WO2005119787A1 - Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions - Google Patents
Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions Download PDFInfo
- Publication number
- WO2005119787A1 WO2005119787A1 PCT/US2005/004039 US2005004039W WO2005119787A1 WO 2005119787 A1 WO2005119787 A1 WO 2005119787A1 US 2005004039 W US2005004039 W US 2005004039W WO 2005119787 A1 WO2005119787 A1 WO 2005119787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact
- layer
- forming
- nitride
- channel layer
- Prior art date
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 140
- 238000000034 method Methods 0.000 title claims abstract description 85
- 230000004888 barrier function Effects 0.000 claims abstract description 117
- 239000000463 material Substances 0.000 claims abstract description 85
- 239000004065 semiconductor Substances 0.000 claims abstract description 60
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 238000005137 deposition process Methods 0.000 claims abstract description 10
- 229910002704 AlGaN Inorganic materials 0.000 claims description 33
- 230000000873 masking effect Effects 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 230000015572 biosynthetic process Effects 0.000 claims description 19
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 18
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 18
- 238000000059 patterning Methods 0.000 claims description 15
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims description 11
- 238000004544 sputter deposition Methods 0.000 claims description 8
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 7
- 238000002161 passivation Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 5
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 claims description 2
- 229910002601 GaN Inorganic materials 0.000 description 31
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 14
- 238000000151 deposition Methods 0.000 description 13
- 230000008021 deposition Effects 0.000 description 13
- 229910010271 silicon carbide Inorganic materials 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 6
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 5
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 229910020776 SixNy Inorganic materials 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- -1 AlInGaN Inorganic materials 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- H01L29/772—
-
- H01L29/7787—
-
- H01L29/66454—
-
- H01L29/778—
-
- H01L29/2003—
Definitions
- the present invention relates to semiconductor devices and, more particularly, to transistors that incorporate nitride-based active layers.
- the present invention relates to transistors formed of semiconductor materials that can make them suitable for high power, high temperature, and/or high frequency applications.
- Materials such as silicon (Si) and gallium arsenide (GaAs) have found wide application in semiconductor devices for lower power and (in the case of Si) lower frequency applications.
- Si silicon
- GaAs gallium arsenide
- These, more familiar, semiconductor materials may not be well suited for higher power and/or high frequency applications, however, because of their relatively small bandgaps (e.g., 1.12 eV for Si and 1.42 for GaAs at room temperature) and/or relatively small breakdown voltages.
- HEMT High Electron Mobility Transistor
- MODFET modulation doped field effect transistor
- a two-dimensional electron gas (2DEG) is formed at the heteroj unction of two semiconductor materials with different bandgap energies, and where the smaller bandgap material has a higher electron affinity.
- the 2DEG is an accumulation layer in the undoped ("unintentionally doped"), smaller bandgap material and can contain a very high sheet electron concentration in excess of, for example, 10 carriers/cm . Additionally, electrons that originate in the wider-bandgap semiconductor transfer to the 2DEG, allowing a high electron mobility due to reduced ionized impurity scattering.
- High electron mobility transistors fabricated in the gallium nitride/aluminum gallium nitride (GaN/AlGaN) material system have the potential to generate large amounts of RF power because of the combination of material characteristics that includes the aforementioned high breakdown fields, their wide bandgaps, large conduction band offset, and/or high saturated electron drift velocity.
- a major portion of the electrons in the 2DEG is attributed to polarization in the AlGaN.
- U.S. Patents 5,192,987 and 5,296,395 describe AlGaN/GaN HEMT structures and methods of manufacture.
- U.S. Patent No. 6,316,793, to Sheppard et al. which is commonly assigned and is incorporated herein by reference, describes a HEMT device having a semi-insulating silicon carbide substrate, an aluminum nitride buffer layer on the substrate, an insulating gallium nitride layer on the buffer layer, an aluminum gallium nitride barrier layer on the gallium nitride layer, and a passivation layer on the aluminum gallium nitride active structure.
- ohmic contacts for such transistors.
- ohmic contacts have been formed through reactive ion etching (RIE) recesses for the contacts.
- RIE reactive ion etching
- Ohmic contacts that are formed without RIE have, typically, used high annealing temperatures (e.g. 900 °C). Such high annealing temperatures may damage the materials and/or the device.
- Some embodiments of the present invention provide for fabrication of a transistor including forming a nitride-based channel layer on a substrate, forming a barrier layer on the nitride-based channel layer, forming a contact recess in the barrier layer to expose a contact region of the nitride-based channel layer and forming a contact layer on the exposed contact region of the nitride-based channel layer using a low temperature deposition process. Fabrication may also include forming an ohmic contact on the contact layer and forming a gate contact disposed on the barrier layer adjacent the ohmic contact.
- forming a contact layer on the exposed contact region of the nitride-based channel layer using a low temperature deposition process includes forming a contact layer by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), plasma enchanced chemical vapor deposition (PECVD), sputtering and/or hydride vapor phase epitaxy (HVPE).
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- PECVD plasma enchanced chemical vapor deposition
- HVPE hydride vapor phase epitaxy
- fabrication of the transistor further includes forming a first dielectric layer on the barrier layer and forming a recess in the first dielectric layer.
- Forming a gate contact includes forming a gate contact in the recess.
- Forming a contact recess includes forming a contact recess in the first dielectric layer and the barrier layer that exposes a portion of the nitride-based channel layer.
- the gate contact may be formed on the first dielectric layer.
- the first dielectric layer comprises a silicon nitride layer.
- the silicon nitride layer may provide a passivation layer for the transistor.
- the contact recess extends into the channel layer.
- forming an ohmic contact may include forming an ohmic contact without annealing the ohmic contact.
- Forming an ohmic contact could include patterning a metal layer on the contact layer and annealing the patterned metal layer at a temperature of about 850 °C or less.
- forming a contact layer on the exposed portions of the nitride-based channel layer includes forming a contact layer on the exposed portion of the nitride-based channel layer to a thickness sufficient to provide a sheet resistivity of less than a sheet resistivity of a two-dimensional electron gas region formed at an interface between the channel layer and the barrier layer.
- Forming a contact layer may include forming n-type an InGaN, AlInN, AlInGaN and/or InN layer.
- the n-type nitride- based layer formed is GaN and/or AlGaN.
- the InGaN, GaN, AlGaN, AlInN, AlInGaN and/or InN layer may be doped with Si, Ge and/or O during formation.
- the contact layer includes an n- type degenerate semiconductor material other than GaN and AlGaN.
- the contact layer may include a non-nitride Group III-V semiconductor material, a Group IV semiconductor material and/or a group II- VI semiconductor material.
- fabrication of the transistor further includes forming sidewalls of the channel layer to provide an increased surface area interface between the channel layer and the n-type contact layer as compared to a planar interface.
- Forming an ohmic contact on the contact layer may include forming an ohmic contact on the contact layer that extends onto a portion of the channel layer or that terminates before the sidewall of the channel layer.
- fabrication of the transistor includes forming holes in the channel layer adjacent the contact regions and placing n-type nitride-based semiconductor material in the holes. Forming an ohmic contact on the contact layer further includes forming an ohmic contact on the contact layer and on the nitride-based semiconductor material in the holes.
- fabricating a transistor includes forming a nitride-based channel layer on a substrate, forming a barrier layer on the nitride-based channel layer, forming a masking layer on the barrier layer, patterning the masking layer and the barrier layer to provide contact opening that exposes a portion of the nitride-based channel layer, forming a contact layer on the exposed portion of the nitride-based channel layer and the masking layer, selectively removing the masking layer and a portion of the contact layer on the masking layer to provide a contact region, forming an ohmic contact on the contact region and forming a gate contact disposed on the barrier layer adjacent the ohmic contact.
- Fabrication of the transistor may also include forming a first dielectric layer on the barrier layer and forming a recess in the first dielectric layer.
- Forming a gate contact may include forming a gate contact in the recess.
- Forming a masking layer on the barrier layer may include forming a masking layer on the first dielectric layer.
- Patterning the masking layer and the barrier layer to provide contact openings that expose a portion of the nitride-based channel layer may include patterning the masking layer, the first dielectric layer and the barrier layer to provide contact opening that exposes a portion of the nitride-based channel layer.
- the first dielectric layer includes a silicon nitride layer.
- the silicon nitride layer may provide a passivation layer for the transistor.
- the masking layer may be a dielectric layer.
- the dielectric layer may be a silicon oxide layer.
- the masking layer could be a photoresist masking layer.
- Forming an ohmic contact may be provided by forming an ohmic contact without annealing the ohmic contact. Alternatively, forming an ohmic contact may be provided by patterning a metal layer on the contact region and annealing the patterned metal layer at a temperature of about 850 °C or less.
- Forming a contact layer on the exposed portion of the nitride-based channel layer and the oxide layer may include forming a contact layer by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), plasma enhanced chemical vapor deposition (PECVD), sputtering and/or hydride vapor phase epitaxy (HVPE).
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- PECVD plasma enhanced chemical vapor deposition
- HVPE hydride vapor phase epitaxy
- Forming a contact layer on the exposed portions of the nitride-based channel layer and the masking layer may be provided by forming a contact layer on the exposed portions of the nitride-based channel layer and the masking layer to a thickness sufficient to provide a sheet resistivity of less than a sheet resistivity of a two-dimensional electron gas region formed at an interface between the channel layer and the barrier layer.
- Forming a contact layer may include forming an n-type InGaN, AlInGaN, InAIN and/or InN layer.
- the nitride based contact layer may be GaN and/or AlGaN.
- the InGaN, AlInGaN, InAIN, GaN, AlGaN and/or InN layer may be doped with Si, Ge and/or O during formation.
- fabrication of the transistor includes forming sidewalls of the channel layer to provide an increased surface area interface between the channel layer and the n-type contact layer compared to a planar interface.
- a high electron mobility transistor (HEMT) and methods of fabricating a HEMT are provided.
- the HEMT includes a nitride-based channel layer on a substrate, a barrier layer on the nitride- based channel layer, a contact recess in the barrier layer that extends into the channel layer, a contact region on the nitride-based channel layer in the contact recess, a gate contact disposed on the barrier layer.
- the contact region and the nitride-based channel layer include a surface area enlargement structure.
- the surface area enlargement structure includes patterned sidewalls of portions of the contact recess that extends into the channel layer.
- an ohmic contact is provided on the contact region that does not extend onto the channel layer in the area of the sidewalls.
- the ohmic contact extends onto the channel layer in the area of the sidewalls.
- the surface area enlargement structure includes holes extending into the channel layer with n-type nitride-based semiconductor material in the and the ohmic contact is in contact with the nitride-based semiconductor material in the holes.
- the n-type nitride-based semiconductor material may include InN, AlGaN,
- n-type nitride-based semiconductor material may be doped with Si, Ge and/or O.
- a silicon nitride layer may also be provided on the barrier layer and the gate contact may be provided in a recess in the silicon nitride layer.
- Further embodiments of the present invention provide a high electron mobility transistor and methods of fabricating a transistor that includes a nitride-based channel layer on a substrate and a barrier layer on the nitride-based channel layer. At least one contact recess is provided in the barrier layer that extends into the channel layer.
- a region of metal and/or metal alloy is provided on the nitride-based channel layer in the contact recess to provide an ohmic contact.
- a gate contact disposed is on the barrier layer.
- the region of metal may extend onto the barrier layer.
- Additional embodiments of the present invention provide a high electron mobility transistor and methods of fabricating a transistor that includes a nitride-based channel layer on a substrate and a barrier layer on the nitride-based channel layer. At least one contact recess is provided in the barrier layer that extends into the channel layer.
- a region of n-type degenerate semiconductor material other than GaN or AlGaN is provided on the nitride-based channel layer in the contact recess.
- An ohmic contact is provided on the region of n-type degenerate semiconductor material and a gate contact is disposed on the barrier layer. The region of n-type degenerate semiconductor material may extend onto the barrier layer.
- Figures 1A-1G are schematic drawings illustrating fabrication of ohmic contacts in transistors according to embodiments of the present invention.
- Figure 2 is a schematic illustration of transistors according to further embodiments of the present invention.
- Figures 3 A and 3B are schematic illustrations of transistors according to further embodiments of the present invention.
- Figures 4 A-4C are schematic illustrations of fabrication of transistors according to further embodiments of the present invention.
- DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown.
- first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
- relative terms such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another elements as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in the Figures is turned over, elements described as being on the "lower” side of other elements would then be oriented on “upper” sides of the other elements.
- the exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure.
- elements described as “below” or “beneath” other elements would then be oriented “above” the other elements.
- the exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
- Embodiments of the present invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments of the present invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected.
- embodiments of the present invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
- an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region.
- a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place.
- the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the present invention.
- Embodiments of the present invention provide ohmic contacts on re-grown contact regions of a Group Ill-nitride based transistor and methods of forming such contacts.
- Embodiments of the present invention may be suited for use in nitride-based HEMTs such as Group Ill-nitride based devices.
- Group III nitride refers to those semiconducting compounds formed between nitrogen and the elements in Group III of the periodic table, usually aluminum (Al), gallium (Ga), and/or indium (In).
- Al aluminum
- Ga gallium
- In indium
- the term also refers to ternary and quaternary compounds such as AlGaN and AlInGaN.
- the Group III elements can combine with nitrogen to form binary (e.g. , GaN), ternary (e.g. , AlGaN, AlInN), and quaternary (e.g., AlInGaN) compounds. These compounds all have empirical formulas in which one mole of nitrogen is combined with a total of one mole of the Group III elements. Accordingly, formulas such as Al x Ga ⁇ -x N where 0 ⁇ x ⁇ 1 are often used to describe them. Suitable structures for GaN-based HEMTs that may utilize embodiments of the present invention are described, for example, in commonly assigned U.S. Patent 6,316,793 and U.S. application serial no.
- LAYER the disclosures of which are hereby incorporated herein by reference in their entirety. Fabrication of embodiments of the present invention is schematically illustrated in Figures 1A-1G.
- a substrate 10 is provided on which nitride based devices may be formed.
- the substrate 10 may be a semi-insulating silicon carbide (SiC) substrate that may be, for example, 4H polytype of silicon carbide.
- SiC silicon carbide
- Other silicon carbide candidate polytypes include the 3C, 6H, and 15R polytypes.
- the term "semi- insulating" is used descriptively rather than in an absolute sense.
- the silicon carbide bulk crystal has a resistivity equal to or higher than about lxl 0 5 ⁇ -cm at room temperature.
- Optional buffer, nucleation and/or transition layers may be provided on the substrate 10.
- an AIN buffer layer may be provided to provide an appropriate crystal structure transition between the silicon carbide substrate and the remainder of the device.
- strain balancing transition layer(s) may also be provided as described, for example, in commonly assigned United States Patent Application Serial No.
- Silicon carbide has a much closer crystal lattice match to Group III nitrides than does sapphire (Al 2 O ), which is a very common substrate material for Group III nitride devices.
- Silicon carbide also has a very high thermal conductivity so that the total output power of Group III nitride devices on silicon carbide is, typically, not as limited by thermal dissipation of the substrate as in the case of the same devices formed on sapphire. Also, the availability of semi-insulating silicon carbide substrates may provide for device isolation and reduced parasitic capacitance. Appropriate SiC substrates are manufactured by, for example, Cree, Inc., of Durham, N.C., the assignee of the present invention, and methods for producing are described, for example, in U. S. Patent Nos. Re.
- an appropriate buffer layer also may be formed.
- a channel layer 20 is provided on the substrate 10.
- the channel layer 20 may be deposited on the substrate 10 using buffer layers, transition layers, and/or nucleation layers as described above.
- the channel layer 20 may be under compressive strain.
- the channel layer and/or buffer nucleation and/or transition layers may be deposited by MOCVD or by other techniques known to those of skill in the art, such as MBE or HVPE .
- the channel layer 20 is a Group Ill-nitride, such as Al x Ga ⁇ .
- x 0, indicating that the channel layer 20 is GaN.
- the channel layer 20 may also be other Group Ill-nitrides such as InGaN, AlInGaN or the like.
- the channel layer 20 may be undoped ("unintentionally doped") - and may be grown to a thickness of greater than about 20 A.
- the channel layer 20 may also be a multi-layer structure, such as a superlattice or combinations of GaN, AlGaN or the like.
- a barrier layer 22 is provided on the channel layer 20.
- the channel layer 20 may have a bandgap that is less than the bandgap of the barrier layer 22.
- the barrier layer 22 may be deposited on the channel layer 20.
- the barrier layer 22 is AIN, AlInN, AlGaN or AlInGaN with a thickness of between about 1 and about 100 nm.
- the barrier layer 22 includes multiple layers.
- the barrier layer 22 may be about lnm of AIN with about 25 nm of AlGaN on the AIN layer. Examples of barrier layers according to certain embodiments of the present invention are described in United States Patent Application Serial No.
- the barrier layer 22 may be a Group Ill-nitride and has a bandgap larger than that of the channel layer 20. Accordingly, in certain embodiments of the present invention, the barrier layer 22 is AlGaN, AlInGaN and/or AIN or combinations of layers thereof. Other materials may also be used for the barrier layer 22.
- the barrier layer 22 may, for example, be from about 1 to about 100 nm thick, but is not so thick as to cause cracking or substantial defect formation therein.
- the barrier layer 22 is undoped or doped with an n-type dopant to a concentration less than about 10 19 cm " 3 .
- the barrier layer 22 is Al x Ga ⁇ -x N where 0 ⁇ x ⁇ 1.
- the barrier layer 22 may be from about 3 to about 30 nm thick.
- the aluminum concentration is about 25%.
- the barrier layer 22 comprises AlGaN with an aluminum concentration of between about 5% and about 100%. In specific embodiments of the present invention, the aluminum concentration is greater than about 10%. In embodiments of the present invention where the barrier layer 22 comprises an AIN layer, the thickness of the barrier layer 22 may, for example, be from about 0.3 nm to about 4 nm.
- Figure IB illustrates formation of an optional first dielectric layer 24.
- the first dielectric layer 24 may be a silicon nitride layer, such as an Si x N y layer.
- the silicon nitride layer may serve as a passivation layer for the device.
- the silicon nitride layer may be deposited by, for example, plasma-enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD) and/or sputtering.
- PECVD plasma-enhanced chemical vapor deposition
- LPCVD low pressure chemical vapor deposition
- sputtering The silicon nitride layer may be deposited in the same reactor as other layers of the transistor.
- other dielectrics may also be utilized, such as, for example, silicon oxynitride and/or silicon dioxide.
- Figure IC illustrates formation of a mask 30 on the first dielectric layer 24. The mask 30 is formed on the region of the barrier layer 22 where a gate contact will subsequently be formed.
- the wafer of Figure IC may be removed from the epi reactor and patterned with a mask material 30 to expose the desired recess areas.
- the mask material 30 should be able to withstand the growth temperature of subsequent processing, including the formation of regrown contact regions 26 as described below.
- the mask 30 is provided by an oxide.
- the mask 30 is patterned using lift-off techniques. Alternatively, a wet or dry etch could be utilized to pattern the mask 30.
- SiO x is the mask material, although other materials, such as AIN and Si x N y based materials, may also be used.
- a photo-resist, e-beam resist material or organic mask material may also be utilized if it is not unduly damaged by subsequent processing steps, such as deposition temperatures or the like.
- the recesses are etched through the first dielectric layer 24, through the barrier layer 22, to the channel layer 20 and, in some embodiments, to and into the channel layer 20 or, in some embodiments, even through the channel layer 20.
- the etch to form the contact recesses 23 may be provided by, for example, a wet etch, a dry etch and/or a reactive ion etch or the like.
- the structure may be annealed to remove and/or reduce damage resulting from the etch.
- the periphery of the device may be etched to form a mesa structure (not shown), for example, if other termination structures, such as a field plate, implant or other termination structure are not provided or may be provided in addition to such structures.
- a contact layer 26' is formed on the exposed regions of the channel layer 20 and the mask 30.
- the wafer of Figure ID may be put back into the epi reactor for deposition of the contact layer 26'.
- the contact layer 26' is formed by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), plasma enchanced chemical vapor deposition (PECVD), sputtering and/or hydride vapor phase epitaxy (HVPE).
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- PECVD plasma enchanced chemical vapor deposition
- HVPE hydride vapor phase epitaxy
- the contact layer 26' is regrown at a reduced deposition temperature.
- a low temperature deposition process may be used.
- low temperature deposition refers to formation of a layer at a temperature lower than a temperature at which substantial mass transport from the wafer to the regrown region takes place.
- the contact layer 26' may be formed at a temperature of from about room temperature to about 950 °C.
- the contact layer 26' is formed at a temperature of less than 960 °C.
- the contact layer 26' is formed at a very low temperature, for example, at a temperature of less than about 450 °C and in some embodiments, at temperature of less than about 200 °C.
- Such very low temperature conditions may be used, for example, with sputtering and/or PECVD growth techniques.
- the use of a reduced deposition temperature and/or low temperature deposition may reduce trapping and/or may provide improved reliability.
- the contact layer 26' may be unevenly formed such that the portion on the mask 30 is porous or discontinuous. In some embodiments, the contact layer 26' is not formed on the mask 30.
- the contact layer 26' may be an n-type degenerate semiconductor material.
- the contact layer 26' may be heavily doped n-type InN, InAIN, AlGaN, AlInGaN, GaN and/or InGaN.
- the contact layer 26' may be an n-type degenerate semiconductor material other than GaN or AlGaN.
- the contact layer may be a non-nitride Group III-V semiconductor material, a Group IV semiconductor material and/or a Group II- VI semiconductor material.
- potential contact layer 26' materials include, for example, ZnO, ZnGeN 2 and/or ZnSnN .
- the contact layer 26' may be a metal or metal alloy, for example, a metal suicide, capable of conformal deposition at a low temperature that has a low work function and does not form a Schottky contact.
- the metal may be subsequently etched off in the channel and gate regions.
- a passivation layer may be deposited before deposition of the metal. Formation of a GaN contact layer 26' may reduce and/or eliminate a band discontinuity with the channel layer 22 if the channel layer 22 is also GaN.
- the contact layer 26' is formed to a thickness sufficient to provide a low sheet resistivity.
- the contact layer 26' may be grown to a thickness sufficient to provide a sheet resistivity that is less than a sheet resistivity of the 2DEG formed at the interface between the channel layer 20 and the barrier layer 22.
- Several tens of nanometers of GaN, for example, may be sufficient thickness for the contact layer 26', however, a thicker layer may have a lower resistances and increase transfer length (L T ).
- the contact layer 26' may be doped with Si, Ge and/or O or other suitable n-type dopant or may be naturally n-type as deposited.
- the contact layer 26' may be doped as formed rather than through subsequent ion implantation. Formation of the doped contact layer 26' without ion implantation may avoid the need for extremely high temperature annealing to activate the dopants.
- the contact layer 26' has a sheet resistivity of from about 10 to about 400 ⁇ /D.
- the contact layer is doped to provide a carrier concentration of from about 10 18 to about 10 21 cm "3 .
- the contact layer 26' is from about 10 nm to about 1000 nm thick.
- the mask 30 may not be needed as the material could be blanket deposited and then patterned and etched after deposition.
- Figure IF illustrates removal of the portion of the contact layer 26' formed on the mask 30 and removal of the mask 30 to expose the first dielectric layer 24, thus providing the contact regions 26.
- the mask 30 and the portion of the contact layer 26' may be removed, for example, by etching the mask 30 in buffered HF or other etchant that will remove the mask layer 30 and leave the first dielectric layer 24 and the contact regions 26.
- the portion of the contact layer 26' is formed on the mask 30 may be formed so as to be porous or discontinuous so as to allow etching the mask 30 through the contact layer 26'.
- the mask 30 may be etched with an etchant that has etching selectivity with respect to the contact layer 26' and the first dielectric layer 24.
- the mask layer 30 may be etched from the sides to remove the mask layer and the portion of the contact layer 26' on the mask layer 30, for example, if the portion of the contact layer 26' on the mask layer is not porous or is continuous.
- Figure IG illustrates formation of a gate recess in the first dielectric layer 24 and formation of a gate contact 44 on the exposed portion of the barrier layer 22 in the gate recess.
- a gate recess may be etched through the first dielectric layer 24 using, for example, a dry etch, a wet etch and/or RIE or the like.
- the structure may be annealed to repair some or all of the damage resulting from the etch of the gate recess.
- Suitable gate contact materials include, for example, Ni, Pt, Pd or other such Schottky contact materials. Additional overlayers may also be provided.
- the gate contact 44 may be formed on the dielectric layer 24.
- ohmic contacts 40 and 42 are formed on the contact regions 26 and may provide source and drain contacts.
- the ohmic contacts 40 and 42 may be formed before or after formation of the gate recess and/or contact 44.
- the ohmic contacts 40 and 42 are annealed, for example at a temperature of about 850 °C or less. In other embodiments, the anneal of the ohmic contacts is not carried out. The use of a reduced anneal temperature or no anneal may reduce trapping and/or may provided improved reliability.
- the presence of the highly doped n-type contact regions may lower contact resistance that may provide for increased efficiency and/or radio frequency power density.
- Suitable ohmic contact materials include, for example, a Ti/Al/Ni/Au stack may be used. Similarly, a structure of Ti/Al/X/Au may be used where X may be Mo, Pt and/or Ti. While embodiments of the present invention have been described with reference to a blanket deposition of the contact layer 26', alternatively, selective regrowth of the contact regions 26 could also be utilized while still benefiting from the teachings of the present invention. Furthermore, the regrown contact regions 26 may be provided for only one of the ohmic contacts 40 and 42 and a conventional contact structure provided for the other contact. Accordingly, embodiments of the present invention should not be construed as limited to the specific processing steps illustrated in Figures 1A-1G.
- FIGS. 2, 3 A and 3B are illustrations of embodiments of the present invention incorporating contact area enlargement structures that provide increased vertical surface area of the interface between the contact region 26 and the channel layer 20.
- Figure 2 illustrates embodiments of the present invention as incorporating a contact area enlargement area structure in a sidewall of a portion of the channel layer 20 and Figures 3A and 3B illustrate embodiments of the present invention where the contact enlargement area structure is provided by filled holes extending into the contact layer 20. While each of the contact area enlargement structures is described herein separately, the contact area enlargement structures may also be provided in combination with each other or other structures that increase the vertical contact area between the channel layer 20 and the contact region 26 as compared to a planar vertical contact area. Such structures may provide means for increasing a surface area of an interface between a vertical portion of the n-type nitride-based semiconductor material contact region 26 and the nitride-based channel layer 20.
- Figures 2, 3 A and 3B illustrate a partial section of a transistor illustrating a single ohmic contact region.
- a corresponding section may be provided for a second ohmic contact region opposite the gate contact so as to provide source and drain contacts.
- embodiments of the present invention may provide a contact area enlargement structure for only one of the ohmic contacts.
- Figure 2 is a top view of a portion of a HEMT according to further embodiments of the present invention.
- the surface area of the interface between the contact region 26 and the channel layer 20 and/or the barrier layer 22 may be increased by providing an increased surface area sidewall 200 of the channel layer 20 and/or the barrier layer 22.
- the increased surface area sidewall 200 has an increased surface area with respect to a straight sidewall. Increasing the surface area of the interface between the contact region 26 and the channel layer 20 may reduce the resistance between the contact region 26 and the channel layer 20.
- the patterned sidewall 200 may be provided by patterning the channel layer 20 during the contact recess etch described above. For example, a first etch through the first dielectric layer 24 and the barrier layer 22 may be performed and then a second etch into the channel layer 22 may be performed with a mask on the exposed portion of the channel layer 20 to provide the pattern of the sidewall. Alternatively, a single etch may be performed if the mask 30 has a pattern corresponding to the desired sidewall pattern of the channel layer 20.
- the sidewall may have a regular or irregular repeating or non-repeating shape.
- the sawtooth shape illustrated in Figure 2 is provided as an example of a shape that may be used. However, other shapes may also be used, for example, a notch shape, a series of curves or the like may be used. Accordingly, some embodiments of the present invention should not be limited to a particular shape for the increased surface . area sidewall 200.
- the ohmic contact metal 42' is also illustrated in Figure 2 on the contact region 26. The contact metal 42' is illustrated as stopping before the periphery of the contact region 26. However, the contact metal 42' may extend further than illustrated and may, for example, extend onto the channel layer 22.
- Figure 3A is a top view and Figure 3B is a cross-section taken along the lines I-I' of Figure 3 A of further embodiments of the present invention.
- the surface area of the interface between the regrown contact region 26 and the channel layer 20 may be increased by providing holes 300 that extend into the channel layer 20.
- the holes 300 have n-type material in them as provided in the contact region 26.
- the ohmic contact 42" extends to cover the holes 300 so that the n-type material in the holes 300 is electrically connected to the contact region 26.
- the filled holes 300 may be provided by patterning the channel layer 20 during the contact recess etch described above so as to provide holes that are present when the contact layer 26' is formed.
- a first etch through the first dielectric layer 24 and the barrier layer 22 may be performed and then a second etch into the channel layer 22 may be performed with a mask on the exposed portion to the channel layer 20 to provide the holes.
- a single etch may be performed if the mask 30 has a pattern corresponding to the desired holes of the channel layer 20.
- the holes would extend through the barrier layer 22 and to or into the channel layer 20.
- the contact metal would then extend onto the barrier layer 22 to contact the material in the holes 300 as illustrated in Figure 3B.
- the holes 300 may have a regular or irregular repeating or non-repeating pattern.
- the holes 300 may also have a circular or other shape periphery.
- FIG. 3 A The pattern of holes and shape of holes illustrated in Figure 3 A is provided as an example of a pattern and shape that may be used. However, other patterns and or shapes may also be used. Accordingly, some embodiments of the present invention should not be limited to a particular pattern and/or shape for the holes 300.
- Figures 4A-4C illustrate fabrication of further embodiments of the present invention where a contact region is provided that extends onto the barrier layer. Fabrication of the embodiments of the present invention illustrated in Figures 4A-4C may be the same as that illustrated in Figures 1 A-1F except that the first dielectric layer 24 is resized to a smaller size first dielectric layer 424 so as to expose a portion of the barrier layer 22, for example, by undercutting the mask 30 into the first dielectric layer 24 with an isotropic etch.
- the mask 30 could be stripped and another mask applied and the first dielectric layer 24 may be etched using this second mask.
- first dielectric layer 424 in Figures 4A is described herein as a dielectric material, other removable materials that may withstand the conditions for deposition of the contact regions may be used.
- the contact region 426 is regrown as discussed above and the mask 30 is removed.
- the first dielectric layer 424 is removed and a second dielectric layer 430 is conformally deposited on the contact layers 426 and the barrier layer 22.
- the second dielectric layer 430 would typically be deposited isotropically.
- Windows in the second dielectric layer 430 may be provided on the contact layer 426 and ohmic contacts for the source and drain contacts 440 and 442 may be formed on the contact layer 426.
- the ohmic contacts may also be formed prior to the deposition of the second dielectric layer 430.
- the second dielectric layer 430 is anisotropically etched to expose the barrier layer 22 and provide sidewall spaces 430' and a gate contact recess.
- a gate metal may be deposited and patterned, for example, using lift-off techniques, to provided the gate contact 444.
- the length of the gate contact 444 may be approximately the width of the first dielectic layer 424 less twice the thickness of the second dielectric layer 430.
- the first dielectric 424 may have a width of about 0.5 to about 1 ⁇ m and the second dielectric 430 may have a thickness of from about 0.1 to about 0.5 ⁇ m. While embodiments of the present invention have been illustrated with regrown contact regions for both the source and drain contacts, such regrown regions may be provided for only one of the source or the drain. Furthermore, while the gate contacts have been illustrated as substantially centered between the source and drain, in certain embodiments of the present invention, the gate contact may be offset, for example, toward the source contact. Furthermore, while embodiments of the present invention have been described with reference to a particular sequence of fabrication steps, a different sequence of steps may be utilized while still falling within the scope of the present invention.
Landscapes
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002567066A CA2567066A1 (en) | 2004-05-20 | 2005-02-09 | Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions |
JP2007527194A JP5160225B2 (en) | 2004-05-20 | 2005-02-09 | Method for fabricating nitride-based transistor with regrowth ohmic contact region and nitride-based transistor with regrowth ohmic contact region |
EP05722846.2A EP1747589B1 (en) | 2004-05-20 | 2005-02-09 | Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions |
KR1020067026779A KR20070032701A (en) | 2004-05-20 | 2005-02-09 | A method of manufacturing a nitride transistor having a regrown ohmic contact region and a nitride transistor having a regrown ohmic contact region |
CN2005800245027A CN1998085B (en) | 2004-05-20 | 2005-02-09 | Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/849,617 | 2004-05-20 | ||
US10/849,617 US7432142B2 (en) | 2004-05-20 | 2004-05-20 | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005119787A1 true WO2005119787A1 (en) | 2005-12-15 |
Family
ID=34961328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/004039 WO2005119787A1 (en) | 2004-05-20 | 2005-02-09 | Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions |
Country Status (8)
Country | Link |
---|---|
US (1) | US7432142B2 (en) |
EP (1) | EP1747589B1 (en) |
JP (1) | JP5160225B2 (en) |
KR (1) | KR20070032701A (en) |
CN (1) | CN1998085B (en) |
CA (1) | CA2567066A1 (en) |
TW (1) | TW200539264A (en) |
WO (1) | WO2005119787A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136519A1 (en) * | 2006-05-16 | 2007-11-29 | Cree, Inc. | Semiconductor devices including self aligned refractory contacts and methods of fabricating the same |
JP2007324263A (en) * | 2006-05-31 | 2007-12-13 | Matsushita Electric Ind Co Ltd | Field-effect transistor and manufacturing method thereof |
JP2008177487A (en) * | 2007-01-22 | 2008-07-31 | Sumitomo Electric Ind Ltd | Method for forming semiconductor device |
US9443936B2 (en) | 2008-12-31 | 2016-09-13 | Intel Corporation | Quantum well MOSFET channels having lattice mismatch with metal source/drains, and conformal regrowth source/drains |
Families Citing this family (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002357640A1 (en) * | 2001-07-24 | 2003-04-22 | Cree, Inc. | Insulting gate algan/gan hemt |
US8809867B2 (en) * | 2002-04-15 | 2014-08-19 | The Regents Of The University Of California | Dislocation reduction in non-polar III-nitride thin films |
AU2003223563A1 (en) * | 2002-04-15 | 2003-11-03 | The Regents Of The University Of California | NON-POLAR (A1,B,In,Ga) QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES |
US7612390B2 (en) | 2004-02-05 | 2009-11-03 | Cree, Inc. | Heterojunction transistors including energy barriers |
JP4889203B2 (en) * | 2004-04-21 | 2012-03-07 | 新日本無線株式会社 | Nitride semiconductor device and manufacturing method thereof |
US7220324B2 (en) * | 2005-03-10 | 2007-05-22 | The Regents Of The University Of California | Technique for the growth of planar semi-polar gallium nitride |
US9130119B2 (en) * | 2006-12-11 | 2015-09-08 | The Regents Of The University Of California | Non-polar and semi-polar light emitting devices |
US7456443B2 (en) * | 2004-11-23 | 2008-11-25 | Cree, Inc. | Transistors having buried n-type and p-type regions beneath the source region |
US7709859B2 (en) * | 2004-11-23 | 2010-05-04 | Cree, Inc. | Cap layers including aluminum nitride for nitride-based transistors |
JP4940557B2 (en) * | 2005-02-08 | 2012-05-30 | 日本電気株式会社 | Field effect transistor and manufacturing method thereof |
US20060226442A1 (en) | 2005-04-07 | 2006-10-12 | An-Ping Zhang | GaN-based high electron mobility transistor and method for making the same |
TW200703463A (en) * | 2005-05-31 | 2007-01-16 | Univ California | Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO) |
TWI377602B (en) * | 2005-05-31 | 2012-11-21 | Japan Science & Tech Agency | Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd) |
EP1900013A4 (en) | 2005-06-01 | 2010-09-01 | Univ California | Technique for the growth and fabrication of semipolar (ga,al,in,b)n thin films, heterostructures, and devices |
US8278128B2 (en) | 2008-02-01 | 2012-10-02 | The Regents Of The University Of California | Enhancement of optical polarization of nitride light-emitting diodes by wafer off-axis cut |
US9331192B2 (en) | 2005-06-29 | 2016-05-03 | Cree, Inc. | Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same |
KR20080040709A (en) * | 2005-07-13 | 2008-05-08 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | Lateral growth method for defect reduction of semipolar nitride films |
US20070018198A1 (en) * | 2005-07-20 | 2007-01-25 | Brandes George R | High electron mobility electronic device structures comprising native substrates and methods for making the same |
EP1935014A4 (en) * | 2005-09-09 | 2010-09-08 | Univ California | METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al, In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION |
US7338826B2 (en) * | 2005-12-09 | 2008-03-04 | The United States Of America As Represented By The Secretary Of The Navy | Silicon nitride passivation with ammonia plasma pretreatment for improving reliability of AlGaN/GaN HEMTs |
KR20080098039A (en) * | 2006-01-20 | 2008-11-06 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | Method for enhancing growth of semipolar (al,in,ga,b)n via metalorganic chemical vapor depositon |
EP1982351A4 (en) | 2006-01-20 | 2010-10-20 | Univ California | Method for improved growth of semipolar (al,in,ga,b)n |
US8193079B2 (en) * | 2006-02-10 | 2012-06-05 | The Regents Of The University Of California | Method for conductivity control of (Al,In,Ga,B)N |
US7388236B2 (en) * | 2006-03-29 | 2008-06-17 | Cree, Inc. | High efficiency and/or high power density wide bandgap transistors |
US8764903B2 (en) | 2009-05-05 | 2014-07-01 | Sixpoint Materials, Inc. | Growth reactor for gallium-nitride crystals using ammonia and hydrogen chloride |
US8728234B2 (en) * | 2008-06-04 | 2014-05-20 | Sixpoint Materials, Inc. | Methods for producing improved crystallinity group III-nitride crystals from initial group III-nitride seed by ammonothermal growth |
WO2007133603A2 (en) * | 2006-05-09 | 2007-11-22 | The Regents Of The University Of California | In-situ defect reduction techniques for nonpolar and semipolar (ai, ga, in)n |
US20080078439A1 (en) * | 2006-06-23 | 2008-04-03 | Michael Grundmann | Polarization-induced tunnel junction |
WO2008021403A2 (en) * | 2006-08-16 | 2008-02-21 | The Regents Of The University Of California | Method for deposition of magnesium doped (al, in, ga, b)n layers |
US8823057B2 (en) | 2006-11-06 | 2014-09-02 | Cree, Inc. | Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices |
US8193020B2 (en) | 2006-11-15 | 2012-06-05 | The Regents Of The University Of California | Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition |
WO2008060349A2 (en) * | 2006-11-15 | 2008-05-22 | The Regents Of The University Of California | Method for heteroepitaxial growth of high-quality n-face gan, inn, and ain and their alloys by metal organic chemical vapor deposition |
US7692263B2 (en) | 2006-11-21 | 2010-04-06 | Cree, Inc. | High voltage GaN transistors |
US8878245B2 (en) * | 2006-11-30 | 2014-11-04 | Cree, Inc. | Transistors and method for making ohmic contact to transistors |
WO2008073385A1 (en) * | 2006-12-11 | 2008-06-19 | The Regents Of The University Of California | Metalorganic chemical vapor deposition (mocvd) growth of high performance non-polar iii-nitride optical devices |
JP2010512301A (en) * | 2006-12-12 | 2010-04-22 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Crystal growth of (Al, In, Ga, B) N M-plane and semipolar plane on various substrates |
US9076852B2 (en) * | 2007-01-19 | 2015-07-07 | International Rectifier Corporation | III nitride power device with reduced QGD |
US8021904B2 (en) * | 2007-02-01 | 2011-09-20 | Cree, Inc. | Ohmic contacts to nitrogen polarity GaN |
JP2010518625A (en) * | 2007-02-12 | 2010-05-27 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Cleaved facet (Ga, Al, In) N edge emitting laser diode grown on semipolar {11-2n} bulk gallium nitride substrate |
JP2010518626A (en) * | 2007-02-12 | 2010-05-27 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Optimization of laser rod orientation for nonpolar and semipolar (Ga, Al, In, B) N diode lasers |
US20080258150A1 (en) * | 2007-03-09 | 2008-10-23 | The Regents Of The University Of California | Method to fabricate iii-n field effect transistors using ion implantation with reduced dopant activation and damage recovery temperature |
US8212290B2 (en) | 2007-03-23 | 2012-07-03 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
FR2914500B1 (en) * | 2007-03-30 | 2009-11-20 | Picogiga Internat | IMPROVED OHMICALLY CONTACT ELECTRONIC DEVICE |
US9484499B2 (en) * | 2007-04-20 | 2016-11-01 | Cree, Inc. | Transparent ohmic contacts on light emitting diodes with carrier substrates |
WO2008137573A1 (en) * | 2007-05-01 | 2008-11-13 | The Regents Of The University Of California | Light emitting diode device layer structure using an indium gallium nitride contact layer |
TWI339444B (en) | 2007-05-30 | 2011-03-21 | Au Optronics Corp | Conductor structure, pixel structure, and methods of forming the same |
JP2009010107A (en) * | 2007-06-27 | 2009-01-15 | Oki Electric Ind Co Ltd | Semiconductor device and manufacturing method therefor |
JP5202897B2 (en) * | 2007-07-25 | 2013-06-05 | 住友電工デバイス・イノベーション株式会社 | Field effect transistor and manufacturing method thereof |
EP2176878A4 (en) * | 2007-08-08 | 2010-11-17 | Univ California | Planar nonpolar m-plane group iii-nitride films grown on miscut substrates |
US7847280B2 (en) * | 2007-08-08 | 2010-12-07 | The Regents Of The University Of California | Nonpolar III-nitride light emitting diodes with long wavelength emission |
US7875537B2 (en) * | 2007-08-29 | 2011-01-25 | Cree, Inc. | High temperature ion implantation of nitride based HEMTs |
WO2009039402A1 (en) | 2007-09-19 | 2009-03-26 | The Regents Of The University Of California | (al,in,ga,b)n device structures on a patterned substrate |
JP2010539732A (en) | 2007-09-19 | 2010-12-16 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Method for increasing the area of nonpolar and semipolar nitride substrates |
WO2009039398A1 (en) * | 2007-09-19 | 2009-03-26 | The Regents Of The University Of California | Gallium nitride bulk crystals and their growth method |
US8368100B2 (en) | 2007-11-14 | 2013-02-05 | Cree, Inc. | Semiconductor light emitting diodes having reflective structures and methods of fabricating same |
US7750370B2 (en) * | 2007-12-20 | 2010-07-06 | Northrop Grumman Space & Mission Systems Corp. | High electron mobility transistor having self-aligned miniature field mitigating plate on a protective dielectric layer |
TWI487817B (en) * | 2008-02-25 | 2015-06-11 | Sixpoint Materials Inc | Method for producing group iii nitride wafers and group iii nitride wafers |
US8519438B2 (en) | 2008-04-23 | 2013-08-27 | Transphorm Inc. | Enhancement mode III-N HEMTs |
US9711633B2 (en) * | 2008-05-09 | 2017-07-18 | Cree, Inc. | Methods of forming group III-nitride semiconductor devices including implanting ions directly into source and drain regions and annealing to activate the implanted ions |
JP5631746B2 (en) * | 2008-06-04 | 2014-11-26 | シックスポイント マテリアルズ, インコーポレイテッド | High pressure vessel for growing group III nitride crystals, and method for growing group III nitride crystals using high pressure vessels and group III nitride crystals |
EP2286007B1 (en) | 2008-06-12 | 2018-04-04 | SixPoint Materials, Inc. | Method for testing gallium nitride wafers and method for producing gallium nitride wafers |
US8384115B2 (en) * | 2008-08-01 | 2013-02-26 | Cree, Inc. | Bond pad design for enhancing light extraction from LED chips |
US8289065B2 (en) | 2008-09-23 | 2012-10-16 | Transphorm Inc. | Inductive load power switching circuits |
WO2010045567A1 (en) * | 2008-10-16 | 2010-04-22 | Sixpoint Materials, Inc. | Reactor design for growing group iii nitride crystals and method of growing group iii nitride crystals |
US20110203514A1 (en) * | 2008-11-07 | 2011-08-25 | The Regents Of The University Of California | Novel vessel designs and relative placements of the source material and seed crystals with respect to the vessel for the ammonothermal growth of group-iii nitride crystals |
WO2010060034A1 (en) * | 2008-11-24 | 2010-05-27 | Sixpoint Materials, Inc. | METHODS FOR PRODUCING GaN NUTRIENT FOR AMMONOTHERMAL GROWTH |
US7898004B2 (en) | 2008-12-10 | 2011-03-01 | Transphorm Inc. | Semiconductor heterostructure diodes |
JP5737948B2 (en) * | 2008-12-26 | 2015-06-17 | ルネサスエレクトロニクス株式会社 | Heterojunction field effect transistor, method of manufacturing heterojunction field transistor, and electronic device |
US8741715B2 (en) * | 2009-04-29 | 2014-06-03 | Cree, Inc. | Gate electrodes for millimeter-wave operation and methods of fabrication |
US8742459B2 (en) | 2009-05-14 | 2014-06-03 | Transphorm Inc. | High voltage III-nitride semiconductor devices |
CN102460739A (en) * | 2009-06-05 | 2012-05-16 | 加利福尼亚大学董事会 | Long wavelength nonpolar and semipolar (al,ga,in)n based laser diodes |
WO2011005444A1 (en) | 2009-06-22 | 2011-01-13 | Raytheon Company | Gallium nitride for liquid crystal electrodes |
US8390000B2 (en) | 2009-08-28 | 2013-03-05 | Transphorm Inc. | Semiconductor devices with field plates |
JP5580009B2 (en) * | 2009-08-28 | 2014-08-27 | 日本碍子株式会社 | Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element |
JP5609055B2 (en) * | 2009-10-02 | 2014-10-22 | 富士通株式会社 | Compound semiconductor device and manufacturing method thereof |
US8389977B2 (en) | 2009-12-10 | 2013-03-05 | Transphorm Inc. | Reverse side engineered III-nitride devices |
US8633470B2 (en) * | 2009-12-23 | 2014-01-21 | Intel Corporation | Techniques and configurations to impart strain to integrated circuit devices |
US8936976B2 (en) * | 2009-12-23 | 2015-01-20 | Intel Corporation | Conductivity improvements for III-V semiconductor devices |
US8242510B2 (en) * | 2010-01-28 | 2012-08-14 | Intersil Americas Inc. | Monolithic integration of gallium nitride and silicon devices and circuits, structure and method |
KR101774933B1 (en) * | 2010-03-02 | 2017-09-06 | 삼성전자 주식회사 | High Electron Mobility Transistor representing dual depletion and method of manufacturing the same |
US20110241020A1 (en) * | 2010-03-31 | 2011-10-06 | Triquint Semiconductor, Inc. | High electron mobility transistor with recessed barrier layer |
WO2011163318A2 (en) * | 2010-06-23 | 2011-12-29 | Cornell University | Gated iii-v semiconductor structure and method |
US9070851B2 (en) | 2010-09-24 | 2015-06-30 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
US8742460B2 (en) | 2010-12-15 | 2014-06-03 | Transphorm Inc. | Transistors with isolation regions |
JP5654884B2 (en) * | 2011-01-26 | 2015-01-14 | 株式会社東芝 | Manufacturing method of nitride semiconductor device |
US8643062B2 (en) | 2011-02-02 | 2014-02-04 | Transphorm Inc. | III-N device structures and methods |
US20120204957A1 (en) * | 2011-02-10 | 2012-08-16 | David Nicholls | METHOD FOR GROWING AlInGaN LAYER |
US8772842B2 (en) | 2011-03-04 | 2014-07-08 | Transphorm, Inc. | Semiconductor diodes with low reverse bias currents |
US8716141B2 (en) | 2011-03-04 | 2014-05-06 | Transphorm Inc. | Electrode configurations for semiconductor devices |
US8383471B1 (en) * | 2011-04-11 | 2013-02-26 | Hrl Laboratories, Llc | Self aligned sidewall gate GaN HEMT |
WO2013089843A2 (en) * | 2011-09-02 | 2013-06-20 | The California Institute Of Technology | Photovoltaic semiconductive materials |
US8901604B2 (en) | 2011-09-06 | 2014-12-02 | Transphorm Inc. | Semiconductor devices with guard rings |
US9257547B2 (en) | 2011-09-13 | 2016-02-09 | Transphorm Inc. | III-N device structures having a non-insulating substrate |
CN103000692A (en) * | 2011-09-14 | 2013-03-27 | 鸿富锦精密工业(深圳)有限公司 | Thin-film transistor structure and manufacturing method thereof |
US8697505B2 (en) * | 2011-09-15 | 2014-04-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming a semiconductor structure |
US8598937B2 (en) | 2011-10-07 | 2013-12-03 | Transphorm Inc. | High power semiconductor electronic components with increased reliability |
US20130105817A1 (en) | 2011-10-26 | 2013-05-02 | Triquint Semiconductor, Inc. | High electron mobility transistor structure and method |
US8946771B2 (en) * | 2011-11-09 | 2015-02-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gallium nitride semiconductor devices and method making thereof |
US8884308B2 (en) * | 2011-11-29 | 2014-11-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | High electron mobility transistor structure with improved breakdown voltage performance |
US9165766B2 (en) | 2012-02-03 | 2015-10-20 | Transphorm Inc. | Buffer layer structures suited for III-nitride devices with foreign substrates |
WO2013155108A1 (en) | 2012-04-09 | 2013-10-17 | Transphorm Inc. | N-polar iii-nitride transistors |
US9666705B2 (en) * | 2012-05-14 | 2017-05-30 | Infineon Technologies Austria Ag | Contact structures for compound semiconductor devices |
US9184275B2 (en) | 2012-06-27 | 2015-11-10 | Transphorm Inc. | Semiconductor devices with integrated hole collectors |
US9076850B2 (en) | 2012-07-30 | 2015-07-07 | Samsung Electronics Co., Ltd. | High electron mobility transistor |
US9076763B2 (en) * | 2012-08-13 | 2015-07-07 | Infineon Technologies Austria Ag | High breakdown voltage III-nitride device |
JP2014045069A (en) * | 2012-08-27 | 2014-03-13 | Toshiba Corp | Semiconductor device and method of manufacturing semiconductor device |
US8900985B2 (en) * | 2012-10-15 | 2014-12-02 | Infineon Technologies Austria Ag | Self-doped ohmic contacts for compound semiconductor devices |
WO2014127150A1 (en) | 2013-02-15 | 2014-08-21 | Transphorm Inc. | Electrodes for semiconductor devices and methods of forming the same |
US9087718B2 (en) | 2013-03-13 | 2015-07-21 | Transphorm Inc. | Enhancement-mode III-nitride devices |
US9245993B2 (en) | 2013-03-15 | 2016-01-26 | Transphorm Inc. | Carbon doping semiconductor devices |
US9443938B2 (en) | 2013-07-19 | 2016-09-13 | Transphorm Inc. | III-nitride transistor including a p-type depleting layer |
FR3018629B1 (en) * | 2014-03-14 | 2022-10-28 | Ommic | SEMICONDUCTOR STRUCTURE FORMING TRANSISTOR HEMT |
CN103903982A (en) * | 2014-03-21 | 2014-07-02 | 中国电子科技集团公司第十三研究所 | Method for reducing ohmic contact resistance of HEMT device |
CN103928323A (en) * | 2014-03-21 | 2014-07-16 | 中国电子科技集团公司第十三研究所 | Method for reducing ohmic contact resistance of HEMT device |
US9318593B2 (en) | 2014-07-21 | 2016-04-19 | Transphorm Inc. | Forming enhancement mode III-nitride devices |
CN104393038A (en) * | 2014-10-23 | 2015-03-04 | 西安电子科技大学 | High-breakdown voltage InAlN/AlGaN high-electron mobility transistor and manufacturing method thereof |
KR101672396B1 (en) * | 2014-11-25 | 2016-11-04 | (재)한국나노기술원 | Quaternary nitride semiconductor power device and manufacturing method thereof |
JP6631950B2 (en) * | 2014-12-11 | 2020-01-15 | パナソニックIpマネジメント株式会社 | Nitride semiconductor device and method of manufacturing nitride semiconductor device |
USD826871S1 (en) | 2014-12-11 | 2018-08-28 | Cree, Inc. | Light emitting diode device |
US9536967B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Recessed ohmic contacts in a III-N device |
US9536966B2 (en) | 2014-12-16 | 2017-01-03 | Transphorm Inc. | Gate structures for III-N devices |
CN105845680B (en) * | 2015-01-14 | 2019-10-25 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor devices and its manufacturing method and electronic device |
US20170092747A1 (en) * | 2015-09-30 | 2017-03-30 | Sumitomo Electric Industries, Ltd. | Hemt having heavily doped n-type regions and process of forming the same |
CN105552108A (en) * | 2015-12-07 | 2016-05-04 | 成都海威华芯科技有限公司 | Forming method of non-alloy ohmic contact of GaN HEMT device |
JP6888013B2 (en) | 2016-01-15 | 2021-06-16 | トランスフォーム テクノロジー,インコーポレーテッド | Enhancement Mode Group III Nitride Devices with AL (1-x) Si (x) O-Gate Insulators |
JP6690320B2 (en) * | 2016-03-11 | 2020-04-28 | 住友電気工業株式会社 | High electron mobility transistor and method of manufacturing high electron mobility transistor |
CN107230625A (en) * | 2016-03-25 | 2017-10-03 | 北京大学 | Gallium nitride transistor and its manufacture method |
CN205944139U (en) | 2016-03-30 | 2017-02-08 | 首尔伟傲世有限公司 | Ultraviolet ray light -emitting diode spare and contain this emitting diode module |
CN105789282B (en) * | 2016-04-22 | 2019-01-25 | 西安电子科技大学 | There is one kind part high dopant channel 4H-SiC gold half field effect should manage |
TWI813243B (en) | 2016-05-31 | 2023-08-21 | 美商創世舫科技有限公司 | Iii-nitride devices including a graded depleting layer |
JP6711233B2 (en) | 2016-10-13 | 2020-06-17 | 富士通株式会社 | Compound semiconductor device and method of manufacturing compound semiconductor device |
JP7013710B2 (en) * | 2017-08-07 | 2022-02-01 | 住友電気工業株式会社 | Manufacturing method of nitride semiconductor transistor |
JP6879177B2 (en) * | 2017-11-24 | 2021-06-02 | 住友電気工業株式会社 | Nitride semiconductor device manufacturing method |
JP7100241B2 (en) * | 2017-12-20 | 2022-07-13 | 富士通株式会社 | Compound semiconductor device and its manufacturing method |
JP7024534B2 (en) * | 2018-03-20 | 2022-02-24 | 富士通株式会社 | Semiconductor devices and their manufacturing methods |
CN108598235B (en) * | 2018-05-09 | 2019-12-20 | 芜湖德豪润达光电科技有限公司 | GaN-based LED structure and preparation method thereof |
TWI714909B (en) * | 2018-11-13 | 2021-01-01 | 新唐科技股份有限公司 | High electron mobility transistor device and manufacturing method thereof |
WO2020240310A1 (en) | 2019-05-30 | 2020-12-03 | National Research Council Of Canada | Ohmic contacts with direct access pathways to two-dimensional electron sheets |
JP7212173B2 (en) | 2019-10-09 | 2023-01-24 | パナソニックIpマネジメント株式会社 | Nitride semiconductor structure, nitride semiconductor device and manufacturing method thereof |
JP7417070B2 (en) * | 2020-02-06 | 2024-01-18 | 富士通株式会社 | Semiconductor device, semiconductor device manufacturing method, and electronic device |
GB2594308B (en) * | 2020-04-23 | 2022-06-08 | X Fab Dresden Gmbh & Co Kg | Semiconductor contact structures |
JP7553770B2 (en) | 2020-05-28 | 2024-09-19 | 日亜化学工業株式会社 | Method for manufacturing a field effect transistor |
LT6909B (en) | 2020-09-29 | 2022-04-25 | Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras | Manufacturing method for recessed electrical components |
US11515410B2 (en) | 2020-10-30 | 2022-11-29 | Raytheon Company | Group III-V semiconductor structures having crystalline regrowth layers and methods for forming such structures |
WO2022124868A1 (en) * | 2020-12-11 | 2022-06-16 | 경북대학교 산학협력단 | High electron mobility transistor and method for manufacturing same |
CN213905363U (en) * | 2020-12-17 | 2021-08-06 | 苏州晶湛半导体有限公司 | Enhanced semiconductor device |
US12015075B2 (en) * | 2021-05-20 | 2024-06-18 | Macom Technology Solutions Holdings, Inc. | Methods of manufacturing high electron mobility transistors having a modified interface region |
US12009417B2 (en) * | 2021-05-20 | 2024-06-11 | Macom Technology Solutions Holdings, Inc. | High electron mobility transistors having improved performance |
CN114005866A (en) * | 2021-09-13 | 2022-02-01 | 西安电子科技大学广州研究院 | GaN high-electron-mobility heterojunction structure, preparation method, diode and transistor |
CN116110963A (en) * | 2021-11-09 | 2023-05-12 | 联华电子股份有限公司 | Semiconductor device and method for manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389571A (en) * | 1991-12-18 | 1995-02-14 | Hiroshi Amano | Method of fabricating a gallium nitride based semiconductor device with an aluminum and nitrogen containing intermediate layer |
US5990531A (en) * | 1995-12-28 | 1999-11-23 | Philips Electronics N.A. Corporation | Methods of making high voltage GaN-AlN based semiconductor devices and semiconductor devices made |
US20020079508A1 (en) * | 2000-12-19 | 2002-06-27 | The Furukawa Electric Co., Ltd. | GaN-based high electron mobility transistor |
US20030145784A1 (en) * | 1999-04-08 | 2003-08-07 | Thompson Margarita P. | Cubic (zinc-blende) aluminum nitride and method of making same |
US20040021152A1 (en) * | 2002-08-05 | 2004-02-05 | Chanh Nguyen | Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34861A (en) * | 1862-04-01 | Improved washing-machine | ||
FR2465317A2 (en) * | 1979-03-28 | 1981-03-20 | Thomson Csf | FIELD EFFECT TRANSISTOR WITH HIGH BREAKAGE FREQUENCY |
DE3072175D1 (en) * | 1979-12-28 | 1990-04-26 | Fujitsu Ltd | SEMICONDUCTOR DEVICES WITH HETEROUITION. |
JPH088350B2 (en) * | 1985-04-08 | 1996-01-29 | 日本電気株式会社 | Semiconductor device |
US4755867A (en) * | 1986-08-15 | 1988-07-05 | American Telephone And Telegraph Company, At&T Bell Laboratories | Vertical Enhancement-mode Group III-V compound MISFETs |
US4788156A (en) * | 1986-09-24 | 1988-11-29 | Microwave Technology, Inc. | Subchannel doping to reduce short-gate effects in field effect transistors |
US4866005A (en) | 1987-10-26 | 1989-09-12 | North Carolina State University | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
US5411914A (en) | 1988-02-19 | 1995-05-02 | Massachusetts Institute Of Technology | III-V based integrated circuits having low temperature growth buffer or passivation layers |
EP0334006A1 (en) | 1988-02-22 | 1989-09-27 | Siemens Aktiengesellschaft | Stacked channel heterojunction fet |
US4946547A (en) * | 1989-10-13 | 1990-08-07 | Cree Research, Inc. | Method of preparing silicon carbide surfaces for crystal growth |
US5053348A (en) * | 1989-12-01 | 1991-10-01 | Hughes Aircraft Company | Fabrication of self-aligned, t-gate hemt |
US5210051A (en) * | 1990-03-27 | 1993-05-11 | Cree Research, Inc. | High efficiency light emitting diodes from bipolar gallium nitride |
US5172197A (en) * | 1990-04-11 | 1992-12-15 | Hughes Aircraft Company | Hemt structure with passivated donor layer |
US5292501A (en) * | 1990-06-25 | 1994-03-08 | Degenhardt Charles R | Use of a carboxy-substituted polymer to inhibit plaque formation without tooth staining |
US5200022A (en) * | 1990-10-03 | 1993-04-06 | Cree Research, Inc. | Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product |
US5140386A (en) * | 1991-05-09 | 1992-08-18 | Raytheon Company | High electron mobility transistor |
US5192987A (en) * | 1991-05-17 | 1993-03-09 | Apa Optics, Inc. | High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions |
DE69202554T2 (en) * | 1991-12-25 | 1995-10-19 | Nippon Electric Co | Tunnel transistor and its manufacturing process. |
JPH05275463A (en) | 1992-03-30 | 1993-10-22 | Matsushita Electric Ind Co Ltd | Semiconductor device |
JPH05326561A (en) * | 1992-05-22 | 1993-12-10 | Nec Corp | Manufacture of field effect transistor |
JPH06267991A (en) * | 1993-03-12 | 1994-09-22 | Hitachi Ltd | Semiconductor device and its manufacture |
US5393993A (en) * | 1993-12-13 | 1995-02-28 | Cree Research, Inc. | Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices |
US5686737A (en) * | 1994-09-16 | 1997-11-11 | Cree Research, Inc. | Self-aligned field-effect transistor for high frequency applications |
US5523589A (en) * | 1994-09-20 | 1996-06-04 | Cree Research, Inc. | Vertical geometry light emitting diode with group III nitride active layer and extended lifetime |
US5592501A (en) * | 1994-09-20 | 1997-01-07 | Cree Research, Inc. | Low-strain laser structures with group III nitride active layers |
JP2687897B2 (en) * | 1994-10-13 | 1997-12-08 | 日本電気株式会社 | Field effect transistor and method for manufacturing the same |
JP3157690B2 (en) * | 1995-01-19 | 2001-04-16 | 沖電気工業株式会社 | Method for manufacturing pn junction element |
US5534462A (en) * | 1995-02-24 | 1996-07-09 | Motorola, Inc. | Method for forming a plug and semiconductor device having the same |
US5670798A (en) * | 1995-03-29 | 1997-09-23 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same |
SE9501311D0 (en) * | 1995-04-10 | 1995-04-10 | Abb Research Ltd | Method of producing a semiconductor device having a semiconductor layer of SiC |
US6002148A (en) * | 1995-06-30 | 1999-12-14 | Motorola, Inc. | Silicon carbide transistor and method |
KR100195269B1 (en) * | 1995-12-22 | 1999-06-15 | 윤종용 | Manufacture method of liquid crystal display device |
JP3700872B2 (en) * | 1995-12-28 | 2005-09-28 | シャープ株式会社 | Nitride III-V compound semiconductor device and method for manufacturing the same |
DE19600116C2 (en) * | 1996-01-03 | 2001-03-15 | Siemens Ag | Double heterostructure HEMT |
US5698870A (en) * | 1996-07-22 | 1997-12-16 | The United States Of America As Represented By The Secretary Of The Air Force | High electron mobility transistor (HEMT) and pseudomorphic high electron mobility transistor (PHEMT) devices with single layer integrated metal |
JPH1050982A (en) | 1996-07-31 | 1998-02-20 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device |
JPH1065213A (en) * | 1996-08-20 | 1998-03-06 | Nichia Chem Ind Ltd | Nitride semiconductor element |
US6936839B2 (en) * | 1996-10-16 | 2005-08-30 | The University Of Connecticut | Monolithic integrated circuit including a waveguide and quantum well inversion channel devices and a method of fabricating same |
US6533874B1 (en) * | 1996-12-03 | 2003-03-18 | Advanced Technology Materials, Inc. | GaN-based devices using thick (Ga, Al, In)N base layers |
US6677619B1 (en) * | 1997-01-09 | 2004-01-13 | Nichia Chemical Industries, Ltd. | Nitride semiconductor device |
US6448648B1 (en) * | 1997-03-27 | 2002-09-10 | The United States Of America As Represented By The Secretary Of The Navy | Metalization of electronic semiconductor devices |
JPH10335637A (en) * | 1997-05-30 | 1998-12-18 | Sony Corp | Hetero-junction field effect transistor |
US6201262B1 (en) * | 1997-10-07 | 2001-03-13 | Cree, Inc. | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
JP3372470B2 (en) * | 1998-01-20 | 2003-02-04 | シャープ株式会社 | Nitride III-V compound semiconductor device |
US6150680A (en) * | 1998-03-05 | 2000-11-21 | Welch Allyn, Inc. | Field effect semiconductor device having dipole barrier |
JPH11261053A (en) | 1998-03-09 | 1999-09-24 | Furukawa Electric Co Ltd:The | High electron mobility transistor |
US6086673A (en) * | 1998-04-02 | 2000-07-11 | Massachusetts Institute Of Technology | Process for producing high-quality III-V nitride substrates |
US6316793B1 (en) * | 1998-06-12 | 2001-11-13 | Cree, Inc. | Nitride based transistors on semi-insulating silicon carbide substrates |
JP3209270B2 (en) * | 1999-01-29 | 2001-09-17 | 日本電気株式会社 | Heterojunction field effect transistor |
JP3398613B2 (en) * | 1999-03-15 | 2003-04-21 | 富士通カンタムデバイス株式会社 | Field effect transistor |
US6218680B1 (en) * | 1999-05-18 | 2001-04-17 | Cree, Inc. | Semi-insulating silicon carbide without vanadium domination |
US6639255B2 (en) * | 1999-12-08 | 2003-10-28 | Matsushita Electric Industrial Co., Ltd. | GaN-based HFET having a surface-leakage reducing cap layer |
JP3393602B2 (en) * | 2000-01-13 | 2003-04-07 | 松下電器産業株式会社 | Semiconductor device |
US6586781B2 (en) * | 2000-02-04 | 2003-07-01 | Cree Lighting Company | Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same |
JP2001230401A (en) | 2000-02-15 | 2001-08-24 | Fuji Film Microdevices Co Ltd | Solid-state image sensing device |
JP4667556B2 (en) * | 2000-02-18 | 2011-04-13 | 古河電気工業株式会社 | Vertical GaN-based field effect transistor, bipolar transistor and vertical GaN-based field effect transistor manufacturing method |
US6475889B1 (en) * | 2000-04-11 | 2002-11-05 | Cree, Inc. | Method of forming vias in silicon carbide and resulting devices and circuits |
JP2002016312A (en) * | 2000-06-27 | 2002-01-18 | Sanyo Electric Co Ltd | Nitride semiconductor element and its manufacturing method |
JP4022708B2 (en) * | 2000-06-29 | 2007-12-19 | 日本電気株式会社 | Semiconductor device |
US6515316B1 (en) * | 2000-07-14 | 2003-02-04 | Trw Inc. | Partially relaxed channel HEMT device |
US6727531B1 (en) * | 2000-08-07 | 2004-04-27 | Advanced Technology Materials, Inc. | Indium gallium nitride channel high electron mobility transistors, and method of making the same |
US6548333B2 (en) * | 2000-12-01 | 2003-04-15 | Cree, Inc. | Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment |
US6593193B2 (en) * | 2001-02-27 | 2003-07-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
US6849882B2 (en) * | 2001-05-11 | 2005-02-01 | Cree Inc. | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
US6674101B2 (en) * | 2001-06-01 | 2004-01-06 | Furukawa Electric Co Ltd | GaN-based semiconductor device |
US6646293B2 (en) * | 2001-07-18 | 2003-11-11 | Motorola, Inc. | Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates |
AU2002357640A1 (en) * | 2001-07-24 | 2003-04-22 | Cree, Inc. | Insulting gate algan/gan hemt |
JP3785970B2 (en) * | 2001-09-03 | 2006-06-14 | 日本電気株式会社 | Method for manufacturing group III nitride semiconductor device |
US7030428B2 (en) | 2001-12-03 | 2006-04-18 | Cree, Inc. | Strain balanced nitride heterojunction transistors |
JP4865189B2 (en) * | 2002-02-21 | 2012-02-01 | 古河電気工業株式会社 | GaN-based field effect transistor |
JP3986887B2 (en) * | 2002-05-17 | 2007-10-03 | 松下電器産業株式会社 | Semiconductor device |
US6982204B2 (en) | 2002-07-16 | 2006-01-03 | Cree, Inc. | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses |
US6884704B2 (en) * | 2002-08-05 | 2005-04-26 | Hrl Laboratories, Llc | Ohmic metal contact and channel protection in GaN devices using an encapsulation layer |
US6841809B2 (en) * | 2003-04-08 | 2005-01-11 | Sensor Electronic Technology, Inc. | Heterostructure semiconductor device |
JP4746825B2 (en) | 2003-05-15 | 2011-08-10 | 富士通株式会社 | Compound semiconductor device |
-
2004
- 2004-05-20 US US10/849,617 patent/US7432142B2/en active Active
-
2005
- 2005-02-09 WO PCT/US2005/004039 patent/WO2005119787A1/en active Application Filing
- 2005-02-09 CN CN2005800245027A patent/CN1998085B/en active Active
- 2005-02-09 JP JP2007527194A patent/JP5160225B2/en active Active
- 2005-02-09 KR KR1020067026779A patent/KR20070032701A/en not_active Application Discontinuation
- 2005-02-09 EP EP05722846.2A patent/EP1747589B1/en active Active
- 2005-02-09 CA CA002567066A patent/CA2567066A1/en not_active Abandoned
- 2005-03-09 TW TW094107182A patent/TW200539264A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389571A (en) * | 1991-12-18 | 1995-02-14 | Hiroshi Amano | Method of fabricating a gallium nitride based semiconductor device with an aluminum and nitrogen containing intermediate layer |
US5990531A (en) * | 1995-12-28 | 1999-11-23 | Philips Electronics N.A. Corporation | Methods of making high voltage GaN-AlN based semiconductor devices and semiconductor devices made |
US20030145784A1 (en) * | 1999-04-08 | 2003-08-07 | Thompson Margarita P. | Cubic (zinc-blende) aluminum nitride and method of making same |
US20020079508A1 (en) * | 2000-12-19 | 2002-06-27 | The Furukawa Electric Co., Ltd. | GaN-based high electron mobility transistor |
US20040021152A1 (en) * | 2002-08-05 | 2004-02-05 | Chanh Nguyen | Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136519A1 (en) * | 2006-05-16 | 2007-11-29 | Cree, Inc. | Semiconductor devices including self aligned refractory contacts and methods of fabricating the same |
KR101410170B1 (en) * | 2006-05-16 | 2014-06-19 | 크리 인코포레이티드 | Semiconductor devices including self aligned refractory contacts and methods of forming the same |
US9040398B2 (en) | 2006-05-16 | 2015-05-26 | Cree, Inc. | Method of fabricating seminconductor devices including self aligned refractory contacts |
JP2007324263A (en) * | 2006-05-31 | 2007-12-13 | Matsushita Electric Ind Co Ltd | Field-effect transistor and manufacturing method thereof |
JP2008177487A (en) * | 2007-01-22 | 2008-07-31 | Sumitomo Electric Ind Ltd | Method for forming semiconductor device |
US9443936B2 (en) | 2008-12-31 | 2016-09-13 | Intel Corporation | Quantum well MOSFET channels having lattice mismatch with metal source/drains, and conformal regrowth source/drains |
US10084058B2 (en) | 2008-12-31 | 2018-09-25 | Intel Corporation | Quantum well MOSFET channels having lattice mismatch with metal source/drains, and conformal regrowth source/drains |
Also Published As
Publication number | Publication date |
---|---|
EP1747589A1 (en) | 2007-01-31 |
KR20070032701A (en) | 2007-03-22 |
US20050258451A1 (en) | 2005-11-24 |
CN1998085B (en) | 2012-08-08 |
JP5160225B2 (en) | 2013-03-13 |
TW200539264A (en) | 2005-12-01 |
JP2007538402A (en) | 2007-12-27 |
CA2567066A1 (en) | 2005-12-15 |
US7432142B2 (en) | 2008-10-07 |
CN1998085A (en) | 2007-07-11 |
EP1747589B1 (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7432142B2 (en) | Methods of fabricating nitride-based transistors having regrown ohmic contact regions | |
US9666707B2 (en) | Nitride-based transistors with a cap layer and a recessed gate | |
US11316028B2 (en) | Nitride-based transistors with a protective layer and a low-damage recess | |
US7592211B2 (en) | Methods of fabricating transistors including supported gate electrodes | |
EP1817798B1 (en) | Cap layers and/or passivation layers for nitride-based transistors, transistor structures and methods of fabricating same | |
EP1522091B1 (en) | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses | |
US8946777B2 (en) | Nitride-based transistors having laterally grown active region and methods of fabricating same | |
EP1905097B1 (en) | Nitride-based transistors and fabrication methods with an etch stop layer | |
US8105889B2 (en) | Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005722846 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2567066 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007527194 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067026779 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580024502.7 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2005722846 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067026779 Country of ref document: KR |