WO2005117177A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2005117177A1
WO2005117177A1 PCT/JP2005/008396 JP2005008396W WO2005117177A1 WO 2005117177 A1 WO2005117177 A1 WO 2005117177A1 JP 2005008396 W JP2005008396 W JP 2005008396W WO 2005117177 A1 WO2005117177 A1 WO 2005117177A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
separator
electrode
gas
fuel cell
Prior art date
Application number
PCT/JP2005/008396
Other languages
English (en)
French (fr)
Inventor
Hiroo Yoshikawa
Toshiyuki Suzuki
Chisato Kato
Tsutomu Ochi
Toshiyuki Inagaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2005117177A1 publication Critical patent/WO2005117177A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell in which an MEA (Membrane Electrode Assembly) comprising an electrolyte membrane and a pair of electrodes sandwiching the electrolyte membrane from both sides is sandwiched between a pair of separators.
  • MEA Membrane Electrode Assembly
  • Patent Literature 1 Japanese Patent Application Laid-Open No. 2000-120500 (Page 2 and FIG. 1) Disclosure of the Invention
  • Such a conventional fuel cell is capable of increasing the amount of electrochemical reaction by hydrogen gas and oxygen gas without requiring high processing accuracy for the lip portion, that is, high processing accuracy for forming the flow path of the separator. Useful.
  • the pair of separators have different structures, the MEA is sandwiched between them and In such a case, there is a problem that the positioning of the pair of separators is easily complicated.
  • the present invention can appropriately increase the amount of an electrochemical reaction without requiring high processing accuracy for forming a flow path on the separator side, and in addition, can appropriately increase the applicability as a whole such as miniaturization. Its purpose is to provide a fuel cell that can be used.
  • the fuel cell of the present invention comprises a MEA comprising an electrolyte membrane and a pair of electrodes sandwiching the electrolyte membrane from both sides, and a gas flow between the MEA and a portion facing each electrode.
  • a fuel cell including: a pair of separators each having a passage formed therein, at least one of the pair of electrodes is formed with a flow passage corresponding to a flow passage on the separator side facing the pair of electrodes.
  • the electrode since a gas flow path is also formed on the electrode side, the electrode receives fuel gas (hydrogen) or gas oxide (oxygen) from its own flow path and the flow path on the separator side. Provided. This makes it possible to suitably increase the amount of the electrochemical reaction without requiring high processing accuracy for forming the flow path on the separator side.
  • the present invention can be applied to various applications as compared with the related art in which a gas flow path is not formed on the electrode side.
  • the height of a portion (hereinafter, sometimes referred to as a rib portion) defining a flow path formed on the separator side can be reduced, and the whole fuel cell can be reduced in size.
  • the pitch can be substantially reduced (fine pitch) by the cooperation of the two.
  • high processing accuracy is not required when performing press working or cutting work for forming a flow path. This, on the other hand, can increase the degree of freedom in designing the properties including the material of the base material of the separator.
  • the flow path on the electrode side is formed in a pipe shape inside the electrode.
  • water is generated by the electrochemical reaction of the fuel cell. Even if a large amount of water is generated, the gas flow path is formed inside the electrode. The generated water can be drained without interrupting the supply.
  • the flow path on the electrode side has an electrode portion formed in a groove shape.
  • the flow path on the electrode side can be easily formed as compared with the case where a pipe-shaped flow path penetrating the inside of the electrode is formed.
  • the flow path on the electrode side can be formed by cutting.
  • the flow path on the electrode side is formed in a groove shape on the surface on the separator side or the surface on the electrolyte membrane side of the electrode.
  • the flow path on the electrode side may be formed so as to extend in parallel with the flow path on the separator side.
  • the flow path on the electrode side is groove-shaped, it is preferable that the flow path on the electrode side is formed at least in a non-contact portion of the electrode with the flow path on the separator side. Alternatively, it is preferable that the flow path on the electrode side is formed at least at a position facing a contact portion of the separator with the electrode. Alternatively, it is preferable that the flow path on the electrode side is formed at a position deviated from the flow path on the separator side.
  • the flow path on the electrode side can be formed facing the rib portion (contact portion) of the separator, the amount of the electrochemical reaction can be suitably increased.
  • gas diffusion is poor at the electrode portion where the rib portion is in contact, but the configuration described above allows the effective power generation area to be suitably increased, thereby improving power generation efficiency. It can be suitably provided for miniaturization and the like.
  • the flow path on the electrode side is formed at a position facing the flow path on the separator side.
  • a flow path on the electrode side is formed outside the lip portion of the separator, and this flow path can communicate with the flow path on the separator side.
  • the height of the rib portion of the separator can be particularly reduced, and the overall size can be reduced.
  • the flow path on the separator side includes a plurality of straight flow paths extending in parallel in one direction
  • the flow path on the electrode side includes a plurality of straight flow paths extending in parallel in one direction.
  • it consists of a road.
  • the flow path on the electrode side when the flow path on the electrode side is formed in a groove shape at the electrode facing the separator, the flow path on the separator side extends in parallel in one direction.
  • the electrode-side flow path includes a plurality of straight flow paths extending in parallel in the same direction as the one direction, and a part of each of the electrode-side straight flow paths is on the separator side. It is preferable that the remaining part does not face each slate flow path while facing each straight flow path.
  • the straight flow path on the electrode side extends across the groove serving as the straight flow path on the separator side and the lip portion connected thereto.
  • the flow path on the electrode side when the flow path on the electrode side is formed in a groove shape at the electrode facing the separator, the flow path on the separator side extends in parallel in one direction.
  • the straight flow path on the electrode side extends over one or more straight flow paths on the separator side.
  • the effective power generation area can be suitably increased, the power generation efficiency can be improved and the size can be reduced, and the advantage as a straight flow path can be obtained.
  • the “intersecting direction” to a direction orthogonal to the one direction, it becomes easy to form a plurality of straight flow paths on the electrode side.
  • a pressure difference is generated between the straight flow paths on the separator side so that a gas flow in a certain direction can be set in the straight flow path on the electrode side.
  • the plurality of straight flow paths on the separator side and the plurality of straight flow paths on the z or electrode side are formed at the same pitch. According to this configuration, the power generation is uniformly performed as a whole, and therefore, the temperature of the fuel cell is also uniformly uniformed as a whole. This can extend the life of the product and increase its reliability.
  • the separator is provided with a gas inlet for introducing gas into the separator channel and a gas outlet for extracting gas from the separator channel.
  • Road is located with the upstream end separated from the gas inlet side And the downstream end is open directly to the gas outlet side.
  • gas can be positively introduced into the flow path on the electrode side as well as the flow path on the electrode side.
  • the base of the separator is preferably formed of metal.
  • the separator can be favorably formed by press molding or the like.
  • stainless steel may be used as the substrate, and it is preferable that the electrode side surface of the substrate is coated with a thin film having excellent corrosion resistance.
  • each electrode is composed of a catalyst layer on the electrolyte membrane side and a diffusion layer interposed between the catalyst layer and the separator, in which a flow path corresponding to the flow path on the separator side is formed. It is preferable to have
  • Another fuel cell of the present invention is a fuel cell comprising: a separator in which a gas flow path is formed; and a diffusion layer of an electrode adjacent to the separator, wherein the diffusion layer includes a flow path of the separator. Is formed.
  • the gas can be supplied to the diffusion layer not only from the flow path of the separator but also from the space in the diffusion layer.
  • the voids may be, for example, holes arranged in a line or grooves. By making the space a groove, the drainage of the generated water can be improved as compared with the hole.
  • the amount of water produced by the reaction of the fuel cell is greater on the downstream side of the gas than on the upstream side in the fuel cell. Therefore, according to a preferred embodiment, the space is larger on the downstream side than on the upstream side of the gas.
  • the space is a groove
  • the size of the space may be set by setting the width and depth of the groove.
  • the electrode has a catalyst layer located on the side opposite to the separator and adjacent to the diffusion layer, and the space is provided on the catalyst layer side of the diffusion layer. That is, it is formed on the surface.
  • the gas flow path is formed in both the separator and the electrode, the amount of the electrochemical reaction is suitable without requiring high processing accuracy for forming the flow path on the separator side.
  • the power generation efficiency can be improved, and the overall applicability, such as miniaturization, can be appropriately improved.
  • FIG. 1 is a perspective view showing the configuration of the fuel cell according to Embodiment 1.
  • FIG. 2 is a partial cross-sectional view of a single cell of the fuel cell according to Embodiment 1.
  • FIG. 3 is a plan view showing the front side of the separator of the fuel cell according to Embodiment 1.
  • FIG. 4 is a partial cross-sectional view of a single cell of the fuel cell according to Embodiment 2.
  • FIG. 5 is a partial cross-sectional view of a single cell of the fuel cell according to Embodiment 3.
  • FIG. 6 is a plan view showing the front side of the separator of the fuel cell according to Embodiment 4.
  • FIG. 7 is a plan view showing the front side of the separator of the fuel cell according to Embodiment 5.
  • FIG. 8 is a plan view showing the front side of the separator of the fuel cell according to Embodiment 6.
  • FIG. 9 is a plan view showing the front side of the separator of the fuel cell according to Embodiment 7.
  • FIG. 10 is a plan view showing the front surface side of the separator of the fuel cell according to Embodiment 8.
  • FIG. 11 is a plan view showing the front side of the separator of the fuel cell according to Embodiment 9.
  • FIG. 12 is a partial cross-sectional view of a single cell of the fuel cell according to Embodiment 10.
  • FIG. 13 is a plan view showing the front side of the separator of the fuel cell according to Embodiment 11.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV of FIG.
  • FIG. 15 is a plan view showing the surface side of the separator of the fuel cell according to Embodiment 12.
  • FIG. 15 is a plan view showing the surface side of the separator of the fuel cell according to Embodiment 12.
  • FIG. 16 is a plan view showing the surface side of the separator of the fuel cell according to Embodiment 13.
  • FIG. 17 is a cross-sectional view taken along the line XVI-XVI of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a fuel cell in addition to the separator holding the MEA, a gas flow path (vacant space) is formed in the electrode itself constituting the MEA.
  • a gas flow path is a straight flow path
  • the same components as those in the first embodiment will be denoted by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted.
  • the polymer electrolyte fuel cell 1 has a stacked stack structure in which a large number of unit cells 2 serving as basic units are stacked, and is sequentially arranged outside the unit cells 2 located at both ends.
  • a current collector plate 5 with an output terminal 4, an insulating plate 6, and an end plate 7 are arranged respectively.
  • a tension plate provided so as to bridge between both end plates 7 is fixed to each end plate 7 by port, so that a predetermined compressive force is applied in the stacking direction of the unit cells 2. It has been hung.
  • the single cell 2 is composed of MEA 11 and a pair of separators 12 sandwiching the MEA 11 from outside.
  • MEA 11 is composed of: an electrolyte membrane 15 made of an ion exchange membrane; and a pair of electrodes 16 (anode and force sword) sandwiching the electrolyte membrane 15 from both sides.
  • Each separator 12 faces the outer surface of each electrode 16.
  • one electrode (anode) 16 is supplied with hydrogen gas as fuel gas, and the other electrode (power source) 16 is supplied with oxygen gas as oxidant gas.
  • the electrolyte membrane 15 has a function of moving hydrogen ions supplied from the fuel gas from the anode electrode 16 to the force source electrode 16. As a result, an electrochemical reaction occurs in the MEA 11 and an electromotive force is obtained.
  • the fuel gas means a hydrogen gas containing hydrogen (anode gas).
  • Oxygen gas means a gas containing an oxidizing agent represented by oxygen (power source gas).
  • hydrogen gas and oxygen gas are collectively referred to as “gas” and are individually referred to as necessary.
  • the separator 12 is made of a gas-impermeable conductive material, and is made of carbon, metal, or a resin having conductivity.
  • the base material of the separator 12 is formed in a plate shape from a metal such as aluminum, stainless steel, and a nickel alloy.
  • the surface of the base material of the separator 12 on the electrode 16 side is coated with a film having excellent corrosion resistance also on the base material of the separator 12.
  • On the surface side of the separator 12 facing the electrode 16 a plurality of gas channels 21 for supplying gas to the electrode 16 are formed in a groove shape.
  • a plurality of cooling passages 22 are formed in a groove shape for passing a coolant represented by cooling water.
  • the separator 12 is press-molded to form irregularities on each of the front and back surfaces, and the surface of the separator 12 is formed on the top surface of the plurality of ribs 23 protruding from the electrode 16. Is in contact with the electrode 16 through. And the adjacent rib 2 The surface of the separator 12 between 3 is concave with respect to the electrode 16 to form the gas flow path 21.
  • the gas flow path 21 is composed of a plurality of straight flow paths extending in parallel with each other in one direction at an equal pitch (see FIG. 3).
  • the gas flow path 21 of one separator 12 in the single cell 2 is for hydrogen gas
  • the gas flow path 21 of the other separator 12 is for oxygen gas.
  • the gas flow path 21 for hydrogen gas and the gas flow path 21 for oxygen gas extend in the same direction and face each other across the MEA 11. Therefore, between the adjacent single cells 2, 2, the cooling channel 22 of the separator 12 forming the gas channel 21 for oxygen gas and the separator 1 forming the gas channel 21 for hydrogen gas are formed.
  • the two cooling channels 22 communicate with each other to define a cooling channel 22 having a square cross section. The heat generated by the electrochemical reaction for obtaining the electromotive force is reduced by the cooling water flowing through the cooling channels 22, and the temperature rise of the fuel cell 1 is suppressed.
  • FIG. 3 is a plan view showing the front side of the separator 12.
  • the separator 12 is formed in a rectangular shape in plan view, and has a pair of short sides 31 orthogonal to the gas flow path 21.
  • a gas inlet 32 a for hydrogen gas, a gas inlet 33 a for oxygen gas, and a cooling water inlet 34 a are formed in one short side 31 in a rectangular shape, and the other short side is formed.
  • a gas outlet 32b for hydrogen gas, a gas outlet 33b for oxygen gas, and a cooling water outlet 34b are formed in the part 31 in a rectangular shape.
  • the gas inlet 32 a and the gas outlet 32 b for hydrogen gas are arranged diagonally, and the gas inlet 33 a for oxygen gas and the gas outlet 33 b are arranged diagonally.
  • the hydrogen gas is introduced from the gas inlet 32 a into the plurality of gas channels 21 for hydrogen gas, and is led out to the gas outlet 32 b.
  • an inlet-side communication part 36 that communicates the gas inlet 32 a with the plurality of gas passages 21 is formed corresponding to the gas corresponding to the separator 12.
  • the other short side 31 has a gas outlet 3 2b and a plurality of gas flows.
  • An outlet-side communication portion 37 communicating with the road 21 is formed.
  • FIG. 3 shows the front side of the separator 12 in which the gas flow path 21 for hydrogen gas is formed.
  • the inlet-side communication portion 36 and the outlet-side communication portion 37 extend along the short side portion 31, and a plurality of gases for equalizing the inflow and outflow of the gas between the plurality of gas passages 21.
  • the distribution projections 38 are distributed.
  • each electrode 16 is composed of a diffusion layer 51 on the separator 12 side, and a catalyst layer 52 on the electrolyte membrane 15 side bonded to the diffusion layer 51.
  • the diffusion layer 51 has a thickness of, for example, several hundreds of ⁇ m.
  • the catalyst layer 52 has a thickness smaller than that of the diffusion layer 51, for example, a thickness of several ⁇ to several tens m.
  • the catalyst layer 52 includes a solid electrolyte, carbon particles, and a catalyst supported on the carbon particles. As the catalyst, for example, platinum is preferably used.
  • the diffusion layer 51 is made of, for example, a porous carbon material.
  • the diffusion layer 51 is a conductor having a function of passing a fluid and a function of conducting the catalyst layer 52 and the separator 12.
  • the diffusion layer 51 has air permeability for moving the reaction gas supplied from the gas flow path 21 of the separator 12 to the catalyst layer 52 side, and has been generated in the vicinity of the catalyst layer 52.
  • water permeability for moving the generated water to the separator 12 side.
  • the diffusion layer 51 a space 53 corresponding to the gas flow path 21 of the separator 12 adjacent to the diffusion layer 51 is formed, and this space 53 functions as a gas flow path 53. I do.
  • the diffusion layer 51 has a plurality of grooves 53 for flowing the same type of gas as the gas flow path 21 of the separator 12 facing the diffusion layer 51.
  • the plurality of gas channels 53 on the diffusion layer 51 side are formed by cutting the surface of the diffusion layer 51.
  • the plurality of gas passages 53 on the diffusion layer 51 side are composed of a plurality of straight passages extending in parallel to each other and at equal pitches in one direction, and the extending direction is the gas passage on the separator 12 side. 2 It matches the direction of extension.
  • Fig. 3 indicated by the two-dot chain line
  • Each gas passage 53 on the diffusion layer 51 side has a smaller cross-sectional area than each gas passage 21 on the separator 12 side. It is formed at a position deviated. More specifically, each gas channel 53 on the diffusion layer side 51 is formed at a non-contact portion of the diffusion layer 51 with respect to the gas channel 21 on the separator 12 side, and each gas channel 53 on the separator 12 side is formed.
  • the rib portion 23 is formed so as to face the top surface of the rib portion 23 and to be included therein.
  • the upstream end of each gas channel 53 on the diffusion layer 51 side communicates with the inlet communication part 36, and the downstream end thereof communicates with the outlet communication part 37.
  • the flow path of the hydrogen gas in the single cell 2 is composed of the gas flow path 21 on the separator 12 side and the gas flow path 53 on the electrode 16 side, and the flow path of the oxygen gas is It is composed of a gas channel 21 on the separator 12 side and a gas channel 53 on the electrode 16 side. Therefore, in each electrode 16 of the single cell 2, the portion facing the gas flow path 21 on the separator 12 side mainly diffuses the gas from the gas flow path 21, and the rib portion of the separator 12 is formed. In the portion facing 23, the gas is mainly diffused from the gas passage 53 on the electrode 16 side, and each gas is subjected to an electrochemical reaction for obtaining an electromotive force.
  • the gas flow channel 53 on the electrode 16 side by forming the gas flow channel 53 on the electrode 16 side, the gas flow channel 2 on the separator 12 side can be viewed as the whole single cell 2. Without making the pitch of 1 fine (small), it is possible to achieve substantially the same effect as the fine pitch of the gas flow path. Thereby, the power generation performance of the single cell 2 can be improved without requiring high processing accuracy in press forming the gas flow path 21 of the separator 12.
  • the gas flow path 53 on the electrode 16 side is located facing the gas, the gas is suitably diffused also from this portion. That is, separation
  • the separator 12 is formed in a convex structure, in which the concave portion is a gas flow path 21 on the MEA 11 side of the separator 12 and the convex portion (rib portion 23) is in contact with the electrode 16 of the MEA 11.
  • the gas flow path 53 is formed at a portion on the electrode 16 side facing the top surface of the convex portion (rib portion 23) of the separator 12.
  • the reaction gas fuel gas, oxidizing gas
  • the reaction gas also flows to the electrode 16 side portion in contact with the top surface of the convex portion (rib portion 23), and the area of the electrode 16 contributing to the electrochemical reaction (ie, By increasing the effective power generation area), the power generation (efficiency) of ME A 11 can be improved.
  • the flow path cross-sectional area when the gas flow path 53 is not formed on the conventional electrode 16 side and the electrode 16 side is smaller than in the related art. Will be set. That is, according to the present embodiment, since the height of the rib portion 23 of the separator 12 can be set low, the thickness of the unit cell 2 can be reduced. Thereby, it is possible to appropriately contribute to downsizing of the fuel cell 1 in which a large number of single cells 2 are stacked.
  • the gas flow path 21 on the separator 12 side and the gas flow path 53 on the electrode 16 side are each composed of a plurality of straight flow paths having the same pitch, it is useful in terms of processing.
  • the gas is uniformly supplied to the electrochemical reaction in the entire area of the single cell 2.
  • the temperature in the single cell 2 is also made uniform as a whole, the life of the fuel cell 1 can be extended.
  • the diffusion layer 51 of the electrode 16 is made of a carbon material.
  • the diffusion layer 51 can be made of a metal.
  • a groove-shaped gas flow path 53 can be formed in the diffusion layer 51 by press molding or milling. Wear.
  • the diffusion layer 51 is made of a metal, it is preferable to coat a film having more corrosion resistance than the metal on the surface serving as the gas flow channel 53, similarly to the separator 12.
  • the cross-sectional shape of the gas flow path 53 on the electrode 16 side may be polygonal such as quadrangle, or may be appropriately formed into various structures including a circle, a semicircle, and a curve.
  • the cross-sectional area of the gas flow path 21 or the gas flow path 53 may be larger on the power generation surface toward the upstream side and smaller toward the downstream side, or vice versa. That is, the magnitude relationship of the cross-sectional areas may be set appropriately so as to optimize the power generation efficiency of ME A11.
  • the gas passage 53 should not be formed for the electrode 16 corresponding to the gas with lower priority. It is also possible to use These modifications can be applied to other embodiments described later.
  • the single cell 2 of the fuel cell 1 according to the second embodiment will be described focusing on differences from the first embodiment.
  • the gas flow paths 53 formed in each electrode 16 of the single cell 2 are formed by a plurality of straight flow paths extending in one direction in parallel with each other and at equal pitches. And the extending direction thereof coincides with the extending direction of the gas flow path 21 on the separator 12 side. And, unlike the first embodiment, each gas flow path 53 on the electrode 16 side is formed at a position facing each gas flow path 21 on the separator 12 side, and communicates therewith.
  • each gas flow channel 53 on the electrode 16 side is formed to be substantially the same as the width of each gas flow channel 21 on the separator 12 side. Further, the depth (groove depth) of each gas flow channel 53 on the electrode 16 side is formed shallower than the depth of each gas flow channel 21 on the separator 12 side.
  • the same operation and effect as those of the first embodiment can be obtained.
  • the gas flow path 53 on the 6 side can secure the required gas flow path cross-sectional area even if the height of the ribs 23 of the separator 12 is reduced, so that the separator 12 can be made thinner, i.e., fuel.
  • the battery 1 can be suitably used for downsizing.
  • the cross-sectional area of the cooling channel 22 becomes small. This makes it possible to reduce the cross-sectional area of the cooling water flow path, while relatively increasing the cross-sectional area of the gas flow path, as a whole. Thereby, the low-temperature startability of the fuel cell 1 can be suitably increased.
  • the mode of the first embodiment can be combined with the mode of the second embodiment.
  • the gas flow paths 53 formed in each electrode 16 of the single cell 2 are formed by a plurality of straight flow paths extending in one direction in parallel with each other and at an equal pitch. And the extending direction thereof coincides with the extending direction of the gas flow path 21 on the separator 12 side. And, unlike the first embodiment, each gas flow path 53 on the electrode 16 side has a half facing each half of each gas flow path 21 on the separator 12 side, and the other half. The part is separated from each gas flow path 21 on the separator 12 side and faces the rib part 23.
  • one gas flow channel 53 on the electrode 16 side straddles a groove serving as one gas flow channel 21 on the separator 12 side and a rib portion 23 connected thereto. It is needless to say that the third embodiment can provide the same effect as the above-described embodiment, such as suitably increasing the effective power generation area of the single cell 2.
  • each cell of the single cell 2 of the present embodiment is The gas flow path 53 formed in the pole 16 is also a force composed of a plurality of straight flow paths.
  • the gas inlets 3 2a of the several gas flow paths 53 on the a side have the upstream end on the inlet side. It is located away from the communication part 36.
  • the gas flow path 53 on the electrode 16 side included in the region of the long side direction (the gas flow direction of the gas flow path 21 on the separator 12 side) including the gas inlet 32 a side The upstream end is located away from the inlet-side communication part 36, and the downstream end is communicated with the outlet-side communication part 37 so as to directly open.
  • the gas flow path 53 on the electrode 16 side which is not included in this region is connected to the upstream end so as to directly open to the inlet side communication part 36 and the downstream end is directly It communicates with the outlet side communication part 37 so that it is opened.
  • the gas is allowed to flow positively into the gas flow path 21 on the separator 12 side included in the above-described region.
  • the gas flow path 21 on the separator 12 side included in the above region can suitably function as the original main flow path.
  • all the upstream ends of the gas passages 53 on the electrode 16 side can be prevented from communicating with the inlet-side communicating portion 36, but in general, the gas passage from the gas inlet 32a is not provided.
  • the upstream end of the gas flow path 53 on the electrode 16 side included in the region of the separator 12 including the gas outlet 3 2 b side in the long side direction is also located outside the inlet side communication section 36. You may do so.
  • the gas flow channel 53 formed in each electrode 16 of the single cell 2 of the fifth embodiment is a gas flow channel of the first embodiment, which also includes a plurality of straight flow channels. Extending in the direction perpendicular to the direction of extension Yes. That is, the plurality of gas channels 53 on the electrode 16 side extend in a direction orthogonal to the extending direction so as to straddle the plurality of gas channels 21 on the separator 12 side. Therefore, gas is supplied to each gas flow channel 53 on the electrode 16 side from a portion communicating with each gas flow channel 21 on the separator 12 side.
  • the spacing, width (groove width), cross-sectional area, and the like of the plurality of gas flow paths 53 on the electrode 16 side are determined in consideration of the relationship such as the air permeability of the diffusion layer 51 of the MEA 11. It can be designed appropriately.
  • the fifth embodiment similarly to the first embodiment, it is possible to improve the power generation efficiency and reduce the size while suitably increasing the effective power generation area, and to separate the gas from the inlet-side communication portion 36 from the separator. It is possible to positively flow the gas into the gas flow path 21 on the 12 side.
  • a gas flow in a certain direction can be set in the gas passage 53 on the electrode 16 side. become.
  • a resistance element may be provided in a groove portion serving as two adjacent gas flow paths 21 of the separator 12. At that time, the arrangement of the resistance elements of the two gas flow channels 21 is provided, for example, on the upstream side of the groove, and on the other gas channel 21, on the downstream side. What is necessary is just to make a position into a different position.
  • the sixth embodiment is a modification of the fifth embodiment.
  • the gas flow paths 53 on the electrode 16 side intersect with the extending direction so as to straddle at least one of the gas flow paths 21 on the separator 12 side. Extending in the direction of Therefore, also in the sixth embodiment, substantially the same operation and effect as described above can be obtained.
  • the inclination angles of the plurality of gas flow paths 53 on the electrode 16 side can be appropriately designed in consideration of the relationship such as the air permeability of the diffusion layer 51 of the MEA 11.
  • the gas flow path 21 on the separator 12 side of the seventh embodiment is formed of a grooved serpentine flow path.
  • a single serpentine flow path may be used, but in the seventh embodiment, as shown in FIG. 9, the gas flow path 21 on the side of the separator 12 is formed of three serpentine flow paths. I have.
  • Each serpentine flow path 21 has three straight portions 71 extending in one direction parallel to each other, and two folded portions 72 connecting adjacent straight portions 71 to each other. I have.
  • Each serpentine flow path 21 has an upstream end communicating with the inlet-side communication part 36 and a downstream end communicating with the outlet-side communication part 37.
  • the plurality of gas flow paths 53 on the electrode 16 side are composed of a plurality of straight flow paths extending parallel to each other and at equal pitch in one direction, and the extending direction is the same as that of the straight portion 7 1 on the separator 12 side. It matches the extending direction.
  • Each of the gas flow paths 53 on the electrode 16 side has an upstream end communicating with the inlet communication section 36 and a downstream end communicating with the outlet communication section 37.
  • the plurality of gas flow paths 53 on the electrode 16 side face only the rib portion 23 of the separator 12, and most of the gas flow channels 53 face the rib portion 23 of the separator 12, and only a part of the serpentine flow Road 21 facing turnback 72 is roughly classified into two.
  • the gas flow path 53 on the electrode 16 side may be opposed to the straight portion 71 of the serpentine flow path 21, and the modes of the above embodiments may be applied.
  • a plurality of gas flow paths 53 on the electrode 16 side may be extended in a direction intersecting the extending direction of the straight portion 71.
  • the eighth embodiment is a modification of the seventh embodiment.
  • the plurality of gas flow paths 53 on the electrode 16 side are the same as those of the seventh embodiment. From the position It is made.
  • the upstream end of each gas flow path 53 on the electrode 16 side is configured not to communicate with the inlet communication section 36. Gas is introduced into each gas flow channel 53 on the electrode 16 side by using gas permeation of the diffusion layer 51 of the electrode 16.
  • the gas from the inlet-side communication portion 36 can be surely flown into the gas flow path 21 on the separator 12 side. This ensures that the gas can flow through the folded portion 72 of the gas flow path 21 of the separator 12 in particular, and the original main flow flows into the gas flow path 21 of the separator 12.
  • the function as a road can be appropriately performed.
  • the gas flow path 21 on the separator 12 side of the ninth embodiment is defined by a large number of small ribs 23.
  • a large number of the rib portions 23 are arranged in a land-like manner and arranged in an orderly manner.
  • the gas flow path 53 on the electrode 16 side is defined by a large number of small rib portions 81, and each of the lip portions 81 is located between the rib portions 23 on the separator 12 side. They are distributed in a land-like manner and arranged in an orderly manner.
  • the top surface of each lip portion 23 on the separator 12 side is in contact with the diffusion layer 51 of the electrode 16.
  • the gas flow path 53 on the electrode 16 side may be a straight flow path in the same manner as described above.
  • the gas flow channel 53 (empty space) on the electrode 16 side of the embodiment 10 is formed in a pipe shape inside the diffusion layer 51.
  • the extending direction of the gas flow path 53 on the electrode 16 side extends in a direction perpendicular to the gas flow path 21 on the separator 12 side. Or may extend in the same direction.
  • the upstream end of the gas flow path 53 on the electrode 16 side is communicated with the inlet-side communication part 36 and the downstream end is directly opened to the outlet-side communication part 37.
  • the upstream end may be separated from the entrance-side communicating portion 36 as in FIG.
  • the gas flow path 21 on the separator 12 side can be appropriately designed such that a serpentine flow path other than the straight flow path can be applied.
  • the gas channel 53 on the electrode 16 side is formed so as to penetrate through the inside of the diffusion layer 51 so as to obtain substantially the same operation and effect as the above embodiments. Therefore, it is effective for water generated by the electrochemical reaction of the fuel cell 1. That is, even when a large amount of generated water is generated, the drainage of the generated water can be improved without hindering the supply of gas into the single cell 2.
  • FIG. 1 The first difference from the first embodiment is that the position where the plurality of gas channels 53 in the diffusion layer 51 are formed in a groove shape is changed to the surface of the diffusion layer 51 on the catalyst layer 52 side. It is.
  • the second difference is that the size of the gas channel 53 on the diffusion layer 51 side is changed. Specifically, each straight channel of the gas channel 53 is formed so that the cross-sectional area decreases from the upstream side to the downstream side in consideration of drainage of generated water.
  • the amount of water generated by the power generation of the fuel cell 1 increases in the downstream of the gas flow path 53 and the gas flow path 21, and in consideration of this, the cross-sectional area of the gas flow path 53 becomes larger on the upstream side of the gas.
  • the downstream side is set larger than the downstream side.
  • the cross-sectional shape of the gas flow path 53 may be a polygon such as a square as described above, or may be appropriately formed into various structures including a circle, a semicircle, and a curve.
  • the cross-sectional area of the gas flow path 53 is The width is multiplied by the groove depth.
  • the size of the cross-sectional area of the gas flow path 53 may be gradually or gradually reduced from the upstream side to the downstream side for only the groove width or only the groove depth.
  • the size of the cross-sectional area of the gas passage 53 may be gradually or gradually reduced from the upstream side to the downstream side in consideration of both the groove width and the groove depth.
  • the range of the groove width and the groove depth of the gas channel 53 is 0.1 ⁇ ! It may be set to ⁇ 200 ⁇ m.
  • the upstream end of the gas flow path 53 communicates with the inlet-side communication part 36 so as to be directly opened similarly to the first embodiment. Similarly, the downstream end of the gas flow path 53 communicates with the outlet-side communication part 37 so as to open directly. Since the downstream end of the gas passage 53 communicates with the outlet communication portion 37, the water generated by the power generation of the fuel cell 1 is quickly discharged to the outlet communication portion 37 through the gas passage 53. be able to.
  • the setting of the cross-sectional area of one straight channel and the other straight channel of the gas channel 53 may be the same or different.
  • the same effects as those of the first embodiment can be obtained.
  • the point that is useful as compared with the first embodiment is that, according to the embodiment 11, the simple structure allows the effective power generation area of the diffusion layer 51 to be harmonized with the drainage of generated water. is there.
  • the single cell 2 of the fuel cell 1 according to Embodiment 12 will be described focusing on the differences from Embodiment 11.
  • the difference from the embodiment 11 is that the position of the gas passage 53 is changed to a position facing each gas passage 21 on the separator 12 side.
  • the other points are the same in both embodiments. Therefore, the same effects as those of the eleventh embodiment can be obtained by the embodiment 12.
  • Embodiment 13 Next, with reference to FIG. 16 and FIG. 17, the single cell 2 of the fuel cell 1 according to Embodiment 12 will be described focusing on differences from Embodiment 11.
  • the difference from the embodiment 11 is that a plurality of gas passages 91 are set as the gas passages formed in the diffusion layer 51 in addition to the gas passages 53 described above.
  • the gas flow path 91 is composed of a plurality of straight flow paths, and extends in a direction orthogonal to each straight flow path of the gas flow path 53, for example.
  • the gas channel 91 is formed in a groove shape on the surface of the diffusion layer 51 on the catalyst layer 52 side, and is orthogonal to the gas channel 53 so as to directly communicate with the gas channel 53. Therefore, gas is supplied to the gas passage 91 from a portion communicating with the gas passage 53.
  • the interval between the plurality of straight flow channels of the gas flow channel 91 may be appropriately designed in consideration of the relationship such as the air permeability of the diffusion layer 51.
  • the plurality of straight flow paths of the gas flow path 91 have different cross-sectional areas from each other in consideration of drainage of generated water. Specifically, considering that the generated water is larger at the gas outlet (32b) side than at the gas inlet (32a) side, the gas flow path near the gas inlet (32a) is The straight flow path of the gas flow path 91 has a smaller cross-sectional area than the straight flow path of the gas flow path 91 near the gas outlet (32b). In the embodiment 12, the plurality of straight flow paths of the gas flow path 91 are set so that the cross-sectional area increases in order from the gas inlet (32a) side to the gas outlet (32b) side. .
  • the cross-sectional shape of the gas flow passage 91 may be a polygon such as a quadrangle as described above, or may be appropriately formed into various structures including a circle, a semicircle, and a curve.
  • the size of the cross-sectional area of the gas flow passage 91 may be set in consideration of only the groove width or only the groove depth, or the groove width may be set.
  • the setting may be made in consideration of both the depth and the groove depth.
  • the range of the groove width and the groove depth of the gas flow passage 91 may be set to 0.1 / m at the minimum and 200 ⁇ m at the maximum.
  • the gas flow channel 53 and the gas flow channel 91 are formed on one surface of the diffusion layer 51. Instead, one of the gas flow channel 53 and the gas flow channel 91 is formed on one surface of the diffusion layer 51, and the gas flow channel 53 and the gas flow channel are formed on the other surface of the diffusion layer 51.
  • the other side of Road 9 1 may be formed.
  • the gas flow path 91 may be formed on the surface of the diffusion layer 51 on the side of the separator 12. In this case, gas is supplied to the gas flow path 91 from the gas flow path 21 on the separator 12 side.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 セパレータのガス流路の形成に高い加工精度を要求せずに電気化学反応の量を好適に増加させることができ、加えて、小型化など全体として応用性を適切に高めることができる燃料電池を提供する。電解質膜(15)およびこれを両側から挟んだ一対の電極(16)からなるMEA(11)と、MEA(11)を挟持し、各電極(16)に面する部位にガスの流路(21)が形成された一対のセパレータ(12)と、を備えた燃料電池(1)において、各電極(16)には、これが面するセパレータ(12)側の流路(21)に対応したガスの流路(53)が形成されている燃料電池(1)である。

Description

明細書 燃料電池 技術分野
本発明は、 電解質膜およぴこれを両側から挟んだ一対の電極からなる ME A (Membrane Electrode Assembly) を、 一対のセパレータで挟持した燃料 電池に関するものである。 背景技術
従来、 固体高分子型の燃料電池のこの種のセパレータとして、 電極に面す る部位に溝状 (凹状) のガスの流路を画定し且つ各頂面が電極に接触する多 数のリブ部を有するものが知られている (例えば、 特許文献 1参照。)。
一般に、 リブ部が接触する電極の部位は、 ガスが拡散し難いため発電に寄 与し難い。 これに対処するために、 セパレータのリブ部を小さく成形して電 極との接触面積を減らすことが考えられるが、 リブ部の成形に高い加工精度 が要求される。 そこで特許文献 1に記載の燃料電池では、 対向する一対のセ パレータのリブ部同士の頂面を、 ME Aを挟んで互いにオーバーラップする ように酉己置している。
[特許文献 1 ] 特開 2 0 0 0— 1 2 0 5 0号公報 (第 2頁および第 1図) 発明の開示
このような従来の燃料電池は、 リプ部の加工精度すなわちセパレータの流 路形成に高い加工精度を要求せずに、 水素ガスおよび酸素ガスによる電気化 学反応の量を増加させることができる点では有用である。 しかし、 一対のセ パレータが互いに異なる構造であるため、 これらで M E Aを挟持してセルィ匕 する際に、 一対のセパレータの相互の位置決めが煩雑化し易い問題があった。 一方で、 水素ガスおょぴ酸素ガスによる電気化学反応の量を減らすことな く、 リブ部の高さを低くして燃料電池の小型化も望まれている。
本発明は、 セパレータ側の流路形成に高い加工精度を要求せずに電気化学 反応の量を好適に増加させることができ、 加えて、 小型化など全体として応 用性を適切に高めることができる燃料電池を提供することをその目的として いる。
上記課題を解決するため、 本発明の燃料電池は、 電解質膜およびこれを両 側から挟んだ一対の電極からなる ME Aと、 ME Aを挟持し、 各電極に面す る部位にガスの流路が形成された一対のセパレータと、 を備えた燃料電池に おいて、 一対の電極の少なくとも一方には、 これが面するセパレータ側の流 路に対応した流路が形成されているものである。
この構成によれば、 電極側にもガスの流路が形成されているため、 電極に は、 自身の流路とセパレータ側の流路とから燃料ガス (水素) または酸化ガ ス (酸素) が供される。 これにより、 セパレータ側の流路形成に高い加工精 度を要求せずに電気化学反応の量を好適に増加させることが可能となる。 そ して、 電極側にガスの流路を形成しない従来に対して、 各種の応用性の向上 に供することができる。
例えば、 セパレータ側に形成される流路を画定する部位 (以下、 リブ部と いう場合がある。) の高さを低くすることができ、 燃料電池全体として小型 化に供することができる。 また例えば、 セパレータ側および電極側のいずれ の流路も複数のストレート流路で形成した場合にあっては、 両者が協働する ことで実質的にピッチが細かく (ファインピッチ化) 'なり得るため、 流路形 成のためのプレス加工や切削加工等を行う際に高い加工精度を要求しないで 済む。 このことは一方で、 セパレータの基材の材質を含む性状について、 設 計の自由度を高め得る。 なお、 一対の電極の両方にガスの流路を形成した場合には、 一方の電極に は酸化ガスの流路が、 他方の電極には燃料ガスの流路が形成される。
本発明の一態様によれば、 電極側の流路は、 電極の内部にパイプ状に形成 されていることが、 好ましい。
この構成によれば、 燃料電池の電気化学反応によって水が生成されるが、 これが大量に発生した場合であっても、 電極の内部にガスの流路を形成して いるため、 特に、 ガスの供給を妨げることなく生成水を排水することができ る。
本発明を別の観点からみれば、 電極側の流路は、 電極の部位を溝状に形成 されていることが、 好ましい。
この構成によれば、 電極の内部を貫通するようなパイプ状の流路を形成す る場合に比べ、 電極側の流路を容易に形成することができる。 例えば、 電極 を主にカーボンで構成した場合には、 電極側の流路を切削加工により形成す ることができる。
より好ましくは、 電極側の流路は、 電極のセパレータ側の面または電解質 膜側の面に溝状に形成される。
そしてこれらの場合には、 電極側の流路は、 セパレータ側の流路と平行に 延在するように形成されてもよい。 .
また、 電極側の流路が溝状である場合には、 電極側の流路は、 少なくとも セパレータ側の流路に対する電極の非接触部位に形成されていることが、 好 ましい。 あるいは、 電極側の流路は、 少なくとも電極に対するセパレータの 接触部位に対向する位置に形成されていることが、 好ましい。 またあるいは、 電極側の流路は、 セパレータ側の流路から外れた位置に形成されていること 、 好ましい。
この構成によれば、 セパレータのリブ部 (接触部位) に対向して電極側の 流路が形成され得るため、 電気化学反応の量を好適に増加させることができ る。 すなわち、 一般に、 リブ部が接する電極の部分はガスの拡散性が悪レ、が、 上記のような構成とすることで、 有効発電面積を好適に増大させることがで きるため、 発電効率の向上および小型化等に好適に供することができる。 また、 本発明を別の観点からみると、 電極側の流路は、 セパレータ側の流 路に対向する位置に形成されていることが、 好ましい。
この構成によれば、 上記と異なり、 セパレータのリプ部から外れて電極側 の流路が形成され、 この流路はセパレータ側の流路に連通し得る。 これによ り、 特にセパレータのリブ部の高さを低くすることができ、 全体として小型 化することができる。
また、 例えばプレス成形等によってセパレータの表裏各面の形状を同時に 且つ同形状で形成し、 セパレータの他方の面に冷却水の流路を形成するよう な場合には、 燃料電池全体としてガスの流路新面積を大きくしつつ、 冷却水 の流路断面積を小さくすることが可能となる。 これにより、 燃料電池の低温 起動性を好適に向上し得るなど、 全体として応用性を高めることができる。 これらの場合、 セパレータ側の流路は、 一方向に平行に延在する複数のス トレート流路からなり、 電極側の流路は、 一方向と同方向に平行に延在する 複数のストレート流路からなることが、 好ましい。
この構成によれば、 サーペンタイン流路で構成する場合に比べて、 セパレ ータ側および電極側の各流路の形成の容易さの点、 セル化する際の各部材の 位置決めのし易さの点、 および発電効率の高め易さの点で有用となる。
また、 本発明を別の観点からみると、 電極側の流路がセパレータに面する 電極の部位を溝状に形成されている場合、 セパレータ側の流路は、 一方向に 平行に延在する複数のストレート流路からなり、 電極側の流路は、 前記一方 向と同方向に平行に延在する複数のストレート流路からなり、 電極側の各ス トレート流路は、 その一部分がセパレータ側の各ストレート流路に面すると 共に残りの部分が各スレート流路に面しないことが、 好ましい。 この構成によれば、 上記と異なり、 電極側のス トレート流路は、 セパレー タ側のス トレート流路となる溝部とこれに連なるリプ部とに跨つて延在する。 これにより、 上記と同様に、 有効発電面積を好適に増大させつつ、 発電効率 の向上おょぴ小型化に供することができると共に、 ストレート流路としての メリットも得ることができる。
また、 本発明を別の観点からみると、 電極側の流路がセパレータに面する 電極の部位を溝状に形成されている場合、 セパレータ側の流路は、 一方向に 平行に延在する複数のストレート流路からなり、 電極側の流路は、 前記一方 向に交差する方向に平行に延在し、 複数のストレート流路の少なくとも一つ を跨ぐ複数のストレート流路からなることが、 好ましい。
この構成によれば、 電極側のストレート流路は、 セパレータ側のストレー ト流路を一つ以上跨いで延在する。 これにより、 上記と同様に、 有効発電面 積を好適に増大させつつ、 発電効率の向上および小型化に供することができ ると共に、 ストレート流路としてのメリットも得ることができる。 なお、 「交差する方向」 を前記一方向に直交する方向とすることで、 電極側に複数 のストレート流路を形成し易くなる。 また、 セパレータ側のス トレート流路 間で圧力差を発生させて、 電極側のストレート流路に一定方向のガス流れを 設定することができるようになるなど、 応用性もある。
これらの場合、 セパレータ側の複数のストレート流路および zまたは電極 側の複数のス トレート流路は、 当ピッチで形成されていることが、 好ましい。 この構成によれば、 発電が全体的に均一になされるようになり、 そのため に燃科電池の温度も全体的に均一化される。 これにより、 製品寿命を延ばし、 その信頼性も高めることができる。
これらの場合、 セパレータには、 セパレータ側の流路にガスを導入するた めのガス入口と、 セパレータ側の流路からガスを導出するためのガス出口と が設けられており、 電極側の流路は、 上流端がガス入口側から離間して位置 し且つ下流端がガス出口側に直接開放していることが、 好ましい。
この構成によれば、 電極側の流路ょりもセパレータ側の流路に対してガス を積極的に導入することができる。
これらの場合、 セパレータは、 基材がメタルで形成されていることが、 好 ましい。
この構成によれば、 プレス成形等によりセパレータを良好に形成すること ができる。 なお、 基材としては例えばステンレスを用いればよく、 基材の電 極側の面に基材ょりも耐食性に優れた薄膜を被覆することが好ましい。
これらの場合、 各電極は、 電解質膜側の触媒層と、 触媒層とセパレ タと の間に介在する拡散層であって、 セパレータ側の流路に対応した流路が形成 された拡散層と、 を有することが、 好ましい。
本発明の他の燃料電池は、 ガスの流路が形成されたセパレータと、 セパレ ータに隣接する電極の拡散層と、 を備えた燃料電池であって、 拡散層には、 セパレータの流路に対応した空所が形成されているものである。
この構成によれば、 セパレータの流路のみならず、 拡散層の空所からも、 拡散層にガスが供され得る。 これにより、 セパレータ側の流路形成に高い加 ェ精度を要求せずに電気化学反応の量を好適に増加させることが可能となる。 空所は、 例えば一列に並んだ空孔であってもよいし、 溝であってもよい。 空 所を溝とすることで、 空孔に比べて生成水の排水性を高め得る。
通常、 燃料電池の反応による生成水は、 燃料電池内においてはガスの上流 側よりも下流側の方が多くなる。 そこで、 好ましい態様によれば、 空所は、 ガスの上流側よりも下流側の方を大きくする。 例えば空所が溝である場合に は、 その溝幅や溝深さの大きさの設定により、 空所の大きさを設定すればよ い。
また、 本発明の好ましい態様によれば、 電極は、 セパレータと反対側に位 置して拡散層に隣接する触媒層を有しており、 空所は、 拡散層の触媒層側の 面に形成されていることである。
以上、 本発明の燃料電池によれば、 セパレータおよび電極の両者にガスの 流路を形成しているため、 セパレータ側の流路形成に高い加工精度を要求せ ずに電気化学反応の量を好適に増加させて、 発電効率を向上することが可能 となると共に、 小型化など全体として応用性を適切に高めることが可能とな る。 図面の簡単な説明
図 1は、 実施形態 1に係る燃料電池の構成を示す斜視図である。
図 2は、 実施形態 1に係る燃料電池の単セルの部分断面図である。
図 3は、 実施形態 1に係る燃料電池のセパレータの表面側を示す平面図で める。
図 4は、 実施形態 2に係る燃料電池の単セルの部分断面図である。
図 5は、 実施形態 3に係る燃料電池の単セルの部分断面図である。
図 6は、 実施形態 4に係る燃料電池のセパレータの表面側を示す平面図で める。
図 7は、 実施形態 5に係る燃料電池のセパレータの表面側を示す平面図で める。
図 8は、 実施形態 6に係る燃料電池のセパレータの表面側を示す平面図で める。
図 9は、 実施形態 7に係る燃料電池のセパレータの表面側を示す平面図で める。
図 1 0は、 実施形態 8に係る燃料電池のセパレータの表面側を示す平面図 である。
図 1 1は、 実施形態 9に係る燃料電池のセパレータの表面側を示す平面図 である。 図 1 2は、 実施形態 1 0に係る燃料電池の単セルの部分断面図である。 図 1 3は、 実施形態 1 1に係る燃料電池のセパレータの表面側を示す平面 図である。
図 1 4は、 図 1 3の XIV- XIV線で切断した断面図である。
図 1 5は、 実施形態 1 2に係る燃料電池のセパレータの表面側を示す平面 図である。
図 1 6は、 実施形態 1 3に係る燃料電池のセパレータの表面側を示す平面 図である。
図 1 7は、 図 1 6の XVI-XVI線で切断した断面図である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明の好適な実施形態に係る燃料電池につ いて説明する。 この燃科電池は、 ME Aを挟持するセパレータ以外にも、 M E Aを構成する電極自身にガスの流路 (空所) を形成したものである。 以下 では、 燃料電池車両に好適な固体高分子型の燃料電池を例に、 先ず、 ガスの 流路をストレート流路とした構成について説明する。 なお、 第 2実施形態以 降では、 第 1実施形態と共通する構成については第 1実施形態と同一の符号 を付してその詳細な説明を省略する。
[実施形態 1 ]
図 1に示すように、 固体高分子型の燃料電池 1は、 基本単位である多数の 単セル 2を積層した積層スタック構造で構成されており、 両端に位置する単 セル 2の外側に順次、 出力端子 4付きの集電板 5、 絶縁板 6およびエンドプ レート 7を各々配置して構成されている。 燃料電池 1は、 例えば、 両エンド プレート 7間を架け渡すようにして設けられたテンションプレートが各ェン ドプレート 7にポルト固定されることで、 単セル 2の積層方向に所定の圧縮 力がかかった状態となっている。 図 2に示すように、 単セル 2は、 ME A 1 1と、 これを外側から挟持する 一対のセパレータ 1 2と、 で構成されている。 ME A 1 1は、 イオン交換膜 からなる電解質膜 1 5と、 電解質膜 1 5を両面から挟んだ一対の電極 1 6 (アノードおよび力ソード) と、 で構成されている。 そして、 各電極 1 6の 外面に各セパレータ 1 2が面している。
単セル 2は、 一方の電極 (アノード) 1 6に燃料ガスとして水素ガスが供 給され、 他方の電極 (力ソード) 1 6に酸化剤ガスとして酸素ガスが供給さ れる。 電解質膜 1 5は、 燃料ガスから供給された水素イオンをアノード電極 1 6から力ソード電極 1 6に移動させる機能を有する。 これにより、 M E A 1 1内で、 電気化学反応が生じ起電力が得られる。
ここで、 燃料ガスとは、 水素を含む水素ガス (アノードガス) を意味する。 また、 酸素ガスとは、 酸素を代表とする酸化剤を含有するガス (力ソードガ ス) を意味する。 以下の説明では、 水素ガスおょぴ酸素ガスを総称して 「ガ ス」 と記載し、 必要に応じて個々に言及する。
セパレータ 1 2は、 ガス不透過の導電性材料で構成されており、 カーボン や金属のほか、 導電性を有する樹脂で構成される。 本実施形態では、 セパレ ータ 1 2の基材は、 アルミニウム、 ステンレス、 ニッケル合金などのメタル で板状に形成されている。 セパレータ 1 2の基材の電極 1 6側の面には、 セ パレータ 1 2の基材ょりも耐食性に優れた膜が被覆されている。 セパレータ 1 2の電極 1 6に面する表面側には、 電極 1 6にガスを供給するためのガス 流路 2 1が溝状に複数形成されている。 一方、 この表面側の反対側となるセ パレータ 1 2の裏面側には、 冷却水に代表される冷媒を通流させるための冷 却流路 2 2が溝状に複数形成されている。
具体的には、 セパレータ 1 2はプレス成形されることで表裏各面に凹凸が 形成され、 セパレータ 1 2の表面は、 電極 1 6に対して凸となる複数のリブ 部 2 3の頂面を介して電極 1 6に接触している。 そして、 隣接するリブ部 2 3の間のセパレータ 1 2の表面が、 電極 1 6に対して凹となってガス流路 2 1を構成している。
この場合、 ガス流路 2 1は、 一方向に互いに平行に且つ等ピッチで延在す る複数のス トレート流路からなる (図 3参照)。 単セル 2における一方のセ パレータ 1 2のガス流路 2 1は水素ガス用であり、 他方のセパレータ 1 2の ガス流路 2 1は酸素ガス用である。 水素ガス用のガス流路 2 1と酸素ガス用 のガス流路 2 1とは、 同方向に延在し且つ ME A 1 1を挟んで対向している。 したがって、 隣接する単セル 2 , 2間では、 酸素ガス用のガス流路 2 1を 形成したセパレータ 1 2の冷却流路 2 2と、 水素ガス用のガス流路 2 1を形 成したセパレータ 1 2の冷却流路 2 2とが連通し、 流路断面が四角形の冷却 流路 2 2が画定される。 冷却流路 2 2を流れる冷却水によって、 起電力を得 る電気化学反応で発生した熱が低減され、 燃料電池 1の温度上昇が抑制され る。
図 3は、 セパレータ 1 2の表面側を示す平面図である。 同図に示すように、 セパレータ 1 2は、 平面視矩形状に形成され、 ガス流路 2 1に直交する一対 の短辺部 3 1を有している。 一方の短辺部 3 1には、 水素ガス用のガス入口 3 2 a、 酸素ガス用のガス入口 3 3 a、 および冷却水入口 3 4 a、 が矩形状 に貫通形成され、 他方の短辺部 3 1には、 水素ガス用のガス出口 3 2 b、 酸 素ガス用のガス出口 3 3 b、 および冷却水出口 3 4 bが矩形状に貫通形成さ れている。 水素ガス用のガス入口 3 2 aとガス出口 3 2 bとは対角配置され、 酸素ガス用のガス入口 3 3 aとガス出口 3 3 bとは対角配置されている。 例 えば水素ガスは、 ガス入口 3 2 aから水素ガス用の複数のガス流路 2 1に導 入され、 ガス出口 3 2 bへと導出される。
また、 一方の短辺部 3 1には、 セパレータ 1 2が対応するガスに対応して、 ガス入口 3 2 aと複数のガス流路 2 1を連通する入口側連通部 3 6が形成さ れている。 同様に、 他方の短辺部 3 1には、 ガス出口 3 2 bと複数のガス流 路 2 1を連通する出口側連通部 3 7が形成されている。 なお、 図 3では、 水 素ガス用のガス流路 2 1を形成したセパレータ 1 2の表面側を示している。 入口側連通部 3 6および出口側連通部 3 7は、 短辺部 3 1に沿って延在して おり、 複数のガス流路 2 1間でガスの流入 ·流出を均一化させる複数のガス 分配突起 3 8が分散配置されている。
各電極 1 6は、 図 2に示すように、 セパレータ 1 2側の拡散層 5 1と、 拡 散層 5 1に結着された電解質膜 1 5側の触媒層 5 2と、 で構成されている。 拡散層 5 1は、 例えば数百; u mの厚みを有する。 触媒層 5 2は、 拡散層 5 1 よりも薄い厚みを有し、 例えば数 μ ΐη〜数十 mの厚みを有する。 触媒層 5 2は、 固体電解質と炭素粒子とその炭素粒子に担持された触媒とを備えてい る。 触媒としては、 例えば白金が好適に用いられる。
拡散層 5 1は、 例えば多孔質のカーボン素材で構成されている。 拡散層 5 1は、 流体を通過させる機能と、 触媒層 5 2およぴセパレータ 1 2を導通さ せる機能とを有する導電体である。 具体的には、 拡散層 5 1は、 セパレータ 1 2のガス流路 2 1から供給される反応ガスを触媒層 5 2側へ移動させるた めの通気性と、 触媒層 5 2近傍で生じた生成水をセパレータ 1 2側へ移動さ せるための透水性と、 を備えている。 ·
拡散層 5 1には、 拡散層 5 1に隣接するセパレータ 1 2のガス流路 2 1に 対応した空所 5 3が形成されており、 この空所 5 3がガス流路 5 3として機 能する。 詳細には、 拡散層 5 1には、 これが面するセパレータ 1 2のガス流 路 2 1と同じ種類のガスを流すための流路 5 3が溝状に複数形成されている。 拡散層 5 1側の複数のガス流路 5 3は、 拡散層 5 1の表面を切削加工するこ とにより形成されている。
拡散層 5 1側の複数のガス流路 5 3は、 一方向に互いに平行に且つ等ピッ チで延在する複数のストレート流路からなり、 その延在方向はセパレータ 1 2側のガス流路 2 1の延在方向と一致している。 図 3において二点鎖線で示 す拡散層 5 1側の各ガス流路 5 3は、 セパレータ 1 2側の各ガス流路 2 1に 比べて流路断面積が小さく形成され、 セパレータ 1 2側の各ガス流路 2 1か ら外れた位置に形成されている。 より詳細には、 拡散層側 5 1の各ガス流路 5 3は、 セパレータ 1 2側のガス流路 2 1に対する拡散層 5 1の非接触部位 に形成されており、 セパレータ 1 2側の各リブ部 2 3の頂面に対向して且つ これに包含されるように形成されている。 そして、 拡散層 5 1側の各ガス流 路 5 3の上流端は入口側連通部 3 6に連通し、 その下流端は出口側連通部 3 7に連通している。
このように、 単セル 2における水素ガスの流路は、 セパレータ 1 2側のガ ス流路 2 1およぴ電極 1 6側のガス流路 5 3で構成され、 また酸素ガスの流 路は、 セパレータ 1 2側のガス流路 2 1および電極 1 6側のガス流路 5 3で 構成される。 したがって、 単セル 2の各電極 1 6では、 セパレータ 1 2側の ガス流路 2 1に面する部分は、 主としてこのガス流路 2 1からガスが拡散さ れていき、 セパレータ 1 2のリブ部 2 3に面する部分は、 主として電極 1 6 側のガス流路 5 3からガスが拡散されていき、 各ガスは起電力を得るための 電気化学反応に供せられる。
以上のように、 本実施形態の燃料電池 1によれば、 電極 1 6側にガス流路 5 3を形成したことで、 単セル 2全体としてみれば、 セパレータ 1 2側のガ ス流路 2 1のピッチを細かく (小さく) せずに、 実質的にガスの流路がファ インピッチ化されたことと同様の効果を奏することができる。 これにより、 セパレータ 1 2のガス流路 2 1のプレス成形に際して高い加工精度を要求し なくとも、 単セル 2の発電性能を高めることができる。
また一般には、 セパレータ 1 2のリブ部 2 3が接触する電極 1 6の部分は、 積層スタック構造の圧縮力によってガスが拡散されにくいが、 上記のように、 セパレータ 1 2のリブ部 2 3に対向して電極 1 6側のガス流路 5 3が位置す るため、 この部分からもガスが好適に拡散されていく。 すなわち、 セパレー タ 1 2は 凸構造に形成され、 セパレータ 1 2の ME A 1 1側において凹部 をガス流路 2 1とし且つ凸部 (リブ部 2 3 ) を M E A 1 1の電極 1 6に接触 させる構造であるが、 本実施形態では、 好ましい態様として、 セパレータ 1 2の凸部 (リブ部 2 3 ) の頂面に対向する電極 1 6側部位にガス流路 5 3を 形成している。 これにより、 凸部 (リブ部 2 3 ) の頂面に接する電極 1 6側 部位にも反応ガス (燃料ガス、 酸化ガス) が流通するので、 電気化学反応に 寄与する電極 1 6の面積 (すなわち有効発電面積) を増やして、 ME A 1 1 の発電量 (効率) を向上することができる。
さらに、 単セル 2としてのガスの流路断面積に着目すると、 従来の電極 1 6側にガス流路 5 3を形成しない場合の流路断面積と、 本実施形態のように 電極 1 6側にガス流路 5 3を形成した場合の流路断面積とが等しい条件の場 合では、 本実施形態によれば、 セパレータ 1 2側のガス流路 2 1の断面積が 従来に比べて小さく設定されることになる。 すなわち、 本実施形態によれば、 セパレータ 1 2のリブ部 2 3の高さを低く設定することができるため、 単セ ル 2の厚みを薄くすることができる。 これにより、 多数の単セル 2を積層す る燃料電池 1の小型化に適切に寄与することができる。
また、 セパレータ 1 2側のガス流路 2 1および電極 1 6側のガス流路 5 3 をそれぞれ等ピッチの複数のストレート流路で構成しているため、 加工上の 点で有用であることはもとより、 単セル 2全域においてガスが均一に電気化 学反応に供せられることになる。 これにより、 単セル 2における温度も全体 的に均一化されるため、 燃料電池 1の寿命を延ばすことにも供することがで さる。
なお、 本実施形態の変形例としては様々なものが考えられる。 例えば、 本 実施形態では電極 1 6の拡散層 5 1をカーボン素材で構成したが、 もちろん 拡散層 5 1を金属で構成することもできる。 この場合は、 プレス成形または フライス削りによって拡散層 5 1に溝状のガス流路 5 3を形成することがで きる。 もっとも、 金属で拡散層 5 1を構成した場合には、 セパレータ 1 2と 同様に、 ガス流路 5 3となる面には金属よりも耐食性を有する膜をコーティ ングすることが好ましい。
また、 電極 1 6側のガス流路 5 3の断面形状は四角形など多角形でもよい し、 円、 半円、 曲線を含む各種構造に適宜形成することができる。 さらに、 ガス流路 2 1やガス流路 5 3の断面積を発電面内において、 上流側ほど大き く、 下流側ほど小さくなるようにしてもよいし、 もちろんその逆であっても よい。 すなわち、 ME A 1 1の発電効率を最適にするように適宜断面積の大 小関係を設定すればよい。 なおまた、 例えば単セル 2において一方のガスを 他方のガスよりも優先して供給したい場合には、 優先度の低いガスに対応す る電極 1 6については、 ガス流路 5 3を形成しないようにすることも可能で ある。 そして、 これらの変形例は後述する他の実施形態においても適用する ことができる。
[実施形態 2 ]
次に、 実施形態 2に係る燃料電池 1の単セル 2について、 実施形態 1との 相違点を中心に説明する。 図 4に示すように、 実施形態 1と同様に、 単セル 2の各電極 1 6に形成されたガス流路 5 3は、 一方向に互いに平行に且つ等 ピッチで延在する複数のストレート流路からなり、 その延在方向はセパレー タ 1 2側のガス流路 2 1の延在方向と一致している。 そして実施形態 1と異 なり、 電極 1 6側の各ガス流路 5 3は、 セパレータ 1 2側の各ガス流路 2 1 に対向する位置に形成され、 これに違通している。 電極 1 6側の各ガス流路 5 3の幅 (延在方向に直交する方向の長さ) は、 セパレータ 1 2側の各ガス 流路 2 1の幅と略同じに形成される。 また、 電極 1 6側の各ガス流路 5 3の 深さ (溝深さ) は、 セパレータ 1 2側の各ガス流路 2 1の深さよりも浅く形 成されている。
実施形態 2によれば、 実施形態 1と同様の作用効果を奏し、 特に、 電極 1 6側のガス流路 5 3によって、 セパレータ 1 2のリブ部 2 3の高さを低くし ても必要なガスの流路断面積を確保することができるため、 セパレータ 1 2 の薄型化すなわち燃料電池 1の小型化に好適に供することができる点で有用 となる。 また、 セパレータ 1 2のリブ部 2 3の高さが低く設定されると、 冷 却流路 2 2の断面積も小さくなる。 これにより、 相対的ではあるが、 燃料電 池 1全体としては、 ガスの流路断面積を大きくしつつ、 冷却水の流路断面積 を小さくすることが可能となる。 これにより、 燃料電池 1の低温起動性を好 適に高め得る。 なお、 実施形態 2の態様に実施形態 1の態様を組み合わせる ことも可能である。
[実施形態 3 ]
次に、 実施形態 3に係る燃料電池 1の単セル 2について、 実施形態 1との 相違点を中心に説明する。 図 5に示すように、 実施形態 1と同様に、 単セル 2の各電極 1 6に形成されたガス流路 5 3は、 一方向に互いに平行に且つ等 ピッチで延在する複数のストレート流路からなり、 その延在方向はセパレー タ 1 2側のガス流路 2 1の延在方向と一致している。 そして実施形態 1と異 なり、 電極 1 6側の各ガス流路 5 3は、 各々の半部がセパレータ 1 2側の各 ガス流路 2 1の半部に対向すると共に、 各々の残りの半部がセパレータ 1 2 側の各ガス流路 2 1から外れてリブ部 2 3に面している。
すなわち、 電極 1 6側の例えば一つのガス流路 5 3は、 セパレータ 1 2側 の一つのガス流路 2 1となる溝部と、 これに連なるリブ部 2 3とに跨る。 実 施形態 3によっても、 上記実施形態と同様に、 単セル 2の有効発電面積を好 適に増大させるなど、 同様の作用効果を奏することができることはいうまで もない。
[実施形態 4 ]
次に、 実施形態 4に係る燃料電池 1の単セル 2について、 実施形態 1 との 相違点を中心に説明する。 図 6に示すように、 本実施形態の単セル 2の各電 極 1 6に形成されたガス流路 5 3は、 同様に複数のストレート流路からなる 力 この場合、 ガス入口 3 2 a側のいくつかのガス流路 5 3は、 上流端が入 口側連通部 3 6から離間して位置している。 すなわち、 ガス入口 3 2 a側を 含むセパレータ 1 2の長辺方向 (セパレータ 1 2側のガス流路 2 1のガス流 れ方向) の領域に包含される電極 1 6側のガス流路 5 3については、 上流端 が入口側連通部 3 6から外れて位置して、 下流端が出口側連通部 3 7に直接 開放するように連通している。 そして、 この領域に包含されない電極 1 6側 のガス流路 5 3については、 実施形態 1と同様に、 '上流端が入口側連通部 3 6に直接開放するように連通し且つ下流端が直接開放する'ように出口側連通 部 3 7に連通している。
実施形態 4によれば、 実施形態 1の作用効果に加えてさらに、 上記領域に 包含されるセパレータ 1 2側のガス流路 2 1にガスが積極的に流れるように なる。 これにより、 上記領域に包含されるセパレータ 1 2側のガス流路 2 1 は、 本来の主流流路としての機能を好適に奏することができる。 もちろん、 電極 1 6側のガス流路 5 3の全ての上流端を入口側連通部 3 6に連通させな いようにすることもできるが、 一般にガス入口 3 2 aよりのガス流路には他 のガス流路に比べてガスが流入し易い点を考慮すると、 実施形態 4のような 構成をすることが好ましい。
なお、 ガス出口 3 2 b側を含むセパレータ 1 2の長辺方向の領域に包含さ れる電極 1 6側のガス流路 5 3についても、 上流端が入口側連通部 3 6から 外れて位置させるようにしてもよい。
[実施形態 5 ]
次に、 実施形態 5に係る燃料電池 1の単セル 2について、 実施形態 1との 相違点を中心に説明する。 図 7に示すように、 実施形態 5の単セル 2の各電 極 1 6に形成されたガス流路 5 3は、 同様に複数のス トレート流路からなる 力 実施形態 1におけるガス流路 5 3の延在方向と直交する方向に延在して いる。 すなわち、 電極 1 6側の複数のガス流路 5 3は、 セパレータ 1 2側の 複数のガス流路 2 1を跨ぐように、 その延在方向と直交する方向に延在して いる。 したがって、 電極 1 6側の各ガス流路 5 3には、 セパレータ 1 2側の 各ガス流路 2 1に連通する部分からガスが供給される。 なお、 電極 1 6側の 複数のガス流路 5 3の間隔、 幅 (溝幅) や断面積等については、 ME A 1 1 の拡散層 5 1の透気度等の関係を考慮して、 適宜設計することができる。 実施形態 5によれば、 実施形態 1と同様に、 有効発電面積を好適に増大さ せつつ、 発電効率の向上および小型化に供することができると共に、 入口側 連通部 3 6からのガスをセパレータ 1 2側のガス流路 2 1に積極的に流すこ とが可能となる。
また、 セパレータ 1 2側のガス流路 2 1間に圧力差を発生させる構成とし た場合には、 電極 1 6側のガス流路 5 3に一定方向のガス流れを設定するこ とができるようになる。 圧力差を発生させるには、 例えば、 セパレータ 1 2 の隣接する二つのガス流路 2 1となる溝部に抵抗要素を設ければよい。 その 際に、 一方のガス流路 2 1となる溝部に対してはその上流側に、 他方のガス 流路 2 1となる溝部に対してはその下流側に設けるなど、 両者の抵抗要素の 配置位置を異なる位置にすればよい。
[実施形態 6 ]
実施形態 6は、 実施形態 5の変形例である。 図 8に示すように、 電極 1 6 側の複数のガス流路 5 3は、 セパレータ 1 2側の複数のガス流路 2 1の少な くとも一つを跨ぐように、 その延在方向と交差する方向に延在している。 し たがって、 実施形態 6においても、 上記と略同様な作用効果を奏することが できる。 なお、 電極 1 6側の複数のガス流路 5 3の傾斜角度は、 ME A 1 1 の拡散層 5 1の透気度等の関係を考慮して、 適宜設計することができる。
[実施形態 7 ]
次に、 図 9を参照して、 実施形態 7に係る燃料電池 1の単セル 2について 実施形態 1との相違点を中心に説明する。 図 9に示すように、 実施形態 7の セパレータ 1 2側のガス流路 2 1は、 溝状のサーペンタイン流路で構成され ている。 例えば、 一本のサーペンタイン流路で構成してもよいが、 実施形態 7では図 9に示すように、 セパレータ 1 2側のガス流路 2 1を三本のサーぺ ンタイン流路で構成している。 各サーペンタイン流路 2 1は、 一方向に互い に平行に延在する三本のストレート部 7 1と、 隣接するストレート部 7 1同 士を連絡する二つの折返し部 7 2と、 を有している。 各サーペンタイン流路 2 1は、 上流端が入口側連通部 3 6に連通し、 下流端が出口側連通部 3 7に 連通している。
電極 1 6側の複数のガス流路 5 3は、 一方向に互いに平行に且つ等ピッチ で延在する複数のストレート流路からなり、 その延在方向はセパレータ 1 2 側のストレート部 7 1の延在方向と一致している。 電極 1 6側の各ガス流路 5 3は、 上流端が入口側連通部 3 6に連通し且つ下流端が出口側連通部 3 7 に連通している。 そして、 電極 1 6側の複数のガス流路 5 3は、 セパレータ 1 2のリブ部 2 3にのみ面するものと、 大部分はセパレータ 1 2のリブ部 2 3に面して一部分だけサーペンタイン流路 2 1の折返し部 7 2に面するもの と、 に大別される。
このような実施形態 7においても、 上記実施形態と同様な作用効果を奏す ることができる。 なおもちろん、 電極 1 6側のガス流路 5 3をサーペンタイ ン流路 2 1のス トレート部 7 1に対向するようにしてもよいし、 上記各実施 形態の態様を適用してもよい。 例えば、 電極 1 6側の複数のガス流路 5 3を ストレート部 7 1の延在方向に対して交差する方向に延在させてもよい。
[実施形態 8 ]
実施形態 8は、 実施形態 7の変形例である。 図 1 0に示すように、 電極 1 6側の複数のガス流路 5 3は、 実施形態 7に]:ヒベて少ない本数で構成されて いると共に、 セパレータ 1 2側の各ガス流路 2 1から外れた位置に亘つて形 成されている。 また、 電極 1 6側の各ガス流路 5 3の上流端は、 入口側連通 部 3 6に連通しない構成となっている。 電極 1 6側の各ガス流路 5 3には、 電極 1 6の拡散層 5 1のガス透過を利用してガスが導入される。
実施形態 8によれば、 実施形態 7と比べて、 入口側連通部 3 6からのガス がセパレータ 1 2側のガス流路 2 1に確実に流入されるようになる。 これに より、 特にセパレータ 1 2のガス流路 2 1の折返し部 7 2にも確実にガスを 通流させることができ、 セパレータ 1 2側のガス流路 2 1に対して、 本来の 主流流路としての機能を適切に奏させることができる。
[実施形態 9 ]
次に、 図 1 1を参照して、 実施形態 9に係る燃料電池 1の単セル 2につい て、 実施形態 1との相違点を中心に説明する。 実施形態 9のセパレータ 1 2 側のガス流路 2 1は、 多数の小片状のリブ部 2 3によって画定されている。 多数のリブ部 2 3は、 ランド状に分散して整然配置されている。 同様に、 電 極 1 6側のガス流路 5 3は、 多数の小片状のリブ部 8 1によって画定され、 この各リプ部 8 1は、 セパレータ 1 2側のリブ部 2 3間に位置するようにラ ンド状に分散して整然配置されている。 単セル 2化した状態では、 セパレー タ 1 2側の各リプ部 2 3の頂面は電極 1 6の拡散層 5 1に接触する。 このよ うな実施形態 9の構成であっても、 上記各実施形態と略同様な作用効果を奏 することができる。 なおもちろん、 電極 1 6側のガス流路 5 3を上記と同様 にストレ^"ト流路にしてもよいことは言うまでもない。
[実施形態 1 0 ]
次に、 図 1 2を参照して、 実施形態 1 0に係る燃料電池 1の単セル 2につ いて、 実施形態 1との相違点を中心に説明する。 実施形態 1 0の電極 1 6側 のガス流路 5 3 (空所) は、 拡散層 5 1の内部にパイプ状に形成されている。 電極 1 6側のガス流路 5 3の延在方向は、 セパレータ 1 2側のガス流路 2 1 と直交する方向に延在しているが、 もちろん直交以外の交差方向であっても よいし、 同方向に延在してもよい。 同方向とした場合には、 電極 1 6側のガ 'ス流路 5 3の上流端を入口側連通部 3 6に且つ下流端を出口側連通部 3 7に 直接開放するように連通させてもよいし、 あるいは上流端については図 6と 同様に入口側連通部 3 6から離間させてもよい。 また、 セパレータ 1 2側の ガス流路 2 1についても、 ストレート流路以外のサーペンタイン流路を適用 することができるなど、 適宜設計することが可能である。
実施形態 1 0によれば、 上記各実施形態と略同様な作用効果を奏し得るほ 、 特に、 電極 1 6側のガス流路 5 3が拡散層 5 1の内部を貫通するように して形成されているため、 燃料電池 1の電気化学反応によって生成される水 に対して有効となる。 すなわち、 生成水が大量に発生した場合であっても、 単セル 2内へのガスの供給を妨げることなく、 生成水の排水性を高めること ができる。
[実施形態 1 1 ]
次に、 図 1 3および図 1 4を参照して、 実施形態 1 1に係る燃料電池 1の 単セル 2について、 実施形態 1との相違点を中心に説明する。 実施形態 1と の一つ目の相違点は、 拡散層 5 1におけるガス流路 5 3を溝状に複数形成す る位置を、 拡散層 5 1の触媒層 5 2側の面に変更したことである。 二つ目の 相違点は、 拡散層 5 1側のガス流路 5 3の大きさを変更したことである。 具体的には、 ガス流路 5 3の各ストレート流路は、 生成水の排水性を考慮 して、 上流側から下流側にかけて断面積が小さくなるように形成されている。 すなわち、 燃料電池 1の発電によって生じる生成水は、 ガス流路 5 3やガス 流路 2 1の下流ほど多くなるので、 これを考慮してガス流路 5 3の断面積が、 ガスの上流側よりも下流側の方を大きく設定されている。
ガス流路 5 3の断面形状は、 上記のように四角形など多角形でもよいし、 円、 半円、 曲線を含む各種構造に適宜形成することができる。 例えば、 ガス 流路 5 3の断面が四角形である場合には、 ガス流路 5 3の断面積は、 その溝 幅に溝深さを乗じたものとなる。 この場合、 ガス流路 5 3の断面積のサイズ は、 溝幅のみまたは溝深さのみについて、 上流側から下流側にかけて徐々に または段階的に小さくするようにしてもよい。 あるいは、 ガス流路 5 3の断 面積のサイズは、 溝幅および溝深さの両方を考慮して、 上流側から下流側に かけて徐々にまたは段階的に小さくするようにしてもよい。 例えば、 ガス流 路 5 3の溝幅および溝深さの範囲は、 0 . Ι μ π!〜 2 0 0 μ mに設定すれば よい。
ガス流路 5 3の上流端は、 実施形態 1と同様に入口側連通部 3 6に直接開 放するように連通している。 また同様に、 ガス流路 5 3の下流端は、 出口側 連通部 3 7に直接開放するように連通している。 ガス流路 5 3の下流端が出 口側連通部 3 7に連通しているため、 燃料電池 1の発電によって生じる生成 水をガス流路 5 3により出口側連通部 3 7に速やかに排出させることができ る。 なお、 ガス流路 5 3の一のストレート流路と他のストレート流路との断 面積の設定は、 同じとしてもよいし、 異ならせてもよい。
実施形態 1 1によっても、 第 1実施形態と同様の効果を奏することができ る。 第 1実施形態と比べて有用となる点は、 実施形態 1 1によれば、 簡易な 構造により、 拡散層 5 1の有効発電面積と生成水の排水性との調和を図るこ とができることである。
[実施形態 1 2 ]
次に、 図 1 5を参照して、 実施形態 1 2に係る燃料電池 1の単セル 2につ いて、 実施形態 1 1との相違点を中心に説明する。 実施形態 1 1との相違点 は、 ガス流路 5 3の位置が、 セパレータ 1 2側の各ガス流路 2 1に対向する 位置に変更されたことである。 両実施形態においては、 その他の点は同じで ある。 したがって、 実施形態 1 2によっても、 実施形態 1 1と同様の効果を 奏することができる。
[実施形態 1 3 ] 次に、 図 1 6およぴ図 1 7を参照して、 実施形態 1 2に係る燃料電池 1の 単セル 2について、 実施形態 1 1 との相違点を中心に説明する。 実施形態 1 1との相違点は、 拡散層 5 1に形成するガス流路として、 上記のガス流路 5 3に加えて、 複数のガス流路 9 1を設定したことである。
ガス流路 9 1は、 複数のス トレート流路からなり、 ガス流路 5 3の各スト レート流路に例えば直交する方向に延在している。 ガス流路 9 1は、 拡散層 5 1の触媒層 5 2側の面に溝状に形成されており、 ガス流路 5 3に直接連通 するようにしてこれに直交している。 したがって、 ガス流路 9 1には、 ガス 流路 5 3に連通する部分からガスが供給される。 ガス流路 9 1の複数のスト レート流路の間隔については、 拡散層 5 1の透気度等の関係を考慮して、 適 宜設計すればよい。
ガス流路 9 1の複数のストレート流路は、 生成水の排水性を考慮して、 互 いに断面積が異なっている。 具体的には、 生成水がガス入口 (3 2 a ) 側よ りもガス出口 (3 2 b ) 側で多くなることを考慮して、 ガス入口 (3 2 a ) に近いガス流路 9 1のストレート流路は、 ガス出口 (3 2 b ) に近いガス流 路 9 1のストレート流路よりも断面積が小さく設定されている。 実施形態 1 2では、 ガス流路 9 1の複数のストレート流路は、 ガス入口 (3 2 a ) 側か らガス出口 (3 2 b ) 側にかけて順に断面積が大きくなるように設定されて いる。
ガス流路 9 1の断面形状は、 上記のように四角形など多角形でもよいし、 円、 半円、 曲線を含む各種構造に適宜形成することができる。 例えば、 ガス 流路 9 1の断面が四角形である場合には、 ガス流路 9 1の断面積のサイズは、 溝幅のみまたは溝深さのみを考慮して設定してもよいし、 溝幅およぴ溝深さ の両方を考慮して設定してもよい。 例えば、 ガス流路 9 1の溝幅および溝深 さの範囲は、 最小で 0 . 1 / m 最大で 2 0 0 μ mに設定すればよい。
なお、 ガス流路 5 3およびガス流路 9 1を拡散層 5 1の一方の面側に形成 するのではなく、 拡散層 5 1の一方の面にガス流路 5 3およびガス流路 9 1 のいずれか一方を形成し、 拡散層 5 1の他方の面にガス流路 5 3およびガス 流路 9 1の他方を形成してもよレ、。 例えば、 ガス流路 9 1を拡散層 5 1のセ パレータ 1 2側の面に形成してもよい。 この場合には、 ガス流路 9 1には、 セパレータ 1 2側のガス流路 2 1力 らガスが供給されるようになる。

Claims

請求の範囲
1 . 電解質膜およびこれを両側から挟んだ一対の電極からなる ME Aと、 前記 ME Aを挟持し、 前記各電極に面する部位にガスの流路が形成された 一対のセパレータと、 を備えた燃料電池において、
前記一対の電極の少なくとも一方には、 これが面する前記セパレータ側の 流路に対応した流路が形成されている燃料電池。
2 . 前記電極側の流路は、 当該電極の内部にパイプ状に形成されている請 求項 1に記載の燃料電池。
3 . 前記電極側の流路は、 当該電極の部位を溝状に形成されている請求項 1に記載の燃料電池。
4 . 前記電極側の流路は、 前記セパレータ側の流路と平行に延在するよう に形成されている請求項 1ないし 3のいずれか一項に記載の燃料電池。
5 . 前記電極側の流路は、 少なくとも前記セパレータ側の流路に対する当 該電極の非接触部位に形成されている請求項 3に記載の燃料電池。
6 . 前記電極側の流路は、 少なくとも当該電極に対する前記セパレータの 接触部位に対向する位置に形成されている請求項 3に記載の燃料電池。
7 . 前記電極側の流路は、 前記セパレータ側の流路から外れた位置に形成 されている請求項 3に記載の燃料電池。
8 . 前記電極側の流路は、 前記セパレータ側の流路に対向する位置に形成 されている請求項 3に記載の燃料電池。
9 . 前記セパレータ側の流路は、 一方向に平行に延在する複数のストレー ト流路からなり、
前記電極側の流路は、 前記一方向と同方向に平行に延在する複数のストレ 一ト流路からなる請求項 5ないし 8のいずれか一項に記載の燃料電池。
1 0 . 前記セパレータ側の流路は、 一方向に平行に延在する複数のス トレ 一ト流路からなり、
前記電極側の流路は、 前記一方向と同方向に平行に延在する複数のス トレ 一ト流路からなり、
前記電極側の各ストレート流路は、 その一部分が前記セパレータ側の各ス トレート流路に面すると共に残りの部分が当該各スレート流路に面しない請 求項 3に記載の燃料電池。
1 1 . 前記セパレータ側の流路は、 一方向に平行に延在する複数のストレ 一ト流路からなり、
前記電極側の流路は、 前記一方向に交差する方向に平行に延在し、 前記複 数のストレート流路の少なくとも一つを跨ぐ複数のストレート流路からなる 請求項 3に記載の燃料電池。
1 2 . 前記セパレータ側の複数のストレート流路および Zまたは前記電極 側の複数のストレート流路は、 等ピッチで形成されている請求項 9ないし 1
1のいずれか一項に記載の燃料電池。
1 3 . 前記セパレータには、 当該セパレータ側の流路にガスを導入するた めのガス入口と、 当該セパレータ側の流路からガスを導出するためのガス出 口とが設けられており、
前記電極側の流路は、 上流端が前記ガス入口側から離間して位置し且つ下 流端が前記ガス出口側に直接開放している請求項 1ないし 1 2のレ、ずれか一 項に記載の燃料電池。
1 4 . 前記セパレータは、 基材がメタルで形成されている請求項 1ないし
1 3のいずれか一項に記載の燃料電池。
1 5 . 前記各電極は、
前記電解質膜側の触媒層と、
前記触媒層と前記セパレータとの間に介在する拡散層であって、 前記セパ レータ側の流路に対応した流路が形成された拡散層と、 を有する請求項 1ないし 1 4のいずれか一項に記載の燃料電池。
1 6 . ガスの流路が形成されたセパレータと、
前記セパレータに隣接する電極の拡散層と、
を備えた燃料電池であって、
前記拡散層には、 前記セパレータの前記流路に対応した空所が形成されて いる燃料電池。
1 7 . 前記空所は、 ガスの上流側よりも下流側の方が大きい請求項 1 6に 記載の燃料電池。
1 8 . 前記電極は、 前記セパレータと反対側に位置して前記拡散層に隣接 する触媒層を有しており、
前記空所は、 前記拡散層の前記触媒層側の面に形成されている請求項 1 6 または 1 7に記載の燃料電池。
PCT/JP2005/008396 2004-05-31 2005-04-26 燃料電池 WO2005117177A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-160836 2004-05-31
JP2004160836 2004-05-31

Publications (1)

Publication Number Publication Date
WO2005117177A1 true WO2005117177A1 (ja) 2005-12-08

Family

ID=35451181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008396 WO2005117177A1 (ja) 2004-05-31 2005-04-26 燃料電池

Country Status (1)

Country Link
WO (1) WO2005117177A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186788A (ja) * 2007-01-31 2008-08-14 Toyota Motor Corp 燃料電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242894A (ja) * 1992-02-28 1993-09-21 Agency Of Ind Science & Technol 高分子電解質型燃料電池用ガス拡散電極
JPH0613091A (ja) * 1992-06-25 1994-01-21 Mitsubishi Heavy Ind Ltd 平板型固体電解質燃料電池
JPH08287928A (ja) * 1995-04-17 1996-11-01 Sanyo Electric Co Ltd 平板型燃料電池及びその製造方法
JPH11354142A (ja) * 1998-06-11 1999-12-24 Toshiba Corp 固体高分子電解質型燃料電池
JP2000113899A (ja) * 1998-10-01 2000-04-21 Honda Motor Co Ltd 燃料電池
WO2003041199A2 (en) * 2001-11-07 2003-05-15 Intelligent Energy Limited Fuel cell fluid flow field plates
JP2003151585A (ja) * 2001-11-12 2003-05-23 Toyota Motor Corp 燃料電池及び拡散層
JP2004079245A (ja) * 2002-08-12 2004-03-11 Honda Motor Co Ltd 燃料電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242894A (ja) * 1992-02-28 1993-09-21 Agency Of Ind Science & Technol 高分子電解質型燃料電池用ガス拡散電極
JPH0613091A (ja) * 1992-06-25 1994-01-21 Mitsubishi Heavy Ind Ltd 平板型固体電解質燃料電池
JPH08287928A (ja) * 1995-04-17 1996-11-01 Sanyo Electric Co Ltd 平板型燃料電池及びその製造方法
JPH11354142A (ja) * 1998-06-11 1999-12-24 Toshiba Corp 固体高分子電解質型燃料電池
JP2000113899A (ja) * 1998-10-01 2000-04-21 Honda Motor Co Ltd 燃料電池
WO2003041199A2 (en) * 2001-11-07 2003-05-15 Intelligent Energy Limited Fuel cell fluid flow field plates
JP2003151585A (ja) * 2001-11-12 2003-05-23 Toyota Motor Corp 燃料電池及び拡散層
JP2004079245A (ja) * 2002-08-12 2004-03-11 Honda Motor Co Ltd 燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186788A (ja) * 2007-01-31 2008-08-14 Toyota Motor Corp 燃料電池

Similar Documents

Publication Publication Date Title
JP4205774B2 (ja) 燃料電池
JP4598287B2 (ja) 燃料電池スタックおよび燃料電池スタックの運転方法
CA2831549C (en) Solid electrolyte fuel cell stack
WO2007148761A1 (ja) 燃料電池
JP4585737B2 (ja) 燃料電池
JPWO2012007998A1 (ja) 燃料電池
JP2004039525A (ja) 燃料電池
JP2005174648A (ja) 燃料電池
US7632594B2 (en) Solid oxide fuel cell with improved gas exhaust
JP2012190746A (ja) 燃料電池スタックおよび燃料電池
JP4899440B2 (ja) 燃料電池用流路板及び燃料電池
EP2330668A1 (en) Polymer electrolyte fuel cell and fuel cell stack provided with same
JP2007280904A (ja) 燃料電池
JP2004063472A (ja) 発電機器の改良された流体流路
JP5274908B2 (ja) 燃料電池スタック
WO2005117177A1 (ja) 燃料電池
JP2007149358A (ja) 燃料電池用セパレータ
JP2006269409A (ja) 固体酸化物形燃料電池
KR101162667B1 (ko) 연료 전지용 분리판
JP5415122B2 (ja) 燃料電池スタック
JP5123824B2 (ja) 燃料電池スタックおよび燃料電池スタックの運転方法
KR100766154B1 (ko) 연료전지의 분리판
KR20200106948A (ko) 연료 전지 스택을 위한 캐소드 유동장 분배
JP5336221B2 (ja) 燃料電池スタック
JP4453081B2 (ja) 燃料電池、燃料電池用セパレータおよび一組の燃料電池用セパレータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase