JP4480336B2 - Dielectric thin film manufacturing method and manufacturing apparatus - Google Patents
Dielectric thin film manufacturing method and manufacturing apparatus Download PDFInfo
- Publication number
- JP4480336B2 JP4480336B2 JP2003059705A JP2003059705A JP4480336B2 JP 4480336 B2 JP4480336 B2 JP 4480336B2 JP 2003059705 A JP2003059705 A JP 2003059705A JP 2003059705 A JP2003059705 A JP 2003059705A JP 4480336 B2 JP4480336 B2 JP 4480336B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- film
- targets
- dielectric thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Insulating Bodies (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、誘電体薄膜の製造方法及び製造装置に関するものである。
【0002】
【従来の技術】
酸化物薄膜等の誘電体薄膜を製造する方法として、活性ガスをスパッタリング空間に導入し、ターゲットから得られるスパッタ材料と上記活性ガスとを反応させて化合物膜を堆積させる反応性スパッタリングによる製造方法が知られている。
【0003】
この反応性スパッタリングでは、通常、カソードが基板と対向して配置されているため、このカソード上に設けられているターゲットに対して、垂直方向に高エネルギーをもった粒子が多く分布している。この高エネルギー粒子が基板上に形成される誘電体薄膜にダメージを与えるという問題があった。
【0004】
従来、この問題を解決するために、空間を隔てて互いに対向するように配置した1対のターゲットに対し、垂直方向に磁界を発生させてペニング放電させる対向ターゲット式スパッタリングによる製造方法が提案されている(例えば、特許文献1参照。)。
【0005】
この対向ターゲット式スパッタリングによれば、高エネルギーをもった粒子を上記垂直方向に発生した磁界により、1対のターゲット間に閉じ込めることができるので、この粒子が基板に入射することを防止することが可能になり、低ダメージな薄膜の製造が可能であった。
【0006】
なお、通常のスパッタリングでは、スパッタガスとして不活性ガスのみを用いるが、上記反応性スパッタリングでは、スパッタガスとして不活性ガスに活性ガスを加え、ターゲットから飛び出してくる固体粒子と活性ガスとの反応物を成膜することを特徴とする。
【0007】
酸化物薄膜の場合、スパッタガスに、活性ガスとして酸素ガスを同時に導入するため、ターゲット表面が酸化され、さらに防着板等にも誘電体薄膜が堆積することにより、異常アーク放電が頻繁に発生するおそれがある。
【0008】
この異常アーク放電を解消するために、従来、上記対向する2つのターゲットに位相を180度ずらした交流電場を印加することが提案されている(例えば、特許文献2参照。)。
【0009】
ところで、上記酸化物薄膜の製造で導入する酸素ガスの酸化源として、イオンガンやDCプラズマ等の電極を利用した放電を用いた場合、未反応の酸化ガスがターゲット近傍に拡散してターゲット表面を酸化し、成膜速度を低下させる。
【0010】
従来、このような不具合を解消するために、同一空間内に成膜領域と酸化領域を別々に設け、成膜領域で薄膜を成膜した後に基板を酸化領域に移動させて酸化させる方法が提案されている(例えば、特許文献3及び特許文献4参照。)。
【0011】
この方法によれば、成膜の工程と酸化の工程が別々に行われるために、酸化ガスがターゲット表面を酸化することがなく、比較的速い速度で誘電体薄膜を製造することが可能である。
【0012】
【特許文献1】
特公昭62−56575号公報(第3頁)
【0013】
【特許文献2】
特開平11−29862号公報(第1頁)
【0014】
【特許文献3】
特許第2695514号公報
【0015】
【特許文献4】
特開平6−291375号公報
【0016】
【発明が解決しようとする課題】
しかしながら、反応性スパッタリングのうち、上記対向ターゲット式スパッタリングによる製造方法では、ペニング放電により垂直方向に磁界を発生させて高エネルギーの粒子を閉じ込めなければならないため、成膜可能領域がペニング放電可能なターゲット間の距離に限定されたものになるという不都合があった。
【0017】
また、異常アーク放電を解消するために、対向する2つのターゲットに位相を180度ずらした交流電場を印加する上記従来の方法では、例えばTiO2を製造する場合、アナタ−ゼ型に配向した結晶膜となるため、誘電体薄膜のうち、アモルファス構造が必要条件となる光学膜には不向きな方法であった。
【0018】
異常アーク放電を防止するために、ターゲット表面が酸化されない程度に導入する酸素を減量した場合、成膜速度を高くすると肝心の基板に成膜される誘電体薄膜の酸化が不十分となり、例えばバンドパスフィルタやローパスフィルタなどの光学多層膜では特性の劣る膜が製造されるという問題があった。
【0019】
一方、成膜領域と酸化領域を別々に設け、成膜領域で薄膜を成膜した後に、基板を酸化領域に移動させて酸化させる上記従来の誘電体膜の製造方法では、成膜領域におけるカソードが基板と対向して配置され、カソードから垂直方向に分布する高エネルギーの粒子によって、基板上に形成される薄膜にダメージを与えるという不都合があった。
【0020】
そこで本発明は、上記の問題点に鑑み、成膜速度が比較的速く、かつ、高エネルギー粒子によるダメージを軽減し、良好な光学的かつ電気的特性を持つ誘電体薄膜の製造方法及び製造装置を提供することを課題とする。
【0021】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る誘電体薄膜の製造方法は、真空槽が、金属状態のSi薄膜の成膜領域と酸化領域とを有し、この成膜領域でカソード上に設けられたターゲットをスパッタリングして基板に薄膜を成膜した後、基板を移動させて上記酸化領域で酸化源により上記薄膜を酸化させる誘電体薄膜の製造方法において、上記成膜領域を1つ以上設け、各成膜領域内で空間を隔てて1対のターゲットを対向配置し、前記カソードによって、前記対向配置された1対のターゲット各々の表面に磁界を発生させると共に、1対のターゲット各々の表面に180度位相のずれた交流電場を印加することにより、上記各々のターゲットで独立してマグネトロン放電を発生させ、更に、前記真空槽の内壁と離間して回転可能な基板ホルダーの外周に前記基板を取り付け、この基板が前記空間の側方に位置するように回転させ、スパッタリングすることにより、前記側方に位置する基板に誘電体薄膜を形成することを特徴とする。
【0022】
この構成によれば、1つの基板に対する成膜工程と酸化工程を別々の領域で順次行う場合に、成膜領域において対向配置された1対のスパッタリングカソードを利用して効率よく誘電体薄膜を製造することができる。
【0023】
また、上記1対のターゲットの各々の表面で発生した磁界と、この各々のターゲットの表面に交流電場を印加することにより発生する電界とを直交させることにより、各ターゲットで独立にマグネトロン放電を発生させることが可能になる。
【0024】
さらに、上記ターゲット表面に印加する交流電場を180度位相をずらしたものにすることにより、基板以外に酸化された誘電体薄膜が付着して堆積することを防止し、その結果異常アーク放電の発生を解決することができる。
【0025】
上記酸化源にエレクトロンサイクロトロン共鳴(ECR)プラズマなどのマイクロ波励起プラズマにより発生させた酸素ラジカルを利用すれば、電極を利用せずに放電が可能となる。
【0026】
本発明にかかる誘電体薄膜の製造装置は、真空槽が、金属状態のSi薄膜の成膜領域と酸化領域とを備え、この成膜領域内に基板と、スパッタリングターゲットを有するカソードとを設け、この酸化領域に、上記基板上に形成された膜を酸化させる酸化源を設けた誘電体薄膜の製造装置において、上記成膜領域を1つ以上設け、各成膜領域内に空間を隔てて互いに対向するように配置した1対のターゲットと、前記真空槽の内壁と離間して回転可能な基板ホルダーとを有し、この基板ホルダーの外周に取り付けられた基板が前記空間の側方に位置するように、基板ホルダーを回転させて、スパッタリングすることにより、前記側方に位置する基板に誘電体薄膜を形成するように構成され、前記対向配置された1対のターゲット各々の表面でマグネトロン放電を発生させるために、この1対のターゲット各々の表面に磁界を発生させることができるカソードと、この1対のターゲット各々の表面に180度位相のずれた交流電場を印加して電界を発生させる交流電源とを設けたことを特徴とする。
【0027】
