WO2005118772A1 - 核酸増幅用容器、核酸調製キット、および核酸分析装置 - Google Patents

核酸増幅用容器、核酸調製キット、および核酸分析装置 Download PDF

Info

Publication number
WO2005118772A1
WO2005118772A1 PCT/JP2005/010080 JP2005010080W WO2005118772A1 WO 2005118772 A1 WO2005118772 A1 WO 2005118772A1 JP 2005010080 W JP2005010080 W JP 2005010080W WO 2005118772 A1 WO2005118772 A1 WO 2005118772A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
lid
extraction element
container
amplification
Prior art date
Application number
PCT/JP2005/010080
Other languages
English (en)
French (fr)
Inventor
Noriaki Furusato
Koji Hirayama
Shinya Nakajima
Daisuke Takahashi
Shinichi Ohta
Atsushi Murakami
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to EP05746024A priority Critical patent/EP1757679A1/en
Priority to JP2006514121A priority patent/JPWO2005118772A1/ja
Priority to US11/628,399 priority patent/US20080268529A1/en
Publication of WO2005118772A1 publication Critical patent/WO2005118772A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof

Definitions

  • the present invention relates to a technique for amplifying a target nucleic acid contained in a sample, and a technique for analyzing the amplified target nucleic acid.
  • nucleic acid analysis plays an important role in diagnosing infectious diseases and genetic diseases at the genetic level in the medical field. It is applied in various fields such as the food field.
  • nucleic acid analysis is performed through processes such as purification of nucleic acid from a sample, amplification of purified nucleic acid, and detection of amplified nucleic acid.
  • Each process should be automated by the machine, considering human costs, reproducibility and analytical efficiency Ideally, all processes should be automated by the machine (See, for example, Patent Documents 1 and 2).
  • nucleic acid-binding carrier As a method for automatic mechanization of nucleic acid purification, there is a method using a nucleic acid-binding carrier.
  • a method using nucleic acid-binding silica particles and chaotropic ions for example, see Patent Document 3.
  • nucleic acid binding silica particles and chaotropic ions capable of releasing nucleic acids in the sample are mixed with the sample to bind the nucleic acids in the sample to the nucleic acid binding silica particles, and then the solid phase and the liquid phase are separated. After that, the nucleic acids bound to the nucleic acid-binding silica particles are eluted.
  • nucleic acid binding carrier there is a method using a carrier having magnetism (for example, see Patent Documents 4 and 5).
  • this method there is a method in which nucleic acids are adsorbed on silica particles having magnetism, the silica particles are separated by a magnet, and the separated silica particles are eluted with a nucleic acid to recover an eluate.
  • This method has an advantage over mechanical automation because the solid phase and the liquid phase can be separated without performing a centrifugation operation or the like.
  • the recovery rate of nucleic acids is relatively low and the recovery rate is easily affected by the type of specimen.
  • magnetic silica particles can be an inhibitor of amplification reaction when PCR (Polymerase Chain Reaction) method is employed as a nucleic acid amplification method.
  • a typical method for detecting nucleic acids is to label nucleic acids and measure the labels by an optical method.However, when this method is used, magnetic silica causes measurement errors. In addition, the reproducibility deteriorates due to the variation in the content of the magnetic silica particles during the purification.
  • a typical method for amplifying nucleic acids is the PCR method.
  • Amplification of nucleic acids using the PCR method is being automated by a machine, and PCR devices are already commercially available.
  • a PCR device a device capable of detecting the amplified nucleic acid together with the amplification of the nucleic acid is generally used.
  • a general amplification kit is one in which primers and reagents such as polymerase are charged in a container with a lid in advance. Therefore, after opening the lid of the container, the user dispenses the nucleic acid solution into the container, stirs the reaction solution in the container, closes the lid, and then sets the operation when setting it in the PCR device. Be strong. That is, a general amplification kit has a large part that depends on the user's manual operation, and therefore the burden on the user is large. In addition, since the manual operation by the user is greatly involved, the user's skill is low in analysis efficiency.
  • the container used in the amplification kit is generally a general-purpose product in which a lid is integrally formed by resin molding, and it is difficult to automatically open and close the lid in a PCR device. Therefore, it is difficult for a method using a general dedicated kit to automatically perform the operation left to the user's manual operation in the PCR device.
  • a pipette device for dispensing a liquid such as a reagent or a sample is incorporated.
  • This pipette device is configured so that the nozzle can be moved horizontally and vertically by a robot arm depending on the type of the analyzer (for example, see Patent Document 6).
  • nucleic acid analyzer In automating the analysis, it may be necessary to move elements other than the nozzle of the pipetting device inside the analyzer. In this case, a plurality of movable elements including the nozzle must be incorporated in the nucleic acid analyzer so that they can move without interfering with each other, and the movable elements must be independently driven and controlled. Therefore, incorporating a plurality of movable elements into the nucleic acid analyzer leads to an increase in the size of the nucleic acid analyzer and an increase in manufacturing cost.
  • Patent Document 1 JP 2001-149097 A
  • Patent Document 2 JP-A-2003-304899
  • Patent Document 3 Patent No. 2680462
  • Patent Document 4 JP-A-60-1564
  • Patent Document 5 JP-A-919292
  • Patent Document 6 JP-A-2002-62302
  • the present invention enables a series of steps in nucleic acid analysis such as nucleic acid purification, nucleic acid amplification and nucleic acid measurement to be performed automatically by a machine, thereby reducing user burden and improving analysis efficiency and reproducibility. For the purpose of doing! Puru.
  • Another object of the present invention is to enable automatic analysis in a nucleic acid analyzer while suppressing an increase in the size of the apparatus and an increase in manufacturing cost.
  • a container main body having a reaction tank for allowing a target nucleic acid and an amplification reagent to react with each other is set in a nucleic acid analyzer and used,
  • a container for nucleic acid amplification comprising: a lid for closing an upper opening of a reaction tank and capable of being completely separated from the container body.
  • a container for extracting a target nucleic acid from a sample which is used in a nucleic acid analyzer, and a container for amplifying the target nucleic acid
  • a container for nucleic acid amplification comprising: a container body having a reaction tank for reacting a target nucleic acid with an amplification reagent; and an upper opening of the reaction tank.
  • a nucleic acid preparation kit comprising: a lid for closing the container; and a lid capable of being completely separated from the container body.
  • the lid is, for example, capable of being screwed into the reaction tank, and is detachably attached to the reaction tank by applying a rotating force.
  • the nucleic acid analyzer has a rotating member for applying a rotating force to the lid
  • the lid engages with the rotating member and enables the rotating member to apply the rotating force. Having an engaging portion for engaging.
  • the engaging portion has, for example, a cylindrical concave portion into which a rotating member is inserted.
  • a plurality of ribs extending in the vertical direction are provided at regular intervals in the circumferential direction. It is.
  • the ribs are preferably formed such that the width dimension becomes smaller as the upper end portion moves toward the upper end.
  • the lid may be configured to have a protruding portion used when the lid is held by the rotating member.
  • the protruding portion is formed, for example, as a flange protruding outward.
  • the nucleic acid purification container is formed, for example, as a separate body from the nucleic acid extraction element for extracting the target nucleic acid from the sample and supporting the extracted nucleic acid, and containing the nucleic acid extraction element. And a container body having a storage tank for storing.
  • the nucleic acid extraction element and the lid are preferably configured as holding means for holding the nucleic acid extraction element with respect to the lid and allowing the nucleic acid extraction element to move integrally with the lid. preferable.
  • the holding means is provided, for example, on an engaging convex portion or a concave portion provided on one of the nucleic acid extraction element and the lid, and on the other of the nucleic acid extracting element and the lid and on the engaging convex portion or the concave portion. And one or more claws for engagement.
  • the nucleic acid extraction element and the lid are provided with a guide mechanism for regulating the positional relationship of the lid with respect to the nucleic acid extraction element when the lid holds the nucleic acid extraction element.
  • the guide mechanism is configured to include, for example, a pin provided on one of the nucleic acid extraction element and the lid, and an insertion hole provided on the other of the nucleic acid extraction element and the lid and for inserting a pin. Is done.
  • the nucleic acid extraction element includes, for example, a solid matrix for supporting a target nucleic acid and the solid matrix. And a holding member for holding the body matrix.
  • the nucleic acid amplification container is preferably configured such that when the nucleic acid extraction element is removed from the storage tank and stored in the reaction tank, the solid matrix is separated from the bottom of the reaction tank.
  • the holding member is provided with a sealing member for forming a sealed space in the reaction tank when, for example, the nucleic acid extraction element is accommodated in the reaction tank with the nucleic acid extraction element held by the lid.
  • the sealing member is fixed above the portion where the solid matrix is held.
  • the holding member is configured to have, for example, a protruding portion for engaging with a step portion of the reaction tank.
  • the protruding portion is formed, for example, as a flange protruding outward.
  • the holding member is provided for engaging the transfer member. It is configured to have an engagement portion, and the protrusion is configured to be used to release the engagement state between the transfer member and the holding member.
  • the nucleic acid analyzer further includes a cylindrical member that covers the transfer member and that can move relative to the transfer member in the vertical direction, the projecting portion includes the cylindrical member as the transfer member. It is configured such that a downward force is exerted by the interference of the cylindrical member when it is moved relatively downward.
  • the solid matrix is held on the holding member, for example, in a state inclined with respect to the vertical axis of the holding member, and is preferably held horizontally or substantially horizontally with respect to the vertical axis.
  • the solid matrix is preferably formed in a disk shape.
  • the state in which the solid matrix is inclined with respect to the vertical axis can be achieved, for example, by piercing the holding member with respect to the solid matrix.
  • the holding member has, for example, a tapered portion whose diameter decreases toward the end, a tapered portion force is extended, and a pin-shaped portion for penetrating the solid matrix, and the solid matrix is separated from the pin-shaped portion. And a locking piece for suppressing rusting.
  • the solid matrix may be held by the holding member in a state parallel or substantially parallel to the vertical axis of the holding member.
  • the solid matrix is formed into a sheet. Is preferred.
  • the state where the solid matrix is parallel or substantially parallel to the vertical axis can be achieved, for example, by suspending the solid matrix with respect to a holding member.
  • the holding member is configured to have, for example, a holding portion for holding the solid matrix by holding the end of the solid matrix.
  • the container for nucleic acid extraction further comprises, for example, one or more washing tanks for holding a washing solution for removing impurities other than the target nucleic acid from the nucleic acid extraction element.
  • the nucleic acid amplification container is configured as further provided with one or more reagent holding tanks for holding reagents necessary for amplifying the target nucleic acid.
  • a nucleic acid amplification apparatus in which a container for nucleic acid amplification is set and used, wherein the container for nucleic acid amplification comprises a reaction for reacting a target nucleic acid with an amplification reagent. It is configured to use a container body having a tank and a lid for closing an upper opening of the reaction tank and capable of being completely separated from the container body.
  • a nucleic acid amplification device is provided in which a container for nucleic acid amplification is set and used, wherein the container for nucleic acid amplification comprises a reaction for reacting a target nucleic acid with an amplification reagent. It is configured to use a container body having a tank and a lid for closing an upper opening of the reaction tank and capable of being completely separated from the container body.
  • a nucleic acid amplification device Provided is a nucleic acid amplification device.
  • a nucleic acid analyzer for preparing a target nucleic acid from a sample using a container for nucleic acid extraction and a container for nucleic acid amplification and for analyzing the target nucleic acid
  • the container for nucleic acid amplification has a reaction vessel that provides a space for amplifying the target nucleic acid using the nucleic acid extraction element holding the target nucleic acid extracted from the sample cap, and an upper part of the reaction vessel.
  • a nucleic acid analyzer configured to use a device having a lid for closing an opening.
  • the nucleic acid analyzer according to the present invention is preferably configured to further include a lid attaching / detaching means for attaching / detaching the lid.
  • a lid attaching / detaching means for attaching / detaching the lid.
  • a nucleic acid amplification container having a lid screwed into the reaction tank and made detachable from the reaction tank by applying a rotational force to the lid is used. It is configured to In this case, the lid attaching / detaching means is configured to have a rotating member for applying a rotational force to the lid.
  • the lid is provided at the tip of the rotating member. It is provided with an engaging portion having a cylindrical concave portion for insertion, and a plurality of ribs extending upward and downward are provided on the inner peripheral surface of the concave portion at regular intervals in the circumferential direction.
  • the rotating member is configured to have a plurality of convex portions for positioning between the mutually adjacent ribs of the plurality of ribs of the lid when the distal end portion is inserted into the concave portion. Are formed so as to extend in the up-down direction, and to have a width dimension decreasing toward the lower end.
  • the nucleic acid analyzer is configured to use, for example, a nucleic acid amplification container provided with a protruding portion whose lid protrudes outward.
  • the lid attaching / detaching means has an engaging claw for engaging with the protruding portion, and the lid can be moved at least vertically in a state where the engaging claw is engaged with the protruding portion. Be composed.
  • the lid attaching / detaching means moves, for example, the lid from which the reaction vessel was also removed, and puts it in the storage tank
  • the retained nucleic acid extraction element is held by the lid to take out the nucleic acid extraction element from the storage tank, and the nucleic acid extraction element is moved together with the lid. Is operated so as to close the.
  • the lid attaching / detaching means includes a fitting element for fitting into the concave portion, and an outer cover for the fitting element. And a tubular element having a claw portion for engaging with the flange portion.
  • the nucleic acid analyzer of the present invention can also be configured as provided with a transfer member for taking out the nucleic acid extraction element from the storage tank and transferring it to the reaction tank.
  • the embodiment further includes a tubular member that covers the transfer member and that can move vertically relative to the transfer member.
  • the tubular member is configured such that the nucleic acid extraction element integrated with the transfer member can be removed when the cylindrical member moves downward relative to the transfer member.
  • the nucleic acid analyzer of the present invention is configured as further provided with, for example, control means for controlling operations of the transfer member and the lid attaching / detaching means.
  • the control means removes the lid of the reaction vessel by a rotating member, and then rotates the lid holding the lid from a position immediately above the reaction vessel.
  • the step of retracting the member, the step of taking out the nucleic acid extraction element by the transfer member and moving the nucleic acid extraction element into the reaction tank, and the step of removing the transfer element force by the cylindrical member It is configured to perform the steps of: accommodating a nucleic acid extraction element; and attaching a lid to the reaction vessel by a rotating member.
  • the transfer member may be a container for nucleic acid amplification.
  • a nozzle used for dispensing or mixing a plurality of reagents can be used.
  • the nozzle is configured, for example, to suck and discharge the liquid with the chip mounted thereon. V, while the chip is mounted! It is configured to retrieve More specifically, while the tip is fitted to the nozzle by fitting the tip to the chip, for example, the tip of the nozzle is fitted to the concave portion provided in the nucleic acid extraction element, so that the accommodation tank force is increased. Configured to extract extracted elements
  • the embodiment further includes a tubular member that covers the nozzle and that can move vertically relative to the nozzle.
  • the cylindrical member is configured such that the tip or the nucleic acid extraction element fitted with the tip of the nozzle can be removed when the cylindrical member moves downward relative to the nozzle.
  • the nucleic acid extraction element an element provided with a protrusion for interfering with the cylindrical member when removing the nucleic acid extraction element from the nozzle force. It is preferable that an O-ring is attached to the tip of the nozzle at a portion to be fitted to the chip or the nucleic acid extraction element.
  • the "sample” is a concept including biological samples derived from animals (eg, whole blood, serum, plasma, urine, saliva, or body fluid) and biological samples other than animals.
  • the term “acid” refers to DNA or RNA, including double-stranded DNA, single-stranded DNA, plasmid DNA, genomic DNA, cDNA, RNA from exotic parasites (viruses, bacteria, fungi, etc.), and endogenous RNA. It is a concept that includes.
  • FIG. 1 is an overall perspective view for explaining an example of a nucleic acid analyzer.
  • FIG. 2 is a plan view showing the internal configuration of the nucleic acid analyzer shown in FIG. 1.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along the line IV—IV in FIG. 1.
  • FIG. 5 is an overall perspective view showing an example of a cartridge for nucleic acid purification.
  • FIG. 6 is a sectional view taken along the line VI—VI in FIG.
  • FIG. 7A is an overall perspective view of a nucleic acid extraction element in a nucleic acid purification cartridge
  • FIG. 7B is a cross-sectional view of the nucleic acid extraction element.
  • FIG. 8 is an overall perspective view of a nucleic acid amplification cartridge.
  • FIG. 9 is a sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a fragmentary cross-sectional view for explaining the operation of cleaning the solid matrix.
  • FIG. 11 is a fragmentary cross-sectional view showing the operation of removing the lid from the nucleic acid amplification cartridge.
  • FIG. 12 is a cross-sectional view of a lumbar region for explaining an operation of taking out a diffusion nucleic acid extraction element using a lid.
  • FIG. 13A is a sectional view of an essential part for explaining an operation of accommodating a nucleic acid extraction element in a reaction vessel of a nucleic acid amplification cartridge
  • FIG. 13B is a view for explaining an operation of removing a lid from the reaction vessel. It is principal part sectional drawing.
  • FIG. 14 is a sectional view taken along lines XIV-XIV in FIG. 13B.
  • FIG. 15 is a cross-sectional view corresponding to a cross-section taken along line XV-XV in FIG. 2 for explaining a temperature control mechanism and a measurement mechanism.
  • FIG. 16 is a plan view showing an internal configuration for explaining an example of the nucleic acid analyzer.
  • FIG. 17 is a sectional view taken along lines XVII-XVII in FIG.
  • FIG. 18 is a sectional view taken along the line XVIII—XVIII in FIG.
  • FIG. 19 is an overall perspective view showing an example of a cartridge for nucleic acid purification.
  • FIG. 20A is a perspective view showing a nucleic acid extraction element in a nucleic acid purification cartridge.
  • FIG. 20B is a plan view thereof, and FIG. 20C is a sectional view taken along the line XXc-XXc in FIG. 20A.
  • FIG. 21 is a cross-sectional view corresponding to a cross section taken along line XXI-XXI of FIG. 19 in the container of the cartridge for nucleic acid purification.
  • FIG. 22 is an essential part cross-sectional view showing the operation of taking out the nucleic acid extraction element also from the container in the container.
  • FIG. 23 is an overall perspective view of a cartridge for nucleic acid amplification.
  • FIG. 24A is a cross-sectional view taken along the line XXIVa-XXIVa of FIG. 23, and FIG. 24B is a cross-sectional view of FIG. 24A showing a state where a lid is separated.
  • FIG. 25 is a front view of an essential part for describing an operation of attaching a chip to a nozzle.
  • FIG. 26 is a fragmentary front view for explaining the operation of attaching the nucleic acid extraction element to the nozzle.
  • FIG. 27 is a front view of the main part for describing the detaching operation of the tip with a strong nozzle.
  • Fig. 28 is a front view of the essential parts for explaining the detachment operation of the nucleic acid extraction element with a nozzle force.
  • FIG. 29 is a fragmentary cross-sectional view showing the operation of inserting the rotating member into the lid of the nucleic acid amplification cartridge.
  • FIG. 30 is a fragmentary cross-sectional view for explaining the operation of removing the lid of the nucleic acid amplification cartridge.
  • FIG. 31 is a cross-sectional view of relevant parts showing the operation of housing the nucleic acid extraction element in the reaction tank of the nucleic acid amplification cartridge.
  • FIG. 32 is a cross-sectional view of principal parts for describing the operation of reattaching the lid of the nucleic acid amplification cartridge.
  • FIG. 33 is a cross-sectional view corresponding to a cross-section taken along the line XXXIII-XXXIII of FIG. 16 for explaining the measurement mechanism.
  • FIG. 35 is a graph showing the measurement results of the fluorescence intensity in Example 2 (ICAN method), in which the horizontal axis represents the number of cycles and the vertical axis represents the fluorescence intensity.
  • FIG. 36 is a graph showing the measurement results of the fluorescence intensity in Example 3 (LAMP method), in which the horizontal axis represents the number of cycles and the vertical axis represents the fluorescence intensity.
  • the nucleic acid analyzer 1 shown in Figs. 1 to 4 is configured to automatically purify nucleic acids in a sample, amplify extracted nucleic acids, and analyze the amplified nucleic acids.
  • a plurality of cartridges for nucleic acid purification 2 and a plurality of cartridges for nucleic acid amplification 3 are mounted in the housing 10 in the same number.
  • the nucleic acid purification cartridge 2 is for enabling automatic nucleic acid purification in the nucleic acid analyzer 1, and includes the nucleic acid extraction element 20 and the cartridge body. Has 21.
  • the nucleic acid extraction element 20 is used for extracting a nucleic acid from a sample, and is housed in a housing tank 27 of the cartridge body 21 described later.
  • This nucleic acid extraction element 20 has a holding member 22 and a solid matrix 23, as best seen in FIGS. 7A and 7B.
  • the holding member 22 has a tubular portion 24, a flange portion 25, and a holding portion 26, and is entirely formed by resin molding, for example.
  • the cylindrical portion 24 is a portion used when moving the nucleic acid extraction element 20 (see Figs. 4 and 12), and has a concave portion 24A and a locking head 24B.
  • the recess 24A is for fitting an insertion pin 50 of the nucleic acid purification mechanism 5 described later or a pin 36B of the lid 31 of the nucleic acid amplification cartridge 3 (see FIGS. 4 and 12).
  • the locking head 24B is for fitting a locking claw 36A in the lid 31 of the nucleic acid amplification cartridge 3 described later, and protrudes in the radial direction.
  • the flange portion 25 is for engaging the step 27A of the storage tank 27 when the nucleic acid extraction element 20 is stored in the storage tank 27 of the nucleic acid purification cartridge 2 described later, and is provided in the radial direction. Formed in an annular shape protruding outward! (See Figure 12).
  • the holding portion 26 is a portion for holding the solid matrix 23, and has a tapered portion 26A, a pin-shaped portion 26B, and a locking piece 26C.
  • the tapered portion 26A plays a role of facilitating the downward movement of the cleaning liquid attached to the holding portion 26.
  • Pin-shaped part 26B is fixed This is a part for penetrating the body matrix 23.
  • the locking piece 26C is for preventing the solid matrix 23 from being detached from the pin-shaped portion 26B (holding portion 26) when the pin-shaped portion 26B is penetrated through the solid matrix 23.
  • An O-ring 22A is fixed to the holding member 22 slightly above the holding portion 26.
  • This O-ring 22A is for bringing the nucleic acid extraction element 20 into close contact with the inner surface of the reaction vessel 34 when the nucleic acid extraction element 20 is accommodated in the reaction vessel 34 of the nucleic acid amplification cartridge 3, as is clearly shown in FIG. 13B.
  • the solid matrix 23 is for supporting nucleic acids in a sample, and is configured, for example, such that filter paper supports reagents for nucleic acid extraction.
  • This solid matrix 23 is formed in a disk shape. That is, the solid matrix 23 is supported horizontally or substantially horizontally so as to be orthogonal to the vertical axis of the holding member 22 while being pierced by the pin-shaped portion 26B.
  • the reagents for nucleic acid extraction include, for example, a combination of a weak base, a chelating reagent, an anionic surfactant or an anionic detergent and uric acid or urate, or a nucleic acid-adsorbing carrier and an adsorption promoter. Combinations can be mentioned.
  • Various known carriers can be used as the carrier for adsorbing nucleic acids, and silica beads are typically used.
  • the adsorption promoter may be any substance that disrupts the cell membrane or denatures the protein in the sample and contributes to the binding of nucleic acid to the nucleic acid adsorption carrier.
  • a chaotropic substance for example, guar-gin thiocyanate, guar
  • the configuration of the solid matrix 23 is not limited to the above-described example as long as it can efficiently adsorb the nucleic acid in the sample.
  • the solid matrix 23 is also separated from the bottom force of the reaction tank 34. It can be. This makes it possible to prevent the solid matrix 23 from being located on the photometry path of the photometry mechanism 8 described later, thereby improving photometry accuracy. Wear. Since the solid matrix 23 is not located on the photometric path, it is possible to use a solid matrix having a large size. As a result, it is possible to carry more nucleic acids on the solid matrix 23, and it is possible to amplify nucleic acids more efficiently and to improve the analysis accuracy.
  • the cartridge main body 21 includes a storage tank 27 and three cleaning tanks 28.
  • the storage tank 27 is for storing the nucleic acid extraction element 20 and has a step 27A for locking the flange 25 of the nucleic acid extraction element 20.
  • the upper opening 27B of the storage tank 27 is preferably closed with a sealing material such as an aluminum thin film so that the nucleic acid extraction element 20 does not come off under the force of the upper opening 27B. No.
  • the sealing material may be peeled off by the user when the nucleic acid purification cartridge 2 is used, or may be automatically peeled off by the nucleic acid analyzer 1.
  • Each of the washing tanks 28 to 28 has a solid matrix
  • washing solution for removing impurities from 23.
  • the washing solution is preferably charged in advance into washing tanks 28 to 28 as cartridge 2 for purifying nucleic acid,
  • the washing solution charged in the nucleic acid analyzer 1 is dispensed into washing tanks 28 to 28 during analysis.
  • washing solution for example, a washing solution that has a small action of eluting nucleic acids from the solid matrix 23 and prevents the binding of contaminants (eg, guanidine hydrochloride or ethanol) can be used.
  • the same cleaning liquid is held in the three cleaning tanks 28-28.
  • different cleaning liquids may be held.
  • each of the cleaning tanks 28 to 28 is used.
  • the upper openings 28A to 28A of the cleaning tanks 28 to 28 and the upper opening 27B of the storage tank 27 are collectively
  • the sample holding tank 29 is used to hold a sample to be analyzed (target for extracting nucleic acid). belongs to.
  • the holding of the sample in the sample holding tank 29 may be performed before setting the nucleic acid purification cartridge 2 in the nucleic acid analyzer 1, or may be performed after setting the nucleic acid purification cartridge 2 in the nucleic acid analyzer 1. . In the latter case, it is preferable that the nucleic acid analyzer 1 be configured to automatically dispense the sample into the sample holding tank 29.
  • the sample for example, whole blood, serum, plasma, urine, saliva, or body fluid can be used.
  • the excess liquid removing tank 21A is for removing the excess washing liquid attached to the nucleic acid extraction element 20, the solid matrix 23 and the holding portion 26 of the holding member 22 after washing the solid matrix 23 in the nucleic acid extraction element 20. belongs to.
  • water absorbing members 21Ad and 21Ae are fixed in close contact with the bottom wall 21Aa and the front and rear walls 21Ab and 21Ac.
  • the water absorbing members 21Ad and 21Ae are made of, for example, a porous material such as foamed resin or cloth, and are configured to be able to absorb and remove excess washing liquid from the nucleic acid extraction element 20 by bringing the nucleic acid extraction element 20 into contact with the element. Being done.
  • the nucleic acid amplification cartridge 3 is for enabling automatic nucleic acid analysis and measurement in the nucleic acid analyzer 1, and includes a cartridge body 30 and a lid. Has 31.
  • the cartridge body 30 includes four reagent holding tanks 32 to 32, a mixing tank 33, and a reaction tank 3
  • Each of the reagent holding tanks 32 to 32 stores reagents necessary for nucleic acid amplification and measurement in an aqueous solution.
  • the type of reagents held in step 2 is selected according to the amplification method and measurement method used.
  • Amplification methods include, for example, the PCR (Polymerase Chain Reaction) method, the ICAN (Isothic and himeric Primer-initiated Amplification of Nucleic acid) method, the LAMP (Loop-Mediated Isothermal Amplification) method, and the NASBA (Nucleic acid Sequence Base a Amplification) method can be employed.
  • PCR Polymerase Chain Reaction
  • ICAN Isothic and himeric Primer-initiated Amplification of Nucleic acid
  • LAMP Loop-Mediated Isothermal Amplification
  • NASBA Nucleic acid Sequence Base a Amplification
  • one or more LAMP primers, dNTPs, strand displacement DNA synthase, and reverse transcriptase Is used.
  • the NASBA method at least two types of primers, dNTP, rNTP, reverse transcriptase, DNA polymerase, RNaseH, and RNA polymerase are used as reagents.
  • a measuring method a fluorescence measurement, a color measurement, a radioactivity measurement, or electrophoresis can be adopted.
  • the nucleic acid analyzer 1 employs fluorescence measurement. In this case, it is preferable to use a fluorescent primer as the primer.
  • the mixing tank 33 is used to transfer two or more reagents held in the reagent holding tanks 32 to 32 to the reaction tank 34.
  • reagents are previously charged in the reagent holding tanks 32 to 32,
  • each reagent holding tank 32 to 32 may be individually closed or four reagent holding tanks 32.
  • the reaction tank 34 is for accommodating the mixed reagent and the nucleic acid extraction element 20, and reacts the nucleic acid carried on the nucleic acid extraction element 20 with the mixed reagent prepared in the mixing tank 33. It provides a space (see Figures 13 and 14).
  • the reaction tank 34 has a cylindrical portion 35 and a reaction detection portion 37.
  • the cylindrical portion 35 is a portion to which the lid 31 is attached, and is provided with a thread groove 35A on its inner peripheral surface.
  • the reaction detection section 37 serves as a detection container for performing a fluorescence measurement while providing a place for causing an amplification reaction of a nucleic acid. That is, the reaction detection unit 37 is a part to which the light emitted from the light emitting unit 80 of the photometry mechanism 8 described later is irradiated (see FIG. 15).
  • the lid 31 is used to select whether or not the inside of the reaction detecting section 37 is sealed, and is detachable from the reaction tank 34 (the cylindrical section 35). More specifically, the lid 31 is attached to the tubular portion 35 by applying a rotational force to the tubular portion 35 (the reaction tank 3). It is configured to be able to select the state completely separated from 4).
  • the lid 31 has a cylindrical main body part 38, a flange part 39, and a holding part 36.
  • the main body 38 has a screw thread 38A for screwing into the screw groove 35A of the cylindrical portion 35 in the reaction tank 34, and a rotating member 60 (see FIG. 11B) in the lid attaching / detaching mechanism 6 described later. And a recess 38B.
  • a plurality of ribs 38C are provided on the inner peripheral surface of the recess 38B.
  • the plurality of ribs 38C are provided so as to extend in the vertical direction at regular intervals in the circumferential direction.
  • the upper end of each rib 38C is formed in a tapered shape in which the width dimension becomes smaller as the force is directed upward.
  • the flange portion 39 is for locking the claw 64 of the outer cover member 61 in the lid attaching / detaching mechanism 6 described later when the lid 31 removed from the reaction tank 34 is moved (see Fig. 11B). .
  • the flange portion 39 is provided in an annular shape protruding outward from the upper end of the main body portion 38 in the radial direction.
  • the holding portion 36 is for holding the nucleic acid extraction element 20 in the nucleic acid purification cartridge 2, and has a pair of locking claws 36A and pins 36B. .
  • the pair of locking claws 36A are for locking with the locking head 24B of the nucleic acid extraction element 20, and are provided to protrude downward from the bottom surface 38D of the main body 38.
  • Each locking claw 36A is provided with a hook portion 36Aa at the distal end, and the hook portion 36Aa is swingable. That is, the hook portions 36Aa of the pair of locking claws 36A can be approached or separated from each other.
  • the pin 36B is inserted into the concave portion 24A of the cylindrical portion 24 of the nucleic acid extraction element 20, and is provided to protrude downward from the bottom surface 38D of the main body 38.
  • the pin 36B functions as a guide when the nucleic acid extraction element 20 is held on the lid 31 and suppresses the backlash of the nucleic acid extraction element 20 with respect to the lid 31 after holding the nucleic acid extraction element 20 on the lid 31. belongs to.
  • the housing 10 of the nucleic acid analyzer 1 is provided with a lid 11, a display unit 12, and an operation unit 13.
  • the lid 11 is used to select between a state in which the inside of the housing 10 is exposed and a state in which the inside of the housing 10 is not exposed.
  • the lid 11 is It is closed.
  • the display unit 12 is for displaying analysis results and the like, and is configured by, for example, an LCD.
  • the operation section 13 is a section that is operated to make various settings or to start analysis.
  • a pipette device 4 for purifying nucleic acid As shown in Figs. 2 and 3, inside the casing 10, a pipette device 4, an operation mechanism 5 for purifying nucleic acid, a lid attaching / detaching mechanism 6, a temperature control mechanism 7, and a photometric mechanism 8 described later are provided.
  • an operation mechanism 5 for purifying nucleic acid As shown in Figs. 2 and 3, inside the casing 10, a pipette device 4, an operation mechanism 5 for purifying nucleic acid, a lid attaching / detaching mechanism 6, a temperature control mechanism 7, and a photometric mechanism 8 described later are provided.
  • the pipette device 4 is mainly for adjusting the mixture in the nucleic acid amplification cartridge 3 and has a nozzle 40.
  • the pipette device 4 is used to supply a sample or a washing solution to the nucleic acid purification cartridge 2 as needed.
  • the nozzle 40 is connected to a pump (not shown) so as to be able to suck and discharge the liquid, and a state in which a suction force is applied to the inside of the nozzle 40 and a state in which a discharge force is applied are selected. It is configured to The nozzle 40 can be moved vertically and horizontally by a drive mechanism (not shown) such as a robot arm, and its operation is controlled by a control unit 10 including a CPU and the like. The nozzle 40 is connected to the reagent holding tanks 32 to 32, the mixing tank 33, the reaction tank 34, and the nucleic acid purification cartridge 2 in the nucleic acid amplification cartridge 3.
  • the nozzle 43 When adjusting the mixed sample and dispensing the mixed sample into the reaction tank 34 (reaction detection unit 37), the nozzle 43 has a tip 43 attached to the tip 42 as shown in FIG. The tip 43 is held in the rack 44 at a position adjacent to the standby position of the nozzle 40 (pipette device 4) as shown in FIG. A disposal box 45 for disposing of used chips 43 is disposed in a portion adjacent to the rack 44.
  • the nucleic acid purification operating mechanism 5 uses the nucleic acid extraction element 20 of the nucleic acid purification cartridge 2 to extract nucleic acids in a sample, This is for controlling the operation of the nucleic acid extraction element 20.
  • the operating mechanism 5 for nucleic acid purification has a plurality of insertion pins 50, a cylindrical body 51, and a support frame 52.
  • the plurality of insertion pins 50 are for fitting into the cylindrical portion 24 of the nucleic acid extraction element 20, and are supported so as to be integrally movable with the support frame 52.
  • the tubular body 51 is for removing the nucleic acid extraction element 20 attached to the insertion pin 50.
  • the insertion pin 50 is jacketed so as to be able to move in the vertical direction independently of the insertion pin 50. That is, the cylindrical body 51 is located above the nucleic acid extraction element 20 (standby position) except when the operation of removing the nucleic acid extraction element 20 from the insertion pin 50 is performed, while extracting the nucleic acid from the insertion pin 50. When performing the operation of removing the element 20, it is moved downward relative to the insertion pin 50.
  • the support frame 52 supports the plurality of insertion pins 50 at regular intervals in the direction in which the plurality of nucleic acid purification cartridges 2 are arranged, and functions as a medium for moving the insertion pins 50. It is.
  • the support frame 52 is movable in the up-down direction and the front-rear direction by a driving mechanism (not shown), and its operation is controlled by, for example, the control unit 10 shown in FIG. Therefore, the plurality of insertion pins 50, and thus the nucleic acid extraction element 20 attached to them, can move up and down and back and forth along with the support frame 52.
  • the plurality of nucleic acid extraction elements 20 can simultaneously and simultaneously impregnate the solid matrix 23 with the sample, wash the solid matrix 23, and remove excess liquid (see FIG. 10).
  • the lid attaching / detaching mechanism 6 is for removing the lid 31 from the reaction tank 34 of the nucleic acid amplification cartridge 3 or for attaching the lid 31 to the reaction tank 34.
  • a rotating member 60 and a mantle member 61 are provided. The rotating member 60 and the mantle member 61 can be moved vertically and horizontally by a drive mechanism (not shown), and the operation thereof is controlled by the control unit 10 (see FIG. 2)! ,
  • the rotating member 60 is for applying a rotational force to the lid 31 of the nucleic acid amplification cartridge 3 and for moving the lid 31 while holding the lid 31, and has a substantially cylindrical tip portion 62. are doing.
  • a plurality of ribs 63 are formed at the tip end portion 62 of the rotating member 60.
  • the plurality of ribs 63 are provided so as to extend in the vertical direction at regular intervals in the circumferential direction of the distal end portion 62, and the lower end of each rib 63 has a tapered shape in which the width decreases as the force moves downward. It is formed in.
  • These ribs 63 are to be engaged with the plurality of ribs 38C of the lid 31 as shown in FIG. 14, and when the tip 62 is inserted into the concave portion 38B of the lid 31, Made to be located between adjacent ribs 38C!
  • the rib 63 of the tip 61 Since the ribs 38C of the recesses 38B interfere with each other, the tip portion 62 can be prevented from idling in the recesses 38B of the lid 31, and the rotational force of the rotating member 60 can be appropriately applied to the lid 31. can do.
  • the upper ends of the plurality of ribs 38C in the concave portion 38B are tapered so that the width becomes narrower as the upper end faces upward, the plurality of ribs 63 at the distal end 61 of the rotating member 60 have the lower end downward.
  • the taper shape is such that the width becomes narrower as it goes toward. Therefore, the distal end portion 61 of the rotating member 60 can be easily and reliably inserted into the concave portion 38B of the lid 31.
  • the mantle member 61 is used to mantle the rotating member 60, and is formed in a cylindrical shape.
  • the outer cover member 61 has a claw 64 for engaging with the flange portion 39.
  • the claw 64 has a hook portion 65 provided at the tip end portion 64, and the hook portion 65 is swingable.
  • the claw 64 is locked to the flange portion 39 of the lid 31 when the tip portion 62 of the rotating member 60 is inserted into the concave portion 38B of the lid 31. Thereby, the lid 31 is placed on the rotating member 60, and the lid 31 can be moved by moving the rotating member 60 and the outer cover member 61.
  • the claw 62 is configured so that when the lid 31 is reattached to the reaction tank 34 by the rotating member 60, the locked state with the flange portion 39 of the lid 31 is automatically released.
  • the temperature control mechanism 7 controls the temperature of the liquid held in the reaction detection section 37 of the nucleic acid amplification cartridge 3 by controlling the temperature of the heat block 70. It is for the purpose.
  • the temperature of the heat block 70 is monitored by a temperature sensor (not shown), and the temperature of the heat block 70 is configured to be feedback-controlled according to the monitoring result of the temperature sensor.
  • the heat block 70 has a concave portion 71 corresponding to the external shape of the reaction detection section 37 of the nucleic acid amplification cartridge 3. Thereby, the temperature of the reaction tank 34 in the heat block 7 can be selectively and efficiently controlled.
  • the heat block 70 is further provided with straight through holes 72 and 73 connected to the recess 71.
  • the through hole 72 is for guiding the light emitted from the light emitting section 80 of the photometric mechanism 8 described later to the reaction detecting section 37 of the reaction tank 34, and the through hole 73 is for receiving the light transmitted through the reaction detecting section 37. It is for leading to 81.
  • the photometric mechanism 8 has a light emitting unit 80 and a light receiving unit 81.
  • the light emitting section 80 is for irradiating the reaction detecting section 37 with excitation light through the through hole 72.
  • Light-receiving part 81 is penetrated This is for receiving the fluorescence when the reaction detector 37 is irradiated with the excitation light through the hole 73.
  • the photometric mechanism 8 continuously irradiates the excitation light from the light-emitting unit 80, and continuously monitors the amount of fluorescence at the light-receiving unit 81, thereby ascertaining the extent of nucleic acid amplification in real time. be able to.
  • the nucleic acid purification cartridge 2 and the nucleic acid amplification cartridge 3 are set in the nucleic acid analyzer 1, as shown in FIGS.
  • the number of cartridges 2 and 3 to be set may be any number as long as the number of nucleic acid purification cartridges 2 and the number of nucleic acid amplification cartridges 3 are the same.
  • the washing liquid is held in advance in the washing tanks 28 to 28 as the nucleic acid purification cartridge 2.
  • the settings according to the number of cartridges 2 and 3 set in the nucleic acid analyzer 1 and the types of the cartridges 2 and 3 were provided in the nucleic acid analyzer 1. This is performed by operating the operation unit 13 while checking the display unit 12.
  • the nucleic acid analyzer 1 automatically performs nucleic acid purification, amplification, and measurement.
  • nucleic acid purification is performed by moving the nucleic acid extraction element 20 by the nucleic acid purification operating mechanism 5 in the nucleic acid purification cartridge 2.
  • the insertion pin 50 of the operating mechanism 5 for nucleic acid purification was positioned immediately above the storage tank 27 of the container 21 in the cartridge 2 for nucleic acid purification. Then, the drive pin 52 is moved to lower the insertion pin 50 and then to the upper side. By moving the insertion pin 50 downward, the insertion pin 50 is fitted to the cylindrical portion 24 of the nucleic acid extraction element 20, and the nucleic acid purification operating mechanism 5 is integrated with the plurality of nucleic acid extraction elements 20, and the insertion pin 50 The nucleic acid extraction element 20 is lifted by the operation mechanism 5 for nucleic acid purification by moving upward.
  • the insertion pin 50 was moved together with the support frame 52, and the sample 29L held in the sample holding tank 29 of the nucleic acid purification cartridge 2 was added to the solid matrix of the nucleic acid extraction element 20. Soak 23. As a result, 29L of sample is placed on the solid matrix 23. Of nucleic acids are carried.
  • Tas 23 is immersed sequentially. More specifically, the washing of the solid matrix 23 is performed by repeatedly moving the solid matrix 23 up and down in each washing tank 28 by the operation mechanism 5 for nucleic acid purification. At this time, in the operating mechanism 5 for nucleic acid purification, the state in which the solid matrix 23 is completely immersed in the washing liquid 28L to 28L and the state in which the solid matrix 23 is
  • Control is performed such that the state of being located above the liquid level of L to 28L is repeated.
  • the distal end portion of the nucleic acid extraction element 20 is brought into contact with the water absorbing members 21Ad and 21Ae held in the excess liquid removing tank 21A. Since the water absorbing member 21Ad is disposed in contact with the bottom wall 21Aa and the front and rear walls 21Ab, 21Ac of the excess liquid removing tank 21A, the tip of the nucleic acid extraction element 20 contacts all of the water absorbing members 21Ad. In this case, the excess washing liquid is efficiently removed from the tip of the nucleic acid extraction element 20, mainly the solid matrix 23 and the holding portion 26 of the holding member 22. As a result, when the nucleic acid is amplified using the nucleic acid extraction element 20 later, it is possible to suppress impurities contained in the washing solution from inhibiting nucleic acid amplification.
  • the solid matrix 23 after the washing is held in the operating mechanism 5 for nucleic acid purification. It may be air-dried in a state.
  • the nucleic acid extraction element 20 is removed from the insertion pin 50, and the nucleic acid extraction element 20 is stored again in the storage tank 27 of the nucleic acid purification cartridge 2. Let it. As described above, the removal of the nucleic acid extraction element 20 from the insertion pin 50 is performed by lowering the cylindrical body 51 of the nucleic acid purification operating mechanism 5 and causing the cylindrical head 51 to interfere with the locking head 24B. Is
  • the solid matrix 23 can be easily moved in the nucleic acid analyzer 1.
  • the cartridge 2 for nucleic acid purification contributes to performing nucleic acid analysis automatically.
  • the mixed reagent is prepared in the nucleic acid amplification cartridge 3, and the mixed reagent is dispensed into the reaction tank 34 of the nucleic acid amplification cartridge 3, and then the solid matrix 23 carrying the nucleic acid is placed in the holding member. This is carried out by accommodating in the reaction tank 34 together with 22.
  • the temperature of the heat block 70 is controlled by controlling the temperature of the heat block 70 (see FIG. 15) according to the type of amplification method to be used. Temperature control is performed.
  • the tip 43 was attached to the tip end 42 of the nozzle 40 in the pipette device 4, and then the mixture was held in the reagent holding tanks 32 to 32 of the nucleic acid amplification cartridge 3.
  • the reagents are sequentially dispensed by a predetermined amount into the mixing tank 33, and then the dispensed liquid is mixed by a pipetting operation by the pipetting device 4 (see FIG. 3).
  • the dispensing of the mixture into the reaction tank 34 is performed by the pipette device 4 after the lid 31 is removed from the reaction tank 34 by the lid attaching / detaching mechanism 6.
  • the removal of the lid 31 in the lid attaching / detaching mechanism 6 is performed by inserting the distal end portion 62 of the rotating member 60 of the lid attaching / detaching mechanism 6 into the recess 38B of the lid 31 and then rotating the rotating member 60. It is performed by moving up while moving.
  • the rotating member 60 is inserted into the concave portion 38B, the hook portion 65 of the claw 64 of the outer cover member 61 is locked to the flange portion 39 of the lid 31.
  • the lid 31 removed from the reaction tank 34 can be moved together with the rotating member 60 and the mantle member 61.
  • the nucleic acid amplification cartridge is used in order to achieve the full automation of nucleic acid amplification and nucleic acid analysis.
  • a method has been devised so that the lid 31 can be easily and reliably removed from the die 3.
  • housing of the solid matrix 23 in the reaction tank 34 is performed using the lid attaching / detaching mechanism 6 and the lid 31 of the nucleic acid amplification cartridge 3. More specifically, the storage of the solid matrix 23 is performed by a series of steps such as holding the nucleic acid extraction element 20 on the lid 31 and reattaching the lid 31 to the reaction vessel 34, as shown in FIGS. The operation is performed by the following operation.
  • the lid 31 when holding the nucleic acid extracting element 20 on the lid 31, the lid 31 was positioned above the storage tank 27 in the nucleic acid purification cartridge 2 by the lid attaching / detaching mechanism 6. This is done later by lowering the lid 31. In the process of moving the lid 31 downward, the pin 36B of the lid 31 is inserted into the concave portion 24A of the cylindrical portion 24 of the nucleic acid extraction element 20. As a result, the positional relationship between the lid 31 and the cylindrical portion 24 of the nucleic acid extraction element 20 is regulated, and the pair of locking claws 36A of the lid 31 are positioned at positions corresponding to the locking heads 24B of the cylindrical portion 24. Will be guided appropriately.
  • the pair of locking claws 36A are pressed against the upward force locking head 24B.
  • the pair of locking claws 36A are displaced such that the hook portions 36Aa are separated from each other.
  • the pins 36B of the lid 31 are inserted deeper into the concave portions 24A of the cylindrical portion 24, and the hook portions 36Aa are positioned below the locking head 24B.
  • the hooks 36Aa approach each other.
  • the pair of locking claws 36A are locked by the locking head 24B, and the nucleic acid extraction element 20 is held by the lid 31.
  • This state is firmly maintained by the pin 36B of the lid 31 being inserted into the concave portion 24A of the cylindrical portion 24, and the rattling of the nucleic acid extraction element 20 with respect to the lid 31 can be suppressed.
  • reattachment of the lid 31 is performed by rotating the rotating member 60 holding the lid 31 with the lid 31 positioned in the reaction tank 34. Is That is, by applying a rotational force to the lid 31 in the aligned state, the lid 31 is screwed to the cylindrical portion 35 of the reaction tank 34. When the lid 31 is screwed into the cylindrical portion 35, the state in which the claws 64 of the outer cover member 61 are locked to the flange portion 39 of the lid 31 is released. Thus, the rotating member 60 and the mantle member 61 can move independently of the lid 31. On the other hand, since the lid 31 holds the nucleic acid extraction element 20, the reaction tank 34 accommodates the nucleic acid extraction element 20.
  • the nucleic acid extraction element 20 has an O Due to the arrangement of the ring 22A, the solid matrix 23 of the nucleic acid extraction element 20 is fixed at a position separated by a certain distance from the bottom of the reaction tank 34 in the closed space. Since the mixed reagent is first stored in the reaction detecting section 37, the entire solid matrix 23 is immersed in the reaction detecting section 37. Thus, while the nucleic acid elutes from the solid matrix 23, the eluted nucleic acid reacts with the reagents and is amplified.
  • the nucleic acid extraction element 20 in the storage tank 27 can be transferred to and stored in the reaction tank 34 by using the lid attachment / detachment mechanism 6 required for attaching / detaching the lid 31. . That is, in the nucleic acid analyzer 1, there is no need to provide a separate mechanism for transferring the nucleic acid extraction element 20. Therefore, in purifying nucleic acid and amplifying nucleic acid in one device, it is necessary to avoid the device from being complicated and to suppress the device from being enlarged, and to suppress the increase in the number of operating mechanisms to be controlled. This is also advantageous in this regard.
  • the measurement of the nucleic acid is performed by the photometric mechanism 8 after the upper part of the reaction tank 34 is covered with the light shielding member 9.
  • the nucleic acid analyzer 1 can accurately measure nucleic acids.
  • nucleic acid analysis can be automatically performed only by mounting the set of the nucleic acid purification cartridge 2 and the nucleic acid amplification cartridge 3 configured as described above. .
  • the cartridge 2 for nucleic acid purification and the cartridge 3 for nucleic acid amplification have also been devised so that nucleic acid analysis can be performed automatically. Therefore, when the nucleic acid analyzer 1, the nucleic acid purification cartridge 2 and the nucleic acid amplification cartridge 3 are used, the cartridges 2 and 3 are set in the nucleic acid analyzer 1 in the nucleic acid extraction operation and the nucleic acid amplification operation. In addition, there is no part that depends on the user's manual operation.
  • the present invention is not limited to the examples described in the above embodiments.
  • the solid matrix of the nucleic acid extraction element does not necessarily need to be held so as to be horizontal or substantially horizontal with respect to the vertical axis of the holding member.
  • the solid matrix does not necessarily need to be formed in a disk shape.
  • the configuration in which the solid matrix is retained is not limited to the configuration in which the solid matrix is pierced.
  • the lid 31 holds the nucleic acid extraction element 20
  • a nail is provided on the nucleic acid extraction element, and a locking portion for locking the nail is provided on the lid 31, or Only the fitting force may be used.
  • the guide mechanism (the pin 36B of the lid 31 and the concave portion 24A of the nucleic acid extraction element 20 in the present embodiment) may be omitted. This can be achieved by providing a pin on the nucleic acid extraction element 30 while providing the same.
  • FIGS. 16 to 33 a second embodiment of the present invention will be described with reference to FIGS. 16 to 33.
  • the same reference numerals are given to the same elements as those in the first embodiment of the present invention described above, and the duplicated description thereof will be omitted. It shall be omitted.
  • the nucleic acid analyzer 1 ′ shown in FIGS. 16 to 18 has a plurality of nucleic acid purification cartridges 2 ′ and nucleic acid amplification cartridges, like the nucleic acid analyzer 1 described above (see FIG. 1 and the like).
  • the pipes are used by mounting the same number of pipes, and are provided with a pipette device 4 'and an operation mechanism for nucleic acid purification as shown in FIG.
  • the nucleic acid purification cartridge ⁇ is for enabling automatic purification of nucleic acid in the nucleic acid analyzer, and includes the nucleic acid extraction element 2 (and the cartridge body 21 /). Have.
  • the nucleic acid extraction element 2 is for supporting a nucleic acid in a sample, and has a holding member 22 'and a solid matrix 23' as well shown in Figs. 20A to 20C.
  • the holding member 22 ' has a cylindrical portion 24', a flange portion 25 ', and a holding portion 2, and is formed entirely by resin molding, for example.
  • the cylindrical portion 24 ' is used when the nucleic acid extraction element 20' is moved (see Figs. 18 and 22), and has a concave portion 24A ', a missing portion 24B', 24C ', and a plurality. Ribs 24D ' have.
  • the recess 24A ' is used to fit the tip 42 ⁇ of the nozzle 4 (see FIGS. 26A and 26B) or the insertion pin 50' (see FIG. 18) of the nucleic acid purification mechanism in the pipette device ⁇ described later.
  • the notches 24 B 'and 24 are for imparting elasticity to the cylindrical portion 24 ⁇ , and include a pair of V-shaped notches 24B' and a rectangular through hole 24B '.
  • the flange portion 25 ' is formed in an annular shape protruding outward in the radial direction.
  • the flange portion 25 ' is provided at the target site when the nucleic acid extraction element 20' is held in the target site (the storage tank 27 of the nucleic acid purification cartridge ⁇ and the reaction tank 34 'of the nucleic acid amplification cartridge 3'). It is for locking to the steps 27A and 36 '(see FIGS. 21 and 33).
  • the holding section 2 is for holding the end of the solid matrix 23 'and for integrally holding the solid matrix 23' on the holding member 22 ⁇ , and is constituted by a pair of claws 26a '.
  • the pair of claws 26a ' are preferably formed such that the contact area with the solid matrix 23' is as small as possible in order to increase the nucleic acid recovery efficiency. This is because the nucleic acid is eluted and collected after the nucleic acid is attached to the solid matrix 23 ′ as described later, but the pair of claws 26 a ′ are present at the portion in contact with the solid matrix 23 ′. This is because nucleic acid dissolution is not easy.
  • the solid matrix 23 ' is for supporting a nucleic acid in a sample, and is constituted, for example, by supporting a filter paper with reagents for nucleic acid extraction.
  • the solid matrix 23 ′ is formed in a strip shape, and is hung by the holding member 2 ′ by sandwiching an end of the solid matrix 23 ′.
  • the cartridge body 21 ' is the same as the nucleic acid purification described above.
  • the excess liquid removing tank 2 having a storage tank 27, three washing tanks 28 to 28, and a sample holding tank 29.
  • the nucleic acid amplification cartridge is for enabling automatic nucleic acid amplification and measurement in the nucleic acid analyzer, and includes the cartridge body 30 ′ and the lid. 31 /
  • the cartridge body 30 ' includes five reagent holding tanks 32', a mixing tank 33 ', and a reaction tank.
  • the tanks 32 ', 33', and 34 ' are integrally molded by, for example, resin molding.
  • Each reagent holding tank 32 holds reagents necessary for nucleic acid amplification and measurement in the form of an aqueous solution or suspension.
  • Each reagent holding tank 32 ⁇ has a substantially rectangular cross section. To be precise, the center of the four side surfaces 32A 'protrudes inward. That is, the four corners of the reagent holding tank 32 ⁇ are acute angles of 90 degrees or less. This can prevent the reagents from being left on the side surface 32A 'of the reagent holding tank 32', and can hold the reagents at the bottom of the reagent holding tank 32 '. .
  • the reagents held in the reagent holding tank 32 ' can be effectively used, and even if expensive reagents are used, the reagents should be held in the reagent holding tank 3 ⁇ .
  • the production cost can be reduced by reducing the amount of the reagent.
  • Such an effect can also be obtained by providing a groove or a rib on the side surface 32A 'of the reagent holding tank 3'.
  • the type of reagents held in each reagent holding tank 32 ′ is selected according to the amplification method and measurement method to be adopted.
  • the amplification method for example, the PCR method, the ICAN method, the LAMP method, or the NASBA method can be adopted.
  • the mixing tank 3 is used when preparing a mixed reagent by mixing two or more reagents held in the reagent holding tank 3 ⁇ before supplying to the reaction tank 34 '.
  • the mixing tank 33 ' also has an acute angle of 90 degrees or less at the four corners, similarly to the reagent holding tank 32' described above.
  • grooves or ribs may be provided on the side surface 33A 'of the mixing tank 33'. Yes.
  • the reaction tank 34 ⁇ is for accommodating the mixed reagent and the nucleic acid extraction element 20 ', and reacts the nucleic acid carried on the nucleic acid extraction element 2 (with the mixed reagent prepared in the mixing tank 3). (See Fig. 33.)
  • This reaction tank 34 ' has a cylindrical portion 35 and a reaction detecting portion 37, and a step 3 is provided between them.
  • the step portion 36 ⁇ is a portion for locking the flange portion 25 ⁇ of the nucleic acid extraction element 20 '(see Fig. 33), and the diameter of the reaction detection portion 37 must be set smaller than the diameter of the cylindrical portion 35.
  • the lid 31 ' is for selecting whether or not to force the inside of the reaction detecting section 37 to be sealed, and is detachable from the reaction tank 34' (the cylindrical section 35). More specifically, the lid 31 ′ can be selected from a state of being attached to the cylindrical portion 35 and a state of completely separating the cylindrical portion 35 (reaction tank 34) by applying a rotational force. It is configured.
  • the lid 31 ′ has a cylindrical main body 38 and a flange 39 similarly to the lid 31 (see FIG. 9) of the nucleic acid amplification cartridge 3 described above. However, nucleic acid analyzer!
  • the lid 31 / is provided on the lid 31 of the nucleic acid amplification cartridge 3 described above.
  • the holding portion 36 (see FIGS. 7B and 9), which has been used, is omitted.
  • the pipette apparatus shown in FIGS. 16 and 17 is for adjusting the mixture in the nucleic acid amplification cartridge and moving the mixture to the reaction tank 34 ′.
  • the nozzle 40 ' is capable of sucking and discharging the liquid, and is also capable of moving vertically and horizontally, and is provided with a reagent holding tank 3 ⁇ , a mixing tank 33', and a reaction tank 34 in the nucleic acid amplification cartridge. , And the storage tank 27 of the nucleic acid purification cartridge ⁇ (see FIGS. 16 and 17).
  • the nozzle 40' is attached to the tip 42 'as shown in Figs. 25 25 and 25 ⁇ .
  • Chip 43 force S mounted.
  • the O-ring 42 is fitted into the tip 42 ⁇ of the nozzle 40 ' Therefore, when the tip 43 is attached to the tip 4 ⁇ , the adhesion between the tip 4 ⁇ and the tip 43 is enhanced.
  • the pipette device ⁇ further takes out the nucleic acid extraction element 20 'from the storage tank 27 of the nucleic acid purification cartridge ⁇ as shown in Fig. 22, and transfers the nucleic acid extraction element 20' as shown in Fig. 31. It has a role to move the nucleic acid amplification cartridge to the reaction tank 34 '.
  • the nucleic acid extraction element 20 ' is attached to the tip end 42' of the nozzle 40 'as shown in FIGS. 26A and 26B.
  • the detaching member 41 / is for detaching the tip 43 or the nucleic acid extraction element 20 ′ attached to the tip end 42 ′ of the nozzle 40 ′.
  • the detaching member 41 / covers the nozzle 40 'so that it can move up and down independently of the nozzle 4 (. That is, the detaching member 41 / Except when performing the operation of removing the cara chip 43 or the nucleic acid extraction element 20 ', while being located above the end face 43a of the chip 43 or the flange portion 2 of the nucleic acid extraction element 20' (standby position), When performing the removal operation, they are moved downward relative to the nozzle 40.
  • the end surface 41A of the removal member 41 / is moved.
  • Interferes with the end surface 43a of the chip 43 or the flange portion 25 ′ of the nucleic acid extraction element 2 () to apply a downward force to the chip 43 or the nucleic acid extraction element 20 ′.
  • the operation mechanism for nucleic acid purification controls the operation of the nucleic acid extraction element 20 'when extracting nucleic acid in a sample using the nucleic acid extraction element 2
  • This operating mechanism for nucleic acid purification is similar to the operating mechanism for nucleic acid purification 5 of the nucleic acid analyzer 1 described above (see FIGS. 2 to 4).
  • the insertion pin 5 is provided at the distal end of the nozzle 4 (so that it can be properly fitted to the cylindrical portion 24 ⁇ of the nucleic acid extraction element 20 '. It has a shape similar to 42 ⁇ .
  • the nucleic acid analyzer As shown in Figs. After setting the cartridge for acid purification ⁇ and the cartridge for nucleic acid amplification, the nucleic acid is automatically set by setting according to the number and type (purification method, amplification method, measurement method) of the cartridges 2 'and 3'. Purification, amplification and measurement.
  • nucleic acid purification is performed by moving the nucleic acid extraction element 20 'by a nucleic acid purification operation mechanism in the nucleic acid purification cartridge ⁇ as shown in Fig. 18. More specifically, first, the plurality of insertion pins 50 'of the nucleic acid purification operation mechanism 5' are fitted to the corresponding tubular portions 24 'of the nucleic acid extraction elements 20', and the plurality of nucleic acid extraction elements 20 ' In a state where it can be moved integrally. In this state, the solid matrix 23 'of the plurality of nucleic acid extraction elements 20' is immersed in the sample by the nucleic acid purification operating mechanism 5 ', and the nucleic acid in the sample is attached to each solid matrix 2.
  • the washing of the solid matrix 2 is performed by repeating the solid matrix 23 ′ in each of the washing tanks 28 to 28 (see FIG. 19) by the nucleic acid purification operating mechanism 5 ′.
  • the operation mechanism for nucleic acid purification is controlled so that the state in which the solid matrix 23 'is completely immersed in the washing solution and the state in which the solid matrix 23' is located above the level of the washing solution are repeated. You. In such a washing method, the contaminants can be efficiently removed from the solid matrix 2, so that the contaminants inhibit the nucleic acid amplification in the subsequent nucleic acid amplification step. Suppression, and the nucleic acid analysis can be performed with high accuracy.
  • the washed solid matrix 23 ' may be blown and dried while being held by the nucleic acid purification operating mechanism.
  • washing of the solid matrix 2 is completed (in some cases, blast drying is completed)
  • remove the nucleic acid extraction element 2 from the insertion pin 50 'and transfer the nucleic acid extraction element 20' to the storage tank 27 of the nucleic acid purification cartridge 2 '. Recontain (see Figures 19 and 21).
  • the target nucleic acid can be easily moved in the nucleic acid analyzer by supporting the target nucleic acid on a solid (nucleic acid extraction element 20 ').
  • the nucleic acid purification cartridge ⁇ contributes to automatic nucleic acid analysis.
  • a mixed reagent was prepared in a nucleic acid amplification cartridge, dispensed into the reaction tank 34 ⁇ of the nucleic acid amplification cartridge, and then the solid matrix 23 ⁇ carrying the nucleic acid was retained. It is carried out by transferring to the reaction tank 34 ⁇ together with the member 22 ⁇ .
  • the temperature of the heat block 70 is controlled according to the type of amplification method used.
  • the temperature of the reaction tank 34 ' is adjusted.
  • the preparation of the mixed reagent and the dispensing of the mixed reagent into the reaction tank 34 ' are performed by controlling the operation of the pipette device 4' as in the case of the nucleic acid analyzer 1 (see Fig. 1 and the like) described above. Be done.
  • the force required to remove the lid 3 from the reaction vessel 34 'by the lid attaching / detaching mechanism 6 is required.
  • the rotating member 60 of the lid attaching / detaching mechanism 6 into the recess 38B 'of the lid 31' the rotating member 60 is moved upward while rotating. Be done.
  • the lid 31 ' has been devised so that the lid 31' can be easily and reliably removed from the nucleic acid amplification cartridge 3 'in order to achieve full automation of nucleic acid amplification and, consequently, nucleic acid separation! Puru.
  • the transfer of the solid matrix 23 ⁇ to the reaction tank 34 ⁇ is performed by removing the nucleic acid extraction element 20 'from the storage tank 27 of the nucleic acid purification cartridge 2' (see Fig. 22), and removing the nucleic acid amplification cartridge. This is performed by a series of operations such as moving the nucleic acid extraction element 2 (to the reaction layer 34 'and removing the nozzle 4 (forced nucleic acid extraction element (see FIGS. 28 and 31).
  • the nucleic acid extraction element 2 (was taken out by positioning the nozzle 40 'directly above the storage tank 27 of the cartridge 2' for nucleic acid purification and then moving the nozzle 4z downward.
  • the tip 4 ⁇ of the nozzle 4 is fitted to the cylindrical portion 24 'of the nucleic acid extraction element 2 (, the nozzle 40' is moved upward.
  • V-shaped notch 24B 'and rectangular through-hole 24 are formed with notches 24B', 24 (See FIGS. 20A to 20C). Therefore, when the distal end portion 42 ⁇ of the nozzle 4 () is fitted to the cylindrical portion 24 ', an appropriate elastic force can be imparted to the distal end portion 4 ⁇ . 20 'is appropriately held in the cylindrical portion 24' with respect to the tip 42 'of the nozzle 40'.
  • the nucleic acid extraction element 20 ' is moved by moving the nozzle 40' in a state where the nucleic acid extraction element 20 'is held at the tip 42' of the nozzle 40 '.
  • removal of the nucleic acid extraction element 2 is performed by positioning the tip 42 ⁇ of the nozzle 4 (together with the nucleic acid extraction element 20 'inside the reaction tank 34 ⁇ , 41 / is moved downward relative to the nozzle 40 ', that is, when the removal member 4 is moved downward, the nucleic acid extraction element 2 (to the flange portion 25' of the nucleic acid extraction element 2) is moved.
  • the detaching member 41 / interferes, and a downward force acts on the flange portion 25 ⁇ and thus the nucleic acid extracting element 20 ', so that the force of the distal end 42 of the nozzle 4 (also removes the nucleic acid extracting element 20'.
  • a nucleic acid analyzer! In /, the nucleic acid extraction element 20 'can be moved using the nozzle 4 (and the detaching member 4) necessary for sample preparation. Therefore, nucleic acid purification and nucleic acid amplification can be performed in one step.
  • the originally required configuration pipette device 4
  • the device is not complicated, and the number of operating mechanisms to be controlled is not increased. In this respect, it is also advantageous in terms of suppressing the complexity and size of the device configuration.
  • the solid matrix 2 is accommodated in the reaction detector 37 with the lower end thereof being separated from the bottom of the reaction detector 37 by a fixed distance. Since the reagent is contained, the entire solid matrix 23 ′ is immersed in the reaction detector 37.
  • the nucleic acid elutes from the solid matrix 2 while the eluted nucleic acid reacts with the reagents. Amplify.
  • the lower end of the solid matrix 23 ' is also separated from the bottom force of the reaction detector 37. More specifically, the lower end of the solid matrix 23 ' The position 8 does not hinder the irradiation of excitation light to the reaction detection section 37 and the measurement of fluorescence (see FIG. 33). Thus, even when a solid carrier is used for attaching the nucleic acid, the solid carrier does not inhibit the measurement of the nucleic acid.
  • the lid 31 / of the reaction tank 34 ' was reattached, while the upper part of the reaction tank 34' was covered with the light shielding member 9.
  • the measurement is performed by the photometry mechanism 8.
  • the measurement of nucleic acid by the photometric mechanism 8 is performed in the same manner as in the nucleic acid analyzer 1 described above (see FIG. 1 and the like).
  • the nucleic acid purification cartridge ⁇ and the nucleic acid amplification cartridge The nucleic acid analysis can be performed automatically simply by setting the cartridges.
  • the user has to set the cartridges 2 'and 3' in the nucleic acid analyzer 1, There is no operation dependent part. Therefore, the burden on the user in the nucleic acid analysis is remarkably reduced, and the measurement reproducibility is not degraded due to a variation in the recovery rate of the nucleic acid due to a difference in the skill of the user.
  • human genomic DNA as the target nucleic acid is appropriately purified using the nucleic acid purification cartridge, nucleic acid amplification cartridge and nucleic acid analyzer according to the first embodiment of the present invention described above. We examined whether it could be done by SNP (Single Nucleotide Polimorphism) typing.
  • SNP Single Nucleotide Polimorphism
  • the storage tank for the cartridge body (reference number in the figure) is formed. 27) and the excess liquid removal tank (see reference numeral 21A in the figure) in the excess liquid removal tank (see reference numerals 21Ad and 21Ae in the figure). It was formed by fixing urethane foam (SAQ, manufactured by Corporation).
  • the dimensions of the water absorbing member 21Ad were 5 mm ⁇ 8 mm ⁇ 17 mm, and the dimensions of the water absorbing member 21Ae were 5 mm ⁇ 1 lmm ⁇ 14 mm.
  • the cartridge body was formed into a form shown in Figs. 5 and 6 by resin molding using PET.
  • the nucleic acid extraction element was formed by holding a solid matrix (see reference numeral 23 in the figure) on a holding member (see reference numeral 22 in the figure).
  • the solid matrix was formed by punching an FTA Classic Card (Whatman, Cat. No. WB120205) into a ⁇ 2.5 mm disc shape using a punch.
  • the FTA Classic Card is a filter paper for collecting nucleic acid containing cellulose as a main component.
  • the holding member was formed into a form shown in FIGS. 7A and 7B by resin molding using PET.
  • retaining piece 26C in the figure no retaining piece is formed on the retaining member immediately after the resin molding, and the retaining piece is formed by making a hole in the center of the solid matrix and forming a pin-shaped retaining member. After being inserted into the portion (see reference numeral 26B in the figure), the tip portion of the pin-shaped portion was formed by heat treatment. The locking piece is for preventing the solid matrix of the pin-shaped part from falling off as described above.
  • the nucleic acid purification cartridge is formed by forming the cartridge body (see reference numeral 30 in the figure) and the lid (see reference numeral 31 in the figure) into the form shown in Figs. 8 and 9 by forming resin using PET. It was formed by screwing a lid on the reaction tank (see reference numeral 34 in the figure) of the cartridge body.
  • the sample (see reference numeral 29L in the figure) is washed in the sample holding tank (see reference numeral 29 in the figure) of the cartridge for nucleic acid purification, and the sample is washed in three washing tanks (see reference numerals 28 to 28 in the figure).
  • the cartridge for nucleic acid purification was set in 1), and the nucleic acid analysis was performed automatically in the nucleic acid analyzer.
  • the operating mechanism for nucleic acid purification (see reference numeral 5 in the figure) was driven so that the nucleic acid extraction element (solid matrix) performs the operation described below.
  • the insertion pin (see reference numeral 50 in the figure) in the nucleic acid operation mechanism is connected to the cylindrical portion of the holding member.
  • washing tanks 28 to 28 as washing tank 28 ⁇ washing tank 28
  • Washing is performed when the entire solid matrix 23 is located above the liquid level of the washing liquid 28L.
  • the procedure was the same as in the case where the cleaning tank 28 was used, except that the time was set to 2 minutes.
  • Amplification of nucleic acids is performed by PCR using reagent mixtures A and B shown in Table 2 below, and the degree of amplification of nucleic acids depends on the SNP (Single) of CYP2C19 * 2 * 3, which is a nucleotide sequence encoding a drug metabolizing enzyme. Nucleotide Polymorphism) was confirmed by typing.
  • Reagent mixture B 40 ⁇ L Sterile distilled water 5.6juL
  • SEQ ID NO: 2 cgagggttgttgatgtccatc
  • Rooster column number 3 gaaaaattgaatgaaaacatcaggattgta
  • SEQ ID NO: 6 gcaccccctggatcc- (TAMRA)
  • the confirmation of nucleic acid amplification was performed by separately dividing the reagent mixture A or the reagent mixture B into the reagent holding tanks (see symbols 32 and 32 in the figure) of the nucleic acid amplification cartridge main body. Injected
  • the cartridge for nucleic acid amplification was set in the nucleic acid analyzer (see reference numeral 1 in the figure), and the nucleic acid analyzer was automatically operated.
  • a pipette device reference numeral 4 in the figure
  • a lid attaching / detaching mechanism reference numeral 6 in the figure
  • a temperature controller are provided so that the nucleic acid extraction element (solid matrix) performs the following operation.
  • the mechanism symbol 7 in the figure was driven.
  • a tip (reference numeral 43 in the figure) was attached to the nozzle (reference numeral 40 in the figure) of the pipette device, and then 30 L of the reagent mixture A from the reagent storage tank 33A, and a reagent storage tank 33A.
  • 30 L of reagent mixture B was collected from 33B and dispensed into the mixing tank (see reference numeral 33 in the figure).
  • the mixture of reagents A and B is stirred and mixed by the suction and discharge of the nozzle to prepare a reaction solution.
  • the reaction solution was sampled in a volume of 50 L and dispensed into a reaction tank (see reference numeral 34 in the figure).
  • the lid is moved to The pawl (see reference numeral 36A in the figure) was engaged with the locking head (see reference numeral 24B in the figure) of the nucleic acid extraction element, and they were integrated.
  • the heat block (see reference numeral 70 in the figure) of the temperature control mechanism was driven to change the temperature of the reaction solution in the reaction tank to amplify the target nucleic acid.
  • the change in temperature was 120 seconds at 95 ° C ⁇ (4 seconds at 95 ° C + 60 seconds at 54 ° C) for 50 cycles ⁇ 60 seconds at 95 ° C ⁇ 90 seconds at 45 ° C.
  • Tm analysis was employed.
  • the temperature of the reaction solution in which the nucleic acid was amplified was raised from 45 ° C to 95 at a rate of 1 ° C for 3 seconds, and the fluorescence intensity at that time was measured in real time.
  • the measurement wavelength was 515-55511111 (* 2) and 585-750 nm (* 3), and SNP typing was performed at each measurement wavelength ((* 2), (* 3)).
  • the results of measuring the fluorescence intensity at each wavelength are shown in FIG. 34, with the horizontal axis representing the temperature and the vertical axis representing the fluorescence intensity differential (change rate).
  • the reaction was performed at 60 ° C for 1 hour after incubating at 70 ° C for 300 seconds with the solid matrix immersed in the reaction solution.
  • This one-time reaction has a 60-cycle force with one cycle consisting of 30 seconds in the first step in which no fluorescence intensity is measured and 30 seconds in the second step in which the fluorescence intensity is measured. It was measured in real time at the step.
  • the measurement wavelengths were 515-555 nm (mt) and 585-750 nm (wt), and SNP typing was performed for each of the SNP type mutant type and wild type.
  • the results of measuring the fluorescence intensity at each wavelength are shown in FIG. 35, where the horizontal axis represents the cycle number and the vertical axis represents the fluorescence intensity.
  • amplification reagent use Loipamp P450 Typing Reagent Kit (CYP2C9 * 3) manufactured by Eiken-Danigaku Co., Ltd., and mix the reagents to be held in the reagent holding tank of the cartridge body (see symbols 33A and 33B in the figure)
  • the compositions of liquids A and B were as shown in Table 3.
  • the dispensed amounts of the reagent mixtures A and B, the mixing conditions, and the dispensed amount of the reaction solution were the same as in Example 1.
  • the solid matrix was immersed in the reaction solution, treated at 95 ° C for 5 minutes, and then reacted at 60 ° C for 1 hour.
  • This one-time reaction has a 60-cycle force, with one cycle of 30 seconds in the first step without measuring the fluorescence intensity and 30 seconds in the second step of measuring the fluorescence intensity as one cycle.
  • the measurement was performed in real time at a measurement wavelength of 515 to 555 nm.
  • the results of measuring the fluorescence intensity in the second step of each cycle are shown in FIG. 36, where the horizontal axis represents the number of cycles and the vertical axis represents the fluorescence intensity.
  • the method is limited to the PCR method so that the results of Examples 1 to 3 are also effective.
  • the target nucleic acid can be appropriately amplified. That is, it was confirmed that the nucleic acid analysis can be automatically performed when the cartridge for nucleic acid purification, the cartridge for nucleic acid extraction, and the nucleic acid analyzer described in the first embodiment of the present invention are used.
  • the present invention it is possible to reduce the burden on the user in a series of steps in nucleic acid purification, nucleic acid amplification, nucleic acid measurement, and nucleic acid analysis, to improve the analysis efficiency, and to increase the size of the apparatus. In addition, an increase in manufacturing cost can be suppressed.
  • nucleic acids were properly amplified based on the example described in the first embodiment of the present invention. It is considered that even when the configuration described in the second embodiment of the present invention is employed, the nucleic acid can be properly amplified and the above-described effects can be obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、試料中に含まれる目的核酸を増幅する技術、さらには増幅された目的核酸を分析する技術に関する。本発明では、核酸分析装置にセットして使用する核酸増幅用容器(3)が提供される。この核酸増幅用容器(3)は、目的核酸と増幅用試薬とを反応させるための反応槽(34)を有する容器本体(30)と、反応槽(34)の上部開口を塞ぐためのものであり、かつ容器本体(30)から完全に分離した状態とすることが可能な蓋(31)と、を備えている。

Description

核酸増幅用容器、核酸調製キット、および核酸分析装置
技術分野
[0001] 本発明は、試料中に含まれる目的核酸を増幅する技術、さらには増幅された目的 核酸を分析する技術に関する。
背景技術
[0002] 核酸の分析は、医療分野にお!ヽて、感染症や遺伝子疾患を遺伝子レベルで診断 するために重要な役割を果たしているが、現在においては、医療分野に限らず、農 業あるいは食品分野などの様々な分野において応用されている。一般に、核酸の分 析は、試料からの核酸の精製、精製された核酸の増幅、および増幅された核酸の検 出といったプロセスを経て行われている。各プロセスは、人的コスト、再現性、分析効 率を考慮した場合、機械により自動で行えるようにするのが好ましぐ理想的には、全 てのプロセスを機械により自動で行えるようにするのが好ましい(たとえば特許文献 1 , 2参照)。
[0003] 核酸の精製の自動機械化を目指したものとして、核酸結合性担体を使用する方法 がある。その一例として、核酸結合性シリカ粒子とカオトロピックイオンを用いた方法 力 Sある(たとえば特許文献 3参照)。この方法は、核酸結合性シリカ粒子および試料中 の核酸を遊離する能力をもつカオトロピックイオンを試料と混合して試料中の核酸を 核酸結合性シリカ粒子に結合させてから固相と液相を分離した後に、核酸結合性シ リカ粒子に結合した核酸を溶離するというものである。し力しながら、固相と液相を分 離するためには、遠心分離またはフィルタなどを使用した濾過などの操作を行う必要 力 Sあり、機械化を実現した際の操作および装置構成が複雑となる。
[0004] 核酸結合性担体を使用する別の方法としては、磁性を持たせた担体を使用する方 法がある(たとえば特許文献 4, 5参照)。この方法は、磁性を持たせたシリカ粒子に 核酸を吸着させ後に磁石によってシリカ粒子を分離し、分離されたシリカ粒子力 核 酸を溶離させた後に溶離液を回収するものがある。この方法は、遠心分離操作など を行うことなく固相と液相を分離できるために機械による自動化にぉ 、て利点はある [0005] し力しながら、核酸の回収率が比較的に低い上、その回収率が検体の種類に影響 されやすいといった問題がある。し力も、磁性シリカ粒子は、核酸の増幅方法として P CR (Polymerase Chain Reaction)法を採用したときに、増幅反応の阻害剤となるとい つた問題が指摘されている。また、核酸を検出する代表的な方法としては、核酸に標 識を施し、その標識を光学的手法により測定するものがあるが、この方法を採用した 場合には、磁性シリカによって測定誤差が生じ、精製時における磁性シリカ粒子の含 有量のバラツキによって再現性が悪化する。
[0006] 一方、核酸を増幅させるための代表的な方法としては PCR法がある力 PCR法を 利用した核酸の増幅は、機械による自動化が進んでおり、既に PCR装置も市販され ている。 PCR装置としては、核酸の増幅とともに、増幅された核酸の検出を行えるよう にしたものが一般的である。
[0007] し力しながら、市販の PCR装置を使用する場合には、それ専用の増幅キットを用い る必要がある。一般的な増幅キットは、蓋付きの容器に予めプライマーおよびポリメラ ーゼなどの試薬を仕込んだものである。そのため、ユーザは、容器の蓋を開けてから 容器内に核酸溶液を分注した上で、容器内の反応液を攪拌して蓋を閉めた後、それ を PCR装置にセットするといつた操作を強いられる。すなわち、一般的な増幅キットは 、ユーザによる手操作に依存する部分が大き 、ためにユーザの負担が大き 、上に、 ユーザによる手操作が大きく介在するために、分析効率が悪ぐユーザの技量の差 に基づく再現性の悪化も懸念される。また、増幅キットにおいて採用されている容器 は、通常、榭脂成型によって蓋が一体成型された汎用品であり、 PCR装置において 蓋を自動的に開閉させることは困難である。そのため、一般的な専用キットを用いる 方法では、ユーザの手操作に委ねていた操作を、 PCR装置において自動的に行う のは困難である。
[0008] また、核酸分析装置をはじめとする一般的な分析装置においては、試薬類や試料 などの液体を分注するためのピペット装置が組み込まれて 、る。このピペット装置は、 分析装置の種類によっては、ロボットアームによってノズルが水平方向および上下方 向に移動可能に構成される (たとえば特許文献 6参照)。その一方で、核酸分析装置 を自動化するに当たっては、ピペット装置のノズル以外の要素を、分析装置の内部に おいて可動させる必要も生じ得る。その場合、ノズルを含めた複数の可動要素を互 いに干渉せずに移動できるように核酸分析装置の内部に組み込むとともに、それら の可動要素を独立して駆動制御しなければならない。そのため、複数の可動要素を 核酸分析装置に組み込むことは、核酸分析装置の大型化および製造コストの上昇を 招来する。
[0009] 特許文献 1 :特開 2001— 149097号公報
特許文献 2:特開 2003 - 304899号公報
特許文献 3:特許第 2680462号公報
特許文献 4:特開昭 60— 1564号公報
特許文献 5 :特開平 9 19292号公報
特許文献 6:特開 2002— 62302号公報
発明の開示
[0010] 本発明は、核酸の精製、核酸の増幅および核酸の測定といった核酸分析における 一連の工程を、機械により自動で行えるようにし、ユーザの負担を軽減するとともに分 析効率および再現性を改善することを目的として!ヽる。
[0011] 本発明はさらに、核酸分析装置における自動分析を可能としつつ、装置の大型化 および製造コストの上昇を抑制することを目的として!/、る。
[0012] 本発明の第 1の側面においては、核酸分析装置にセットして使用するものであり、 かつ、目的核酸と増幅用試薬とを反応させるための反応槽を有する容器本体と、上 記反応槽の上部開口を塞ぐためのものであり、かつ上記容器本体から完全に分離し た状態とすることが可能な蓋と、を備えている、核酸増幅用容器が提供される。
[0013] 本発明の第 2の側面においては、核酸分析装置にセットして使用するものであり、 かつ、試料から目的核酸を抽出するための核酸抽出用容器と、目的核酸を増幅する ための核酸増幅用容器と、を含む核酸調製キットであって、上記核酸増幅用容器は 、目的核酸と増幅用試薬とを反応させるための反応槽を有する容器本体と、上記反 応槽の上部開口を塞ぐためのものであり、かつ上記容器本体から完全に分離した状 態とすることが可能な蓋と、を備えている、核酸調製キットが提供される。 [0014] 本発明の第 1および第 2の側面においては、蓋は、たとえば反応槽に螺合可能とさ れて 、るとともに回転力を作用させることにより反応槽に対して着脱自在とされる。核 酸分析装置が蓋に対して回転力を作用させるための回転部材を備えている場合に おいては、蓋は、回転部材に係合し、かつ回転部材による回転力の付与を可能とす るための係合部を有するものとして構成される。
[0015] 係合部は、たとえば回転部材を挿入するための円柱状の凹部を有するものとされ、 凹部の内周面は、上下方向に延びる複数のリブが周方向に一定間隔隔てて設けら れる。リブは、その上端部が上端に向力うほど幅寸法が小さくなるように形成するのが 好ましい。
[0016] 蓋は、当該蓋を回転部材に保持させるときに利用される突出部を有するものとして 構成することもできる。突出部は、たとえば外方側に向けて突出したフランジとして形 成される。
[0017] 核酸精製用容器は、たとえば試料から目的核酸を抽出し、かつ抽出した核酸を担 持させるための核酸抽出要素と、核酸抽出要素とは別体として形成され、かつ核酸 抽出要素を収容しておくための収容槽を有する容器本体と、を備えたものとして構成 される。
[0018] 核酸抽出要素および蓋は、蓋に対して核酸抽出要素を保持させて蓋とともに核酸 抽出要素を一体的に移動させることを可能とするための保持手段を備えたものとして 構成するのが好ましい。
[0019] 保持手段は、たとえば核酸抽出要素および蓋のうちの一方に設けられた係合用凸 部または凹部と、核酸抽出要素および蓋のうちの他方に設けられ、かつ係合用凸部 または凹部に係合させるための 1以上の爪と、を含むものとして構成される。
[0020] 核酸抽出要素および蓋は、蓋に核酸抽出要素を保持させるときに核酸抽出要素に 対する蓋の位置関係を規制するためのガイド機構を備えたものとして構成するのが 好ましい。ガイド機構は、たとえば核酸抽出要素および蓋のうちの一方に設けられた ピンと、核酸抽出要素および蓋のうちの他方に設けられ、かつピンを挿入させるため の挿入孔と、を含んだものとして構成される。
[0021] 核酸抽出要素は、たとえば目的核酸を担持させるための固体マトリックスと、この固 体マトリックスを保持するための保持部材と、を有するものとして構成される。
[0022] 核酸増幅用容器は、核酸抽出要素を収容槽力 取り出して反応槽に収容させたと きに、固体マトリックスが反応槽の底部力 離間した状態となるように構成するのが好 ましい。
[0023] 保持部材には、たとえば核酸抽出要素を蓋に保持させた状態で反応槽に核酸抽 出要素を収容させたときに、反応槽において密閉空間を形成するための密閉部材が 設けられる。この場合、密閉部材は、固体マトリックスが保持された部分よりも上方に おいて固定される。
[0024] 保持部材は、たとえば反応槽の段部に係合させるための突出部を有するものとして 構成され。突出部は、たとえば外方側に向けて突出したフランジとして形成される。
[0025] 核酸分析装置が収容槽から核酸抽出要素を取り出して上記反応槽に移送するた めの移送部材を備えているものである場合においては、保持部材は、移送部材に係 合させるための係合部を有するものとして構成され、突出部は、移送部材と保持部材 の係合状態を解除するために利用できるように構成される。また、核酸分析装置が移 送部材を外套し、かつ移送部材に対して上下方向に相対動可能な筒状部材をさら に備えている場合においては、突出部は、筒状部材を移送部材に対して相対的に 下方に移動させたときに筒状部材が干渉することによって下方に向けた力が作用さ せられるように構成される。
[0026] 固体マトリックスは、たとえば保持部材の垂直軸に対して傾斜した状態で保持部材 に保持され、好ましくは、垂直軸に対して水平または略水平な状態で保持される。こ の場合、固体マトリックスは、円盤状に形成するのが好ましい。
[0027] 上記垂直軸に対して固体マトリックスが傾斜した状態は、たとえば固体マトリックスに 対して保持部材に突き刺すことにより達成することができる。この場合、保持部材は、 たとえば端部に向力 ほど縮径するテーパ部と、テーパ部力も延出するとともに、固 体マトリックスに貫通させるためのピン状部と、固体マトリックスがピン状部から離脱す るのを抑制するための係止片と、を有するものとして構成される。
[0028] また、固体マトリックスは、保持部材の垂直軸に対して平行または略平行な状態で 保持部材に保持させてもよい。この場合、固体マトリックスは、シート状に形成するの が好ましい。
[0029] 上記垂直軸に対して固体マトリックスが平行または略平行な状態は、たとえば保持 部材に対して固体マトリックスを吊持させることにより達成することができる。この場合 、保持部材は、たとえば固体マトリックスの端部を挟持して固体マトリックスを吊持する ための挟持部を有するものとして構成される。
[0030] 本発明の核酸調製キットにおいては、核酸抽出用容器は、たとえば核酸抽出要素 から目的核酸以外の不純物を除去するための洗浄液を保持するための 1以上の洗 浄槽をさらに備えたものとして構成される一方、たとえば核酸増幅用容器は、目的核 酸を増幅するのに必要な試薬類を保持するための 1以上の試薬類保持槽をさらに備 えたものとして構成される。
[0031] 本発明の第 3の側面においては、核酸増幅用容器をセットして使用する核酸増幅 装置であって、上記核酸増幅用容器として、目的核酸と増幅用試薬とを反応させる ための反応槽を有する容器本体と、上記反応槽の上部開口を塞ぐためのものであり 、かつ上記容器本体から完全に分離した状態とすることが可能な蓋と、を備えたもの を使用するように構成されている、核酸増幅装置が提供される。
[0032] 本発明の第 4の側面においては、核酸抽出用容器および核酸増幅用容器を使用 して試料から目的核酸を調製し、かつ目的核酸の分析を行うための核酸分析装置で あって、上記核酸増幅用容器として、試料カゝら抽出した目的核酸を保持させた核酸 抽出要素を用いて目的核酸を増幅するための場を提供する反応槽を有する容器本 体と、上記反応槽の上部開口を塞ぐための蓋と、を備えたものを使用するように構成 されている、核酸分析装置が提供される。
[0033] 本発明に係る核酸分析装置は、蓋を着脱するための蓋着脱手段をさらに備えたも のとして構成するのが好ましい。上記核酸分析装置は、たとえば核酸増幅用容器とし て、蓋が反応槽に螺合されているとともに蓋に対して回転力を作用させることにより反 応槽に対して着脱自在とされたものを使用するように構成される。この場合、蓋着脱 手段は、蓋に対して回転力を作用させるための回転部材を有するものとして構成され る。
[0034] 上記核酸分析装置は、たとえば核酸増幅用容器として、蓋が回転部材の先端部を 挿入するための円柱状の凹部を有する係合部を備え、かつ凹部の内周面に上下方 向に延びる複数のリブが周方向に一定間隔隔てて設けられたものを使用するように 構成される。この場合、回転部材は、先端部を上記凹部に挿入したときに、蓋の複数 のリブにおける互いに隣接するリブの間に位置させるための複数の凸部を有するもの として構成され、複数の凸部は、上下方向に延びており、かつ下端部が下端に向かう ほど幅寸法が小さくなるように形成される。
[0035] 上記核酸分析装置は、たとえば核酸増幅用容器として、蓋が外方側に向けて突出 した突出部が設けられているものを使用するように構成される。この場合、蓋着脱手 段は、突出部に係合させるための係合爪を有し、かつ係合爪を突出部に係合させた 状態で、蓋を少なくとも上下方向に移動可能なように構成される。
[0036] 核酸増幅用容器の蓋が核酸精製用容器の核酸抽出要素を保持可能に構成されて いる場合においては、蓋着脱手段は、たとえば反応槽カも取り外した蓋を移動させ、 収容槽に保持された核酸抽出要素を蓋に保持させて収容槽から核酸抽出要素を取 り出すとともに、蓋とともに核酸抽出要素を移動させ、反応槽に核酸抽出要素を収容 させつつ蓋によって反応槽の上部開口を塞ぐように動作させられる。
[0037] 核酸増幅用容器として、蓋が凹部およびフランジ部を備えたものを用いる場合にお いては、蓋着脱手段は、凹部に嵌合させるための嵌合要素と、嵌合要素を外套し、 かつフランジ部に係合させるための爪部を有する筒状要素と、を備えたものとして構 成される。
[0038] 本発明の核酸分析装置は、収容槽から核酸抽出要素を取り出して反応槽に移送 するための移送部材を備えたものとして構成することもできる。
[0039] 好ま 、実施の形態にお!、ては、移送部材を外套し、かつ上記移送部材に対して 上下方向に相対移動可能な筒状部材をさらに備えている。筒状部材は、移送部材 に対して相対的に下方に移動したときに、移送部材に一体化された核酸抽出要素を 取り外すことができるように構成される。
[0040] 本発明の核酸分析装置は、たとえば移送部材および上記蓋着脱手段の動作を制 御するための制御手段をさらに備えたものとして構成される。制御手段は、回転部材 によって反応槽力 蓋を取り外した後に、反応槽の直上位置から蓋を保持した回転 部材を退避させるステップと、移送部材によって収容槽力 核酸抽出要素を取り出し て、反応槽の内部に核酸抽出要素を移動させるステップと、筒状部材によって移送 部材力 核酸抽出要素を取り外して反応槽に核酸抽出要素を収容させるステップと 、回転部材によって反応槽に蓋を取り付けるステップと、を実行するように構成される
[0041] 核酸増幅用容器として、目的核酸の増幅に必要な複数の試薬類を保持させるため の複数の試薬類保持槽を有するものを使用する場合においては、移送部材としては 、核酸増幅用容器にお!、て複数の試薬類を分注あるいは混合するために利用され るノズルを使用することができる。
[0042] ノズルは、たとえばチップを装着した状態で液体を吸引 ·吐出するように構成されて V、る一方で、チップが装着されて!、な 、状態にぉ 、て収容槽から核酸抽出要素を取 り出すように構成される。より具体的には、ノズルは、たとえば先端部を上記チップに 嵌合させることによりチップが装着される一方で、核酸抽出要素に設けられた凹部に 先端部を嵌合させることにより収容槽力 核酸抽出要素を取り出すように構成される
[0043] 好ま ヽ実施の形態にお!ヽては、ノズルを外套し、かつノズルに対して上下方向に 相対移動可能な筒状部材をさらに備えている。筒状部材は、ノズルに対して相対的 に下方に移動したときに、ノズルの先端部を嵌合させたチップまたは核酸抽出要素を 取り外すことができるように構成される。この場合、核酸抽出要素として、ノズル力ゝら核 酸抽出要素を取り外すときに、筒状部材を干渉させるための突出部が設けられたも のを使用するのが好ましい。ノズルの先端部には、チップまたは核酸抽出要素に嵌 合させる部分に Oリングが装着ておくのが好ましい。
[0044] ここで、本発明において「試料」とは、動物由来の生物試料 (たとえば全血、血清、 血漿、尿、唾液、あるいは体液)および動物以外の生物試料を含む概念であり、「核 酸」とは、 DNAあるいは RNAを意味し、 2本鎖 DNA、 1本鎖 DNA、プラスミド DNA 、ゲノム DNA、 cDNA、外来性寄生生物(ウィルス、細菌、真菌など)由来 RNA、内 在性 RNAを含む概念である。
図面の簡単な説明 [図 1]核酸分析装置の一例を説明するための全体斜視図である。
[図 2]図 1に示した核酸分析装置の内部構成を示す平面図である。
[図 3]図 2の III III線に沿う断面図である。
[図 4]図 1の IV— IV線に沿う断面図である。
[図 5]核酸精製用カートリッジの一例を示す全体斜視図である。
[図 6]図 5の VI— VI線に沿う断面図である。
[図 7]図 7Aは核酸精製用カートリッジにおける核酸抽出要素の全体斜視図であり、 図 7Bは核酸抽出要素の断面図である。
[図 8]核酸増幅用カートリッジの全体斜視図である。
[図 9]図 8の IX— IX線に沿う断面図である。
[図 10]固体マトリックスの洗浄動作を説明するための要部断面図である。
[図 11]核酸増幅用カートリッジからの蓋の取り外し動作を示す要部断面図である。
[図 12]蓋を利用した拡散核酸抽出要素の取り出し動作を説明するための腰部断面 図である。
[図 13]図 13Aは核酸増幅用カートリッジの反応槽に核酸抽出要素を収容する動作を 説明するための要部断面図であり、図 13Bは反応槽から蓋を取り外す動作を説明す るための要部断面図である。
[図 14]図 13Bの XIV— XIV線に沿う断面図である。
[図 15]温調機構および測定機構を説明するための、図 2の XV— XV線に沿う断面に 相当する断面図である。
[図 16]核酸分析装置の一例を説明するための内部構成を示す平面図である。
[図 17]図 16の XVII— XVII線に沿う断面図である。
[図 18]図 16の XVIII— XVIII線に沿う断面図である。
[図 19]核酸精製用カートリッジの一例を示す全体斜視図である。
[図 20]図 20Aは核酸精製用カートリッジにおける核酸抽出要素を示す斜視図、図 20
Bはその平面図、図 20Cは図 20Aの XXc— XXc線に沿う断面図である。
[図 21]核酸精製用カートリッジの容器における図 19の XXI— XXI線に沿った断面に 相当する断面図である。 圆 22]容器における収容槽カも核酸抽出要素を取り出す操作を示す要部断面図で ある。
[図 23]核酸増幅用カートリッジの全体斜視図である。
[図 24]図 24Aは図 23の XXIVa—XXIVa線に沿う断面図であり、図 24Bは図 24Aに お!、て蓋を分離した状態を示す断面図である。
[図 25]ノズルに対するチップの取り付け動作を説明するための要部正面図である。 圆 26]ノズルに対する核酸抽出要素の取り付け動作を説明するための要部正面図で ある。
[図 27]ノズル力ものチップの取り外し動作を説明するための要部正面図である。
[図 28]ノズル力 の核酸抽出要素の取り外し動作を説明するための要部正面図であ る。
圆 29]核酸増幅用カートリッジの蓋に対する回転部材の挿入動作を示す要部断面図 である。
圆 30]核酸増幅用カートリッジの蓋を取り外す動作を説明するための要部断面図で ある。
圆 31]核酸増幅用カートリッジの反応槽に核酸抽出要素を収容する操作を示す要部 断面図である。
圆 32]核酸増幅用カートリッジの蓋を再装着する動作を説明するための要部断面図 である。
[図 33]測定機構を説明するための、図 16の XXXIII— XXXIII線に沿う断面に相当す る断面図である。
圆 34]実施例 1 (PCR法)における蛍光強度の測定結果を示すグラフであり、横軸を 温度、縦軸を蛍光強度の微分値として示したものである。
[図 35]実施例 2 (ICAN法)における蛍光強度の測定結果を示すグラフであり、横軸 をサイクル数、縦軸を蛍光強度として示したものである。
[図 36]実施例 3 (LAMP法)における蛍光強度の測定結果を示すグラフであり、横軸 をサイクル数、縦軸を蛍光強度として示したものである。
発明を実施するための最良の形態 [0046] 以下においては、本発明について第 1および第 2の実施の形態として、図面を参照 しつつ説明する。
[0047] まず、本発明の第 1の実施の形態について、図 1ないし図 15を参照して説明する。
[0048] 図 1ないし図 4に示した核酸分析装置 1は、試料中の核酸の精製、抽出された核酸 の増幅、および増幅された核酸の分析を自動で行えるように構成されたものであり、 図 1および図 2に示したように、筐体 10の内部に、複数の核酸精製用カートリッジ 2お よび核酸増幅用カートリッジ 3を同一数だけ装着して使用されるものである。
[0049] 図 5および図 6に示したように、核酸精製用カートリッジ 2は、核酸分析装置 1におけ る核酸の自動精製を可能ならしめるためのものであり、核酸抽出要素 20およびカート リッジ本体 21を有している。
[0050] 核酸抽出要素 20は、試料中から核酸を抽出するのに利用されるものであり、後述 するカートリッジ本体 21の収容槽 27に収容されている。この核酸抽出要素 20は、図 7Aおよび図 7Bに良く表れているように、保持部材 22および固体マトリックス 23を有 している。
[0051] 保持部材 22は、筒状部 24、フランジ部 25、および保持部 26を有するものであり、 たとえば全体が榭脂成型によって形成されている。
[0052] 筒状部 24は、核酸抽出要素 20を移動させるときに利用される部分であり(図 4およ び図 12参照)、凹部 24Aおよび係止ヘッド 24Bを有している。凹部 24Aは、後述す る核酸精製用機構 5の挿入ピン 50または核酸増幅用カートリッジ 3の蓋 31における ピン 36Bを嵌合させるためのものである(図 4および図 12参照)。係止ヘッド 24Bは、 後述する核酸増幅用カートリッジ 3の蓋 31における係止爪 36Aを嵌合させるための ものであり、半径方向に突出している。
[0053] フランジ部 25は、後述する核酸精製用カートリッジ 2の収容槽 27に核酸抽出要素 2 0を収容するときに、収容槽 27の段部 27A係合させるためのものであり、半径方向の 外方側に向けて突出した環状に形成されて!ヽる(図 12参照)。
[0054] 保持部 26は、固体マトリックス 23を保持するための部分であり、テーパ部 26A、ピ ン状部 26Bおよび係止片 26Cを有している。テーパ部 26Aは、保持部 26に付着し た洗浄液を下方に移動させやすくする役割を果たすものである。ピン状部 26Bは、固 体マトリックス 23に貫通させるための部分である。係止片 26Cはピン状部 26Bを固体 マトリックス 23に貫通させたときにピン状部 26B (保持部 26)から固体マトリックス 23が 離脱するのを防止するためのものである。
[0055] 保持部材 22には、保持部 26の若干上方に Oリング 22Aが固定されている。この O リング 22Aは、図 13Bに良く表れているように、核酸抽出要素 20を核酸増幅用カート リッジ 3の反応槽 34に収容したときに、反応槽 34の内面に密着させるためのものであ る。すなわち、反応槽 34に核酸抽出要素 20を収容させた場合には、 Oリング 22Aが 反応槽 34の内面と密着する位置よりも下方に密閉空間が形成される。そして、 Oリン グ 22Aが保持部 26よりも上方に配置されていることから、固体マトリックス 23は密閉 空間において収容される。
[0056] 固体マトリックス 23は、試料中の核酸を担持させるためのものであり、たとえば濾紙 に対して核酸抽出用の試薬類を担持させたものとして構成されている。この固体マト リックス 23は、円盤状に形成されている。すなわち、固体マトリックス 23は、ピン状部 2 6Bに突き刺された状態で、保持部材 22の垂直軸に対して直交するように水平また は略水平に支持されている。
[0057] ここで、核酸抽出用の試薬類としては、たとえば弱塩基、キレート試薬、陰イオン界 面活性剤あるいは陰イオン洗剤および尿酸あるいは尿酸塩の組み合わせ、もしくは 核酸吸着用担体および吸着促進剤の組み合わせを挙げることができる。核酸吸着用 担体としては、公知の種々のものを使用することができ、典型的にはシリカビーズが 使用される。吸着促進剤としては、細胞膜を破壊し、あるいは試料中のタンパク質を 変性させ、核酸吸着用担体への核酸の結合に寄与する物質であればよぐたとえば カオトロピック物質 (たとえばグァ-ジンチォシアン酸塩、グァ-ジン酸塩)を使用する ことができる。なお、固体マトリックス 23は、試料中の核酸を効率良く吸着させることが できる構成であればよぐその構成は上述した例には限定されない。
[0058] 上述の核酸抽出要素 20では、後述する核酸増幅用カートリッジ 3の反応槽 34に核 酸抽出要素 20を収容させたときに、固体マトリックス 23を反応槽 34の底力も離間さ せた状態とすることができる。これにより、後述した測光機構 8の測光経路上に固体マ トリックス 23が位置しないようにすることができるため、測光精度を向上させることがで きる。固体マトリックス 23が測光経路上に位置しないため、固体マトリックス 23として 寸法の大きなものを使用することが可能となる。これにより、固体マトリックス 23に対し てより多くの核酸を担持させることが可能となり、より効率良く核酸の増幅を行い、また 分析精度を向上させることが可能となる。
[0059] 図 5および図 6に示したように、カートリッジ本体 21は、収容槽 27、 3つの洗浄槽 28
1
〜28、試料保持槽 29および余剰液除去槽 21Aを有するものであり、たとえば榭脂
3
成型により一体成型されている。
[0060] 収容槽 27は、核酸抽出要素 20を収容するためのものであり、核酸抽出要素 20の フランジ部 25を係止するための段部 27Aを有している。この収容槽 27は、核酸精製 用カートリッジ 2の使用前において、上部開口 27B力も核酸抽出要素 20が離脱しな いように、上部開口 27Bをアルミニウム薄膜などのシール材により塞いでおくのが好 ましい。シール材は、核酸精製用カートリッジ 2を使用するときにユーザが剥がすよう にしてもょ 、し、核酸分析装置 1にお 、て自動的に剥がすようにしてもょ 、。
[0061] 各洗浄槽 28〜28は、固体マトリックス 23に核酸を担持させた後、固体マトリックス
1 3
23から夾雑物を除去するための洗浄液を保持するためのものである。洗浄液は、核 酸精製用カートリッジ 2として洗浄槽 28〜28に予め仕込んでおくのが好ましいが、
1 3
核酸分析装置 1に仕込んでおいた洗浄液を分析時に洗浄槽 28〜28に分注するよ
1 3
うにしてもよい。洗浄液としては、たとえば固体マトリックス 23からの核酸の溶離作用 が少なぐ夾雑物の結合を妨げるもの(たとえばグァ-ジン塩酸塩あるいはエタノール )を使用することができる。 3つの洗浄槽 28〜28には、同一の洗浄液を保持させて
1 3
もよいが、異なる洗浄液を保持させてもよい。
[0062] なお、各洗浄槽 28〜28に予め洗浄液を仕込んでおく場合には、各洗浄槽 28〜
1 3 1
28の上部開口 28A〜28Aをアルミニウム薄膜などのシール材により塞いでおく必
3 1 3
要がある。この場合、各洗浄槽 28〜28の上部開口 28A〜28Aを個別に塞いでも
1 3 1 3
よいし、 3つの洗浄槽 28〜28の上部開口 28A〜28Aを一括して、あるいは 3つの
1 3 1 3
洗浄槽 28〜28の上部開口 28A〜28Aおよび収容槽 27の上部開口 27Bを一括
1 3 1 3
して塞いでもよい。
[0063] 試料保持槽 29は、分析対象 (核酸を抽出する対象)となる試料を保持しておくため のものである。試料保持槽 29に対する試料の保持は、核酸精製用カートリッジ 2を核 酸分析装置 1にセットする前に行ってもよいし、核酸精製用カートリッジ 2を核酸分析 装置 1にセットした後に行ってもよい。後者の場合、核酸分析装置 1において自動的 に試料保持槽 29に試料が分注されるように構成するのが好ましい。試料としては、た とえば全血、血清、血漿、尿、唾液、あるいは体液を使用することができる。
[0064] 余剰液除去槽 21Aは、核酸抽出要素 20における固体マトリックス 23を洗浄した後 において、核酸抽出要素 20、固体マトリックス 23および保持部材 22の保持部 26に 付着した余剰な洗浄液を除去するためのものである。この余剰液除去槽 21Aには、 底壁 21Aaおよび前後壁 21Ab、 21Acに密着して吸水性部材 21Ad, 21Aeが固定 されている。吸水性部材 21Ad, 21Aeは、たとえば発泡榭脂あるいは布などの多孔 質材料により構成されており、核酸抽出要素 20を接触させることによって核酸抽出要 素 20から余剰な洗浄液を吸収除去できるように構成されて 、る。
[0065] 図 8および図 9に示したように、核酸増幅用カートリッジ 3は、核酸分析装置 1におけ る核酸の自動増幅および測定を可能ならしめるためのものであり、カートリッジ本体 3 0および蓋 31を有している。
[0066] カートリッジ本体 30は、 4つの試薬類保持槽 32〜32、混合槽 33、および反応槽 3
1 4
4を有するものであり、たとえば榭脂成型により一体成型されている。
[0067] 各試薬類保持槽 32〜32は、核酸の増幅および測定に必要な試薬類を水溶液あ
1 4
るいは懸濁液の状態で保持するためのものである。ここで、各試薬類保持槽 32〜3
1
2に保持される試薬類の種類は、採用する増幅方法および測定方法に応じて選択さ
4
れる。増幅方法としては、たとえば PCR(Polymerase Chain Reaction)法、 ICAN(Isoth ermal andし himeric Primer— initiated Amplification of Nucleic acid)法、 LAMP(Loop- Mediated Isothermal Amplification)法め いは N AS BA(Nucleic acid Sequence Base a Amplification)法を採用することができる。 PCR法を採用する場合には、試薬類とし て、少なくとも 2種類のプライマー、 dNTP、および DNAポリメラーゼが使用される。 I CAN法を採用する場合には、試薬類として、キメラプライマー、 DNAポリメラーゼ、 および RNaseHが使用される。 LAMP法を採用する場合には、試薬類として、 1種類 以上の LAMP用プライマー、 dNTP、鎖置換型 DNA合成酵素、および逆転写酵素 が使用される。 NASBA法を採用する場合には、試薬類として、少なくとも 2種類のプ ライマー、 dNTP、 rNTP、逆転写酵素、 DNAポリメラーゼ、 RNaseH、および RNA ポリメラーゼが使用される。一方、測定方法としては、蛍光測定、発色測定、放射性 活性測定、あるいは電気泳動を採用することができる。ただし、核酸分析装置 1にお いては蛍光測定が採用されているものとする。この場合、プライマーとしては、蛍光プ ライマーを使用するのが好ましい。
[0068] 混合槽 33は、試薬類保持槽 32〜32に保持された 2以上の試薬類を反応槽 34に
1 4
供給する前に混合する際に利用されるものである。
[0069] なお、試薬類保持槽 32〜32には、試薬類を予め仕込んでおくのが好ましいが、
1 4
核酸分析装置 1に仕込んでおいたものを分析時に試薬類保持槽 32〜32に分注す
1 4 るようにしてもよい。この場合、試薬類保持槽 32〜32の上部開口 32A〜32Aは、
1 4 1 4 アルミニウム薄膜などのシール材により塞 、でおく必要があるが、各試薬類保持槽 3 2〜32の上部開口 32A〜32Aを個別に塞いでもよいし、 4つの試薬類保持槽 32
1 4 1 4 1
〜32の上部開口 32A〜32Aを一括して、あるいは 4つの試薬類保持槽 32〜32
4 1 4 1 4 および混合槽 33の上部開口 32A〜32Α , 33Aを一括して塞いでもよい。
1 4
[0070] 反応槽 34は、混合試薬および核酸抽出要素 20を収容するためのものであるととも に、核酸抽出要素 20に担持させた核酸と混合槽 33において調整された混合試薬と を反応させる場を提供するものである(図 13および図 14参照)。この反応槽 34は、筒 状部 35および反応検出部 37を有している。
[0071] 筒状部 35は、蓋 31が装着される部分であり、その内周面にネジ溝 35Aが設けられ ている。
[0072] 反応検出部 37は、核酸の増幅反応を起こさせる場を提供するとともに、蛍光測定を 行うための検出容器としての役割を果たすものである。すなわち、反応検出部 37は、 後述する測光機構 8の発光部 80から出射された光が照射される部分である(図 15参 照)。
[0073] 蓋 31は、反応検出部 37の内部を密閉状態とするか否かを選択するためのものであ り、反応槽 34 (筒状部 35)に対して着脱自在とされている。より具体的には、蓋 31は 、回転力を作用させることにより、筒状部 35に装着される状態と筒状部 35 (反応槽 3 4)から完全に分離した状態とを選択できるように構成されている。蓋 31は、円筒状の 本体部 38、フランジ部 39および保持部 36を有している。
[0074] 本体部 38は、反応槽 34における筒状部 35のネジ溝 35Aに螺合させるためのネジ 山 38Aと、後述する蓋着脱機構 6における回転部材 60 (図 11B参照)を挿入するた めの凹部 38Bと、を有している。凹部 38Bの内周面には、複数のリブ 38Cが設けられ ている。複数のリブ 38Cは、周方向に一定間隔隔てて上下方向に延びるように設け られている。各リブ 38Cの上端部は、上方に向力 ほど幅寸法が小さくなるテーパ状 に形成されている。
[0075] フランジ部 39は、反応槽 34から取り外した蓋 31を移動させるときに、後述する蓋着 脱機構 6における外套部材 61の爪 64を係止させるためのものである(図 11B参照)。 このフランジ部 39は、本体部 38の上端から半径方向の外方側に向けて突出する円 環状に設けられている。
[0076] 図 7Bに示したように、保持部 36は、核酸精製用カートリッジ 2における核酸抽出要 素 20を保持するためのものであり、一対の係止爪 36Aおよびピン 36Bを有している。
[0077] 一対の係止爪 36Aは、核酸抽出要素 20における係止ヘッド 24Bに係止させるため のものであり、本体部 38の底面 38Dから下方に突出して設けられている。各係止爪 3 6Aは、先端部にフック部 36Aaが設けられており、このフック部 36Aaが揺動可能とさ れている。すなわち、一対の係止爪 36Aのフック部 36Aa相互は、互いに近接離間 可能とされている。
[0078] ピン 36Bは、核酸抽出要素 20における筒状部 24の凹部 24Aに挿入するためのも のであり、本体部 38の底面 38Dから下方に突出して設けられている。このピン 36B は、核酸抽出要素 20を蓋 31に保持させるときにガイドとして機能するとともに、蓋 31 に核酸抽出要素 20を保持させた後において蓋 31に対する核酸抽出要素 20のガタ ツキを抑制するためのものである。
[0079] 図 1に示したように、核酸分析装置 1の筐体 10には、蓋 11、表示部 12および操作 部 13が設けられている。蓋 11は、筐体 10の内部が露出する状態と露出しない状態 とを選択するためのものであり、筐体 10の内部にカートリッジ 2, 3を出し入れする際 には蓋 11が開放される一方で、核酸の分析時および装置の非使用時には蓋 11は 閉じた状態とされる。表示部 12は、分析結果などを表示するためのものであり、たと えば LCDにより構成されている。操作部 13は、各種の設定を行うために、あるいは分 析開始のためなどに操作される部分である。
[0080] 図 2および図 3に示したように、筐体 10の内部には、後述するピペット装置 4、核酸 精製用動作機構 5、蓋着脱機構 6、温調機構 7、および測光機構 8が設けられている
[0081] ピペット装置 4は、主として核酸増幅用カートリッジ 3における混合液の調整行うため のものであり、ノズル 40を有している。このピペット装置 4は、必要に応じて、核酸精 製用カートリッジ 2に対して試料もしくは洗浄液を供給するために利用される。
[0082] ノズル 40は、液体を吸引 ·吐出可能なように、図外のポンプに接続されており、ノズ ル 40の内部に吸引力を作用させる状態と吐出力を作用させる状態とが選択されるよ うに構成されている。このノズル 40は、ロボットアームなどの駆動機構(図示略)により 上下方向および水平に移動可能とされており、その動作が CPUなどによって構成さ れた制御部 10によって制御される。ノズル 40は、核酸増幅用カートリッジ 3における 試薬類保持槽 32〜32、混合槽 33、反応槽 34、および核酸精製用カートリッジ 2の
1 4
収容槽 27に移動することができる。ノズル 40は、混合試料の調整および反応槽 34 ( 反応検出部 37)への混合試料の分注を行う場合には、図 3に示したように先端部 42 にチップ 43が装着される。チップ 43は、図 2に示したようにノズル 40 (ピペット装置 4) の待機位置の隣接した部位において、ラック 44において保持されている。このラック 4 4に隣接した部位には、使用済みのチップ 43を廃棄するための廃棄ボックス 45が配 置されている。
[0083] 図 2〜図 4および図 10に示したように、核酸精製用動作機構 5は、核酸精製用カー トリッジ 2の核酸抽出要素 20を利用して試料中の核酸を抽出する際に、核酸抽出要 素 20の動作を制御するためのものである。この核酸精製用動作機構 5は、複数の挿 入ピン 50、筒状体 51および支持フレーム 52を有している。
[0084] 複数の挿入ピン 50は、核酸抽出要素 20の筒状部 24に嵌合させるためのものであ り、支持フレーム 52に対して一体動可能に支持されている。
[0085] 筒状体 51は、挿入ピン 50に装着された核酸抽出要素 20を取り外すためのもので あり、挿入ピン 50とは独立して上下方向に移動可能なように挿入ピン 50を外套して いる。すなわち、筒状体 51は、挿入ピン 50から核酸抽出要素 20を取り外す動作を行 うとき以外は、核酸抽出要素 20よりも上方 (待機位置)に位置する一方で、挿入ピン 5 0から核酸抽出要素 20を取り外す動作を行うときには、挿入ピン 50に対して相対的 に下方に移動させられる。
[0086] 支持フレーム 52は、複数の挿入ピン 50を、複数の核酸精製用カートリッジ 2の並び 方向に一定間隔隔てて支持するとともに、それらの挿入ピン 50を移動せるための媒 体として機能するものである。この支持フレーム 52は、図外の駆動機構によって上下 方向および前後方向に移動可能とされており、その動作は、たとえば図 2に示した制 御部 10によって制御される。そのため、複数の挿入ピン 50ひいてはそれらに装着さ れた核酸抽出要素 20は、支持フレーム 52とともに上下および前後方向に移動するこ とができる。これにより、複数の核酸抽出要素 20は、固体マトリックス 23に対する試料 の含浸および固体マトリックス 23の洗浄および余剰液の除去を一括して同時に行うこ とができる(図 10参照)。
[0087] 図 11および図 13に示したように、蓋着脱機構 6は、核酸増幅用カートリッジ 3の反 応槽 34から蓋 31を取り外し、あるいは反応槽 34に蓋 31を装着するためのものであり 、回転部材 60および外套部材 61を有している。回転部材 60および外套部材 61は、 図外の駆動機構によって上下および水平方向に移動可能とされており、制御部 10 ( 図 2参照)によってその動作が制御されるように構成されて!、る
[0088] 回転部材 60は、核酸増幅用カートリッジ 3の蓋 31に回転力を作用させるとともに、 蓋 31を保持して蓋 31を移動させるためのものであり、略円柱状の先端部 62を有して いる。回転部材 60の先端部 62には、複数のリブ 63が形成されている。複数のリブ 63 は、先端部 62の周方向において、一定間隔隔てて上下方向に延びるように設けられ ており、各リブ 63の下端部は、下方に向力うほど幅寸法が小さくなるテーパ状に形成 されている。これらのリブ 63は、図 14に示すように蓋 31の複数のリブ 38Cに係合させ るためのものであり、蓋 31の凹部 38Bに先端部 62を挿入したときに、凹部 38Bにお ける互いに隣接するリブ 38Cの間に位置するようになされて!、る。
[0089] この構成では、回転部材 60の先端部 62を回転させたときに、先端部 61のリブ 63と 凹部 38Bのリブ 38Cとが相互に干渉しあうので、先端部 62が蓋 31の凹部 38Bにお いて空回転することを抑制でき、回転部材 60の回転力を、蓋 31に対して適切に付与 することができる。また、凹部 38Bにおける複数のリブ 38Cの上端部が上方向に向う ほど幅が細くなるテーパ状とされている一方で、回転部材 60の先端部 61における複 数のリブ 63は下端部が下方向に向うほど幅が細くなるテーパ状とされている。そのた め、蓋 31の凹部 38Bに対しては、容易かつ確実に回転部材 60の先端部 61を挿入 することができる。
[0090] 外套部材 61は、回転部材 60を外套するものであり、円筒状に形成されている。この 外套部材 61は、フランジ部 39に係止させるための爪 64を有している。この爪 64は、 先端部 64にフック部 65が設けられたものであり、フック部 65が揺動可能とされている 。爪 64は、回転部材 60の先端部 62を蓋 31の凹部 38Bに挿入したときに、蓋 31のフ ランジ部 39に係止させられる。これにより、回転部材 60に蓋 31がー体ィ匕され、回転 部材 60および外套部材 61を移動させることによって蓋 31を移動させることができる。 また、爪 62は、回転部材 60によって蓋 31を反応槽 34に再装着するときに、自動的 に蓋 31のフランジ部 39との係止状態が解除されるように構成されている。
[0091] 図 15に示したように、温調機構 7は、ヒートブロック 70の温度制御をすることによつ て核酸増幅用カートリッジ 3の反応検出部 37に保持された液体の温度を制御するた めのものである。ヒートブロック 70の温度は、図外の温度センサによってモニタリング されており、温度センサでのモニタリング結果に応じて、ヒートブロック 70の温度がフ イードバック制御されるように構成されている。ヒートブロック 70には、核酸増幅用カー トリッジ 3の反応検出部 37の外観形状に対応した凹部 71が形成されている。これによ り、ヒートブロック 7において反応槽 34を選択的かつ効率的に温調することができる。 ヒートブロック 70にはさらに、凹部 71に繋がる直線状の貫通孔 72, 73が設けられて いる。貫通孔 72は後述する測光機構 8の発光部 80において出射された光を反応槽 34の反応検出部 37に導くためのものであり、貫通孔 73は反応検出部 37を透過した 光を受光部 81に導くためのものである。
[0092] 測光機構 8は、発光部 80および受光部 81を有している。発光部 80は、貫通孔 72 を介して、反応検出部 37に励起光を照射するためのものである。受光部 81は、貫通 孔 73を介して、反応検出部 37に励起光を照射したときの蛍光を受光するためのもの である。測光機構 8では、発光部 80から連続的に励起光を照射する一方で、受光部 81にお 、て連続的に蛍光の量をモニタリングすることにより、リアルタイムで核酸の増 幅の程度を把握することができる。
[0093] 次に、核酸分析装置 1における動作を説明する。
[0094] 核酸分析装置 1において核酸の分析を行う場合には、まず図 1ないし図 4に示した ように、核酸分析装置 1に核酸精製用カートリッジ 2および核酸増幅用カートリッジ 3を セットする。セットするカートリッジ 2, 3の個数は、核酸精製用カートリッジ 2の個数と核 酸増幅用カートリッジ 3の個数が同一であれば何個でもよい。なお、以下の説明にお いては、核酸精製用カートリッジ 2として洗浄槽 28〜28には予め洗浄液が保持され
1 3
たものを使用し、試料保持槽 29には核酸精製用カートリッジ 2を核酸分析装置 1にセ ットする前に試料を保持させておいたものとする。
[0095] 次いで、核酸分析装置 1にセットしたカートリッジ 2, 3の個数、およびカートリッジ 2, 3の種類 (精製方法、増幅方法、測定方法)に応じた設定を、核酸分析装置 1に設け られた表示部 12を確認しつつ操作部 13を操作することにより行う。上記設定が終了 した場合には、核酸分析装置 1において自動的に核酸の精製、増幅および測定が 行われる。
[0096] 図 4に示したように、核酸の精製は、核酸精製用カートリッジ 2において、核酸精製 用動作機構 5によって核酸抽出要素 20を移動させることにより行われる。
[0097] より具体的には、まず、核酸精製用動作機構 5の挿入ピン 50を核酸精製用カートリ ッジ 2における容器 21の収容槽 27の直上に位置させた状態とした上で、支持フレー ム 52を駆動して挿入ピン 50を下動させた後に上動させる。挿入ピン 50を下動させる ことにより、核酸抽出要素 20の筒状部 24に挿入ピン 50が嵌合されて核酸精製用動 作機構 5に複数の核酸抽出要素 20が一体化され、挿入ピン 50を上動させることによ り核酸抽出要素 20が核酸精製用動作機構 5によって持ち上げられる。
[0098] 次いで、図 10に示したように、支持フレーム 52とともに挿入ピン 50を移動させ、核 酸精製用カートリッジ 2における試料保持槽 29に保持させた試料 29Lに、核酸抽出 要素 20の固体マトリックス 23を浸漬する。これにより、固体マトリックス 23に試料 29L の核酸が担持する。
[0099] 次いで、 3つの洗浄槽 28〜28に保持させた洗浄液 28L〜28Lに、固体マトリツ
1 3 1 3
タス 23を順次浸漬する。より具体的には、固体マトリックス 23の洗浄は、核酸精製用 動作機構 5によって、各洗浄槽 28において固体マトリックス 23を繰り返し上下動させ ることにより行われる。このとき、核酸精製用動作機構 5においては、固体マトリックス 23が洗浄液 28L〜28Lに完全に浸漬する状態と、固体マトリックス 23が洗浄液 28
1 3
L〜28Lの液面よりも上方に位置する状態とが繰り返えされるように制御される。
1 3
[0100] このような洗浄方法では、固体マトリックス 23が液面よりも上方に位置する状態から 洗浄液 28L〜28Lに浸漬されるように下方に移動させられるときに、固体マトリック
1 3
ス 23が液面に叩き付けられる。このとき、固体マトリックス 23が水平または略水平に 支持されているために、固体マトリックス 23には大きな負荷が作用する。その一方で 、固体マトリックス 23が洗浄液 28L〜28Lの内部を移動させられるときには、固体マ
1 3
トリックス 23が水平または略水平に支持されているために固体マトリックス 23の大きな 移動抵抗が作用し、これが洗浄液に対流を生じさせる負荷として作用する。これらの 作用により、固体マトリックス 23からは、夾雑物を効率良く除去することができる。これ により、後において行われる核酸の増幅工程において夾雑物が核酸の増幅を阻害 することを効果的に抑制し、核酸の分析を精度良く行えるようになる。このような効果 は、固体マトリックス 23を水平状態で移動させる場合に限らず、垂直軸に対して固体 マトリックス 23を傾斜させた状態で移動させた場合に得ることができる。
[0101] 最後に、核酸抽出要素 20の先端部分を余剰液除去槽 21Aに保持させた吸水性 部材 21Ad, 21Aeに接触させる。吸水部材 21Adは、余剰液除去槽 21Aの底壁 21 Aaおよび前後壁 21Ab, 21 Acに接触して配置されているため、それらの全ての吸 水部材 21Adに核酸抽出要素 20の先端部を接触させた場合には、核酸抽出要素 2 0の先端部、主として固体マトリックス 23および保持部材 22の保持部 26から余剰な 洗浄液が効率良く除去される。その結果、後において核酸抽出要素 20を用いて核 酸の増幅を行う際に、洗浄液に含まれる不純物が核酸増幅を阻害することを抑制す ることがでさる。
[0102] なお、洗浄の終了した固体マトリクス 23は、核酸精製用動作機構 5に保持された状 態で送風乾燥させてもよい。固体マトリックス 23の洗浄が終了(場合によって送風乾 燥が終了)した場合には、挿入ピン 50から核酸抽出要素 20を取り外し、核酸抽出要 素 20を核酸精製用カートリッジ 2の収容槽 27に再収容させる。挿入ピン 50からの核 酸抽出要素 20の取り外しは、上述したように、核酸精製用動作機構 5の筒状体 51を 下動させ、係止ヘッド 24Bに筒状部 51を干渉させることにより行われる。
[0103] このように、核酸精製用カートリッジ 2においては、核酸を固体 (核酸抽出要素 20) に担持させることによって、固体マトリックス 23を核酸分析装置 1にお 、て容易に移 動させることができる。この点において、核酸精製用カートリッジ 2は、核酸分析を自 動で行うことに寄与して 、ると 、える。
[0104] 核酸の増幅は、核酸増幅用カートリッジ 3において混合試薬を調整し、それを核酸 増幅用カートリッジ 3の反応槽 34に分注した後、核酸を担持させた固体マトリックス 2 3を、保持部材 22とともに反応槽 34に収容させることにより行われる。なお、反応槽 3 4において混合試薬と固体マトリックス 23が共存させられた場合には、採用する増幅 方法の種類に応じて、ヒートブロック 70 (図 15参照)の温度を制御して反応槽 34の温 調が行われる。
[0105] 混合試薬の調整は、ピペット装置 4におけるノズル 40の先端部 42にチップ 43を装 着した上で、核酸増幅用カートリッジ 3における試薬類保持槽 32〜32に保持された
1 4
試薬類を順次、混合槽 33に所定量ずつ分注した後、ピペット装置 4によるピベッティ ング操作によって分注液を混合することにより行われる(図 3参照)。
[0106] 反応槽 34に対する混合液の分注は、蓋着脱機構 6によって反応槽 34から蓋 31を 取り外しておいた上で、ピペット装置 4によって行われる。図 11Aおよび図 11Bに示 したように、蓋着脱機構 6における蓋 31の取り外しは、蓋着脱機構 6の回転部材 60 の先端部 62を蓋 31の凹部 38Bに挿入した後に、回転部材 60を回転させつつ上動 させることにより行われる。回転部材 60を凹部 38Bに挿入した場合には、外套部材 6 1における爪 64のフック部 65が蓋 31のフランジ部 39に係止される。そのため、反応 槽 34から取り外された蓋 31は、回転部材 60および外套部材 61とともに移動させるこ とができる。このように、核酸分析装置 1および核酸増幅用カートリッジ 3においては、 核酸の増幅ひ 、ては核酸分析の全自動化を達成するために、核酸増幅用カートリツ ジ 3から蓋 31を容易かつ確実に取り外せるように工夫がなされて 、る。
[0107] 一方、反応槽 34への固体マトリックス 23の収容は、蓋着脱機構 6および核酸増幅 用カートリッジ 3の蓋 31を利用して行われる。より具体的には、固体マトリックス 23の 収容は、図 12および図 13に示したように、蓋 31への核酸抽出要素 20の保持、およ び反応槽 34への蓋 31の再装着といった一連の操作によって行われる。
[0108] 図 7Bおよび図 12に示したように、蓋 31への核酸抽出要素 20の保持は、蓋着脱機 構 6によって蓋 31を核酸精製用カートリッジ 2における収容槽 27の上方に位置させ た後に蓋 31を下動させることにより行われる。蓋 31を下動させる過程においては、蓋 31のピン 36Bは、核酸抽出要素 20における筒状部 24の凹部 24Aに挿入される。こ れにより、蓋 31と核酸抽出要素 20の筒状部 24との位置関係が規制され、蓋 31にお ける一対の係止爪 36Aは、筒状部 24の係止ヘッド 24Bに対応する位置に適切に導 かれる。これにより、一対の係止爪 36Aは、上方力 係止ヘッド 24Bに押し付けられ る。その結果、一対の係止爪 36Aは、それらのフック部 36Aaが互いに離間するよう に変位させられる。さらに一対の係止爪 36Aを下方に移動させた場合には、蓋 31の ピン 36Bが筒状部 24の凹部 24Aにさらに深く挿入されるとともに、フック部 36Aaが 係止ヘッド 24Bの下方に位置するときにフック部 36Aaが互いに近づく。その結果、 一対の係止爪 36Aは、係止ヘッド 24Bに係止させられ、蓋 31に対して核酸抽出要 素 20が保持される。この状態は、蓋 31のピン 36Bが筒状部 24の凹部 24Aに挿入さ れて 、ることにより強固に維持され、蓋 31に対する核酸抽出要素 20のガタツキを抑 ff¾することができる。
[0109] 図 13に示したように、蓋 31の再装着は、蓋 31を保持した回転部材 60を、反応槽 3 4に蓋 31を位置合わせした状態にお 、て回転させること〖こより行われる。すなわち、 位置合わせ状態において蓋 31に対して回転力を付与することにより、蓋 31は、反応 槽 34の筒状部 35に螺合される。蓋 31が筒状部 35に螺合された場合には、外套部 材 61の爪 64が蓋 31のフランジ部 39に係止した状態が解除される。これにより、回転 部材 60および外套部材 61は、蓋 31とは独立して移動することができる。一方、蓋 31 には核酸抽出要素 20が保持されているために、反応槽 34には核酸抽出要素 20が 収容される。上述のように、核酸抽出要素 20には、保持部 26の若干上方位置に Oリ ング 22Aが配置されているため、核酸抽出要素 20の固体マトリックス 23は、密閉空 間において、反応槽 34の底から一定距離離間した位置に固定される。反応検出部 3 7には、先に混合試薬が収容されているので、反応検出部 37においては、固体マトリ ックス 23の全体が浸漬される。これにより、固体マトリックス 23から核酸が溶出する一 方で、溶出した核酸が試薬類と反応して増幅する。
[0110] このように、核酸分析装置 1では、蓋 31の着脱に必要な蓋着脱機構 6を利用して、 収容槽 27の核酸抽出要素 20を反応槽 34に移送して収容させることができる。すな わち、核酸分析装置 1では、核酸抽出要素 20を移送させるために個別の機構を設け る必要はない。そのため、核酸の精製および核酸の増幅を 1つの装置において行う に当たって、装置が複雑ィ匕することを回避して装置の大型化を抑制し、また制御す べき動作機構の数の増加を抑制することができるようになるため、この点においても 有利である。
[0111] 図 15に示したように、核酸の測定は、反応槽 34の上方を遮光部材 9によって覆つ た状態とした後にお 、て、測光機構 8によって行われる。
[0112] 測光機構 8においては、反応槽 34における反応検出部 37に対して発光部 80によ つて励起光を照射する一方で、そのときの反応検出部 37において生じる蛍光を、受 光部 81において受光する。上述したように、固体マトリックス 23が測光機構 8におけ る測光を阻害しない位置にセットされるため、核酸分析装置 1においては核酸の測定 を精度良く行うことが可能となる。
[0113] 以上に説明したように、核酸分析装置 1においては、上述した構成の核酸精製用力 ートリッジ 2および核酸増幅用カートリッジ 3のセットを装着するだけで自動的に核酸 の分析を行うことができる。核酸精製用カートリッジ 2および核酸増幅用カートリッジ 3 においても、自動的に核酸の分析を行えるように様々な工夫がなされている。このた め、核酸分析装置 1、核酸精製用カートリッジ 2および核酸増幅用カートリッジ 3を用 いた場合には、核酸の抽出操作および核酸の増幅操作において、カートリッジ 2, 3 を核酸分析装置 1にセットする以外に、ユーザの手操作に依存する部分がなくなる。 そのため、核酸分析におけるユーザの負担が著しく軽減されるとともに、ユーザの技 量差によって核酸の回収率がばらつくなどして測定再現性が悪ィ匕することもない。 [0114] 本発明は、上述した実施の形態において説明した例には限定されない。たとえば 核酸抽出要素の固体マトリックスは、必ずしも保持部材の垂直軸に対して水平または 略水平な状態となるように保持させる必要はなぐ固体マトリックスは必ずしも円盤状 の形態に形成する必要もなぐまた保持部材に固体マトリックスを保持させる構成も固 体マトリックスを突き刺す構成には限定されない。
[0115] さらに、蓋 31に核酸抽出要素 20を保持させる構成としては、たとえば核酸抽出要 素に爪を設ける一方で、蓋 31に爪を係止するための係止部を設けたもの、あるいは 嵌合力のみによるものであってもよい。また、蓋 31に核酸抽出要素 20を保持させると きにガイド機構 (本実施形態における蓋 31のピン 36Bおよび核酸抽出要素 20の凹 部 24A)は、省略してもよぐまた蓋 31に凹部を設ける一方で核酸抽出要素 30にピ ンを設けること〖こより達成することちできる。
[0116] 次に、本発明の第 2の実施の形態について、図 16ないし図 33を参照して説明する 。ただし、以下において参照する図面には、先に説明した本発明の第 1の実施の形 態と同様な要素につ 、て同一の符号を付してあり、それらにつ 、ての重複説明は省 略するものとする。
[0117] 図 16ないし図 18に示した核酸分析装置 1' は、先に説明した核酸分析装置 1 (図 1など参照)と同様に、複数の核酸精製用カートリッジ 2' および核酸増幅用カートリ ッジ を同一数だけ装着して使用するものであり、図 17に示したようにピペット装置 4' および核酸精製用動作機構 を備えている。
[0118] 図 19に示したように、核酸精製用カートリッジ ^ は、核酸分析装置 における核 酸の自動精製を可能ならしめるためのものであり、核酸抽出要素 2( およびカートリ ッジ本体 21/ を有している。
[0119] 核酸抽出要素 2( は、試料中の核酸を担持させるためのものであり、図 20A〜図 20Cに良く表れているように、保持部材 22' および固体マトリックス 23' を有してい る。保持部材 22' は、筒状部 24' 、フランジ部 25' 、および挟持部 2 を有するも のであり、たとえば全体が榭脂成型によって形成されている。
[0120] 筒状部 24' は、核酸抽出要素 20' を移動させるときに利用されるものであり(図 1 8および図 22参照)、凹部 24A' 、欠落部 24B' , 24C' 、および複数のリブ 24D ' を有している。凹部 24A' は、後述するピペット装置^ におけるノズル 4( の先 端部 42^ (図 26Aおよび図 26B参照)あるいは核酸精製用機構 の挿入ピン 50 ' (図 18参照)を嵌合させるためのものであり、円柱状に形成されている。欠落部 24 B' , 24 は、筒状部 24^ に弾性を付与するためのものであり、一対の V字状切 欠 24B' および矩形貫通孔 24 を含んでいる。すなわち、欠落部 24B' , 24C' は、凹部 24A' にノズル 4( の先端部 4^ あるいは挿入ピン 50' を嵌合させたと きに(図 18および図 22参照)、それらに弾性力を作用させて嵌合の確実ィ匕を図る役 割を有している。複数のリブ 24び は、凹部 24A' にノズル 4( の先端部 42^ ある いは挿入ピン 50' を嵌合させたときに、それらに摩擦力を作用させて嵌合の確実ィ匕 を図るためのものであり、筒状部 24' の内面において上下方向に延びるように形成 されている。
[0121] フランジ部 25' は、半径方向の外方側に向けて突出した環状に形成されている。
このフランジ部 25' は、核酸抽出要素 20' を目的部位 (核酸精製用カートリッジ ^ の収容槽 27および核酸増幅用カートリッジ 3' の反応槽 34' )に保持させておくとき に、目的部位に設けられた段部 27A, 36' に係止するためのものである(図 21およ び図 33参照)。
[0122] 挟持部 2 は、固体マトリックス 23' の端部を挟持して、保持部材 22^ に固体マ トリックス 23' を一体ィ匕させるためのものであり、一対の爪 26a' により構成されてい る。一対の爪 26a' は、核酸の回収効率を高めるために、固体マトリックス 23' との 接触面積が極力小さくなるように形成するのが好ましい。これは、固体マトリックス 23 ' には、後述するように核酸が付着させられた後にその核酸が溶離 ·回収されるので あるが、一対の爪 26a' が固体マトリックス 23' と接触する部分に存在する核酸の溶 離は容易ではな 、からである。
[0123] 固体マトリックス 23^ は、試料中の核酸を担持させるためのものであり、たとえば濾 紙に対して核酸抽出用の試薬類を担持させたものとして構成されている。この固体マ トリックス 23' は、短冊状に形成されており、挟持部 2 に端部が挟持されることに よって保持部材 2^ に吊持されている。
[0124] 図 19および図 21に示したように、カートリッジ本体 21' は、先に説明した核酸精製 用カートリッジ 2のカートリッジ本体 21 (図 5および図 6参照)と同様に、収容槽 27、 3 つの洗浄槽 28〜28、および試料保持槽 29を有するものである力 余剰液除去槽 2
1 3
1A (図 5および図 6参照)は省略されている。もちろん、カートリッジ本体 21/ におい ても、余剰液除去槽を設けてもよい。
[0125] 図 23、図 24Aおよび図 24Bに示したように、核酸増幅用カートリッジ は、核酸 分析装置 における核酸の自動増幅および測定を可能ならしめるためのものであ り、カートリッジ本体 30' および蓋 31/ を有している。
[0126] カートリッジ本体 30' は、 5つの試薬類保持槽 32' 、混合槽 33' 、および反応槽
34' を有するものであり、これらの槽 32' , 33' , 34' は、たとえば榭脂成型により 一体成型されている。
[0127] 各試薬類保持槽 32' は、核酸の増幅および測定に必要な試薬類を水溶液あるい は懸濁液の状態で保持するためのものである。各試薬類保持槽 32^ は、横断面が 略矩形となっている力 正確には、 4つの側面 32A' の中央部が内方に向けて突出 した形態となっている。すなわち、試薬類保持槽 32^ の四隅部は、 90度以下の鋭角 となっている。これにより、試薬類保持槽 32' の側面 32A' に試薬類が付着したま まの状態となることを抑制でき、試薬類保持槽 32' の底部に試薬類を保持させてお くことができる。その結果、試薬類保持槽 32' に保持された試薬類を有効に利用で きるようになり、たとえ高価な試薬を使用する場合であっても、試薬類保持槽 3^ に 保持させておくべき試薬の量を少なくして製造コストを低減することが可能となる。こ のような効果は、試薬類保持槽 3^ の側面 32A' に溝やリブを設けることによつても 得ることができる。
[0128] ここで、各試薬類保持槽 32' に保持される試薬類の種類は、採用する増幅方法お よび測定方法に応じて選択される。増幅方法としては、たとえば PCR法、 ICAN法、 LAMP法あるいは NASBA法を採用することができる。
[0129] 混合槽 3 は、反応槽 34' に供給する前に、試薬類保持槽 3^ に保持された 2 以上の試薬類を混合して混合試薬を調整する際に利用されるものである。この混合 槽 33' もまた、先に説明した試薬類保持槽 32' と同様に、四隅部の角度が 90度以 下の鋭角とされている。もちろん、混合槽 33' の側面 33A' に溝やリブを設けてもよ い。
[0130] 反応槽 34^ は、混合試薬および核酸抽出要素 20' を収容するためのものである とともに、核酸抽出要素 2( に担持させた核酸と混合槽 3 において調整された 混合試薬とを反応させる場を提供するものである(図 33参照)。この反応槽 34' は、 筒状部 35と反応検出部 37を有しており、これらの間に段部 3 が設けられている。 この段部 36^ は、核酸抽出要素 20' のフランジ部 25^ を係止させるための部分で あり(図 33参照)、反応検出部 37の径を筒状部 35の径よりも小さく設定することにより 設けられている。
[0131] 蓋 31' は、反応検出部 37の内部を密閉とする力否かを選択するためのものであり 、反応槽 34' (筒状部 35)に対して着脱自在とされている。より具体的には、蓋 31' は、回転力を作用させることにより、筒状部 35に装着される状態と筒状部 35 (反応槽 34)力 完全に分離した状態とを選択できるように構成されている。蓋 31' は、先に 説明した核酸増幅用カートリッジ 3の蓋 31 (図 9参照)と同様に、円筒状の本体部 38 およびフランジ部 39を有している。ただし、核酸分析装置!/ では、ピペット装置^ のノズル 4( を利用して核酸抽出要素 20' を移動させるように構成されているため 、蓋 31/ においては、先に説明した核酸増幅用カートリッジ 3の蓋 31に設けられて いた保持部 36 (図 7Bおよび図 9参照)は省略されている。
[0132] 図 16および図 17に示したピペット装置^ は、核酸増幅用カートリッジ での混 合液調整、混合液の反応槽 34' への移動を行うためのものである。このピペット装置 4, ίま、図 25な!ヽし図 28【こ示したよう【こ、ノズノレ 40, および取り外し咅材 41, を有し ている。
[0133] ノズル 40' は、液体を吸引'吐出可能であるとともに、上下方向および水平に移動 可能とされており、核酸増幅用カートリッジ における試薬類保持槽 3^ 、混合槽 33' 、反応槽 34' 、および核酸精製用カートリッジ ^ の収容槽 27に移動すること ができるようになされている(図 16および図 17参照)。ノズル 40' は、混合試料の調 整および反応槽 34' (反応検出部 37)への混合試料の分注を行う場合には、図 25 Αおよび図 25Βに示したように先端部 42' にチップ 43力 S装着される。ノズル 40' の 先端部 42^ におけるチップ 43を装着する部分には、 Oリング 42 が嵌め込まれて おり、先端部 4^ にチップ 43を装着したときに、先端部 4^ とチップ 43との接触部 分の密着性が高められるようになされて 、る。
[0134] ピペット装置^ はさらに、図 22に示したように、核酸精製用カートリッジ ^ の収容 槽 27から核酸抽出要素 20' を取り出し、この核酸抽出要素 20' を、図 31に示した ように、核酸増幅用カートリッジ の反応槽 34^ に移動させる役割を有している。こ のような動作を行う場合には、図 26Aおよび図 26B〖こ示したよう〖こ、ノズル 40' の先 端部 42' に核酸抽出要素 20' が装着される。
[0135] 図 27および図 28に示したように、取り外し部材 41/ は、ノズル 40' の先端部 42' に装着されたチップ 43あるいは核酸抽出要素 20' を取り外すためのものである。こ の取り外し部材 41/ は、ノズル 4( とは独立して上下方向に移動可能なように、ノズ ル 40' を外套している。すなわち、取り外し部材 41/ は、ノズル 40' の先端部 42' カゝらチップ 43あるいは核酸抽出要素 20' を取り外す動作を行うとき以外は、チップ 4 3の端面 43aあるいは核酸抽出要素 20' のフランジ部 2 よりも上方 (待機位置)に 位置する一方で、それらを取り外す動作を行うときには、ノズル 40' に対して相対的 に下方に移動させられる。取り外し部材 41' を待機位置から下方に一定距離以上 移動させた場合には、取り外し部材 41/ の端面 41A' がチップ 43の端面 43aある いは核酸抽出要素 2( のフランジ部 25' に干渉してチップ 43あるいは核酸抽出要 素 20' に下方に向けた力が作用させられる。これにより、ノズル 40' の先端部 42^ 力もチップ 43あるいは核酸抽出要素 20' が取り外される。
[0136] 図 16ないし図 18に示したように、核酸精製用動作機構 は、核酸抽出要素 2( を利用して試料中の核酸を抽出する際に、核酸抽出要素 20' の動作を制御するた めのものである。この核酸精製用動作機構 は、先に説明した核酸分析装置 1の 核酸精製用動作機構 5 (図 2〜図 4参照)と同様に、複数の挿入ピン 50' 、筒状体 5 1および支持フレーム 52を有している。ただし、各挿入ピン 5( は、核酸抽出要素 2 0' の筒状部 24^ に適切に嵌合できるように、ノズル 4( の先端部 42^ と類似した 形状とされている。
[0137] 次に、核酸分析装置 における動作を説明する。
[0138] 核酸分析装置 では、図 16ないし図 18に示したように、核酸分析装置 に核 酸精製用カートリッジ ^ および核酸増幅用カートリッジ をセットした上で、カートリ ッジ 2' , 3' の個数および種類 (精製方法、増幅方法、測定方法)に応じた設定を 行うことにより自動的に核酸の精製、増幅および測定が行われる。
[0139] 核酸の精製は、図 18に示したように、核酸精製用カートリッジ ^ において、核酸精 製用動作機構 によって核酸抽出要素 20' を移動させること〖こより行われる。より 具体的には、まず、核酸精製用動作機構 5' の複数の挿入ピン 50' を、対応する核 酸抽出要素 20' の筒状部 24' に嵌合させ、複数の核酸抽出要素 20' を一体化的 に移動可能な状態とする。この状態において、核酸精製用動作機構 5' によって複 数の核酸抽出要素 20' の固体マトリックス 23' を試料に浸漬させて各固体マトリック ス 2 に試料中の核酸を付着させる。
[0140] 最後に、 3つの洗浄槽 28〜28 (図 19参照)の洗浄液に、固体マトリックス 23' を
1 3
順次浸漬する。より具体的には、固体マトリックス 2 の洗浄は、核酸精製用動作機 構 5' によって、各洗浄槽 28〜28 (図 19参照)において固体マトリックス 23' を繰
1 3
り返し上下動させることにより行われる。このとき、核酸精製用動作機構 は、固体 マトリックス 23' が洗浄液に完全に浸漬する状態と、固体マトリックス 23' が洗浄液 の液面よりも上方に位置する状態とが繰り返えされるように制御される。このような洗 浄方法では、固体マトリックス 2 からは、夾雑物を効率良く除去することができるた め、後において行われる核酸の増幅工程において夾雑物が核酸の増幅を阻害する ことを効果的に抑制し、核酸の分析を精度良く行えるようになる。
[0141] なお、洗浄の終了した固体マトリクス 23' は、核酸精製用動作機構 に保持され た状態で送風乾燥させてもよい。固体マトリックス 2 の洗浄が終了(場合によって 送風乾燥が終了)した場合には、挿入ピン 50' から核酸抽出要素 2( を取り外し、 核酸抽出要素 20' を核酸精製用カートリッジ 2' の収容槽 27に再収容させる(図 19 および図 21参照)。
[0142] 核酸精製用カートリッジ ^ においては、目的核酸を固体 (核酸抽出要素 20' )に 担持させることによって、目的核酸を核酸分析装置 において容易に移動させるこ とができる。この点において、核酸精製用カートリッジ ^ は、核酸分析を自動で行う ことに寄与しているといえる。 [0143] 核酸の増幅は、核酸増幅用カートリッジ において混合試薬を調製し、それを核 酸増幅用カートリッジ の反応槽 34^ に分注した後、核酸を担持させた固体マトリ ックス 23^ を、保持部材 22^ とともに反応槽 34^ に移送させることにより行われる。 なお、図 33に示したように、反応槽 34' において混合試薬と固体マトリックス 23' が 共存させられた場合には、採用する増幅方法の種類に応じて、ヒートブロック 70の温 度を制御して反応槽 34' の温調が行われる。
[0144] 混合試薬の調製および反応槽 34' に対する混合試薬の分注は、先に説明した核 酸分析装置 1 (図 1など参照)と同様にピペット装置 4' の動作を制御することにより行 われる。なお、反応槽 34^ に混合試薬を分注する場合には、図 31に示したように、 蓋着脱機構 6によって反応槽 34' から蓋 3 を取り外しておく必要がある力 その ような蓋 31' の取り外しは、図 29および図 30に示したように、蓋着脱機構 6の回転 部材 60を蓋 31' の凹部 38B' に挿入した後に、回転部材 60を回転させつつ上動 させることにより行われる。回転部材 60を凹部 38B' に挿入した場合には、回転部 材 60の爪 62が蓋 31/ のフランジ部 39' 〖こ係止されるので反応槽 34' 力 取り外さ れた蓋 31/ は、回転部材 60とともに移動させることができる。このように、核酸分析 装置!/ および核酸増幅用カートリッジ においては、核酸の増幅ひいては核酸分 祈の全自動化を達成するために、核酸増幅用カートリッジ 3' から蓋 31' を容易か つ確実に取り外せるように工夫がなされて!/ヽる。
[0145] 一方、固体マトリックス 23^ の反応槽 34^ への移送は、核酸精製用カートリッジ 2 ' の収容槽 27からの核酸抽出要素 20' の取り出し(図 22参照)、核酸増幅用カート リッジ の反応層 34' への核酸抽出要素 2( の移動、およびノズル 4( 力もの 核酸抽出要素 の取り外し(図 28および図 31参照)といった一連の操作によって 行われる。
[0146] 核酸抽出要素 2( の取り出しは、図 22に示したように、核酸精製用カートリッジ 2 ' における収容槽 27の直上〖こノズル 40' を位置させた後にノズル 4〇z を下動させ てノズル 4( の先端部 4^ を核酸抽出要素 2( の筒状部 24' に嵌合させた後に 、ノズル 40' を上動させることにより行われる。ここで、筒状部 24^ には、 V字状切欠 24B' および矩形貫通孔 24 といった欠落部 24B' , 24 が形成されている( 図 20A〜図 20C参照)。そのため、筒状部 24' にノズル 4( の先端部 42^ を嵌合 させた場合には、先端部 4^ に対して適切な弾性力を付与することができる。これに より、核酸抽出要素 20' は、筒状部 24' において、ノズル 40' の先端部 42' に対 して適切に保持される。
[0147] 核酸抽出要素 20' の移動は、ノズル 40' の先端部 42' に核酸抽出要素 20' を 保持させた状態において、ノズル 40' を移動させることにより行われる。
[0148] 核酸抽出要素 2( の取り外しは、図 28および図 31に示したように、核酸抽出要素 20' とともにノズル 4( の先端部 42^ を反応槽 34^ の内部に位置させ、取り外し 部材 41/ をノズル 40' に対して相対的に下方に移動させることにより行われる。す なわち、取り外し部材 4 を下方に移動させた場合には、核酸抽出要素 2( のフラ ンジ部 25' に取り外し部材 41/ が干渉し、フランジ部 25^ ひいては核酸抽出要素 20' に対して下方に向けた力が作用してノズル 4( の先端部 42^ 力も核酸抽出 要素 20' が取り外される。
[0149] このように、核酸分析装置!/ では、試料の調整に必要なノズル 4( および取り外 し部材 4 を利用して核酸抽出要素 20' の移動を行えるようになされている。その ため、核酸の精製および核酸の増幅を 1つの装置において行うに当たって、本来必 要な構成 (ピペット装置 4)を利用して ヽるために、装置が複雑化することが抑制され る。また、制御すべき動作機構の数の増加を抑制することができるようになるため、こ の点においても装置構成の複雑ィ匕および大型化を抑制する上で有利である。
[0150] 図 31に示したように、ノズル 4( の先端部 42^ 力も取り外された核酸抽出要素 20 ' は、保持部材 22^ のフランジ部 25' において、反応槽 34^ の段部 36^ に係止 される。このとき、固体マトリックス 2 は、その下端が反応検出部 37の底部から一 定距離離間した状態において反応検出部 37に収容される。反応検出部 37には、先 に混合試薬が収容されているので、反応検出部 37においては、固体マトリックス 23 ' の全体が浸漬される。これにより、固体マトリックス 2 から核酸が溶出する一方で 、溶出した核酸が試薬類と反応して増幅する。
[0151] 上述したように、固体マトリックス 23' の下端は、反応検出部 37の底部力も離間し た状態となっている。より具体的には、固体マトリックス 23' の下端位置は、測光機構 8により反応検出部 37への励起光の照射および蛍光の測定を阻害しない位置とされ る(図 33参照)。これにより、核酸を付着させるのに固体担体を使用する場合であつ ても、その固体担体が核酸の測定において、それを阻害することはない。
[0152] 核酸の測定は、図 32および図 33に示したように、反応槽 34' の蓋 31/ を再装着 した状態とする一方で、反応槽 34' の上方を遮光部材 9によって覆った状態とした 後において、測光機構 8によって行われる。測光機構 8により核酸の測定は、先に説 明した核酸分析装置 1 (図 1など参照)と同様にして行われる。
[0153] 以上に説明したように、核酸分析装置 1' においても、先に説明した核酸分析装置 1 (図 1など参照)と同様に、上述した構成の核酸精製用カートリッジ ^ および核酸 増幅用カートリッジ をセットするだけで自動的に核酸の分析を行うことができ、核 酸の抽出操作および核酸の増幅操作において、カートリッジ 2' , 3' を核酸分析装 置 1にセットする以外に、ユーザの手操作に依存する部分がなくなる。そのため、核 酸分析におけるユーザの負担が著しく軽減されるとともに、ユーザの技量差によって 核酸の回収率がばらつくなどして測定再現性が悪ィ匕することもない。
[0154] [実施例]
以下においては、上述した本発明の第 1の実施の形態に係る核酸精製用カートリツ ジ、核酸増幅用カートリッジおよび核酸分析装置を利用して、目的核酸としてのヒトゲ ノム DNAを、適切に精製.増幅させることができるか否力 SNP (Single Nucleotide Pol ymorphism)タイピングによりを検討した。
実施例 1
[0155] (核酸精製用カートリッジの形成)
核酸精製用カートリッジは、カートリッジ本体(図中の符号 21参照)および核酸抽出 要素(図中の符号 20参照)を次に説明する方法により形成した後に、カートリッジ本 体の収容槽 (図中の符号 27参照)に核酸抽出要素を収容させ、かつ余剰液除去槽( 図中の符号 21A参照)に吸水性部材(図中の符号 21Ad, 21 Ae参照)としての発泡 榭脂( (株)イノアツクコーポレイシヨン製、発泡ウレタン SAQ)を固定することにより形 成した。吸水性部材 21Adの寸法は 5mmX 8mm X 17mmとし、吸水性部材 21Ae の寸法は 5mm X 1 lmm X 14mmとした。 [0156] カートリッジ本体は、 PETを用いた榭脂成型により図 5および図 6に示す形態に形 成した。
[0157] 一方、核酸抽出要素は、保持部材(図中の符号 22参照)に固体マトリックス(図中 の符号 23参照)を保持させることにより形成した。固体マトリックスは、 FTA Classic Ca rd (Whatman社、 Cat. No. WB120205)を、パンチを用いて φ 2. 5mmの円盤状に打 ち抜くことにより形成した。ここで、 FTA Classic Cardは、セルロースを主成分とする核 酸収集用濾紙である。一方。保持部材は、 PETを用いた榭脂成型により図 7Aおよ び図 7Bに示す形態に形成した。ただし、榭脂成型直後の保持部材においては、係 止片(図中の符号 26C参照)は形成されておらず、係止片は、固体マトリックスの中 心に穴を開けて保持部材のピン状部(図中の符号 26B参照)に差し込んだ後に、ピ ン状部の先端部を熱処理することにより形成した。係止片は、上述のようにピン状部 力もの固体マトリックスの抜け落ちを防止するためのものである。
[0158] (核酸増幅用カートリッジの形成)
核酸精製用カートリッジは、カートリッジ本体(図中の符号 30参照)および蓋(図中 の符号 31参照)を、 PETを用いた榭脂形成により図 8および図 9に示した形態に形 成した後に、カートリッジ本体の反応槽(図中の符号 34参照)に蓋を螺号することによ り形成した。
[0159] (核酸の精製)
核酸の精製は、核酸精製用カートリッジ本体の試料保持槽 (図中の符号 29参照) に試料(図中の符号 29L参照)を、 3つの洗浄槽(図中の符号 28〜28参照)に洗浄
1 3
液(図中の符号 28L〜28L参照)をそれぞれ分注した上で、核酸分析装置(図中の
1 3
符号 1参照)に核酸精製用カートリッジをセットし、核酸分析装置において自動的に 行った。
[0160] 試料としては、全血 (抗凝固剤:へパリン Na含有)を用い、その分注量は 120 と した。洗浄液 28Lとしては下記表 1に示す洗浄液 1 (800 L)を用い、洗浄液 28Lと
1 2 しては下記表 1に示す洗浄液 1 (600 L)を用い、洗浄液 28Lとしては下記表 1に示
3
す洗浄液 II (600 μ L)を用いた。
[0161] [表 1] 組成 PH 洗浄液 1 10mM Tr is-HC I 1mM EDTA 8. 0
洗浄液 1 1 10mM Tr i s-HC I 0. 1m EDTA 8. 0
[0162] 一方、核酸分析装置においては、核酸抽出要素(固体マトリックス)が次に説明する 動作を行うように核酸精製用動作機構 (図中の符号 5参照)を駆動させた。
[0163] まず、核酸動作機構における挿入ピン (図中の符号 50参照)を保持部材の筒状部
(図中の符号 24参照)に嵌合させた状態とし、固体マトリックスを試料保持槽中の全 血に浸漬させた。次いで、 3つの洗浄槽 28〜28を利用して固体マトリックスを洗浄
1 3
した。固体マトリックスの洗浄は、使用する洗浄槽 28〜28を洗浄槽 28→洗浄槽 28
1 3 1
→洗浄槽 28の順で順次変えつつ行った。洗浄槽 28を利用した固体マトリックスの
2 3 1
洗浄は、固体マトリックス 23の全体が洗浄液 28Lの液面よりも上方に位置する状態
1
と 28Lに完全に浸漬する位置との間の 20Hzで 1分間上下動させることにより行った
1
。一方、洗浄槽 28 , 28を利用した固体マトリックスの洗浄においては、上下動させる
2 3
時間を 2分間とした以外は、洗浄槽 28を利用する場合と同様にして行った。
1
[0164] 次いで、後に行う核酸増幅反応を阻害する可能性のある余剰な成分の除去を行つ た。余剰な成分の除去は、固体マトリックスおよび保持部材の先端部分 (係止片、ピ ン状部、テーパ部(図中の符号 26参照)を吸水性部材(図中の符号 21Ad, 21Ae参 照)に押し付けることにより行った。
[0165] (核酸の増幅確認)
核酸の増幅は、下記表 2の試薬混合液 A, Bを用いた PCR法により行い、核酸の増 幅の程度は、薬剤代謝酵素をコードする塩基配列である CYP2C19 * 2 * 3の SNP (Single Nucleotide Polymorphism)タイピングにより確認した。
[0166] [表 2] 試薬混合液 A 40 / L
滅菌蒸留水 35.6i/L
10 Gene Taq Uni ersal Buffer (Mg free) (二ツボンジーン社製) 4juL
5 un i ts/μ I Gene Taq FP 0.4/iL
試薬混合液 B 40^ L 滅菌蒸留水 5.6juL
10 x Gene Taq Universal Buffer (Mg free) (二ツボンジーン社製)
40% Glycerol液 20 //L
100m MgCI2液(二ッポンジーン製) \.2u
2.5mM dNTP Mixture (二ツボンジーン社製) 6.4/ L
100/i CYP2C19*2 F- Primer (配列番号 1 ) 0.4 iL
100 /M CYP2C19*2 R- Primer (配列番号 2) 0.2//L
100 M CYP2C19*3 F- Primer (配列番号 3) 0.2 iL
100 /M CYP2C19*3 R-Prime (配列番号 4) 0.4juL
5 /M CYP2C19*2 probe (配列番号 5) 0.8^L
5juM CYP2C19*3 probe (配列番号 6) 0.8juL 配列番号 1: gttttctcttagatatgcaataattttccca
配列番号 2: cgagggttgttgatgtccatc
酉己列番号 3: gaaaaattgaatgaaaacatcaggattgta
酉己列番号 4 : gtacttcagggcttggtcaata
配列番号 5: ttatgggttcccgggaaataatc- (BOD I PY-FL)
配列番号 6: gcaccccctggatcc- (TAMRA)
[0167] より具体的には、核酸の増幅確認は、試薬混合液 Aまたは試薬混合液 Bを核酸増 幅用カートリッジ本体の試薬類保持槽(図中の符号 32 , 32参照)に個別に分注した
1 2
上で、核酸分析装置(図中の符号 1参照)に核酸増幅用カートリッジをセットし、核酸 分析装置において自動的に行った。
[0168] 核酸分析装置においては、核酸抽出要素(固体マトリックス)を次に説明する動作 を行うようにピペット装置(図中の符号 4)、蓋着脱機構 (図中の符号 6参照)および温 調機構 (図中の符号 7)を駆動させた。
[0169] まず、ピペット装置のノズル(図中の符号 40)にチップ(図中の符号 43)を装着させ た上で、試薬類保持槽 33Aから試薬混合液 Aを 30 L、試薬類保持槽 33Bから試 薬混合液 Bを 30 L採取して混合槽(図中の符号 33参照)分注した。次いで、ノズル の吸排活動により試薬混合液 A, Bの攪拌'混合を行って反応液を調製した後、ノズ ルによって反応液を 50 L採取して、それを反応槽(図中の符号 34参照)に分注し た。
[0170] その一方で、蓋着脱機構の回転部材(図中の符号 60参照)により核酸増幅用カー トリッジから蓋(図中の 31参照)を取り外した上で、蓋を移動させて蓋の係止爪(図中 の符号 36A参照)を核酸抽出要素の係止ヘッド(図中の符号 24B参照)に係合させ 、それらを一体化させた。
[0171] 次いで、蓋着脱機構により蓋とともに核酸抽出要素 20を核酸増幅カートリッジの反 応槽(図中の符号 34参照)に収容させつつ、回転部材が回転させることで反応槽を 蓋により閉鎖した。これにより、固体マトリックスは、反応液に完全に浸漬された状態 で反応槽 (図中 34)に密閉保持された。
[0172] 次いで、温調機構のヒートブロック(図中の符号 70参照)を駆動させて、反応槽にお ける反応液の温度を変化させて目的核酸の増幅を行った。温度変化は、 95°Cで 12 0秒→ (95°Cで 4秒 + 54°Cで 60秒)を 50サイクル→95°Cで 60秒→45°Cで 90秒とし た。
[0173] SNPタイピングにおいては、 Tm解析を採用した。 Tm解析に当たっては、核酸の 増幅させた反応液の温度を 45°Cから 95まで 1°CZ3秒の割合で上昇させて 、き、そ のときの蛍光強度をリアルタイムで測定した。測定波長は515〜55511111 ( * 2)、585 〜750nm ( * 3)の 2種類とし、それぞれの測定波長(( * 2) , ( * 3) )につ!/、て SNP タイピングを行った。それぞれの波長にお 、て蛍光強度を測定した結果につ!、ては 、横軸を温度、縦軸を蛍光強度の微分値 (変化率)として図 34に示した。
[0174] 図 34から分力るように、測定波長 * 2および * 3のいずれの場合であっても、測定 される蛍光強度の微分値 (変化率)の変化曲線には、 2つのピークが現れている。こ れらのピークは、 SNPタイプ野生型と変異型に対応するものであり、それらを区別で きる程度に目的核酸が十分に増幅されていることが確認できる。
実施例 2
[0175] 本実施例においては、実施例 1と同様にして核酸の精製を行った後、増幅法として ICNA法を採用して SNPタイピングを行った。増幅試薬として TaKaRa社製 Cycleav e ICAN human ALDH2 Typing Kit (Cat. No. CY101)を使用し、カートリッジ本体の試 薬類保持槽(図中の符号 32, 32参照)に保持させるべき試薬混合液 A, Bの組成
1 2
は表 3に示した通りとした。それらの試薬混合液 A, Bの分注量、混合条件および反 応液の分注量は実施例 1の場合と同様とした。
[0176] [表 3]
Figure imgf000040_0001
[0177] (反応条件)
反応は、反応液に固体マトリックスを浸漬させた状態において、 70°Cで 300秒イン キュペートした後に 60°Cで一時間行った。この一時間の反応は、蛍光強度の測定を 行わない第 1ステップ 30秒および蛍光強度の測定を行う第 2ステップ 30秒を 1サイク ルとする 60サイクル力もなり、蛍光強度は各サイクルの第 2ステップにおいてリアルタ ィムで測定した。測定波長は 515〜555nm (mt)、 585〜750nm (wt)の 2種類とし 、 SNPタイプ変異型および野生型のそれぞれについて SNPタイピングを行った。そ れぞれの波長において蛍光強度を測定した結果については、横軸をサイクル数、縦 軸を蛍光強度として図 35に示した。
[0178] 図 35から分力るように、一定のサイクル数が経過した後においては SNPタイプ変異 型に対応する蛍光強度が増加して!/、る一方で、 SNPタイプ野生型に対応する蛍光 強度にっ 、てはサイクル数を增カロさせても殆ど蛍光強度が増加して 、な 、。したがつ て、図 35に示した結果からは、 SNPタイプ野生型と変異型を区別できる程度に目的 核酸 (SNPタイプ野生型)が選択的かつ十分に増幅されてレ、ることが確認できる。 実施例 3 [0179] 本実施例においては、実施例 1と同様にして核酸の精製を行った後、増幅法として LAMP法を採用して SNPタイピングを行った。増幅試薬としては栄研ィ匕学社製 Loo pamp P450タイピング試薬キット(CYP2C9*3)を使用し、カートリッジ本体の試薬類保 持槽(図中の符号 33A, 33B参照)に保持させるべき試薬混合液 A, Bの組成は表 3 に示した通りとした。それらの試薬混合液 A, Bの分注量、混合条件および反応液の 分注量は実施例 1の場合と同様とした。
[0180] [表 4]
Figure imgf000041_0001
[0181] (反応条件)
反応は、反応液に固体マトリックスを浸漬させた状態において、 95°Cで 5分処理し た後に 60°Cで一時間反応させた。この一時間の反応は、蛍光強度の測定を行わな い第 1ステップ 30秒および蛍光強度の測定を行う第 2ステップ 30秒を 1サイクルとす る 60サイクル力もなり、蛍光強度は各サイクルの第 2ステップにおいて、測定波長を 5 15〜555nmとしてリアルタイムで測定した。各サイクルの第 2ステップにおいて蛍光 強度を測定した結果については、横軸をサイクル数、縦軸を蛍光強度として図 36に 示した。
[0182] 図 36から分力るように、一定のサイクル数が経過した後においては SNPタイプ変異 型に対応する蛍光強度(図中の Aアレル)が増加して!/、る一方で、 SNPタイプ野生型 に対応する蛍光強度(図中の Gアレル)につ 、てはサイクル数を増加させても殆ど蛍 光強度が増加していない。したがって、図 36に示した結果からは、 SNPタイプ野生 型と変異型を区別できる程度に目的核酸 (SNPタイプ野生型)が選択的かつ十分に 増幅されて ヽることが確認できる。
[0183] 実施例 1〜3の結果力も分力るように、本発明の第 1の実施の形態において説明し た核酸抽出要素を用いて核酸の精製を行った場合に、 PCR法に限定されず、増幅 方法として ICAN法あるいは LAMP法を採用した場合であっても、適切に目的核酸 を増幅させることができる。すなわち、本発明の第 1の実施の形態において説明した 核酸精製用カートリッジ、核酸抽出用カートリッジおよび核酸分析装置を用いた場合 には、核酸の分析を自動で行えることが確認された。したがって、本発明では、核酸 の精製、核酸の増幅および核酸の測定と 、つた核酸分析における一連の工程のお けるユーザの負担を軽減するとともに分析効率を改善することができ、さらに装置の 大型化および製造コストの上昇を抑制することができる。
[0184] なお、実施例 1〜3においては、本発明の第 1の実施の形態において説明した例に 基づ 、て核酸が適切に増幅されて!、るかにっ 、て検討した力 本発明の第 2の実施 の形態において説明した構成を採用した場合であっても核酸を適切に増幅でき、上 述した効果を享受できるものと考えられる。

Claims

請求の範囲
[1] 核酸分析装置にセットして使用するものであり、かつ、
目的核酸と増幅用試薬とを反応させるための反応槽を有する容器本体と、 上記反応槽の上部開口を塞ぐためのものであり、かつ上記容器本体から完全に分 離した状態とすることが可能な蓋と、
を備えている、核酸増幅用容器。
[2] 上記蓋は、上記反応槽に螺合可能とされているとともに回転力を作用させることに より上記反応槽に対して着脱自在とされている、請求項 1に記載の核酸増幅用容器
[3] 上記核酸分析装置が上記蓋に対して回転力を作用させるための回転部材を備え ている場合において、
上記蓋は、上記回転部材に係合し、かつ上記回転部材による回転力の付与を可 能とするための係合部を有している、請求項 2に記載の核酸増幅用容器。
[4] 上記係合部は、上記回転部材を挿入するための円柱状の凹部を有しており、 上記凹部の内周面は、上下方向に延びる複数のリブが周方向に一定間隔隔てて 設けられている、請求項 3に記載の核酸増幅用容器。
[5] 上記各リブの上端部は、上端に向力うほど幅寸法が小さくなるように形成されている
、請求項 4に記載の核酸増幅用容器。
[6] 上記蓋は、当該蓋を上記回転部材に保持させるときに利用される突出部を有して いる、請求項 3に記載の核酸増幅用容器。
[7] 上記突出部は、外方側に向けて突出したフランジである、請求項 6に記載の核酸増 幅用容器。
[8] 核酸分析装置にセットして使用するものであり、かつ、
試料から目的核酸を抽出するための核酸抽出用容器と、目的核酸を増幅するため の核酸増幅用容器と、を含む核酸調製キットであって、
上記核酸増幅用容器は、目的核酸と増幅用試薬とを反応させるための反応槽を有 する容器本体と、上記反応槽の上部開口を塞ぐためのものであり、かつ上記容器本 体から完全に分離した状態とすることが可能な蓋と、を備えている、核酸調製キット。
[9] 上記蓋は、上記反応槽に螺合可能とされているとともに回転力を作用させることに より上記反応槽に対して着脱自在とされている、請求項 8に記載の核酸調製キット。
[10] 上記核酸分析装置が上記蓋に対して回転力を作用させるための回転部材を備え ている場合において、
上記蓋は、上記回転部材に係合し、かつ上記回転部材による回転力の付与を可 能とするための係合部を有して 、る、請求項 9に記載の核酸調製キット。
[11] 上記係合部は、上記回転部材を挿入するための円柱状の凹部を有しており、 上記凹部の内周面は、上下方向に延びる複数のリブが周方向に一定間隔隔てて 設けられている、請求項 10に記載の核酸調製キット。
[12] 上記各リブの上端部は、上端に向力うほど幅寸法が小さくなるように形成されている
、請求項 11に記載の核酸調製キット。
[13] 上記蓋は、当該蓋を上記回転部材に保持させるときに利用される突出部を有して いる、請求項 10に記載の核酸調製キット。
[14] 上記突出部は、外方側に向けて突出したフランジである、請求項 13に記載の核酸 調製キット。
[15] 上記核酸精製用容器は、試料から目的核酸を抽出し、かつ抽出した核酸を担持さ せるための核酸抽出要素と、上記核酸抽出要素とは別体として形成され、かつ上記 核酸抽出要素を収容しておくための収容槽を有する容器本体と、を備えている、請 求項 8に記載の核酸調整キット。
[16] 上記核酸抽出要素および上記蓋は、上記蓋に対して上記核酸抽出要素を保持さ せて上記蓋とともに上記核酸抽出要素を一体的に移動させることを可能とするため の保持手段を備えて 、る、請求項 15に記載の核酸調製キット。
[17] 上記保持手段は、上記核酸抽出要素および上記蓋のうちの一方に設けられた係 合用凸部または凹部と、上記核酸抽出要素および上記蓋のうちの他方に設けられ、 かつ上記係合用凸部または凹部に係合させるための 1以上の爪と、を含んでいる、 請求項 16に記載の核酸調製キット。
[18] 上記核酸抽出要素および上記蓋は、上記蓋に上記核酸抽出要素を保持させるとき に上記核酸抽出要素に対する上記蓋の位置関係を規制するためのガイド機構を備 えている、請求項 16に記載の核酸調製キット。
[19] 上記ガイド機構は、上記核酸抽出要素および上記蓋のうちの一方に設けられたピ ンと、上記核酸抽出要素および上記蓋のうちの他方に設けられ、かつ上記ピンを挿 入させるための挿入孔と、を含んでいる、請求項 18に記載の核酸調製キット。
[20] 上記核酸抽出要素は、目的核酸を担持させるための固体マトリックスと、この固体マ トリックスを保持するための保持部材と、を有している、請求項 15に記載の核酸調整 やット。
[21] 上記固体マトリックスは、上記保持部材の垂直軸に対して傾斜した状態で保持され ている、請求項 20に記載の核酸調製キット。
[22] 上記固体マトリックスは、上記垂直軸に対して水平または略水平に保持されている
、請求項 21に記載の核酸調製キット。
[23] 上記固体マトリックスは、上記保持部材に突き刺された状態で上記保持部材に保 持されている、請求項 21に記載の核酸調製キット。
[24] 上記保持部材は、端部に向力うほど縮径するテーパ部と、上記テーパ部から延出 するとともに、上記固体マトリックスに貫通させるためのピン状部と、上記固体マトリツ タスが上記ピン状部力も離脱するのを抑制するための係止片と、を有している、請求 項 23に記載の核酸調製キット。
[25] 上記固体マトリックスは、円盤状に形成されている、請求項 21に記載の核酸調製キ ッ卜。
[26] 上記固体マトリックスは、シート状に形成されており、かつ上記保持部材に対して吊 持された状態で保持されて 、る、請求項 20に記載の核酸調製キット。
[27] 上記保持部材は、上記固体マトリックスの端部を挟持して上記固体マトリックスを吊 持するための挟持部を有して 、る、請求項 26に記載の核酸調製キット。
[28] 上記保持部材は、突出部を有しており、
上記反応槽は、上記突出部を係合させるための段部を有している、請求項 20に記 載の核酸調製キット。
[29] 上記核酸分析装置が上記収容槽から上記核酸抽出要素を取り出して上記反応槽 に移送するための移送部材を備えて 、る場合にぉ 、て、 上記保持部材は、上記移送部材に係合させるための係合部を有しており、 上記突出部は、上記移送部材と上記保持部材の係合状態を解除するために利用 できるように構成されて 、る、請求項 28に記載の核酸調製キット。
[30] 上記核酸分析装置が上記移送部材を外套し、かつ上記移送部材に対して上下方 向に相対動可能な筒状部材を備えて 、る場合にぉ 、て、
上記突出部は、上記筒状部材を上記移送部材に対して相対的に下方に移動させ たときに上記筒状部材が干渉することによって下方に向けた力が作用させられるよう に構成されている、請求項 29に記載の核酸調製キット。
[31] 上記突出部は、外方側に向けて突出したフランジとして形成されている、請求項 30 に記載の核酸調製キット。
[32] 上記核酸増幅用容器は、上記核酸抽出要素を上記収容槽から取り出し、上記反応 槽に収容させたときに、上記固体マトリックスが上記反応槽の底部力 離間した状態 となるように構成されている、請求項 20に記載の核酸調製キット。
[33] 上記保持部材には、上記核酸抽出要素を上記蓋に保持させた状態で上記反応槽 に上記核酸抽出要素を収容させたときに、上記反応槽において密閉空間を形成す るための密閉部材が設けられており、
上記密閉部材は、上記固体マトリックスが保持された部分よりも上方において固定 されている、請求項 20に記載の核酸精製キット。
[34] 上記核酸抽出用容器は、上記核酸抽出要素から目的核酸以外の不純物を除去す るための洗浄液を保持するための 1以上の洗浄槽をさらに備えたものであり、 上記核酸増幅用容器は、目的核酸を増幅するのに必要な試薬類を保持するため の 1以上の試薬類保持槽をさらに備えたものである、請求項 8に記載の核酸調製キッ
[35] 核酸増幅用容器をセットして使用する核酸分析装置であって、
上記核酸増幅用容器として、目的核酸と増幅用試薬とを反応させるための反応槽 を有する容器本体と、上記反応槽の上部開口を塞ぐためのものであり、かつ上記容 器本体力 完全に分離した状態とすることが可能な蓋と、を備えたものを使用するよう に構成されている、核酸分析装置。
[36] 上記蓋を着脱するための蓋着脱手段をさらに備えている、請求項 35に記載の核酸 分析装置。
[37] 上記核酸増幅用容器として、上記蓋が上記反応槽に螺合されているとともに上記 蓋に対して回転力を作用させることにより上記反応槽に対して着脱自在とされたもの を使用するように構成されており、
上記蓋着脱手段は、上記蓋に対して回転力を作用させるための回転部材を有して いる、請求項 36に記載の核酸分析装置。
[38] 上記核酸増幅用容器として、上記蓋が上記回転部材の先端部を挿入するための 円柱状の凹部を有する係合部を備え、かつ上記凹部の内周面に上下方向に延びる 複数のリブが周方向に一定間隔隔てて設けられたものを使用するように構成されて おり、
上記回転部材は、先端部を上記凹部に挿入したときに、上記蓋の複数のリブにお ける互 、に隣接するリブの間に位置させるための複数の凸部を有して 、る、請求項 3
7に記載の核酸分析装置。
[39] 上記複数の凸部は、上下方向に延びており、かつ下端部が下端に向かうほど幅寸 法が小さくなるように形成されている、請求項 38に記載の核酸分析装置。
[40] 上記核酸増幅用容器として、上記蓋が外方側に向けて突出した突出部が設けられ て 、るものを使用するように構成されており、
上記蓋着脱手段は、上記突出部に係合させるための係合爪を有しており、かつ上 記係合爪を上記突出部に係合させた状態で、上記蓋を少なくとも上下方向に移動可 能なように構成されて 、る、請求項 37に記載の増幅分析装置。
[41] 核酸抽出用容器および核酸増幅用容器を使用して試料から目的核酸を調製し、か つ目的核酸の分析を行うための核酸分析装置であって、
上記核酸増幅用容器として、試料カゝら抽出した目的核酸を保持させた核酸抽出要 素を用いて目的核酸を増幅するための場を提供する反応槽を有する容器本体と、上 記反応槽の上部開口を塞ぐための蓋と、を備えたものを使用するように構成されてい る、核酸分析装置。
[42] 上記蓋を着脱するための蓋着脱手段をさらに備えている、請求項 41に記載の核酸 分析装置。
[43] 上記核酸増幅用容器として、上記蓋が上記反応槽に螺合されているとともに上記 蓋に対して回転力を作用させることにより上記反応槽に対して着脱自在とされたもの を使用するように構成されており、
上記蓋着脱手段は、上記蓋に対して回転力を作用させるための回転部材を有して いる、請求項 42に記載の核酸分析装置。
[44] 上記蓋が上記核酸抽出要素を保持可能に構成されている場合において、
上記蓋着脱手段は、上記反応槽から取り外した上記蓋を移動させ、上記収容槽に 保持された上記核酸抽出要素を上記蓋に保持させて上記収容槽から上記核酸抽出 要素を取り出すとともに、上記蓋とともに上記核酸抽出要素を移動させ、上記反応槽 に上記核酸抽出要素を収容させつつ上記蓋によって上記反応槽の上部開口を塞ぐ ように動作させられる、請求項 42に記載の核酸分析装置。
[45] 上記核酸増幅用容器として、上記蓋が凹部およびフランジ部を備えたものを用いる 場合において、
上記蓋着脱手段は、上記凹部に嵌合させるための嵌合要素と、上記嵌合要素を外 套し、かつ上記フランジ部に係合させるための爪部を有する筒状要素と、を備えてい る、請求項 44に記載の核酸分析装置。
[46] 上記収容槽力 上記核酸抽出要素を取り出して上記反応槽に移送するための移 送部材を備えている、請求項 43に記載の核酸分析装置。
[47] 上記移送部材を外套し、かつ上記移送部材に対して上下方向に相対移動可能な 筒状部材をさらに備えており、
上記筒状部材は、上記移送部材に対して相対的に下方に移動したときに、上記移 送部材に一体化された上記核酸抽出要素を取り外すことができるように構成されてい る、請求項 46に記載の核酸分析装置。
[48] 上記移送部材および上記蓋着脱手段の動作を制御するための制御手段をさらに 備えており、
上記制御手段は、
上記回転部材によって上記反応槽から上記蓋を取り外した後に、上記反応槽の直 上位置から上記蓋を保持した上記回転部材を退避させるステップと、 上記移送部材によって上記収容槽から上記核酸抽出要素を取り出して、上記反応 槽の内部に上記核酸抽出要素を移動させるステップと、
上記筒状部材によって上記移送部材から上記核酸抽出要素を取り外して上記反 応槽に上記核酸抽出要素を収容させるステップと、
上記回転部材によって上記反応槽に上記蓋を取り付けるステップと、
を実行するように構成されて ヽる、請求項 47に記載の核酸分析装置。
[49] 上記核酸増幅用容器として、目的核酸の増幅に必要な複数の試薬類を保持させる ための複数の試薬類保持槽を有するものを使用する場合において、
上記移送部材は、上記核酸増幅用容器にお!、て上記複数の試薬類を分注ある 、 は混合するために利用されるノズルである、請求項 46に記載の核酸分析装置。
[50] 上記ノズルは、チップを装着した状態で液体を吸引 ·吐出するように構成されて 、る 一方で、上記チップが装着されて 、な 、状態にぉ 、て上記収容槽から上記核酸抽 出要素を取り出すように構成されている、請求項 49に記載の核酸分析装置。
[51] 上記ノズルは、先端部を上記チップに嵌合させることにより上記チップが装着される 一方で、上記核酸抽出要素に設けられた凹部に先端部を嵌合させることにより上記 収容槽から上記核酸抽出要素を取り出すように構成されている、請求項 50に記載の 核酸分析装置。
[52] 上記ノズルを外套し、かつ上記ノズルに対して上下方向に相対移動可能な筒状部 材をさらに備えており、
上記筒状部材は、上記ノズルに対して相対的に下方に移動したときに、上記ノズル の先端部を嵌合させた上記チップまたは上記核酸抽出要素を取り外すことができる ように構成されて 、る、請求項 51に記載の核酸分析装置。
[53] 上記核酸抽出要素として、上記ノズルから上記核酸抽出要素を取り外すときに、上 記筒状部材を干渉させるための突出部が設けられたものを使用する、請求項 52に記 載の核酸分析装置。
[54] 上記ノズルの先端部には、上記チップまたは上記核酸抽出要素に嵌合させる部分 に Oリングが装着されて 、る、請求項 50に記載の核酸分析装置。
PCT/JP2005/010080 2004-06-02 2005-06-01 核酸増幅用容器、核酸調製キット、および核酸分析装置 WO2005118772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05746024A EP1757679A1 (en) 2004-06-02 2005-06-01 Container for nucleic acid amplification, nucleic acid preparation kit and nucleic acid analyzer
JP2006514121A JPWO2005118772A1 (ja) 2004-06-02 2005-06-01 核酸増幅用容器、核酸調製キット、および核酸分析装置
US11/628,399 US20080268529A1 (en) 2004-06-02 2005-06-01 Container for Nucleic Acid Amplification, Nucleic Acid Preparation Kit and Nucleic Acid Analyzer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004164989 2004-06-02
JP2004-164987 2004-06-02
JP2004164988 2004-06-02
JP2004-164989 2004-06-02
JP2004-164988 2004-06-02
JP2004164987 2004-06-02
JP2005-034775 2005-02-10
JP2005034775 2005-02-10

Publications (1)

Publication Number Publication Date
WO2005118772A1 true WO2005118772A1 (ja) 2005-12-15

Family

ID=35462900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010080 WO2005118772A1 (ja) 2004-06-02 2005-06-01 核酸増幅用容器、核酸調製キット、および核酸分析装置

Country Status (4)

Country Link
US (1) US20080268529A1 (ja)
EP (1) EP1757679A1 (ja)
JP (1) JPWO2005118772A1 (ja)
WO (1) WO2005118772A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018469A1 (fr) 2006-08-09 2008-02-14 Arkray, Inc. Procédé d'obtention d'un produit d'amplification par PCR et son utilisation
JP2009077639A (ja) * 2007-09-25 2009-04-16 Tosoh Corp 核酸検出装置
JP2009225714A (ja) * 2008-03-21 2009-10-08 Hokkaido Univ ハイブリダイゼーション器具、ハイブリダイゼーション装置、およびハイブリダイゼーション促進方法
JP2010533490A (ja) * 2007-07-13 2010-10-28 ハンディーラブ インコーポレイテッド 多数の生物学的サンプルについて核酸抽出及び診断試験を行う一体装置
WO2011040504A1 (ja) 2009-09-30 2011-04-07 凸版印刷株式会社 核酸分析装置
JP2011072276A (ja) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd 試薬カートリッジ及び核酸精製キット
JP2016518588A (ja) * 2013-03-14 2016-06-23 ジェン−プローブ・インコーポレーテッド 自動化された試薬ベースの分析を行うためのシステム、方法、および装置
WO2017183298A1 (ja) 2016-04-20 2017-10-26 シスメックス株式会社 核酸分析装置および核酸分析方法
CN107974393A (zh) * 2018-01-08 2018-05-01 深圳市朗司医疗科技有限公司 一种应用于核酸提取系统中的加热装置
JP2019174188A (ja) * 2018-03-27 2019-10-10 凸版印刷株式会社 試薬カートリッジ、核酸抽出セットおよび溶液廃棄方法
JP2019191051A (ja) * 2018-04-26 2019-10-31 アークレイ株式会社 測定システム及び測定デバイスの温度調節方法
CN111363672A (zh) * 2020-04-15 2020-07-03 湖州市妇幼保健院 一种快速核酸提取设备
JP2020534854A (ja) * 2017-09-27 2020-12-03 アックスイン ピーティーワイ リミテッドAxxin Pty Ltd 診断テストシステムおよび方法
US10889851B2 (en) 2013-03-14 2021-01-12 Gen-Probe Incorporated Method for moving a processing vial between locations of an instrument
CN112779117A (zh) * 2019-11-07 2021-05-11 浙江大学 用于核酸检测实验的具有隔离效果的检测卡盒
CN113462556A (zh) * 2021-09-02 2021-10-01 德诺杰亿(北京)生物科技有限公司 核酸提取仪加热组件
JP2021536009A (ja) * 2018-09-08 2021-12-23 バイオダイン カンパニー リミテッドBiodyne Co., Ltd. 剥離細胞の保管及び塗抹作業のためのバイアル装置
US11634758B2 (en) 2012-02-03 2023-04-25 Axxin Pty Ltd Nucleic acid amplification and detection apparatus and method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933301B2 (ja) * 2007-02-22 2012-05-16 キヤノン株式会社 検体処理装置
WO2010084921A1 (ja) 2009-01-23 2010-07-29 アークレイ株式会社 分析システム、分析装置、容器、分析方法、プログラムおよび記録媒体
WO2012145449A1 (en) * 2011-04-22 2012-10-26 International Park Of Creativity Methods and devices for amplifying nucleic acids
CN103424356B (zh) * 2012-05-21 2015-12-09 光宝科技股份有限公司 分析卡匣及其分析系统
US9044729B2 (en) 2012-07-27 2015-06-02 International Park Of Creativity Methods and devices for electromagnetic amplification of nucleic acids
US20190302137A1 (en) * 2018-03-29 2019-10-03 Eiken Kagaku Kabushiki Kaisha Automatic genetic testing device
WO2021133071A1 (en) * 2019-12-27 2021-07-01 Seegene, Inc. Cartridge for sample processing comprising movable solution shuttle
JP1678417S (ja) * 2020-05-29 2021-02-01
USD978369S1 (en) * 2020-09-21 2023-02-14 Cepheid Diagnostic assay system
CN114225985B (zh) * 2022-01-05 2023-04-18 刘志光 一种实验室用酸缸装置
CN117844595A (zh) * 2022-10-20 2024-04-09 胡静 一种核酸混采用试管自动控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810507A (ja) * 1993-02-09 1996-01-16 Agricult & Food Res Council:The 物質の連続的分離及び精製
JP2001149097A (ja) * 1999-11-29 2001-06-05 Olympus Optical Co Ltd 自動核酸検査装置
JP2003066021A (ja) * 2001-08-28 2003-03-05 Hiroshi Shionoya 連続分取液体クロマトグラフィー装置とそれを用いる方法
JP2003093073A (ja) * 2001-09-26 2003-04-02 Toshiba Corp シトクロムp450遺伝子の発現を解析するためのプライマーおよびプライマーセット、並びにそのプライマーセットを用いた被検物質の毒性を予測する方法、そのプライマーセットを含む試薬球体、その試薬球体を具備する反応容器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698302A (en) * 1983-05-12 1987-10-06 Advanced Magnetics, Inc. Enzymatic reactions using magnetic particles
US5234809A (en) * 1989-03-23 1993-08-10 Akzo N.V. Process for isolating nucleic acid
JP2965131B2 (ja) * 1995-07-07 1999-10-18 東洋紡績株式会社 核酸結合用磁性担体およびそれを用いる核酸単離方法
US6431476B1 (en) * 1999-12-21 2002-08-13 Cepheid Apparatus and method for rapid ultrasonic disruption of cells or viruses
US8815521B2 (en) * 2000-05-30 2014-08-26 Cepheid Apparatus and method for cell disruption
JP4017369B2 (ja) * 2001-09-28 2007-12-05 株式会社ヤクルト本社 核酸抽出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810507A (ja) * 1993-02-09 1996-01-16 Agricult & Food Res Council:The 物質の連続的分離及び精製
JP2001149097A (ja) * 1999-11-29 2001-06-05 Olympus Optical Co Ltd 自動核酸検査装置
JP2003066021A (ja) * 2001-08-28 2003-03-05 Hiroshi Shionoya 連続分取液体クロマトグラフィー装置とそれを用いる方法
JP2003093073A (ja) * 2001-09-26 2003-04-02 Toshiba Corp シトクロムp450遺伝子の発現を解析するためのプライマーおよびプライマーセット、並びにそのプライマーセットを用いた被検物質の毒性を予測する方法、そのプライマーセットを含む試薬球体、その試薬球体を具備する反応容器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"BD Falcon Catalog", 2003, BD BIOCOAT, pages: 254 - 257, XP002994442 *
TANAKA Y.: "Cell technology.", 1999, pages: 228, XP002994443 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148079B2 (en) 2006-08-09 2012-04-03 Arkray, Inc. Method of producing amplification product by PCR and usage thereof
WO2008018469A1 (fr) 2006-08-09 2008-02-14 Arkray, Inc. Procédé d'obtention d'un produit d'amplification par PCR et son utilisation
JP2010533490A (ja) * 2007-07-13 2010-10-28 ハンディーラブ インコーポレイテッド 多数の生物学的サンプルについて核酸抽出及び診断試験を行う一体装置
JP2009077639A (ja) * 2007-09-25 2009-04-16 Tosoh Corp 核酸検出装置
JP2009225714A (ja) * 2008-03-21 2009-10-08 Hokkaido Univ ハイブリダイゼーション器具、ハイブリダイゼーション装置、およびハイブリダイゼーション促進方法
WO2011040504A1 (ja) 2009-09-30 2011-04-07 凸版印刷株式会社 核酸分析装置
JP2011072276A (ja) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd 試薬カートリッジ及び核酸精製キット
JP2012161340A (ja) * 2009-09-30 2012-08-30 Toppan Printing Co Ltd 核酸分析装置、及び、核酸の分離精製方法
US9267890B2 (en) 2009-09-30 2016-02-23 Toppan Printing Co., Ltd. Nucleic acid analyzer
US11634758B2 (en) 2012-02-03 2023-04-25 Axxin Pty Ltd Nucleic acid amplification and detection apparatus and method
US11434521B2 (en) 2013-03-14 2022-09-06 Gen-Probe Incorporated Method for conducting an assay
US12110535B2 (en) 2013-03-14 2024-10-08 Gen-Probe Incorporated Method for reconstituting a reagent
US11834701B2 (en) 2013-03-14 2023-12-05 Gen-Probe Incorporated Reagent pack changer
US11761026B2 (en) 2013-03-14 2023-09-19 Gen-Probe Incorporated Diagnostic system and method
US11761027B2 (en) 2013-03-14 2023-09-19 Gen-Probe Incorporated System and method for receiving and storing reagent packs in an instrument
US11279967B2 (en) 2013-03-14 2022-03-22 Gen-Probe Incorporated System and method for conducting an assay
JP2016518588A (ja) * 2013-03-14 2016-06-23 ジェン−プローブ・インコーポレーテッド 自動化された試薬ベースの分析を行うためのシステム、方法、および装置
US10889851B2 (en) 2013-03-14 2021-01-12 Gen-Probe Incorporated Method for moving a processing vial between locations of an instrument
US11732289B2 (en) 2013-03-14 2023-08-22 Gen-Probe Incorporated Receptacle distribution system
US11732288B2 (en) 2013-03-14 2023-08-22 Gen-Probe Incorporated Assembly having reagent pack loading station
WO2017183298A1 (ja) 2016-04-20 2017-10-26 シスメックス株式会社 核酸分析装置および核酸分析方法
US10814326B2 (en) 2016-04-20 2020-10-27 Sysmex Corporation Nucleic acid analyzer and nucleic acid analyzing method
JP2020534854A (ja) * 2017-09-27 2020-12-03 アックスイン ピーティーワイ リミテッドAxxin Pty Ltd 診断テストシステムおよび方法
JP7276716B2 (ja) 2017-09-27 2023-05-18 アックスイン ピーティーワイ リミテッド 診断テストシステムおよび方法
US11709175B2 (en) 2017-09-27 2023-07-25 Axxin Pty Ltd Diagnostic test system and method utilizing a closure/sample dispensing mechanism to dispense a sample subvolume for testing
CN107974393A (zh) * 2018-01-08 2018-05-01 深圳市朗司医疗科技有限公司 一种应用于核酸提取系统中的加热装置
JP2019174188A (ja) * 2018-03-27 2019-10-10 凸版印刷株式会社 試薬カートリッジ、核酸抽出セットおよび溶液廃棄方法
JP2019191051A (ja) * 2018-04-26 2019-10-31 アークレイ株式会社 測定システム及び測定デバイスの温度調節方法
JP7099773B2 (ja) 2018-09-08 2022-07-12 バイオダイン カンパニー リミテッド 剥離細胞の保管及び塗抹作業のためのバイアル装置
JP2021536009A (ja) * 2018-09-08 2021-12-23 バイオダイン カンパニー リミテッドBiodyne Co., Ltd. 剥離細胞の保管及び塗抹作業のためのバイアル装置
CN112779117A (zh) * 2019-11-07 2021-05-11 浙江大学 用于核酸检测实验的具有隔离效果的检测卡盒
CN112779117B (zh) * 2019-11-07 2024-03-12 浙江大学 用于核酸检测实验的具有隔离效果的检测卡盒
CN111363672B (zh) * 2020-04-15 2023-04-07 湖州市妇幼保健院 一种快速核酸提取设备
CN111363672A (zh) * 2020-04-15 2020-07-03 湖州市妇幼保健院 一种快速核酸提取设备
CN113462556A (zh) * 2021-09-02 2021-10-01 德诺杰亿(北京)生物科技有限公司 核酸提取仪加热组件

Also Published As

Publication number Publication date
EP1757679A1 (en) 2007-02-28
US20080268529A1 (en) 2008-10-30
JPWO2005118772A1 (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
WO2005118772A1 (ja) 核酸増幅用容器、核酸調製キット、および核酸分析装置
WO2005118803A1 (ja) 核酸抽出用容器、固体マトリックスの洗浄方法および洗浄機構、ならびに核酸精製方法
CN102549140B (zh) 核酸分析装置
CN108220155B (zh) 用于分子诊断的系统和方法
EP2179294B1 (en) Sample processor
CA2304017C (en) Apparatuses and methods for isolating nucleic acid
JP4272351B2 (ja) 化学的または生物学的方法の自動実施装置
JP6039395B2 (ja) コンタミネーションの防止方法
CN1965073A (zh) 核酸扩增用容器、核酸调制试剂盒和核酸分析装置
CN118183188A (zh) 用于分析系统的容器输送系统
JP2017018053A (ja) 核酸抽出キット、核酸抽出方法および核酸抽出装置
JP2004163437A (ja) 液体に含まれている生物学的試料を処理する方法、システム及び反応容器
JP2010094049A (ja) 温度制御反応処理装置および温度制御反応処理方法
EP1772192B1 (en) Biochemical processing apparatus provided with liquid transport mechanism
JP6184806B2 (ja) 自動化処理モジュール内でチップを廃棄する自動化される方法および処理モジュールを備える処理システム
CN1965080A (zh) 核酸提取用容器、固体基件的洗净方法及洗净机构、和核酸精制方法
JP2005295910A (ja) 核酸抽出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514121

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11628399

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580018076.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005746024

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005746024

Country of ref document: EP