WO2005119666A1 - 光ディスク装置 - Google Patents

光ディスク装置 Download PDF

Info

Publication number
WO2005119666A1
WO2005119666A1 PCT/JP2005/009685 JP2005009685W WO2005119666A1 WO 2005119666 A1 WO2005119666 A1 WO 2005119666A1 JP 2005009685 W JP2005009685 W JP 2005009685W WO 2005119666 A1 WO2005119666 A1 WO 2005119666A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
drive current
optical disc
optical pickup
stepping motor
Prior art date
Application number
PCT/JP2005/009685
Other languages
English (en)
French (fr)
Inventor
Takaharu Shigeta
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004163221A external-priority patent/JP4480003B2/ja
Priority claimed from JP2004163222A external-priority patent/JP4480004B2/ja
Priority claimed from JP2004163223A external-priority patent/JP2005346789A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05743172A priority Critical patent/EP1752977A4/en
Priority to US11/569,517 priority patent/US7623417B2/en
Publication of WO2005119666A1 publication Critical patent/WO2005119666A1/ja
Priority to US12/539,861 priority patent/US7940607B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/0857Arrangements for mechanically moving the whole head
    • G11B7/08582Sled-type positioners

Definitions

  • the present invention relates to an optical disc device provided with an optical pickup that performs at least one of reading and writing of information on a disc-shaped optical recording medium.
  • an optical disk When reading information from or writing information to a disk-shaped optical recording medium (hereinafter referred to as an optical disk) such as a CD or DVD, the optical disk is rotated by a spindle motor in an optical disk device. It is necessary to move the optical pickup in the radial direction (traverse direction) of the optical disk while scanning, and scan the tracks on the optical disk.
  • a stepping motor has often been used as a feed mechanism for such an optical pickup in the radial direction of the disk.
  • the stepping motor can be positioned at a small rotation angle according to the applied pulse train, and can perform high-speed feeding by sending the optical pickup to be driven by a direct drive. Are suitable.
  • FIG. 15 is a diagram showing the rotation speed-torque characteristics of the stepping motor.
  • the horizontal axis indicates the pulse rate of the drive pulse signal supplied as the drive current, that is, the rotation speed of the stepping motor
  • the vertical axis indicates the torque at the time of rotation of the stepping motor.
  • the feed operation of the optical pickup includes an operation of intermittently feeding tens; about zm when reading or writing information on the optical disk (hereinafter referred to as an optical axis correction feed operation) and a high speed operation up to a designated track. And a seek operation for feeding a large distance.
  • a two-phase excitation drive is used for a seek operation that requires a high-speed movement of the optical pickup, and a micro-step drive is performed for an optical axis correction feed operation that requires a fine feed control of about several tens / zm.
  • the objective lens of the optical pickup moves in the traverse direction following the track recorded spirally or concentrically on the optical disc in order to scan the track on the optical disc. I do.
  • the position of the objective lens with respect to the track of the optical disk is controlled by the tracking actuator of the optical pickup. Since the movable range of the tracking actuator of the optical pickup is limited, the center of the optical pickup base is shifted by a predetermined amount when the objective lens is shifted by a predetermined amount.
  • the stepping motor is controlled to move the table in the traverse direction by about several tens of ⁇ m .
  • the stepping motor during the optical axis correction feed operation performs the feed operation by micro-step driving.
  • Micro-step drive as shown in Fig. 16, is to apply a sinusoidal drive current to each terminal of a stepping motor to rotate the motor smoothly and at a rotation angle equal to or less than the motor-specific step angle.
  • the optical pickup can be finely fed while suppressing the generation of vibration.
  • Patent Document 1 JP-A-10-149639
  • the present invention has been made in view of the above circumstances, and is more suitable for a drive mechanism of an optical pickup using a stepping motor, which is wider and stabilizes the feeding operation of the optical pickup even under an operating temperature environment. It is an object of the present invention to provide an optical disk device that can perform a drama.
  • the optical disc device of the present invention comprises, firstly, an optical pickup for reading information recorded on an optical disc, a stepping motor for moving the optical pickup in a radial direction with respect to the optical disc, and driving the stepping motor.
  • a drive current supply means for supplying a drive current for performing microstep driving, a temperature detection means for detecting an ambient temperature of the optical pickup, and a microphone port in accordance with the detected ambient temperature.
  • Drive control means for controlling the drive of the stepping motor by changing the drive current at the time of performing the step drive.
  • the stepping motor can be driven with an appropriate torque for a load that changes depending on the temperature by changing the driving current when performing the micro-step driving of the stepping motor according to the ambient temperature. It is possible to stabilize the feed operation of the optical pickup in a temperature environment.
  • the driving current supply unit performs a predetermined time with respect to the stepping motor when performing the micro-step driving.
  • the drive control means supplies an intermittent drive current having a width, and the drive control means changes the supply time width of the drive current according to the ambient temperature.
  • the stepping motor can be driven with an appropriate torque that matches the load that changes depending on the temperature. This prevents the device from being used and allows the device to be used over a wide temperature range.
  • the drive control means reduces a supply time width of the drive current when the ambient temperature is equal to or lower than a predetermined temperature. It shall be changed to the increased value.
  • the drive control device further includes a temperature coefficient conversion table storing a temperature coefficient corresponding to the ambient temperature.
  • the means obtains a temperature coefficient corresponding to the ambient temperature using the temperature coefficient conversion table, and determines a supply time width of the drive current.
  • the optical disc device of the present invention includes an optical pickup for reading information recorded on an optical disc, a stepping motor for moving the optical pickup in a radial direction with respect to the optical disc, and a drive for driving the stepping motor.
  • a drive current supply means capable of two-phase excitation drive and micro-step drive, and the operation when the optical pickup is moved by the two-phase excitation drive ends normally.
  • Two-phase excitation drive determining means for determining whether or not the driving has been performed, and controlling the drive of the stepping motor by changing the drive current for performing the microstep drive according to the determination result.
  • Drive control means for controlling the drive of the stepping motor by changing the drive current for performing the microstep drive according to the determination result.
  • the drive current when performing the micro-step drive of the stepping motor according to the result of determining whether the optical pickup moving operation by the two-phase excitation drive has been completed normally, it is possible to appropriately handle a load that changes with temperature.
  • the stepping motor can be driven with a high torque, and the feeding operation of the optical pickup can be stabilized in a wide and operating temperature environment.
  • the optical disk device further includes a drive current variable unit that changes a drive current when performing the two-phase excitation drive.
  • a drive current variable unit that changes a drive current when performing the two-phase excitation drive.
  • the driving current variable means changes a current amplitude of a driving current when performing the two-phase excitation driving. It should be changed.
  • the current drive unit determines a current amplitude value of the drive current at which a feed operation by the two-phase excitation drive can be performed normally.
  • Current driving means for supplying an intermittent driving current having a predetermined time width to the stepping motor when the microstep driving is performed; Means that the supply time width of the drive current is changed according to the current amplitude value of the drive current.
  • an optical pickup position detecting means for detecting completion of movement of the optical pickup to a predetermined position on an inner circumference of the optical disc.
  • Movement completion current amplitude determination means for performing the two-phase excitation drive and determining a current amplitude value of the drive current such that the optical pickup completes the movement to the predetermined position on the inner circumference within a predetermined time.
  • the drive current supply means supplies an intermittent drive current of a predetermined time width to the stepping motor when performing the micro-step drive, and the drive control means controls the drive current of the drive current. The supply time width is changed according to the current amplitude value of the drive current.
  • the supply time width of the drive current in the micro step drive is changed according to the current amplitude value of the drive current such that the optical pickup completes the movement to the predetermined position on the inner circumference within the predetermined time by performing the two-phase excitation drive.
  • the stepping motor can be driven with an appropriate torque that matches the load that changes with temperature, preventing malfunctions when reading or writing information and using the device over a wide temperature range. It will be possible.
  • the drive control means supplies the drive current when the current amplitude value is equal to or more than a predetermined value. It is assumed that the time width is changed to a value with increased calories.
  • the stepping motor can be driven with an appropriate torque.
  • the optical pickup position detecting means for detecting completion of movement of the optical pickup to a predetermined position on the inner circumference of the optical disk.
  • a movement time determining means for performing the two-phase excitation drive to determine a movement time for the optical pickup to move to the predetermined position on the inner circumference, wherein the drive current supply means performs the micro step drive.
  • the drive control means changes the supply time width of the drive current in accordance with the movement time of the optical pickup.
  • the load that changes with temperature can be reduced.
  • the stepping motor can be driven with the appropriate and appropriate torque, and the operation failure during reading or writing of information can be prevented, and the device can be used in a wide temperature range.
  • the drive control means increases a supply time width of the drive current when the movement time is equal to or longer than a predetermined value. It shall be changed to the value made.
  • the driving current supply time width is increased, for example, in a low temperature region or the like.
  • the stepping motor can be driven with an appropriate torque for the load.
  • the optical disc apparatus of the present invention is thirteenth an optical pickup for reading information recorded on an optical disc, a stepping motor for moving the optical pickup in a radial direction with respect to the optical disc, and a stepping motor.
  • a two-phase excitation drive and a micro-step drive are possible, and intermittent drive of a predetermined time width with respect to the stepping motor when the micro-step drive is performed.
  • a drive current supply means for supplying a current; a drive current variable means for changing a pulse rate of the drive current when performing the two-phase excitation drive; and a drive current moving means for moving the optical pickup by the two-phase excitation drive.
  • Two-phase excitation drive determining means for determining whether or not the operation has been normally completed; and performing the micro-step drive according to the determination result. Change the supply time width of the driving current in which and a drive control means for controlling the driving of the stepping motor.
  • the drive current when performing the micro-step drive of the stepping motor according to the result of determining whether the optical pickup moving operation by the two-phase excitation drive has been completed normally, it is possible to appropriately handle a load that changes with temperature.
  • the stepping motor can be driven with a high torque, and the width is wide and the feed operation of the optical pickup is stable under the operating temperature environment. It will be possible to make him ditch.
  • the drive current variable means adjusts a pulse rate of a drive current when performing the two-phase excitation drive. It is assumed that it is changed.
  • the normal drive which determines a pulse rate of the drive current that can normally perform a feed operation by the two-phase excitation drive It has pulse rate determination means, and the drive control means changes the supply time width of the drive current according to the pulse rate of the drive current.
  • the stepping motor can be driven by the torque, and the operation failure at the time of reading or writing information can be prevented, and the device can be used in a wide temperature range.
  • the optical pickup device detects the completion of movement of the optical disc to a predetermined position on the inner circumference of the optical disc.
  • Means for determining the pulse rate of the drive current so as to perform the two-phase excitation drive and complete the movement of the optical pickup to the predetermined position in the inner circumference within a predetermined time.
  • the drive control means changes a supply time width of the drive current according to a pulse rate of the drive current.
  • the supply time width of the drive current in the micro-step drive is changed according to the pulse rate of the drive current such that the optical pickup completes the movement to the predetermined position on the inner circumference within the predetermined time by performing the two-phase excitation drive.
  • the stepping motor can be driven with an appropriate torque that matches the load that changes with temperature, preventing malfunctions when reading or writing information, and allowing the device to be used over a wide temperature range.
  • the drive control means supplies the drive current when the pulse rate is equal to or lower than a predetermined value. It is assumed that the time width is changed to a value with increased calories.
  • the pulse rate of the drive current at which the feed operation by the two-phase excitation drive can be performed normally is equal to or less than a predetermined value
  • the supply time width of the drive current is increased.
  • the stepping motor can be driven with an appropriate torque.
  • the optical pickup detects the completion of movement of the optical disk to a predetermined position on the inner circumference of the optical disk.
  • the load that changes with temperature can be reduced.
  • the stepping motor can be driven with the appropriate and appropriate torque, and the operation failure during reading or writing of information can be prevented, and the device can be used in a wide temperature range.
  • the drive control means increases a supply time width of the drive current when the movement time is equal to or longer than a predetermined value. It shall be changed to the value made.
  • the driving current supply time width is increased, for example, in a low temperature region or the like.
  • the stepping motor can be driven with an appropriate torque for the load.
  • a determination regarding drive of the optical pickup by the two-phase excitation drive is performed. Suppose that it is performed at the time of the inner circumference feeding operation for initializing the optical pickup position immediately after. This allows the optical pickup to be driven by the two-phase excitation drive, such as a force that normally completes the operation when the optical pickup is moved by the two-phase excitation drive when the optical pickup position is initialized immediately after the device is started. Then, it is possible to control the drive current when performing the micro-step drive.
  • the present invention provides, in a twenty-first aspect, an in-vehicle device including any one of the above optical disk devices.
  • the feeding operation of the optical pickup can be stabilized irrespective of the ambient temperature, and malfunction occurs. Can be prevented.
  • an optical disc apparatus that can stably feed the optical pickup even under a wide range of operating temperature environment is provided for an optical pickup driving mechanism using a stepping motor. Can be provided.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical disc device according to first and second embodiments of the present invention.
  • FIG. 2 is a flowchart showing a procedure of a current supply time setting operation of micro-step driving according to the first embodiment.
  • FIG. 3 is a diagram showing a drive current at the time of microstep driving of the stepping motor according to the first embodiment.
  • FIG. 4 is a flowchart showing a procedure of a current supply time setting operation of micro-step driving according to the second embodiment.
  • FIG. 5 is a diagram showing a drive current at the time of microstep driving of a stepping motor according to a second embodiment.
  • FIG. 6 is a block diagram illustrating a schematic configuration of an optical disc device according to a third embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a procedure of a current supply time setting operation of micro-step driving in the third embodiment.
  • FIG. 8 A two-phase excitation drive of a stepping motor during an inner circumferential seek operation according to a third embodiment. Diagram showing dynamic current
  • FIG. 9 is a diagram showing a drive current at the time of microstep driving of a stepping motor according to a third embodiment.
  • FIG. 10 is a block diagram illustrating a schematic configuration of an optical disc device according to a fourth embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a procedure of a current supply time setting operation of micro-step driving according to the fourth embodiment.
  • FIG. 12 is a diagram showing a relationship between a torque and a torque of a drive current of a stepping motor according to a fourth embodiment.
  • FIG. 13 is a diagram showing a two-phase excitation drive current of a stepping motor during an inner circumferential seek operation according to a fourth embodiment.
  • FIG. 14 is a diagram showing a drive current at the time of microstep driving of a stepping motor according to a fourth embodiment.
  • FIG. 16 A diagram showing a drive current at the time of micro-step drive of a stepping motor.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical disc device according to the first and second embodiments of the present invention.
  • an optical disk device that optically performs at least one of reading and writing of information by using an optical disk such as a CD or a DVD as a recording medium.
  • This optical disk device is suitable for in-vehicle devices such as a CD player, a DVD player, and a navigation device.
  • the optical disk device includes a spindle motor 2 that holds and rotates the optical disk 1, an optical pickup 3 that irradiates a laser beam to the optical disk 1 to read and write information, and an optical pickup 3 that And a stepping motor 4 for moving in the radial direction.
  • a spiral track is formed from the inner circumference to the outer circumference (or from the outer circumference to the inner circumference), and various information is recorded on this track.
  • the optical pickup 3 includes a laser light emitting diode as a light source, a photodetector as a light receiving unit, and various optical element components, and focuses a laser beam for recording and Z reproduction on a recording surface of the optical disc 1.
  • An objective lens 5 for driving the objective lens 5, an actuator 6 for driving the objective lens 5, and a base 7 on which the above components are assembled are provided.
  • a guide shaft 8 extending in the radial direction of the optical disc 1 is passed through the base 7 of the optical pickup 3, and the base 7 can slide along the guide shaft 8.
  • the guide shaft 8 supports the optical pickup 3 and has a guide function for moving the optical pickup 3 radially inward and outward of the optical disc 1 when the optical pickup 3 moves.
  • the rotation shaft 9 of the stepping motor 4 extends parallel to the guide shaft 8.
  • the rotary shaft 9 has a feed screw 10 formed therein, and the feed screw 10 is fixed to the base 7 of the optical pickup 3.
  • the screw receiver 11 is engaged with the feed screw 10.
  • the optical disc device includes a spindle motor drive unit 12 for driving the spindle motor 2, an optical pickup drive unit 13 for driving the actuator 6 of the optical pickup 3, and a stepping motor drive unit 14 for driving the stepping motor 4.
  • a head amplifier 15 that amplifies the read signal read by the optical pickup 3
  • a signal processing unit 16 that processes an output signal of the head amplifier 15, and a temperature sensor that detects the temperature inside the device as the ambient temperature of the optical pickup 3. 17 is provided.
  • the optical disc device includes a controller 20 including a processor that controls each unit.
  • the controller 20 includes a spindle motor control unit 21, an optical pickup control unit 22, a stepping motor control unit 23, and a lens shift amount detection unit 24.
  • the steering motor control unit 23 includes a drive current supply time determination unit 31, a temperature current supply time conversion table 32, and a drive current profile generation unit 33.
  • the spindle motor drive unit 12 generates a drive current for driving the spindle motor 2 to rotate, and the spindle motor control unit 21 controls the spindle motor 2 to rotate at a predetermined rotational speed.
  • the drive current output from the spindle motor drive unit 12 is controlled as described above.
  • the optical pickup 3 reads and writes information recorded on the optical disc 1 that is rotated by the spindle motor 2 while the inner peripheral force of the optical disc 1 also moves in the radial direction from the outer circumference (or from the outer circumference to the inner circumference). At this time, the laser light is focused on the pit on the track of the optical disc 1 by the objective lens 5 of the optical pickup 3.
  • the actuator 6 of the optical pickup 3 includes a focus actuator that moves the objective lens 5 in the focusing direction (a direction normal to the recording surface of the optical disc 1) and a focus actuator that moves the objective lens 5 in the tracking direction (recording of the optical disc 1). (A direction perpendicular to the track in the plane).
  • the focus actuator focuses the laser beam, and the tracking actuator focuses the track on the optical disc 1. Positional correction is performed for this.
  • the head amplifier 15 amplifies the signal read by the optical pickup 3, generates and outputs a focus error (FE) signal, a tracking error (TE) signal, and an RF signal of a read signal.
  • the signal processing unit 16 performs demodulation and error correction of the RF signal amplified by the head amplifier 15 and outputs the result to the controller 20.
  • the optical pickup drive section 13 generates a drive current for driving the actuator 6 of the optical pickup 3.
  • the optical pickup control unit 22 in the controller 20 transmits a control signal for controlling the position of the objective lens 5 based on the focus error signal and the tracking error signal output from the head amplifier 15 to the optical pickup drive unit 13 Output to Based on this control signal, the optical pickup driving section 13 drives the focus actuator / tracking actuator of the optical pickup 3.
  • the lens shift amount detector 24 detects the shift amount of the objective lens 5 shifted with respect to the center of the base 7 of the optical pickup 3.
  • the feed screw 10 is an output shaft of the stepping motor 4, and when the stepping motor 4 rotates, its rotating force is transmitted from the feed screw 10 via the feed screw receiver 11, and the base of the optical pickup 3 is provided. 7 moves in the radial direction of the optical disc 1.
  • grease is applied between the feed screw 10 and the feed screw receiver 11 to secure the wear resistance of the sliding portion.
  • the stepping motor 4 is rotated by a driving current of as much as 14 stepping motor driving units.
  • the stepping motor control unit 23 controls the driving current output from the stepping motor driving unit 14.
  • the drive current supply time determination unit 31 of the stepping motor control unit 23 receives a detection signal of the internal temperature of the optical disk device detected by the temperature sensor 17.
  • the drive current supply time determination unit 31 determines the drive current supply time during micro-step drive based on the temperature detection signal and the output of the temperature / current supply time conversion table 32.
  • the drive current profile generation unit 33 generates a drive current profile having a sinusoidal envelope for microstep driving according to the supply time width determined by the drive current supply time determination unit 31 and generates the stepping motor drive unit 14. Output to
  • an optical axis correction feed operation is performed.
  • the actuator 6 moves so that the objective lens 5 follows the track of the optical disc 1 and moves in the radial direction (from the inner circumference to the outer circumference or from the outer circumference to the inner circumference). Controlled. While reading or writing information, the objective lens 5 undergoes a lens shift in which the center force of the base 7 of the optical pickup 3 gradually shifts.
  • a drive current for performing micro-step driving from the stepping motor driving unit 14 to move the stepping motor 4 by a predetermined amount is applied according to a control signal from the stepping motor control unit 23. Is done.
  • the base 7 of the optical pickup 3 moves to cancel the lens shift by the micro-step drive of the stepping motor 4
  • the stepping motor 4 is stopped. The above operation is continuously performed until the objective lens 5 completes reading the last address of the optical disc 1 or the last address of the information reading section specified by the operator, and when the address is reached, the optical axis correction feed operation is performed. finish.
  • the drive current control when the stepping motor 4 is driven by the micro-step during the optical axis correction feed operation is performed as follows.
  • two examples of the first and second embodiments are shown.
  • FIG. 2 is a flowchart illustrating a procedure of a current supply time setting operation of the micro-step drive according to the first embodiment.
  • the first embodiment is an example in which the current supply time is switched to be longer when the temperature is equal to or lower than a predetermined temperature in accordance with a detection signal of the temperature inside the device output from the temperature sensor 17.
  • Step S21 When the drive current supply time setting operation at the time of micro-step driving is started (Step S21), the temperature ⁇ ⁇ ⁇ in the optical disk device is measured as the ambient temperature of the optical pickup 3 by the temperature sensor 17 (Step S22). . Then, the drive current supply time determination unit 31 determines that the temperature sensor f
  • the internal temperature ⁇ detected by the sensor 17 is compared with a predetermined reference temperature ⁇ (step S23).
  • step S23 when it is determined that the temperature ⁇ in the device is equal to or lower than the reference temperature ⁇ , the drive current supply time determination unit 31 determines that the optical disk device is used in a low-temperature environment, and Set the drive current supply time width to a fixed value current supply time t longer than the current supply time t at room temperature (step S24), and set the drive current supply time
  • step S23 if it is determined in step S23 that the temperature ⁇ in the device is higher than the reference temperature ⁇ , the drive current supply time determination unit 31 sets the supply time width of the drive current for micro-step drive to the current supply time at room temperature. Set to t (step S26), and the drive current supply time setting operation ends (step S25).
  • FIG. 3 is a diagram showing a driving current at the time of micro-step driving of the stepping motor according to the first embodiment. If the internal temperature of the device is higher than the reference temperature, set the supply time width of the drive current to the current supply time at normal temperature, as shown in Fig. 3 (a), and set the envelope to a sine wave and pulse shape. Is supplied from the stepping motor drive unit 14. When the internal temperature 0 is lower than the reference temperature 0, the drive current supply time width is set to the low-temperature current supply time t as shown in Fig. 3 (b), and the drive current is supplied so that the supply time width becomes longer. Cut
  • the supply time width of the drive current at the time of microstep driving is changed in accordance with the internal temperature of the optical disk device detected by the temperature sensor, and the internal temperature of the device is set to a predetermined value. If the temperature is lower than the temperature, set the supply time width of the drive current to be longer than at normal temperature. This enables the stepping motor to be driven with an appropriate torque even in a low-temperature environment when performing the optical axis correction feed operation when the lens shift of the objective lens exceeds a predetermined amount, and the optical disk device operates stably. Can be done.
  • FIG. 4 is a flowchart illustrating a procedure of a current supply time setting operation of the micro-step drive according to the second embodiment.
  • the second embodiment is an example in which a temperature coefficient is calculated using a temperature / current supply time conversion table 32 in accordance with a detection signal of the temperature inside the device output from the temperature sensor 17 and the current supply time is set. is there.
  • step S 31 When the drive current supply time setting operation at the time of the micro step drive is started (step S 31), the temperature inside the optical disk device is set as the ambient temperature of the optical pickup 3 by the temperature sensor 17. The degree ⁇ is measured (step S32). Then, the drive current supply time determination unit 31 determines that the temperature sensor f
  • a temperature difference 0 between the internal temperature 0 detected by the sensor 17 and a predetermined reference temperature 0 is calculated (step S17).
  • Step S33 Then, based on the temperature-current supply time conversion table 32, the temperature difference ⁇
  • the drive current supply time determination unit 31 sets the current supply time t obtained by multiplying the reference current supply time t at room temperature by the temperature coefficient k as the drive current supply time width (step c f
  • FIG. 5 is a diagram showing a driving current at the time of micro-step driving of the stepping motor according to the second embodiment. If the internal temperature 0 is higher than the reference temperature 0,
  • the temperature coefficient k is set to 1, and as shown in FIG.
  • the supply time width is set to the current supply time t at normal temperature, and the stepping motor drive unit 14 supplies a pulsed drive current having a sinusoidal envelope.
  • the drive current is switched so that the width becomes longer. At this time, the supply time width of the drive current depends on the temperature inside the device ⁇
  • the temperature coefficient is calculated based on the internal temperature of the optical disk device detected by the temperature sensor, and the reference current supply time is multiplied by the temperature coefficient to obtain the reference temperature.
  • the supply time width of the drive current at the time of microstep driving is changed. At this time, if the temperature in the device is low, the drive current supply time width is set to be long.
  • the predetermined amount is set to suppress the current consumption and reduce the amount of heat generation. If the drive current is supplied intermittently at intervals of time, the temperature inside the device By setting the drive current supply time width in accordance with the detected internal temperature of the device, the motor can be driven with a torque that matches the load torque during use. For this reason, in the drive mechanism of the optical pickup using the stepping motor, the feeding operation of the optical pickup can be stabilized even under a wide range of operating temperature environments.
  • FIG. 6 is a block diagram showing a schematic configuration of an optical disc device according to the third embodiment of the present invention. Note that the same components as those in the first and second embodiments described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the optical disc device includes an inner peripheral switch 18 that is turned on when the optical pickup 3 reaches a predetermined position on the inner peripheral portion of the optical disc 1.
  • the optical disk device includes a controller 50 including a processor that controls each unit.
  • the controller 50 includes a spindle motor control unit 21, an optical pickup control unit 22, a lens shift amount detection unit 24, a timer 41, an inner circumference position detection unit 42, a movement time determination unit 43, and a steering motor control unit 51. Be composed.
  • the stepping motor control unit 51 includes a two-phase excitation drive control unit 52, a microstep drive control unit 53, and a two-phase excitation drive current amplitude value current supply time conversion table 54.
  • the two-phase excitation drive control unit 52 includes a two-phase excitation drive current amplitude value determination unit 55 and a two-phase excitation drive current profile generation unit 56.
  • the micro step drive control section 53 has a micro step drive current supply time determination section 57 and a micro step drive current profile generation section 58.
  • the optical pickup control unit 22 in the controller 50 transmits a control signal for controlling the position of the objective lens 5 based on the focus error signal and the tracking error signal output from the head amplifier 15. Output to pickup drive unit 13. Based on this control signal, the focus actuator / tracking actuator of the optical pickup 3 is driven by the optical pickup driving unit 13.
  • the lens shift amount detector 24 detects the shift amount of the objective lens 5 shifted with respect to the center of the base 7 of the optical pickup 3.
  • the feed screw 10 is an output shaft of the stepping motor 4, and when the stepping motor 4 rotates, its rotating force is transmitted from the feed screw 10 via the feed screw receiver 11, and the base of the optical pickup 3. 7 moves in the radial direction of the optical disc 1.
  • the stepping motor 4 is rotated by a drive current of as much as 14 stepping motor driving units.
  • the stepping motor control unit 51 in the controller 50 controls the drive current output from the stepping motor drive unit 14, and the two-phase excitation drive control unit 52 and the microstep drive control unit 53 perform two-phase excitation drive. It is possible to switch between micro-step driving and drive control.
  • the inner peripheral position detector 42 receives an output signal from the inner peripheral switch 18, detects that the optical pickup 3 has moved to a predetermined position on the inner periphery of the optical disc 1 by turning on the inner peripheral switch 18, and detects it.
  • the signal is output to the movement time determination unit 43.
  • the timer 41 measures the moving time when the optical pickup 3 is moved in the inner circumferential direction of the optical disc 1 by the two-phase excitation drive and moves to a predetermined position on the inner circumferential portion.
  • the movement time determination unit 43 controls the optical pickup 3 based on the movement time measured by the timer 41 and a detection signal indicating completion of movement of the optical pickup 3 to a predetermined position on the inner circumference detected by the inner circumference position detection unit 42. It is determined whether the movement time of the movement to the predetermined position in the peripheral portion is within the predetermined time.
  • the two-phase excitation drive current amplitude value determination section 55 determines the amplitude value of the two-phase excitation drive current. At this time, based on the determination of the movement time determination unit 43, if the movement time for moving the optical pickup 3 to the predetermined position on the inner peripheral portion exceeds the predetermined time, the amplitude value of the two-phase excitation drive current is increased.
  • the two-phase excitation drive current profile generation section 56 generates a current profile of the two-phase excitation drive current according to the amplitude value determined by the two-phase excitation drive current amplitude value determination section 55, and sends the current profile to the stepping motor drive section 14. Output.
  • the two-phase excitation drive current amplitude value current supply time conversion table 54 indicates that the two-phase excitation drive when the optical pickup 3 has been moved to a predetermined position on the inner circumference by the two-phase excitation drive is within a predetermined time. Conversion data for converting the current amplitude value into the drive current supply time width during micro-step driving is stored.
  • the micro-step drive current supply time determination section 57 outputs the two-phase excitation drive current amplitude value current supply time conversion table 54 output. Based on the amplitude of the two-phase excitation drive current amplitude, The current supply time of the opening step drive current is determined. At this time, if the two-phase excitation drive current amplitude value is large, the drive current supply time width during micro-step drive is set to be long.
  • the microstep drive current profile generator 58 generates a current profile of the mic step drive current whose envelope according to the supply time width determined by the microstep drive current supply time determiner 57 is a sine wave, and generates a stepping motor. Output to the drive unit 14.
  • optical disk device configured as described above.
  • the operations relating to reading and writing of information on the optical disk 1 are the same as those of a general optical disk device, and therefore detailed description is omitted.
  • the optical axis correction by micro-step driving which is a characteristic operation of the present embodiment, is described.
  • the control operation of the stepping motor 4 at the time of the feed operation and the recharging operation using the two-phase excitation drive at the time of starting the apparatus will be described.
  • the optical axis correction feed operation When reading or writing information, such as after starting the optical disk device or after seeking, the optical axis correction feed operation is performed.
  • the actuator 6 moves so that the objective lens 5 follows the track of the optical disc 1 and moves in the radial direction (from the inner circumference to the outer circumference or from the outer circumference to the inner circumference). Controlled.
  • the objective lens 5 undergoes a lens shift in which the center force of the base 7 of the optical pickup 3 gradually shifts.
  • a drive current for performing micro-step driving from the stepping motor driving unit 14 to move the stepping motor 4 by a predetermined amount is applied according to a control signal from the stepping motor control unit 23. Is done.
  • the base 7 of the optical pickup 3 moves to cancel the lens shift by the micro-step drive of the stepping motor 4
  • the stepping motor 4 is stopped. The above operation is continuously performed until the objective lens 5 completes reading the last address of the optical disc 1 or the last address of the information reading section specified by the operator, and when the address is reached, the optical axis correction feed operation is performed. finish.
  • the optical pickup 3 When the optical disk device is started, generally, the optical pickup 3 is moved to a predetermined position on the inner peripheral portion of the optical disk 1 to confirm that the inner peripheral switch 18 is turned on, and the optical pickup 3 is reset to the initial position. After performing the recharging operation, which is the operation, the reading and writing of information on the optical disk 1 are started.
  • the drive current control when the stepping motor 4 is driven by microstepping during the optical axis correction feed operation is performed as follows. In this case, in the recharging operation, the drive current amplitude value that can normally complete the inner circumferential movement when the stepping motor 4 is driven in two-phase excitation is calculated, and the optical axis correction feed is performed according to the drive current amplitude value. It controls the drive current supply time during micro-step drive during operation.
  • FIG. 7 is a flowchart illustrating a procedure of a current supply time setting operation of the micro-step drive according to the third embodiment.
  • a drive current supply time setting operation at the time of micro-step driving is started (step S41), and a recharging operation is performed.
  • a current profile with an amplitude value I is generated so as to move the step 3 toward the inner circumference side, and the stepping motor 4 is driven via the stepping motor drive section 14 and at the same time, the timer 41 is started (step S46).
  • the movement time determination unit 43 determines whether or not the inner circumference switch 18 has been turned on after a predetermined time has elapsed based on the detection signal from the inner circumference position detection unit 42 and the measurement time measured by the timer 41 (step S47). ).
  • step S47 when it is determined that the inner switch 18 has not been turned on after a predetermined time has elapsed, that is, when the optical pickup 3 has not moved to the predetermined position on the inner circumference within the predetermined time,
  • FIG. 8 is a diagram illustrating a two-phase excitation drive current of the stepping motor during the inner circumference seek operation according to the third embodiment. As shown in FIG. 8, when the optical pickup 3 does not complete the movement to the predetermined position on the inner circumference within the predetermined time, the amplitude value of the drive current is increased stepwise by ⁇ and the inner circumference feeding operation is performed again. Do.
  • step S47 if it is determined in step S47 that the inner switch 18 has been turned on within a predetermined time, that is, if the movement of the optical pickup 3 to the predetermined position on the inner circumference has been completed within the predetermined time, the internal The circumferential seek operation ends (step S50).
  • the microphone port step drive current supply time determination unit 57 uses a two-phase excitation drive current amplitude value current supply time conversion table. 54 to output a conversion coefficient k corresponding to the current amplitude value I.
  • Step S51 the microstep drive current supply time determination unit 57 calculates the current supply time t obtained by multiplying the reference current supply time t at room temperature by the conversion coefficient k as the drive current.
  • the supply time width is set (step S52), and the drive current supply time setting operation at the time of micro-step driving is completed (step S53).
  • FIG. 9 is a diagram showing a driving current at the time of micro-step driving of the stepping motor according to the third embodiment. Normal operating current amplitude value during two-phase excitation drive I
  • the conversion coefficient k is set to l and the current supply at room temperature is performed based on the drive current supply time width as shown in Fig. 9 (a).
  • the time t is set, and the stepping motor drive unit 14 supplies a pulse-like drive current having a sinusoidal envelope. Normal operating current amplitude value I during two-phase excitation drive is reference value I
  • the conversion coefficient is k> l
  • the drive current supply time width is determined by the current amplitude value I
  • the conversion coefficient k is normally determined by a predetermined current amplitude value instead of the current amplitude value I.
  • the value for increasing the current amplitude value during the two-phase excitation drive is an increase value that can only be increased by a constant value ⁇ .
  • the value may be changed according to the number, each time the recharging operation is performed, or a temperature sensor may be provided in the apparatus to change the value according to the ambient temperature.
  • the optical pickup in response to the recharging operation at the time of starting the device, the optical pickup is moved to the inner peripheral position by changing the current amplitude value of the driving current by the two-phase excitation driving,
  • the load state is estimated based on whether normal operation can be performed.
  • the current amplitude value at which the inner circumference feed operation is normally completed within a predetermined time is obtained, a conversion coefficient is calculated according to this current amplitude value, and the current supply time as a reference is multiplied by the conversion coefficient to obtain the magnitude of the current amplitude value.
  • the drive current supply time width is set to be long. This makes it possible to drive the stepping motor with an appropriate torque in a wide and temperature environment when performing the optical axis correction feed operation when the lens shift of the objective lens exceeds a predetermined amount. .
  • every predetermined time interval is set in order to suppress the current consumption and reduce the heat generation amount.
  • the drive current is supplied intermittently, the current amplitude value of the drive current at which the optical pickup feed operation by two-phase excitation drive can be performed normally is detected, and according to the detected current amplitude value, the micro-step drive is performed.
  • the motor can be driven with a torque that matches the load torque during use. For this reason, a driving mechanism of the optical pickup using the stepping motor can stably perform the feeding operation of the optical pickup even in a wide and operating temperature environment.
  • FIG. 10 is a block diagram showing a schematic configuration of an optical disc device according to the fourth embodiment of the present invention.
  • the same components as those in the above-described first to third embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the optical disc device of the fourth embodiment includes an inner peripheral switch 18 that is turned on when the optical pickup 3 reaches a predetermined position on the inner peripheral portion of the optical disc 1.
  • the optical disk device And a controller 60 including a processor for controlling the operation of the controller.
  • the controller 60 includes a spindle motor control unit 21, an optical pickup control unit 22, a lens shift amount detection unit 24, a timer 41, an inner circumference position detection unit 42, a movement time determination unit 43, and a stepping motor control unit 61. Is done.
  • the stepping motor control unit 61 includes a two-phase excitation drive control unit 62, a microphone step drive control unit 63, and a two-phase excitation drive current pulse rate / current supply time conversion table 64.
  • the two-phase excitation drive control unit 62 includes a two-phase excitation drive current pulse rate determination unit 65 and a two-phase excitation drive current profile generation unit 66.
  • the microstep drive control section 63 has a microstep drive current supply time determination section 67 and a microstep drive current profile generation section 68.
  • the optical pickup control unit 22 in the controller 60 transmits a control signal for controlling the position of the objective lens 5 based on the focus error signal and the tracking error signal output from the head amplifier 15. Output to pickup drive unit 13. Based on this control signal, the focus actuator / tracking actuator of the optical pickup 3 is driven by the optical pickup driving unit 13.
  • the lens shift amount detector 24 detects the shift amount of the objective lens 5 shifted with respect to the center of the base 7 of the optical pickup 3.
  • the feed screw 10 is an output shaft of the stepping motor 4, and when the stepping motor 4 rotates, its rotational force is transmitted from the feed screw 10 via the feed screw receiver 11, and the base of the optical pickup 3 is rotated. 7 moves in the radial direction of the optical disc 1.
  • grease is applied between the feed screw 10 and the feed screw receiver 11 to secure the wear resistance of the sliding portion.
  • the stepping motor 4 is rotated by a driving current of as much as 14 steps of the stepping motor driving unit.
  • the stepping motor control unit 61 in the controller 60 controls the drive current output from the stepping motor drive unit 14, and the two-phase excitation drive control unit 62 and the microstep drive control unit 63 control the two-phase excitation drive. It is possible to switch between micro-step driving and drive control.
  • the inner peripheral position detection unit 42 receives an output signal from the inner peripheral switch 18, detects that the optical pickup 3 has moved to a predetermined position on the inner periphery of the optical disc 1 by turning on the inner peripheral switch 18, and detects it.
  • the signal is output to the movement time determination unit 43.
  • timer 41 The tip 3 is moved in the inner circumferential direction of the optical disc 1 by the two-phase excitation drive, and the moving time when moving to a predetermined position in the inner circumferential portion is measured.
  • the movement time determination unit 43 controls the optical pickup 3 based on the movement time measured by the timer 41 and a detection signal indicating completion of movement of the optical pickup 3 to a predetermined position on the inner circumference detected by the inner circumference position detection unit 42. It is determined whether the movement time of the movement to the predetermined position in the peripheral portion is within the predetermined time.
  • the two-phase excitation drive current pulse rate determination unit 65 determines the pulse rate of the two-phase excitation drive current. At this time, based on the determination of the movement time determination unit 43, if the movement time of moving the optical pickup 3 to the predetermined position on the inner peripheral portion exceeds the predetermined time, the pulse rate of the two-phase excitation drive current is reduced.
  • the two-phase excitation drive current profile generation section 66 generates a current profile of the two-phase excitation drive current corresponding to the amplitude value determined by the two-phase excitation drive current pulse rate determination section 65, and outputs the current profile to the stepping motor drive section 14. I do.
  • the two-phase excitation drive current pulse rate and the current supply time conversion table 64 include the two-phase excitation drive when the optical pickup 3 is moved to a predetermined position on the inner periphery by the two-phase excitation drive within a predetermined time. Conversion data for converting the pulse rate of the current into the supply time width of the drive current during micro-step driving is stored.
  • the micro-step drive current supply time determination unit 67 When performing the micro-step drive control in the micro-step drive control unit 63, the micro-step drive current supply time determination unit 67 outputs the two-phase excitation drive current pulse rate to the output of the current supply time conversion table 64. Then, the current supply time of the micro-step drive current is determined according to the pulse rate of the two-phase excitation drive current. At this time, if the pulse rate of the two-phase excitation drive current is low, the supply time width of the drive current during micro-step drive is set to be long.
  • the microstep drive current profile generator 68 generates a current profile of the microstep drive current having a sinusoidal envelope corresponding to the supply time width determined by the microstep drive current supply time determiner 67, and drives the stepping motor. Output to section 14.
  • the operations related to reading and writing of information on the optical disk 1 are the same as those of a general optical disk device, and therefore detailed description is omitted.
  • a microstep that is a characteristic operation of the present embodiment is described.
  • the control operation of the stepping motor 4 at the time of the optical axis correction feed operation by the step-up drive and the recharging operation using the two-phase excitation drive at the time of starting the apparatus will be described.
  • a drive current for performing micro-step driving from the stepping motor driving unit 14 to move the stepping motor 4 by a predetermined amount is applied according to a control signal from the stepping motor control unit 23. Is done.
  • the base 7 of the optical pickup 3 moves to cancel the lens shift by the micro-step drive of the stepping motor 4
  • the stepping motor 4 is stopped. The above operation is continuously performed until the objective lens 5 completes reading the last address of the optical disc 1 or the last address of the information reading section specified by the operator, and when the address is reached, the optical axis correction feed operation is performed. finish.
  • the optical pickup 3 When the optical disk device is started, generally, the optical pickup 3 is moved to a predetermined position on the inner peripheral portion of the optical disk 1 to confirm that the inner peripheral switch 18 is turned on, and the optical pickup 3 is reset to the initial position. After performing the recharging operation, which is the operation, the reading and writing of information on the optical disk 1 are started.
  • the drive current control when the stepping motor 4 is driven by microstepping during the optical axis correction feed operation is performed as follows.
  • the drive current pulse rate at which the inner circumferential movement can be normally completed when the stepping motor 4 is driven in two-phase excitation in the recharging operation is calculated, and the optical axis correction feed is performed according to the drive current pulse rate. It controls the drive current supply time during micro-step drive during operation.
  • FIG. 11 is a flowchart illustrating a procedure of a current supply time setting operation of the micro step drive according to the fourth embodiment.
  • a drive current supply time setting operation at the time of microstep driving is started (step S61), and a recharging operation is performed.
  • the inner periphery seek operation (inner periphery feed operation) by the two-phase excitation drive is started (step S 62)
  • the two-phase excitation drive current pulse rate determination unit 65 sets the pulse rate Pf (n) for performing the two-phase excitation drive to the reference value Pc (step S64).
  • a current profile with a pulse rate Pc is generated so as to move 3 to the inner circumference side, and the stepper motor 4 is driven via the stepper motor drive unit 14 and at the same time, the timer 41 is started (step S66).
  • the movement time determination unit 43 determines whether or not the inner switch 18 has been turned on after a predetermined time has elapsed based on the detection signal of the inner circumference position detection unit 42 and the measurement signal measured by the timer 41 (step S67). .
  • FIG. 12 is a diagram showing the relationship between the pulse rate of the drive current of the stepping motor and the torque in the fourth embodiment.
  • Fig. 12 (a) shows that when the load is small and the inner circumference seek operation can be performed within a predetermined time at the reference pulse rate Pc
  • Fig. 12 (b) shows that the load is large and the reference pulse rate Pc does not exceed the predetermined time. The cases where the inner seek operation is not completed are shown.
  • step S67 when it is determined that the inner peripheral switch 18 has not been turned on after a predetermined time has elapsed, that is, when the optical pickup 3 has not moved to the predetermined position of the inner peripheral part within the predetermined time,
  • the two-phase excitation drive current pulse rate determination unit 65 determines that the load on the stepping motor 4 has increased and the inner circumference feed has not been performed normally. In this case, if the load torque is larger than the motor-generated torque ((1) in Fig.
  • step S65 the timer 41 is reset and the inner circumference seek operation is performed again by the two-phase excitation drive ((2) in FIG. 12 (b)).
  • steps S65 to S69 are repeated until the inner peripheral switch 18 is turned on within a predetermined time and the movement of the optical pickup 3 to the predetermined position of the inner peripheral part is completed.
  • FIG. 13 is a diagram illustrating a two-phase excitation drive current of the stepping motor during the inner circumference seek operation according to the fourth embodiment.
  • the inner peripheral part is If the movement of the optical pickup 3 to the position has not been completed, the pulse rate of the drive current is reduced step by step a, and the inner circumference feeding operation is performed again.
  • step S67 if it is determined in step S67 that the inner peripheral switch 18 has been turned on within a predetermined time, that is, if the optical pickup 3 has been moved to a predetermined position on the inner peripheral part within a predetermined time, the internal The circumferential seek operation ends (step S70). At this time, the load torque is equal to or less than the motor generated torque ((3) in FIG. 12 (b)), and normal operation becomes possible.
  • the microphone port step drive current supply time determination unit 67 uses a two-phase excitation drive current pulse rate-current supply time conversion table. Using 64, a conversion coefficient k corresponding to the pulse rate Pf is output (step S71). Subsequently, the microstep drive current supply time determination unit 67 sets the current supply time tm obtained by multiplying the reference current supply time at normal temperature tc by the conversion coefficient k as the supply time width of the drive current (step S72), The drive current supply time setting operation at the time of the micro step drive ends (step S73).
  • FIG. 14 is a diagram showing a drive current at the time of microstep driving of the stepping motor according to the fourth embodiment.
  • the normal operation pulse rate Pf during the two-phase excitation drive is equal to or higher than the reference value Pc, that is, when the load of the stepping motor is smaller than a predetermined amount, for example, the conversion coefficient k is set to l and the drive is performed as shown in FIG.
  • the current supply time tc at normal temperature is set based on the current supply time width, and a pulse-like drive current with a sine-wave envelope is supplied from the stepping motor drive unit 14.
  • a conversion coefficient k> l is set as shown in FIG. 14 (b).
  • the conversion coefficient k may be set according to the moving time until the inner circumference seek operation is completed normally with a predetermined current amplitude value instead of the pulse rate Pf.
  • the value that lowers the nos rate during two-phase excitation drive can be changed by the number of reductions that can be achieved with only a constant value ⁇ , or can be changed for each recharging operation.
  • a temperature sensor may be provided to change the value depending on the ambient temperature or the like. It is also possible to provide a temperature sensor in the device and add the information on the ambient temperature to the pulse rate to set the drive current supply time during microstep driving.
  • the optical pickup in response to the recharging operation at the time of starting the apparatus, the optical pickup is moved to the inner peripheral position by changing the pulse rate of the driving current by the two-phase excitation driving, and The load state is estimated from whether the operation can be performed.
  • a pulse rate at which the inner circumference feed operation is normally completed within a predetermined time is obtained, a conversion coefficient is calculated in accordance with the pulse rate, and the reference current supply time is multiplied by the conversion coefficient to determine the magnitude of the pulse rate (that is, By setting the current supply time according to the load of the stepping motor during operation), the supply time width of the drive current at the time of the microphone step drive is changed.
  • the pulse rate is low, the drive current supply time width is set to be long. This makes it possible to drive the stepping motor with an appropriate torque in a wide and temperature environment when performing the optical axis correction feed operation when the lens shift of the objective lens exceeds a predetermined amount. .
  • every predetermined time interval is used in order to suppress the current consumption and reduce the heat generation.
  • the drive current is supplied intermittently, the pulse rate of the drive current that enables normal operation of the optical pickup by two-phase excitation drive is detected, and the drive current during micro-step drive is determined according to the detected pulse rate.
  • the motor can be driven with a torque that matches the load torque during use. For this reason, a driving mechanism of the optical pickup using the stepping motor can stably perform the feeding operation of the optical pickup even in a wide and operating temperature environment.
  • the optical disk device can be operated stably under a wide temperature environment. Further, if the optical pickup feed control method as described above is applied to an optical disk device, the stability and reliability of the optical disk device can be improved. Furthermore, such an optical disk device is applied to in-vehicle equipment. Then, even if the vehicle is used in a wide temperature environment, the optical disk device can operate normally.
  • the present invention provides an optical pickup driving mechanism using a stepping motor, which has an effect that the feeding operation of the optical pickup can be stably performed even in a wide operating temperature environment.
  • the present invention is useful for an optical disk device equipped with an optical pickup for performing at least one of reading and writing of information on a linear optical recording medium.

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 ステッピングモータを用いた光ピックアップの駆動機構において、幅広い使用温度環境下で光ピックアップの送り動作を安定化できるようにする。  ステッピングモータ制御部23は、光ピックアップ3の対物レンズ5のレンズシフト量に応じた光軸補正送り動作を行うために、ステッピングモータ4をマイクロステップ駆動して光ピックアップ3の基台7を光ディスク1の半径方向に移動させる。このとき、装置内温度を温度センサ17により検出し、駆動電流供給時間決定部31は、検出された装置内温度が所定温度以下の場合には、包絡線が正弦波状でパルス状の駆動電流の供給時間幅を、常温時よりも長い固定値の供給時間幅、あるいは装置内温度に応じた係数を乗じた供給時間幅に設定し、駆動電流の電流供給時間を増加させる。

Description

明 細 書
光ディスク装置
技術分野
[0001] 本発明は、ディスク状光学式記録媒体に対して情報の読み取り、書き込みの少なく とも一方を行う光ピックアップを備えた光ディスク装置に関する。
背景技術
[0002] CDや DVDのようなディスク状光学式記録媒体 (以下、光ディスクと称する)から情 報を読み取ったり、情報の書き込みを行う場合には、光ディスク装置において、光デ イスクをスピンドルモータにより回転させながら、光ピックアップを光ディスクの半径方 向(トラバース方向)に移動させ、光ディスク上のトラックを走査する必要がある。このよ うな光ピックアップのディスク半径方向への送り機構として、最近ではステッピングモ ータが使用されることが多い。ステッピングモータは、印加されたパルス列に応じて微 小回転角での位置決めが可能で、かつ駆動対象の光ピックアップをダイレクトドライ ブで送ることによって高速送りが可能であるため、光ピックアップの送り機構に適して いる。
[0003] ステッピングモータは、駆動電流として印加されたパルス数に比例した回転角度だ けモータが回転する。図 15はステッピングモータの回転速度―トルク特性を示す図 である。図 15において、横軸は駆動電流として供給する駆動パルス信号のパルスレ ート、すなわちステッピングモータの回転速度を示し、縦軸はステッピングモータの回 転時のトルクを示す。プルイントルク以下の領域(自起動領域) Tiでは、印加された駆 動パルス信号に対し同期して起動、停止、逆転が可能である。また、プルアウトトルク 以上の領域 Toでは、脱調現象を生じ、駆動パルス信号に同期した回転動作を行うこ とができない。また、プルイントルクとプルアウトトルクとの間の領域 (スルー領域) Tsで は、既に回転中であれば駆動パルス信号に同期した回転を行うが、静止状態から起 動した場合には脱調現象を生じ正常な回転を行うことができな 、。ステッピングモー タは以上のような特性を持つことから、負荷トルクに合致した設計を行うことが必要不 可欠になってくる。 [0004] 光ピックアップの送り動作には、光ディスクの情報読み取りまたは書き込み時に数 十; z m程度の送りを間欠的に行う動作 (以降では光軸補正送り動作と記す)と、指定 されたトラックまで高速に大きい距離の送りを行うシーク動作とがある。一般に、光ピッ クアップの高速移動が必要なシーク動作では二相励磁駆動を用い、数十/ z m程度 の微細な送り制御が必要な光軸補正送り動作ではマイクロステップ駆動を行う。
[0005] 光軸補正送り動作時は、光ディスク上のトラックを走査するために、光ピックアップの 対物レンズが、光ディスク上にスパイラル状または同心円状に記録されたトラックに追 従してトラバース方向に移動する。このとき、光ディスクのトラックに対する対物レンズ の位置制御は、光ピックアップのトラッキングァクチユエータが行う。光ピックアップのト ラッキングァクチユエータは可動範囲が限定されているので、対物レンズが光ピックァ ップの基台の中心力 所定量シフトしたら、シフト分をキャンセルするように光ピックァ ップの基台を数十 μ m程度トラバース方向に動かすようにステッピングモータを制御 する。
[0006] 光軸補正送り動作中のステッピングモータはマイクロステップ駆動によって送り動作 を行う。マイクロステップ駆動は、図 16に示すように、正弦波状の駆動電流をステツピ ングモータの各端子に印加することによりモータを滑らかに、かつモータ固有のステ ップ角以下の回転角で回転させるもので、振動の発生を抑制しながら光ピックアップ の微小送りを行うことができる。
[0007] ステッピングモータにおいて、常時通電の形でマイクロステップ駆動を行うと、消費 電力が増加し発熱も大きくなるため、部品寿命が縮まったり、装置の使用温度範囲を 限定しなければならないという問題が発生する。このため、マイクロステップ駆動の駆 動電流を一定時間(数 msec )のみ印加してステッピングモータを駆動する制御を行う 光ディスク装置が知られている(例えば特許文献 1参照)。
[0008] 光ディスクの情報の読み取りまたは書き込み中は、上記の光軸補正送り動作を継 続して行!、、対物レンズに所定のシフトが発生した時にステッピングモータを駆動し てシフト分をキャンセルするようにステッピングモータを制御する。すなわち、対物レン ズにレンズシフトが発生したらステッピングモータを駆動する動作を繰り返すことにな り、ステッピングモータを間欠的に駆動することで、情報の読み出しを正しく行うことが できる。
[0009] 特許文献 1 :特開平 10— 149639号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、車載用途などの光ディスク装置の使用温度範囲が広い場合、温度の 推移とともに機械的な負荷特性も変化するため、常温で正常動作している装置であ つても、低温下ではグリス粘度の影響で負荷が増大し、ステッピングモータが脱調現 象を引き起こし、正常動作が行えないことがあった。
[0011] このため、温度特性変動の少ない高価なグリスを採用する力 もしくは、性能保証 温度範囲を限定して使用する、などの対応が必要となり、使用温度範囲が広ぐ安価 で高性能の装置を実現することが難し力つた。特に、車載用のオーディオビジュアル 装置やナビゲーシヨン装置等に使用されている車載用光ディスク装置の場合には、 低温環境下で使用される頻度が多いため、上記事象が顕在化するおそれがある。
[0012] 本発明は、上記事情に鑑みてなされたもので、ステッピングモータを用いた光ピック アップの駆動機構にぉ 、て、幅広 、使用温度環境下であっても光ピックアップの送り 動作を安定ィ匕することのできる光ディスク装置を提供することを目的とする。
課題を解決するための手段
[0013] 本発明の光ディスク装置は、第 1に、光ディスクに記録された情報を読み取る光ピッ クアップと、前記光ピックアップを前記光ディスクに対して半径方向に移動させるステ ッビングモータと、前記ステッピングモータを駆動するための駆動電流を供給するも のであり、マイクロステップ駆動が可能な駆動電流供給手段と、前記光ピックアップの 周囲温度を検出する温度検出手段と、前記検出された周囲温度に応じて前記マイク 口ステップ駆動を行う際の駆動電流を変更して前記ステッピングモータの駆動制御を 行う駆動制御手段と、を備えるものである。
これにより、周囲温度に応じてステッピングモータのマイクロステップ駆動を行う際の 駆動電流を変更することによって、温度により変化する負荷に対して適切なトルクで ステッピングモータを駆動することができ、幅広 、使用温度環境下で光ピックアップの 送り動作を安定化させることが可能となる。 [0014] また、本発明の一態様として、第 2に、上記第 1の光ディスク装置であって、前記駆 動電流供給手段は、前記マイクロステップ駆動を行う際に前記ステッピングモータに 対して所定時間幅の間欠的な駆動電流を供給するものであり、前記駆動制御手段 は、前記駆動電流の供給時間幅を前記周囲温度に応じて変更するものとする。 これにより、周囲温度に応じて駆動電流の供給時間幅を変更することによって、温 度により変化する負荷に合致した適切なトルクでステッピングモータを駆動することが でき、情報読み出しまたは書き込み時の動作不良発生を防止して幅広い温度範囲 で装置を使用することが可能となる。
[0015] また、本発明の一態様として、第 3に、上記第 2の光ディスク装置であって、前記駆 動制御手段は、前記周囲温度が所定温度以下の時には前記駆動電流の供給時間 幅を増加させた値に変更するものとする。
これにより、周囲温度が所定温度以下のときに駆動電流の供給時間幅を増加させ ることによって、低温域で大きくなる負荷に対して適切なトルクでステッピングモータを 駆動することが可能となる。
[0016] また、本発明の一態様として、第 4に、上記第 2の光ディスク装置であって、前記周 囲温度に対応する温度係数を格納した温度係数変換テーブルを有し、前記駆動制 御手段は、前記温度係数変換テーブルを用いて前記周囲温度に対応した温度係数 を求め、前記駆動電流の供給時間幅を決定するものとする。
これにより、周囲温度に対応した温度係数による適切な駆動電流の供給時間幅を 設定でき、周囲温度に応じて適切なトルクでステッピングモータを駆動することが可 能となる。
[0017] 本発明の光ディスク装置は、第 5に、光ディスクに記録された情報を読み取る光ピッ クアップと、前記光ピックアップを前記光ディスクに対して半径方向に移動させるステ ッビングモータと、前記ステッピングモータを駆動するための駆動電流を供給するも のであり、二相励磁駆動とマイクロステップ駆動とが可能な駆動電流供給手段と、前 記二相励磁駆動により前記光ピックアップを移動させた場合の動作が正常終了した か否かを判定する二相励磁駆動判定手段と、前記判定結果に応じて前記マイクロス テツプ駆動を行う際の駆動電流を変更して前記ステッピングモータの駆動制御を行う 駆動制御手段と、を備えるものである。
これにより、二相励磁駆動による光ピックアップ移動動作が正常終了したかの判定 結果に応じてステッピングモータのマイクロステップ駆動を行う際の駆動電流を変更 することによって、温度により変化する負荷に対して適切なトルクでステッピングモー タを駆動することができ、幅広 、使用温度環境下で光ピックアップの送り動作を安定 ィ匕させることが可會となる。
[0018] また、本発明の一態様として、第 6に、上記第 5の光ディスク装置であって、前記二 相励磁駆動を行う際の駆動電流を変化させる駆動電流可変手段を有するものとする これにより、二相励磁駆動を行う際の駆動電流を変化させて光ピックアップ移動動 作が正常終了するかを判定することが可能となる。
[0019] また、本発明の一態様として、第 7に、上記第 6の光ディスク装置であって、前記駆 動電流可変手段は、前記二相励磁駆動を行う際の駆動電流の電流振幅を段階的に 変化させるものとする。
これにより、二相励磁駆動を行う際の駆動電流の電流振幅を段階的に変化させた 場合の電流振幅値に応じて光ピックアップ移動動作が正常終了するかを判定するこ とが可能となる。
[0020] また、本発明の一態様として、第 8に、上記第 7の光ディスク装置であって、前記二 相励磁駆動による送り動作が正常に行える前記駆動電流の電流振幅値を判定する 正常駆動電流振幅判定手段を有し、前記駆動電流供給手段は、前記マイクロステツ プ駆動を行う際に前記ステッピングモータに対して所定時間幅の間欠的な駆動電流 を供給するものであり、前記駆動制御手段は、前記駆動電流の供給時間幅を前記駆 動電流の電流振幅値に応じて変更するものとする。
これにより、二相励磁駆動による送り動作が正常に行える駆動電流の電流振幅値 に応じてマイクロステップ駆動の際の駆動電流の供給時間幅を変更することによって 、温度により変化する負荷に合致した適切なトルクでステッピングモータを駆動するこ とができ、情報読み出しまたは書き込み時の動作不良発生を防止して幅広い温度範 囲で装置を使用することが可能となる。 [0021] また、本発明の一態様として、第 9に、上記第 7の光ディスク装置であって、前記光 ピックアップが前記光ディスクの内周所定位置への移動完了を検出する光ピックアツ プ位置検出手段と、前記二相励磁駆動を行って前記光ピックアップが前記内周所定 位置まで所定時間内に移動完了するような前記駆動電流の電流振幅値を判定する 移動完了電流振幅判定手段とを有し、前記駆動電流供給手段は、前記マイクロステ ップ駆動を行う際に前記ステッピングモータに対して所定時間幅の間欠的な駆動電 流を供給するものであり、前記駆動制御手段は、前記駆動電流の供給時間幅を前記 駆動電流の電流振幅値に応じて変更するものとする。
これにより、二相励磁駆動を行って光ピックアップが内周所定位置まで所定時間内 に移動完了するような駆動電流の電流振幅値に応じてマイクロステップ駆動の際の 駆動電流の供給時間幅を変更することによって、温度により変化する負荷に合致し た適切なトルクでステッピングモータを駆動することができ、情報読み出しまたは書き 込み時の動作不良発生を防止して幅広い温度範囲で装置を使用することが可能と なる。
[0022] また、本発明の一態様として、第 10に、上記第 8または第 9の光ディスク装置であつ て、前記駆動制御手段は、前記電流振幅値が所定値以上の時には前記駆動電流 の供給時間幅を増カロさせた値に変更するものとする。
これにより、二相励磁駆動による送り動作が正常に行える駆動電流の電流振幅値 が所定値以下のときに駆動電流の供給時間幅を増加させることによって、例えば低 温域等で大きくなる負荷に対して適切なトルクでステッピングモータを駆動することが 可能となる。
[0023] また、本発明の一態様として、第 11に、上記第 5の光ディスク装置であって、前記光 ピックアップが前記光ディスクの内周所定位置への移動完了を検出する光ピックアツ プ位置検出手段と、前記二相励磁駆動を行って前記光ピックアップが前記内周所定 位置まで移動する移動時間を判定する移動時間判定手段とを有し、前記駆動電流 供給手段は、前記マイクロステップ駆動を行う際に前記ステッピングモータに対して 所定時間幅の間欠的な駆動電流を供給するものであり、前記駆動制御手段は、前 記駆動電流の供給時間幅を前記光ピックアップの移動時間に応じて変更するものと する。
これにより、二相励磁駆動を行って光ピックアップが内周所定位置まで移動する移 動時間に応じてマイクロステップ駆動の際の駆動電流の供給時間幅を変更すること によって、温度により変化する負荷に合致した適切なトルクでステッピングモータを駆 動することができ、情報読み出しまたは書き込み時の動作不良発生を防止して幅広 い温度範囲で装置を使用することが可能となる。
[0024] また、本発明の一態様として、第 12に、上記第 11の光ディスク装置であって、前記 駆動制御手段は、前記移動時間が所定値以上の時には前記駆動電流の供給時間 幅を増加させた値に変更するものとする。
これにより、二相励磁駆動を行って光ピックアップが内周所定位置まで移動する移 動時間が所定値以上のときに駆動電流の供給時間幅を増加させることによって、例 えば低温域等で大きくなる負荷に対して適切なトルクでステッピングモータを駆動す ることが可能となる。
[0025] 本発明の光ディスク装置は、第 13に、光ディスクに記録された情報を読み取る光ピ ックアップと、前記光ピックアップを前記光ディスクに対して半径方向に移動させるス テツビングモータと、前記ステッピングモータを駆動するための駆動電流を供給するも のであり、二相励磁駆動とマイクロステップ駆動とが可能で、前記マイクロステップ駆 動を行う際に前記ステッピングモータに対して所定時間幅の間欠的な駆動電流を供 給する駆動電流供給手段と、前記二相励磁駆動を行う際の駆動電流のパルスレート を変化させる駆動電流可変手段と、前記二相励磁駆動により前記光ピックアップを移 動させた場合の動作が正常終了したか否かを判定する二相励磁駆動判定手段と、 前記判定結果に応じて前記マイクロステップ駆動を行う際の駆動電流の供給時間幅 を変更して前記ステッピングモータの駆動制御を行う駆動制御手段と、を備えるもの である。
これにより、二相励磁駆動による光ピックアップ移動動作が正常終了したかの判定 結果に応じてステッピングモータのマイクロステップ駆動を行う際の駆動電流を変更 することによって、温度により変化する負荷に対して適切なトルクでステッピングモー タを駆動することができ、幅広 、使用温度環境下で光ピックアップの送り動作を安定 ィ匕させることが可會となる。
[0026] また、本発明の一態様として、第 14に、上記第 13の光ディスク装置であって、前記 駆動電流可変手段は、前記二相励磁駆動を行う際の駆動電流のパルスレートを段 階的に変化させるものとする。
これにより、二相励磁駆動を行う際の駆動電流のパルスレートを段階的に変化させ た場合のパルスレート値に応じて光ピックアップ移動動作が正常終了するかを判定 することが可能となる。
[0027] また、本発明の一態様として、第 15に、上記第 14の光ディスク装置であって、前記 二相励磁駆動による送り動作が正常に行える前記駆動電流のパルスレートを判定す る正常駆動パルスレート判定手段を有し、前記駆動制御手段は、前記駆動電流の供 給時間幅を前記駆動電流のパルスレートに応じて変更するものとする。
これにより、二相励磁駆動による送り動作が正常に行える駆動電流のパルスレート に応じてマイクロステップ駆動の際の駆動電流の供給時間幅を変更することによって 、温度により変化する負荷に合致した適切なトルクでステッピングモータを駆動するこ とができ、情報読み出しまたは書き込み時の動作不良発生を防止して幅広い温度範 囲で装置を使用することが可能となる。
[0028] また、本発明の一態様として、第 16に、上記第 14の光ディスク装置であって、前記 光ピックアップが前記光ディスクの内周所定位置への移動完了を検出する光ピックァ ップ位置検出手段と、前記二相励磁駆動を行って前記光ピックアップが前記内周所 定位置まで所定時間内に移動完了するような前記駆動電流のパルスレートを判定す る移動完了パルスレート判定手段とを有し、前記駆動制御手段は、前記駆動電流の 供給時間幅を前記駆動電流のパルスレートに応じて変更するものとする。
これにより、二相励磁駆動を行って光ピックアップが内周所定位置まで所定時間内 に移動完了するような駆動電流のパルスレートに応じてマイクロステップ駆動の際の 駆動電流の供給時間幅を変更することによって、温度により変化する負荷に合致し た適切なトルクでステッピングモータを駆動することができ、情報読み出しまたは書き 込み時の動作不良発生を防止して幅広い温度範囲で装置を使用することが可能と なる。 [0029] また、本発明の一態様として、第 17に、上記第 15または第 16の光ディスク装置で あって、前記駆動制御手段は、前記パルスレートが所定値以下の時には前記駆動電 流の供給時間幅を増カロさせた値に変更するものとする。
これにより、二相励磁駆動による送り動作が正常に行える駆動電流のパルスレート が所定値以下のときに駆動電流の供給時間幅を増加させることによって、例えば低 温域等で大きくなる負荷に対して適切なトルクでステッピングモータを駆動することが 可能となる。
[0030] また、本発明の一態様として、第 18に、上記第 13の光ディスク装置であって、前記 光ピックアップが前記光ディスクの内周所定位置への移動完了を検出する光ピックァ ップ位置検出手段と、前記二相励磁駆動を行って前記光ピックアップが前記内周所 定位置まで移動する移動時間を判定する移動時間判定手段とを有し、前記駆動制 御手段は、前記駆動電流の供給時間幅を前記光ピックアップの移動時間に応じて変 更するものとする。
これにより、二相励磁駆動を行って光ピックアップが内周所定位置まで移動する移 動時間に応じてマイクロステップ駆動の際の駆動電流の供給時間幅を変更すること によって、温度により変化する負荷に合致した適切なトルクでステッピングモータを駆 動することができ、情報読み出しまたは書き込み時の動作不良発生を防止して幅広 い温度範囲で装置を使用することが可能となる。
[0031] また、本発明の一態様として、第 19に、上記第 18の光ディスク装置であって、前記 駆動制御手段は、前記移動時間が所定値以上の時には前記駆動電流の供給時間 幅を増加させた値に変更するものとする。
これにより、二相励磁駆動を行って光ピックアップが内周所定位置まで移動する移 動時間が所定値以上のときに駆動電流の供給時間幅を増加させることによって、例 えば低温域等で大きくなる負荷に対して適切なトルクでステッピングモータを駆動す ることが可能となる。
[0032] また、本発明の一態様として、第 20に、上記第 5〜第 19のいずれかの光ディスク装 置であって、前記二相励磁駆動による前記光ピックアップの駆動に関する判定を装 置起動直後の光ピックアップ位置初期化のための内周送り動作時に行うものとする。 これにより、装置起動直後の光ピックアップ位置初期化の際に、二相励磁駆動によ り光ピックアップを移動させた場合の動作が正常終了した力など、二相励磁駆動によ る光ピックアップの駆動に関する判定を行 、、マイクロステップ駆動を行う際の駆動電 流を制御することが可能となる。
[0033] また、本発明は、第 21に、上記いずれかの光ディスク装置を備える車載用機器を 提供する。
特に低温環境下などの幅広 、温度範囲で使用される車載用機器にぉ 、て、上記 の光ディスク装置を適用することで、光ピックアップの送り動作を周囲温度に関わらず 安定化でき、動作不良発生を防止できる。
発明の効果
[0034] 本発明によれば、ステッピングモータを用いた光ピックアップの駆動機構にぉ 、て、 幅広い使用温度環境下であっても光ピックアップの送り動作を安定ィ匕することのでき る光ディスク装置を提供できる。
図面の簡単な説明
[0035] [図 1]本発明の第 1及び第 2の実施形態に係る光ディスク装置の概略構成を示すプロ ック図
[図 2]第 1の実施形態におけるマイクロステップ駆動の電流供給時間設定動作の手順 を示すフローチャート
[図 3]第 1の実施形態におけるステッピングモータのマイクロステップ駆動時の駆動電 流を示す図
[図 4]第 2の実施形態におけるマイクロステップ駆動の電流供給時間設定動作の手順 を示すフローチャート
[図 5]第 2の実施形態におけるステッピングモータのマイクロステップ駆動時の駆動電 流を示す図
[図 6]本発明の第 3の実施形態に係る光ディスク装置の概略構成を示すブロック図 [図 7]第 3の実施形態におけるマイクロステップ駆動の電流供給時間設定動作の手順 を示すフローチャート
[図 8]第 3の実施形態における内周シーク動作中のステッピングモータの二相励磁駆 動電流を示す図
[図 9]第 3の実施形態におけるステッピングモータのマイクロステップ駆動時の駆動電 流を示す図
[図 10]本発明の第 4の実施形態に係る光ディスク装置の概略構成を示すブロック図 [図 11]第 4の実施形態におけるマイクロステップ駆動の電流供給時間設定動作の手 順を示すフローチャート
[図 12]第 4の実施形態におけるステッピングモータの駆動電流のノ ルスレートとトルク の関係を示す図
[図 13]第 4の実施形態における内周シーク動作中のステッピングモータの二相励磁 駆動電流を示す図
[図 14]第 4の実施形態におけるステッピングモータのマイクロステップ駆動時の駆動 電流を示す図
[図 15]ステッピングモータの回転速度 トルク特性を示す図
[図 16]ステッピングモータのマイクロステップ駆動時の駆動電流を示す図
符号の説明
1 光ディスク
2 スピンドノレモータ
3 光ピックアップ
4 ステッピングモータ
5 対物レンズ
6 ァクチユエータ
7 基台
8 ガイドシャフト
9 回転軸
10 送りねじ
11 送りねじ受け
12 スピンドルモータ駆動部
13 光ピックアップ駆動部 ステッピングモータ駆動部
ヘッドアンプ
信号処理部
温度センサ
内周スィッチ
コントローラ
スピンドルモータ制御部
光ピックアップ制御部
ステッピングモータ制御部
レンズシフト量検出部
駆動電流供給時間決定部
温度 電流供給時間変換テーブル
駆動電流プロフィール発生部
タイマ
内周位置検出部
移動時間判定部
コントローラ
ステッピングモータ制御部
二相励磁駆動制御部
マイクロステップ駆動制御部
二相励磁駆動電流振幅値 電流供給時間変換テーブル 二相励磁駆動電流振幅値決定部
二相励磁駆動電流プロフィール発生部
マイクロステップ駆動電流供給時間決定部
マイクロステップ駆動電流プロフィール発生部
コントローラ
ステッピングモータ制御部
二相励磁駆動制御部 63 マイクロステップ駆動制御部
64 二相励磁駆動電流パルスレート 電流供給時間変換テーブル
65 二相励磁駆動電流パルスレート決定部
66 二相励磁駆動電流プロフィール発生部
67 マイクロステップ駆動電流供給時間決定部
68 マイクロステップ駆動電流プロフィール発生部
発明を実施するための最良の形態
[0037] 図 1は、本発明の第 1及び第 2の実施形態に係る光ディスク装置の概略構成を示す ブロック図である。
本実施形態では、記録媒体として CD、 DVD等の光ディスクを用いて、情報の読み 取り、書き込みの少なくとも一方を光学的に行う光ディスク装置の構成例を示す。この 光ディスク装置は、 CDプレーヤ、 DVDプレーヤ、ナビゲーシヨン装置などの車載用 機器に好適なものである。
[0038] 光ディスク装置は、光ディスク 1を保持して回転するスピンドルモータ 2と、光ディスク 1に対してレーザ光を照射して情報の読み取り、書き込みを行う光ピックアップ 3と、 光ピックアップ 3を光ディスク 1の半径方向に移動させるステッピングモータ 4とを有し て構成される。光ディスク 1の記録面には、内周から外周(または外周から内周)に向 けてスパイラル状のトラックが形成され、このトラックに各種情報が記録されて 、る。
[0039] 光ピックアップ 3は、光源であるレーザ発光ダイオード、受光部である光検出器、及 び各種光学素子部品を備えるとともに、記録 Z再生用のレーザ光を光ディスク 1の記 録面に集光する対物レンズ 5と、この対物レンズ 5を駆動するァクチユエータ 6と、上 記構成部品が組みつけられた基台 7とを備えて構成される。光ピックアップ 3の基台 7 には、光ディスク 1の半径方向に延設されたガイドシャフト 8が揷通され、このガイドシ ャフト 8に沿って基台 7が摺動可能となっている。ガイドシャフト 8は、光ピックアップ 3 を支持するとともに、光ピックアップ 3が移動する際、光ディスク 1の半径方向に内外 周へ移動するためのガイドの機能を有する。
[0040] ステッピングモータ 4の回転軸 9は、ガイドシャフト 8と平行に延設されている。この回 転軸 9には送りねじ 10が形成されており、光ピックアップ 3の基台 7に固定された送り ねじ受け 11が送りねじ 10に係合している。この構成により、ステッピングモータ 4を回 転駆動させた際に、ステッピングモータ 4の回転運動が直線運動に変換され、光ピッ クアップ 3の基台 7が光ディスク 1の半径方向に移動する。なお、図 1の構成例では、 ガイドシャフト 2本、送りねじ 1本の構成を示した力 送りねじがガイドシャフトを兼ねた 構成としてもよい。
[0041] また、光ディスク装置は、スピンドルモータ 2を駆動するスピンドルモータ駆動部 12 と、光ピックアップ 3のァクチユエータ 6を駆動する光ピックアップ駆動部 13と、ステツ ビングモータ 4を駆動するステッピングモータ駆動部 14とを備える。また、光ピックアツ プ 3で読み取った読み取り信号を増幅するヘッドアンプ 15と、ヘッドアンプ 15の出力 信号を処理する信号処理部 16と、光ピックアップ 3の周囲温度として装置内温度を検 出する温度センサ 17とを備える。
[0042] さらに、光ディスク装置は、各部の制御を行うプロセッサを備えてなるコントローラ 20 を備えている。コントローラ 20は、スピンドルモータ制御部 21、光ピックアップ制御部 22、ステッピングモータ制御部 23、レンズシフト量検出部 24を有して構成される。ス テツビングモータ制御部 23は、駆動電流供給時間決定部 31、温度 電流供給時間 変換テーブル 32、駆動電流プロフィール発生部 33を有する。
[0043] 上記構成にお!、て、スピンドルモータ駆動部 12は、スピンドルモータ 2を回転駆動 するための駆動電流を発生し、スピンドルモータ制御部 21は、スピンドルモータ 2が 所定の回転数になるようにスピンドルモータ駆動部 12より出力される駆動電流を制御 する。光ピックアップ 3は、光ディスク 1の内周力も外周(または外周から内周)へ半径 方向に移動しながら、スピンドルモータ 2によって回転する光ディスク 1に記録された 情報の読み取り、書き込みを行う。このとき、光ピックアップ 3の対物レンズ 5により、レ 一ザ光が光ディスク 1のトラック上にあるピットに集光される。
[0044] 光ピックアップ 3のァクチユエータ 6は、対物レンズ 5をフォーカシング方向(光デイス ク 1の記録面に対する法線方向)に動かすフォーカスァクチユエータと、対物レンズ 5 をトラッキング方向(光ディスク 1の記録面においてトラックと直交する方向)に動かす トラッキングァクチユエ一タとを有する。このフォーカスァクチユエータによりレーザ光 の焦点合わせが行われ、トラッキングァクチユエータにより光ディスク 1上のトラックに 対する位置ずれ補正が行われる。
[0045] ヘッドアンプ 15は、光ピックアップ 3で読み取った信号を増幅し、フォーカスエラー ( FE)信号、トラッキングエラー (TE)信号、及び読み取り信号の RF信号を生成し出力 する。信号処理部 16は、ヘッドアンプ 15で増幅された RF信号の復調及び誤り訂正 の処理を行い、コントローラ 20へ出力する。光ピックアップ駆動部 13は、光ピックアツ プ 3のァクチユエータ 6を駆動するための駆動電流を生成する。
[0046] コントローラ 20内の光ピックアップ制御部 22は、ヘッドアンプ 15から出力されたフォ 一カスエラー信号及びトラッキングエラー信号を基に対物レンズ 5の位置を制御する ための制御信号を光ピックアップ駆動部 13に出力する。この制御信号に基づき、光 ピックアップ駆動部 13によって光ピックアップ 3のフォーカスァクチユエータゃトラツキ ングァクチユエータが駆動される。レンズシフト量検出部 24は、光ピックアップ 3の基 台 7の中心に対し対物レンズ 5がシフトしたシフト量を検出する。
[0047] 送りねじ 10は、ステッピングモータ 4の出力軸となっており、ステッピングモータ 4が 回転するとその回転力が送りねじ 10から送りねじ受け 11を介して伝達され、光ピック アップ 3の基台 7が光ディスク 1の半径方向に移動する。一般に光ディスク装置では、 ディスク内外周の情報を読み出すシーク動作を頻繁に行う必要があるため、送りねじ 10と送りねじ受け 11との間にグリスを塗布し摺動部の耐摩耗性を確保する。
[0048] ステッピングモータ 4は、ステッピングモータ駆動部 14力もの駆動電流により回転す る。ステッピングモータ制御部 23は、ステッピングモータ駆動部 14より出力される駆 動電流を制御する。ステッピングモータ制御部 23の駆動電流供給時間決定部 31に は、温度センサ 17により検出された光ディスク装置の装置内温度の検出信号が入力 される。駆動電流供給時間決定部 31は、この温度検出信号と温度 電流供給時間 変換テーブル 32の出力とに基づき、マイクロステップ駆動時の駆動電流供給時間を 決定する。駆動電流プロフィール発生部 33は、駆動電流供給時間決定部 31により 決定された供給時間幅に応じた、マイクロステップ駆動のための包絡線が正弦波状 の駆動電流プロフィールを生成してステッピングモータ駆動部 14に出力する。
[0049] 次に、上記のように構成された光ディスク装置の動作について説明する。光ディスク 1の情報の読み取り、書き込みに関する動作は、一般の光ディスク装置と同じである ので詳細な説明は省略し、ここでは本実施形態で特徴的な動作であるマイクロステツ プ駆動による光軸補正送り動作時のステッピングモータ 4の制御動作について説明 する。
[0050] 光ディスク装置の起動後もしくはシーク終了後など情報の読み出し、書き込みを行 う際には、光軸補正送り動作を行う。トラッキングサーボをオンして光ピックアップ 3が 情報の読み出しを始めると、対物レンズ 5が光ディスク 1のトラックに追従して半径方 向(内周から外周もしくは外周から内周)に動くようにァクチユエータ 6が制御される。 情報の読み出しまたは書き込みを行っている間、対物レンズ 5は徐々に光ピックアツ プ 3の基台 7の中心力もずれていくレンズシフトが生じる。所定量のレンズシフトが生 じた場合、ステッピングモータ制御部 23からの制御信号に従って、ステッピングモー タ駆動部 14からステッピングモータ 4を所定量動かすようにマイクロステップ駆動を行 うための駆動電流が印加される。ステッピングモータ 4のマイクロステップ駆動により光 ピックアップ 3の基台 7がレンズシフトをキャンセルするように動 、たら、ステッピングモ ータ 4を停止する。以上の動作を、対物レンズ 5が光ディスク 1の最終アドレスもしくは 操作者が指定した情報読み取り区間の最終アドレスの読み取りを完了するまで連続 して行い、前記アドレスに到達したとき、光軸補正送り動作を終了する。
[0051] 本実施形態では、光軸補正送り動作中にステッピングモータ 4をマイクロステップ駆 動する際の駆動電流制御を以下のようにして行う。ここでは第 1及び第 2の実施形態 の 2つの例を示す。
[0052] 図 2は、第 1の実施形態におけるマイクロステップ駆動の電流供給時間設定動作の 手順を示すフローチャートである。第 1の実施形態は、温度センサ 17より出力される 装置内温度の検出信号に応じて所定温度以下の場合に電流供給時間を長くするよ う切り替える例である。
[0053] マイクロステップ駆動時の駆動電流供給時間設定動作を開始する (ステップ S21)と 、温度センサ 17により光ピックアップ 3の周囲温度として光ディスク装置の装置内温 度 Θ を測定する (ステップ S 22)。そして、駆動電流供給時間決定部 31は、温度セン f
サ 17で検出された装置内温度 Θ と所定の基準温度 Θ との比較を行う(ステップ S23
f C
) o [0054] ステップ S23において、装置内温度 Θ が基準温度 Θ 以下と判定した場合、光ディ スク装置は低温環境下で使用されて 、るとみなして、駆動電流供給時間決定部 31 はマイクロステップ駆動の駆動電流の供給時間幅を常温時の電流供給時間 tより長 い固定値の電流供給時間 tに設定し (ステップ S24)、駆動電流供給時間設定動作
を終了する (ステップ S25)。
[0055] 一方、ステップ S23において、装置内温度 Θ が基準温度 Θ より高いと判定した場 合、駆動電流供給時間決定部 31はマイクロステップ駆動の駆動電流の供給時間幅 を常温時の電流供給時間 tに設定し (ステップ S26)、駆動電流供給時間設定動作 を終了する (ステップ S25)。
[0056] 図 3は、第 1の実施形態におけるステッピングモータのマイクロステップ駆動時の駆 動電流を示す図である。装置内温度 0 が基準温度 0 より高い場合は、図 3 (a)に示 すように駆動電流の供給時間幅を常温時の電流供給時間 tに設定し、包絡線が正 弦波状でパルス状の駆動電流をステッピングモータ駆動部 14より供給する。装置内 温度 0 が基準温度 0 以下の場合は、図 3 (b)に示すように駆動電流の供給時間幅 を低温時の電流供給時間 tに設定し、供給時間幅が長くなるように駆動電流を切り
替える。
[0057] このように第 1の実施形態では、温度センサで検出した光ディスク装置の装置内温 度に応じてマイクロステップ駆動時の駆動電流の供給時間幅を変化させるようにし、 装置内温度が所定温度以下の場合は、駆動電流の供給時間幅を常温時よりも長く 設定する。これにより、対物レンズのレンズシフトが所定量を超えた場合に光軸補正 送り動作を行う際に、低温環境下でも適切なトルクでステッピングモータを駆動させる ことができ、光ディスク装置を安定して動作させることができる。
[0058] 図 4は、第 2の実施形態におけるマイクロステップ駆動の電流供給時間設定動作の 手順を示すフローチャートである。第 2の実施形態は、温度 電流供給時間変換テ 一ブル 32を用いて温度センサ 17より出力される装置内温度の検出信号に応じて温 度係数を算出し、電流供給時間を設定する例である。
[0059] マイクロステップ駆動時の駆動電流供給時間設定動作を開始する (ステップ S31)と 、温度センサ 17により光ピックアップ 3の周囲温度として光ディスク装置の装置内温 度 Θ を測定する (ステップ S32)。そして、駆動電流供給時間決定部 31は、温度セン f
サ 17で検出された装置内温度 0 と所定の基準温度 0 との温度差 0 を算出する (ス
f C d
テツプ S33)。そして、温度-電流供給時間変換テーブル 32に基づき、温度差 Θ に
d 対応する駆動電流の供給時間幅を決定するための温度係数 kを出力する (ステップ
534)。続いて、駆動電流供給時間決定部 31は、基準とする常温時の電流供給時間 tに温度係数 kを乗じた電流供給時間 tを駆動電流の供給時間幅に設定し (ステップ c f
535)、駆動電流供給時間設定動作を終了する (ステップ S36)。
[0060] 図 5は、第 2の実施形態におけるステッピングモータのマイクロステップ駆動時の駆 動電流を示す図である。装置内温度 0 が基準温度 0 より高い場合、すなわち温度
f c
差 Θ が正の場合は、例えば温度係数 k= 1とし、図 5 (a)に示すように駆動電流の供 d
給時間幅を常温時の電流供給時間 tに設定し、包絡線が正弦波状でパルス状の駆 動電流をステッピングモータ駆動部 14より供給する。装置内温度 Θ が基準温度 Θ f c 以下の場合、すなわち温度差 Θ
dが負の場合は、例えば温度係数 k> 1とし、図 5 (b) に示すように駆動電流の供給時間幅を電流供給時間 t =kx tに設定し、供給時間
f c
幅が長くなるように駆動電流を切り替える。このとき、駆動電流の供給時間幅は、装置 内温度 Θ
fに応じて連続的に変化させたり、あるいは段階的に変化させるようにするこ とがでさる。
[0061] このように第 2の実施形態では、温度センサで検出した光ディスク装置の装置内温 度に基づいて温度係数を算出し、基準となる電流供給時間に温度係数を掛けて基 準温度との温度差に応じた電流供給時間を設定することで、マイクロステップ駆動時 の駆動電流の供給時間幅を変化させるようにする。このとき、装置内温度が低い場合 は、駆動電流の供給時間幅が長くなるように設定する。これにより、対物レンズのレン ズシフトが所定量を超えた場合に光軸補正送り動作を行う際に、幅広い温度環境下 にお 、て適切なトルクでステッピングモータを駆動させることができ、光ディスク装置 を安定して動作させることができる。
[0062] 以上説明したように、第 1及び第 2の実施形態によれば、マイクロステップ駆動によ る光軸補正送り動作を行う際に、消費電流を抑えて発熱量を少なくするために所定 時間幅ずつ間欠的に駆動電流を供給するようにした場合、装置内温度を温度センサ により検出し、検出された装置内温度に応じて駆動電流の供給時間幅を設定するこ とにより、使用時の負荷トルクに合致したトルクでモータ駆動を行うことができる。この ため、ステッピングモータを用いた光ピックアップの駆動機構において、幅広い使用 温度環境下であっても光ピックアップの送り動作を安定ィ匕させることができる。
[0063] 図 6は、本発明の第 3の実施形態に係る光ディスク装置の概略構成を示すブロック 図である。なお、前述した第 1及び第 2の実施形態と同様の構成要素には同一符号 を付して説明を省略する。
[0064] 第 3の実施形態の光ディスク装置は、光ピックアップ 3が光ディスク 1の内周部の所 定位置にきたときにオンする内周スィッチ 18を備える。
[0065] また、光ディスク装置は、各部の制御を行うプロセッサを備えてなるコントローラ 50を 備えている。コントローラ 50は、スピンドルモータ制御部 21、光ピックアップ制御部 22 、レンズシフト量検出部 24、タイマ 41、内周位置検出部 42、移動時間判定部 43、ス テツビングモータ制御部 51を有して構成される。ステッピングモータ制御部 51は、二 相励磁駆動制御部 52、マイクロステップ駆動制御部 53、二相励磁駆動電流振幅値 電流供給時間変換テーブル 54を有して構成される。二相励磁駆動制御部 52は、 二相励磁駆動電流振幅値決定部 55、二相励磁駆動電流プロフィール発生部 56を 有する。マイクロステップ駆動制御部 53は、マイクロステップ駆動電流供給時間決定 部 57、マイクロステップ駆動電流プロフィール発生部 58を有する。
[0066] 上記構成において、コントローラ 50内の光ピックアップ制御部 22は、ヘッドアンプ 1 5から出力されたフォーカスエラー信号及びトラッキングエラー信号を基に対物レンズ 5の位置を制御するための制御信号を光ピックアップ駆動部 13に出力する。この制 御信号に基づき、光ピックアップ駆動部 13によって光ピックアップ 3のフォーカスァク チユエータゃトラッキングァクチユエータが駆動される。レンズシフト量検出部 24は、 光ピックアップ 3の基台 7の中心に対し対物レンズ 5がシフトしたシフト量を検出する。
[0067] 送りねじ 10は、ステッピングモータ 4の出力軸となっており、ステッピングモータ 4が 回転するとその回転力が送りねじ 10から送りねじ受け 11を介して伝達され、光ピック アップ 3の基台 7が光ディスク 1の半径方向に移動する。一般に光ディスク装置では、 ディスク内外周の情報を読み出すシーク動作を頻繁に行う必要があるため、送りねじ 10と送りねじ受け 11との間にグリスを塗布し摺動部の耐摩耗性を確保する。
[0068] ステッピングモータ 4は、ステッピングモータ駆動部 14力もの駆動電流により回転す る。コントローラ 50内のステッピングモータ制御部 51は、ステッピングモータ駆動部 1 4より出力される駆動電流を制御するもので、二相励磁駆動制御部 52及びマイクロス テツプ駆動制御部 53により二相励磁駆動とマイクロステップ駆動とを切り替えて駆動 制御することが可能である。
[0069] 内周位置検出部 42は、内周スィッチ 18からの出力信号を入力し、内周スィッチ 18 のオンによって光ピックアップ 3が光ディスク 1の内周所定位置まで移動したことを検 出し、検出信号を移動時間判定部 43に出力する。このとき、タイマ 41は、光ピックァ ップ 3を二相励磁駆動により光ディスク 1の内周方向へ移動させて内周部の所定位置 まで移動する際の移動時間を計測する。移動時間判定部 43は、タイマ 41により計測 された移動時間と、内周位置検出部 42により検出された光ピックアップ 3の内周所定 位置までの移動完了の検出信号とによって、光ピックアップ 3を内周部の所定位置ま で移動させた移動時間が所定時間内であるかを判定する。
[0070] 二相励磁駆動制御部 52において二相励磁駆動制御を行う際は、二相励磁駆動電 流振幅値決定部 55により、二相励磁駆動電流の振幅値を決定する。このとき、移動 時間判定部 43の判断に基づき、光ピックアップ 3を内周部の所定位置まで移動させ た移動時間が所定時間を超えた場合、二相励磁駆動電流の振幅値を増大させる。 二相励磁駆動電流プロフィール発生部 56は、二相励磁駆動電流振幅値決定部 55 により決定された振幅値に応じた二相励磁駆動電流の電流プロフィールを発生し、ス テツビングモータ駆動部 14に出力する。
[0071] 二相励磁駆動電流振幅値 電流供給時間変換テーブル 54には、二相励磁駆動 により光ピックアップ 3を内周所定位置まで移動させた移動時間が所定時間内である 場合の二相励磁駆動電流振幅値をマイクロステップ駆動時の駆動電流の供給時間 幅に変換するための変換データが格納されている。
[0072] マイクロステップ駆動制御部 53にお 、てマイクロステップ駆動制御を行う際は、マイ クロステップ駆動電流供給時間決定部 57により、二相励磁駆動電流振幅値 電流 供給時間変換テーブル 54の出力に基づ 、て二相励磁駆動電流振幅値に応じてマ イク口ステップ駆動電流の電流供給時間を決定する。このとき、二相励磁駆動電流振 幅値が大きい場合はマイクロステップ駆動時の駆動電流の供給時間幅を長く設定す る。マイクロステップ駆動電流プロフィール発生部 58は、マイクロステップ駆動電流供 給時間決定部 57により決定された供給時間幅に応じた包絡線が正弦波状のマイク 口ステップ駆動電流の電流プロフィールを発生し、ステッピングモータ駆動部 14に出 力する。
[0073] 次に、上記のように構成された光ディスク装置の動作について説明する。光ディスク 1の情報の読み取り、書き込みに関する動作は、一般の光ディスク装置と同じである ので詳細な説明は省略し、ここでは本実施形態で特徴的な動作である、マイクロステ ップ駆動による光軸補正送り動作時のステッピングモータ 4の制御動作と、装置起動 時の二相励磁駆動を用いたリキャル動作について説明する。
[0074] 光ディスク装置の起動後もしくはシーク終了後など情報の読み出し、書き込みを行 う際には、光軸補正送り動作を行う。トラッキングサーボをオンして光ピックアップ 3が 情報の読み出しを始めると、対物レンズ 5が光ディスク 1のトラックに追従して半径方 向(内周から外周もしくは外周から内周)に動くようにァクチユエータ 6が制御される。 情報の読み出しまたは書き込みを行っている間、対物レンズ 5は徐々に光ピックアツ プ 3の基台 7の中心力もずれていくレンズシフトが生じる。所定量のレンズシフトが生 じた場合、ステッピングモータ制御部 23からの制御信号に従って、ステッピングモー タ駆動部 14からステッピングモータ 4を所定量動かすようにマイクロステップ駆動を行 うための駆動電流が印加される。ステッピングモータ 4のマイクロステップ駆動により光 ピックアップ 3の基台 7がレンズシフトをキャンセルするように動 、たら、ステッピングモ ータ 4を停止する。以上の動作を、対物レンズ 5が光ディスク 1の最終アドレスもしくは 操作者が指定した情報読み取り区間の最終アドレスの読み取りを完了するまで連続 して行い、前記アドレスに到達したとき、光軸補正送り動作を終了する。
[0075] また、光ディスク装置を起動したときには、一般に、光ピックアップ 3を光ディスク 1の 内周部の所定位置に移動させて内周スィッチ 18のオンを確認し、光ピックアップ 3を 初期位置にリセットする動作であるリキャル動作を行った後、光ディスク 1の情報の読 み出し、書き込みを開始する。 [0076] 第 3の実施形態では、光軸補正送り動作中にステッピングモータ 4をマイクロステツ プ駆動する際の駆動電流制御を以下のようにして行う。この場合、リキャル動作にお いてステッピングモータ 4を二相励磁駆動する際の正常に内周移動完了が可能な駆 動電流振幅値を算出し、この駆動電流振幅値に応じて、光軸補正送り動作中のマイ クロステップ駆動時の駆動電流供給時間を制御する。
[0077] 図 7は、第 3の実施形態におけるマイクロステップ駆動の電流供給時間設定動作の 手順を示すフローチャートである。光ディスク装置が起動すると、マイクロステップ駆 動時の駆動電流供給時間設定動作を開始し (ステップ S41)、リキャル動作を行う。こ のとき、二相励磁駆動による内周シーク動作(内周送り動作)を開始し (ステップ S42) 、まず初期値としてカウンタ nを n= lに設定する (ステップ S43)。そして、二相励磁駆 動電流振幅値決定部 55は、二相励磁駆動を行う際の電流振幅値 I (n)を基準値 I
f C に設定する (ステップ S44)。
[0078] 続、て、二相励磁駆動電流振幅値決定部 55は、タイマ 41をゼロ(計測値 T=0)に リセットし (ステップ S45)、二相励磁駆動電流プロフィール発生部 56により光ピックァ ップ 3を内周側に移動させるように振幅値 Iの電流プロフィールを生成し、ステツピン グモータ駆動部 14を介してステッピングモータ 4を駆動すると同時に、タイマ 41をスタ ートさせる (ステップ S46)。移動時間判定部 43は、内周位置検出部 42からの検出信 号及びタイマ 41で計測した計測時間に基づき、所定時間経過後、内周スィッチ 18が オンになったかどうかを判定する (ステップ S47)。
[0079] ステップ S47において、所定時間経過後に内周スィッチ 18がオンになっていないと 判定した場合、すなわち所定時間内に内周部の所定位置まで光ピックアップ 3が移 動していない場合は、二相励磁駆動電流振幅値決定部 55は、ステッピングモータ 4 の負荷が増大し内周送りが正常に行われな力つたとみなして、 n=n+ 1として nを 1 増分し (ステップ S48)、 I (n+ 1) =1 (n) + aとして電流振幅値 Iを aだけ 1段階増
f f f
カロさせる(ステップ S49)。その後、ステップ S45に戻り、タイマ 41をリセットして再度二 相励磁駆動による内周シーク動作を行う。このステップ S45〜49の動作を、所定時 間以内に内周スィッチ 18がオンになり、内周部の所定位置まで光ピックアップ 3が移 動完了するまで繰り返し行う。 [0080] 図 8は、第 3の実施形態における内周シーク動作中のステッピングモータの二相励 磁駆動電流を示す図である。この図 8に示すように、所定時間内に内周部の所定位 置まで光ピックアップ 3が移動完了しない場合は、駆動電流の振幅値を αずつ段階 的に増加させ、再度内周送り動作を行う。
[0081] 一方、ステップ S47において、所定時間内に内周スィッチ 18がオンとなったと判定 した場合、すなわち所定時間内に内周部の所定位置まで光ピックアップ 3が移動完 了した場合は、内周シーク動作を終了する (ステップ S50)。
[0082] 次に、マイクロステップ駆動中の駆動電流の電流供給時間幅を決定するために、マ イク口ステップ駆動電流供給時間決定部 57は、二相励磁駆動電流振幅値 電流供 給時間変換テーブル 54を用いて前記電流振幅値 Iに対応する変換係数 kを出力す
f
る (ステップ S51)。続いて、マイクロステップ駆動電流供給時間決定部 57は、基準と する常温時の電流供給時間 tに変換係数 kを乗じた電流供給時間 tを駆動電流の
c m
供給時間幅に設定し (ステップ S52)、マイクロステップ駆動時の駆動電流供給時間 設定動作を終了する (ステップ S53)。
[0083] 図 9は、第 3の実施形態におけるステッピングモータのマイクロステップ駆動時の駆 動電流を示す図である。二相励磁駆動時の正常動作電流振幅値 I
fが基準値 I
C以下 の場合、すなわちステッピングモータの負荷が所定量より小さい場合は、例えば変換 係数 k= lとし、図 9 (a)に示すように駆動電流の供給時間幅を基準とする常温時の 電流供給時間 tに設定し、包絡線が正弦波状でパルス状の駆動電流をステッピング モータ駆動部 14より供給する。二相励磁駆動時の正常動作電流振幅値 Iが基準値 I
f
より大きい場合、すなわちステッピングモータの負荷が所定量より大きい場合は、例 えば変換係数 k> lとし、図 9 (b)に示すように駆動電流の供給時間幅を電流供給時 間 t =k X tに設定し、供給時間幅が長くなるように駆動電流を切り替える。このとき m c
、駆動電流の供給時間幅は、電流振幅値 I
fに応じて連続的に変化させたり、あるい は段階的に変化させるようにすることができる。
[0084] なお、変換係数 kは、前記電流振幅値 Iに代えて、所定の電流振幅値によって正常
f
に内周シーク動作が完了するまでの移動時間に応じて設定するようにしてもよい。ま た、二相励磁駆動時の電流振幅値を増大させる値は、一定値 αだけでなぐ増加回 数によって変化させたり、リキャル動作毎に変化させてもよぐあるいは、装置内に温 度センサを設けて周囲温度などによって値を変更してもよい。また、装置内に温度セ ンサを設け、電流振幅値に周囲温度の情報をさらに追加してマイクロステップ駆動時 の駆動電流供給時間を設定することも可能である。
[0085] このように第 3の実施形態では、装置起動時のリキャル動作にぉ 、て、二相励磁駆 動による駆動電流の電流振幅値を変化させて光ピックアップを内周位置へ移動させ 、正常動作が行えるかどうかから負荷状態を推定する。内周送り動作が所定時間内 に正常に完了する電流振幅値を求め、この電流振幅値に応じて変換係数を算出し、 基準となる電流供給時間に変換係数を掛けて電流振幅値の大きさ (すなわち正常動 作時のステッピングモータの負荷)に応じた電流供給時間を設定することで、マイクロ ステップ駆動時の駆動電流の供給時間幅を変化させるようにする。このとき、電流振 幅値が大きい場合は、駆動電流の供給時間幅が長くなるように設定する。これにより 、対物レンズのレンズシフトが所定量を超えた場合に光軸補正送り動作を行う際に、 幅広 、温度環境下にお 、て適切なトルクでステッピングモータを駆動させることが可 能となる。
[0086] 以上説明したように、第 3の実施形態によれば、マイクロステップ駆動による光軸補 正送り動作を行う際に、消費電流を抑えて発熱量を少なくするために所定時間幅ず つ間欠的に駆動電流を供給するようにした場合、二相励磁駆動による光ピックアップ 送り動作が正常に行える駆動電流の電流振幅値を検出し、検出された電流振幅値 に応じてマイクロステップ駆動時の駆動電流の供給時間幅を設定することにより、使 用時の負荷トルクに合致したトルクでモータ駆動を行うことができる。このため、ステツ ビングモータを用いた光ピックアップの駆動機構にぉ 、て、幅広 、使用温度環境下 であっても光ピックアップの送り動作を安定ィ匕させることができる。
[0087] 図 10は、本発明の第 4の実施形態に係る光ディスク装置の概略構成を示すブロッ ク図である。なお、前述した第 1〜第 3の実施形態と同様の構成要素には同一符号を 付して説明を省略する。
[0088] 第 4の実施形態の光ディスク装置は、光ピックアップ 3が光ディスク 1の内周部の所 定位置にきたときにオンする内周スィッチ 18を備える。また、光ディスク装置は、各部 の制御を行うプロセッサを備えてなるコントローラ 60を備えている。コントローラ 60は、 スピンドルモータ制御部 21、光ピックアップ制御部 22、レンズシフト量検出部 24、タ イマ 41、内周位置検出部 42、移動時間判定部 43、ステッピングモータ制御部 61を 有して構成される。ステッピングモータ制御部 61は、二相励磁駆動制御部 62、マイク 口ステップ駆動制御部 63、二相励磁駆動電流パルスレート 電流供給時間変換テ 一ブル 64を有して構成される。二相励磁駆動制御部 62は、二相励磁駆動電流パル スレート決定部 65、二相励磁駆動電流プロフィール発生部 66を有する。マイクロステ ップ駆動制御部 63は、マイクロステップ駆動電流供給時間決定部 67、マイクロステツ プ駆動電流プロフィール発生部 68を有する。
[0089] 上記構成において、コントローラ 60内の光ピックアップ制御部 22は、ヘッドアンプ 1 5から出力されたフォーカスエラー信号及びトラッキングエラー信号を基に対物レンズ 5の位置を制御するための制御信号を光ピックアップ駆動部 13に出力する。この制 御信号に基づき、光ピックアップ駆動部 13によって光ピックアップ 3のフォーカスァク チユエータゃトラッキングァクチユエータが駆動される。レンズシフト量検出部 24は、 光ピックアップ 3の基台 7の中心に対し対物レンズ 5がシフトしたシフト量を検出する。
[0090] 送りねじ 10は、ステッピングモータ 4の出力軸となっており、ステッピングモータ 4が 回転するとその回転力が送りねじ 10から送りねじ受け 11を介して伝達され、光ピック アップ 3の基台 7が光ディスク 1の半径方向に移動する。一般に光ディスク装置では、 ディスク内外周の情報を読み出すシーク動作を頻繁に行う必要があるため、送りねじ 10と送りねじ受け 11との間にグリスを塗布し摺動部の耐摩耗性を確保する。
[0091] ステッピングモータ 4は、ステッピングモータ駆動部 14力もの駆動電流により回転す る。コントローラ 60内のステッピングモータ制御部 61は、ステッピングモータ駆動部 1 4より出力される駆動電流を制御するもので、二相励磁駆動制御部 62及びマイクロス テツプ駆動制御部 63により二相励磁駆動とマイクロステップ駆動とを切り替えて駆動 制御することが可能である。
[0092] 内周位置検出部 42は、内周スィッチ 18からの出力信号を入力し、内周スィッチ 18 のオンによって光ピックアップ 3が光ディスク 1の内周所定位置まで移動したことを検 出し、検出信号を移動時間判定部 43に出力する。このとき、タイマ 41は、光ピックァ ップ 3を二相励磁駆動により光ディスク 1の内周方向へ移動させて内周部の所定位置 まで移動する際の移動時間を計測する。移動時間判定部 43は、タイマ 41により計測 された移動時間と、内周位置検出部 42により検出された光ピックアップ 3の内周所定 位置までの移動完了の検出信号とによって、光ピックアップ 3を内周部の所定位置ま で移動させた移動時間が所定時間内であるかを判定する。
[0093] 二相励磁駆動制御部 62において二相励磁駆動制御を行う際は、二相励磁駆動電 流パルスレート決定部 65により、二相励磁駆動電流のパルスレートを決定する。この とき、移動時間判定部 43の判断に基づき、光ピックアップ 3を内周部の所定位置まで 移動させた移動時間が所定時間を超えた場合、二相励磁駆動電流のパルスレートを 低下させる。二相励磁駆動電流プロフィール発生部 66は、二相励磁駆動電流パル スレート決定部 65により決定された振幅値に応じた二相励磁駆動電流の電流プロフ ィールを発生し、ステッピングモータ駆動部 14に出力する。
[0094] 二相励磁駆動電流パルスレート 電流供給時間変換テーブル 64には、二相励磁 駆動により光ピックアップ 3を内周所定位置まで移動させた移動時間が所定時間内 である場合の二相励磁駆動電流のパルスレートをマイクロステップ駆動時の駆動電 流の供給時間幅に変換するための変換データが格納されている。
[0095] マイクロステップ駆動制御部 63にお 、てマイクロステップ駆動制御を行う際は、マイ クロステップ駆動電流供給時間決定部 67により、二相励磁駆動電流パルスレート 電流供給時間変換テーブル 64の出力に基づ 、て二相励磁駆動電流のパルスレー トに応じてマイクロステップ駆動電流の電流供給時間を決定する。このとき、二相励 磁駆動電流のパルスレートが小さい場合はマイクロステップ駆動時の駆動電流の供 給時間幅を長く設定する。マイクロステップ駆動電流プロフィール発生部 68は、マイ クロステップ駆動電流供給時間決定部 67により決定された供給時間幅に応じた包絡 線が正弦波状のマイクロステップ駆動電流の電流プロフィールを発生し、ステツピン グモータ駆動部 14に出力する。
[0096] 次に、上記のように構成された光ディスク装置の動作について説明する。光ディスク 1の情報の読み取り、書き込みに関する動作は、一般の光ディスク装置と同じである ので詳細な説明は省略し、ここでは本実施形態で特徴的な動作である、マイクロステ ップ駆動による光軸補正送り動作時のステッピングモータ 4の制御動作と、装置起動 時の二相励磁駆動を用いたリキャル動作について説明する。
[0097] 光ディスク装置の起動後もしくはシーク終了後など情報の読み出し、書き込みを行 う際には、光軸補正送り動作を行う。トラッキングサーボをオンして光ピックアップ 3が 情報の読み出しを始めると、対物レンズ 5が光ディスク 1のトラックに追従して半径方 向(内周から外周もしくは外周から内周)に動くようにァクチユエータ 6が制御される。 情報の読み出しまたは書き込みを行っている間、対物レンズ 5は徐々に光ピックアツ プ 3の基台 7の中心力もずれていくレンズシフトが生じる。所定量のレンズシフトが生 じた場合、ステッピングモータ制御部 23からの制御信号に従って、ステッピングモー タ駆動部 14からステッピングモータ 4を所定量動かすようにマイクロステップ駆動を行 うための駆動電流が印加される。ステッピングモータ 4のマイクロステップ駆動により光 ピックアップ 3の基台 7がレンズシフトをキャンセルするように動 、たら、ステッピングモ ータ 4を停止する。以上の動作を、対物レンズ 5が光ディスク 1の最終アドレスもしくは 操作者が指定した情報読み取り区間の最終アドレスの読み取りを完了するまで連続 して行い、前記アドレスに到達したとき、光軸補正送り動作を終了する。
[0098] また、光ディスク装置を起動したときには、一般に、光ピックアップ 3を光ディスク 1の 内周部の所定位置に移動させて内周スィッチ 18のオンを確認し、光ピックアップ 3を 初期位置にリセットする動作であるリキャル動作を行った後、光ディスク 1の情報の読 み出し、書き込みを開始する。
[0099] 第 4の実施形態では、光軸補正送り動作中にステッピングモータ 4をマイクロステツ プ駆動する際の駆動電流制御を以下のようにして行う。この場合、リキャル動作にお いてステッピングモータ 4を二相励磁駆動する際の正常に内周移動完了が可能な駆 動電流パルスレートを算出し、この駆動電流パルスレートに応じて、光軸補正送り動 作中のマイクロステップ駆動時の駆動電流供給時間を制御する。
[0100] 図 11は、第 4の実施形態におけるマイクロステップ駆動の電流供給時間設定動作 の手順を示すフローチャートである。光ディスク装置が起動すると、マイクロステップ 駆動時の駆動電流供給時間設定動作を開始し (ステップ S61)、リキャル動作を行う 。このとき、二相励磁駆動による内周シーク動作(内周送り動作)を開始し (ステップ S 62)、まず初期値としてカウンタ nを n= lに設定する (ステップ S63)。そして、二相励 磁駆動電流パルスレート決定部 65は、二相励磁駆動を行う際のパルスレート Pf (n) を基準値 Pcに設定する (ステップ S64)。
[0101] 続いて、二相励磁駆動電流ノ ルスレート決定部 65は、タイマ 41をゼロ(計測値 T= 0)にリセットし (ステップ S65)、二相励磁駆動電流プロフィール発生部 66により光ピ ックアップ 3を内周側に移動させるようにパルスレート Pcの電流プロフィールを生成し 、ステッピングモータ駆動部 14を介してステッピングモータ 4を駆動すると同時に、タ イマ 41をスタートさせる (ステップ S66)。移動時間判定部 43は、内周位置検出部 42 力もの検出信号及びタイマ 41で計測した計測時間に基づき、所定時間経過後、内 周スィッチ 18がオンになったかどうかを判定する(ステップ S67)。
[0102] 図 12は、第 4の実施形態におけるステッピングモータの駆動電流のパルスレートとト ルクの関係を示す図である。図 12 (a)は負荷が小さくて基準値のパルスレート Pcで 所定時間内に内周シーク動作が行える場合、図 12 (b)は負荷が大きくて基準値のパ ルスレート Pcでは所定時間内に内周シーク動作が完了しない場合をそれぞれ示して いる。
[0103] ステップ S67において、所定時間経過後に内周スィッチ 18がオンになっていないと 判定した場合、すなわち所定時間内に内周部の所定位置まで光ピックアップ 3が移 動していない場合は、二相励磁駆動電流パルスレート決定部 65は、ステッピングモ ータ 4の負荷が増大し内周送りが正常に行われなかったと判断する。この場合、負荷 トルクがモータ発生トルクより大きくなつて(図 12 (b)の(1) )、脱調現象を生じたため 内周送りが正常に行われなかったと判断して、n=n+ lとして nを 1増分し (ステップ S 68)、 Pf (n+ 1) =Pf (n)— αとしてパルスレート Pfを αだけ 1段階低下させる(ステツ プ S69)。その後、ステップ S65に戻り、タイマ 41をリセットして再度二相励磁駆動に よる内周シーク動作を行う(図 12 (b)の(2) )。このステップ S65〜69の動作を、所定 時間以内に内周スィッチ 18がオンになり、内周部の所定位置まで光ピックアップ 3が 移動完了するまで繰り返し行う。
[0104] 図 13は、第 4の実施形態における内周シーク動作中のステッピングモータの二相 励磁駆動電流を示す図である。この図 13に示すように、所定時間内に内周部の所定 位置まで光ピックアップ 3が移動完了しな 、場合は、駆動電流のパルスレートを aず つ段階的に低下させ、再度内周送り動作を行う。
[0105] 一方、ステップ S67において、所定時間内に内周スィッチ 18がオンとなったと判定 した場合、すなわち所定時間内に内周部の所定位置まで光ピックアップ 3が移動完 了した場合は、内周シーク動作を終了する (ステップ S 70)。このとき、負荷トルクはモ ータ発生トルク以下であり(図 12 (b)の(3) )、正常動作が可能となる。
[0106] 次に、マイクロステップ駆動中の駆動電流の電流供給時間幅を決定するために、マ イク口ステップ駆動電流供給時間決定部 67は、二相励磁駆動電流パルスレートー電 流供給時間変換テーブル 64を用いて前記パルスレート Pfに対応する変換係数 kを 出力する (ステップ S71)。続いて、マイクロステップ駆動電流供給時間決定部 67は、 基準とする常温時の電流供給時間 tcに変換係数 kを乗じた電流供給時間 tmを駆動 電流の供給時間幅に設定し (ステップ S72)、マイクロステップ駆動時の駆動電流供 給時間設定動作を終了する (ステップ S73)。
[0107] 図 14は、第 4の実施形態におけるステッピングモータのマイクロステップ駆動時の 駆動電流を示す図である。二相励磁駆動時の正常動作パルスレート Pfが基準値 Pc 以上の場合、すなわちステッピングモータの負荷が所定量より小さい場合は、例えば 変換係数 k= lとし、図 14 (a)に示すように駆動電流の供給時間幅を基準とする常温 時の電流供給時間 tcに設定し、包絡線が正弦波状でパルス状の駆動電流をステツ ビングモータ駆動部 14より供給する。二相励磁駆動時の正常動作パルスレート Pfが 基準値 Pcより小さい場合、すなわちステッピングモータの負荷が所定量より大きい場 合は、例えば変換係数 k> lとし、図 14 (b)に示すように駆動電流の供給時間幅を電 流供給時間 tm=k X tcに設定し、供給時間幅が長くなるように駆動電流を切り替え る。このとき、駆動電流の供給時間幅は、パルスレート Pfに応じて連続的に変化させ たり、ある 、は段階的に変化させるようにすることができる。
[0108] なお、変換係数 kは、前記パルスレート Pfに代えて、所定の電流振幅値によって正 常に内周シーク動作が完了するまでの移動時間に応じて設定するようにしてもよい。 また、二相励磁駆動時のノ ルスレートを低下させる値は、一定値 αだけでなぐ減少 回数によって変化させたり、リキャル動作毎に変化させてもよぐあるいは、装置内に 温度センサを設けて周囲温度などによって値を変更してもよい。また、装置内に温度 センサを設け、パルスレートに周囲温度の情報をさらに追加してマイクロステップ駆動 時の駆動電流供給時間を設定することも可能である。
[0109] このように第 4の実施形態では、装置起動時のリキャル動作にぉ 、て、二相励磁駆 動による駆動電流のパルスレートを変化させて光ピックアップを内周位置へ移動させ 、正常動作が行えるかどうかから負荷状態を推定する。内周送り動作が所定時間内 に正常に完了するパルスレートを求め、このパルスレートに応じて変換係数を算出し 、基準となる電流供給時間に変換係数を掛けてパルスレートの大きさ (すなわち正常 動作時のステッピングモータの負荷)に応じた電流供給時間を設定することで、マイク 口ステップ駆動時の駆動電流の供給時間幅を変化させるようにする。このとき、パルス レートが小さい場合は、駆動電流の供給時間幅が長くなるように設定する。これにより 、対物レンズのレンズシフトが所定量を超えた場合に光軸補正送り動作を行う際に、 幅広 、温度環境下にお 、て適切なトルクでステッピングモータを駆動させることが可 能となる。
[0110] 以上説明したように、第 4の実施形態によれば、マイクロステップ駆動による光軸補 正送り動作を行う際に、消費電流を抑えて発熱量を少なくするために所定時間幅ず つ間欠的に駆動電流を供給するようにした場合、二相励磁駆動による光ピックアップ 送り動作が正常に行える駆動電流のパルスレートを検出し、検出されたパルスレート に応じてマイクロステップ駆動時の駆動電流の供給時間幅を設定することにより、使 用時の負荷トルクに合致したトルクでモータ駆動を行うことができる。このため、ステツ ビングモータを用いた光ピックアップの駆動機構にぉ 、て、幅広 、使用温度環境下 であっても光ピックアップの送り動作を安定ィ匕させることができる。
[0111] したがって、上述した第 1〜第 4の実施形態によれば、車載用途など使用温度範囲 が広い場合にもグリス粘性による負荷変動の影響で送り動作不良が発生するのを防 止でき、情報の読み書きを正確に行うことが可能となる。したがって、幅広い温度環 境下で光ディスク装置を安定して動作させることができる。また、上記のような光ピック アップ送り制御方法を光ディスク装置に適用すれば、光ディスク装置の安定性及び 信頼性を高めることができる。さらに、このような光ディスク装置を車載用機器に適用 すれば、車両が幅広い温度環境下で使用されても、光ディスク装置を正常に動作さ せることができる。
[0112] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 6月 1日出願の日本特許出願 (特願 2004-163221)、 2004年 6月 1日出願の日本特許出願(特願 2004-163222)、
2004年 6月 1日出願の日本特許出願(特願 2004-163223)、
に基づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0113] 本発明は、ステッピングモータを用いた光ピックアップの駆動機構において、幅広 い使用温度環境下であっても光ピックアップの送り動作を安定ィ匕することのできると いう効果を有し、ディスク状光学式記録媒体に対して情報の読み取り、書き込みの少 なくとも一方を行う光ピックアップを備えた光ディスク装置等に有用である。

Claims

請求の範囲
[1] 光ディスクに記録された情報を読み取る光ピックアップと、
前記光ピックアップを前記光ディスクに対して半径方向に移動させるステッピングモ ータと、
前記ステッピングモータを駆動するための駆動電流を供給するものであり、マイクロ ステップ駆動が可能な駆動電流供給手段と、
前記光ピックアップの周囲温度を検出する温度検出手段と、
前記検出された周囲温度に応じて前記マイクロステップ駆動を行う際の駆動電流を 変更して前記ステッピングモータの駆動制御を行う駆動制御手段と、
を備える光ディスク装置。
[2] 請求項 1に記載の光ディスク装置であって、
前記駆動電流供給手段は、前記マイクロステップ駆動を行う際に前記ステッピング モータに対して所定時間幅の間欠的な駆動電流を供給するものであり、
前記駆動制御手段は、前記駆動電流の供給時間幅を前記周囲温度に応じて変更 する光ディスク装置。
[3] 請求項 2に記載の光ディスク装置であって、
前記駆動制御手段は、前記周囲温度が所定温度以下の時には前記駆動電流の 供給時間幅を増加させた値に変更する光ディスク装置。
[4] 請求項 2に記載の光ディスク装置であって、
前記周囲温度に対応する温度係数を格納した温度係数変換テーブルを有し、 前記駆動制御手段は、前記温度係数変換テーブルを用いて前記周囲温度に対応 した温度係数を求め、前記駆動電流の供給時間幅を決定する光ディスク装置。
[5] 光ディスクに記録された情報を読み取る光ピックアップと、
前記光ピックアップを前記光ディスクに対して半径方向に移動させるステッピングモ ータと、
前記ステッピングモータを駆動するための駆動電流を供給するものであり、二相励 磁駆動とマイクロステップ駆動とが可能な駆動電流供給手段と、
前記二相励磁駆動により前記光ピックアップを移動させた場合の動作が正常終了 したか否かを判定する二相励磁駆動判定手段と、
前記判定結果に応じて前記マイクロステップ駆動を行う際の駆動電流を変更して前 記ステッピングモータの駆動制御を行う駆動制御手段と、
を備える光ディスク装置。
[6] 請求項 5に記載の光ディスク装置であって、
前記二相励磁駆動を行う際の駆動電流を変化させる駆動電流可変手段を有する 光ディスク装置。
[7] 請求項 6に記載の光ディスク装置であって、
前記駆動電流可変手段は、前記二相励磁駆動を行う際の駆動電流の電流振幅を 段階的に変化させる光ディスク装置。
[8] 請求項 7に記載の光ディスク装置であって、
前記二相励磁駆動による送り動作が正常に行える前記駆動電流の電流振幅値を 判定する正常駆動電流振幅判定手段を有し、
前記駆動電流供給手段は、前記マイクロステップ駆動を行う際に前記ステッピング モータに対して所定時間幅の間欠的な駆動電流を供給するものであり、
前記駆動制御手段は、前記駆動電流の供給時間幅を前記駆動電流の電流振幅 値に応じて変更する光ディスク装置。
[9] 請求項 7に記載の光ディスク装置であって、
前記光ピックアップが前記光ディスクの内周所定位置への移動完了を検出する光 ピックアップ位置検出手段と、
前記二相励磁駆動を行って前記光ピックアップが前記内周所定位置まで所定時間 内に移動完了するような前記駆動電流の電流振幅値を判定する移動完了電流振幅 判定手段とを有し、
前記駆動電流供給手段は、前記マイクロステップ駆動を行う際に前記ステッピング モータに対して所定時間幅の間欠的な駆動電流を供給するものであり、
前記駆動制御手段は、前記駆動電流の供給時間幅を前記駆動電流の電流振幅 値に応じて変更する光ディスク装置。
[10] 請求項 8または 9に記載の光ディスク装置であって、 前記駆動制御手段は、前記電流振幅値が所定値以上の時には前記駆動電流の 供給時間幅を増加させた値に変更する光ディスク装置。
[11] 請求項 5に記載の光ディスク装置であって、
前記光ピックアップが前記光ディスクの内周所定位置への移動完了を検出する光 ピックアップ位置検出手段と、
前記二相励磁駆動を行って前記光ピックアップが前記内周所定位置まで移動する 移動時間を判定する移動時間判定手段とを有し、
前記駆動電流供給手段は、前記マイクロステップ駆動を行う際に前記ステッピング モータに対して所定時間幅の間欠的な駆動電流を供給するものであり、
前記駆動制御手段は、前記駆動電流の供給時間幅を前記光ピックアップの移動時 間に応じて変更する光ディスク装置。
[12] 請求項 11に記載の光ディスク装置であって、
前記駆動制御手段は、前記移動時間が所定値以上の時には前記駆動電流の供 給時間幅を増加させた値に変更する光ディスク装置。
[13] 光ディスクに記録された情報を読み取る光ピックアップと、
前記光ピックアップを前記光ディスクに対して半径方向に移動させるステッピングモ ータと、
前記ステッピングモータを駆動するための駆動電流を供給するものであり、二相励 磁駆動とマイクロステップ駆動とが可能で、前記マイクロステップ駆動を行う際に前記 ステッピングモータに対して所定時間幅の間欠的な駆動電流を供給する駆動電流供 給手段と、
前記二相励磁駆動を行う際の駆動電流のパルスレートを変化させる駆動電流可変 手段と、
前記二相励磁駆動により前記光ピックアップを移動させた場合の動作が正常終了 したか否かを判定する二相励磁駆動判定手段と、
前記判定結果に応じて前記マイクロステップ駆動を行う際の駆動電流の供給時間 幅を変更して前記ステッピングモータの駆動制御を行う駆動制御手段と、 を備える光ディスク装置。
[14] 請求項 13に記載の光ディスク装置であって、
前記駆動電流可変手段は、前記二相励磁駆動を行う際の駆動電流のパルスレート を段階的に変化させる光ディスク装置。
[15] 請求項 14に記載の光ディスク装置であって、
前記二相励磁駆動による送り動作が正常に行える前記駆動電流のパルスレートを 判定する正常駆動パルスレート判定手段を有し、
前記駆動制御手段は、前記駆動電流の供給時間幅を前記駆動電流のパルスレー トに応じて変更する光ディスク装置。
[16] 請求項 14に記載の光ディスク装置であって、
前記光ピックアップが前記光ディスクの内周所定位置への移動完了を検出する光 ピックアップ位置検出手段と、
前記二相励磁駆動を行って前記光ピックアップが前記内周所定位置まで所定時間 内に移動完了するような前記駆動電流のパルスレートを判定する移動完了パルスレ ート判定手段とを有し、
前記駆動制御手段は、前記駆動電流の供給時間幅を前記駆動電流のパルスレー トに応じて変更する光ディスク装置。
[17] 請求項 15または 16に記載の光ディスク装置であって、
前記駆動制御手段は、前記パルスレートが所定値以下の時には前記駆動電流の 供給時間幅を増加させた値に変更する光ディスク装置。
[18] 請求項 13に記載の光ディスク装置であって、
前記光ピックアップが前記光ディスクの内周所定位置への移動完了を検出する光 ピックアップ位置検出手段と、
前記二相励磁駆動を行って前記光ピックアップが前記内周所定位置まで移動する 移動時間を判定する移動時間判定手段とを有し、
前記駆動制御手段は、前記駆動電流の供給時間幅を前記光ピックアップの移動時 間に応じて変更する光ディスク装置。
[19] 請求項 18に記載の光ディスク装置であって、
前記駆動制御手段は、前記移動時間が所定値以上の時には前記駆動電流の供 給時間幅を増加させた値に変更する光ディスク装置。
[20] 請求項 5〜 19のいずれかに記載の光ディスク装置であって、
前記二相励磁駆動による前記光ピックアップの駆動に関する判定を装置起動直後 の光ピックアップ位置初期化のための内周送り動作時に行う光ディスク装置。
[21] 請求項 1〜20のいずれかに記載の光ディスク装置を備える車載用機器。
PCT/JP2005/009685 2004-06-01 2005-05-26 光ディスク装置 WO2005119666A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05743172A EP1752977A4 (en) 2004-06-01 2005-05-26 OPTICAL DISC DEVICE
US11/569,517 US7623417B2 (en) 2004-06-01 2005-05-26 Optical disk device
US12/539,861 US7940607B2 (en) 2004-06-01 2009-08-12 Optical disk device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004163221A JP4480003B2 (ja) 2004-06-01 2004-06-01 光ディスク装置
JP2004163222A JP4480004B2 (ja) 2004-06-01 2004-06-01 光ディスク装置
JP2004-163221 2004-06-01
JP2004-163222 2004-06-01
JP2004163223A JP2005346789A (ja) 2004-06-01 2004-06-01 光ディスク装置
JP2004-163223 2004-06-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/569,517 A-371-Of-International US7623417B2 (en) 2004-06-01 2005-05-26 Optical disk device
US12/539,861 Continuation US7940607B2 (en) 2004-06-01 2009-08-12 Optical disk device

Publications (1)

Publication Number Publication Date
WO2005119666A1 true WO2005119666A1 (ja) 2005-12-15

Family

ID=35463101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009685 WO2005119666A1 (ja) 2004-06-01 2005-05-26 光ディスク装置

Country Status (3)

Country Link
US (2) US7623417B2 (ja)
EP (2) EP1752977A4 (ja)
WO (1) WO2005119666A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016172A1 (ja) * 2008-08-05 2010-02-11 三菱電機株式会社 車載システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741825B2 (en) * 2006-11-02 2010-06-22 Infineon Technologies Ag Power supply circuit with temperature-dependent drive signal
CN103266056A (zh) * 2013-04-26 2013-08-28 江苏瑞祺生命科学仪器有限公司 一种精密显微操作平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334852A (ja) * 1994-06-07 1995-12-22 Matsushita Electric Ind Co Ltd 光学ピックアップのトラバース機構
JPH08223991A (ja) * 1995-02-09 1996-08-30 Unisia Jecs Corp ステッピングモータの駆動方法
JPH10149639A (ja) * 1996-11-20 1998-06-02 Alps Electric Co Ltd 記録再生装置
JP2003281840A (ja) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd 光ピックアップ送り制御方法および装置
JP2003317271A (ja) * 2002-04-15 2003-11-07 Matsushita Electric Ind Co Ltd 光ピックアップ送り制御方法および装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970050736A (ko) * 1995-12-19 1997-07-29 김광호 씨디-롬 드라이브에서의 슬레드 모터 제어방법
JP3363712B2 (ja) * 1996-08-06 2003-01-08 株式会社リコー 光ディスク装置
US6249495B1 (en) * 1997-02-27 2001-06-19 Matsushita Electric Industrial Co., Ltd. Stepping motor control method and disk drive apparatus
JP2000231731A (ja) * 1999-02-09 2000-08-22 Sony Corp 光ディスク駆動装置、光ディスク駆動方法および光ディスク装置
JP2003281746A (ja) 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd 光ピックアップ送り制御方法および装置
US20030206502A1 (en) * 2002-05-02 2003-11-06 Xiao Lin Method and apparatus for providing motor control in an optical disk drive system
KR20040004831A (ko) * 2002-07-05 2004-01-16 삼성전자주식회사 광 디스크 구동 시스템의 스텝 모터 제어 방법 및 그 장치
JP3652346B2 (ja) 2002-11-12 2005-05-25 東京瓦斯株式会社 フローセンサ
JP2004163222A (ja) 2002-11-12 2004-06-10 Gates Unitta Asia Co 摩擦係数測定装置のベルトチャック
JP2004163223A (ja) 2002-11-12 2004-06-10 Yamaha Fine Technologies Co Ltd 漏れ検査装置および方法
JP4482279B2 (ja) * 2003-02-06 2010-06-16 パナソニック株式会社 ディスク装置
JP4287712B2 (ja) * 2003-08-08 2009-07-01 株式会社日立エルジーデータストレージ 光ディスク装置、及び、そのためのデータ書き込み方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334852A (ja) * 1994-06-07 1995-12-22 Matsushita Electric Ind Co Ltd 光学ピックアップのトラバース機構
JPH08223991A (ja) * 1995-02-09 1996-08-30 Unisia Jecs Corp ステッピングモータの駆動方法
JPH10149639A (ja) * 1996-11-20 1998-06-02 Alps Electric Co Ltd 記録再生装置
JP2003281840A (ja) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd 光ピックアップ送り制御方法および装置
JP2003317271A (ja) * 2002-04-15 2003-11-07 Matsushita Electric Ind Co Ltd 光ピックアップ送り制御方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1752977A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016172A1 (ja) * 2008-08-05 2010-02-11 三菱電機株式会社 車載システム
JP4920786B2 (ja) * 2008-08-05 2012-04-18 三菱電機株式会社 車載システム
US8607015B2 (en) 2008-08-05 2013-12-10 Mitsubishi Electric Corporation Onboard system for vehicle

Also Published As

Publication number Publication date
US20090296538A1 (en) 2009-12-03
EP1752977A4 (en) 2008-08-20
US20080043579A1 (en) 2008-02-21
EP2101323A2 (en) 2009-09-16
EP1752977A1 (en) 2007-02-14
EP2101323A3 (en) 2010-10-06
US7623417B2 (en) 2009-11-24
US7940607B2 (en) 2011-05-10

Similar Documents

Publication Publication Date Title
JPH03104020A (ja) ディスク装置及びディスク制御方法
US7026781B2 (en) Stepping motor driving system, information recording and reproducing device, and stepping motor driving method
WO2005119666A1 (ja) 光ディスク装置
US6909573B2 (en) Disk drive including means for preventing rotation
US7184371B2 (en) Optical pickup driver having piezoelectric elements of different voltages at start and steady state
JP4480004B2 (ja) 光ディスク装置
JP4480003B2 (ja) 光ディスク装置
JP2008034039A (ja) 光ディスクドライブ装置及び光ディスクドライブ装置のサーボ制御方法
JP3077771B2 (ja) フォーカスサーボ装置
JP2003168268A (ja) 光ピックアップ送り装置
JP3145973B2 (ja) 光ディスク装置の光ヘッド移動制御装置
EP2015298B1 (en) Optical pickup device, optical pickup control device and optical pickup control method
JP2005346789A (ja) 光ディスク装置
KR20010008705A (ko) 광 디스크 구동기의 모터 구동장치 및 구동방법
JP2004199780A (ja) 光ピックアップ用レンズ駆動装置
JP4167693B2 (ja) 光ディスク装置およびアクチュエータ制御方法
JP2004199780A5 (ja)
JP2003281840A (ja) 光ピックアップ送り制御方法および装置
KR100533744B1 (ko) 광디스크 장치에서의 슬레드 모터 제어장치 및 방법
WO2007114240A1 (ja) 光情報記録再生装置、光情報再生装置、及び光情報記録再生方法
JP5169847B2 (ja) 光ディスク駆動装置及びフォーカスサーチ制御方法
JP5532042B2 (ja) サーボ引き込み装置およびサーボ引き込み方法
JP2003281746A (ja) 光ピックアップ送り制御方法および装置
JP2006252730A (ja) 光ディスク装置及びそれに用いるステッピングモータの駆動電流制御方法
JP2000020989A (ja) 光学的記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11569517

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005743172

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 200580023306.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005743172

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11569517

Country of ref document: US