上記製造装置には、上記1対のターゲットの各々の表面で発生した磁界との間でマグネトロン放電を発生させ、また異常アーク放電を防止するために、磁界を発生させることができるカソードと、1対のターゲットの各々の表面に180度位相のずれた交流電場を印加して電界を発生させる交流電源とを設けることが可能である。
【0028】
また、誘電体薄膜を酸化する場合、酸素ラジカルを利用するために、上記酸素源としてエレクトロンサイクロトロン共鳴(ECR)プラズマなどのマイクロ波励起プラズマの発生機構を備えたものを設けてもよい。
【0029】
【発明の実施の形態】
図1は、本発明にかかる誘電体薄膜の製造装置の実施の形態の一例である。
【0030】
1は本発明にかかる誘電体薄膜の製造装置の真空槽である。真空槽1は、排気管2により、真空排気される。
真空槽1の中央には、真空槽1の内壁と離間されて回転可能な筒状の基板ホルダー3が回転軸4によって支持されている。基板ホルダー3の外周には基板5が取り付けられている。
【0031】
なお、本実施の形態では、基板ホルダー3は円筒形であるが、基板を平板状の基板ホルダーに取り付けてもよく、円筒形のものに限定されるものではない。
【0032】
基板ホルダー3の表面と真空槽1の内壁との間の空間は、防着板6を隔てて成膜領域7と酸化領域8に分割されている。
【0033】
本実施の形態では、成膜領域7を2つ設けた。各成膜領域7では、成膜領域7の内部にスパッタガスを導入するガス導入口9が設けられている。各成膜領域7の内部には、ターゲット10を取り付けたカソード11が対向するように1対配設されている。この1対のカソード11には、各々内部に磁石(図示せず)が設けられ、対向する2つのターゲットに位相を180度ずらした交流電場を印加するための交流電源(図示せず)が接続されている。
【0034】
従って、上記カソード11に交流電場を印加すると、ターゲット10の表面で各々独自にマグネトロン放電が発生するため、垂直方向に磁界を発生させてペニング放電させる従来の対向ターゲット式スパッタリングと異なり、成膜可能領域がターゲット10間の距離に限定されることはなく、十分な成膜領域を確保することができる。
【0035】
酸化領域8では、酸化領域8内に酸素を導入するために酸素導入口12が設けられている。酸化領域8の内部には、磁気回路13が設けられ、この磁気回路13によってエレクトロンサイクロトロン共鳴(ECR)プラズマ等のマイクロ波励起プラズマを生じさせるために、マイクロ波導入窓14を介して真空槽1の外部の導波管15と真空槽1の内部のマイクロ波アンテナ16とが接続されている。
【0036】
従って、酸化源として電極を用いない放電が可能となるため、薄膜の酸化に際して、高エネルギーの粒子が加速されて基板5に入射し、ダメージを与えるという不都合は生じない。
【0037】
【実施例】
以下、図1で説明した誘電体薄膜の製造装置を用いて具体的な実施例を説明する。
【0038】
熱酸化膜を20Å形成したSiウェハー基板及びガラス基板を基板ホルダー3に取り付け、真空槽1を5×10−5Paまで排気した。ガス導入口9からアルゴンガス50sccm、酸素導入口12から酸素ガス20sccm+アルゴンガス40sccmをそれぞれ導入し、真空槽1内の圧力を0.5Paとした。
【0039】
基板ホルダー3を120rpmで回転させた後、マイクロ波アンテナ16から2kWのマイクロ波電力を印加すると同時に、5インチ×18インチのSiターゲット10を取り付けたカソード11に2kW、40kHzの交流電力を印加した。
【0040】
上記基板が成膜領域7にある瞬間は基板上にほぼ金属状態のSi薄膜が0.5nm成膜し、酸化領域8にある瞬間には基板上の薄膜が酸化される。
【0041】
上記の方法で成膜したSiO2薄膜を分析したところ、吸収がほとんどない良好な光学薄膜をえることができた。
【0042】
製造された上記SiO2膜にAl電極を加熱蒸着で形成し、C−V測定を行った。
【0043】
熱酸化膜での結果と比較したところ、フラットバンドシフトは0.04Vと良好な特性をえることができた。
【0044】
次に、ガス導入口9から酸素ガス40sccm+アルゴンガス40sccmを導入し、酸化領域8では酸化源を動作させずに上記と同じ膜厚のSiO2膜を成膜したところ、光学特性については上記と同等の良好な特性がえられたが、フラットバンドシフトが0.1Vと増加した。
【0045】
さらに、図2に示すように、図1の製造装置のターゲット10を基板5と対向するように並列配置し、ガス導入口9から酸素ガス40sccm+アルゴンガス40sccmをそれぞれ導入し、酸化領域8では酸化源を動作させずに上記と同じ膜厚のSiO2膜を成膜した。
【0046】
光学特性は上記と同等の良好な特性がえられたが、フラットバンドシフトは1.0Vと増加した。
【0047】
以上、3つ方法で成膜したSiO2膜のフラットバンドシフトを膜厚に対してプロットした結果を図3に示す。
【0048】
最初に行った本発明にかかる製造方法による成膜結果と、第2番目に行った「対向カソード+反応性スパッタ」による成膜結果を比較すると、同一膜厚の場合、本発明のほうが優れた特性が得られた。
【0049】
また、本発明では、成膜速度が速く、処理時間を短くすることが可能である。
【0050】
なお、図2で示す「平行平板カソード+反応性スパッタ」では、上記「対向カソード+反応性スパッタ」よりも成膜速度が速いが、フラットバンドシフトが大きいため、下地に対するダメージが最も大きいことがわかる。
【0051】
【発明の効果】
以上の説明から明らかなように、本発明は、成膜領域と酸化領域を有し、かつ成膜領域において1対のスパッタリングカソードを対向配置しているため、成膜速度が比較的速く、かつ、高エネルギー粒子によるダメージを軽減し、良好な光学的かつ電気的特性を持つ誘電体薄膜を製造することが可能となる。
【0052】
また、1対のターゲットの各々の表面でマグネトロン放電を発生させることができるため、成膜可能領域がターゲット間の距離に限定されず、十分な成膜領域を確保することが可能となる。
【0053】
さらに、上記成膜領域において、1対のターゲットの各々の表面に180度位相のずれた交流電場を印加することにより、異常アーク放電を防止することが可能となる。
【図面の簡単な説明】
【図1】本発明にかかるの誘電体薄膜の製造装置の構成図であり、a)は、この製造装置の上面図であり、b)は、この製造装置の側面図である。
【図2】平行平板カソードを備えた従来の誘電体薄膜の製造装置の構成図であり、a)は、この製造装置の上面図であり、b)は、この製造装置の側面図である。
【図3】SiO2膜厚とフラットバンドシフトとの関係を示す図である。
【符号の説明】
1 真空槽
2 排気管
3 基板ホルダー
4 回転軸
5 基板
6 防着板
7 成膜領域
8 酸化領域
9 ガス導入口
10 ターゲット
11 カソード
12 酸素導入口
13 磁気回路
14 マイクロ波導入窓
15 導波管
16 マイクロ波アンテナ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric thin film manufacturing method and manufacturing apparatus.
[0002]
[Prior art]
As a method of manufacturing a dielectric thin film such as an oxide thin film, there is a manufacturing method by reactive sputtering in which an active gas is introduced into a sputtering space and a sputtering material obtained from a target is reacted with the active gas to deposit a compound film. Are known.
[0003]
In this reactive sputtering, since the cathode is usually arranged opposite to the substrate, many particles having high energy are distributed in the vertical direction with respect to the target provided on the cathode. There is a problem that the high-energy particles damage the dielectric thin film formed on the substrate.
[0004]
Conventionally, in order to solve this problem, a manufacturing method by facing target type sputtering in which a pair of targets arranged so as to face each other across a space is subjected to Penning discharge by generating a magnetic field in the vertical direction has been proposed. (For example, refer to Patent Document 1).
[0005]
According to this facing target type sputtering, particles having high energy can be confined between a pair of targets by the magnetic field generated in the vertical direction, so that the particles can be prevented from entering the substrate. It was possible to manufacture a thin film with low damage.
[0006]
In normal sputtering, only an inert gas is used as a sputtering gas, but in the reactive sputtering described above, an active gas is added to the inert gas as a sputtering gas, and a reaction product of solid particles and active gas popping out from the target. It is characterized by forming a film.
[0007]
In the case of an oxide thin film, oxygen gas as an active gas is simultaneously introduced into the sputtering gas, so that the target surface is oxidized, and furthermore, a dielectric thin film is deposited on the deposition plate, etc., so abnormal arc discharge frequently occurs. There is a risk.
[0008]
In order to eliminate this abnormal arc discharge, conventionally, it has been proposed to apply an alternating electric field whose phase is shifted by 180 degrees to the two opposing targets (see, for example, Patent Document 2).
[0009]
By the way, when a discharge using an electrode such as an ion gun or a DC plasma is used as an oxygen gas oxidation source introduced in the production of the oxide thin film, unreacted oxidation gas diffuses in the vicinity of the target and oxidizes the target surface. And the film formation rate is reduced.
[0010]
Conventionally, in order to solve such problems, a method has been proposed in which a film formation region and an oxidation region are separately provided in the same space, and after a thin film is formed in the film formation region, the substrate is moved to the oxidation region and oxidized. (For example, see
[0011]
According to this method, since the film forming process and the oxidizing process are performed separately, the oxidizing gas does not oxidize the target surface, and it is possible to manufacture the dielectric thin film at a relatively high speed. .
[0012]
[Patent Document 1]
Japanese Examined Patent Publication No. 62-56575 (page 3)
[0013]
[Patent Document 2]
JP 11-29862 A (first page)
[0014]
[Patent Document 3]
Japanese Patent No. 2695514 [0015]
[Patent Document 4]
JP-A-6-291375 [0016]
[Problems to be solved by the invention]
However, among the reactive sputtering, the manufacturing method using the above-described facing target type sputtering requires that a high-energy particle be confined by generating a magnetic field in the vertical direction by Penning discharge. There was an inconvenience that the distance between them was limited.
[0017]
Further, in order to eliminate abnormal arc discharge, in the above-described conventional method in which an alternating electric field whose phase is shifted by 180 degrees is applied to two opposing targets, for example, when manufacturing TiO 2 , crystals oriented in an anatase type Since it becomes a film, it is a method unsuitable for an optical film in which an amorphous structure is a necessary condition among the dielectric thin films.
[0018]
In order to prevent abnormal arc discharge, if the amount of oxygen introduced is reduced to such an extent that the target surface is not oxidized, increasing the film formation rate will result in insufficient oxidation of the dielectric thin film formed on the critical substrate. The optical multilayer film such as a pass filter or a low-pass filter has a problem that a film having poor characteristics is manufactured.
[0019]
On the other hand, in the above conventional dielectric film manufacturing method in which the film formation region and the oxidation region are provided separately, a thin film is formed in the film formation region, and the substrate is moved to the oxidation region to be oxidized, the cathode in the film formation region Has a disadvantage that the thin film formed on the substrate is damaged by the high-energy particles arranged opposite to the substrate and distributed vertically from the cathode.
[0020]
Accordingly, in view of the above-described problems, the present invention provides a method and apparatus for manufacturing a dielectric thin film having a relatively high film formation rate, reducing damage caused by high-energy particles, and having good optical and electrical characteristics. It is an issue to provide.
[0021]
[Means for Solving the Problems]
In order to solve the above-described problems, in the method for manufacturing a dielectric thin film according to the present invention, the vacuum chamber has a film formation region and an oxidation region of a Si thin film in a metal state, and is provided on the cathode in this film formation region. In the method of manufacturing a dielectric thin film, the target is sputtered to form a thin film on the substrate, and then the substrate is moved to oxidize the thin film with an oxidation source in the oxidation region. A pair of targets are arranged opposite to each other with a space in each film formation region, and a magnetic field is generated on the surface of each of the pair of opposed targets by the cathode, and on each surface of the pair of targets. by applying the deviation AC field was a 180 degree phase, to generate a magnetron discharge independently in each of the above target, further, rotatable substrate holder spaced apart from the inner wall of the vacuum chamber The substrate attached to the outer periphery, is rotated as the substrate is positioned on the side of the space, by sputtering, and forming a dielectric thin film on a substrate located on the side.
[0022]
According to this configuration, when a film formation process and an oxidation process for one substrate are sequentially performed in different regions, a dielectric thin film is efficiently manufactured by using a pair of sputtering cathodes arranged opposite to each other in the film formation region. can do.
[0023]
In addition, magnetron discharge is generated independently at each target by making the magnetic field generated on the surface of each of the pair of targets orthogonal to the electric field generated by applying an alternating electric field to the surface of each target. It becomes possible to make it.
[0024]
Furthermore, by making the AC electric field applied to the target surface 180 degrees out of phase, it is possible to prevent an oxidized dielectric thin film from adhering to and deposit on the substrate, resulting in the occurrence of abnormal arc discharge. Can be solved.
[0025]
If oxygen radicals generated by microwave-excited plasma such as electron cyclotron resonance (ECR) plasma are used as the oxidation source, discharge can be performed without using electrodes.
[0026]
In the dielectric thin film manufacturing apparatus according to the present invention, the vacuum chamber includes a film formation region and an oxidation region of a Si thin film in a metal state, and a substrate and a cathode having a sputtering target are provided in the film formation region. In the dielectric thin film manufacturing apparatus provided with an oxidation source for oxidizing the film formed on the substrate in the oxidation region, one or more of the film formation regions are provided, and each film formation region is separated from each other by a space. A pair of targets arranged so as to face each other and a substrate holder that can be rotated apart from the inner wall of the vacuum chamber, and a substrate attached to the outer periphery of the substrate holder is positioned on the side of the space. as described above, the substrate holder is rotated, by sputtering, Ma in the is configured to form a dielectric thin film on a substrate located on the side, the oppositely disposed pair of targets each surface In order to generate a netron discharge, a cathode capable of generating a magnetic field on the surface of each of the pair of targets, and an alternating electric field that is 180 degrees out of phase are applied to the surfaces of each of the pair of targets. An AC power source for generating is provided .
[0027]
In the manufacturing apparatus, a magnetron discharge is generated between the pair of targets and a magnetic field generated on each surface of the target, and a magnetic field can be generated in order to prevent abnormal arc discharge, An AC power source that generates an electric field by applying an AC electric field that is 180 degrees out of phase to each surface of the pair of targets can be provided.
[0028]
Moreover, when oxidizing a dielectric thin film, in order to utilize an oxygen radical, you may provide what provided the generation | occurrence | production mechanism of microwave excitation plasmas, such as an electron cyclotron resonance (ECR) plasma, as said oxygen source.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of an embodiment of a dielectric thin film manufacturing apparatus according to the present invention.
[0030]
Reference numeral 1 denotes a vacuum chamber of a dielectric thin film manufacturing apparatus according to the present invention. The vacuum chamber 1 is evacuated by the
At the center of the vacuum chamber 1, a
[0031]
In the present embodiment, the
[0032]
A space between the surface of the
[0033]
In the present embodiment, two
[0034]
Accordingly, when an AC electric field is applied to the
[0035]
In the
[0036]
Therefore, since discharge without using an electrode as an oxidation source is possible, there is no inconvenience that high-energy particles are accelerated and incident on the
[0037]
【Example】
Hereinafter, specific examples will be described using the dielectric thin film manufacturing apparatus described in FIG.
[0038]
The Si wafer substrate and glass substrate on which 20 mm of thermal oxide films were formed were attached to the
[0039]
After rotating the
[0040]
At the moment when the substrate is in the
[0041]
When the SiO 2 thin film formed by the above method was analyzed, a good optical thin film with almost no absorption could be obtained.
[0042]
An Al electrode was formed on the manufactured SiO 2 film by heating vapor deposition, and CV measurement was performed.
[0043]
When compared with the result with the thermal oxide film, the flat band shift was 0.04 V, and good characteristics could be obtained.
[0044]
Next,
[0045]
Further, as shown in FIG. 2, the
[0046]
The optical characteristics were as good as those described above, but the flat band shift increased to 1.0V.
[0047]
FIG. 3 shows the result of plotting the flat band shift of the SiO 2 film formed by the three methods with respect to the film thickness.
[0048]
When the film formation result by the manufacturing method according to the present invention performed first and the film formation result by the second “opposite cathode + reactive sputtering” are compared, the present invention is superior when the film thickness is the same. Characteristics were obtained.
[0049]
In the present invention, the deposition rate is high and the processing time can be shortened.
[0050]
Note that the “parallel plate cathode + reactive sputtering” shown in FIG. 2 has a higher deposition rate than the above “opposite cathode + reactive sputtering”, but the flat band shift is large, so the damage to the substrate is the greatest. Recognize.
[0051]
【The invention's effect】
As is clear from the above description, the present invention has a film formation region and an oxidation region, and a pair of sputtering cathodes are arranged opposite to each other in the film formation region, so that the film formation rate is relatively high, and It is possible to reduce the damage caused by high energy particles and to manufacture a dielectric thin film having good optical and electrical characteristics.
[0052]
In addition, since a magnetron discharge can be generated on each surface of the pair of targets, the filmable region is not limited to the distance between the targets, and a sufficient film formation region can be secured.
[0053]
Furthermore, by applying an AC electric field that is 180 degrees out of phase to the surface of each of the pair of targets in the film formation region, abnormal arc discharge can be prevented.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a dielectric thin film manufacturing apparatus according to the present invention, wherein a) is a top view of the manufacturing apparatus, and b) is a side view of the manufacturing apparatus.
FIGS. 2A and 2B are configuration diagrams of a conventional dielectric thin film manufacturing apparatus provided with a parallel plate cathode, wherein a) is a top view of the manufacturing apparatus, and b) is a side view of the manufacturing apparatus.
FIG. 3 is a diagram showing the relationship between SiO 2 film thickness and flat band shift.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (4)
上記成膜領域を1つ以上設け、各成膜領域内で空間を隔てて1対のターゲットを対向配置し、前記カソードによって、前記対向配置された1対のターゲット各々の表面に磁界を発生させると共に、1対のターゲット各々の表面に180度位相のずれた交流電場を印加することにより、上記各々のターゲットで独立してマグネトロン放電を発生させ、
更に、前記真空槽の内壁と離間して回転可能な基板ホルダーの外周に前記基板を取り付け、この基板が前記空間の側方に位置するように回転させ、スパッタリングすることにより、前記側方に位置する基板に誘電体薄膜を形成することを特徴とする誘電体薄膜の製造方法。A vacuum chamber has a film formation region and an oxidation region of a Si thin film in a metal state, and after sputtering a target provided on the cathode in this film formation region to form a thin film on the substrate, the substrate is moved. In the method of manufacturing a dielectric thin film, wherein the thin film is oxidized by an oxidation source in the oxidation region,
One or more of the film formation regions are provided, a pair of targets are arranged opposite to each other with a space in each film formation region, and a magnetic field is generated on the surface of each of the pair of targets arranged opposite to each other by the cathode. In addition, by applying an alternating electric field that is 180 degrees out of phase to the surface of each of the pair of targets, a magnetron discharge is independently generated in each of the targets,
Further, the substrate is attached to the outer periphery of a substrate holder that can be rotated away from the inner wall of the vacuum chamber, and the substrate is rotated so that the substrate is positioned on the side of the space, and sputtering is performed to position the substrate on the side. A dielectric thin film is formed on a substrate to be manufactured.
上記成膜領域を1つ以上設け、各成膜領域内に空間を隔てて互いに対向するように配置した1対のターゲットと、前記真空槽の内壁と離間して回転可能な基板ホルダーとを有し、この基板ホルダーの外周に取り付けられた基板が前記空間の側方に位置するように、基板ホルダーを回転させて、スパッタリングすることにより、前記側方に位置する基板に誘電体薄膜を形成するように構成され、
前記対向配置された1対のターゲット各々の表面でマグネトロン放電を発生させるために、この1対のターゲット各々の表面に磁界を発生させることができるカソードと、この1対のターゲット各々の表面に180度位相のずれた交流電場を印加して電界を発生させる交流電源とを設けたことを特徴とする誘電体薄膜の製造装置。A vacuum chamber includes a film-formation region and an oxidation region of a Si thin film in a metal state, a substrate and a cathode having a sputtering target are provided in the film-formation region, and the oxidation region is formed on the substrate. In a dielectric thin film manufacturing apparatus provided with an oxidation source for oxidizing a film,
One or more film formation regions are provided, and each film formation region has a pair of targets arranged so as to face each other with a space therebetween, and a substrate holder that is rotatable away from the inner wall of the vacuum chamber. Then, a dielectric thin film is formed on the substrate located on the side by rotating and sputtering the substrate holder so that the substrate attached to the outer periphery of the substrate holder is located on the side of the space. is configured to,
In order to generate a magnetron discharge on the surface of each of the pair of targets arranged opposite to each other, a cathode capable of generating a magnetic field on the surface of each of the pair of targets, and 180 on each surface of the pair of targets. An apparatus for producing a dielectric thin film, comprising: an AC power supply that generates an electric field by applying an AC electric field that is out of phase .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003059705A JP4480336B2 (en) | 2003-03-06 | 2003-03-06 | Dielectric thin film manufacturing method and manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003059705A JP4480336B2 (en) | 2003-03-06 | 2003-03-06 | Dielectric thin film manufacturing method and manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004269928A JP2004269928A (en) | 2004-09-30 |
JP4480336B2 true JP4480336B2 (en) | 2010-06-16 |
Family
ID=33122449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003059705A Expired - Lifetime JP4480336B2 (en) | 2003-03-06 | 2003-03-06 | Dielectric thin film manufacturing method and manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4480336B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5016899B2 (en) * | 2006-11-17 | 2012-09-05 | 株式会社アルバック | Ion beam source and film forming apparatus provided with the same |
-
2003
- 2003-03-06 JP JP2003059705A patent/JP4480336B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004269928A (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0908531B1 (en) | Apparatus and method for forming a thin film of a compound | |
TWI414617B (en) | Film forming apparatus and thin film forming method | |
KR101006057B1 (en) | Spattering and film forming method | |
JP3774353B2 (en) | Method and apparatus for forming metal compound thin film | |
KR100926867B1 (en) | Thin film forming apparatus and thin film forming method | |
JP4773347B2 (en) | Film forming apparatus and film forming method | |
JP5527894B2 (en) | Sputtering equipment | |
JP4480336B2 (en) | Dielectric thin film manufacturing method and manufacturing apparatus | |
KR20090057081A (en) | Dry etching method | |
JP3735462B2 (en) | Method and apparatus for forming metal oxide optical thin film | |
JP2006045633A (en) | Thin-film-forming apparatus | |
JPH11172430A (en) | Thin film forming device and formation of compound thin film using the device | |
JP2007277659A (en) | Sputter film deposition apparatus and sputter film deposition method | |
US20080006522A1 (en) | Method of producing metal-oxide film | |
JP2005256119A5 (en) | ||
JP4613015B2 (en) | Film forming method and film forming apparatus | |
JP2005256119A (en) | Deposition system | |
JP3738154B2 (en) | Thin film forming method of composite metal compound and thin film forming apparatus | |
JP2008038192A (en) | Sputtering source, sputtering film deposition apparatus and sputtering film deposition method | |
JP5312138B2 (en) | Sputtering method | |
JP4359674B2 (en) | High-speed film formation method of photocatalytic titanium oxide film | |
JP4678996B2 (en) | Dielectric film forming method and film forming apparatus | |
JPS61127862A (en) | Method and device for forming thin film | |
JPH06120140A (en) | Semiconductor manufacturing method and equipment | |
JP4825742B2 (en) | Deposition equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20030808 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080904 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081216 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20081216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091118 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100302 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100316 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4480336 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160326 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |