of the optical thin film manufacturing apparatus of the present invention. In the figure, reference numeral (1) denotes a vacuum chamber provided with a vacuum exhaust port (2) and a gas introduction port (3). Inside the vacuum chamber (1), a substrate dome (4) attached with a substrate (4) is provided. 5) and a shield (13) having a mesh structure, and an evaporation source (6) and a thermionic emission mechanism (8) are provided at opposing positions. A shutter (10) is movably provided between the substrate dome (5) and the evaporation source (6). A matching box (15) is connected to the substrate dome (5) from an external high-frequency power source (14). The high frequency power is supplied from the high frequency power supply mechanism (16). At this time, the substrate dome (5) rotates from an external substrate dome rotation motor (not shown) via the substrate dome rotation mechanism. An optical thin film deposited on a monitoring substrate (11) provided in the vicinity of the substrate dome (5) is intended to obtain a desired optical thin film while being observed and controlled by an external optical film thickness meter (12). .
[0016]
FIG. 3 is a detailed view of the high-frequency power feeding mechanism (16). In the figure, reference numeral (17) denotes a monitor cylinder, and the monitor cylinder (17) has a structure in which the monitoring substrate (11) is set inside the monitor cylinder (17). The monitor cylinder (17) is insulated from the monitor set plate (22) ( 18) was used as an electrically insulating mechanism. The hatched portion in FIG. 3 indicates a portion to which a high frequency is applied. High frequency is self-lubricating tungsten disulfide (WS)2) Using contact (21), spring S to substrate dome (5) WS2By pressing the contact (21), it can be efficiently applied to the rotating substrate dome (5).
[0017]
FIG. 4 is a detailed view of attaching the monitor cylinder (17) to the monitor set plate (22) with the insulating member (18), the insulating member (19), and the insulating member (20). In the figure, reference numeral (17) denotes a monitor cylinder, and a monitoring substrate (11) is set inside the monitor cylinder. The monitor cylinder (17) uses an insulating member (18) from the monitor set plate (22) to electrically insulate, and further uses an insulating member (19) and an insulating member (20) to prevent abnormal discharge. The mechanism is also electrically insulated from the vacuum chamber. The hatched portion in FIG. 4 indicates an insulating member.
[0018]
FIG. 5 shows a detailed view of varying the distance between the substrate dome (5) and the mesh-structured shield (13). The shield (13) fixes a plate-like structure to the substrate heater dome (23) and the vacuum chamber (1) with screws. When changing the distance to the substrate dome (5), the distance can be changed in the vertical direction by changing the fixing position of the long hole (a) opened in the plate of the shield (13) and stopping again. The structure can be changed in the left-right direction by stopping the fixing position of the elongated hole (b) in 1).
[0019]
Explanation of operation and operation of embodiment
In the configuration of FIG. 2, the inside of the vacuum chamber (1) is preliminarily placed in a high vacuum region (5 × 10-FourThe air is exhausted through the vacuum exhaust port (2) to about Pa). After that, discharge gas (in this case, oxygen) from the gas inlet (3) by pressure is 8 × 10-3~ 3x10-2About Pa is introduced. Tungsten disulfide (WS) on the substrate dome (5)2 ) When high frequency power is applied (50 W to 3 KW) by the contact (21), glow discharge is generated in the space between the substrate dome (cathode electrode) and the evaporation source (6), resulting in a plasma state. A self-induced negative DC electric field is generated on the surface of the substrate (4) attached to the substrate dome (5). The plasmaized discharge gas is accelerated by a negative DC electric field self-induced on the substrate surface, and enters the substrate surface. In this state, when electric power (600 W to 3600 W) is supplied to the evaporation source (6) and the evaporation source shutter (10) is released, the evaporated particles evaporated from the evaporation source (6) pass through this plasma to the substrate. To reach. The thin film deposited on the monitoring substrate (11) is observed and controlled by the optical film thickness meter (12), and when the desired film thickness is reached, the evaporation source shutter (10) is closed. There are many high-speed particles in the plasma discharge space. This high-speed particle collides with the substrate dome (5) or the substrate (4) during the formation of the thin film, and the effects of imparting kinetic energy and the effects of atomic diffusion and compound promotion are considered to be the reason why a thin film having a high packing density can be obtained. .
[0020]
FIG. 6 shows comparison data of refractive indexes when a film forming method using an ion gun while using ions and plasma in combination with the optical thin film manufacturing apparatus using a direct RF substrate of the present invention is used. It is.
200 nm thick tantalum pentoxide (Ta) on a 76.2 mm diameter substrate using a substrate dome diameter of 600 mm2OFive) Under an oxygen atmosphere pressure 1.3 × 10-2The case where the film is formed under the conditions of Pa, high-frequency power 1 kW, and evaporation rate 0.5 nm / s is shown. The refractive index distribution was measured with an ellipsometer (observation wavelength: 632.8 nm) so that the refractive index of the third digit after the decimal point could be determined. The horizontal axis in FIG. 6 indicates the distance from the center of the substrate dome, and the vertical axis indicates the refractive index. In the case of a film forming method using conventional ions and plasma in combination, the refractive index distribution over the entire substrate is about 0.1. However, in the optical thin film manufacturing apparatus of the present invention, the refractive index distribution is 0. It was greatly improved to 0.003.
[0021]
FIG. 7 shows that high-frequency power can be stably supplied by insulating the monitor cylinder (17) and the monitor set plate (22) from the vacuum chamber (1) using an insulating member.
The high frequency power supply (14) for generating plasma outputs with a cable having an impedance of 50Ω. However, the impedance of the load (high-frequency power feeding mechanism (16), substrate dome (5), etc.) is not 50Ω. When the cable is directly connected to the load, RF power is reflected due to impedance mismatching, and the power can be efficiently supplied to the load. Otherwise, the output loss increases inside the high frequency power supply, and an abnormal voltage may be generated to damage the power supply. A matching box (15) is provided to perform impedance matching for the purpose of reducing the reflected power. The matching box (15) enables impedance matching even if the load impedance fluctuates over a wide range due to changes in the mechanism and structure inside the vacuum chamber and changes in film forming conditions by adjusting two variable capacitors. In the present invention, when an electric power having the same high frequency as that applied to the substrate dome is also applied to the monitoring substrate (11), an insulating member is used to control the abnormal discharge and the monitor cylinder (17) and the monitor. Since the set plate (22) is insulated from the vacuum chamber (1), a high frequency can be efficiently supplied to the substrate dome (5). As an example, using a substrate dome diameter of 760 mm, the pressure in an oxygen atmosphere is 2.7 to 1.3 × 10-2When continuously applying Pa and a high frequency output of 1.5 KW, if only the monitor tube (17) is insulated, abnormal discharge will occur 10 minutes after high frequency application and high frequency discharge will not continue in 22 minutes (unusable) became. On the other hand, by adopting a mechanism that insulates the monitor cylinder (17) and the monitor set plate (22) from the vacuum chamber (1), it was possible to supply power stably even when a high frequency was continuously applied for 30 minutes or more. . In FIG. 7, the horizontal axis represents time, and the vertical axis represents high-frequency reflected power.
[0022]
FIG. 8 shows a self-lubricating tungsten disulfide (WS) in order to efficiently apply high-frequency power even when the rotating substrate dome (5) is in a high temperature state.2This shows that high-frequency power can be stably supplied even when the substrate dome is at a high temperature by using a high-frequency power supply mechanism (16) comprising contacts (21). As a power supply member, there is a contact spring (Cu contact) made of copper (Cu). However, when the substrate temperature rises and the Cu contact begins to deteriorate at 180 ° C. or higher, the high frequency discharge does not continue (cannot be used) at 200 ° C. or higher. In the present invention, self-lubricating material tungsten disulfide (WS)2) By adopting the contact (21), high frequency power could be applied efficiently even when the substrate (4) was at a high temperature of 300 ° C. or higher. In FIG. 8, the horizontal axis represents the substrate temperature, and the vertical axis represents the high-frequency reflected power.
[0023]
FIG. 9 shows that in order to control abnormal discharge between the substrate dome (5) and the substrate heater dome (23), the shield (3) attached between the two is made into a mesh structure to efficiently heat the substrate. It is shown. By using a substrate dome diameter of 760 mm, a glass substrate having a diameter of 30 mm is installed on the dome, and the temperature is set in the temperature controller, thereby heating while automatically controlling the power supplied to the substrate heater dome (23). The substrate temperature was measured with a radiation thermometer capable of non-contact measurement. When the shield was plate-shaped (thickness: 1 to 2 mm, material: stainless steel), the temperature was 150 ° C. lower than when there was no shield. In the present invention, by using a mesh structure for the shield, it was possible to improve the temperature to be approximately 10 ° C. lower than when there was no shield. In FIG. 9, the horizontal axis indicates the temperature controller set temperature, and the vertical axis indicates the substrate temperature.
[0024]
FIG. 10 shows a wavelength shift amount (wavelength shift amount) when a film is formed by using a film forming method using conventional ions and plasma in combination. Ta on a 30 mm diameter substrate using a substrate dome diameter of 600 mm2OFive And SiO225 thin films were alternately deposited. Pressure in an oxygen atmosphere 2.7 to 1.3 × 10-2Pa, anode output 900 mA, 900 V, evaporation rate Ta2OFive  0.1 nm / s and SiO2 The film was formed under the condition of 0.1 nm / s. The measurement of the wavelength shift amount was performed by measuring the spectral transmittance before and after the environmental test, and judging and evaluating it from the amount of shift of the spectral characteristics. In the environmental test method, a substrate on which a film was formed for 1000 hours in an atmosphere having a temperature of 85 ° C. and a humidity of 95% was left. The horizontal axis in FIG. 10 indicates the wavelength, and the vertical axis indicates the transmittance. In the case of a film forming method using conventional ions or plasma in combination, the wavelength shift amount is 1 to 2 nm.
[0025]
FIG. 11 shows the wavelength shift amount (wavelength shift amount) when a film is formed using the optical thin film manufacturing apparatus of the present invention. Ta on a 30 mm diameter substrate using a substrate dome diameter of 600 mm2OFive And SiO225 thin films were alternately deposited. Pressure in an oxygen atmosphere 2.7 to 1.3 × 10-2Pa, high frequency output 1KW, evaporation rate Ta2OFive  0.5nm / s and SiO2 The film was formed under the condition of 0.6 nm / s. The measurement of the wavelength shift amount was performed by measuring the spectral transmittance before and after the environmental test, and judging and evaluating it from the amount of shift of the spectral characteristics. In the environmental test method, a substrate on which a film was formed for 1000 hours in an atmosphere having a temperature of 85 ° C. and a humidity of 95% was left. In FIG. 11, the horizontal axis indicates the wavelength, and the vertical axis indicates the transmittance. The amount of wavelength shift when the film was formed by the optical thin film manufacturing apparatus of the present invention was 0.1 nm or less. Comparing the amount of wavelength shift between the film formation method using ions and plasma in combination with the case where the optical thin film manufacturing apparatus of the present invention forms a film, the shift amount of the conventional film formation method using ions and plasma is 1 In the case of the optical thin film manufacturing apparatus of the present invention, the thickness of ˜2 nm was greatly improved to 1/10 or less and 1/10.
[0026]
FIG. 12 shows a comparison of the film formation process time when the conventional film formation method using ions and plasma in combination with the optical thin film manufacturing apparatus of the present invention is used. A PBS filter with a substrate dome diameter of 760 mm and a wavelength of about λ = 600 nm is set to Ta.2OFive And SiO2The layers were alternately deposited by the film forming technique of 20 layers. On the other hand, the film formation method using ions and plasma in combination is a pressure of 2.7 to 1.3 × 10 in an oxygen atmosphere.-2Pa, anode output 900 mA, 900 V, evaporation rate Ta2OFive  0.1 nm / s and SiO2 The film was formed under the condition of 0.2 nm / s. The film forming conditions of the present invention are as follows: pressure in an oxygen atmosphere is 2.7 to 1.3 × 10-2Pa, high frequency output 1KW, evaporation rate Ta2OFive  0.5nm / s and SiO2 The film was formed under the condition of 1.0 nm / s. The horizontal axis in FIG. 12 indicates the film forming method, and the vertical axis indicates time.
[0027]
Comparing the film formation method using ions and plasma in combination with the film formation processing time when the optical thin film manufacturing apparatus of the present invention is used for film formation, the film formation preparation time and the substrate take-out time are approximately the same for a total of 1.5 hours. It is. The film formation time was about 10 hours in the case of the conventional film formation method using ions and plasma in combination, but in the case of the optical thin film manufacturing apparatus of the present invention, the film formation time is 2 hours. It was greatly improved to 5.
[0028]
FIG. 13 shows the refractive index distribution in the dome when the film is formed by changing the distance between the dome and the shield in the apparatus of the present invention. Using a substrate dome diameter of 1150 mm, pressure in an oxygen atmosphere is 2.7 × 10-2TiO under the conditions of Pa, high frequency output of 3 kW, and evaporation rate of 0.3 nm / s2 Was deposited to 200 nm. The horizontal axis in FIG. 13 indicates the distance from the center of the substrate dome, and the vertical axis indicates the refractive index. Comparing the refractive index distribution in the dome when the distance between the substrate dome and the shield is 30 mm and 60 mm, respectively, the refractive index values from 2.399 to 2.406 are almost the same from the center of the substrate dome to about 500 mm. However, when the distance between the dome and the shield is 60 mm, the refractive index is extremely reduced to 2.385 from 500 to 540 mm from the center of the substrate dome. The reason why the refractive index decreases is caused by the difference in plasma density between the central portion and the peripheral portion of the substrate dome. This time, the mechanism that can change the distance between the shield and the distance between the dome and the shield is set to 30 mm, so that the refractive index can be improved to about 2.404 and almost the same as the refractive index value from the center of the substrate dome to about 500 mm. It was.
[0029]
The structure of the present invention can be diverted to any film forming apparatus that applies a high frequency to a substrate. FIG. 14 shows an example of diverting to a sputtering apparatus. The major difference from the optical thin film manufacturing apparatus of the present invention shown in FIG. 2 is that high-frequency and direct-current power is supplied to a sputtering target (24) via a power source switch (26). The sputtering apparatus is structured to be applied to the above.
[0030]
【The invention's effect】
In the present invention, high-frequency power is directly applied to the rotating substrate dome, the high-frequency power feeding mechanism of the present invention, an insulating structure for suppressing abnormal discharge, a shield mesh structure for efficient substrate heating, By adopting a mechanism to change the shield distance between the substrate dome and the outer periphery, the refractive index distribution in the substrate dome has been improved from 0.1 to 0.003, and the wavelength shift (wavelength shift). Amount) also improved from 1 to 2 nm to 0.1 nm, which was 1 to 2 nm. Furthermore, the film forming process time has been reduced to 1/5 from 2 hours, which conventionally required 10 hours. As described above, according to the present invention, it is possible to efficiently produce an optical thin film element having a high refractive density throughout the substrate dome with a high packing density optical (dielectric) thin film in a short period of time. Optical and electronic device products Productivity has been significantly improved. Its industrial value is very remarkable.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a conventional configuration.
FIG. 2 is a schematic explanatory diagram of an optical thin film manufacturing apparatus according to the present invention.
FIG. 3 is a detailed explanatory diagram of a high-frequency power supply unit according to the present invention.
FIG. 4 is a detailed explanatory view of a monitoring board mounting portion of the present invention.
FIG. 5 is a detailed explanatory view of an interval variable portion between a substrate dome and a shield according to the present invention.
FIG. 6 is a comparison data of refractive index distribution in the substrate dome between the conventional method and the present invention.
FIG. 7 is an explanatory diagram comparing the effects of durability due to differences in insulation locations.
FIG. 8 is an explanatory diagram comparing heat resistance due to differences in contact members.
FIG. 9 is an explanatory diagram comparing the effect of increasing the substrate temperature due to the difference in shield shape.
FIG. 10 is a comparison of spectral characteristics before and after an environmental test of a conventional method.
FIG. 11 is a spectral characteristic comparison diagram before and after the environmental test of the present invention.
FIG. 12 is a comparison diagram of film formation processing time of the conventional method and the present invention.
FIG. 13 is a graph showing the relationship between the distance from the center of the dome and the refractive index when the distance between the dome and the outer shield is varied in the present invention.
FIG. 14 shows an example of diverting to a sputtering apparatus.
[Explanation of symbols]
1 Vacuum chamber
2 Vacuum exhaust port
3 Gas inlet
4 Substrate
5 Substrate dome
6 Evaporation source
7 Ion Gun
8 Thermionic emission mechanism
9 Substrate dome rotation mechanism
10 Shutter
11 Monitoring board
12 Optical film thickness meter
13 Shield
14 High frequency power supply
15 Matching box
16 High frequency power feeding mechanism
17 Monitor tube
18 Insulating member (a)
19 Insulation member (b)
20 Insulating member (c)
21 Tungsten disulfide (WS2)contact
22 Monitor set plate
23 Substrate heater heater dome
24 Sputtering target
25 DC power supply
26 Power switch

Claims (2)

誘電体光学薄膜製造装置であって、
成膜材料を蒸発させる蒸発源、
成膜用の基板を搭載する基板ドーム、
放電用ガスを導入するガス導入口、
高周波電力を該基板ドームに直接印加する機構であって、該基板ドームに印加された高周波電力により該放電用ガスをプラズマ化し、プラズマ化された放電用ガスを基板表面に自己誘起された負の直流電界によって加速して薄膜形成中に該基板表面に突入させる機構、及び
真空槽の内壁を前記基板ドームの裏面から遮るシールドを備え、
前記基板ドームと前記シールドの間隔を可変とした誘電体光学薄膜製造装置。
A dielectric optical thin film manufacturing apparatus,
An evaporation source for evaporating the film forming material,
A substrate dome for mounting a substrate for film formation,
A gas inlet for introducing discharge gas,
A mechanism for directly applying high-frequency power to the substrate dome, wherein the discharge gas is converted into plasma by the high-frequency power applied to the substrate dome, and the plasma-generated discharge gas is negatively induced on the substrate surface. A mechanism for accelerating by a direct current electric field to enter the surface of the substrate during thin film formation, and a shield for shielding the inner wall of the vacuum chamber from the back surface of the substrate dome,
A dielectric optical thin film manufacturing apparatus in which a distance between the substrate dome and the shield is variable.
請求項1記載の誘電体光学薄膜製造装置であって、さらに、該基板ドームを輻射加熱する基板加熱ヒータドームを備え、前記シールドがメッシュ状である誘電体光学薄膜製造装置。A dielectric optical thin film manufacturing apparatus according to claim 1, further comprising a substrate heater domes radiant heating the substrate dome, dielectric optical thin film production apparatus wherein the shield is a mesh-like.
JP25461699A 1999-09-08 1999-09-08 Optical thin film manufacturing equipment Expired - Fee Related JP4482972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25461699A JP4482972B2 (en) 1999-09-08 1999-09-08 Optical thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25461699A JP4482972B2 (en) 1999-09-08 1999-09-08 Optical thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2001073136A JP2001073136A (en) 2001-03-21
JP4482972B2 true JP4482972B2 (en) 2010-06-16

Family

ID=17267519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25461699A Expired - Fee Related JP4482972B2 (en) 1999-09-08 1999-09-08 Optical thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4482972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498878A (en) * 2014-12-12 2015-04-08 电子科技大学 Method for preparing molybdenum disulfide thin film

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117551B2 (en) 2003-06-05 2008-07-16 ミネベア株式会社 Color wheel, manufacturing method thereof, spectroscopic device including the same, and image display device
JP4045579B2 (en) 2003-06-06 2008-02-13 ミネベア株式会社 Color wheel, spectroscopic device including the same, and image display device
JP4002959B2 (en) * 2004-06-25 2007-11-07 株式会社昭和真空 Substrate dome rotation mechanism
JP4022627B2 (en) * 2004-07-12 2007-12-19 株式会社昭和真空 Vacuum device equipped with power supply mechanism and power supply method
JP4556167B2 (en) 2004-07-30 2010-10-06 ミネベア株式会社 Color wheel
JP4678479B2 (en) 2004-08-06 2011-04-27 ミネベア株式会社 Color wheel
JP2006071487A (en) 2004-09-02 2006-03-16 Minebea Co Ltd Spectral instrument
JP2006072015A (en) 2004-09-02 2006-03-16 Minebea Co Ltd Method for fixing color wheel to motor
JP2006133661A (en) 2004-11-09 2006-05-25 Minebea Co Ltd Color wheel, its manufacturing method and its manufacturing tool
JP4835901B2 (en) 2004-12-06 2011-12-14 ミネベア株式会社 Color wheel and manufacturing method thereof
JP4811634B2 (en) 2004-12-10 2011-11-09 ミネベア株式会社 Spectrometer with color wheel
US7675661B2 (en) 2005-02-04 2010-03-09 Seiko Epson Corporation Printing based on motion picture
JP4831395B2 (en) 2005-02-10 2011-12-07 ミネベア株式会社 Color wheel and manufacturing method thereof
JP4737760B2 (en) * 2006-03-31 2011-08-03 株式会社昭和真空 Vacuum deposition equipment
JP4757689B2 (en) * 2006-03-31 2011-08-24 株式会社昭和真空 Film forming apparatus and film forming method
JP4822339B2 (en) * 2006-09-08 2011-11-24 株式会社昭和真空 Vacuum device equipped with power supply mechanism and power supply method
JP4952908B2 (en) * 2006-12-06 2012-06-13 株式会社昭和真空 Vacuum deposition apparatus and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498878A (en) * 2014-12-12 2015-04-08 电子科技大学 Method for preparing molybdenum disulfide thin film

Also Published As

Publication number Publication date
JP2001073136A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP4482972B2 (en) Optical thin film manufacturing equipment
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
EP0945523B1 (en) Method for forming a thin film and apparatus for carrying out the method
US20060017011A1 (en) Ion source with particular grid assembly
EP1640474B1 (en) Thin film forming device
JP3774353B2 (en) Method and apparatus for forming metal compound thin film
JPH0247256A (en) Formation of an oxide coating by reactive-sputtering
JP2012525492A (en) Reactive sputtering with multiple sputter sources
JPH11256327A (en) Forming method of metallic compound thin film and film forming device
US6913675B2 (en) Film forming apparatus, substrate for forming oxide thin film, and production method thereof
WO2014189895A1 (en) Small feature size fabrication using a shadow mask deposition process
JPH08188873A (en) Method and apparatus for forming multi-layer optical film
US6494997B1 (en) Radio frequency magnetron sputtering for lighting applications
CN112501578A (en) Coating quality control method of gradient coating machine
JP3735462B2 (en) Method and apparatus for forming metal oxide optical thin film
JP2001355068A (en) Sputtering apparatus, and deposited film forming method
US6967334B2 (en) Ion source and ion beam device
US20040163593A1 (en) Plasma-processing apparatus
Futagami et al. Characterization of RF-enhanced DC sputtering to deposit tin-doped indium oxide thin films
JP3958869B2 (en) MgO film forming method and panel
JP3958878B2 (en) Vacuum deposition system
JPH0445580B2 (en)
JP2012233263A (en) Film deposition method and film deposition apparatus
Ren et al. Design of filament-type auxiliary ion source and study on its improvement of thin film parameters
JPS61127862A (en) Method and device for forming thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4482972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees