WO2005118718A1 - Verfahren zur herstellung von beschichteten substraten - Google Patents

Verfahren zur herstellung von beschichteten substraten Download PDF

Info

Publication number
WO2005118718A1
WO2005118718A1 PCT/EP2005/005518 EP2005005518W WO2005118718A1 WO 2005118718 A1 WO2005118718 A1 WO 2005118718A1 EP 2005005518 W EP2005005518 W EP 2005005518W WO 2005118718 A1 WO2005118718 A1 WO 2005118718A1
Authority
WO
WIPO (PCT)
Prior art keywords
decorative paper
weight
synthetic polymers
resin
films
Prior art date
Application number
PCT/EP2005/005518
Other languages
English (en)
French (fr)
Inventor
Marta Martin-Portugues
Albert Sester
Günter Scherr
Thomas Damian
Claus Fueger
Ralph Lunkwitz
Jakob Decher
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004026480A external-priority patent/DE102004026480A1/de
Priority claimed from DE200410026481 external-priority patent/DE102004026481A1/de
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US11/596,130 priority Critical patent/US20070172687A1/en
Priority to CA 2564692 priority patent/CA2564692A1/en
Priority to EP05751297A priority patent/EP1753818A1/de
Publication of WO2005118718A1 publication Critical patent/WO2005118718A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09D161/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C09D161/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/246Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using polymer based synthetic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/32Modified amine-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/18Paper- or board-based structures for surface covering
    • D21H27/22Structures being applied on the surface by special manufacturing processes, e.g. in presses
    • D21H27/26Structures being applied on the surface by special manufacturing processes, e.g. in presses characterised by the overlay sheet or the top layers of the structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/24Polyesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/47Condensation polymers of aldehydes or ketones
    • D21H17/49Condensation polymers of aldehydes or ketones with compounds containing hydrogen bound to nitrogen
    • D21H17/51Triazines, e.g. melamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31942Of aldehyde or ketone condensation product
    • Y10T428/31949Next to cellulosic
    • Y10T428/31964Paper
    • Y10T428/31967Phenoplast

Definitions

  • the invention relates to a method for producing coated substrates.
  • the invention further relates to aminoplast resin films or films, and to the use of a modified decorative paper for producing aminoplast resin films or films for 3D coating.
  • Thermoplastic films are usually used for coating three-dimensional structured surfaces (3D coating), e.g. for coating wood-based materials in the furniture industry.
  • 3D coating three-dimensional structured surfaces
  • the significant advantage of these thermoplastic films is their elasticity, disadvantageous are the high costs in production, among other things. caused by the additional use of adhesives.
  • the self-adhesive inexpensive melamine resins used in the furniture industry for finishing smooth surfaces, also for coating three-dimensional structured surfaces.
  • the melamine resins are also characterized by high gloss and good printability. Pure melamine resins are too brittle for this application.
  • melamine resins bearing etherified methyl groups are mainly used for surface finishing of wood-based materials such as chipboard, hardboard and blockboard.
  • the melamine resins were further modified, e.g. by adding guanamine according to DE-A 4439 156 or by adding small amounts of an aqueous synthetic resin dispersion according to DE-A 38 37965.
  • a combination of aminoplast resins with acrylate dispersions results in a certain elasticity of the films produced according to DE-A 3700 344, however, a high proportion of dispersion caused a substantial loss in overvoltage and splitting resistance; Properties that are particularly important when coating three-dimensional structured surfaces.
  • the older German application with the file number 10301901.4 for the first time discloses self-adhesive melamine resin films that can be used directly for the 3D coating of furniture.
  • These melamine resins consist of a mixture of melamine-formaldehyde condensates, etherified melamine-formaldehyde condensates and acrylate dispersions.
  • the melamine resin films described are well suited for coating three-dimensionally deformed surfaces. Improved flexibility of the films could also be achieved by modifying the decorative paper to be impregnated with the melamine resin.
  • WO 00/53666, WO 00/53667, WO 00/53668 and WO 02/38345 describe different fiber papers for coating, for example, bodies with three-dimensional structures.
  • WO 00/53666 discloses a carrier made of meltable polymer and cellulose for this purpose or regenerated cellulose.
  • Cellulose esters and preferably cellulose acetate are described as meltable polymers.
  • WO 00/53667 describes fiber papers using carriers based on complete or partial regenerated cellulose. The regeneration of the cellulose consists of a conversion into a soluble cellulose derivative using an acid, the derivative being able to be converted into fibers and optionally reducing the size of the fibers.
  • WO 00/53668 describes carriers made of fibrous cellulose esters, preferably cellulose acetates.
  • WO 02/38345 describes the use of decorative paper, which has a cotton linter content of at least 10% by weight and up to 100% by weight of the total fiber content, for coating three-dimensionally structured surfaces.
  • the known films or films made from the modified melamine resins and decorative papers are in need of improvement despite the successes achieved so far.
  • the coating should only be carried out with a single film or film in a single pressing process.
  • the main characteristic of such foils or films lies in their deformability during the pressing process.
  • the invention was therefore based on the object of finding an improved method for producing a coated substrate with a three-dimensionally structured surface.
  • a method for producing a coated piece of furniture or wood material with a three-dimensionally structured surface should be provided.
  • a more flexible melamine resin film or film should be found that is also suitable for 3D coating and in particular for the full encasing of structures.
  • the coated surfaces should not have any whitening, i.e. shimmering background and unwanted folds at the upsetting points.
  • a process was found which is particularly suitable for the production of partially or fully coated substrates with a three-dimensionally structured surface, in which a decorative paper which contains 5 to 90% by weight, based on the total fiber content, of fibers made of synthetic polymers, impregnated with a crosslinkable aminoplastic resin, applied to a substrate and deformed three-dimensionally.
  • the term “three-dimensional deformation” is to be understood as the partial or complete coating of bodies, structures, reliefs, profiles, embossings and the like. These have three-dimensionally structured surfaces, that is to say shapes, designs or structures that extend in all three spatial directions.
  • the shape changes can be both fluid and abrupt, for example in the case of sharp-edged structures, such as edges, corners and / or tapering, which describe a defined angle which results from two or more planes converging towards one another. Also under "three-dimensional deformation" to understand the full covering, or simultaneous / simultaneous coating of fronts and edges, of regular or irregular shaped bodies, profiles and the like.
  • the use of fibers made of polyamide, polyester, polypropylene or polyethylene is preferred.
  • Fibers made of synthetic polymers are also advantageous.
  • a mixture of two of the above synthetic fibers such as e.g. B. polyamide, polypropylene, polyethylene and polyester fibers are used in a weight ratio of 1:99 to 99: 1.
  • advantageous fiber mixtures can be selected, and more than two types of fibers can also be present.
  • Fibers made of copolymers or polymer blends can also be used, for example block polymers or polymer blends made of polyamide, polyimide, polyurethanes, polypropylene, polyethylene, polyacrynitrile, polyvinyl alcohol or various polyesters, for example polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate.
  • Copolymers of monomers such as propylene, ethylene, (meth) acrynitrile, vinyl alcohol or esters, e.g. B. of vinyl alcohol can also serve as a basis for the production of synthetic fibers.
  • the fibers made of synthetic polymers advantageously have as little branching as possible, in particular no branching.
  • the length of the individual fibers is similar to that of typical natural fibers.
  • the synthetic fibers advantageously have a length of 0.5 to 20 mm, in particular 0.5 to 10 mm, particularly preferably 2 to 10 mm.
  • the fiber diameter is usually 5 to 30 ⁇ m, preferably 10 to 25 ⁇ m.
  • the fibers also have an average surface area of 1500 to 3500 m 2 / g, in particular from 2000 to 2500 m 2 / g.
  • the production of the synthetic fibers is known to the person skilled in the art. Common manufacturing processes are, for example, the spinning process or the production using the flashing process.
  • the synthetic fibers can be mixed in any ratio with the cellulose fibers of the decorative paper from, for example, birch, eucalyptus and long fiber cellulose, such as pine or spruce, and processed on all conventional paper machines. Other types of trees or gas, shrub and grain pulps are also suitable. Further details can be found in "Fibers for the papermaker" in P. Keppler Verlag KG.
  • the pulps are obtained, for example, by means of the sulfite or sulfate production process.
  • the pulps can optionally be bleached by different processes known to the person skilled in the art.
  • the cellulose fibers are each selected by area of application, the advantages and disadvantages of the individual cellulose fibers being known in the specialist world.
  • the processing of the fibers into decorative paper is generally known. Depending on the type of fiber and the fiber content used, slight changes in paper production are necessary, for example in the fiber mixture, When drying the decorative paper, the temperature should advantageously not exceed a range from 50 to 150 ° C. Temperatures of over 120 ° C. can lead to reduced sheet thickness r Common finishing processes are followed, such as smoothing, gluing, embossing, printing (e.g. gravure, flexo or digital printing), impregnation, shaping and / or painting.
  • the decorative papers used according to the invention have a Bendtsen porosity of 300 to 2000 ml / min, in particular 400 to 1200 ml / min, and thus have very good impregnability.
  • the porosity is adjusted according to the impregnation requirements.
  • the wet strength is advantageously 6 N to 40 N.
  • the opacity of the decorative paper is generally 0 to 100%, in particular 60 to 100%.
  • the decorative paper usually has a weight per unit area of 40 to 300 g / m 2 , in particular 80 to 200 g / m 2 .
  • the color impression ranges between white and black, bright colors in numerous shades can be realized.
  • the decorative papers can have smoothness on one or both sides, with smoothness on one side being preferred.
  • the decorative paper which contains 5 to 90% by weight, based on the total fiber content, of fibers made of synthetic polymers, advantageously contains 95 to 10% by weight of cellulose.
  • the cellulose is advantageously chemically unchanged. Basically, the cellulose can be used bleached or unbleached. The use of bleached cellulose is preferred. Eucalyptus globulus, Nordic birch and Long fiber.
  • the decorative paper preferably contains 10 to 60% by weight, based on the total fiber content, fibers of synthetic polymers and 90 to 40% by weight of cellulose. In particular, the decorative paper contains 10 to 40% by weight, based on the total fiber content, fibers of synthetic polymers and 90 to 60% by weight of cellulose.
  • the decorative paper particularly preferably contains 10 to 40% by weight, based on the total fiber content, of fibers made of polyamide, polyester, polypropylene and / or polyethylene.
  • the decorative paper used according to the invention can contain other usual components known to the person skilled in the art, such as, for example, secondary fibers, fillers or pigments.
  • the inorganic or organic pigments control i.a. opacity generation, color imparting, printability and thickness increase.
  • White or color pigments can advantageously be present in the formulation as compounds in the form of oxides, silicates, carbonates, sulfates or carbon blacks.
  • Preferred inorganic pigments which can serve as colorants in the decorative paper used according to the invention are, for example, iron oxides, iron cyanoferrates, sodium aluminum silicates and / or titanium dioxides.
  • the titanium dioxides are produced, for example, by the chloride or the sulfate process. Depending on the area of application, these can be modified, for example coated or coated. The modification can be carried out with various materials, for example with phosphorus, phosphorus pentoxide, aluminum, zirconium, aluminum oxide and / or silicon dioxide.
  • Preferred organic pigments which can serve as colorants in the decorative paper used according to the invention are, for example, those from the class of the monoazo pigments (for example products which are derived from acetoessigarylide derivatives or from .beta.-naphthol derivatives), lacquered monoazo dyes (for example B.
  • lacquered ß-oxynaphthoic acid dyes lacquered ß-oxynaphthoic acid dyes
  • disazo pigments condensed disazo pigments, isoindoline derivatives, derivatives of naphthalene or perylenetetracarboxylic acid, anthracinone pigments, thioindigo derivatives, azomethine derivatives, quinacridones, dioxazines, pyrazole-phthalocyanine verolone z - methane dyes).
  • the total pigment content in the base paper produced is advantageously between 0 and 40% by weight, based on the total paper, in particular between 5 and 20% by weight.
  • pigments 5 to 10% by weight of pigments based on silicates and up to 20% by weight, preferably 0 to 15% by weight, of titanium dioxide and iron oxides are used.
  • Crosslinkable aminoplastic resins are all resins known to the person skilled in the art, in particular melamine-urea-formaldehyde and melamine-formaldehyde resin or mixtures thereof. These resins can be partially or completely etherified with alcohols, preferably C to C 4 alcohols, in particular methanol.
  • Etherified and non-etherified melamine-urea-formaldehyde and melamine-formaldehyde resins or mixtures thereof are preferably used, in particular etherified and / or non-etherified melamine-formaldehyde resins, particularly preferably non-etherified melamine-formaldehyde resins.
  • Resin mixtures which contain non-etherified melamine-formaldehyde condensate (s), optionally etherified melamine-formaldehyde condensate (s) and polymer dispersion (s) are particularly preferred.
  • Resin mixtures which are particularly suitable are those which are particularly suitable are those which are
  • Auxiliaries and additives can also be added to the melamine resin mixture, for example 0.1 to 50% by weight, preferably 0.2 to 30% by weight, in particular 0.5 to 20% by weight of urea, caprolactam, phenyl diglycol, butanediol and / or sucrose based on 100 wt .-% of the mixture (i) to (iii). It can also contain conventional additives such as wetting agents, curing agents and catalysts.
  • the resin mixture can contain one or more of the following components in a total amount of 0 to 5% by weight, based on the resin mixture: anionic surfactants (sodium, potassium and / or ammonium salts of fatty acid and sulphonic acid; alkali metal salts of C 12 - bis C 16 alkyl sulfates; ethoxylated, sulfated and / or sulfonated fatty alcohols; alkylphenols; sulfodicarboxylated esters; polyglycol ether sulfates), non-ionic surfactants (ethoxylated fatty alcohols and alkylphenols with 2 to 150 ethylene oxide units per molecule), cationic surfactants (ammonium, Phosphonium and / or sulfonium compounds with a hydrophobic structural element that contains at least one long aliphatic hydrocarbon chain), starch, polyethylene glycol and / or poly (vinyl alcohol).
  • anionic surfactants
  • the production of the resin component (i) is generally known. First, for example, 1 mol of melamine is condensed with 1.4 to 2 mol of formaldehyde at pH values from 7 to 9 and at temperatures from 40 to 100 ° C. until the appropriate degree of condensation is reached.
  • the molar ratio of melamine to formaldehyde is advantageously 1: 1.15 to 1: 1.9, preferably 1: 1.4 to 1: 1.6.
  • melamine-formaldehyde condensation products with C to C alkanols such as methanol, ethanol, propanol and / or butanol or glycols, such as e.g. Ethylene glycol, diethylene glycol, propylene glycol and / or dipropylene glycol, etherified. Methanol and buthanol are preferred.
  • the production of the resin component (ii) is generally known.
  • the melamine-formaldehyde condensation product is mixed, for example, with 20 to 30 mol of methanol and etherified at pH values from 1 to 5 and temperatures from 40 to 80 ° C.
  • the condensation conditions depend on the water dilutability desired for the resin, which is at least 1: 6.
  • the melamine resins are freed from excess alcohol and formaldehyde by distillation. Any remaining formaldehyde is reacted with the addition of urea at temperatures from room temperature to 90 ° C, preferably 60 to 70 ° C.
  • the molar ratio of melamine to formaldehyde to ether group is advantageously 1: 1.2: 1 to 1: 6: 6, preferably 1: 2.5: 2 to 1: 5: 4.5.
  • copolymer dispersions are used, the copolymers of which preferably contain carboxyl, hydroxyl, amide, glycidyl, carbonyl, N-methylol, N-alkoxymethyl, amino and / or hydrazo groups.
  • the above-mentioned functional groups in the copolymer are obtained in the usual way by polymerizing in corresponding monomers which carry these functional groups.
  • the copolymers generally contain the abovementioned functional groups in amounts such that they can contain 0.1 to 50% by weight, preferably 0.3 to 20, based on the copolymer, of these monomers having functional groups in copolymerized form.
  • the main monomers of the comonomers having the abovementioned groups are the customary olefinically unsaturated monomers copolymerizable therewith, for example C to C 12 -alkyl esters of acrylic acid and methacrylic acid, preferably C to C 8 -alkyl esters, for example methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, Propyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate and lauryl methacrylate; Vinyl esters of C 2 to C 4 carboxylic acids, for example vinyl acetate and vinyl propionate, C to C dialkyl esters of maleic acid and fumaric acid, vinyl aromatics such as styrene, ⁇ -methylstyrene, vinylto
  • the pH of the polymer dispersion is usually adjusted to 7.5 to 10 before the addition of the other components.
  • the aminoplast resins thus obtained generally have solids contents of 40 to 70% by weight.
  • the solids content here is the dry residue, which is determined by drying 1 g of aqueous resin in a drying cabinet at 120 ° C. for two hours.
  • the viscosity of the aqueous resins are in the range from 10 to 200 mPas, preferably between 30 and 150 mPas (20 ° C.).
  • the invention further relates to aminoplast resin films or films containing decorative papers impregnated with crosslinkable aminoplastic resin and containing 5 to 90% by weight, based on the total fiber content, of fibers made of synthetic polymers.
  • the decorative paper already described which contains 5 to 90% by weight, based on the total fiber content, of fibers made of synthetic polymers, is impregnated with the amino resins in a manner known per se.
  • the aminoplast resins are used in the form of a 40 to 70 percent by weight aqueous solution, to which a hardener is usually added.
  • Bronstedt acids such as organic sulfonic acids and carboxylic acids and their anhydrides, e.g. Maleic acid, maleic anhydride and formic acid, ammonium compounds, e.g. Ammonium sulfate, ammonium sulfite, ammonium nitrate, ethanolammonium chloride, dimethylethanolammonium sulfite and hardener combinations such as morpholine / p-toluenesulfonic acid.
  • organic sulfonic acids and carboxylic acids and their anhydrides e.g. Maleic acid, maleic anhydride and formic acid
  • ammonium compounds e.g. Ammonium sulfate, ammonium sulfite, ammonium nitrate, ethanolammonium chloride, dimethylethanolammonium sulfite and hardener combinations such as morpholine / p-toluenesulfonic acid.
  • the hardeners can be added in amounts of 0 to 2.5% by weight, based on the aqueous impregnating resin. It is known to the person skilled in the art that the hardener metering can be adapted to the respective application requirements, the reactivity of the impregnating resin / hardener mixtures, for. B. can be adjusted accordingly by measuring the turbidity times and gelling times.
  • wetting agents can also be added to the impregnation liquors.
  • Suitable wetting agents are, for example, ethoxylated fatty alcohols or alkylphenol ethoxylates, which can be added in amounts of 0 to 1% by weight, based on the resin solution.
  • the way in which the impregnation liquors are processed into melamine resin impregnates and how the wood materials are coated with these impregnates is known to the person skilled in the art.
  • the decorative paper used according to the invention can be processed to the same extent as commercially available decorative paper known for the impregnation with aminoplast resins.
  • the impregnation is usually carried out in such a way that the decorative paper is saturated with the aminoplast resin solution.
  • decorative papers with a basis weight in the range from 60 to 200 g / m 2 are impregnated with 120 to 150% by weight, based on the paper weight of the impregnation liquor, at room temperature.
  • the impregnated paper is then dried to a residual moisture content of approximately 5 to 10% by weight.
  • the usual impregnation systems are suitable for impregnation, which apply the desired amount of resin to and into the papers in the so-called one- or two-stage process.
  • the advantage of the two-stage process is that, if necessary, different aminoplast resins can be used for pre- and post-impregnation.
  • the aminoplast films or films produced in this way are then shaped hot or cold.
  • the foils or films are advantageously pressed with the substrate at elevated temperatures of, for example, 150 to 210 ° C. and / or elevated pressures of, for example, 15 to 30 bar during a pressing time of, for example, 10 to 60 s.
  • Adhesion during coating is advantageously carried out by the aminoplast resin, i.e. self-adhesive aminoplast resin films are advantageously used for 3D deformation.
  • the use of non-self-adhesive aminoplast resin films can also be advantageous, in which case commercially available adhesives or other adhesive carriers are used.
  • re-gluing can also be advantageous.
  • the substrate in particular wood-based material or other mold carriers such as, for example, preformed plastics or metal sheets, and the decorative paper can be deformed together, for example. This is advantageously done by pressing in one
  • Mold carrier press in-mold press
  • a substrate with a three-dimensional structure and a decorative paper of this contour or without a contour can also be deformed accordingly.
  • the three-dimensional deformation is advantageously carried out in a membrane press or, if appropriate, in a press, the press plate of which corresponds to the negative shape of the three-dimensional carrier material.
  • the upper and / or lower and / or lateral sides of the press form consist of a membrane which can be pressurized by air, nitrogen or liquid which may be heated (see WO 00/53667 on pages 16 to 18 ).
  • a membrane press advantageously includes a lower and an upper press table, an elastic membrane which can be pressed onto a substrate covered with aminoplast resin films or films and thus to be coated and which forms a pressure-tight chamber with a press table, channels for inlet and outlet of a fluid acting on the membrane and a press control.
  • compressible membrane means membranes that can be lowered as well as raised or pressed from the side.
  • a membrane press for the three-dimensional shaping, which has two storage containers for two fluids of different temperatures, which are provided with working valves which can be opened and closed by the press control.
  • the membrane press advantageously has a conveying device for the fluids.
  • the membrane press preferably has separate inlets and outlets for each fluid.
  • the press preferably has two storage containers, which contain fluids of different temperatures, which can act alternately on the membrane via working valves and a conveying device, enables a heating-cooling alternating press to be realized, with which a workpiece can first be pressed hot and then cold without having to be transported from one press to another press, which also has the significant advantage that the workpiece remains fixed in the press, so that the material to be coated does not detach and the coated workpiece does not bulge or warp can, since it remains fixed in the membrane press until a minimum temperature is reached.
  • Each storage container advantageously has a compressed air valve and a vent valve.
  • the contents of the storage containers can be subjected to pressure-variable heights.
  • Heating devices or cooling devices for the fluid are advantageously arranged in the storage containers, which can also be circulated during a pressing process if there is an increased heat or waste heat requirement.
  • a liquid such as water or thermal oil, which has a high heat capacity, is preferably used as the fluid, so that the required amounts of heat can be supplied and removed by the fluids alone, without the press tables themselves having to be heated or cooled. They can even be equipped with insulation material on their surfaces facing the press room, so that no heat losses occur via the press tables. It is also advantageous that the storage containers, which have compressed air and venting valves, can be pressurized or depressurized as a function of the process steps that can be carried out with the membrane press, so that a change of the liquids is carried out more quickly can be made available or the pressing pressure can be made available at any height or optimized for the workpieces and aminoplast resin films or films.
  • the membrane press advantageously has a second elastic membrane beneath the first membrane, which forms a second pressure-tight chamber with the first membrane via a second frame, which chamber, depending on the individual process steps, has inlets or outlets with a Working fluid is acted upon. It is particularly advantageous here to use air as the working fluid, with which the liquid located in the first chamber between the press table and membrane can be pushed back into the storage container when the second chamber is pressurized.
  • the membrane press described can also be used advantageously for three-dimensional shaping if flexible aminoplast resin films or films (see
  • the coating is preferably carried out over a large area in a single work step. Furniture parts with low mechanical stress are advantageously coated with a single-layer decorative film. Only a single decorative paper is particularly preferably used for the structure to be coated.
  • Wood substrates such as wood fibers or chipboard, MDF or HDF boards, are particularly preferred as substrates.
  • the aminoplast resin films or films according to the invention are characterized in particular by the fact that the aminoplast resin films or films are pressed onto substrates with a three-dimensionally structured surface made of different materials such as wood, plastics, fiber composites or in particular wood-based materials, e.g. Plywood, fibreboard and especially chipboard surfaces that are crack-resistant, shiny and insensitive to water vapor. Furthermore, the aminoplast resin films according to the invention are particularly well suited for the full or partial sheathing of moldings. In particular, the surfaces have a high color brilliance.
  • Typical areas of application for the aminoplast resin films or films according to the invention are, as already described, furniture parts such as kitchen fronts, panels, Picture frames, door frames, doors, table tops, window sills, fronts or accessories.
  • a paper was made from a mixture of eucalyptus (20% by weight), birch (80% by weight), polyamide and polyester fibers (each 15% by weight based on the cellulose) a fourdrinier machine. Titanium dioxide (10% by weight based on the total fibers) and silicate (5% by weight based on the total fibers) were added to this fiber mixture.
  • the paper had a basis weight of 131 g / m 2 and showed porosity Bendsten of 990 ml / min.
  • Resin System 1 Component 1 A mixture of 730 g 40% by weight aqueous formaldehyde and 334 g water was heated to 30 ° C. The pH of the mixture was adjusted to approximately 9.5 with 25% by weight aqueous sodium hydroxide solution. Then 790 g of melamine were added. The reaction mixture was then heated to 100 ° C., the pH slowly dropping. It was for about 60 min. stirred at a pH of 8.6 to 8.8. As soon as a sample of the reaction mixture had a cloud temperature of 50 ° C., the reaction mixture was cooled to room temperature.
  • Component 2 8.4 g of sodium peroxodisulfate and 600 g of water were placed in a reaction vessel and heated to 80.degree. While maintaining the temperature, feed 1 was continuously added over an hour. Feed 1 was prepared from 387 g of deionized water, 151.2 g of 2-hydroxyethymethacrylate and 58.8 g of acrylic acid. After the start of feed 1, feed 2 was added over a further 45 minutes. Feed 2 consisted of a solution of 81 g of deionized water and 2.1 g of sodium peroxodisulfate. After the end of feed 1, the temperature was maintained for one hour and then feed 3 was added at 80 ° C. within 1.5 hours and feed 4 within 2 hours.
  • Feed 3 consisted of an aqueous monomer emulsion composed of 410 g of deionized water, 4.7 g of a 45% by weight aqueous solution of the surfactant corresponding to Dowfax 2A1, 378 g of styrene and 436.8 g of n-butyl acrylate.
  • Feed 4 consisted of a solution of 410 g of deionized water and 10.5 g of sodium peroxodisulfate. After feed 4 had ended, the mixture was left to react at 80 ° C. for one hour.
  • the mixture was then cooled to room temperature, 134.4 g of a 25% by weight aqueous sodium hydroxide solution were added and the mixture was filtered through a 200 ⁇ m sieve.
  • the solids content of the dispersion obtained was 34.4% by weight and the pH was 7.1. 70% by weight of a component 1 solution was added to 30% by weight of a component 2 solution with stirring.
  • the resin mixture had a viscosity of 65 mPas and a dry content of 51.2% by weight.
  • a mixture of 812 g 40% by weight aqueous formaldehyde and 358 g water was heated to 30 ° C.
  • the pH of the mixture was adjusted to about 9 using 25% by weight aqueous sodium hydroxide solution.
  • 821 g of melamine were added.
  • the mixture was then heated to 100 ° C. and then condensed to a cloud point of 50 ° C. When the cloud point was reached, the reaction mixture was cooled immediately.
  • a pH of about 9.2 was set with 25% by weight aqueous sodium hydroxide solution.
  • the resin solution had a viscosity of 45 mPas (20 ° C).
  • the melamine resin film obtained was pressed onto an MDF (Medium Density Fiber) plate with a diameter of 16.5 cm including a 3D structure.
  • 3D structures are contours with round and straight surfaces and / or edges with a defined angle.
  • the pressing process took place in a laboratory press at 150 to 160 ° C under a force of 45 kN and in a time of 30-60 s.
  • the melamine resin film obtained was pressed onto a smooth MDF board at 160-165 ° C. under a pressure of 2.5 N / mm 2 and over a period of 110 s. The following tests were carried out:
  • the quality of the curing was determined by exposure to the smooth coated MDF board for 16 hours of 0.2N hydrochloric acid stained with 0.004% by weight rhodamine B solution. With good hardening, the surface is not attacked by the acid. The strength of the attack can be judged from the strength of the red color. Evaluation:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von beschichteten Substraten mit einer dreidimensional strukturierten Oberfläche, in dem ein Dekorpapier, das 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthält, mit einem vernetzbaren aminoplastischen Harz imprägniert, auf das Substrat aufgebracht und dreidimensional verformt wird. Ferner betrifft die Erfindung Aminoplastharzfolien oder -filme, sowie die Verwendung eines modifizierten Dekorpapiers zur Herstellung von Aminoplastharzfolien oder -filme für die 3D-Beschichtung.

Description

Verfahren zur Herstellung von beschichteten Substraten
Beschreibung Die Erfindung betrifft ein Verfahren zur Herstellung von beschichteten Substraten. Ferner betrifft die Erfindung Aminoplastharzfolien oder -filme, sowie die Verwendung eines modifizierten Dekorpapiers zur Herstellung von Aminoplastharzfolien oder -filme für die 3D-Beschichtung.
Üblicherweise werden zur Beschichtung von dreidimensional strukturierten Flächen (3D-Beschichtung) Thermoplastfolien verwendet, z.B. zum Beschichten von Holzwerkstoffen in der Möbelindustrie. Der bedeutende Vorteil dieser Thermoplastfolien ist deren Elastizität, nachteilig sind die hohen Kosten in der Herstellung u.a. verursacht durch die zusätzliche Verwendung von Klebemitteln.
Wünschenswert ist, die selbstklebenden kostengünstigen Melaminharze, die z. B. in der Möbelindustrie zur Veredelung von glatten Oberflächen verwendet werden, ebenso zur Beschichtung von dreidimensional strukturierten Flächen einzusetzen. Die Melaminharze zeichnen sich ferner durch hohen Glanz und gute Bedruckbarkeit aus. Reine Melaminharze sind aber für diese Anwendung zu spröde.
Verbesserte Flexibilität der Folien konnte nach DE-A 23 09 334 mit veretherten Methy- lolgruppen tragenden Melaminharzen erzielt werden. Diese Melaminharzfolien werden vor allem zur Oberflächenvergütung von Holzwerkstoffen wie Span-Hartfaser- und Tischlerplatten eingesetzt. Um die zur Beschichtung von beispielsweise abgerundeten Kanten erforderliche Flexibilität und Elastizität zu erreichen, wurden die Melaminharze weiter modifiziert, z.B. durch Zugabe von Guanamin nach DE-A 4439 156 oder durch Zugabe geringer Mengen an einer wässrigen Kunstharz-Dispersion nach DE-A 38 37965. Eine Kombination von Aminoplastharzen mit Acrylat-Dispersionen bewirkt nach DE-A 3700 344 eine gewisse Elastizität der hergestellten Folien, allerdings verursachte ein hoher Dispersionsanteil einen wesentlichen Verlust an Überspannfähigkeit und Spaltfestigkeit; Eigenschaften, die gerade bei dem Beschichten von dreidimensional strukturierten Flächen von Nöten sind.
Die ältere deutsche Anmeldung mit dem Aktenzeichen 10301901.4 offenbart zum ersten Mal selbstklebende Melaminharzfilme, die für die 3D-Beschichtung von Möbelstücken direkt einsetzbar sind. Diese Melaminharze bestehen aus einer Mischung aus Melamin-Formaldehyd-Kondensaten, veretherten Melamin-Formaldehyd-Kondensaten und Acrylat-Dispersionen. Die beschriebenen Melaminharzfilme eignen sich gut zum Beschichten von dreidimensional verformten Oberflächen. Verbesserte Flexibilität der Folien konnte ferner durch Modifizierung des mit dem Mel- aminharz zu tränkenden Dekorpapiers erreicht werden. Die WO 00/53666, WO 00/53667, WO 00/53668 und WO 02/38345 beschreiben unterschiedliche Faserpapiere zur Beschichtung von beispielsweise Körpern mit dreidimensionalen Struktu- ren. Die WO 00/53666 offenbart hierfür einen Carrier, der aus schmelzbarem Polymeren und Zellulose oder regenerierte Zellulose besteht. Als schmelzbare Polymere werden Zelluloseester und bevorzugt Zelluloseacetat beschrieben. Die WO 00/53667 beschreibt Faserpapiere unter Verwendung von Carriern auf vollständiger oder teilweiser Basis von regenerierter Zellulose. Die Regenerierung der Zellulose besteht in einer Umwandlung in ein lösliches Zellulosederivat unter Verwendung einer Säure, wobei das Derivat in Fasern konvertiert werden kann und gegebenenfalls die Größe der Fasern reduziert wird. Die WO 00/53668 beschreibt Carrier aus faserigen Zelluloseestern, bevorzugt Zelluloseacetaten. Die WO 02/38345 beschreibt die Verwendung von Dekorpapier, das einen Anteil an Baumwoll-Linter von mindestens 10 Gew.-% und bis zu 100 Gew.-% des Gesamtfaseranteils hat, zur Beschichtung von dreidimensional strukturierten Oberflächen.
Die bekannten Folien oder Filme aus den modifizierten Melaminharzen und Dekorpapieren sind trotz der bislang erreichten Erfolge noch verbesserungswürdig. Insbeson- dere steckt in der Eigenschaft der Elastizität der Folien oder der Filme noch Optimierungsbedarf. Die Beschichtung soll aus ästhetischen Gründen und gleichzeitig zur Vereinfachung der Herstellung nur mit einer einzigen Folie bzw. Film in einem einzigen Pressprozess erfolgen. Das Hauptmerkmal solcher Folien bzw. Filme liegt in der Verformbarkeit während des Pressprozesses.
Der Erfindung lag demnach die Aufgabe zugrunde, ein verbessertes Verfahren zur Hersteilung eines beschichteten Substrats mit einer dreidimensional strukturierten Oberfläche aufzufinden. Insbesondere sollte ein Verfahren zur Herstellung eines beschichteten Möbelstückes oder Holzwerkstoffes mit einer dreidimensional strukturierten Oberfläche bereitgestellt werden. Ferner sollte eine flexiblere Melaminharzfolie oder - film gefunden werden, die sich auch für die 3D-Beschichtung und insbesondere zur Vollummantlung von Strukturen eignet. Die beschichteten Oberflächen sollen keinen Weißbruch, d.h. durchschimmernden Untergrund, und ungewollte Falten an den Stauchstellen aufweisen.
Es wurde überraschend ein Verfahren gefunden, das zur Herstellung von teilweise oder vollständig beschichteten Substraten mit einer dreidimensional strukturierten Oberfläche besonders geeignet ist, in dem ein Dekorpapier, das 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthält, mit einem vemetzbaren aminoplastischen Harz imprägniert, auf ein Substrat aufgebracht und dreidimensional verformt wird. Unter dem Begriff „dreidimensionale Verformung" ist die teilweise oder vollständige Beschichtung von Körpern, Strukturen, Reliefs, Profilen, Prägungen und dergleichen zu verstehen. Diese weisen dreidimensional strukturierte Oberflächen auf, also Formen, Gestaltungen oder Strukturen, die sich in alle drei Raumrichtungen erstrecken. Die Formenveränderungen kann sowohl fließend als auch abrupt sein, wie beispielsweise bei scharfkantigen Strukturen, wie Kanten, Ecken und/oder Zuspitzungen, die einen definierten Winkel beschreiben, der sich aus zwei oder mehreren aufeinander zulaufenden Ebenen ergibt. Ferner ist unter „dreidimensionaler Verformung" auch die VoII- ummantelung, bzw. gleichzeitige/simultane Beschichtung von Fronten und Kanten, von regelmäßigen oder unregelmäßigen Formkörpern, Profilen und dergleichen zu verstehen.
Als Ausgangsmaterial für die Fasern aus synthetischen Polymeren werden vorteilhaft Polyamid, Polyimid, Polyurethane, Polypropylen, Polyethylen, Polyacrynitril, Polyvinyl- alkohol oder verschiedene Polyester, beispielsweise Polyethylenterephthalat, Polybutylenterephthalat, Polytrimethylenterephthalat, Polyethylennaphthalat, verwendet. Bevorzugt ist die Verwendung von Fasern aus Polyamid, Polyester, Polypropylen oder Polyethylen.
Mischungen aus Fasern aus synthetischen Polymeren sind ebenfalls vorteilhaft. Beispielsweise kann eine Mischung aus zwei von den oben genannten synthetischen Fasern wie z. B. Polyamid-, Polypropylen-, Polyethylen- und Polyesterfasern in einem Gewichtsverhältnis von 1:99 bis 99:1 eingesetzt werden. Je nach Spezifikation der zu erhaltenden Dekorpapiere können vorteilhafte Faser-Mischungen ausgewählt werden, wobei auch mehr als zwei Fasertypen vorhanden sein können.
Es können auch Fasern aus Copolymeren oder Polymerblends eingesetzt werden, wobei beispielsweise Blockpolymere oder Polymerblends aus Polyamid, Polyimid, Polyurethane, Polypropylen, Polyethylen, Polyacrynitril, Polyvinylalkohol oder verschiede- ne Polyester, beispielsweise Polyethylenterephthalat, Polybutylenterephthalat, Polytrimethylenterephthalat, Polyethylennaphthalat, verwendet werden. Copolymerisate aus Monomeren, wie beispielsweise Propylen, Ethylen,(Meth)Acrynitril, Vinylalkohol oder Estern, z. B. von Vinylalkohol, können auch als Basis zur Herstellung der synthetischen Fasern dienen.
Die Fasern aus synthetischen Polymeren weisen vorteilhaft eine möglichst geringe Verzweigung, insbesondere keine Verzweigung, auf. Die einzelnen Fasern weisen ähnliche Längen wie typische Naturfasern auf. Vorteilhaft haben die synthetischen Fasern eine Länge von 0,5 bis 20 mm, insbesondere von 0,5 bis 10 mm, besonders be- vorzugt von 2 bis 10 mm. Der Faserdurchmesser liegt in der Regel bei 5 bis 30 μm, bevorzugt bei 10 bis 25 μm. Die Fasern weisen ferner eine mittlere Oberfläche von 1500 bis 3500 m2/g, insbesondere von 2000 bis 2500 m2/g auf. Die Herstellung der synthetischen Fasern ist dem Fachmann bekannt. Gängige Herstellverfahren sind beispielsweise das Spinnverfahren oder die Herstellung mittels Flashing-Prozess.
Die synthetischen Fasern können in jedem beliebigen Verhältnis mit den Zellstofffasern des Dekorpapiers aus beispielsweise Birke-, Eukalyptus- und Langfaserzellstoff, wie Kiefer oder Fichte, gemischt und auf allen gebräuchlichen Papiermaschinen verarbeitet werden. Ferner kommen auch andere Baumarten oder Gas-, Strauch- und Getreide- Zellstoffe in Betracht. Weitere Details finden sich in „Fasern für den Papiermacher" im P. Keppler Verlag KG. Die Zellstoffe werden beispielsweise mittels des Sulfit- oder des Sulfatherstellungsverfahrens gewonnen. Die Zellstoffe können gegebenenfalls durch unterschiedliche, dem Fachmann bekannte, Verfahren gebleicht werden. Die Zellulosefasen werden je nach Einsatzgebiet ausgesucht, wobei die Vor- und Nachteile der ein- zelnen Zellulosefasern in der Fachwelt bekannt sind. Die Verarbeitung der Fasern zu Dekorpapier ist allgemein bekannt. Je nach verwendeter Faserart und Faseranteil sind geringfügige Änderungen in der Papierherstellung erforderlich, beispielsweise bei der Fasermischung, Faservorbehandlung, Faserzugabe, Mahlung sowie Prozesssteuerung. Bei der Trocknung des Dekorpapiers sollte die Temperatur vorteilhaft einen Be- reich von 50 bis 150°C nicht überschreiten. Temperaturen von über 120°C können zu reduzierter Blattdicke führen. Der allgemein bekannten Dekorpapierherstellung können ferner gängige Veredlungsprozesse nachgeschaltet werden, wie beispielsweise Glätten, Kleben, Prägen, Bedrucken (beispielsweise Tief-, Flexo- oder Digitaldruck), Imprägnieren, Verformen und/oder Lackieren.
Die erfindungsgemäß zur Anwendung gelangenden Dekorpapiere weisen eine Porosität Bendtsen von 300 bis 2000 ml/min, insbesondere 400 bis 1200 ml/min, auf und besitzen somit eine sehr gut Imprägnierbarkeit. Die Porosität wird den Anforderungen der Imprägnierung entsprechend angepasst. Die Nassfestigkeit liegt vorteilhaft bei 6 N bis 40 N. Die Deckkraft des Dekorpapiers liegt in der Regel bei 0 bis 100 %, insbesondere bei 60 bis 100 %. Das Dekorpapier weist üblicherweise ein Flächengewicht von 40 bis 300 g/m2, insbesondere von 80 bis 200 g/m2. Der Farbeindruck bewegt sich zwischen weiß und schwarz, Buntfarben in zahlreichen Nuancen sind realisierbar.
Die Dekorpapiere können einseitige oder beidseitige Glätte aufweisen, wobei einseitige Glätte bevorzugt ist.
Das Dekorpapier, das 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthält, enthält vorteilhaft 95 bis 10 Gew.-% Zellulose. Die Zellulose ist vorteilhaft chemisch unverändert. Die Zellulose kann grundsätzlich gebleicht oder ungebleicht verwendet werden. Bevorzugt ist der Einsatz von gebleichter Zellulose. Eingesetzt werden vorteilhaft Eukalyptus Globulus, nordische Birke und Langfaser. Bevorzugt enthält das Dekorpapier 10 bis 60 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren und 90 bis 40 Gew.-% Zellulose. Insbesondere enthält das Dekorpapier 10 bis 40 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren und 90 bis 60 Gew.-% Zellulose. Besonders bevorzugt enthält das Dekorpapier 10 bis 40 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus Polyamid, Polyester, Polypropylen und/oder Polyethylen.
Das erfindungsgemäß verwendete Dekorpapier kann neben den Zellulosefasern und den Fasern aus synthetischem Polymer übliche, dem Fachmann bekannte andere Bestandteile enthalten, wie beispielsweise Sekundärfasern, Füllstoffe oder Pigmente. Die anorganischen oder organischen Pigmente steuern u.a. die Opazitätserzeugung, Farbvermittlung, Bedruckbarkeit und Dickeerhöhung. Vorteilhaft können Weiß- oder Farbpigmente als Verbindungen in Form von Oxiden, Silikaten, Carbonaten, Sulfaten oder Rußen in der Rezeptur vorliegen.
Bevorzugte anorganische Pigmente, die im erfindungsgemäß verwendeten Dekorpapier als Farbmittel dienen können, sind beispielweise Eisenoxide, Eisencyanoferrate, Natriumaluminiumsilikate und/oder Titandioxide. Die Titandioxide werden beispielswei- se nach dem Chlorid- oder dem Sulfatverfahren hergestellt. Je nach Einsatzgebiet können diese modifiziert, beispielsweise beschichtet oder gecoatet, sein. Die Modifizierung kann mit verschiedenen Materialien erfolgen, beispielsweise mit Phosphor, Phosphorpentoxid, Aluminium, Zirkonium, Aluminiumoxid und/oder Siliziumdioxid.
Bevorzugte organische Pigmente, die im erfindungsgemäß verwendeten Dekorpapier als Farbmittel dienen können, sind beispielsweise solche aus der Klasse der Mono- azopigmente (z. B. Produkte, die sich von Acetessigarylidderivaten oder von ß-Naph- tholderivaten ableiten), verlackte Monoazofarbstoffe (z. B. verlackte ß-Oxynaphthoe- säurefarbstoffe), Disazopigmente, kondensierte Disazopigmente, Isoindolinderivate, Derivate der Naphthalin- oder Perylentetracarbonsäure, Anthracinonpigmente, Thioin- digoderivate, Azomethinderivate, Chinacridone, Dioxazine, Pyrazolochinazolone, Phthalocyaninpigmente oder verlackte basische Farbstoffe (z. B. verlackte Triaryl- methanfarbstoffe).
Der Gesamtpigmentanteil in dem gefertigten Rohpapier liegt vorteilhaft zwischen 0 und 40 Gew.-% bezogen auf das Gesamtpapier, insbesondere zwischen 5 und 20 Gew.-%. Bei der Verwendung von Pigmenten werden 5 bis 10 Gew.-% Pigmente auf Basis von Silikaten und bis zu 20 Gew.-%, bevorzugt 0 bis 15 Gew.-%, Titandioxide und Eisenoxide verwendet.
Die nassfesten Dekorpapiere lassen sich in der Regel normalerweise problemlos innerhalb bekannter Standardprozesse wieder aufbereiten. Als vernetzbare aminoplastische Harze kommen alle dem Fachmann bekannten Harze in Betracht, insbesondere Melamin-Harnstoff-Formaldehyd- und Melamin-Formal- dehyd-Harz oder Mischungen hieraus. Diese Harze können mit Alkoholen, bevorzugt C bis C4-Alkohole, insbesondere Methanol, teilweise oder vollständig verethert sein. Bevorzugt werden veretherte und nicht veretherte Melamin-Harnstoff-Formaldehyd- und Melamin-Formaldehyd-Harze oder Mischungen hieraus verwendet, insbesondere veretherte und/oder nicht veretherte Melamin-Formaldehyd-Harze, besonders bevorzugt nicht veretherte Melamin-Formaldehyd-Harze.
Besonders bevorzugt sind Harzmischungen, die nicht veretherte Melamin- Formaldehyd-Kondensat(e), gegebenenfalls veretherte Melamin-Formaldehyd- Kondensat(e) und Polymer-Dispersion(en) enthalten.
Insbesondere sind solche Harzmischungen geeignet, die
(i) 5 bis 90 Gew.-%, insbesondere 20 bis 80 Gew.-% eines oder mehrerer nicht veretherter Melamin-Formaldehyd-Kondensationsprodukte, (ii) 0 bis 80 Gew.-%, insbesondere 0 bis 50 Gew.-% eines oder mehrerer veretherte Melamin-Formaldehyd-Kondensationsprodukte, und (iii) 10 bis 95 Gew.-%, insbesondere 20 bis 80 Gew.-% einer oder mehrerer Polymer-Dispersionen enthalten. Die Mengenangaben der Komponenten (i), (ii) und (iii) ergänzen sich auf 100 Gew.-% und beziehen sich auf die Flüssigharzmischung.
Der Melaminharz-Mischung können noch Hilfs- und Zusatzmittel zugesetzt werden, beispielsweise 0,1 bis 50 Gew.%, bevorzugt 0,2 bis 30 Gew.%, insbesondere 0,5 bis 20 Gew.-% Harnstoff, Caprolactam, Phenyldiglykol, Butandiol und/oder Saccharose bezogen auf 100 Gew.-% der Mischung (i) bis (iii). Desweiteren kann sie übliche Additive enthalten wie beispielsweise Netzmittel, Härtungsmittel und Katalysatoren.
Zusätzlich kann die Harzmischung ein oder mehrere der folgenden Komponenten in einer Gesamtmenge von 0 bis 5 Gew.% bezogen auf die Harzmischung enthalten: anionische Tenside (Natrium-, Kalium- und/oder Ammoniumsalze der Fettsäure und sulphonischen Säure; Alkalisalze der C12- bis C16-Alkylsulfate; ethoxylierte, sulfatierte und/oder sulfonierte Fettalkohole; Alkylphenole; sulfodicarboxylierte Ester; Polyglyco- lethersulfate), nicht-ionische Tenside (ethoxylierte Fettalkohole und Alkylphenole mit 2 bis 150 Ethylenoxid-Einheiten per Molekül), kationische Tenside (Ammonium-, Phosphonium-, und/oder Sulfonium-Verbindungen mit einem hydrophoben Strukturelement, das mindestens eine lange aliphatische Kohlenwasserstoffkette enthält), Stärke, Polyethylenglykol und/oder Poly(vinylalkohol).
Zu den Harzkomponenten ist im einzelnen folgendes auszuführen: Als Harzkomponente (i) werden Melamin-Formaldehyd-Kondensationsprodukte verwendet. Die Herstellung der Harzkomponente (i) ist allgemein bekannt. Zunächst wird beispielsweise 1 Mol Melamin mit 1 ,4 bis 2 Mol Formaldehyd bei pH-Werten von 7 bis 9 und bei Temperaturen von 40 bis 100 °C kondensiert, bis die geeignete Kondensati- onsgrad erreicht wird. Vorteilhaft liegt das Molverhältnis von Melamin zu Formaldehyd bei 1:1,15 bis 1:1,9, bevorzugt bei 1:1,4 bis 1:1,6.
In der Harzkomponente (ii) werden Melamin-Formaldehyd-Kondensationsprodukte mit C bis C -Alkanolen wie Methanol, Ethanol, Propanol und/oder Butanol oder Glykole, wie z.B. Ethylenglykol, Diethylenglykol, Propylenglykol und/oder Dipropyienglykol, verethert. Bevorzugt sind Methanol und Buthanol. Die Herstellung der Harzkomponente (ii) ist allgemein bekannt. Das Melamin-Formaldehyd-Kondensationsprodukt wird beispielsweise mit 20 bis 30 Mol Methanol versetzt und bei pH-Werten von 1 bis 5 und Temperaturen von 40 bis 80 °C verethert. Die Kondensationsbedingungen richten sich nach der für das Harz gewünschten Wasserverdünnbarkeit, die mindestens 1 :6 beträgt. Nach der Kondensation werden die Melaminharze durch Destillation von überschüssigem Alkohol und Formaldehyd befreit. Eventuell vorhandener restlicher Formaldehyd wird bei Zusatz von Harnstoff bei Temperaturen von Raumtemperatur bis 90°C, bevorzugt 60 bis 70°C umgesetzt. Vorteilhaft liegt das Molverhältnis von Mel- amin zu Formaldehyd zu Ethergruppe bei 1:1,2:1 bis 1:6:6, bevorzugt bei 1:2,5:2 bis 1:5:4,5.
Als Harzkomponente (iii) werden Copolymerisat-Dispersionen verwendet, deren Copo- lymerisate bevorzugt Carboxyl-, Hydroxy-, Amid-, Glycidyl-, Carbonyl-, N-Methylol, N- Alkoxymethyl, Amino- und/oder Hydrazogruppen enthalten. Die obengenannten funktioneilen Gruppen im Copolymerisat werden auf übliche Weise durch Einpolymerisieren entsprechender Monomere, die diese funktioneilen Gruppen tragen, erhalten. Die Copolymerisate enthalten die obengenannten funktioneilen Gruppen im allgemeinen in solchen Mengen, dass sie 0,1 bis 50 Gew.-%, vorzugsweise 0,3 bis 20, bezogen auf das Copolymerisat, dieser Monomeren mit funktionellen Gruppen einpolymerisiert enthalten können.
Als Hauptmonomere der Comonomeren mit den obengenannten Gruppen eignen sich die üblichen, damit copolymerisierbaren olefinisch ungesättigten Monomeren, z.B. C bis C12-Alkylester der Acrylsäure und Methacrylsäure, bevorzugt C bis C8-Alkylester, z.B. Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, Propyiacrylat, Propylmethacrylat, Butylacrylat, Butylmethacrylat, 2-Ethylhexylacrylat, 2-Ethylhexyl- methacrylat, Laurylacrylat und Laurylmethacrylat; Vinylester von C2- bis C4-Carbon- säuren, z.B. Vinylacetat und Vinylpropionat, C bis C -Dialkylester der Maleinsäure und Fumarsäure, Vinylaromaten wie Styrol, α-Methylstyrol, Vinyltoluol; Acrylnitril, Me- thacrylnitril, Acrylamid, Methacrylamid sowie Vinylether mit 3 bis 10 Kohlenstoffatomen, Vinylhalogenide wie Vinylchlorid und Vinylidenchlorid; mehrfach olefinisch ungesättigte Verbindungen wie Butadien und Isopren sowie Gemische der obengenannten Monomeren, soweit sie miteinander copolymerisierbar sind.
Zur Herstellung der Harzmischung wird üblicherweise der pH-Wert der Polymer- Dispersion vor der Zugabe der anderen Komponenten auf 7,5 bis 10 eingestellt.
Die so erhaltenen Aminoplastharze weisen im allgemeinen Feststoffgehalte von 40 bis 70 Gew.-% auf. Als Feststoffgehalt wird hier der Trockenrückstand bezeichnet, der ermittelt wird, indem 1 g wässriges Harz zwei Stunden im Trockenschrank bei 120°C getrocknet wird. Die Viskosität der wässrigen Harze liegen im Bereich von 10 bis 200 mPas, vorzugsweise zwischen 30 und 150 mPas (20°C).
Die Erfindung betrifft ferner Aminoplastharzfolien oder -filme enthaltend mit vernetzbarem aminoplastischen Harz getränkte Dekorpapiere, die 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthalten.
Zu deren Herstellung wird das bereits beschriebene Dekorpapier, das 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthält, mit den Aminoplastharzen in an sich bekannter Weise imprägniert.
Dabei kommen die Aminoplastharze in Form einer 40 bis 70 gewichtsprozentigen wässrigen Lösung zur Anwendung, der üblicherweise ein Härter zugesetzt wird.
Als Härter kommen beispielsweise Bronstedt-Säuren wie organische Sulfonsäuren und Carbonsäuren sowie deren Anhydride, z.B. Maleinsäure, Maleinsäureanhydrid und Ameisensäure, Ammoniumverbindungen, z.B. Ammoniumsulfat, Ammoniumsulfit, Ammoniumnitrat, Ethanolammoniumchlorid, Dimethylethanolammoniumsulfit sowie Härterkombinationen wie Morpholin/p-Toluolsulfonsäure in Betracht.
Die Härter können in Mengen von 0 bis 2,5 Gew.-%, bezogen auf das wässrige Tränkharz, zugegeben werden. Dem Fachmann ist bekannt, dass die Härterdosierung den jeweiligen anwendungstechnischen Erfordernissen angepasst werden kann, wobei die Reaktivität der Tränkharz/Härter-Gemische z. B. über die Messung der Trübungszeiten und Gelierzeiten entsprechend eingestellt werden kann.
Den Imprägnierflotten können zusätzlich Hilfsmittel wie Netzmittel zugesetzt werden. Als Netzmittel eignen sich zum Beispiel ethoxylierte Fettalkohole oder Alkylphenoletho- xylate, die in Mengen von 0 bis 1 Gew.-%, bezogen auf die Harzlösung, zugesetzt werden können.
Die Art und Weise, wie die Imprägnierflotten zu Melaminharz-Imprägnaten weiterverarbeitet werden und wie die Beschichtung der Holzwerkstoffe mit diesen Imprägnaten erfolgt, ist dem Fachmann bekannt. Das erfindungsgemäß verwendete Dekorpapier lässt sich in dem selben Maße verarbeiten wie für die Imprägnierung mit Aminoplastharzen bekanntes handelsübliches Dekorpapier.
Die Imprägnierung erfolgt in der Regel so, dass das Dekorpapier mit der Aminoplastharzlösung durchtränkt wird. Beispielsweise werden Dekorpapiere mit einem Flächengewicht im Bereich von 60 bis 200 g/m2 mit 120 bis 150 Gew.-%, bezogen auf das Papiergewicht der Imprägnierflotte, bei Raumtemperatur imprägniert. Das imprägnierte Papier wird anschließend bis auf einen Restfeuchtegehalt von ca. 5 bis 10 Gew.-% getrocknet. Zur Imprägnierung eignen sich die üblichen Imprägnieranlagen, welche im sogenannten Ein- oder Zweistufenverfahren die gewünschte Harzmenge auf und in die Papiere bringen. Der Vorteil des Zweistufenverfahrens ist, dass man gegebenenfalls unterschiedliche Aminoplastharze für die Vor- und Nachtränkung verwenden kann.
Die auf diese Weise hergestellten Aminoplastfolien oder -filme werden anschließend heiß oder kalt verformt. Vorteilhaft werden die Folien oder Filme bei erhöhten Temperaturen von beispielsweise 150 bis 210°C und/oder erhöhten Drücken von beispielsweise 15 bis 30 bar während einer Presszeit von beispielsweise 10 bis 60 s mit dem Substrat verpresst.
Vorteilhaft erfolgt die Haftung beim Beschichten durch das Aminoplastharz, d.h. es werden vorteilhaft selbstklebende Aminoplastharzfilme zur 3D- Verformung eingesetzt. Bei einigen Anwendungen kann allerdings auch die Verwendung von nicht- selbstklebenden Aminoplastharzfolien von Vorteil sein, in diesem Fall werden handelsübliche Klebstoffe oder weitere Klebeträger verwendet. Ferner kann bei einigen Anwendung eine Nachverklebung von Vorteil sein.
Das Substrat, insbesondere Holzwerkstoff oder andere Formträger wie beispielsweise vorgeformte Kunststoffe oder Metallbleche, und das Dekorpapier können beispielswei- se zusammen verformt werden. Dies geschieht vorteilhaft durch Pressen in einer
Formträgerpresse (In-mould-Presse). Es kann aber auch ein Substrat mit einer dreidimensionalen Struktur und ein Dekorpapier dieser Kontur oder ohne Kontur entsprechend verformt werden. Vorteilhaft wird die dreidimensionale Verformung in einer Membranpresse durchgeführt oder gegebenenfalls in einer Presse, deren Pressblech der Negativform des dreidimensionalen Trägermaterials entspricht.
Beispielsweise bestehen bei einer solchen Membranpresse die oberen und/oder unteren und/oder seitlichen Seiten der Pressenform aus einer Membran, die durch ggf. aufgeheizte Luft, Stickstoff oder Flüssigkeit unter Druck gesetzt werden kann (siehe WO 00/53667 auf den Seiten 16 bis 18). Vorteilhaft beinhaltet eine solche Membranpresse einen unteren und einen oberen Presstisch, eine auf ein mit Aminoplastharzfolien oder -filmen überdecktes und damit zu beschichtendes Substrat anpressbare elastische Membran, die mit einem Presstisch eine druckdichte Kammer bildet, Kanäle zum Ein- und Auslassen eines die Membran beaufschlagenden Fluids und eine Pressensteuerung.
Unter dem Begriff „anpressbare Membran" werden sowohl absenkbare als auch anhebbare oder von der Seite andrückende Membranen verstanden.
Vorteilhaft wird zum dreidimensionalen Verformen eine Membranpresse verwendet, die zwei Vorratsbehälter für zwei unterschiedlich temperierte Fluide aufweist, die mit Arbeitsventilen versehen sind, die von der Pressensteuerung auf- und zusteuerbar sind. Vorteilhaft weist die Membranpresse eine Fördervorrichtung für die Fluide auf. Bevorzugt weist die Membranpresse für jedes Fluid eigene Ein- und Auslässe auf.
Dadurch, dass die Presse bevorzugt zwei Vorratsbehälter aufweist, welche unterschiedlich temperierte Fluide beinhalten, die über Arbeitsventile und eine Fördervorrichtung wechselweise die Membran beaufschlagen können, lässt sich eine Heiz-Kühl- Wechselpresse verwirklichen, mit der ein Werkstück zunächst heiß und anschließend kalt verpresst werden kann, ohne dass dieses von einer Presse in eine andere Presse transportiert werden muss, was gleichzeitig den wesentlichen Vorteil mit sich bringt, dass das Werkstück in der Presse fixiert bleibt, so dass sich das zu beschichtende Material nicht ablösen und das beschichtete Werkstück nicht aufwölben oder verziehen kann, da es bis zum Erreichen einer Mindesttemperatur in der Membranpresse fixiert bleibt.
Vorteilhaft weist jeder Vorratsbehälter ein Druckluftventil und ein Entlüftungsventil auf. Der Inhalt der Vorratsbehälter kann in Abhängigkeit der einzelnen Verfahrensschritte mit Druck veränderbarer Höhe beaufschlagt werden. Vorteilhaft sind in den Vorratsbe- hältern Heizungsvorrichtungen oder Kühlvorrichtungen für das Fluid angeordnet, die bei erhöhtem Wärme- oder Abwärmebedarf während eines Pressvorganges auch umgewälzt werden kann.
Bevorzugt wird als Fluid eine Flüssigkeit wie Wasser oder Thermoöl verwendet, die eine hohe Wärmekapazität aufweisen, so dass die erforderlichen Wärmemengen allein von den Fluiden zu- und abgeführt werden können, ohne dass die Pressentische selbst geheizt oder gekühlt werden müssten. Sie können sogar auf ihren zum Pressenraum gerichteten Flächen mit Isolationsmaterial ausgestattet sein, so dass über die Presstische keine Wärmeverluste auftreten. Vorteilhaft ist weiterhin, dass die Vorratsbehälter, welche über Druckluft und Entlüftungsventile verfügen, in Abhängigkeit von den mit der Membranpresse durchführbaren Verfahrensschritten mit Druck oder Unterdruck beaufschlagbar sind, so dass ein Wechsel der Flüssigkeiten beschleunigt durchgeführt werden kann bzw. der Pressdruck in beliebiger Höhe oder auf die Werkstücke und Aminoplastharzfolien oder -filme optimiert zur Verfügung gestellt werden kann.
Vorteilhaft weist die Membranpresse als Fördervorrichtung für die Flüssigkeiten unter- halb der ersten Membran eine zweite elastische Membran auf, die über einen zweiten Rahmen mit der ersten Membran eine zweite druckdichte Kammer bildet, die in Abhängigkeit von den einzelnen Verfahrensschritten durch Ein- oder Auslässe mit einem Arbeitsfluid beaufschlagbar ist. Besonders vorteilhaft ist hier die Verwendung von Luft als Arbeitsfluid, mit der bei unter Innendruck gesetzter zweiter Kammer die in der ers- ten Kammer zwischen Presstisch und Membran befindliche Flüssigkeit in die Vorratsbehälter zurückgedrängt werden kann. Eine solche Fördervorrichtung für Flüssigkeiten ist bei minimalem technischen Aufwand extrem einfach, wirkungsvoll und wartungsarm.
Die beschriebene Membranpresse lässt sich ferner vorteilhaft zum dreidimensional Verformen verwenden, wenn flexible Aminoplastharzfolien oder -filmen (siehe
DE 103 01 901) aus mit beispielsweise Aminoplastharzen aus nicht-veretherten Mel- amin-Formaldehyd-Kondensat(en), gegebenenfalls veretherten Melamin-Formaldehyd- Kondensat(en) und Polymer-Dispersion(en), wie weiter vorne beschrieben, imprägnierten im Stand der Technik bekannten saugfähigen cellulosehaltigen Faserstoffen, Ge- weben oder Dekorpapieren, wie beispielsweise in DE 200 19 180 beschrieben, verwendet werden.
Die Beschichtung erfolgt vorzugsweise flächig in einem einzigen Arbeitsschritt. Möbelteile, deren mechanische Beanspruchung gering ist, werden vorteilhaft mit einem ein- lagigen Dekorfilm beschichtet. Besonders bevorzugt wird nur ein einziges Dekorpapier für die zu beschichtende Struktur verwendet.
Als Substrate kommen besonders bevorzugt Holzwerkstoffe in Betracht wie beispielsweise Holzfasern oder Spanplatten, MDF- oder HDF-Platten.
Die erfindungsgemäßen Aminoplastharzfolien oder -filme zeichnen sich insbesondere dadurch aus, dass man durch Aufpressen der Aminoplastharzfolien oder -filme auf Substrate mit einer dreidimensional strukturierten Oberfläche aus unterschiedlichen Materialien wie Holz, Kunststoffe, Faserverbundstoffe oder insbesondere Holzwerkstof- fe, z.B. Sperrholz, Holzfaserplatten und insbesondere Spanplatten Oberflächen erhält, die rissbeständig, glänzend und unempfindlich gegen Wasserdampf sind. Ferner sind die erfindungsgemäßen Aminoplastharzfilme besonders gut zur Voll- oder Teilumman- telung von Formkörpern geeignet. Insbesondere weisen die Oberflächen eine hohe Farbbrillanz auf.
Typische Einsatzgebiete für die erfindungsgemäßen Aminoplastharzfolien oder -filme sind wie bereits beschrieben Möbelteile wie beispielweise Küchenfronten, Paneelen, Bilderrahmen, Türzargen, Türen, Tischplatten, Fensterbänke, Fronten oder Accessoires.
Beispiele
A) Herstellung des Dekorpapiers 1 Ein Papier wurde aus einer Mischung von Eukalytus- (20 Gew.-%), Birken- (80 Gew.- %), Polyamid- und Polyesterfasern (jeweils 15 Gew.-% bezogen auf den Zellstoff) in einer Langsiebmaschine hergestellt. Zu dieser Fasermischung wurden Titandioxid (10 Gew.-% bezogen auf die Gesamtfasern) und Silikat (5 Gew.-% bezogen auf die Gesamtfasern) zugegeben. Das Papier hatte ein Flächengewicht von 131 g/m2 und zeigte Porosität Bendsten von 990 ml/min.
B1) Harzsytem 1 Komponente 1 : Eine Mischung aus 730 g 40 Gew.-% wässrigem Formaldehyd und 334 g Wasser wurde auf 30°C temperiert. Der pH-Wert des Gemisches wurde mit 25 Gew.-% wässriger Natiumlauge auf ca. 9,5 eingestellt. Anschließend erfolgte die Zugabe von 790 g Melamin. Das Reaktionsgemisch wurde daraufhin auf 100°C erhitzt, wobei der pH-Wert langsam abfiel. Es wurde für ca. 60 min. bei einem pH-Wert von 8,6 bis 8,8 gerührt. Sobald eine Probe des Reaktionsgemisches eine Trübungstemperatur von 50°C aufwies, wurde das Reaktionsgemisch auf Raumtemperatur abgekühlt.
Komponente 2: In einem Reaktionsgefäß wurden 8,4 g Natriumperoxodisulfat und 600 g Wasser vorgelegt und auf 80°C erwärmt. Unter Beibehaltung der Temperatur gab man Zulauf 1 innerhalb einer Stunde kontinuierlich zu. Zulauf 1 wurde aus 387 g entionisiertem Wasser, 151,2 g 2-Hydroxyethymethacrylat und 58,8 g Acrylsäure zubereitet. Nach Beginn von Zulauf 1 wurde innerhalb weiterer 45 Minuten Zulauf 2 zugegeben. Zulauf 2 bestand aus einer Lösung aus 81 g entionisiertem Wasser und 2,1 g Natriumperoxodisulfat. Nach Beendigung von Zulauf 1 behielt man die Temperatur eine Stunde bei und gab dann bei 80°C Zulauf 3 innerhalb 1 ,5 Stunden und Zulauf 4 innerhalb 2 Stunden zu. Zulauf 3 bestand aus einer wässrigen Monomeremulsion aus 410 g entionisiertem Wasser, 4,7 g einer 45 Gew.-% wässrigen Lösung der Dowfax 2A1 entsprechenden grenzflächenaktiven Substanz, 378 g Styrol und 436, 8 g n- Butylacrylat. Zulauf 4 bestand aus einer Lösung aus 410 g entionisiertem Wasser und 10,5 g Natriumperoxodisulfat. Nach Beendigung von Zulauf 4 ließ man die Mischung eine Stunde lang bei 80°C nachreagieren. Man kühlte dann auf Raumtemperatur, gab 134, 4 g einer 25 Gew.-% wässrigen Natriumlauge zu und filtrierte über ein 200 μm- Sieb. Der Feststoffgehalt der erhaltenden Dispersion betrug 34,4 Gew.-% und der pH- Wert 7,1. 70 Gew.-% von einer Lösung bestehenden aus Komponente 1 wurden unter Rührung zu 30 Gew.-% einer Lösung aus Komponente 2 gegeben. Die Harzmischung wies eine Viskosität von 65 mPas und ein Trockengehalt von 51,2 Gew.-% auf.
B2) Harzsystem 2
Eine Mischung aus 812 g 40 Gew.-% wässrigem Formaldehyd und 358 g Wasser wurde auf 30°C temperiert. Mit 25 Gew.-% wässriger Natriumlauge wurde der pH-Wert des Gemisches auf ca. 9 eingestellt. Darauf erfolgte die Zugabe von 821 g Melamin. Anschließend wurde auf 100 °C aufgeheizt und dann bis zu einem Trübungspunkt von 50°C kondensiert. Nach Erreichen des Trübungspunktes wurde die Reaktionsmischung sofort abgekühlt. Mit 25 Gew.-% wässriger Natriumlauge wurde ein pH-Wert von ca. 9,2 eingestellt. Die Harzlösung wies eine Viskosität von 45 mPas (20°C) auf.
C) Tränkung Mit der Harzmischung aus dem Beispiel 1 und dem Harz aus Beispiel 2 wurde nach Zusatz von ca. 0,5 Gew.-% Härter (z.B. Härter 529 Flüssig der Firma BASF AG) Dekorpapier aus Beispiel 1 und Standard Dekorpapier so imprägniert und getrocknet, dass die Dekorpapiere einen Feststoffgehalt in der Volltränkung von 120 bis 130 % aufwiesen und eine Restfeuchtigkeit von 6 bis 10 % besaßen.
D) 3D-Beschichtung
Der erhaltene Melaminharzfilm wurde auf eine MDF (Medium Density Fiber) Platte mit einem Durchmesser von 16,5 cm beinhaltend eine 3D Struktur gepresst. Unter 3D Strukturen sind Konturen mit runden und geraden Flächen und/oder Kanten mit defi- niertem Winkel zu verstehen. Der Pressvorgang fand in einer Laborpresse bei 150 bis 160°C unter einer Kraft von 45 kN und in einer Zeit von 30-60 s statt.
E) Charakterisierung
E1) Verformbarkeit
Die Verformbarkeit und die Haftung des Melaminharzfilms auf der MDF Platte beinhaltend eine 3D-Struktur wurde beurteilt. Bei guter Verformbarkeit soll die Beschichtung vollständig an der Struktur anliegen und fest an dieser haften ohne zu reißen, zu brechen oder Falten zu werfen. Beurteilung:
0 = frei von Rissen oder Falten
1 = frei von Rissen, vereinzelte Faltenbildung
2 = vereinzelte Rissbildung, geringe Faltenbildung
3 = geringe Rissbildung, mäßige Faltenbildung 4 = mäßige Rissbildung, starke Faltenbildung
5 = starke Rissbildung, sehr starke Faltenbildung
6 = zerbrochene und zerstörte Oberfläche
E2) Charakterisierung der Oberfläche
Der erhaltende Melaminharzfilm wurde auf eine glatte MDF-Platte bei 160-165°C unter einem Druck von 2,5 N/mm2 und in einer Zeit von 110 s gepresst. Folgenden Prüfungen wurden durchgeführt:
E2.1) Härtung
Die Güte der Härtung wurde durch 16-stündige Einwirkung einer 0,2 n Salzsäure, die mit 0,004 Gew.-% Rhodamin B-Lösung angefärbt ist, auf die glatte beschichtete MDF- Platte ermittelt. Bei guter Härtung wird die Oberfläche nicht durch die Säure angegriffen. Die Stärke des Angriffs lässt sich anhand der Stärke der Rotfärbung beurteilen. Beurteilung:
0 = kein Angriff
1 = schwache Rosafärbung
2 = deutliche Rotfärbung
3 = starke Rotfärbung 4 = starke Rotfärbung mit leichter Oberflächenquellung
5 = starke Rotfärbung mit starker Oberflächenquellung
6 = zerstörte Oberfläche
E2.2) Geschlossenheit Die Geschlossenheit oder Porigkeit der beschichteten Oberfläche dient zur Beurteilung der Schmutzempfindlichkeit. Die zu prüfende Oberfläche wurde mit schwarzer Schuhcreme eingerieben und anschließend mit einem Lappen wieder gereinigt. Die in den Poren verbleibende Schuhcreme ermöglicht eine Beurteilung der Geschlossenheit der Oberflächen. Die Beurteilung der Oberflächengeschlossenheit erfolgt in folgenden Stufen:
0 = porenfrei
1 = vereinzelte Poren
2 = wenige Poren
3 = häufige Poren = viele offene Stellen
5 = sehr viele offene Stellen
6 = keine Geschlossenheit Die Resultate sind in der Tabelle 1 präsentiert.
Tabelle 1
Figure imgf000016_0001
handelsübliches weißes Dekorpapier

Claims

Patentansprüche
1. Verfahren zur Herstellung von teilweise oder vollständig beschichteten Substraten mit einer dreidimensional strukturierten Oberfläche, dadurch gekennzeichnet, dass ein Dekorpapier, das 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthält, mit einem vernetzbaren aminoplastischen Harz imprägniert, auf das Substrat aufgebracht und dreidimensional verformt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als synthetische Polymere Polyamid, Polyimid, Polyurethane, Polypropylen, Polyethylen, Polyester, Polyacrynitril und/oder Polyvinylalkohol verwendet werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Fasern aus synthetischen Polymeren eine Länge von 0,5 bis 20 mm aufweisen.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Fasern aus synthetischen Polymeren einen Durchmesser von 5 bis 30 μm aufweisen.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass als Basis des Dekorpapiers Zellulose verwendet wird.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass das De- korpapier 10 bis 60 Gew.-% Fasern aus synthetischen Polymeren und 40 bis 90 Gew.-% Zellulose enthält.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass als aminoplastisches Harz Melamin-Formaldehyd-Harze verwendet werden.
8. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass als aminoplastisches Harz eine Harzmischung aus Melamin-Formaldehyd-Konden- sationsrodukt(en), veretherten Melamin-Formaldehyd-Kondensationsprodukt(en) und Polymer-Dispersion(en) verwendet wird.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass als Substrate Holz, Spanplatten, MDF- oder HDF-Platten verwendet werden.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die dreidimensionale Verformung in einer Membranpresse durchgeführt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Membranpresse einen unteren und einen oberen Presstisch, eine auf ein mit Aminoplastharzfolien oder -filmen überdecktes und damit zu beschichtendes Substrat anpress- bare elastische Membran, die mit einem Presstisch eine druckdichte Kammer bildet, Kanäle zum Ein- und Auslassen eines die Membran beaufschlagenden Fluids und eine Pressensteuerung beinhaltet.
12. Aminoplastharzfolie oder -film enthaltend mit vernetzbaren aminoplastischen Harz getränktes Dekorpapier, das 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthält.
13. Verwendung eines Dekorpapiers, das 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthält, für die Herstellung von Aminoplastharzfolien oder -filmen.
14. Verwendung eines Dekorpapiers nach Anspruch 13, wobei als synthetische Polymere Polyamid, Polyimid, Polyurethane, Polypropylen, Polyethylen, Polyester, Polyacrynitril oder Polyvinylalkohol verwendet werden.
15. Verwendung eines Dekorpapiers nach Anspruch 13 oder 14, wobei das Dekorpapier mit einer Harzmischung aus Melamin-Formaldehyd-Kondensations- produkt(en) und Polymer-Dispersion (en) imprägniert ist.
16. Verwendung einer Aminoplastharzfolie oder -film enthaltend ein Dekorpapier, das 5 bis 90 Gew.-%, bezogen auf den Gesamtfaseranteil, Fasern aus synthetischen Polymeren enthält, für die Beschichtung von Substraten und/oder Formkörpern.
17. Verwendung nach Anspruch 16 für die Beschichtung von Substraten mit dreidimensional strukturierten Oberflächen.
PCT/EP2005/005518 2004-05-27 2005-05-21 Verfahren zur herstellung von beschichteten substraten WO2005118718A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/596,130 US20070172687A1 (en) 2004-05-27 2005-05-21 Method for producing coated substrates
CA 2564692 CA2564692A1 (en) 2004-05-27 2005-05-21 Method for producing coated substrates
EP05751297A EP1753818A1 (de) 2004-05-27 2005-05-21 Verfahren zur herstellung von beschichteten substraten

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004026480.5 2004-05-27
DE102004026481.3 2004-05-27
DE102004026480A DE102004026480A1 (de) 2004-05-27 2004-05-27 Verfahren zur Herstellung von beschichteten Werkstoffen
DE200410026481 DE102004026481A1 (de) 2004-05-27 2004-05-27 Verfahren zum dreidimensionalen Beschichten von Werkstoffen

Publications (1)

Publication Number Publication Date
WO2005118718A1 true WO2005118718A1 (de) 2005-12-15

Family

ID=35124586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005518 WO2005118718A1 (de) 2004-05-27 2005-05-21 Verfahren zur herstellung von beschichteten substraten

Country Status (4)

Country Link
US (1) US20070172687A1 (de)
EP (1) EP1753818A1 (de)
CA (1) CA2564692A1 (de)
WO (1) WO2005118718A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012617A1 (de) * 2005-07-27 2007-02-01 Basf Aktiengesellschaft Aminoplastharzfilm zur beschichtung von substraten
WO2011009734A2 (de) 2009-07-22 2011-01-27 Kraussmaffei Technologies Gmbh Schliesseinheit für eine spritzgiessmaschine
US7985473B2 (en) * 2007-06-07 2011-07-26 Kuraray Co., Ltd. Resinous-substance-impregnated planar paper and adhesive tape using the same
US10941123B2 (en) 2016-06-29 2021-03-09 Borealis Agrolinz Melamine Gmbh Triazine precondensate and method for obtaining the same
US10947335B2 (en) 2016-06-29 2021-03-16 Borealis Agrolinz Melamine Gmbh Triazine-precondensate-aldehyde condensation products and method for obtaining the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005006599B4 (de) * 2005-02-11 2011-11-24 Kronotec Ag Holzwerkstoffplatte mit einer mindestens abschnittweise aufgetragenen Oberflächenbeschichtung
JP5879521B2 (ja) * 2011-03-31 2016-03-08 パナソニックIpマネジメント株式会社 接着用組成物
CN105419306B (zh) * 2015-12-31 2018-02-23 福州皇家地坪有限公司 3d打印地坪
CN106436450B (zh) * 2016-09-14 2019-03-22 滁州学院 一种浸渍纸防胶粉保湿方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1902224A1 (de) * 1969-01-17 1970-08-06 Scheufelen Papierfab Nicht brennbare Polyesterharz-Dekorplatte
EP0525790A1 (de) * 1991-07-31 1993-02-03 KOHJIN CO. Ltd. Dekorative Schichtstoffe mit einem feinen punktierten Effekt
JPH07148828A (ja) * 1993-11-29 1995-06-13 Kohjin Co Ltd 表面化粧材用原紙
WO2001077438A1 (de) * 2000-04-05 2001-10-18 Basf Aktiengesellschaft Polymerdispersion zum imprägnieren von papier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936547A (en) * 1973-02-24 1976-02-03 Cassella Farbwerke Mainkur Aktiengesellschaft Process of preparing melamine resin films by impregnation of paper, cellulose, fleece or fabric
DE4439156A1 (de) * 1994-11-04 1996-05-09 Cassella Ag Tränkharze für Folien und Kanten
FI104098B (fi) * 1998-03-31 1999-11-15 Valmet Corp Menetelmä ja laite kuiturainan kuivaamiseksi
DE20019180U1 (de) * 2000-11-10 2001-03-01 Munksjö Paper DECOR GmbH & Co. KG, 73432 Aalen Dekorpapier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1902224A1 (de) * 1969-01-17 1970-08-06 Scheufelen Papierfab Nicht brennbare Polyesterharz-Dekorplatte
EP0525790A1 (de) * 1991-07-31 1993-02-03 KOHJIN CO. Ltd. Dekorative Schichtstoffe mit einem feinen punktierten Effekt
JPH07148828A (ja) * 1993-11-29 1995-06-13 Kohjin Co Ltd 表面化粧材用原紙
WO2001077438A1 (de) * 2000-04-05 2001-10-18 Basf Aktiengesellschaft Polymerdispersion zum imprägnieren von papier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199532, Derwent World Patents Index; Class A32, AN 1995-243099, XP002351588 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012617A1 (de) * 2005-07-27 2007-02-01 Basf Aktiengesellschaft Aminoplastharzfilm zur beschichtung von substraten
US7985473B2 (en) * 2007-06-07 2011-07-26 Kuraray Co., Ltd. Resinous-substance-impregnated planar paper and adhesive tape using the same
WO2011009734A2 (de) 2009-07-22 2011-01-27 Kraussmaffei Technologies Gmbh Schliesseinheit für eine spritzgiessmaschine
US8414287B2 (en) 2009-07-22 2013-04-09 Kraussmaffei Technologies Gmbh Clamping unit for an injection molding machine
US10941123B2 (en) 2016-06-29 2021-03-09 Borealis Agrolinz Melamine Gmbh Triazine precondensate and method for obtaining the same
US10947335B2 (en) 2016-06-29 2021-03-16 Borealis Agrolinz Melamine Gmbh Triazine-precondensate-aldehyde condensation products and method for obtaining the same

Also Published As

Publication number Publication date
CA2564692A1 (en) 2005-12-15
EP1753818A1 (de) 2007-02-21
US20070172687A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
EP1753818A1 (de) Verfahren zur herstellung von beschichteten substraten
EP1407079B1 (de) Vorimprägnat
DE102007030102B4 (de) Vorimprägnat
EP0889168B1 (de) Verfahren zur Herstellung eines Vorimprägnats und dessen Verwendung zur Herstellung von Dekorverbundgebilden
DE19728250C2 (de) Verfahren zur Herstellung eines Vorimprägnats, das damit erhaltene Vorimprägnat und dessen Verwendung zur Herstellung von Dekorverbundgebilden
EP2537682A1 (de) Vorimprägnat
EP0870872B1 (de) Einseitig imprägnierter Papierdruckträger
EP1518024B2 (de) Vorimprägnat
WO2006008037A1 (de) Verwendung von melaminharzfolien und/oder -filmen zur 3d-beschichtung
US3813262A (en) Resin-impregnated tissue overlays
DE10301901A1 (de) Verwendung von Melaminharzfolien und/oder -filmen zur Beschichtung von dreidimensional strukturierten Oberflächen und/oder Formkörpern
US3684649A (en) Resin-impregnated tissue overlays
EP3754109A1 (de) Vorimprägnat mit verbesserter planlage
WO2007012617A1 (de) Aminoplastharzfilm zur beschichtung von substraten
EP0002044B1 (de) Mittel zum Tränken von cellulosehaltigen Faserstoffen
DE2222401B2 (de) Verfahren zur Herstellung von mit aminoplastischen Bindemitteln getränkten papiemen Bahnen für die Oberflächenbeschichtung
DE102004026481A1 (de) Verfahren zum dreidimensionalen Beschichten von Werkstoffen
DE102004026480A1 (de) Verfahren zur Herstellung von beschichteten Werkstoffen
DE2362397B2 (de) Mit haertbaren kunstharzen impraegnierte und beschichtete traegerstoffbahn fuer die oberflaechenveredelung von holzwerkstoffen und verfahren zu ihrer herstellung
DE2232847A1 (de) Verfahren zur herstellung von mit aminoplastharzen getraenkten und dekorseitig mit lackharz beschichteten traegerbahnen
WO2007012618A2 (de) Aminoplastharzvliesfilm zur beschichtung von substraten
DE102013114420A1 (de) Imprägnierflotte zur Imprägnierung eines Rohpapieres
DE2228936A1 (de) Beschichtung fuer holzwerkstoffe
DE2500164B2 (de) Schichtstoff fuer die oberflaechenverguetung von holzwerkstoffplatten
WO2006089972A2 (de) Modifizierte aminoplastharzmischungen, modifizierte aminoplastharzfilme und die verwendung von polyalkylenglykolen, polyalkylenglykolderivaten und/oder alkoxilierten polyamiden als haftvermittler auf kunststoffoberflächen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005751297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2564692

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007172687

Country of ref document: US

Ref document number: 11596130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005751297

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11596130

Country of ref document: US