CN105552108A - Forming method of non-alloy ohmic contact of GaN HEMT device - Google Patents
Forming method of non-alloy ohmic contact of GaN HEMT device Download PDFInfo
- Publication number
- CN105552108A CN105552108A CN201510896812.3A CN201510896812A CN105552108A CN 105552108 A CN105552108 A CN 105552108A CN 201510896812 A CN201510896812 A CN 201510896812A CN 105552108 A CN105552108 A CN 105552108A
- Authority
- CN
- China
- Prior art keywords
- ohmic contact
- layer
- gan
- sio
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000000956 alloy Substances 0.000 title abstract description 10
- 229910045601 alloy Inorganic materials 0.000 title abstract description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 27
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000000151 deposition Methods 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 11
- 238000009616 inductively coupled plasma Methods 0.000 claims description 7
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 238000005036 potential barrier Methods 0.000 claims 3
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 230000004888 barrier function Effects 0.000 abstract description 15
- 238000000137 annealing Methods 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 66
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 47
- 229910002601 GaN Inorganic materials 0.000 description 46
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/675—Group III-V materials, Group II-VI materials, Group IV-VI materials, selenium or tellurium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
Landscapes
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明提供了一种GaN?HEMT器件非合金欧姆接触的制作方法。其包括在Si衬底上依次形成GaN缓冲层、GaN沟道层和AlGaN势垒层;在AlGaN势垒层表面沉积SiO2介质,并在SiO2介质上覆盖掩膜层,采用光刻工艺在掩膜层上形成欧姆接触区域和非欧姆接触区域,其中,欧姆接触区域位于非欧姆接触区域两侧;对露出在欧姆接触区域内的SiO2介质进行刻蚀,以形成嵌入GaN沟道层内部的沟槽;在沟槽中生长n+GaN掺杂层;去除掩膜层和SiO2介质;在欧姆接触区域和非欧姆接触区域上沉积与GaN材料的功函数对应的欧姆接触金属层。本发明能够避免高温退火对GaN晶格带来的损伤。
The present invention provides a GaN? A method for making non-alloy ohmic contacts of HEMT devices. It includes sequentially forming a GaN buffer layer, a GaN channel layer and an AlGaN barrier layer on a Si substrate; depositing a SiO 2 medium on the surface of the AlGaN barrier layer, and covering a mask layer on the SiO 2 medium; An ohmic contact area and a non-ohmic contact area are formed on the mask layer, wherein the ohmic contact area is located on both sides of the non-ohmic contact area; the SiO2 dielectric exposed in the ohmic contact area is etched to form an embedded GaN channel layer. The trench; grow n+GaN doped layer in the trench; remove the mask layer and SiO 2 medium; deposit an ohmic contact metal layer corresponding to the work function of the GaN material on the ohmic contact area and the non-ohmic contact area. The invention can avoid damage to GaN crystal lattice caused by high temperature annealing.
Description
技术领域technical field
本发明涉及半导体器件技术领域,特别是涉及一种GaNHEMT器件非合金欧姆接触的制作方法。The invention relates to the technical field of semiconductor devices, in particular to a method for manufacturing non-alloy ohmic contacts of GaNHEMT devices.
背景技术Background technique
硅基芯片经历几十年发展,Si基CMOS器件尺寸不断缩小,其频率性能却不断提高,当特征尺寸达到25nm时,其fT可达490GHz。但Si材料的Johnson优值仅为0.5THzV,而尺寸的缩小使Si基CMOS器件的击穿电压远小于1V,这极大地限制了硅基芯片在超高速数字领域的应用。After decades of development of silicon-based chips, the size of Si-based CMOS devices has been continuously reduced, but its frequency performance has been continuously improved. When the feature size reaches 25nm, its f T can reach 490GHz. However, the Johnson figure of merit of Si material is only 0.5THzV, and the reduction in size makes the breakdown voltage of Si-based CMOS devices far less than 1V, which greatly limits the application of silicon-based chips in the ultra-high-speed digital field.
近年来,人们不断地寻找Si材料的替代品,由于宽禁带半导体氮化镓(GaN)材料具有超高的Johnson优值(可达到5THzV),其器件沟道尺寸达到10nm量级时,击穿电压仍能保持在10V左右,因此,GaN材料已逐渐引起国内外广泛的重视。随着,GaN材料在要求高转换效率和精确阈值控制、宽带、大动态范围的电路(如超宽带ADC、DAC)数字电子领域具有广阔和特殊的应用前景,GaN基逻辑器件已成为近几年超高速半导体领域研究的热点,正成为Si基CMOS高速电路在数模和射频电路领域的后续发展中的有力竞争者,是国家重点支持的尖端技术,堪称信息产业的“心脏”。In recent years, people are constantly looking for substitutes for Si materials. Since the wide-bandgap semiconductor Gallium Nitride (GaN) material has an ultra-high Johnson figure of merit (up to 5THzV), when the device channel size reaches the order of 10nm, it will hit The breakdown voltage can still be maintained at about 10V, therefore, GaN materials have gradually attracted widespread attention at home and abroad. As GaN materials have broad and special application prospects in the field of digital electronics that require high conversion efficiency and precise threshold control, broadband, and large dynamic range circuits (such as ultra-wideband ADCs, DACs), GaN-based logic devices have become a popular choice in recent years. The hotspot in the field of ultra-high-speed semiconductor research is becoming a strong competitor in the subsequent development of Si-based CMOS high-speed circuits in the field of digital-analog and radio-frequency circuits. It is a cutting-edge technology supported by the state and can be called the "heart" of the information industry.
目前,常规GaN器件由于GaN帽层的功函数较高,如果无法实现良好的欧姆接触,将导致器件功率衰退严重,为了解决这一问题,,业界通常采用高温退火方式来实现欧姆接触。然而,高温退火方式的温度达到850度,这么高的温度会对GaN晶格带来损伤,引起GaN器件的漏电和电流崩塌现象,影响了GaN器件的可靠性。因此,常规GaN器件的欧姆接触实现方式是阻碍GaN器件性能提高和实际应用的主要瓶颈。At present, due to the high work function of the GaN cap layer of conventional GaN devices, if a good ohmic contact cannot be achieved, the power of the device will be severely degraded. In order to solve this problem, the industry usually uses high-temperature annealing to achieve ohmic contact. However, the temperature of the high temperature annealing method reaches 850 degrees. Such a high temperature will cause damage to the GaN lattice, causing leakage and current collapse of the GaN device, and affecting the reliability of the GaN device. Therefore, the ohmic contact implementation of conventional GaN devices is the main bottleneck hindering the performance improvement and practical application of GaN devices.
发明内容Contents of the invention
本发明主要解决的技术问题是提供一种GaNHEMT器件非合金欧姆接触的制作方法,能够避免高温退火对GaN晶格带来的损伤。The main technical problem to be solved by the present invention is to provide a method for manufacturing non-alloy ohmic contacts of GaNHEMT devices, which can avoid damage to GaN lattice caused by high-temperature annealing.
为解决上述技术问题,本发明采用的一个技术方案是:提供一种GaNHEMT器件非合金欧姆接触的制作方法,包括:在Si衬底上由下而上依次形成GaN缓冲层、GaN沟道层和AlGaN势垒层,其中,所述GaN沟道层和AlGaN势垒层之间形成有二维电子气;在所述AlGaN势垒层表面沉积SiO2介质,并在所述SiO2介质上覆盖掩膜层,采用光刻工艺在所述掩膜层上形成欧姆接触区域和非欧姆接触区域,其中,所述欧姆接触区域位于所述非欧姆接触区域两侧;对露出在所述欧姆接触区域内的SiO2介质进行刻蚀,以形成嵌入所述GaN沟道层内部的沟槽;在所述沟槽中生长n+GaN掺杂层;去除所述掩膜层和所述SiO2介质;在所述欧姆接触区域和所述非欧姆接触区域上沉积与GaN材料的功函数对应的欧姆接触金属层。In order to solve the above technical problems, a technical solution adopted by the present invention is to provide a method for fabricating a non-alloy ohmic contact of a GaNHEMT device, comprising: sequentially forming a GaN buffer layer, a GaN channel layer and a GaN channel layer on a Si substrate from bottom to top. An AlGaN barrier layer, wherein a two-dimensional electron gas is formed between the GaN channel layer and the AlGaN barrier layer; a SiO 2 medium is deposited on the surface of the AlGaN barrier layer, and a mask is covered on the SiO 2 medium A film layer, forming an ohmic contact area and a non-ohmic contact area on the mask layer by using a photolithography process, wherein the ohmic contact area is located on both sides of the non-ohmic contact area; The SiO 2 medium is etched to form a trench embedded in the GaN channel layer; an n+GaN doped layer is grown in the trench; the mask layer and the SiO 2 medium are removed; An ohmic contact metal layer corresponding to the work function of the GaN material is deposited on the ohmic contact area and the non-ohmic contact area.
优选地,所述n+GaN掺杂层的掺杂浓度为1×1019-5×1019。Preferably, the doping concentration of the n+GaN doped layer is 1×10 19 -5×10 19 .
优选地,所述欧姆接触金属层为单层或多层结构。Preferably, the ohmic contact metal layer is a single-layer or multi-layer structure.
优选地,所述去除所述掩膜层和所述SiO2介质中,所述掩膜层和所述SiO2介质采用缓冲氧化蚀刻剂BOE溶液进行腐蚀。Preferably, in the removal of the mask layer and the SiO 2 medium, the mask layer and the SiO 2 medium are etched using a buffered oxide etchant BOE solution.
优选地,所述SiO2介质采用等离子体增强化学气相沉积法PECVD工艺沉积得到。Preferably, the SiO 2 medium is deposited by plasma enhanced chemical vapor deposition (PECVD).
优选地,所述SiO2介质采用电感耦合等离子体ICP工艺进行刻蚀。Preferably, the SiO 2 medium is etched by an inductively coupled plasma ICP process.
优选地,所述n+GaN掺杂层采用金属有机化合物沉积MOCVD工艺生长。Preferably, the n+GaN doped layer is grown by metal organic compound deposition MOCVD process.
区别于现有技术的情况,本发明的有益效果是:Being different from the situation of the prior art, the beneficial effects of the present invention are:
1.可以提高GaNHEMT器件的可靠性。1. It can improve the reliability of GaNHEMT devices.
2.可以减少欧姆接触部分的表面和边缘的粗糙度,有利于后续工艺。2. The roughness of the surface and edge of the ohmic contact part can be reduced, which is beneficial to the subsequent process.
3.由于n+GaN掺杂层的存在,欧姆接触电阻会比常规高温退火实现的欧姆接触电阻小一个数量级。3. Due to the existence of the n+GaN doped layer, the ohmic contact resistance will be an order of magnitude smaller than that achieved by conventional high-temperature annealing.
4.n+GaN掺杂层可以给GaN沟道层提供压应力,有效提高沟道中二维电子气的浓度。4. The n+GaN doped layer can provide compressive stress to the GaN channel layer, effectively increasing the concentration of two-dimensional electron gas in the channel.
附图说明Description of drawings
图1是本发明实施例GaNHEMT器件非合金欧姆接触的制作方法的流程示意图。FIG. 1 is a schematic flowchart of a method for fabricating a non-alloy ohmic contact of a GaNHEMT device according to an embodiment of the present invention.
图2-图7是采用本发明实施例的制作方法制作GaNHEMT器件的制作过程示意图。FIG. 2-FIG. 7 are schematic diagrams of the fabrication process of GaNHEMT devices fabricated using the fabrication method of the embodiment of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
参见图1,是本发明实施例GaNHEMT器件非合金欧姆接触的制作方法的示意图。本实施例的GaNHEMT器件非合金欧姆接触的制作方法包括以下步骤:Referring to FIG. 1 , it is a schematic diagram of a method for fabricating a non-alloy ohmic contact of a GaNHEMT device according to an embodiment of the present invention. The fabrication method of the GaNHEMT device non-alloy ohmic contact of the present embodiment comprises the following steps:
S1:在Si衬底上由下而上依次形成GaN缓冲层、GaN沟道层和AlGaN势垒层,其中,GaN沟道层和AlGaN势垒层之间形成有二维电子气。S1: A GaN buffer layer, a GaN channel layer and an AlGaN barrier layer are sequentially formed on a Si substrate from bottom to top, wherein a two-dimensional electron gas is formed between the GaN channel layer and the AlGaN barrier layer.
其中,如图2所示,Si衬底1、GaN缓冲层2、GaN沟道层3和AlGaN势垒层4为依次层叠的结构,二维电子气31形成在GaN沟道层3和AlGaN势垒层4之间。GaN沟道层3与AlGaN势垒层4会形成AlGaN/GaN异质结。Among them, as shown in Fig. 2, the Si substrate 1, the GaN buffer layer 2, the GaN channel layer 3 and the AlGaN barrier layer 4 are sequentially stacked, and the two-dimensional electron gas 31 is formed between the GaN channel layer 3 and the AlGaN barrier layer. Between barrier layers 4. The GaN channel layer 3 and the AlGaN barrier layer 4 will form an AlGaN/GaN heterojunction.
S2:在AlGaN势垒层表面沉积SiO2介质,并在SiO2介质上覆盖掩膜层,采用光刻工艺在掩膜层上形成欧姆接触区域和非欧姆接触区域,其中,欧姆接触区域位于非欧姆接触区域两侧。S2: Deposit SiO 2 medium on the surface of AlGaN barrier layer, and cover the mask layer on the SiO 2 medium, and use photolithography to form ohmic contact area and non-ohmic contact area on the mask layer, wherein the ohmic contact area is located in the non-ohmic contact area. Both sides of the ohmic contact area.
其中,如图3所示,SiO2介质5露出在欧姆接触区域61内,而非欧姆接触区域62内的SiO2介质5被掩膜层6覆盖,欧姆接触区域61位于边缘位置,非欧姆接触区域62位于中间位置。可选地,SiO2介质5采用PECVD(PlasmaEnhancedChemicalVaporDeposition,等离子体增强化学气相沉积法)工艺沉积得到。掩膜层6的材料可以为光刻胶。Wherein, as shown in Figure 3, the SiO2 dielectric 5 is exposed in the ohmic contact region 61, while the SiO2 dielectric 5 in the non-ohmic contact region 62 is covered by the mask layer 6, the ohmic contact region 61 is located at the edge position, and the non-ohmic contact region 62 is covered by the mask layer 6. Region 62 is located in the middle. Optionally, the SiO 2 medium 5 is deposited by PECVD (PlasmaEnhancedChemicalVaporDeposition, plasma enhanced chemical vapor deposition) process. The material of the mask layer 6 may be photoresist.
S3:对露出在欧姆接触区域内的SiO2介质进行刻蚀,以形成嵌入GaN沟道层内部的沟槽。S3: Etching the SiO 2 dielectric exposed in the ohmic contact region to form a trench embedded in the GaN channel layer.
其中,如图4所示,沟槽21深入GaN沟道层3内部。可选地,SiO2介质5采用ICP(InductivelyCoupledPlasma,电感耦合等离子体)工艺进行刻蚀。Wherein, as shown in FIG. 4 , the trench 21 goes deep into the GaN channel layer 3 . Optionally, the SiO 2 medium 5 is etched using an ICP (Inductively Coupled Plasma, Inductively Coupled Plasma) process.
S4:在沟槽中生长n+GaN掺杂层。S4: growing an n+GaN doped layer in the trench.
其中,如图5所示,n+GaN掺杂层7生长在沟槽21中,n+GaN掺杂层7的高度与AlGaN势垒层4平齐。可选地,n+GaN掺杂层7采用MOCVD(Metal-organicChemicalVaporDeposition,金属有机化合物沉积)工艺生长,并且在生长是采用自对准技术。n+GaN掺杂层7可以给后续在n+GaN掺杂层7上形成的源极和漏极区域提供隧穿电子,形成非合金欧姆接触。并且,n+GaN掺杂层7可以对沟道形成压应力,从而提高二维电子气的浓度。Wherein, as shown in FIG. 5 , the n+GaN doped layer 7 is grown in the trench 21 , and the height of the n+GaN doped layer 7 is even with the AlGaN barrier layer 4 . Optionally, the n+GaN doped layer 7 is grown by MOCVD (Metal-organic Chemical Vapor Deposition, metal-organic compound deposition) process, and self-alignment technology is used during growth. The n+GaN doped layer 7 can provide tunneling electrons to the source and drain regions subsequently formed on the n+GaN doped layer 7 to form a non-alloy ohmic contact. Moreover, the n+GaN doped layer 7 can form compressive stress on the channel, thereby increasing the concentration of the two-dimensional electron gas.
在本实施例中,n+GaN掺杂层7为高掺杂,其掺杂浓度可以为1×1019-5×1019。In this embodiment, the n+GaN doped layer 7 is highly doped, and its doping concentration may be 1×10 19 -5×10 19 .
S5:去除掩膜层和SiO2介质。S5: removing the mask layer and the SiO 2 dielectric.
其中,如图6所示,掩膜层6和SiO2介质5被去除后,完全露出n+GaN掺杂层7和AlGaN势垒层4。可选地,在去除掩膜层6和SiO2介质5步骤中,掩膜层6和SiO2介质5采用BOE(缓冲氧化蚀刻剂)溶液进行腐蚀。Wherein, as shown in FIG. 6 , after the mask layer 6 and the SiO 2 dielectric 5 are removed, the n+GaN doped layer 7 and the AlGaN barrier layer 4 are completely exposed. Optionally, in the step of removing the mask layer 6 and the SiO 2 dielectric 5, the mask layer 6 and the SiO 2 dielectric 5 are etched with a BOE (buffered oxide etchant) solution.
S6:在欧姆接触区域和非欧姆接触区域上沉积与GaN材料的功函数对应的欧姆接触金属层。S6: Depositing an ohmic contact metal layer corresponding to the work function of the GaN material on the ohmic contact region and the non-ohmic contact region.
其中,如图7所示,欧姆接触金属层41覆盖n+GaN掺杂层7和AlGaN势垒层4。可选地,欧姆接触金属层41为单层或多层结构,例如为Ti/Al/Ni/Au结构。Wherein, as shown in FIG. 7 , the ohmic contact metal layer 41 covers the n+GaN doped layer 7 and the AlGaN barrier layer 4 . Optionally, the ohmic contact metal layer 41 is a single-layer or multi-layer structure, such as a Ti/Al/Ni/Au structure.
通过上述方式,本发明实施例的GaNHEMT器件非合金欧姆接触的制作方法通过在沟槽中再生长n+GaN掺杂层的方式,只需要低温退火即可形成良好的欧姆接触,从而能够避免高温退火对GaN晶格带来的损伤,可以提高GaNHEMT器件的可靠性,提高沟道二维电子气的浓度,为更大规模、更复杂的数字与射频电路集成奠定了良好基础,具有易于实现、成本低和可靠性强等优点,易于在微波、毫米波化合物半导体电路制作中采用和推广。Through the above method, the method for fabricating the non-alloy ohmic contact of the GaNHEMT device in the embodiment of the present invention only needs low-temperature annealing to form a good ohmic contact by regrowing the n+GaN doped layer in the trench, thereby avoiding high temperature The damage caused by annealing to the GaN lattice can improve the reliability of GaNHEMT devices, increase the concentration of two-dimensional electron gas in the channel, and lay a good foundation for larger-scale and more complex digital and radio frequency circuit integration. It is easy to implement, It has the advantages of low cost and strong reliability, and is easy to adopt and popularize in the production of microwave and millimeter wave compound semiconductor circuits.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only an embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, all of which are equally included in the scope of patent protection of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510896812.3A CN105552108A (en) | 2015-12-07 | 2015-12-07 | Forming method of non-alloy ohmic contact of GaN HEMT device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510896812.3A CN105552108A (en) | 2015-12-07 | 2015-12-07 | Forming method of non-alloy ohmic contact of GaN HEMT device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105552108A true CN105552108A (en) | 2016-05-04 |
Family
ID=55831191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510896812.3A Pending CN105552108A (en) | 2015-12-07 | 2015-12-07 | Forming method of non-alloy ohmic contact of GaN HEMT device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105552108A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107993934A (en) * | 2017-12-08 | 2018-05-04 | 中国科学院微电子研究所 | Method for enhancing ohmic contact of gallium oxide semiconductor device |
CN108493111A (en) * | 2018-06-01 | 2018-09-04 | 苏州汉骅半导体有限公司 | Method, semi-conductor device manufacturing method |
CN118016531A (en) * | 2024-02-05 | 2024-05-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method and application for improving surface morphology of Ga-containing alloy compound selective secondary epitaxy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030129820A1 (en) * | 2001-10-16 | 2003-07-10 | Wladyslaw Walukiewicz | Co-implantation of group VI elements and N for formation of non-alloyed Ohmic contacts for n-type semiconductors |
CN1998085A (en) * | 2004-05-20 | 2007-07-11 | 克里公司 | Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions |
CN103797581A (en) * | 2011-07-18 | 2014-05-14 | 埃皮根股份有限公司 | Method for growing iii-v epitaxial layers and semiconductor structure |
-
2015
- 2015-12-07 CN CN201510896812.3A patent/CN105552108A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030129820A1 (en) * | 2001-10-16 | 2003-07-10 | Wladyslaw Walukiewicz | Co-implantation of group VI elements and N for formation of non-alloyed Ohmic contacts for n-type semiconductors |
CN1998085A (en) * | 2004-05-20 | 2007-07-11 | 克里公司 | Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions |
CN103797581A (en) * | 2011-07-18 | 2014-05-14 | 埃皮根股份有限公司 | Method for growing iii-v epitaxial layers and semiconductor structure |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107993934A (en) * | 2017-12-08 | 2018-05-04 | 中国科学院微电子研究所 | Method for enhancing ohmic contact of gallium oxide semiconductor device |
CN107993934B (en) * | 2017-12-08 | 2020-09-11 | 中国科学院微电子研究所 | Method for enhancing ohmic contact of gallium oxide semiconductor device |
CN108493111A (en) * | 2018-06-01 | 2018-09-04 | 苏州汉骅半导体有限公司 | Method, semi-conductor device manufacturing method |
US11049718B2 (en) | 2018-06-01 | 2021-06-29 | Suzhou Han Hua Semiconductor Co., Ltd. | Fabrication of group III-nitride semiconductor devices |
CN118016531A (en) * | 2024-02-05 | 2024-05-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method and application for improving surface morphology of Ga-containing alloy compound selective secondary epitaxy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107946358B (en) | An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and a manufacturing method thereof | |
CN102810564B (en) | A kind of radio-frequency devices and preparation method thereof | |
CN104201104A (en) | Manufacturing method for gallium nitride-based enhanced device | |
CN105845723A (en) | Enhanced GaN-based high electron mobility transistor and preparation method thereof | |
CN102709321A (en) | Enhanced switch element and production method thereof | |
CN112968059B (en) | A Novel Enhancement Mode GaN HEMT Device Structure | |
JP2014199864A (en) | Semiconductor device and method of manufacturing the same | |
CN110429127B (en) | Gallium nitride transistor structure and preparation method thereof | |
CN111554742A (en) | Preparation method of GaN HEMT device | |
CN114899227A (en) | Enhanced gallium nitride-based transistor and preparation method thereof | |
CN105355659A (en) | Trench-gate AlGaN/GaN HEMT device structure and manufacturing method | |
CN106684151A (en) | GaN side wall insulated gate fin-type high-electron mobility transistor and manufacturing method thereof | |
CN106257686A (en) | Semiconductor device and manufacture method thereof | |
CN104037221A (en) | Compound field plate high-performance AlGaN/GaN HEMT element structure based on polarization effect and manufacturing method | |
CN105552108A (en) | Forming method of non-alloy ohmic contact of GaN HEMT device | |
CN116387246A (en) | p-GaN enhanced MIS-HEMT device and preparation method thereof | |
CN108417628A (en) | A kind of GaN HEMT device and preparation method | |
CN207925477U (en) | A kind of AlGaN/GaN hetero-junctions HEMT devices with Si-CMOS process compatibles | |
CN110600549A (en) | Enhanced AlGaN/GaN MOS-HEMT device structure and preparation method thereof | |
CN104064595A (en) | An Enhanced AlGaN/GaN MISHEMT Device Structure and Fabrication Method Based on Groove Gate Structure | |
CN104037222B (en) | High-voltage trench gate AlGaN/GaN HEMT device structure based on organic polymer polarization effect and manufacturing method of high-voltage trench gate AlGaN/GaN HEMT device structure based on organic polymer polarization effect | |
CN106449737A (en) | Low-contact resistor type GaN-based device and manufacturing method thereof | |
CN111223928A (en) | Gate finger gradually widened GaN FinFET structure and preparation method thereof | |
CN107195670B (en) | GaN-based enhanced MOS-HEMT device and preparation method thereof | |
CN105374870A (en) | HEMT epitaxial structure with sub-threshold barrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160504 |