WO2005112015A1 - 光集積ユニットおよび光ピックアップ装置 - Google Patents

光集積ユニットおよび光ピックアップ装置 Download PDF

Info

Publication number
WO2005112015A1
WO2005112015A1 PCT/JP2005/008338 JP2005008338W WO2005112015A1 WO 2005112015 A1 WO2005112015 A1 WO 2005112015A1 JP 2005008338 W JP2005008338 W JP 2005008338W WO 2005112015 A1 WO2005112015 A1 WO 2005112015A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photodetector
optical
recording medium
spot
Prior art date
Application number
PCT/JP2005/008338
Other languages
English (en)
French (fr)
Inventor
Masaru Ogawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2005112015A1 publication Critical patent/WO2005112015A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings

Definitions

  • the present invention relates to an optical integrated unit and an optical pickup device, and more specifically, to an optical integrated unit and an optical pickup device used for optically recording or reproducing information on a recording medium.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-297875
  • FIG. 13 is a schematic configuration diagram showing a schematic configuration of a conventional optical pickup 110. As shown in FIG.
  • a conventional optical pickup 110 detects an information signal of a magneto-optical recording medium 130, and generates a light source 111, a grating 116, an objective lens 113, a base material 141, and an optical detector. Dispenser 115 is provided.
  • the base material 141 is disposed between the light source 111 and the objective lens 113, the first polarized light separating means 112 is provided on the surface on the objective lens 113 side, and the second polarized light separating means 114 is provided on the surface on the light source 111 side. Is provided.
  • Grating 116 divides light emitted from light source 111 into three beams for tracking.
  • the objective lens 113 focuses the light emitted from the light source 111 on the recording surface of the magneto-optical recording medium 130.
  • the first polarization separation means 112 separates the reflected light from the magneto-optical recording medium 130 via the objective lens 113 in the radial direction (X direction) of the magneto-optical recording medium 130.
  • the first polarization separation means 112 is arranged as a means having a function of multiplying the Kerr rotation angle of the reflected light from the magneto-optical recording medium 130.
  • FIG. 14 is a structural diagram showing the element structure of the first polarization separation means 112 in the optical pickup 110.
  • the first polarization separation means 112 uses a polarizing hologram composed of a birefringent diffraction grating element, transmits ordinary light as 0th-order light, and transmits extraordinary light for + 1st-order light. Origami Diffracted into 112a and first-order diffracted light 112b.
  • the phase difference with respect to ordinary light is set to about 70 degrees
  • the phase difference with respect to extraordinary light is set to about 130 degrees or 230 degrees.
  • the 0th-order diffraction efficiency is 67%
  • the sum of the + 1st-order diffraction efficiency and the -1st-order diffraction efficiency is 27%.
  • the zero-order diffraction efficiency is 18%
  • the sum of the first-order diffraction efficiency and the first-order diffraction efficiency is 76%.
  • Information reproduction from the magneto-optical recording medium 130 is based on a principle such as the optical power effect. Therefore, the reflected light from the magneto-optical recording medium 130 has a Kerr rotation in the plane of polarization according to the information.
  • the first polarization separating means 112 has an effect of increasing the Kerr rotation angle of the reflected light of the magneto-optical recording medium 130 by setting the above-mentioned diffraction efficiency.
  • second polarization separation means 114 is polarization separation means for differential detection of a magneto-optical signal, and further reflects the reflected light separated by first polarization separation means 112. Polarize and separate.
  • the second polarization separation means 114 includes a polarization separation part 114a and a polarization separation part 114b.
  • the polarization separation portion 114a further separates the polarization of the + 1st-order diffracted light 112a generated by the first polarization separation means 112.
  • the polarization separation part 114b further separates the polarization of the first-order diffracted light 112b generated by the first polarization separation means 112.
  • the second polarization separating means 114 also uses a polarizing hologram composed of a birefringent diffraction grating type element similar to the first polarization separating means 112 shown in FIG. Diffracts light.
  • the second polarization separation means 114 has a phase difference of about 0 degree with respect to ordinary light and about 180 degrees with respect to extraordinary light.
  • the photodetector 115 receives each beam separated by the second polarization separation means 114.
  • FIG. 15 is a configuration diagram showing a specific configuration of the photodetector 115 in the optical pickup 110.
  • the photodetector 115 includes ⁇ first-order diffracted lights 112a and 112b diffracted in the radial direction of the magneto-optical recording medium 130 by the first polarization separation means 112 shown in FIG.
  • Light receiving portions 115a and 115b respectively, for receiving light.
  • the light receiving portions 115a and 115b are formed on the upper surface of the common substrate 117.
  • the light receiving portion 115a includes light receiving portions 118, 119, and 120 for receiving light that is divided into three by the grating 116 in FIG. 13 in the tangential direction of the magneto-optical recording medium 130.
  • Receiver 119 In order to receive the transmitted light and the first-order diffracted light separated in the radial direction of the magneto-optical recording medium 130 by the polarization separation portion 114a of the second polarization separation means 114 shown in FIG. Have been.
  • the light receiving section 119 is divided into three parts in the tangential direction of the magneto-optical recording medium 130 into a narrow center part and both side parts with respect to a tangential direction of the magneto-optical recording medium 130 for detecting a focus error signal by a differential three division method.
  • the light receiving portion 115b includes light receiving portions 121, 122, and 123 for receiving light that is divided into three in the tangential direction of the magneto-optical recording medium 130 by the grating 116 in FIG.
  • the light receiving section 122 receives the transmitted light and the + 1st-order diffracted light separated in the radial direction of the magneto-optical recording medium 130 by the polarized light separating section 114b of the second polarized light separating means 114 shown in FIG. , 122b.
  • the light receiving section 122 is divided into three parts in a tangential direction of the magneto-optical recording medium 130 into a narrow central part and both side parts in order to detect a focus error signal by a differential three division method.
  • the light receiving portion 115a receives the transmitted light of the polarization splitting portion 114a shown in FIG. 13 as a spot light SP100, and receives the first-order diffracted light from the polarization splitting portion 114a as a spot light SP101.
  • the light receiving portion 115b receives the transmitted light of the polarization separation portion 114b as a spot light SP105, and receives the + 1st-order diffracted light from the polarization separation portion 114b as a spot light SP106.
  • the four light receiving portions 119a, 119b, 122a, and 122b of the photodetector 115 have respective sizes in consideration of the size and movement of each spot light on the light receiving portion. Need to design.
  • Each of the light receiving sections 119a, 119b, 122a, 122b is designed with a margin of 5 ⁇ m from the end of each spot light.
  • an output signal of the photodetector 115 is represented by adding S to the code of each light receiving portion of the photodetector 115.
  • the magneto-optical signal MO10 reproduced based on the output signal of the photodetector 115 is expressed as follows.
  • MO 1 0 (S 1 1 9 a-S 1 1 9 b) + (S 1 2 2 a — S 1 2 2 b)
  • (S119a-S119b) is a differential signal between the transmitted light of the polarization separation portion 114a and the first-order diffracted light.
  • (S122a—S122b) is the transmitted light of the polarization separation portion 114b.
  • the differential signal between the + 1st-order diffracted light.
  • the spot light on the photodetector 115 is simply described as being substantially circular. However, actually, in the configuration disclosed in Patent Document 1, the spot light on the photodetector 115 is deformed due to aberration.
  • the first polarization separation means 112 and the second polarization separation means 114 shown in FIG. 13 are formed of a substrate such as lithium niobate, and transmit light and light used for detecting the differential signal.
  • the ⁇ 1st-order diffracted light passes obliquely through the substrate. This is one of the main causes of the above-mentioned aberration.
  • the base material 141 provided with the first polarization separation means 112 and the second polarization separation means 114 is made of an optical material such as a glass material or a resin, the degree of the above aberration is further increased.
  • FIG. 15 shows a configuration in which a focus error signal is generated by a differential three-division method (spot size method) using the four photodetectors 119a, 119b, 122a, and 122b. is there. Therefore, it is necessary for the four light receiving sections 119a, 119b, 122a, and 122b to receive spot lights having substantially the same shape and the same size. Also, the aberration of each spot light needs to be about the same.
  • the first polarization separation means 112 is formed by a simple grating so that the diffraction angles of ⁇ 1st-order diffracted light are equalized and the polarization separation is performed. It is conceivable to make the thicknesses of the portions 114a and 114b in the optical axis direction equal.
  • the components that make up the optical pickup 110 in FIG. 13 have variations in dimensions, thickness, and the like, for example, under conditions 1 to 3, due to manufacturing tolerances.
  • the condition 1 indicates a case where the thickness of the substrate 117 constituting the photodetector 115 in FIG. 13 is near the designed value.
  • Condition 2 indicates a case where the thickness of the substrate 117 constituting the photodetector 115 in FIG. 13 is about 30 / z m thicker than the design value.
  • Condition 3 indicates a case where the thickness of the substrate 117 constituting the photodetector 115 in FIG. 13 is smaller than the design value by about 30 m.
  • the optical distance between the polarization separation unit 112 and the photodetector 115 in FIG. 13 is short.
  • the optical distance between the polarization separation means 112 and the photodetector 115 in FIG. In any of conditions 2 and 3, the spot on each light receiving part of the photodetector 115 The shape of the light changes with astigmatism.
  • the optical pickup 110 of FIG. 13 When the optical pickup 110 of FIG. 13 is operated while the shape of the spot light on each light receiving portion of the photodetector 115 is deformed, the light on the magneto-optical recording medium 130 is in a defocused state. Therefore, it is necessary to perform optical adjustment of the optical pickup 110 before the operation of the optical pickup 110.
  • the simplest adjustment is to change the shape of the spot light on the photodetector 115 by changing the optical distance between the polarization separation means 112 and the photodetector 115. It is considered a method.
  • optical adjustment is performed by moving the base material 141 provided with the first polarization separation means 112 and the second polarization separation means 114 up and down. . Specifically, under the condition 2, the base material 141 is moved to the objective lens 113 side. In condition 3, the base material 141 is moved to the light source 111 side.
  • each spot light on the photodetector 115 is corrected so as to be in the least confusion circle state, and the light is focused on the magneto-optical recording medium 130.
  • the optical distance between the polarization separation means 112 and the photodetector 115 also changes in design value. Therefore, each spot light on the photodetector 115 moves to the + side or the side in the X direction.
  • FIG. 16 shows a simulation of the spot shape on the photodetector 115 after the optical adjustment.
  • FIG. 16 is a diagram showing, by simulation, a spot shape after optical adjustment on the photodetector 115 under a predetermined condition.
  • the spot light on the light receiving portions 115a and 115b after optical adjustment under the three conditions described later is overlapped.
  • the shape of each spot light on the light receiving portion 115a of the photodetector 115 and the shape of each spot light on the light receiving portion 115b are bilaterally symmetric. Specifically, it is as follows.
  • light receiving section 118 receives spot light SP111 (spot light after optical adjustment under the following three conditions superimposed, the same applies hereinafter) and SP112.
  • the light receiving section 119a has dimensions of one side L 119a and the other side W119, and receives the spot light SP113.
  • the light receiving section 119b has dimensions of one side L119b and the other side W119, and receives the spot light SP114.
  • Receiving part 120 receives spot light SP115, SP116!
  • Each of the spot lights SP111, SP113, and SP115i is transmitted light of the polarization splitting component 114a.
  • Spot light SP112, SP114, SP116i, oh! The deviation is also the polarization separation component 114a.
  • light receiving section 121 receives spot lights SP121 and SP122.
  • the light receiving unit 122a has dimensions of one side L122a and the other side W122, and receives the spot light SP123.
  • the light receiving section 122b has dimensions of one side L122b and the other side W122, and receives the spot light SP124. 3 ⁇ 4: ⁇ ⁇ 123 ⁇ 3 ⁇ 4, Sports, Noto SP125, SP126!
  • Each of the spot lights SP121, SP123, and SP125i is transmitted light by the polarization beam splitting component 114b.
  • the / ⁇ shift is also the + 1st-order diffracted light of the polarization separation component 114b.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-297875
  • the conventional optical pickup 110 shown in FIG. 13 uses a light receiving portion 115a, 115b formed on the upper surface of a common substrate 117 to detect a servo signal by a differential three-division method, Detect the magnetic signal.
  • the shape of each spot light on the light receiving portions 115a and 115b of the photodetector 115 does not need to be focused as shown in FIG. .
  • the shape of the light receiving portions 115a and 115b also needs to be formed large.
  • an object of the present invention is to provide an optical integrated unit and an optical pick-up unit capable of improving the C / N ratio and response characteristics of a reproduced signal without having to form a large light receiving portion. It is to provide an up device.
  • the present invention is an optical integrated unit that outputs outgoing light to a recording medium and receives reflected light from the recording medium, and includes a light source that outputs outgoing light, and at least first and second reflected lights.
  • a polarized light separating element that separates the first diffracted light, a first light detector that receives the first diffracted light, and a second light detector that receives the second diffracted light.
  • the first photodetector is arranged at a position where the spot light due to the first diffracted light has a focal line shape.
  • the second photodetector is arranged at a position where the spot light due to the second diffracted light has a focal line shape.
  • the first and second photodetectors are arranged at positions where optical distances from the polarization splitting element are different from each other.
  • the optical distance between the first photodetector and the polarization splitting element is longer than the optical distance between the second photodetector and the polarization splitting element.
  • the optical distance between the first photodetector and the polarization splitting element is shorter than the optical distance between the second photodetector and the polarization splitting element.
  • the first and second photodetectors have different thicknesses in the emission light direction.
  • a base on which at least the first and second photodetectors are installed, a first spacer provided between the first photodetector and the base, and a second light detector There is further provided a second spacer provided between the detector and the base, and the first and second spacers have different thicknesses from each other.
  • the first photodetector is a photodetector for detecting a magneto-optical signal of the recording medium
  • the second photodetector is a photodetector for detecting a servo signal of the recording medium.
  • the first photodetector is a photodetector for detecting a servo signal of a recording medium
  • the second photodetector is a photodetector for detecting a magneto-optical signal of a recording medium.
  • a first retardation plate that corrects a phase difference of the first diffracted light that is diffracted by the polarization separation element and enters the first photodetector, and a second light that is diffracted by the polarization separation element At least one of a second phase difference plate for correcting a phase difference of the second diffracted light incident on the detector is further provided.
  • an optical pickup device for optically recording or reproducing information on or from a recording medium, comprising: a light source that outputs emitted light; A polarization separation element that separates the light into first and second diffracted light, a first photodetector that receives the first diffracted light, and a second photodetector that receives the second diffracted light
  • a first photodetector is disposed at a position where the spot light of the first diffracted light has a focal line shape, and an optical integrated unit, and a light condensing means for condensing the emitted light on a recording medium.
  • the second photodetector is arranged at a position where the spot light due to the second diffracted light has a focal line shape.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of an optical pickup device 10 according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a spot shape on a photodetector 15a in the optical pickup device 10 shown in FIG.
  • FIG. 3 is a view showing a spot shape on a photodetector 15b in the optical pickup device 10 shown in FIG.
  • FIG. 4 is a table showing the dimensions of the light receiving portions 19a and 19b of the photodetector 15a according to the present invention and the light receiving portions 119a and 119b of the photodetector 115 according to the prior art.
  • FIG. 5 is a schematic configuration diagram showing a schematic configuration of an optical pickup device 30 according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram schematically showing the + first-order diffracted light 2b and ⁇ first-order diffracted light 2a generated by the polarization hologram 2, and their spot shapes on the photodetectors 7a and 7b.
  • FIG. 7 is a diagram showing a specific structure of a polarization hologram 4b in the optical pickup device 30 shown in FIG.
  • FIG. 8 is a diagram showing a spot shape on a photodetector 7b in the optical pickup device 30 shown in FIG. 9 is a diagram showing a specific structure of a polarization hologram 4a in the optical pickup device 30 shown in FIG.
  • FIG. 10 is a diagram showing, by simulation, a spot shape on photodetector 7a when light receiving surface of photodetector 7a according to Embodiment 2 of the present invention is 100 m higher than photodetector 7b.
  • FIG. 11 is a diagram showing, by simulation, a spot shape on the photodetector 7a when the light receiving surface of the photodetector 7a is at the same height as the photodetector 7b, as a comparative example of FIG.
  • FIG. 12 is a table showing respective dimensions of light receiving portions J1 to J3 of a photodetector 7a according to the present invention and light receiving portions J21 to J23 of a photodetector 7a2 as a comparative example.
  • FIG. 13 is a schematic configuration diagram showing a schematic configuration of a conventional optical pickup 110.
  • FIG. 14 is a structural diagram showing an element structure of a first polarization splitting element 112 in the optical pickup 110.
  • FIG. 15 is a configuration diagram showing a specific configuration of a photodetector 115 in the optical pickup 110.
  • FIG. 16 is a diagram showing a spot shape on a photodetector 115 under a predetermined condition by simulation.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of an optical pickup device 10 according to Embodiment 1 of the present invention.
  • optical pickup device 10 of the first embodiment detects an information signal of magneto-optical recording medium 31, and includes optical integrated unit 50 and objective lens 13.
  • the optical integrated unit 50 includes a light source 11 (for example, a semiconductor laser), a grating 16, a substrate 40, and photodetectors 15a and 15b.
  • the substrate 40 is provided with a polarization hologram (polarization separation element) 12 on the surface on the side of the objective lens 13 and polarization holograms (polarization separation element) 14a and 14b on the surface on the side of the light source 11.
  • the light (P-polarized light) emitted from the light source 11 passes through a grating 16 attached to a member (not shown), so that three beams for tracking, that is, a main beam and two sub beams are provided. And divided into Since the three beams are split in the tangential direction (Y direction) of the magneto-optical recording medium 31, they are represented by one light beam in FIG.
  • the light that has passed through the grating 16 passes through the polarization hologram 12 and is condensed on the recording surface of the magneto-optical recording medium 31 by the objective lens 13.
  • the reflected light from the magneto-optical recording medium 31 enters the polarization hologram 12 after passing through the objective lens 13.
  • the reflected light from the magneto-optical recording medium 31 has a slight S-polarized component because the plane of polarization rotates in Kerr according to the information in the magneto-optical recording medium 31.
  • the polarization hologram 12 has a 0-order diffraction efficiency of 77% for P-polarized light, 11% for ⁇ 1st-order diffraction efficiency, and a 0% -order diffraction efficiency for S-polarized light and 44% for ⁇ 1st-order diffraction efficiency. Is configured to. Since the polarization hologram 12 is configured with such a ratio of the diffraction efficiencies, the Kerr rotation angle of the reflected light from the magneto-optical recording medium 31 is apparent by detecting both or either of the ⁇ 1st-order folded light. Has the effect of multiplying.
  • the + 1st-order diffracted light 12b of the polarization hologram 12 enters the polarization hologram 14b formed on the surface of the substrate 40 on the light source 11 side, is separated into predetermined light, and detected by the photodetector 15b. .
  • the polarization hologram 14b is a light separating element for detecting a servo signal or detecting a magneto-optical signal.
  • the first-order diffracted light 12a of the polarization hologram 12 enters the polarization hologram 14a formed on the surface of the base material 40 on the light source 11 side, is separated into predetermined light, and is detected by the photodetector 15a.
  • the polarization hologram 14a is used for light separation for magneto-optical signal detection or servo signal detection. Element. Note that the configuration of the polarization holograms 14a and 14b is the same as in the related art.
  • optical distance from the polarization hologram 12 to the photodetector 15a is different from the optical distance from the polarization hologram 12 to the photodetector 15b.
  • a difference of 140 m is provided between the height of the light detector 15a and the height of the light detector 15b.
  • the semiconductor substrate forming the photodetector 15a to be thin in the optical axis direction and forming the photodetector 15b to be thick in the optical axis direction, the height of the photodetector 15a and the photodetector can be reduced. It is possible to make a difference between the height of 15b.
  • the photodetectors 15a and 15b may be installed on a common base (substrate). For example, by installing spacers having different thicknesses between the base and the photodetectors 15a and 15b, a difference between the height of the photodetector 15a and the height of the photodetector 15b is provided. Can be provided.
  • the spacer includes a case where one of the thicknesses is zero.
  • FIG. 2 is a diagram showing a spot shape on the photodetector 15a in the optical pickup device 10 shown in FIG.
  • photodetector 15a receives light that is divided into three in the tangential direction of magneto-optical recording medium 31 by grating 16 in FIG. Including.
  • the light receiving section 19 is divided into light receiving sections 19a and 19b to receive the transmitted light and the first-order diffracted light separated in the radial direction of the magneto-optical recording medium 31 by the polarization hologram 14a shown in FIG.
  • spot light on the light receiving portion 15a under three conditions regarding the variation in the substrate thickness described with reference to FIG. 16 is overlapped. Specifically, it is as follows.
  • light receiving section 18 receives spot light SP11 (the spot light under the above three conditions is superimposed, the same applies hereinafter) and SP12.
  • the light receiving section 19a has dimensions of one side L19a and the other side W19, and receives the spot light SP13.
  • the light receiving section 19b has dimensions of one side L19b and the other side W19, and receives the spot light SP14.
  • the light-receiving section 20 is used for spot light SP15, SP16. Receiving light.
  • the spot lights SP11, SP13, and SP15 are all transmitted lights of the polarization hologram 14a.
  • Each of the spot lights SP12, SP14, SP16 is a first-order diffracted light by the polarization hologram 14a.
  • a magneto-optical signal is generated by the difference between the transmitted light and the first-order diffracted light.
  • the light detector 15a has a light receiving surface 140 m lower than the light detector 15b. Furthermore, the diffracted lights 12a and 12b of the polarization hologram 12 have astigmatism because they are obliquely incident on the photodetectors 15a and 15b, respectively. Therefore, as shown in FIG. 2, the shape of each spot light on the light receiving surface of the photodetector 15a is elongated in the X direction.
  • FIG. 3 is a diagram showing a spot shape on the photodetector 15b in the optical pickup device 10 shown in FIG.
  • photodetector 15b receives light divided into three in the tangential direction of magneto-optical recording medium 31 by grating 16 in FIG. Including.
  • the light receiving section 22 is divided into light receiving sections 22a and 22b to receive the transmitted light and the + 1st-order diffracted light separated in the radial direction of the magneto-optical recording medium 31 by the polarization hologram 14b shown in FIG.
  • spot light on the light receiving portion 15b under three conditions regarding the variation in the thickness of the substrate described with reference to FIG. 16 is overlapped. Specifically, it is as follows.
  • light receiving section 21 receives spot light SP21 (the spot light under the above three conditions is superimposed, the same applies hereinafter) and SP22.
  • the light receiving section 22a has dimensions of one side L22a and the other side W22, and receives the spot light SP23.
  • the light receiving section 22b has dimensions of one side L22b and the other side W22, and receives the spot light SP24.
  • the light receiving section 23 receives the spot lights SP25 and SP26.
  • the spot lights SP21, SP23, and SP25 are all transmitted lights of the polarization hologram 14b.
  • Each of the spot lights SP12, SP14, and SP16 is + 1st-order diffracted light from the polarization hologram 14b.
  • the transmitted light and the + 1st-order diffracted light generate a servo signal such as a focus error signal.
  • the photodetector 15b is arranged in the same optical distance relationship as the light receiving portion 115b of the photodetector 115 described with reference to Fig. 15. Therefore, the shape of the spot light on the photodetector 15b is It has the same shape as the spot light on the light receiving portion 115b shown in FIG.
  • each light receiving section in the photodetectors 15a and 15b shown in FIGS. 2 and 3 are designed with a margin of, for example, 5 / zm from the end of each spot light.
  • FIG. 4 is a table showing the respective dimensions of the light receiving portions 19a and 19b of the photodetector 15a according to the present invention and the light receiving portions 119a and 119b of the photodetector 115 according to the prior art. .
  • one side L19a of light receiving portion 19a of photodetector 15a according to the present invention is set to, for example, 120 m.
  • One side L19b of the light receiving portion 19b of the photodetector 15a according to the present invention is set to, for example, 173 ⁇ m.
  • the other side W19 of the light receiving portions 19a and 19b is set to, for example, 30 ⁇ m.
  • the areas of the light receiving sections 19a and 19b are 3600 m 2 and 5190 m 2 , respectively, and the total is 8790 ⁇ m 2 .
  • one side LI 19a of light receiving section 119a of photodetector 115 is set to, for example, 73 m.
  • One side L119b of the light receiving section 119b of the photodetector 115 according to the related art is set to, for example, 115 / zm.
  • the other side W119 of the light receiving beams 119a and 119b is set to, for example, 70 m.
  • the areas of the light receiving sections 119a and 119b are 5110 m 2 and 8050 / zm 2 , respectively, and the total is 13160 m 2 .
  • the area of the light receiving sections 19a and 19b of the photodetector 15a according to the present invention is reduced to about 5Z8 to 3Z4 as compared with the area of the light receiving sections 119a and 119b of the conventional photodetector 115. You can see that it is.
  • the area of the photodetector 15b according to the present invention is as large as the area of the photodetectors 119a and 119b of the photodetector 115 according to the prior art. Therefore, the photodetector 15b is used only for detecting a focus error signal which is less affected by noise or a decrease in response speed.
  • Embodiment 1 since the diffracted light of polarization hologram 12 has astigmatism, the optical distance from polarization hologram 12 to photodetector 15a is adjusted. Accordingly, the shape of each spot light on the light receiving surface of the photodetector 15a of the diffracted light of the polarization hologram 12 can be elongated and shaped in the X direction.
  • the area of the light receiving sections 19a and 19b of the photodetector 15a according to the present invention can be made smaller than that of the prior art. It is possible to reduce the area compared with the area of the light receiving sections 119a and 119b of the photodetector 115.
  • the photodetector 15a according to the present invention is used for detecting a reproduction signal, noise is reduced, so that the CZN ratio and response speed of the reproduction signal can be improved.
  • FIG. 5 is a schematic configuration diagram showing a schematic configuration of an optical pickup device 30 according to Embodiment 2 of the present invention.
  • an optical pickup device 30 detects an information signal of a magneto-optical recording medium 31, and connects optical integrated unit 51, objective lens 13, and collimating lens 17 to each other. Prepare.
  • the optical integrated unit 51 includes the composite optical element 60 and the package 39.
  • the optical substrates 1 and 3 are fixed to the upper and lower surfaces of the support plate 38, respectively.
  • the support plate 38 has an opening that is hollowed through the center for light transmission.
  • the composite optical element 60 is placed on the package 39 with the optical substrate 3 inserted in the package 39.
  • the knockout 39 includes the light source 11 (for example, a semiconductor laser) and the light detectors 7a and 7b.
  • the light (P-polarized light) emitted from the light source 11 passes through the grating 5 formed on the optical substrate 3, and is converted into three beams for tracking, that is, a main beam and two sub beams. Divided. Since the three beams are split in the tangential direction (Y direction) of the magneto-optical recording medium 31, they are represented by one light beam in FIG.
  • the light that has passed through the grating 5 passes through the polarization hologram 2 formed on the optical substrate 1 and the collimator lens 17, and is then focused on the recording surface of the magneto-optical recording medium 31 by the objective lens 13.
  • the reflected light from the magneto-optical recording medium 31 is incident on the polarization hologram 2 after passing through the objective lens 13 and the collimating lens 17.
  • the reflected light from the magneto-optical recording medium 31 slightly has an S-polarized component because the plane of polarization rotates in a Kerr rotation according to the information of the magneto-optical recording medium 31.
  • the polarization hologram 12 has a 0-order diffraction efficiency of P-polarized light of 77% and ⁇ 1st-order diffraction efficiency of 11%, and a 0-order diffraction efficiency of S-polarized light of 0% and a ⁇ 1st-order diffraction efficiency of 44%. Is configured to. Since the polarization hologram 12 is configured with such a ratio of the diffraction efficiencies, Detecting both or one of the folded light beams has the effect of apparently multiplying the Kerr rotation angle of the reflected light from the magneto-optical recording medium 31 as in the first embodiment.
  • phase difference plates 9a and 9b for providing an appropriate phase difference may be disposed on the optical substrate 3. Thereby, the phase difference between the + 1st-order diffracted light 2b and the 1st-order diffracted light 2a of the polarization hologram 2 can be corrected.
  • the + 1st-order diffracted light 2b of the polarization hologram 2 enters a polarization hologram (polarization separation element) 4b formed on the optical substrate 3, is separated into predetermined light, and is detected by the photodetector 7b.
  • the polarization hologram 4b is a light separating element for detecting a magneto-optical signal and for detecting a servo signal or a magneto-optical signal.
  • the first-order diffracted light 2a of the polarization hologram 2 is incident on a polarization hologram (polarization separation element) 4a formed on the optical substrate 3, is separated into predetermined light, and is detected by a photodetector 7a.
  • the polarization hologram 4a is a light separating means for detecting a magneto-optical signal or detecting a servo signal.
  • the knife edge method in detecting a focus error signal of an optical pickup device, is advantageous in that crosstalk such as mixing of a push-pull signal is smaller than in other methods.
  • the knife edge method that can easily obtain a highly reliable detection result by using the hologram is advantageous.
  • the knife edge method since the reflected light of the recording medium is collected on the photodetector, the size of the spot light on the photodetector can be naturally reduced. Therefore, in the case of using the knife edge method, even if the servo signal detection and the magneto-optical signal detection are used in combination, there is no problem that the area of the light receiving portion is increased as in the related art.
  • FIG. 6 is a diagram schematically showing the + first-order diffracted light 2b and ⁇ first-order diffracted light 2a generated by the polarization hologram 2, and their spot shapes on the photodetectors 7a and 7b.
  • the grating pattern of the polarization hologram 2 is slightly curved.
  • the spot light R201 of the + 1st-order diffracted light 2b can be collected on the photodetector 7b.
  • the polarization pattern of polarization hologram 2 When the optical distance from the polarization hologram 2 is the same between the photodetector 7a and the photodetector 7b due to the slight curve of the spot, the spot indicated by the dotted line of the first-order diffracted light 2a on the photodetector 7a The light R301 does not converge but rather has an enlarged spot shape.
  • the optical distance from the polarization hologram 2 to the photodetector 7a is different from the optical distance from the polarization hologram 2 to the photodetector 7b. Accordingly, the spot light R200 of the first-order diffracted light 2a on the photodetector 7a has a long and narrow focal line shape in the X direction.
  • a difference of 100 m is provided between the height of the light detector 7a and the height of the light detector 7b.
  • the thickness of the semiconductor substrate forming the photodetector 7a is configured to be thick
  • the thickness of the semiconductor substrate forming the photodetector 7b is configured to be thin.
  • FIG. 7 is a diagram showing a specific structure of the polarization hologram 4b in the optical pickup device 30 shown in FIG.
  • polarization hologram 4b includes a semicircular region 4bA, and quadrant regions 4bB and 4bC.
  • the + 1st-order diffracted light 2b generated by the polarization hologram 2 is incident on the polarization hologram 4b.
  • the optical pickup device 30 shown in FIG. 5 detects a diffracted light component falling on the semicircular region 4bA of the + first-order diffracted light 2b generated by the polarization hologram 2, and performs focus servo by the knife edge method. . Further, of the + 1st-order diffracted light 2b generated by the polarization hologram 2, a diffracted light component falling on the quadrants 4bB and 4bC is detected, and tracking servo is performed.
  • FIG. 8 is a diagram showing a spot shape on the photodetector 7b in the optical pickup device 30 shown in FIG.
  • photodetector 7b includes zero-order light (transmitted light) generated by semicircular region 4bA and quadrant-shaped regions 4bB and 4bC of polarization hologram 4b in Fig. 7, and In order to receive the 1st-order diffracted light respectively, it includes light receiving areas 71 to 77.
  • the spot light on the photodetector 7b under the three conditions regarding the variation in the substrate thickness described in FIG. 16 is overlapped.
  • the light (P-polarized light) emitted from the light source 11 passes through the grating 5 formed on the optical substrate 3 to generate three beams for tracking, ie, Is divided into a main beam and two sub beams. Specifically, it is as follows.
  • the light receiving area 71 receives the first-order diffracted light generated when the main beam enters the quadrant-shaped area 4bC of the polarization hologram 4b as a spot light SP32 (the spot light under the above three conditions is superimposed, the same applies hereinafter). Includes light receiving section F2.
  • the spot lights SP31 and SP33 are first-order diffracted lights generated when two sub-beams enter the quadrant region 4bC of the polarization hologram 4b.
  • the light receiving area 72 includes a light receiving section E2 that receives, as the spot light SP35, the + first-order diffracted light generated when the main beam enters the quadrant-shaped area 4bB of the polarization hologram 4b.
  • the spot lights SP34 and SP36 are + 1st-order diffracted lights generated when two sub-beams are incident on the quadrant region 4bB of the polarization hologram 4b.
  • the light receiving area 73 includes a light receiving section A1 that receives, as a spot light SP38, the first-order diffracted light generated when the main beam enters the semicircular area 4bA of the polarization hologram 4b.
  • the spot lights SP37 and SP39 are first-order diffracted lights generated when two sub-beams enter the semicircular area 4bA of the polarization hologram 4b.
  • the light receiving area 74 includes a light receiving section B1 that receives, as the spot light SP41, the zero-order light (transmitted light) generated by the main beam incident on the polarization hologram 4b.
  • the spot lights SP40 and SP42 are zero-order light (transmitted light) generated when two sub-beams enter the polarization hologram 4b.
  • the light receiving area 75 includes light receiving sections CI and D1 for receiving, as spot light SP44, the + first-order diffracted light generated when the main beam enters the semicircular area 4bA of the polarization hologram 4b.
  • the spot light SP44 is detected on the dividing line of the light receiving sections CI and D1.
  • the spot lights SP43 and SP45 are + 1st-order diffracted lights generated when two sub beams are incident on the semicircular area 4bA of the polarization hologram 4b.
  • the light receiving area 76 includes light receiving sections El, Gl, and G2.
  • the light receiving section E1 converts the + 1st-order diffracted light generated when the main beam enters the quadrant-shaped area 4bC of the polarization hologram 4b with the spot light SP47. And receive light.
  • the light receiving units Gl and G2 receive the + first-order diffracted light generated by the incidence of the two sub-beams on the quadrant area 4bC of the polarization hologram 4b as spot lights SP46 and SP48, respectively.
  • Light receiving area 77 includes light receiving sections Fl, HI, and H2.
  • the light receiving section F1 receives the first-order diffracted light generated as the main beam is incident on the quadrant area 4bB of the polarization hologram 4b as the spot light SP50.
  • the light receiving sections HI and H2 receive the first-order diffracted light as spot lights SP49 and SP51, respectively, generated when two sub-beams are incident on the quadrant area 4bB of the polarization hologram 4b.
  • the output signal of the photodetector 7b is represented by adding S to the code of each light receiving unit of the photodetector 7b.
  • the magneto-optical signal MOl reproduced based on the output signal of the photodetector 7b is expressed as follows.
  • MO 1 S B 1-(SA 1 + SC 1 + SD 1 + SE 1 + SP + SE2 + SF 2)
  • the focus error signal FES reproduced based on the output signal of the photodetector 7b is expressed as follows.
  • the tracking error detection signal TES1 based on the push-pull signal detection is obtained by the following equation.
  • TES2 is obtained by the following equation.
  • k is an arbitrary coefficient.
  • FIG. 9 shows a specific configuration of the polarization hologram 4a in the optical pickup device 30 shown in FIG. It is the figure shown about the structure. As shown in FIG. 9, since the polarization hologram 4a has a slit in the Y direction, it generates ⁇ first-order diffracted light in the X direction.
  • FIG. 10 is a diagram showing, by simulation, a spot shape on photodetector 7a when light receiving surface of photodetector 7a is 100 ⁇ m higher than photodetector 7b according to Embodiment 2 of the present invention. is there.
  • the photodetector 7a of the second embodiment receives the 0th-order light (transmitted light) and the ⁇ 1st-order diffracted light generated by the polarization hologram 4a of FIG. Includes regions 78-80.
  • the light (P-polarized light) emitted from the light source 11 passes through the grating 5 formed on the optical substrate 3 to form three beams for tracking, that is, the main beam. Split into a beam and two sub-beams. Specifically, it is as follows.
  • the light receiving area 78 includes a light receiving section J3 that receives the first-order diffracted light generated as the main beam enters the polarization hologram 4a as the spot light SP62.
  • the light receiving portion J3 has dimensions of one side L3 and the other side W3.
  • the spot lights SP61 and SP63 are first-order diffracted lights generated when two sub-beams enter the polarization hologram 4a.
  • the light receiving area 79 includes a light receiving section J2 that receives, as a spot light SP65, the zero-order light (transmitted light) generated when the main beam enters the polarization hologram 4a.
  • the light receiving portion J2 has dimensions of one side L2 and the other side W2.
  • the spot lights SP64 and SP66 are zero-order light (transmitted light) generated when two sub beams are incident on the polarization hologram 4a.
  • the light receiving area 80 includes a light receiving section J1 that receives the + first-order diffracted light generated when the main beam enters the polarization hologram 4a as the spot light SP68.
  • the light receiving portion J1 has dimensions of one side L1 and the other side W1.
  • the spot lights SP67 and SP69 are + 1st-order diffracted lights generated when two sub-beams enter the polarization hologram 4a.
  • FIG. 11 shows spots on the photodetector 7a when the light receiving surface of the photodetector 7a is at the same height as the photodetector 7b (hereinafter, referred to as a photodetector 7a2 for distinction from FIG. 10).
  • FIG. 11 is a diagram showing the shape by simulation as a comparative example of FIG.
  • the photodetector 7a2 as a comparative example receives the 0th-order light (transmitted light) and ⁇ 1st-order diffracted light generated by the polarization hologram 4a in FIG. ⁇ 80 Contains 0.
  • the light (P-polarized light) emitted from the light source 11 passes through the grating 5 formed on the optical substrate 3 to form a three beam for tracking, that is, the main beam. Split into a beam and two sub-beams. Specifically, it is as follows.
  • the light receiving region 780 includes a light receiving portion J23 that receives the first-order diffracted light generated as the main beam enters the polarization hologram 4a as the spot light SP620.
  • the light receiving portion J23 has dimensions of one side L23 and the other side W23.
  • the spot lights SP610 and SP630 are first-order diffracted lights generated when two sub beams are incident on the polarization hologram 4a.
  • the light receiving area 790 includes a light receiving section J22 that receives, as a spot light SP650, zero-order light (transmitted light) generated when the main beam enters the polarization hologram 4a.
  • the light receiving portion J22 has dimensions of one side L22 and the other side W22.
  • the spot lights SP640 and SP660i are zero-order light (transmitted light) generated when two sub-beams enter the polarization hologram 4a.
  • the light receiving area 800 includes a light receiving section J21 that receives the + first-order diffracted light generated when the main beam enters the polarization hologram 4a as the spot light SP680.
  • the light receiving portion J21 has dimensions of one side L21 and the other side W21.
  • the spot lights SP670 and SP690 are + 1st-order diffracted lights generated when two sub beams enter the polarization hologram 4a.
  • the photodetector 7a according to the second embodiment of the present invention shown in Fig. 10 has the shape power of each spot light, and the photodetector 7a2 as a comparative example shown in Fig. 11.
  • the light detector 7a is elongated in the form of a focal line, and as a result, the light receiving area of the photodetector 7a is reduced.
  • the dimensions of each light receiving section in the photodetectors 7a and 7a2 shown in FIGS. 10 and 11 are designed with a margin of, for example, 5 / zm from the end of each spot light.
  • FIG. 12 is a table showing the dimensions of the light receiving portions J1 to J3 of the photodetector 7a according to the present invention and the light receiving portions J21 to J23 of the photodetector 7a2 as a comparative example.
  • one side L1 and the other side W1 of light receiving portion J1 of photodetector 7a according to the present invention are set to, for example, 155 / zm and 28 m, respectively.
  • One side L2 and the other side W2 of the light receiving portion J2 of the photodetector 7a according to the present invention are set to, for example, 155 ⁇ and 19 m, respectively.
  • Departure One side L3 and the other side W3 of the light receiving portion J3 of the light detector 7a are set to, for example, 220 m and 25 / zm, respectively.
  • the area of the light receiving portion J1 ⁇ J3 each 4340 m 2, 2945 ⁇ m 2 , 5500 ⁇ m 2 , and the the sum becomes 12785 ⁇ m 2.
  • one side L21 and the other side W21 of light receiving portion J21 of photodetector 7a2 as a comparative example are set to, for example, 197 m and 63 m, respectively.
  • the one side L22 and the other side W22 of the light reception ⁇ J22 of the photodetector 7a2 according to the present invention are set to, for example, 195 m and 38 / zm, respectively.
  • One side L23 and the other side W23 of the light receiving portion J23 of the photodetector 7a2 according to the present invention are set to, for example, 270 ⁇ and 44 ⁇ m, respectively.
  • the areas of the light receiving sections J21 to J23 are 12411 m 2 , 74
  • the area of the light receiving portions J1 to J3 of the photodetector 7a according to the present invention is reduced to about 1Z3 to 1Z2 as compared with the area of the receivers 21 to 23 of the photodetector 7a2 as a comparative example.
  • the optical pickup device 30 of the present invention adjusts the optical distance from the polarization hologram 2 to the photodetector 7a because the diffracted light of the polarization hologram 2 has astigmatism.
  • the shape of each spot light on the light receiving surface of the photodetector 7a of the second diffracted light is elongated in the X direction.
  • the magneto-optical signal M02 includes a magneto-optical signal based on a DWDD (Domain Wall Displacement Detection) method.
  • MO 2 S 1 2-(S J 1 + S J 3)
  • the size of the spot light is reduced. Therefore, all the ⁇ 1st-order diffracted lights by the polarization hologram 4a can be received. For this reason, the imbalance with the light amount received by the light receiving unit J2 is reduced, and the common-mode noise can be sufficiently suppressed. Further, since the area of the light receiving portion in the photodetector 7a is reduced, the CZN ratio can be improved as compared with the photodetector 7a2 as a comparative example.
  • the magneto-optical recording medium 31 is a DWDD-type magneto-optical recording medium
  • a phase difference occurs between the P-polarized component and the S-polarized component of the light reflected from the magneto-optical recording medium 31.
  • a photodetector 7b for detecting the + first-order diffracted light 2b generated by the polarization hologram 2 of FIG. 5 and a photodetector for detecting the first-order diffracted light 2a generated by the polarization hologram 2 7a it is possible to detect the magneto-optical signal independently.
  • the light detection The detector 7a can detect a magneto-optical signal with a DWDD magneto-optical recording medium, and the photodetector 7b can detect a magneto-optical signal with a normal magneto-optical recording medium.
  • one optical pickup device 30 it is possible to detect a magneto-optical signal by a DWDD type magneto-optical recording medium and to detect a magneto-optical signal by a normal magneto-optical recording medium. .
  • the optical pickup device for magneto-optical recording has been described as an example.
  • the integrated optical unit and the optical pickup device according to the present invention are limited to only magneto-optical recording. I can't.
  • the adjustment of the optical distance focusing on astigmatism has been described.
  • the optical integrated unit and the optical pickup device according to the present invention use only the astigmatism. Limited.
  • the optical distance from polarization hologram 2 to photodetector 7a must be adjusted.
  • the shape of each spot light on the light receiving surface of the photodetector 7a of the diffracted light of the polarization hologram 2 can be elongated and shaped in the X direction.
  • the area of the light receiving sections J1 to J3 of the photodetector 7a according to the present invention can be reduced as compared with the area of the light receiving sections J21 to J23 as the comparative example.
  • the photodetector 7a When the photodetector 7a is used for detecting a reproduced signal, noise is reduced, so that the CZN ratio and response speed of the reproduced signal can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 光ピックアップ装置(10)では、光検出器(15a)の高さと光検出器(15b)の高さとの間に140μmの差を設けている。すなわち、偏光ホログラム(12)から光検出器(15a)までの光学的距離が長く、偏光ホログラム(12)から光検出器(15b)までの光学的距離が短くなっている。偏光ホログラム(12)の回折光は非点収差を有しているので、偏光ホログラム(12)から光検出器(15a)までの光学的距離を調整することにより、偏光ホログラム(12)の回折光の光検出器(15a)の受光面上での各スポット光の形状をX方向に細長い形状とすることができる。これにより、光検出器(15a)の受光部の面積を小さくすることが可能となる。

Description

明 細 書
光集積ユニットおよび光ピックアップ装置
技術分野
[0001] この発明は、光集積ユニットおよび光ピックアップ装置に関し、より特定的には、記 録媒体に対して情報を光学的に記録または再生するのに用いられる光集積ユニット および光ピックアップ装置に関する。
背景技術
[0002] 近年、光ディスクなどの情報記録媒体に対して情報を光学的に記録または再生す る技術に関する研究開発が進められている。以下では、特開平 8— 297875号公報( 特許文献 1)に開示された従来技術について説明する。
[0003] 図 13は、従来の光学ピックアップ 110の概略的な構成について示した概略構成図 である。
[0004] 図 13を参照して、従来の光学ピックアップ 110は、光磁気記録媒体 130の情報信 号を検出し、光源 111と、グレーティング 116と、対物レンズ 113と、基材 141と、光検 出器 115とを備える。基材 141は、光源 111と対物レンズ 113との間に配置され、対 物レンズ 113側の面に第 1の偏光分離手段 112が設けられ、光源 111側の面に第 2 の偏光分離手段 114が設けられる。
[0005] グレーティング 116は、光源 111から出射される光をトラッキングのための 3ビームに 分割する。対物レンズ 113は、光源 111から出射される光を光磁気記録媒体 130の 記録面上に合焦する。第 1の偏光分離手段 112は、対物レンズ 113を介した光磁気 記録媒体 130からの反射光を光磁気記録媒体 130の半径方向(X方向)に分離する 。第 1の偏光分離手段 112は、光磁気記録媒体 130からの反射光のカー回転角を増 倍するェンノ、ンス機能を有する手段として配置されている。
[0006] 図 14は、光学ピックアップ 110における第 1の偏光分離手段 112の素子構造につ いて示した構造図である。
[0007] 図 14に示すように、第 1の偏光分離手段 112は、複屈折回折格子型素子からなる 偏光性ホログラムを用いており、常光を 0次光として透過させ、異常光を + 1次回折光 112aと— 1次回折光 112bとに回折する。第 1の偏光分離手段 112は、常光に対す る位相差が約 70度、異常光に対する位相差が約 130度または 230度に設定されて いる。これにより、常光に対して、 0次回折効率は 67%、 + 1次回折効率と— 1次回折 効率との和は 27%となる。一方、異常光に対して、 0次回折効率は 18%、 + 1次回 折効率と 1次回折効率との和は 76%となる。
[0008] 光磁気記録媒体 130の情報再生は、光力一効果等の原理に基づいている。そのた め、光磁気記録媒体 130からの反射光は、情報にしたがって偏光面がカー回転する 。第 1の偏光分離手段 112は、上記の回折効率の設定により、光磁気記録媒体 130 力 の反射光のカー回転角を増倍する作用を有する。
[0009] 図 13に戻って、第 2の偏光分離手段 114は、光磁気信号の差動検出のための偏 光分離手段であり、第 1の偏光分離手段 112によって分離された反射光をさらに偏 光分離する。第 2の偏光分離手段 114は、偏光分離部分 114aと、偏光分離部分 11 4bとを含む。偏光分離部分 114aは、第 1の偏光分離手段 112によって生成された + 1次回折光 112aをさらに偏光分離する。偏光分離部分 114bは、第 1の偏光分離 手段 112によって生成された 1次回折光 112bをさらに偏光分離する。
[0010] 第 2の偏光分離手段 114も、図 14に示した第 1の偏光分離手段 112と同じぐ複屈 折回折格子型素子からなる偏光性ホログラムを用いており、常光を透過させ、異常光 を回折する。第 2の偏光分離手段 114は、常光に対する位相差が約 0度、異常光に 対する位相差が約 180度に設定されている。光検出器 115は、第 2の偏光分離手段 114によって分離された各ビームを受光する。
[0011] 図 15は、光学ピックアップ 110における光検出器 115の具体的な構成について示 した構成図である。
[0012] 図 15に示すように、光検出器 115は、図 13に示した第 1の偏光分離手段 112によ り光磁気記録媒体 130の半径方向に回折される ± 1次回折光 112a, 112bをそれぞ れ受光するため、受光部分 115a, 115bを含む。受光部分 115a, 115bは、共通の 基板 117の上面部に形成されて!、る。
[0013] 受光部分 115aは、図 13のグレーティング 116により光磁気記録媒体 130の接線方 向に 3分割される光を受光するため、受光部 118, 119, 120を含む。受光部 119は 、図 13に示した第 2の偏光分離手段 114の偏光分離部分 114aにより光磁気記録媒 体 130の半径方向に分離される透過光および 1次回折光を受光するため、受光部 119a, 119bに分割されている。また、受光部 119は、差動 3分割法によるフォーカス 誤差信号検出のため、光磁気記録媒体 130の接線方向に対して、細い中央部とそ の両側部とに 3分割されている。
[0014] 受光部分 115bは、図 13のグレーティング 116により光磁気記録媒体 130の接線 方向に 3分割される光を受光するため、受光部 121, 122, 123を含む。受光部 122 は、図 13に示した第 2の偏光分離手段 114の偏光分離部分 114bにより光磁気記録 媒体 130の半径方向に分離される透過光および + 1次回折光を受光するため、受光 部 122a, 122bに分割されている。また、受光部 122は、差動 3分割法によるフォー カス誤差信号検出のため、光磁気記録媒体 130の接線方向に対して、細い中央部と その両側部とに 3分割されている。
[0015] 受光部分 115aは、図 13に示した偏光分離部分 114aの透過光をスポット光 SP10 0として受光し、偏光分離部分 114aによる— 1次回折光をスポット光 SP101として受 光する。受光部分 115bは、偏光分離部分 114bの透過光をスポット光 SP105として 受光し、偏光分離部分 114bによる + 1次回折光をスポット光 SP106として受光する
[0016] 図 15に示すように、光検出器 115における 4つの受光咅 119a, 119b, 122a, 12 2bは、当該受光部上の各スポット光の大きさおよび移動を考慮して、それぞれの大き さを設計する必要がある。受光部 119a, 119b, 122a, 122bは、いずれも、各スポッ ト光の端部から 5 μ mの余裕をもって設計されて 、る。
[0017] 以下では、光検出器 115の各受光部分の符号に Sを付加することで、光検出器 11 5の出力信号を表わすものとする。このとき、光検出器 115の出力信号に基づいて再 生される光磁気信号 MO 10は、次のように表わされる。
[0018] [数 1]
MO 1 0 = ( S 1 1 9 a - S 1 1 9 b ) + ( S 1 2 2 a— S 1 2 2 b )
[0019] 上式において、(S119a— S119b)は、偏光分離部分 114aの透過光と 1次回折 光との差動信号である。また、(S122a— S122b)は、偏光分離部分 114bの透過光 と + 1次回折光との差動信号である。
[0020] 図 15において、光検出器 115上のスポット光は、いずれも簡易的にほぼ円形で記 載されている。しかし、実際には、特許文献 1に開示された構成では、光検出器 115 上のスポット光は、収差による変形を伴う。
[0021] 図 13に示した第 1の偏光分離手段 112および第 2の偏光分離手段 114は、ニオブ 酸リチウム等の基板で形成されており、上記差動信号の検出に用いる透過光および
± 1次回折光は、当該基板を斜めに通過する。これが、上記収差発生の主な原因の 一つである。第 1の偏光分離手段 112および第 2の偏光分離手段 114を設けている 基材 141が硝材、榭脂等の光学材料で構成されている場合、上記収差の度合いは さらに大きくなる。
[0022] 図 15【こ示した光検出器 115ίま、 4つの受光咅 119a, 119b, 122a, 122bを用!ヽ た差動 3分割法 (スポットサイズ法)によってフォーカス誤差信号を生成する構成であ る。そのため、 4つの受光部 119a, 119b, 122a, 122bには、ほぼ同形状でほぼ同 サイズのスポット光が落射する必要がある。また、各スポット光の収差も同程度である 必要がある。
[0023] 上記のスポット光に関する条件を満たす手段の一つとして、図 13において、第 1の 偏光分離手段 112を単純格子で形成して ± 1次回折光の回折角を等しくするととも に、偏光分離部分 114a, 114bの光軸方向に対する厚さを等しくすることが考えられ る。
[0024] なお、図 13の光ピックアップ 110を構成する部品は、製造公差によって、寸法、厚 さ等にたとえば条件 1〜3のようなバラツキが生じる。ここで、条件 1とは、図 13の光検 出器 115を構成する基板 117の厚さが設計値近傍の場合を指す。条件 2とは、図 13 の光検出器 115を構成する基板 117の厚さが設計値より 30 /z m程度厚い場合を指 す。条件 3とは、図 13の光検出器 115を構成する基板 117の厚さが設計値より 30 m程度薄い場合を指す。
[0025] 条件 2の場合、図 13の偏光分離手段 112と光検出器 115との間の光学的距離が 短くなる。条件 3の場合、図 13の偏光分離手段 112と光検出器 115との間の光学的 距離が長くなる。条件 2, 3のいずれの場合も、光検出器 115の各受光部上のスポット 光の形状は、非点収差をともなって変形する。
[0026] 光検出器 115の各受光部上のスポット光の形状が変形したままで図 13の光学ピッ クアップ 110を動作させると、光磁気記録媒体 130上の光はディフォーカスの状態と なる。そのため、光学ピックアップ 110の動作前に、光学ピックアップ 110の光学調整 を行なう必要がある。図 13の光学ピックアップ 110においては、偏光分離手段 112と 光検出器 115との間の光学的距離を変えることで光検出器 115上のスポット光の形 状を変化させるのが、最も簡単な調整方法と考えられる。
[0027] 上記の調整方法を採る場合、図 13の光学ピックアップ 110では、第 1の偏光分離 手段 112および第 2の偏光分離手段 114が設けられた基材 141を上下することにより 光学調整を行なう。具体的には、条件 2では、基材 141を対物レンズ 113側に移動す る。条件 3では、基材 141を光源 111側に移動する。
[0028] この光学調整によって光検出器 115上の各スポット光の形状が最小錯乱円状態と なるように補正し、光磁気記録媒体 130上に光を合焦させる。ただし、当該光学調整 にお 、て基材 141を上下に移動させる結果、偏光分離手段 112と光検出器 115との 間の光学的距離が設計値力も変化する。そのため、光検出器 115上の各スポット光 は、 X方向の +側または 側へ移動する。当該光学調整後における光検出器 115 上のスポット形状を図 16でシミュレーションにより示す。
[0029] 図 16は、所定の条件下における光検出器 115上の光学調整後のスポット形状をシ ミュレーシヨンにより示した図である。
[0030] 図 16では、後述の 3条件の光学調整後における受光部分 115a, 115b上のスポッ ト光を重ねて記載している。図 16に示すように、光検出器 115の受光部分 115a上の 各スポット光の形状と受光部分 115b上の各スポット光の形状とは、左右対称となる。 具体的には、以下のようになる。
[0031] 図 16を参照して、受光部 118は、スポット光 SP111 (下記 3条件の光学調整後のス ポット光を重ねて記載、以下同じ), SP112を受光している。受光部 119aは、一辺 L 119a,他辺 W119の寸法を有し、スポット光 SP113を受光している。受光部 119bは 、一辺 L119b,他辺 W119の寸法を有し、スポット光 SP114を受光している。受光部 120ίま、スポット光 SP115, SP116を受光して! /、る。 [0032] スポット光 SP111, SP113, SP115iま、 ヽずれも偏光分離咅分 114aの透過光で ある。スポット光 SP112, SP114, SP116iま、!/ヽずれも偏光分離咅分 114a【こよる一 1次回折光である。
[0033] 図 16を参照して、受光部 121は、スポット光 SP121, SP122を受光している。受光 部 122aは、一辺 L122a,他辺 W122の寸法を有し、スポット光 SP123を受光してい る。受光部 122bは、一辺 L122b,他辺 W122の寸法を有し、スポット光 SP124を受 して ヽる。 ¾: 咅^123【¾、スポ、ノト SP125, SP126を して!/ヽる。
[0034] スポット光 SP121, SP123, SP125iま、 ヽずれも偏光分離咅分 114bによる透過 光である。スポット光 SP122, SP124, SP126iま、!/ヽずれも偏光分離咅分 114bの + 1次回折光である。
特許文献 1:特開平 8 - 297875号公報
発明の開示
発明が解決しょうとする課題
[0035] 図 13に示した従来の光学ピックアップ 110は、共通の基板 117の上面部に形成さ れた受光部分 115a, 115bを用いて、差動 3分割法によってサーボ信号を検出する とともに、光磁気信号を検出する。
[0036] 差動 3分割法によるサーボ信号の検出では、光検出器 115の受光部分 115a, 115 b上の各スポット光の形状を図 16のように集光せず、むしろ拡大する必要がある。こ れに合わせて、受光部分 115a, 115bの形状も大きく形成する必要がある。
[0037] 一方、光磁気信号の検出に関しては、受光部分 115a, 115bの面積が大きくなる につれて再生信号におけるノイズ成分が増大し、再生信号の CZN (Carrier to
Noise)比が低下したり、再生信号の応答特性が低下したりするという問題点がある。
[0038] このように、図 13に示した従来の光学ピックアップ 110では、差動 3分割法を用いて サーボ信号を検出するのに受光部分 115a, 115bの形状を大きくする必要があるも のの、受光部分 115a, 115bの形状を大きくすると、再生信号の CZN比および応答 特性が低下するという問題点があった。
[0039] それゆえに、この発明の目的は、受光部分を大きく形成する必要がなぐ再生信号 の C/N比および応答特性を向上させることが可能な光集積ユニットおよび光ピック アップ装置を提供することである。
課題を解決するための手段
[0040] この発明は、記録媒体に対して出射光を出力し、記録媒体からの反射光を受ける 光集積ユニットであって、出射光を出力する光源と、反射光を少なくとも第 1および第 2の回折光に分離する偏光分離素子と、第 1の回折光を受光する第 1の光検出器と、 第 2の回折光を受光する第 2の光検出器とを備える。第 1の光検出器は、第 1の回折 光によるスポット光が焦線形状となる位置に配置されている。
[0041] 好ましくは、第 2の光検出器は、第 2の回折光によるスポット光が焦線形状となる位 置に配置されている。
[0042] 好ましくは、第 1および第 2の光検出器は、偏光分離素子からの光学的距離が互い に異なる位置に配置されて 、る。
[0043] 好ましくは、第 1の光検出器と偏光分離素子との間の光学的距離は、第 2の光検出 器と偏光分離素子との間の光学的距離より長い。
[0044] 好ましくは、第 1の光検出器と偏光分離素子との間の光学的距離は、第 2の光検出 器と偏光分離素子との間の光学的距離より短い。
[0045] 好ましくは、第 1および第 2の光検出器は、出射光方向の厚さが互いに異なる。
[0046] 好ましくは、第 1および第 2の光検出器を少なくとも設置する基台と、第 1の光検出 器と基台との間に設けられる第 1のスぺーサと、第 2の光検出器と基台との間に設け られる第 2のスぺーサとをさらに備え、第 1および第 2のスぺーサは、互いに厚さが異 なる。
[0047] 好ましくは、第 1の光検出器は、記録媒体の光磁気信号検出用の光検出器であり、 第 2の光検出器は、記録媒体のサーボ信号検出用の光検出器である。
[0048] 好ましくは、第 1の光検出器は、記録媒体のサーボ信号検出用の光検出器であり、 第 2の光検出器は、記録媒体の光磁気信号検出用の光検出器である。
[0049] 好ましくは、偏光分離素子によって回折され第 1の光検出器に入射する第 1の回折 光の位相差を補正する第 1の位相差板と、偏光分離素子によって回折され第 2の光 検出器に入射する第 2の回折光の位相差を補正する第 2の位相差板との少なくとも 一方をさらに備える。 [0050] この発明の他の局面によれば、記録媒体に対して情報を光学的に記録または再生 する光ピックアップ装置であって、出射光を出力する光源と、記録媒体からの反射光 を少なくとも第 1および第 2の回折光に分離する偏光分離素子と、第 1の回折光を受 光する第 1の光検出器と、第 2の回折光を受光する第 2の光検出器とを含み、かつ、 第 1の光検出器は第 1の回折光によるスポット光が焦線形状となる位置に配置されて Vヽる光集積ユニットと、出射光を記録媒体に集光する集光手段とを備える。
[0051] 好ましくは、第 2の光検出器は、第 2の回折光によるスポット光が焦線形状となる位 置に配置されている。
発明の効果
[0052] この発明によれば、受光部分を大きく形成する必要がなぐ再生信号の CZN比お よび応答特性を向上させることが可能となる。
図面の簡単な説明
[0053] [図 1]この発明の実施の形態 1による光ピックアップ装置 10の概略的な構成を示した 概略構成図である。
[図 2]図 1に示した光ピックアップ装置 10における光検出器 15a上のスポット形状を示 した図である。
[図 3]図 1に示した光ピックアップ装置 10における光検出器 15b上のスポット形状を示 した図である。
[図 4]本発明による光検出器 15aの受光部 19a, 19b、および従来技術による光検出 器 115の受光部 119a, 119bの各寸法を表にして示した図である。
[図 5]この発明の実施の形態 2による光ピックアップ装置 30の概略的な構成を示した 概略構成図である。
[図 6]偏光ホログラム 2によって生じる + 1次回折光 2bおよび— 1次回折光 2aとそれら の光検出器 7a, 7b上でのスポット形状とを模式的に示した図である。
[図 7]図 5に示した光ピックアップ装置 30における偏光ホログラム 4bの具体的構造に ついて示した図である。
[図 8]図 5に示した光ピックアップ装置 30における光検出器 7b上のスポット形状を示 した図である。 [図 9]図 5に示した光ピックアップ装置 30における偏光ホログラム 4aの具体的構造に ついて示した図である。
[図 10]この発明の実施の形態 2による光検出器 7aの受光面が光検出器 7bより 100 m高い場合における光検出器 7a上のスポット形状をシミュレーションにより示した図 である。
[図 11]光検出器 7aの受光面が光検出器 7bと同じ高さの場合における光検出器 7a上 のスポット形状を図 10の比較例としてシミュレーションにより示した図である。
[図 12]本発明による光検出器 7aの受光部 J1〜J3、および比較例としての光検出器 7 a2の受光部 J21〜J23の各寸法について表にして示した図である。
[図 13]従来の光学ピックアップ 110の概略的な構成について示した概略構成図であ る。
[図 14]光学ピックアップ 110における第 1の偏光分離素子 112の素子構造について 示した構造図である。
[図 15]光学ピックアップ 110における光検出器 115の具体的な構成について示した 構成図である。
[図 16]所定の条件下における光検出器 115上のスポット形状をシミュレーションにより 示した図である。
符号の説明
[0054] 1, 3 光学基板、 4a, 4b, 12, 14a, 14b 偏光ホログラム、 7a, 7b, 15a, 15b, 1 15 光検出器、 9a, 9b 位相差板、 10, 30 光ピックアップ装置、 11, 111 光源、 13, 113 対物レンズ、 16, 116 グレーティング、 17 コリメートレンズ、 31 , 130 光磁気記録媒体、 38 支持板、 39 ノ ッケージ、 40, 141 基材、 50, 51 光集積 ユニット、 60 複合光学素子、 110 光学ピックアップ、 112 第 1の偏光分離手段、 1 14 第 2の偏光分離手段、 114a, 114b 偏光分離部分、 115a, 115b 受光部分。 発明を実施するための最良の形態
[0055] 以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中 同一または相当部分には同一符号を付してその説明は繰り返さない。
[0056] [実施の形態 1] 図 1は、この発明の実施の形態 1による光ピックアップ装置 10の概略的な構成を示 した概略構成図である。
[0057] 図 1を参照して、実施の形態 1の光ピックアップ装置 10は、光磁気記録媒体 31の情 報信号を検出し、光集積ユニット 50と、対物レンズ 13とを備える。光集積ユニット 50 は、光源 11 (たとえば、半導体レーザ)と、グレーティング 16と、基材 40と、光検出器 15a, 15bとを含む。基材 40は、対物レンズ 13側の面に偏光ホログラム (偏光分離素 子) 12が設けられ、光源 11側の面に偏光ホログラム (偏光分離素子) 14a, 14bが設 けられる。
[0058] 光源 11から出射される光 (P偏光)は、図示せぬ部材に取り付けられたグレーティン グ 16を通過することで、トラッキングのための 3ビーム、すなわち、メインビームと 2つ のサブビームとに分割される。当該 3ビームは、光磁気記録媒体 31の接線方向(Y方 向)に分割されるので、図 1では 1本の光束で代表して表わしている。
[0059] グレーティング 16を通過した光は、偏光ホログラム 12を通過した後、対物レンズ 13 によって、光磁気記録媒体 31の記録面上に集光される。光磁気記録媒体 31からの 反射光は、対物レンズ 13を通過した後、偏光ホログラム 12に入射される。光磁気記 録媒体 31からの反射光は、光磁気記録媒体 31の情報に従って偏光面がカー回転 するため、わずかに S偏光成分を有する。
[0060] 偏光ホログラム 12は、 P偏光の 0次回折効率が 77%、 ± 1次回折効率がともに 11 %で、 S偏光の 0次回折効率が 0%、 ± 1次回折効率がともに 44%に構成されている 。偏光ホログラム 12は、このような回折効率の比率で構成されているため、 ± 1次回 折光の両方またはいずれか一方を検出することにより、光磁気記録媒体 31からの反 射光のカー回転角を見かけ上増倍する作用を有する。
[0061] 偏光ホログラム 12の + 1次回折光 12bは、基材 40の光源 11側の面に形成された 偏光ホログラム 14bに入射し、所定の光に分離された後、光検出器 15bで検出される 。偏光ホログラム 14bは、サーボ信号検出用または光磁気信号検出用の光分離素子 である。偏光ホログラム 12の— 1次回折光 12aは、基材 40の光源 11側の面に形成さ れた偏光ホログラム 14aに入射し、所定の光に分離された後、光検出器 15aで検出さ れる。偏光ホログラム 14aは、光磁気信号検出用またはサーボ信号検出用の光分離 素子である。なお、偏光ホログラム 14a, 14bの構成は、従来技術と同様である。
[0062] ここで注目すべき点は、偏光ホログラム 12から光検出器 15aまでの光学的距離と偏 光ホログラム 12から光検出器 15bまでの光学的距離とが異なっていることである。
[0063] 図 1に示す実施の形態 1の光ピックアップ装置 10では、光検出器 15aの高さと光検 出器 15bの高さとの間に 140 mの差を設けている。たとえば、光検出器 15aを形成 する半導体基板を光軸方向に薄く構成し、光検出器 15bを形成する半導体基板を 光軸方向に厚く構成することにより、光検出器 15aの高さと光検出器 15bの高さとの 間に差を設けることが可能である。
[0064] また、図 13と同様に、光検出器 15a, 15bは、共通の基台(基板)に設置されていて もよい。たとえば、当該基台と光検出器 15a, 15bとの間に互いに厚さの異なるスぺ ーサをそれぞれ設置することにより、光検出器 15aの高さと光検出器 15bの高さとの 間に差を設けることが可能である。なお、当該スぺーサは、一方の厚さがゼロの場合 も含む。
[0065] 上記のような手段を採ることにより、偏光ホログラム 12から光検出器 15aまでの光学 的距離を長くし、偏光ホログラム 12から光検出器 15bまでの光学的距離を短くするこ とがでさる。
[0066] 図 2は、図 1に示した光ピックアップ装置 10における光検出器 15a上のスポット形状 を示した図である。
[0067] 図 2を参照して、光検出器 15aは、図 1のグレーティング 16により光磁気記録媒体 3 1の接線方向に 3分割される光を受光するため、受光部 18, 19, 20を含む。受光部 19は、図 1に示した偏光ホログラム 14aにより光磁気記録媒体 31の半径方向に分離 される透過光および 1次回折光を受光するため、受光部 19a, 19bに分割されてい る。また、図 2では、図 16で説明した基板厚さのバラツキに関する 3条件における受 光部分 15a上のスポット光を重ねて記載している。具体的には、以下のようになる。
[0068] 図 2を参照して、受光部 18は、スポット光 SP11 (上記 3条件のスポット光を重ねて記 載、以下同じ), SP12を受光している。受光部 19aは、一辺 L19a,他辺 W19の寸法 を有し、スポット光 SP13を受光している。受光部 19bは、一辺 L19b,他辺 W19の寸 法を有し、スポット光 SP14を受光している。受光部 20は、スポット光 SP15, SP16を 受光している。
[0069] スポット光 SP11, SP13, SP15は、いずれも偏光ホログラム 14aの透過光である。
スポット光 SP12, SP14, SP16は、いずれも偏光ホログラム 14aによる— 1次回折光 である。当該透過光と 1次回折光との差動により、光磁気信号が生成される。
[0070] 図 1において説明したように、光検出器 15aは、受光面が光検出器 15bより 140 m低く構成されている。さらに、偏光ホログラム 12の回折光 12a, 12bは、光検出器 1 5a, 15bに対してそれぞれ斜めに入射することから非点収差を有する。したがって、 図 2に示すように、光検出器 15aの受光面上での各スポット光の形状は、いずれも X 方向に細長い形状となる。
[0071] 図 3は、図 1に示した光ピックアップ装置 10における光検出器 15b上のスポット形状 を示した図である。
[0072] 図 3を参照して、光検出器 15bは、図 1のグレーティング 16により光磁気記録媒体 3 1の接線方向に 3分割される光を受光するため、受光部 21, 22, 23を含む。受光部 22は、図 1に示した偏光ホログラム 14bにより光磁気記録媒体 31の半径方向に分離 される透過光および + 1次回折光を受光するため、受光部 22a, 22bに分割されてい る。また、図 3では、図 16で説明した基板厚さのバラツキに関する 3条件における受 光部分 15b上のスポット光を重ねて記載している。具体的には、以下のようになる。
[0073] 図 2を参照して、受光部 21は、スポット光 SP21 (上記 3条件のスポット光を重ねて記 載、以下同じ), SP22を受光している。受光部 22aは、一辺 L22a,他辺 W22の寸法 を有し、スポット光 SP23を受光している。受光部 22bは、一辺 L22b,他辺 W22の寸 法を有し、スポット光 SP24を受光している。受光部 23は、スポット光 SP25, SP26を 受光している。
[0074] スポット光 SP21, SP23, SP25は、いずれも偏光ホログラム 14bの透過光である。
スポット光 SP12, SP14, SP16は、いずれも偏光ホログラム 14bによる + 1次回折光 である。当該透過光および + 1次回折光により、フォーカス誤差信号等のサーボ信号 が生成される。
[0075] 光検出器 15bは、図 15で説明した光検出器 115の受光部分 115bと同様の光学的 距離関係に配置されている。そのため、光検出器 15b上のスポット光の形状は、図 1 6に示した受光部分 115b上のスポット光の形状と同様になる。
[0076] 図 2, 3に示した光検出器 15a, 15bにおける各受光部の寸法は、各スポット光の端 部から、たとえば 5 /z mの余裕をもって設計されている。図 2に示した本発明による光 検出器 15aの受光部 19a, 19b、および図 16に示した従来技術による光検出器 115 の受光部 119a, 119bの各寸法について次に示す。
[0077] 図 4は、本発明による光検出器 15aの受光部 19a, 19b、および従来技術による光 検出器 115の受光部 119a, 119bの各寸法にっ 、て表にして示した図である。
[0078] 図 4を参照して、本発明による光検出器 15aの受光部 19aの一辺 L19aは、たとえ ば 120 mに設定される。本発明による光検出器 15aの受光部 19bの一辺 L19bは 、たとえば、 173 μ mに設定される。受光咅 19a, 19bの他辺 W19は、たとえば、 30 μ m に設定される。当該寸法条件において、受光部 19a, 19bの面積は、それぞれ 3600 m2, 5190 m2となり、その合計は 8790 μ m2となる。
[0079] 一方、図 4を参照して、従来技術による光検出器 115の受光部 119aの一辺 LI 19a は、たとえば 73 mに設定される。従来技術による光検出器 115の受光部 119bの 一辺 L119bは、たとえば、 115 /z mに設定される。受光咅 119a, 119bの他辺 W119 は、たとえば 70 mに設定される。当該寸法条件において、受光部 119a, 119bの 面積は、それぞれ 5110 m2, 8050 /z m2となり、その合計は 13160 m2となる。
[0080] このように、本発明による光検出器 15aの受光部 19a, 19bの面積は、従来技術よ る光検出器 115の受光部 119a, 119bの面積に比べて 5Z8〜3Z4程度に縮小さ れていることが分かる。なお、本発明による光検出器 15bの面積は、従来技術よる光 検出器 115の受光部 119a, 119bの面積と同じぐ受光部面積が大きいままである。 そのため、光検出器 15bは、ノイズや応答速度の低下に影響されることが少ないフォ 一カス誤差信号の検出等にのみ用いる。
[0081] 以上のように、実施の形態 1によれば、偏光ホログラム 12の回折光が非点収差を有 しているので、偏光ホログラム 12から光検出器 15aまでの光学的距離を調整すること により、偏光ホログラム 12の回折光の光検出器 15aの受光面上での各スポット光の 形状を X方向に細長 、形状とすることができる。
[0082] これにより、本発明による光検出器 15aの受光部 19a, 19bの面積を、従来技術よ る光検出器 115の受光部 119a, 119bの面積に比べて縮小することが可能となる。 本発明による光検出器 15aを再生信号検出に用いた場合、ノイズが低減されることか ら、再生信号の CZN比および応答速度を向上させることができる。
[0083] [実施の形態 2]
図 5は、この発明の実施の形態 2による光ピックアップ装置 30の概略的な構成を示 した概略構成図である。
[0084] 図 5を参照して、実施の形態 2の光ピックアップ装置 30は、光磁気記録媒体 31の情 報信号を検出し、光集積ユニット 51と、対物レンズ 13と、コリメートレンズ 17とを備え る。
[0085] 光集積ユニット 51は、複合光学素子 60と、パッケージ 39とを含む。複合光学素子 6 0は、支持板 38の上面および下面に光学基板 1, 3がそれぞれ位置合わせして固定 されている。支持板 38は、中央部を光通過のためにくり貫いた開口部を有する。複 合光学素子 60は、光学基板 3をパッケージ 39内に入れ込んだ状態で、パッケージ 3 9上に設置されている。ノ ッケージ 39は、光源 11 (たとえば、半導体レーザ)と、光検 出器 7a, 7bとを含む。
[0086] 光源 11から出射される光 (P偏光)は、光学基板 3に形成されたグレーティング 5を 通過することで、トラッキングのための 3ビーム、すなわち、メインビームと 2つのサブビ ームとに分割される。当該 3ビームは、光磁気記録媒体 31の接線方向(Y方向)に分 割されるので、図 5では 1本の光束で代表して表わしている。
[0087] グレーティング 5を通過した光は、光学基板 1に形成された偏光ホログラム 2および コリメートレンズ 17を通過した後、対物レンズ 13によって、光磁気記録媒体 31の記録 面上に集光される。光磁気記録媒体 31からの反射光は、対物レンズ 13およびコリメ 一トレンズ 17を通過した後、偏光ホログラム 2に入射される。光磁気記録媒体 31から の反射光は、光磁気記録媒体 31の情報に従って偏光面がカー回転するため、わず かに S偏光成分を有する。
[0088] 偏光ホログラム 12は、 P偏光の 0次回折効率が 77%、 ± 1次回折効率がともに 11 %で、 S偏光の 0次回折効率が 0%、 ± 1次回折効率がともに 44%に構成されている 。偏光ホログラム 12は、このような回折効率の比率で構成されているため、 ± 1次回 折光の両方またはいずれか一方を検出することにより、実施の形態 1と同じぐ光磁 気記録媒体 31からの反射光のカー回転角を見かけ上増倍する作用を有する。
[0089] なお、光磁気記録媒体 31からの反射光が偏光ホログラム 2を通過することにより P 偏光と S偏光との間に数十度程度の位相差が発生する場合は、図 5に示すように、適 当な位相差を与える位相差板 9a, 9bの少なくとも一方を光学基板 3上に配置すれば よい。これにより、偏光ホログラム 2の + 1次回折光 2bと一 1次回折光 2aとの間に生じ た位相差を補正することができる。
[0090] 偏光ホログラム 2の + 1次回折光 2bは、光学基板 3に形成された偏光ホログラム (偏 光分離素子) 4bに入射し、所定の光に分離された後、光検出器 7bで検出される。偏 光ホログラム 4bは、光磁気信号検出用およびサーボ信号検出用または光磁気信号 検出用の光分離素子である。偏光ホログラム 2の 1次回折光 2aは、光学基板 3に形 成された偏光ホログラム (偏光分離素子) 4aに入射し、所定の光に分離された後、光 検出器 7aで検出される。偏光ホログラム 4aは、光磁気信号検出用またはサーボ信号 検出用の光分離手段である。
[0091] 一般に、光ピックアップ装置のフォーカス誤差信号の検出においては、他方式に比 ベてプッシュプル信号の混入等のクロストークが少ないなどの点からナイフエッジ法 が有利である。特に、ホログラムを用いた光集積ユニットを光ピックアップ装置に搭載 する場合は、当該ホログラムを用いることで信頼度の高い検出結果を簡単に得られる ナイフエッジ法が有利となる。
[0092] また、ナイフエッジ法では、記録媒体力もの反射光を光検出器上で集光するため、 おのずと光検出器上のスポット光のサイズを小さくすることができる。そのため、ナイフ エッジ法を用いた場合、サーボ信号検出と光磁気信号検出とを併用しても、従来技 術のような受光部面積の大型化の問題は生じない。
[0093] 図 6は、偏光ホログラム 2によって生じる + 1次回折光 2bおよび— 1次回折光 2aとそ れらの光検出器 7a, 7b上でのスポット形状とを模式的に示した図である。
[0094] 図 6に示すように、実施の形態 2の光ピックアップ装置 10では、偏光ホログラム 2の 格子パターンをわずかに湾曲させている。これにより、光検出器 7b上に + 1次回折光 2bのスポット光 R201を集光させることができる。一方、偏光ホログラム 2の格子パタ ーンをわずかに湾曲させたことにより、偏光ホログラム 2からの光学的距離が光検出 器 7aと光検出器 7bとで等しい場合、光検出器 7a上の 1次回折光 2aの点線で示し たスポット光 R301は、集光せずむしろ拡大したスポット形状となる。
[0095] そこで、実施の形態 2では、偏光ホログラム 2から光検出器 7aまでの光学的距離と 偏光ホログラム 2から光検出器 7bまでの光学的距離とが異なるようにして 、る。これに よって、光検出器 7a上の— 1次回折光 2aのスポット光 R200は、 X方向に細長い焦線 形状となる。
[0096] 図 5に示す実施の形態 2の光ピックアップ装置 30では、光検出器 7aの高さと光検 出器 7bの高さとの間に 100 mの差を設けている。具体的には、光検出器 7aを形成 する半導体基板の厚さを厚く構成し、光検出器 7bを形成する半導体基板の厚さを薄 く構成している。これにより、偏光ホログラム 2から光検出器 7aまでの光学的距離が短 ぐ偏光ホログラム 2から光検出器 7bまでの光学的距離が長くなつている。
[0097] 図 7は、図 5に示した光ピックアップ装置 30における偏光ホログラム 4bの具体的構 造にっ 、て示した図である。
[0098] 図 7を参照して、偏光ホログラム 4bは、半円状領域 4bAと、 4分円状領域 4bB, 4b Cとから構成される。偏光ホログラム 4b上には、偏光ホログラム 2によって生じる + 1次 回折光 2bが入射する。
[0099] 図 5の光ピックアップ装置 30では、偏光ホログラム 2によって生じる + 1次回折光 2b のうち、半円状領域 4bAに落射する回折光成分を検出して、ナイフエッジ法によるフ オーカスサーボを行なう。また、偏光ホログラム 2によって生じる + 1次回折光 2bのうち 、 4分円状領域 4bB, 4bCに落射する回折光成分を検出して、トラッキングサーボを 行なう。
[0100] 図 8は、図 5に示した光ピックアップ装置 30における光検出器 7b上のスポット形状 を示した図である。
[0101] 図 8を参照して、光検出器 7bは、図 7の偏光ホログラム 4bの半円状領域 4b Aおよ び 4分円状領域 4bB, 4bCによって生ずる 0次光 (透過光)および士 1次回折光をそ れぞれ受光するため、受光領域 71〜77を含む。図 8では、図 16で説明した基板厚 さのバラツキに関する 3条件における光検出器 7b上のスポット光を重ねて記載してい る。
[0102] なお、図 5において説明したように、光源 11から出射される光 (P偏光)は、光学基 板 3に形成されたグレーティング 5を通過することで、トラッキングのための 3ビーム、 すなわち、メインビームと 2つのサブビームとに分割される。具体的には、以下のよう になる。
[0103] 受光領域 71は、偏光ホログラム 4bの 4分円状領域 4bCにメインビームが入射して 生ずる 1次回折光をスポット光 SP32 (上記 3条件のスポット光を重ねて記載、以下 同じ)として受光する受光部 F2を含む。なお、スポット光 SP31, SP33は、偏光ホロ グラム 4bの 4分円状領域 4bCに 2つのサブビームが入射して生ずる— 1次回折光で ある。
[0104] 受光領域 72は、偏光ホログラム 4bの 4分円状領域 4bBにメインビームが入射して 生ずる + 1次回折光をスポット光 SP35として受光する受光部 E2を含む。なお、スポ ット光 SP34, SP36は、偏光ホログラム 4bの 4分円状領域 4bBに 2つのサブビームが 入射して生ずる + 1次回折光である。
[0105] 受光領域 73は、偏光ホログラム 4bの半円状領域 4bAにメインビームが入射して生 ずる 1次回折光をスポット光 SP38として受光する受光部 A1を含む。なお、スポット 光 SP37, SP39は、偏光ホログラム 4bの半円状領域 4bAに 2つのサブビームが入射 して生ずる 1次回折光である。
[0106] 受光領域 74は、偏光ホログラム 4bにメインビームが入射して生ずる 0次光 (透過光) をスポット光 SP41として受光する受光部 B1を含む。なお、スポット光 SP40, SP42 は、偏光ホログラム 4bに 2つのサブビームが入射して生ずる 0次光 (透過光)である。
[0107] 受光領域 75は、偏光ホログラム 4bの半円状領域 4bAにメインビームが入射して生 ずる + 1次回折光をスポット光 SP44として受光する受光部 CI, D1を含む。スポット 光 SP44は、受光部 CI, D1の分割線上で検出される。なお、スポット光 SP43, SP4 5は、偏光ホログラム 4bの半円状領域 4bAに 2つのサブビームが入射して生ずる + 1 次回折光である。
[0108] 受光領域 76は、受光部 El, Gl, G2を含む。受光部 E1は、偏光ホログラム 4bの 4 分円状領域 4bCにメインビームが入射して生ずる + 1次回折光をスポット光 SP47と して受光する。受光部 Gl, G2は、偏光ホログラム 4bの 4分円状領域 4bCに 2つのサ ブビームが入射して生ずる + 1次回折光をスポット光 SP46, SP48としてそれぞれ受 光する。
[0109] 受光領域 77は、受光部 Fl, HI, H2を含む。受光部 F1は、偏光ホログラム 4bの 4 分円状領域 4bBにメインビームが入射して生ずる— 1次回折光をスポット光 SP50とし て受光する。受光部 HI, H2は、偏光ホログラム 4bの 4分円状領域 4bBに 2つのサブ ビームが入射して生ずる— 1次回折光をスポット光 SP49, SP51としてそれぞれ受光 する。
[0110] 以下では、光検出器 7bの各受光部の符号に Sを付加することで、光検出器 7bの出 力信号を表わすものとする。このとき、光検出器 7bの出力信号に基づいて再生され る光磁気信号 MOlは、次のように表わされる。
[0111] [数 2]
MO 1 = S B 1 - (SA 1 +SC 1 + SD 1 + SE 1 +SP +SE2 + SF 2)
[0112] また、光検出器 7bの出力信号に基づいて再生されるフォーカス誤差信号 FESは、 次のように表わされる。
[0113] [数 3]
FES = SC 1一 SD 1
[0114] プッシュプル信号検出によるトラッキング誤差検出信号 TES1は、次式により得られ る。
[0115] [数 4]
TES 1=SE 1 -SF 1
[0116] DPP (Differential Phase Detection:差動位相検出)法によるトラッキング誤差信号
TES2は、次式により得られる。ただし、 kは任意の係数である。
[0117] [数 5]
TES 2=TES 1 -k{ (SG1 +SG2) ― (SH I— SH2) } [0118] 図 9は、図 5に示した光ピックアップ装置 30における偏光ホログラム 4aの具体的構 造について示した図である。図 9に示すように、偏光ホログラム 4aは、 Y方向にスリット が入っているため、 X方向に ± 1次回折光を生じる。
[0119] 図 10は、この発明の実施の形態 2による光検出器 7aの受光面が光検出器 7bより 1 00 μ m高い場合における光検出器 7a上のスポット形状をシミュレーションにより示し た図である。
[0120] 図 10に示すように、実施の形態 2の光検出器 7aは、図 9の偏光ホログラム 4aによつ て生ずる 0次光 (透過光)および ± 1次回折光を受光するため、受光領域 78〜80を 含む。なお、図 5において説明したように、光源 11から出射される光 (P偏光)は、光 学基板 3に形成されたグレーティング 5を通過することで、トラッキングのための 3ビー ム、すなわち、メインビームと 2つのサブビームとに分割される。具体的には、以下の ようになる。
[0121] 受光領域 78は、偏光ホログラム 4aにメインビームが入射して生じる— 1次回折光を スポット光 SP62として受光する受光部 J3を含む。受光部 J3は、一辺 L3,他辺 W3の 寸法を有する。なお、スポット光 SP61, SP63は、偏光ホログラム 4aに 2つのサブビ ームが入射して生ずる 1次回折光である。
[0122] 受光領域 79は、偏光ホログラム 4aにメインビームが入射して生じる 0次光 (透過光) をスポット光 SP65として受光する受光部 J2を含む。受光部 J2は、一辺 L2,他辺 W2 の寸法を有する。なお、スポット光 SP64, SP66は、偏光ホログラム 4aに 2つのサブ ビームが入射して生ずる 0次光 (透過光)である。
[0123] 受光領域 80は、偏光ホログラム 4aにメインビームが入射して生じる + 1次回折光を スポット光 SP68として受光する受光部 J1を含む。受光部 J1は、一辺 L1,他辺 W1の 寸法を有する。なお、スポット光 SP67, SP69は、偏光ホログラム 4aに 2つのサブビ ームが入射して生ずる + 1次回折光である。
[0124] 図 11は、光検出器 7aの受光面が光検出器 7bと同じ高さの場合における光検出器 7a (以下では、図 10と区別するため光検出器 7a2と記す)上のスポット形状を図 10の 比較例としてシミュレーションにより示した図である。
[0125] 図 11に示すように、比較例としての光検出器 7a2は、図 9の偏光ホログラム 4aによ つて生ずる 0次光 (透過光)および ± 1次回折光を受光するため、受光領域 780〜80 0を含む。なお、図 5において説明したように、光源 11から出射される光 (P偏光)は、 光学基板 3に形成されたグレーティング 5を通過することで、トラッキングのための 3ビ ーム、すなわち、メインビームと 2つのサブビームとに分割される。具体的には、以下 のようになる。
[0126] 受光領域 780は、偏光ホログラム 4aにメインビームが入射して生じる— 1次回折光 をスポット光 SP620として受光する受光部 J23を含む。受光部 J23は、一辺 L23,他 辺 W23の寸法を有する。なお、スポット光 SP610, SP630は、偏光ホログラム 4aに 2 つのサブビームが入射して生ずる 1次回折光である。
[0127] 受光領域 790は、偏光ホログラム 4aにメインビームが入射して生じる 0次光 (透過光 )をスポット光 SP650として受光する受光部 J22を含む。受光部 J22は、一辺 L22,他 辺 W22の寸法を有する。なお、スポット光 SP640, SP660iま、偏光ホログラム 4aに 2 つのサブビームが入射して生ずる 0次光 (透過光)である。
[0128] 受光領域 800は、偏光ホログラム 4aにメインビームが入射して生じる + 1次回折光 をスポット光 SP680として受光する受光部 J21を含む。受光部 J21は、一辺 L21 ,他 辺 W21の寸法を有する。なお、スポット光 SP670, SP690は、偏光ホログラム 4aに 2 つのサブビームが入射して生ずる + 1次回折光である。
[0129] 図 10, 11を比較すると、図 10に示したこの発明の実施の形態 2による光検出器 7a では、各スポット光の形状力 図 11に示した比較例としての光検出器 7a2に比べて 焦線状に細長くなつており、その結果、光検出器 7aの受光部面積が縮小している。 また、図 10, 11に示した光検出器 7a, 7a2における各受光部の寸法は、各スポット 光の端部から、たとえば 5 /z mの余裕をもって設計されている。図 10に示した本発明 による光検出器 7aの受光部 J1〜J3、および図 11に示した比較例としての光検出器 7 a2の受光部 J21〜J23の各寸法について次に示す。
[0130] 図 12は、本発明による光検出器 7aの受光部 J1〜J3、および比較例としての光検出 器 7a2の受光部 J21〜J23の各寸法について表にして示した図である。
[0131] 図 12を参照して、本発明による光検出器 7aの受光部 J1の一辺 L1,他辺 W1は、た とえば 155 /z m, 28 mにそれぞれ設定される。本発明による光検出器 7aの受光部 J2の一辺 L2,他辺 W2は、たとえば 155 μ τα, 19 mにそれぞれ設定される。本発 明による光検出器 7aの受光部 J3の一辺 L3,他辺 W3は、たとえば 220 m, 25 /z m にそれぞれ設定される。
[0132] 上記の寸法条件において、受光部 J1〜J3の面積は、それぞれ 4340 m2, 2945 μ m2, 5500 μ m2となり、その合計は 12785 μ m2となる。
[0133] 一方、図 12を参照して、比較例としての光検出器 7a2の受光部 J21の一辺 L21,他 辺 W21は、たとえば 197 m, 63 mにそれぞれ設定される。本発明による光検出 器 7a2の受光咅J22の一辺 L22,他辺 W22は、たとえば、 195 m, 38 /z mにそれぞ れ設定される。本発明による光検出器 7a2の受光部 J23の一辺 L23,他辺 W23は、 たとえば 270 μ ηι, 44 μ mにそれぞれ設定される。
[0134] 上記の寸法条件において、受光部 J21〜J23の面積は、それぞれ 12411 m2, 74
10 μ m , 11880 /z m2となり、その合計は 31701 m2となる。
[0135] このように、本発明による光検出器 7aの受光部 J1〜J3の面積は、比較例としての光 検出器 7a2の受 21〜】23の面積に比べて 1Z3〜1Z2程度に縮小されているこ とが分かる。
[0136] 本発明の光ピックアップ装置 30は、偏光ホログラム 2の回折光が非点収差を有して いるので、偏光ホログラム 2から光検出器 7aまでの光学的距離を調整することにより、 偏光ホログラム 2の回折光の光検出器 7aの受光面上での各スポット光の形状は、 X 方向に細長い形状となる。これにより、上記のように、サイズの大きいスポット光を選択 的に小さなサイズとすることができる。その結果、光検出器 7aにおける受光部の面積 を縮小することが可能となる。
[0137] 以下では、光検出器 7aの各受光部の符号に Sを付加することで、光検出器 7aの出 力信号を表わすものとする。このとき、光検出器 7aの出力信号に基づいて再生され る光磁気信号 M02は、次のように表わされる。なお、光磁気信号 M02は、 DWDD ( Domain Wall Displacement Detection :磁壁移動検出;)方式による光磁気信号を含 む。
[0138] [数 6]
MO 2 = S 1 2 - ( S J 1 + S J 3 )
[0139] 本発明による光検出器 7aの受光部 Jl, J3では、スポット光のサイズが小さくなつて いるため、偏光ホログラム 4aによる ± 1次回折光をすベて受光できる。このため、受光 部 J2で受光する光量とのアンバランスが少なくなり、同相ノイズを十分に抑制すること ができる。また、光検出器 7aにおける受光部の面積が小さくなつているため、比較例 としての光検出器 7a2に比べて、 CZN比を向上させることができる。
[0140] 光磁気記録媒体 31が DWDD方式の光磁気記録媒体である場合、光磁気記録媒 体 31からの反射光の P偏光成分と S偏光成分との間に位相差が生じる。実施の形態 2の光ピックアップ装置 30では、図 5の偏光ホログラム 2によって生じる + 1次回折光 2 bを検出する光検出器 7bと、偏光ホログラム 2によって生じる— 1次回折光 2aを検出 する光検出器 7aとで、独立して光磁気信号を検出することが可能である。
[0141] したがって、図 5の光ピックアップ装置 30において、偏光ホログラム 2による位相差 および DWDD方式による位相差の両方の補正を考慮した位相差値を与える位相差 板 9aを配置することにより、光検出器 7aでは DWDD方式の光磁気記録媒体による 光磁気信号の検出、光検出器 7bでは通常の光磁気記録媒体による光磁気信号の 検出をそれぞれ行なうことができる。
[0142] これにより、 1つの光ピックアップ装置 30において、 DWDD方式の光磁気記録媒 体による光磁気信号の検出と、通常の光磁気記録媒体による光磁気信号の検出とを 行なうことが可能となる。
[0143] なお、以上に示した実施の形態では、光磁気記録用の光ピックアップ装置を例に 説明したが、この発明による光集積ユニットおよび光ピックアップ装置は、光磁気記 録用だけには限られない。また、以上に示した実施の形態では、非点収差に着目し た光学的距離の調整について説明したが、この発明による光集積ユニットおよび光 ピックアップ装置で利用するのは、非点収差だけには限られな 、。
[0144] 以上のように、実施の形態 2によれば、偏光ホログラム 2の回折光が非点収差を有し ているので、偏光ホログラム 2から光検出器 7aまでの光学的距離を調整することによ り、偏光ホログラム 2の回折光の光検出器 7aの受光面上での各スポット光の形状を X 方向に細長 、形状とすることができる。
[0145] これにより、本発明による光検出器 7aの受光部 J1〜J3の面積を、比較例としての光 検出器 7a2受光部 J21〜J23の面積に比べて縮小することが可能となる。本発明によ る光検出器 7aを再生信号検出に用いた場合、ノイズが低減されることから、再生信号 の CZN比および応答速度を向上させることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。

Claims

請求の範囲
[1] 記録媒体 (31)に対して出射光を出力し、該記録媒体 (31)力 の反射光を受ける 光集積ユニット(50, 51)であって、
前記出射光を出力する光源(11)と、
前記反射光を少なくとも第 1および第 2の回折光に分離する偏光分離素子 (2, 12) と、
前記第 1の回折光を受光する第 1の光検出器 (7a, 15a)と、
前記第 2の回折光を受光する第 2の光検出器 (7b, 15b)とを備え、
前記第 1の光検出器(7a, 15a)は、前記第 1の回折光によるスポット光が焦線形状 となる位置に配置されている、光集積ユニット。
[2] 前記第 2の光検出器(7b, 15b)は、前記第 2の回折光によるスポット光が焦線形状 となる位置に配置されている、請求の範囲第 1項に記載の光集積ユニット。
[3] 前記第 1および第 2の光検出器 (7a, 7b, 15a, 15b)は、前記偏光分離素子(2, 1 2)からの光学的距離が互いに異なる位置に配置されている、請求の範囲第 1項に記 載の光集積ユニット。
[4] 前記第 1の光検出器 (7a, 15a)と前記偏光分離素子 (2, 12)との間の光学的距離 は、前記第 2の光検出器 (7b, 15b)と前記偏光分離素子 (2, 12)との間の光学的距 離より長い、請求の範囲第 3項に記載の光集積ユニット。
[5] 前記第 1の光検出器 (7a, 15a)と前記偏光分離素子 (2, 12)との間の光学的距離 は、前記第 2の光検出器 (7b, 15b)と前記偏光分離素子 (2, 12)との間の光学的距 離より短い、請求の範囲第 3項に記載の光集積ユニット。
[6] 前記第 1および第 2の光検出器(7a, 7b, 15a, 15b)は、前記出射光方向の厚さが 互いに異なる、請求の範囲第 1項に記載の光集積ユニット。
[7] 前記第 1および第 2の光検出器 (7a, 7b, 15a, 15b)を少なくとも設置する基台と、 前記第 1の光検出器(7a, 15a)と前記基台との間に設けられる第 1のスぺーサと、 前記第 2の光検出器(7b, 15b)と前記基台との間に設けられる第 2のスぺーサとを さらに備え、
前記第 1および第 2のスぺーサは、互いに厚さが異なる、請求の範囲第 6項に記載 の光集積ユニット。
[8] 前記第 1の光検出器 (7a, 15a)は、前記記録媒体 (31)の光磁気信号検出用の光 検出器であり、前記第 2の光検出器 (7b, 15b)は、前記記録媒体 (31)のサーボ信 号検出用の光検出器である、請求の範囲第 1項に記載の光集積ユニット。
[9] 前記第 1の光検出器 (7b, 15b)は、前記記録媒体 (31)のサーボ信号検出用の光 検出器であり、前記第 2の光検出器 (7a, 15a)は、前記記録媒体 (31)の光磁気信 号検出用の光検出器である、請求の範囲第 1項に記載の光集積ユニット。
[10] 前記偏光分離素子 (2)によって回折され前記第 1の光検出器 (7a)に入射する第 1 の回折光の位相差を補正する第 1の位相差板 (9a)と、前記偏光分離素子 (2)によつ て回折され前記第 2の光検出器 (7b)に入射する第 2の回折光の位相差を補正する 第 2の位相差板 (9b)との少なくとも一方をさらに備える、請求の範囲第 1項に記載の 光集積ユニット。
[11] 記録媒体に対して情報を光学的に記録または再生する光ピックアップ装置(10, 3 0)であって、
出射光を出力する光源(11)と、前記記録媒体力 の反射光を少なくとも第 1および 第 2の回折光に分離する偏光分離素子 (2, 12)と、前記第 1の回折光を受光する第 1の光検出器 (7a, 15a)と、前記第 2の回折光を受光する第 2の光検出器 (7b, 15b )とを含み、前記第 1の光検出器(7a, 15a)は前記第 1の回折光によるスポット光が焦 線形状となる位置に配置されている光集積ユニット(50, 51)と、
前記出射光を前記記録媒体に集光する集光手段(13, 17)とを備える、光ピックァ ップ装置。
[12] 前記第 2の光検出器(7b, 15b)は、前記第 2の回折光によるスポット光が焦線形状 となる位置に配置されている、請求の範囲第 11項に記載の光ピックアップ装置。
PCT/JP2005/008338 2004-05-14 2005-05-06 光集積ユニットおよび光ピックアップ装置 WO2005112015A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-144739 2004-05-14
JP2004144739A JP4060288B2 (ja) 2004-05-14 2004-05-14 光集積ユニットおよび光ピックアップ装置

Publications (1)

Publication Number Publication Date
WO2005112015A1 true WO2005112015A1 (ja) 2005-11-24

Family

ID=35394389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008338 WO2005112015A1 (ja) 2004-05-14 2005-05-06 光集積ユニットおよび光ピックアップ装置

Country Status (2)

Country Link
JP (1) JP4060288B2 (ja)
WO (1) WO2005112015A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076380A (ja) * 1993-06-15 1995-01-10 Nikon Corp 光ヘッド
JPH07244879A (ja) * 1994-03-08 1995-09-19 Olympus Optical Co Ltd 光ヘッド
JPH08297875A (ja) * 1995-04-25 1996-11-12 Sony Corp 光学ピックアップ
JPH0944922A (ja) * 1995-07-25 1997-02-14 Asahi Optical Co Ltd 情報読取装置
JPH10340471A (ja) * 1997-06-10 1998-12-22 Olympus Optical Co Ltd 光ピックアップ
JP2002157757A (ja) * 2000-11-16 2002-05-31 Sony Corp 光ヘッド、受発光素子、及び光記録媒体記録再生装置
JP2004272947A (ja) * 2003-03-05 2004-09-30 Matsushita Electric Ind Co Ltd 光ピックアップヘッド装置及び光情報装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076380A (ja) * 1993-06-15 1995-01-10 Nikon Corp 光ヘッド
JPH07244879A (ja) * 1994-03-08 1995-09-19 Olympus Optical Co Ltd 光ヘッド
JPH08297875A (ja) * 1995-04-25 1996-11-12 Sony Corp 光学ピックアップ
JPH0944922A (ja) * 1995-07-25 1997-02-14 Asahi Optical Co Ltd 情報読取装置
JPH10340471A (ja) * 1997-06-10 1998-12-22 Olympus Optical Co Ltd 光ピックアップ
JP2002157757A (ja) * 2000-11-16 2002-05-31 Sony Corp 光ヘッド、受発光素子、及び光記録媒体記録再生装置
JP2004272947A (ja) * 2003-03-05 2004-09-30 Matsushita Electric Ind Co Ltd 光ピックアップヘッド装置及び光情報装置

Also Published As

Publication number Publication date
JP4060288B2 (ja) 2008-03-12
JP2005327379A (ja) 2005-11-24

Similar Documents

Publication Publication Date Title
JP3155287B2 (ja) 光情報記録再生装置
JP2001059905A (ja) 回折型光学素子および当該回折型光学素子を用いた光ピックアップ
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JP2005085311A5 (ja)
WO2007116631A1 (ja) 光ディスク装置
KR100424837B1 (ko) 광 픽업 장치
WO2005112015A1 (ja) 光集積ユニットおよび光ピックアップ装置
WO2007023650A1 (ja) 光ヘッド装置及び光学式情報記録又は再生装置
JPH11296873A (ja) 光ピックアップ装置、エラー検出装置及びその検出方法
WO2007094288A1 (ja) 光学ヘッド、光学ヘッドの制御方法及び光情報処理装置
WO2003044785A1 (fr) Dispositif de captage optique, dispositif a disque optique, dispositif optique et element optique composite
JP4059190B2 (ja) 光ヘッド装置
JPS6297144A (ja) 光ピツクアツプ
JP2001256662A (ja) 光ピックアップ装置
JP3997854B2 (ja) 光ピックアップ装置の調整方法、光ピックアップ装置及び情報記録再生装置
JP2594421B2 (ja) 光ヘッド装置
JP2790729B2 (ja) 光情報記録再生装置
JP3431679B2 (ja) 光ピックアップ装置
JP4742159B2 (ja) 光情報再生方法
JP2006059452A (ja) 光ピックアップ装置
JPH10149562A (ja) 光学ピックアップ及び光ディスク装置
JP2000123433A (ja) 光ピックアップ装置
JPH0917004A (ja) 光ピックアップ
JPH06295480A (ja) 光ヘッド
JPH06160616A (ja) 光学ヘッド

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase