WO2005110790A2 - Antriebsvorrichtung für kraftfahrzeuge - Google Patents

Antriebsvorrichtung für kraftfahrzeuge Download PDF

Info

Publication number
WO2005110790A2
WO2005110790A2 PCT/EP2005/005082 EP2005005082W WO2005110790A2 WO 2005110790 A2 WO2005110790 A2 WO 2005110790A2 EP 2005005082 W EP2005005082 W EP 2005005082W WO 2005110790 A2 WO2005110790 A2 WO 2005110790A2
Authority
WO
WIPO (PCT)
Prior art keywords
gear
differential
electric machine
drive device
output shaft
Prior art date
Application number
PCT/EP2005/005082
Other languages
English (en)
French (fr)
Other versions
WO2005110790A3 (de
Inventor
Christian Meixner
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Priority to EP05745320A priority Critical patent/EP1747110A2/de
Priority to US11/596,344 priority patent/US8012057B2/en
Publication of WO2005110790A2 publication Critical patent/WO2005110790A2/de
Publication of WO2005110790A3 publication Critical patent/WO2005110790A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/364Differential gearings characterised by intentionally generating speed difference between outputs using electric or hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a drive device for motor vehicles according to the preamble of patent claim 1.
  • Such a drive device is shown, for example, in US 59 10 064 A, in which, starting from a bevel gear differential or a planet gear differential, the output torques can be shifted to the driven wheels of the motor vehicle in order to achieve dynamic advantages. For example, with defined grip conditions, more drive torque can be transmitted from the wheels of the motor vehicle to the roadway on the wheel on the outside of the curve than on the wheel on the inside of the curve, etc. At the same time, the agility of the motor vehicle when cornering can be favorably influenced.
  • superposition gears are provided on both sides of the output shafts, which alternatively shift torque from one to the other output shaft via hydraulically actuated multi-plate clutches as a device for torque shifting.
  • the multi-plate clutches require defined, latent power losses in the drive system.
  • the object of the invention is to propose a drive device of the generic type which enables torque to be shifted more effectively and with more degrees of freedom in construction and which, if appropriate, permits further advantageous drive influences. This object is achieved with the characterizing features of claim 1. Advantageous developments of the invention specify the further claims.
  • the device for shifting torque from one output shaft to the other is formed by at least one electric machine which can be switched as an electric motor and as a generator. This avoids the power losses caused by clutches and enables even faster interventions or torque relocations in the drive system that are favorable in terms of driving dynamics. By accelerating or braking the electric machine, the torque is effectively shifted from one output shaft to the other output shaft and thus adapted to the driving dynamics.
  • the electric machine and the superposition gear can be structurally favorably arranged on the one output shaft and thus transmit torque to the present output torque directly to the corresponding output shaft or indirectly via the differential to the other output shaft.
  • the superposition gear can be a simple planetary gear set, the sun gear of which is rotatably mounted on the output shaft and connected to the rotor of the electric machine, the planet gear carrier is connected to the output shaft and the outer gear is coupled to the planet gear carrier of the differential designed as a double planetary gear set, the further planet gear carrier acts on the second output shaft.
  • the planetary gear set can also be designed with a positive stationary gear ratio, in which, for example, two sun gears or two ring gears are provided accordingly.
  • At least one further electric machine that can be switched as an electric motor and as a generator can be provided, by means of which additional drive torque can be controlled directly or indirectly in the electric motor mode or electrical energy can be recuperated in the generator mode.
  • the two electric machines thus functionally work together in such a way that further dynamic advantages can be achieved; so can be controlled via the second electric machine with strong acceleration of the motor vehicle additional drive energy or z. B. energy can be recovered during overrun operation of the motor vehicle (recuperation operation).
  • the further electric machine can be arranged in a simple manner on the drive shaft driving the differential.
  • this can be the cardan shaft or a differential input shaft or drive shaft (e.g. in the case of a longitudinal differential or interaxle differential in the case of all-wheel drive).
  • the further electric machine with a second superposition gear can be arranged on the second output shaft of the differential in a particularly advantageous manner.
  • a torque shift can be controlled by individual control of the two electric machines, while output torque amplification or recuperation operation can be provided with control in the same direction (drive operation or generator operation).
  • the additional superimposition gearbox can be designed as a simple planetary gear set, the sun gear of which is connected to the rotor of the electric machine, the planet gear carrier is connected to the output shaft, and the outer gear is connected to the planet gear carrier via a countershaft arranged parallel to the output shafts of the first superposition gear via gear sets.
  • a simple planetary gear set with a negative stationary gear ratio a planetary gear set with a positive stationary gear ratio can also be used.
  • the two electric machines can be arranged on the one output shaft and can be connected to the two output shafts by means of nested planetary gear sets. This enables a structurally particularly compact and compact construction of the superposition gears and, if necessary, of the electrical machines.
  • the one electric machine can advantageously act on the sun gear of a simple planetary gear set as the one superposition gear, the planet gear carrier of which is connected to the one output shaft, and the second electric machine can also act on the sun gear of a double planetary gear set as the second superposition gear, the planet gear carrier with the planet gear carrier of the first planetary gear set is coupled and finally the two common outer wheels of the planetary gear sets can be drivingly connected to the planet carrier of the differential designed as a double planetary gear set.
  • the differential can be designed as a bevel gear differential, on the output shafts of which two electric machines are arranged, which are operatively connected to the corresponding output shafts and the differential housing of the bevel gear differential by means of superposition gears designed as simple planetary gear sets.
  • the sun gear of the planetary gear sets can be connected to the electric machine in a structurally particularly simple manner, while the planet gear carrier and the outer gear are coupled to the differential housing and the corresponding output shaft.
  • the differential can be a bevel gear differential, the output shafts of which are coupled to one another via gear sets with a countershaft arranged parallel to the output shafts, wherein a torque-shifting electric machine is integrated between the two output shafts, the rotor of which is connected to one of said shafts and whose quasi stator is drivingly connected to one of the gears of the gear sets.
  • a torque can be superimposed on one or the other output shaft via the electric machine and the countershaft, the stator and the rotor of the electric machine rotating relative to one another.
  • the electric machine can preferably be arranged on the countershaft, the rotor of the electric machine being directly connected to the countershaft and its stator to the corresponding gear of the gear sets.
  • FIG. 1 shows a drive device for motor vehicles with a double planetary gear differential and two electric machines, one of which acts on the drive shaft and the other via a superposition gear on the output shafts;
  • FIG. 2 shows a further drive device according to FIG. 1, however, the two electric machines are arranged on the two output shafts of the differential;
  • FIG. 3 shows a further drive device according to FIG. 1, in which the two electric machines are positioned on one side on an output shaft; 4 shows an alternative drive device for motor vehicles with a bevel gear differential and two electric machines with superposition gears on the two output shafts; and
  • FIG. 5 shows a drive arrangement according to FIG. 4, but with one of the two
  • differential 10 designed as a double planetary gear set, which is driven via a bevel gear drive on an input shaft 2 and a ring gear 14 and which drives on two output shafts 16, 18.
  • the differential 10 is a rear axle differential of a motor vehicle, which is driven via a cardan shaft 20.
  • the cardan shaft 20 is in a known manner with the drive unit of the motor vehicle, not shown, for. B. an internal combustion engine and a speed change gear connected.
  • the output shafts 16, 18 are drivingly connected to the driven rear wheels of the motor vehicle via cardan shafts (not shown).
  • the differential 10 or the double planetary gear set has an internally toothed outer wheel 22 which carries the ring gear 14 and meshes with radially outer planet gears 24.
  • the planet gears 24 are meshed with radially inner planet gears 26 which mesh with a sun gear 28 on the right output shaft 18.
  • the planet gears 24, 26 are rotatably mounted on the planet gear carrier 30.
  • the planet gear carrier 30 is operatively connected to the left output shaft 16.
  • a superposition gear 32 Adjacent to the differential 10 described and coaxially with the output shaft 18 there is a superposition gear 32 which, as follows, guided cooperates with the differential 10 and an electric machine 34 adjacent to the superposition gear 32.
  • the superimposition gear 32 is designed as a simple planetary gear set, with a sun gear 36, a planet gear carrier 38 with planet gears 40 and an internally toothed outer gear 42.
  • a simple planetary gear set with negative stationary gear ratio for the superposition gear 32 instead of the simple planetary gear set with negative stationary gear ratio for the superposition gear 32, a planetary gear set with positive stationary gear ratio is also conceivable use, among other things two sun gears or two ring gears are used as outer gears.
  • the outer wheel 42 is fixedly connected to the planet gear carrier 30 and the planet gear carrier 38 to the right output shaft 18 of the differential 10.
  • the sun gear 36 of the superposition gear 32 is coupled to the rotor 46 of the electric machine 34 via a hollow shaft 44, while the stator 48 is arranged fixed to the housing around the rotor 46.
  • the electric machine 34, the z. B. can be designed as a three-phase asynchronous machine of a known type, can be accelerated via an electronic control, not shown, switched relative to the output shaft 18 as an electric motor or braked as a generator, with the output torque on the output shaft 18 being increased or decreased accordingly. Due to the superimposed gear 32 and the differential 10, this output torque superposition is transmitted to the left output shaft 16 due to the gear linkage shown with the opposite sign; d. that is, as the output torque on the output shaft 18 increases, the output torque on the output shaft 16 decreases in accordance with the translation in the superposition gear 32 and vice versa.
  • a further electric machine 50 can be provided on the drive side of the differential 10, e.g. B. on the propeller shaft 20.
  • the rotor 52 of the electric machine 50 sits directly on the propeller shaft 20, while the stator 54 is fixed to the housing.
  • the power of the known type of electric machine which may also be designed as a three-phase asynchronous machine, is designed to be higher than the power of the electric machine 34.
  • the electric machine 50 can optionally provide additional drive power when the motor vehicle is accelerated via a common electronic control system connected to the electric machine 34 as an electric motor; furthermore, the electric machine 50, connected as a generator, can generate electricity in the recuperation mode.
  • the current can optionally be used to supply the first electric machine 34 with drive or braking energy.
  • FIG. 2 shows a modified drive device which is only described to the extent that it differs significantly from FIG. 1.
  • the same parts are provided with the same reference numerals.
  • a further superposition gear 56 is arranged on the output shaft 16 of the differential 10 or the double planetary gear set.
  • the superposition gear 56 with the same transmission ratio as the superposition gear 32 is also designed as a simple planetary gear set, with a sun gear 58, a planet gear carrier 60 with planet gears 62 and an internally toothed outer gear 64 a planetary gear set with positive stationary gear ratio can be used for the superposition gear 56.
  • the planet gear carrier 60 is drivingly connected to the output shaft 16.
  • the sun gear 58 is coupled via a hollow shaft 66 to the rotor 68 of a second electric machine 70, the stator 72 of which is arranged fixed to the housing.
  • the electric machine 70 can be identical in construction to the electric machine 34 on the right output shaft 18.
  • a countershaft 74 is rotatably mounted in the housing (not shown) of the differential 10 and is connected to the outer gear 64 of the superposition gear 56 and the planet gear carrier 38 'of the superposition gear 32 via gear sets 76, 78 and 80, 82.
  • an output torque shift can in turn be controlled, the left electric machine 70 via the planet gear carrier 60 directly acting on the output shaft 16 and the right electric machine 34 via the planet gear carrier 38 ′ directly acting on the output shaft 18 to reinforce the output torque ,
  • FIG. 3 shows a likewise modified drive device, which in turn is only described to the extent that it differs significantly from FIG. 1 and FIG. 2. The same parts are provided with the same reference numerals.
  • the two electric machines 34, 70 are arranged on one side on the output shaft 18 and act on the superimposed gears 32 ′ , 84, which are also adjacent and coupled to one another.
  • the superposition gear 32 ' is designed as a simple planetary gear set, the sun gear 36 of which is drivingly connected to the rotor 46 of the electric machine 34 via a first hollow shaft 44.
  • the planet gear carrier 38 ′′ with the planet gears 40 is coupled to the output shaft 18. Furthermore, the planet gears 40 mesh with the internally toothed outer gear 22 ′ of the simple planetary gear set 32 ′ or the planet gear carrier 30 of the corresponding double planetary gear set 10.
  • the further, adjacent superposition gear 84 is a further double planetary gear set, which is linked in terms of gear technology as follows:
  • the sun gear 86 is drivingly connected to the rotor 68 of the second electric machine 70 via a further hollow shaft 88.
  • the planet gear carrier 90 is coupled to the planet gear carrier 38 ′′ of the superposition gear 32 ′ and carries radially outer planet gears 92 and radially inner planet gears 94, which are rotatably mounted on the planet gear carrier 90 and are in engagement with one another.
  • the outer planet gears 92 also mesh with the common one Outer gear 22 'of the simple planetary gear set 32 ' , while the planet gears 94 are in engagement with said sun gear 86.
  • the basic function of the electric machines 34, 70 and the superposition gears 32 ', 84 is comparable to the function of the drive device According to FIG. 2.
  • the electric machines 34, 70 can thus be used both for shifting the output torque and as an additional drive source and in recuperation mode with control in the same direction.
  • the superposition gears 32 ' , 84 should in turn be designed for the same stationary gear ratios.
  • the design of the superposition gear 84 as a double planetary gear set is advantageous in order to enable the nested arrangement and connection shown.
  • a mirror image of the same arrangement of the drive device with positioning of the electric machines 34, 70 and the superposition gears 32 ', 84 on the left in the drawing in FIG. 3 can also be carried out.
  • FIGS. 1 to 3 shows a bevel gear differential 100 of a type known per se, which essentially comprises an input shaft 102 with a drive pinion 104, a ring gear 106 meshing with the drive pinion 104, and a ring gear 106 load-bearing differential housing 108, on a drive pin 110 of the differential housing rotatably mounted differential bevel gears 112 and 114 bevel gears.
  • Axle bevel gears 114 are connected to output shafts 116, 118 in a torque-transmitting manner.
  • the input shaft 102 is drivingly connected to the cardan shaft 20, while the output shafts 116, 118 are connected to the driven wheels of the motor vehicle via cardan shafts (not shown).
  • each a superposition gear 32 designed as a simple planetary gear set and an electric machine 34, 70, which are coupled as follows to the differential 100 and the output shafts 116, 118:
  • the sun gears 36 are connected to the rotors 46, 68 of the electrical machines 34, 70 via the hollow shafts 44.
  • the planet gear carriers 38 or 120 (cf. upper and lower half of the drawing in FIG. 4) can alternatively be coupled to the differential housing 108 of the differential 100 or to the output shafts 116, 118.
  • the same applies to the outer wheels 42 which can then alternatively be connected to the output shafts 116, 118 or to the differential housing 108. It goes without saying that, for reasons of identical parts, the same variant should be selected for the two superposition gears 32.
  • the function of the drive device shown in FIG. 4 is identical to the control described for FIG. 2 with regard to the control of the electric machines 34, 70.
  • An output torque shift and an additional output torque gain brought about by the electric machines 34, 70 or a recuperation operation can be controlled by individual or opposite control.
  • the electrical machine 50 is in turn connected upstream of the differential 100, with the function of the additional output torque feed when accelerating the motor vehicle and the recuperation mode described for FIG. 1.
  • a countershaft 121 is rotatably mounted parallel to the output shafts 116, 118 in the housing of the differential 100 (not shown), which sets 122, 124 and 126, 128 with an unequal transmission ratio is coupled to the output shafts 116, 118.
  • an electric machine 130 is switched on, the rotor 132 of which is drivably integrated with the countershaft 121 and the quasi stator 134 of the gear wheel 122 or forms a functional unit with the latter.
  • the differential can also be an interaxle differential in the case of all-wheel drive of the motor vehicle (longitudinal differential), in which case the said output shafts are drivingly connected to the front axle differential and the rear axle differential, and the differential input shaft is not connected to the cardan shaft, but to a drive shaft of the gearbox or is connected to an intermediate shaft (e.g. trans axle principle).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Retarders (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

Die Erfindung betrifft eine Antriebsvorrichtung für Kraftfahrzeuge mit, einem Antriebsaggregat, das über ein Differenzialgetriebe (10, 100) auf zwei Abtriebswellen (16, 18) wirkt, wobei an den Abtriebswellen unter Zwischenschaltung zumindest eines Überlagerungsgetriebes (32, 56, 32', 84', 122, 126) eine Einrichtung vorgesehen ist, mittels der Abtriebsmoment von der einen Abtriebswelle zur anderen Abtriebswelle verlagerbar ist. Zur Bereitstellung einer steuerungstechnisch und funktionell besonders effektiven Antriebsvorrichtung wird vorgeschlagen, dass die Einrichtung durch zumindest eine als Elektromotor und als Generator schaltbare Elektromaschine (34, 70, 130) gebildet ist.

Description

Beschreibung
Antriebsvorrichtunα für Kraftfahrzeuge
Die Erfindung betrifft eine Antriebsvorrichtung für Kraftfahrzeuge gemäß dem Oberbegriff des Patentanspruches 1.
Eine derartige Antriebsvorrichtung zeigt beispielsweise die US 59 10 064 A, bei der ausgehend von einem Kegelraddifferenzial oder einem Planetenrad- differenzial die Abtriebsmomente zu den angetriebenen Rädern des Kraftfahr- zeuges verlagerbar sind, um fahrdynamische Vorteile zu erzielen. So kann beispielsweise bei definierten Haftungsbedingungen von den Rädern des Kraftfahrzeuges zur Fahrbahn am kurvenäußeren Rad mehr Antriebsmoment übertragen werden als am kurveninneren Rad, etc. Gleichzeitig kann die Agilität des Kraftfahrzeuges beim Durchfahren von Kurven dadurch günstig beeinflusst werden. Zur Verlagerung des besagten Antriebsmomentes sind beidseitig der Abtriebswellen Überlagerungsgetriebe vorgesehen, die über hydraulisch betätigte Lamellenkupplungen als Einrichtung zur Drehmomentverlagerung alter- nativ Drehmoment von der einen zur anderen Abtriebswelle verlagern. Die Lamellenkupplungen bedingen aber definierte, latente Leistungsverluste im An- triebssystem.
Aufgabe der Erfindung ist es, eine Antriebsvorrichtung der gattungsgemäßen Art vorzuschlagen, die eine Drehmomentverlagerung effektiver und mit mehr konstruktiven Freiheitsgraden ermöglicht und die gegebenenfalls weitere vor- teilhafte Antriebsbeeinflussungen zulässt. Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung geben die weiteren Patentansprüche an.
Erfindungsgemäß wird vorgeschlagen, dass die Einrichtung zur Drehmomentverlagerung von der einen Abtriebswelle zur anderen durch zumindest eine als Elektromotor und als Generator schaltbare Elektromaschine gebildet ist. Damit werden die durch Kupplungen bewirkten Verlustleistungen vermieden und noch schnellere, fahrdynamisch günstige Eingriffe bzw. Drehmomentverlage- rungen im Antriebssystem ermöglicht. Durch Beschleunigen oder Abbremsen der Elektromaschine wird das Drehmoment von der einen Abtriebswelle auf die andere Abtriebswelle effektiv verlagert und damit an die fahrdynamischen Gegebenheiten angepasst.
Die Elektromaschine und das Überlagerungsgetriebe können baulich günstig auf der einen Abtriebswelle angeordnet sein und somit einmal direkt auf die korrespondierende Abtriebswelle oder indirekt über das Differenzial auf die andere Abtriebswelle Drehmoment zum vorliegenden« Abtriebsmoment übertragen.
Dabei kann das Überlagerungsgetriebe ein einfacher Planetenradsatz sein, dessen Sonnenrad auf der Abtriebswelle drehbar gelagert und mit dem Rotor der Elektromaschine verbunden ist, dessen Planetenradträger mit der Abtriebswelle verbunden ist und dessen Außenrad mit dem Planetenradträger des als Doppelplanetenradsatz ausgeführten Differenziales gekoppelt ist, wobei der weitere Planetenradträger auf die zweite Abtriebswelle wirkt. Grundsätzlich kann der Planetenradsatz neben der o.a. Ausführung mit negativer Standgetriebeübersetzung auch mit einer positiven Standgetriebeübersetzung ausgeführt sein, bei der beispielsweise zwei Sonnenräder bzw. zwei Hohlräder entsprechend vorgesehen sind. In besonders vorteilhafter Weiterbildung der Erfindung kann zumindest eine weitere als Elektromotor und als Generator schaltbare Elektromaschine vorgesehen sein, mittels der direkt oder indirekt im elektromotorischen Betrieb zusätzliches Antriebsmoment einsteuerbar oder im Generatorbetrieb elektri- sehe Energie rekuperierbar ist. Die beiden Elektromaschinen wirken somit funktioneil derart zusammen, dass weitere fahrdynamische Vorteile erzielbar sind; so kann über die zweite Elektromaschine bei starker Beschleunigung des Kraftfahrzeuges zusätzliche Antriebsenergie eingesteuert oder z. B. bei Schubbetrieb des Kraftfahrzeuges Energie zurückgewonnen werden (Rekuperations- betrieb).
Die weitere Elektromaschine kann in einfacher Weise auf der das Differenzial antreibenden Antriebswelle angeordnet sein. Dies kann bei einer frontseitigen Anordnung des Antriebsaggregates und Heckantrieb des Kraftfahrzeuges die Kardanwelle oder eine Differenzial-Eingangswelle bzw. Antriebswelle sein (z. B. bei einem Längsdifferenzial bzw. Zwischenachsdifferenzial bei Allradantrieb).
Besonders vorteilhaft kann ferner die weitere Elektromaschine mit einem zwei- ten Überlagerungsgetriebe auf der zweiten Abtriebswelle des Differenziales angeordnet sein. Damit wird neben der baulichen Zusammenlegung der Funktionsteile erreicht, dass durch einzelne Ansteuerung der zwei Elektromaschinen eine Drehmomentverlagerung steuerbar ist, während bei gleichsinniger Ansteuerung (Antriebsbetrieb oder Generatorbetrieb) eine Abtriebsmomenten- Verstärkung oder ein Rekuperationsbetrieb bereitstellbar ist.
Fertigungstechnisch besonders günstig kann das weitere Überlagerungsgetriebe als einfacher Planetenradsatz ausgebildet sein, dessen Sonnenrad mit dem Rotor der Elektromaschine verbunden ist, dessen Planetenradträger mit der Abtriebswelle verbunden ist und dessen Außenrad über eine parallel zu den Abtriebswellen angeordnete Vorgelegewelle mit dem Planetenradträger des ersten Überlagerungsgetriebes über Zahnradsätze trieblich verbunden ist. Neben einem einfachen Planetenradsatz mit einer negativen Standgetriebeübersetzung kann grundsätzlich auch ein Planetenradsatz mit positiver Standgetriebeübersetzung eingesetzt werden.
Des weiteren können die beiden Elektromaschinen auf der einen Abtriebswelle angeordnet und mittels ineinander verschachtelter Planeten radsätze mit den beiden Abtriebswellen trieblich verbunden sein. Dies ermöglicht eine baulich besonders gedrängte und kompakte Konstruktion der Überlagerungsgetriebe und gegebenenfalls der Elektromaschinen.
Dabei kann vorteilhaft die eine Elektromaschine auf das Sonnenrad eines einfachen Planetenradsatzes als das eine Überlagerungsgetriebe wirken, dessen Planetenradträger mit der einen Abtriebswelle verbunden ist, ferner kann die zweite Elektromaschine auf das Sonnenrad eines Doppelplanetenradsatzes als zweites Überlagerungsgetriebe wirken, dessen Planetenradträger mit dem Planetenradträger des ersten Planetenradsatzes gekoppelt ist und schließlich können die beiden, gemeinsamen Außenräder der Planeten radsätze mit dem Planetenradträger des als Doppelplanetenradsatz ausgebildeten Differenziales trieblich verbunden sein.
Alternativ dazu kann das Differenzial als Kegelraddifferenzial ausgebildet sein, auf dessen Abtriebswellen zwei Elektromaschinen angeordnet sind, die über als einfache Planetenradsätze ausgeführte Überlagerungsgetriebe trieblich mit den korrespondierenden Abtriebswellen und dem Ausgleichsgehäuse des Kegelraddifferenzial verbunden sind.
Dabei kann baulich besonders einfach jeweils das Sonnenrad der Planetenradsätze mit der Elektromaschine verbunden sein, während der Planetenrad- träger und das Außenrad mit dem Ausgleichsgehäuse und der korrespondierenden Abtriebswelle gekoppelt sind. Als weitere vorteilhafte Alternative kann das Differenzial ein Kegel raddifferen- zial sein, dessen Abtriebswellen über Zahnradsätze mit einer parallel zu den Abtriebswellen angeordneten Vorgelegewelle miteinander gekoppelt sind, wobei ferner eine Drehmoment zwischen den beiden Abtriebswellen verlagernde Elektromaschine integriert ist, deren Rotor mit einer der besagten Wellen und deren quasi Stator mit einem der Zahnräder der Zahnradsätze trieblich verbunden ist. Somit kann über die Elektromaschine und die Vorgelegewelle ein Drehmoment auf die eine oder andere Abtriebswelle überlagert werden, wobei sich der Stator und der Rotor der Elektromaschine zueinander verdrehen.
Dazu kann bevorzugt die Elektromaschine auf der Vorgelegewelle angeordnet sein, wobei der Rotor der Elektromaschine direkt mit der Vorgelegewelle und deren Stator mit dem korrespondierenden Zahnrad der Zahnradsätze trieblich verbunden ist.
Mehrere Ausführungsbeispiele der Erfindung sind im folgenden mit weiteren Einzelheiten näher erläutert. Die schematische Zeichnung zeigt in:
Fig. 1 eine Antriebsvorrichtung für Kraftfahrzeuge mit einem Doppelplaneten- rad-Differenzial und zwei Elektromaschinen, von denen eine auf die Antriebswelle und eine weitere über ein Überlagerungsgetriebe auf die Abtriebswellen wirkt;
Fig. 2 eine weitere Antriebsvorrichtung gemäß Fig. 1 , wobei jedoch die zwei Elektromaschinen auf den beiden Abtriebswellen des Differenziales angeordnet sind;
Fig. 3 eine weitere Antriebsvorrichtung gemäß Fig. 1 , bei der die zwei Elektromaschinen einseitig auf einer Abtriebswelle positioniert sind; Fig. 4 eine alternative Antriebsvorrichtung für Kraftfahrzeuge mit einem Ke- gelrad-Differenzial und zwei Elektromaschinen mit Überlagerungsgetrieben auf den beiden Abtriebswellen; und
Fig. 5 eine Antriebsanordnung gemäß Fig. 4, jedoch mit einer die beiden
Abtriebswellen überbrückenden Vorgelegewelle und einer dazwischen geschalteten Elektromaschine.
Die als Blockschaltbild dargestellte Antriebsvorrichtung gemäß Fig. 1 weist ein als Doppelplanetensatz ausgeführtes Differenzial 10 auf, das über einen Kegelradtrieb auf einer Eingangswelle 2 und einem Tellerrad 14 angetrieben ist und das auf zwei Abtriebswellen 16, 18 abtreibt.
Das Differenzial 10 ist ein Hinterachsdifferenzial eines Kraftfahrzeuges, das über eine Kardanwelle 20 angetrieben ist. Die Kardanwelle 20 ist in bekannter Weise mit dem nicht dargestellten Antriebsaggregat des Kraftfahrzeuges, z. B. einer Brenn kraftmaschine und einem Geschwindigkeits-Wechselgetriebe, verbunden. Die Abtriebswellen 16, 18 sind über nicht dargestellte Gelenkwellen mit den angetriebenen Hinterrädern des Kraftfahrzeuges trieblich verbunden.
Das Differenzial 10 bzw. der Doppelplanetensatz weist ein innenverzahntes Außenrad 22 auf, das das Tellerrad 14 trägt und mit radial äußeren Planetenrädern 24 kämmt. Die Planetenräder 24 sind mit radial inneren Planetenrädern 26 in Eingriff, die mit einem Sonnenrad 28 auf der rechten Abtriebswelle 18 kämmen. Die Planetenräder 24, 26 sind auf dem Planetenradträger 30 drehbar gelagert. Der Planetenradträger 30 ist mit der linken Abtriebswelle 16 trieblich verbunden.
Benachbart zu dem beschriebenen Differenzial 10 und koaxial zur Abtriebswel- le 18 ist ein Überlagerungsgetriebe 32 angeordnet, das wie nachstehend aus- geführt mit dem Differenzial 10 und einer dem Überlagerungsgetriebe 32 benachbarten Elektromaschine 34 zusammenwirkt.
Das Überlagerungsgetriebe 32 ist als ein einfacher Planetenradsatz ausgebil- det, mit einem Sonnenrad 36, einem Planetenradträger 38 mit Planetenrädern 40 und einem innerverzahnten Außenrad 42. Grundsätzlich ist auch denkbar anstelle des einfachen Planetenradsatzes mit negativer Standgetriebeübersetzung für das Überlagerungsgetriebe 32 einen Planetenradsatz mit positiver Standgetriebeübersetzung zu verwenden, bei dem u.a. zwei Sonnenräder bzw. zwei Hohlräder als Außenräder eingesetzt sind.
Das Außenrad 42 ist fest mit dem Planetenradträger 30 und der Planetenradträger 38 mit der rechten Abtriebswelle 18 des Differenziales 10 verbunden. Das Sonnenrad 36 des Überlagerungsgetriebes 32 hingegen ist über eine Hohlwelle 44 mit dem Rotor 46 der Elektromaschine 34 gekoppelt, während der Stator 48 gehäusefest um den Rotor 46 angeordnet ist.
Die Elektromaschine 34, die z. B. als Drehstromasynchronmaschine bekannter Bauart ausgeführt sein kann, kann über eine nicht dargestellte elektronische Steuerung relativ zur Abtriebswelle 18 als Elektromotor geschaltet beschleunigt oder als Generator geschaltet abgebremst werden, wobei sich das Abtriebsmoment an der Abtriebswelle 18 entsprechend verstärkt oder vermindert. Durch das Überlagerungsgetriebe 32 und das Differenzial 10 überträgt sich diese Abtriebsmomentenüberlagerung aufgrund der dargestellten getriebe- technischen Verknüpfung mit umgekehrtem Vorzeichen auf die linke Abtriebswelle 16; d. h., dass bei zunehmendem Abtriebsmoment an der Abtriebswelle 18 das Abtriebsmoment an der Abtriebswelle 16 entsprechend der Übersetzung im Überlagerungsgetriebe 32 abnimmt und umgekehrt.
Gegebenenfalls kann es angezeigt sein, die Elektromaschine 34 im Leerlaufbetrieb (ohne Abtriebsmomentensteuerung) drehzahlkonform mit der Abtriebs- welle 18 zu beschleunigen oder abzubremsen, um aufgrund der Massenträgheit der Elektromaschine 34 unbeabsichtigte Momentenverlagerungen auszuschließen.
Zusätzlich zu der ersten Elektromaschine 34 kann eine weitere Elektromaschine 50 antriebsseitig des Differenziales 10 vorgesehen sein, z. B. auf der Kardanwelle 20. Dabei sitzt der Rotor 52 der Elektromaschine 50 direkt auf der Kardanwelle 20, während der Stator 54 gehäusefest ausgeführt ist. Die Leistung der gegebenenfalls ebenfalls als Drehstromasynchronmaschine ausge- führten Elektromaschine bekannter Bauart ist höher ausgelegt als die Leistung der Elektromaschine 34.
Die Elektromaschine 50 kann gegebenenfalls über eine gemeinsame elektronische Steuerung mit der Elektromaschine 34 als Elektromotor geschaltet beim Beschleunigen des Kraftfahrzeuges zusätzliche Antriebsleistung bereitstellen; ferner kann die Elektromaschine 50 als Generator geschaltet im Rekupera- tionsbetrieb Strom erzeugen. Der Strom kann gegebenenfalls zur Versorgung der ersten Elektromaschine 34 mit Antriebs- oder Bremsenergie eingesetzt werden.
In der Fig. 2 ist eine abgewandelte Antriebsvorrichtung dargestellt, die nur soweit beschrieben ist, als sie sich wesentlich von der Fig. 1 unterscheidet. Gleiche Teile sind mit gleichen Bezugszeichen versehen.
Dabei ist auf der Abtriebswelle 16 des Differenziales 10 bzw. des Doppelplanetenradsatzes ein weiteres Überlagerungsgetriebe 56 angeordnet. Das Überlagerungsgetriebe 56 mit von der Auslegung her gleichem Übersetzungsverhältnis wie das Überlagerungsgetriebe 32 ist ebenfalls als einfacher Planetenradsatz ausgeführt, mit einem Sonnenrad 58, einem Planetenradträger 60 mit Planetenrädern 62 und einem innenverzahnten Außenrad 64. Auch hier kann für das Überlagerungsgetriebe 56 ein Planeten radsatz mit positiver Standgetriebeübersetzung verwendet werden.
Der Planetenradträger 60 ist mit der Abtriebswelle 16 trieblich verbunden. Fer- ner ist das Sonnenrad 58 über eine Hohlwelle 66 mit dem Rotor 68 einer zweiten Elektromaschine 70 gekoppelt, deren Stator 72 gehäusefest angeordnet ist. Die Elektromaschine 70 kann baugleich zur Elektromaschine 34 auf der rechten Abtriebswelle 18 sein.
Des weiteren ist in dem nicht dargestellten Gehäuse des Differenziales 10 eine Vorgelegewelle 74 drehbar gelagert, die über Zahnradsätze 76, 78 und 80, 82 mit dem Außenrad 64 des Überlagerungsgetriebes 56 und dem Planetenradträger 38' des Überlagerungsgetriebes 32 triebläch verbunden ist.
Durch gegensinnige oder einseitige Ansteuerung der Elektromaschinen 34, 70 kann wiederum eine Abtriebsmomentenverlagerung gesteuert werden, wobei die linke Elektromaschine 70 über den Planetenradträger 60 direkt auf die Abtriebswelle 16 und die rechte Elektromaschine 34 über den Planetenradträger 38' direkt auf die Abtriebswelle 18 das Abtriebsmoment verstärkend einwirkt.
Durch gleichsinnige Ansteuerung der beiden Elektromaschinen 34, 70 kann ferner wie über die Elektromaschine 50 gemäß Fig. 1 zusätzliches Abtriebsmoment überlagert oder Rekuperationsbetrieb gesteuert werden. Die beiden Elektromaschinen 34, 70 wirken dann als Elektromotor geschaltet zusätzlich antreibend oder als Generator geschaltet Strom erzeugend bzw. bremsend. Die Vorgelegewelle 74 mit den Zahnradsätzen 76, 78, 80, 82 gleichen Übersetzungsverhältnisses stellt dabei einen Gleichlauf der Überlagerungsgetriebe 32, 56 sicher. In der Fig. 3 ist eine ebenfalls abgewandelte Antriebsvorrichtung dargestellt, die wiederum nur soweit beschrieben ist, als sie sich wesentlich von der Fig. 1 und der Fig. 2 unterscheidet. Gleiche Teile sind mit gleichen Bezugszeichen versehen.
Gemäß der Fig. 3 sind die beiden Elektromaschinen 34, 70 einseitig auf der Abtriebswelle 18 angeordnet und wirken auf die ebenfalls einander benachbarten und miteinander gekoppelten Überlagerungsgetriebe 32', 84.
Das Überlagerungsgetriebe 32' ist analog zu den Fig. 1 und 2 als einfacher Planetenradsatz ausgebildet, dessen Sonnenrad 36 über eine erste Hohlwelle 44 mit dem Rotor 46 der Elektromaschine 34 trieblich verbunden ist. Der Planetenradträger 38" mit dem Planetenrädern 40 ist mit der Abtriebswelle 18 gekoppelt. Ferner kämmen die Planetenräder 40 mit dem innenverzahnten Außenrad 22' des Einfachplanetensatzes 32' bzw. dem Planetenradträger 30 des entsprechenden Doppelplanetenradsatzes 10.
Das weitere, benachbarte Überlagerungsgetriebe 84 ist ein weiterer Doppelplanetenradsatz, der wie folgt getriebetechnisch verknüpft ist:
Das Sonnenrad 86 ist über eine weitere Hohlwelle 88 mit dem Rotor 68 der zweiten Elektromaschine 70 trieblich verbunden. Der Planetenradträger 90 ist mit dem Planetenradträger 38" des Überlagerungsgetriebes 32' gekoppelt und trägt radial äußere Planetenräder 92 und radial innere Planetenräder 94, die auf dem Planetenradträger 90 entsprechend drehbar gelagert und miteinander in Eingriff sind. Die äußeren Planetenräder 92 kämmen zudem ebenfalls mit dem gemeinsamen Außenrad 22' des Einfachplanetensatzes 32', während die Planetenräder 94 mit dem besagten Sonnenrad 86 in Eingriff sind.
Die grundsätzliche Funktion der Elektromaschinen 34, 70 und der Überlagerungsgetriebe 32', 84 ist vergleichbar zur Funktion der Antriebsvorrichtung gemäß Fig. 2. Die Elektromaschinen 34, 70 können somit sowohl zur Abtriebs- momentenverlagerung als auch als zusätzliche Antriebsquelle und im Reku- perationsbetrieb bei gleichsinniger Ansteuerung eingesetzt werden.
Die Überlagerungsgetriebe 32', 84 sollten wiederum dem Betrag nach auf die gleichen Standgetriebeübersetzungen ausgelegt sein. Die Auslegung des Überlagerungsgetriebes 84 als Doppelplanetenradsatz ist vorteilhaft, um die dargestellte, verschachtelte Anordnung und Verknüpfung zu ermöglichen. Selbstverständlich ist auch eine spiegelbildlich gleiche Anordnung der An- triebsvorrichtung mit auf der Zeichnung Fig. 3 linksseitiger Positionierung der Elektromaschinen 34, 70 und der Überlagerungsgetriebe 32', 84 durchführbar.
Die Fig. 4 zeigt abweichend zu den vorbeschriebenen Fig. 1 bis 3 ein Kegel- raddifferenzial 100 an sich bekannter Bauart, das im wesentlichen eine Ein- gangswelle 102 mit einem Antriebsritzel 104, ein mit dem Antriebsritzel 104 kämmendes Tellerrad 106, ein das Tellerrad 106 tragendes Ausgleichsgehäuse 108, auf einem Mitnehmerbolzen 110 des Ausgleichsgehäuses drehbar gelagerte Ausgleichskegelräder 112 und Achskegelräder 114 aufweist. Die Achskegelräder 114 sind mit Abtriebswellen 116, 118 drehmomentübertragend ver- bunden.
Die Eingangswelle 102 ist trieblich an die besagte Kardanwelle 20 angeschlossen, während die Abtriebswellen 116, 118 über nicht dargestellte Gelenkwellen mit den angetriebenen Rädern des Kraftfahrzeuges verbunden sind.
Auf den Abtriebswellen 116, 118 ist jeweils ein als einfacher Planetenradsatz ausgebildetes Überlagerungsgetriebe 32 und eine Elektromaschine 34, 70 angeordnet, die wie folgt mit dem Differenzial 100 und den Abtriebswellen 116, 118 gekoppelt sind: Zunächst sind die Sonnenräder 36 über die Hohlwellen 44 mit den Rotoren 46, 68 der Elektromaschinen 34, 70 verbunden. Die Planetenradträger 38 oder 120 (vgl. obere und untere Hälfte der Zeichnung Fig. 4) können alternativ mit dem Ausgleichsgehäuse 108 des Differenziales 100 oder mit den Abtriebswellen 116, 118 gekoppelt sein. Gleiches gilt für die Außenräder 42, die dann alternativ mit den Abtriebswellen 116, 118 oder mit dem Ausgleichsgehäuse 108 verbunden sein können. Es versteht sich, dass aus Gründen baugleicher Teile bei den beiden Überlagerungsgetrieben 32 die gleiche Variante zu wählen ist.
Die Funktion der in der Fig. 4 dargestellten Antriebsvorrichtung ist hinsichtlich der Ansteuerung der Elektromaschinen 34, 70 gleich der zur Fig. 2 beschriebenen Ansteuerung. Es kann durch einzelne oder gegensinnige Ansteuerung eine Abtriebsmomentenveriagerung und durch gleichsinnige Ansteuerung eine durch die Elektromaschinen 34, 70 bewirkte zusätzliche Abtriebsmomentenver- stärkung oder ein Rekuperationsbetrieb gesteuert werden.
In der Fig. 5 sind wiederum gleiche Teile mit gleichen Bezugszeichen versehen. Die Beschreibung beschränkt sich auf die gegenüber den Fig. 1 bis 4 wesentlichen Unterschiede.
Gemäß Fig. 5 ist wiederum dem Differenzial 100 die Elektromaschine 50 vorgeschaltet, mit der zur Fig. 1 beschriebenen Funktion der zusätzlichen Ab- triebsmomenteneinspeisung beim Beschleunigen des Kraftfahrzeuges und dem Rekuperationsbetrieb.
Zur Abtriebsmomentenveriagerung zwischen den Abtriebswellen 116, 118 ist eine Vorgelegewelle 121 parallel zu den Abtriebswellen 116, 118 im nicht dargestellten Gehäuse des Differenziales 100 drehbar gelagert, die über Zahnrad- sätze 122, 124 und 126, 128 mit ungleichem Übersetzungsverhältnis mit den Abtriebswellen 116, 118 gekoppelt ist.
Zwischen dem Zahnrad 122 und der Vorgelegewelle 121 ist eine Elektroma- schine 130 eingeschaltet, deren Rotor 132 trieblich mit der Vorgelegewelle 121 und deren quasi Stator 134 trieblich in das Zahnrad 122 integriert ist bzw. mit diesem eine funktionelle Einheit bildet.
Aufgrund des ungleichen Übersetzungsverhältnisses zwischen den ZahnradSätzen 122, 124 und 126, 128 entsteht im Betrieb des Kraftfahrzeuges bzw. bei sich drehenden Abtriebswellen 116, 118 zwischen dem Rotor 132 und dem Stator 134 eine Relativdrehung, die durch entsprechende Ansteuerung der Elektromaschine 130 als Elektromotor oder als Generator eine Abtriebsmomentenveriagerung auf die eine oder andere Abtriebswelle 116, 118 bewirkt.
Die Erfindung ist nicht auf die dargestellten Ausführungsbeispiele beschränkt. So können auch Kombinationen der in den einzelnen Fig. 1 bis 5 gezeigten Ausführungen abhängig von spezifischen Gegebenheiten vorteilhaft sein.
Anstelle der Anwendung der Antriebsvorrichtung an der Hinterachse des Kraftfahrzeuges kann diese auch oder zusätzlich an der Vorderachse eingesetzt sein. Femer kann das Differenzial auch ein Zwischenachsdifferenzial bei Allradantrieb des Kraftfahrzeuges (Längsdifferenzial) sein, wobei dann die besagten Abtriebswellen mit dem Vorderachsdifferenzial und dem Hinterachs-diffe- renzial trieblich verbunden sind und die Differenzial-Eingangswelle nicht an die Kardanwelle, sondern an eine Antriebswelle des Wechselgetriebes oder an eine Zwischenwelle (z. B. trans axle Prinzip) angeschlossen ist.

Claims

Ansprüche
1. Antriebsvorrichtung für Kraftfahrzeuge mit einem Antriebsaggregat, das über ein Differenzialgetriebe auf zwei Abtriebswellen wirkt, wobei an den Abtriebswellen unter Zwischenschaltung zumindest eines Überlagerungsgetriebes eine Einrichtung vorgesehen ist, mittels der Abtriebsmoment von der einen Abtriebswelle zur anderen Abtriebswelle verlagerbar ist, dadurch gekennzeichnet, dass die Einrichtung durch zumindest eine als Elektromotor und als Generator schaltbare Elektromaschine (34; 70; 130) gebildet ist.
2. Antriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Elektromaschine (34; 70) und das Überlagerungsgetriebe (32; 32', 84) auf der einen Abtriebswelle (18) angeordnet sind (Fig. 1 oder 3).
3. Antriebsvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Überlagerungsgetriebe (32) ein einfacher Planetenradsatz ist, dessen
Sonnenrad (36) auf der Abtriebswelle (18) drehbar gelagert und mit dem Rotor (46) der Elektromaschine (34) verbunden ist, dessen Planetenradträger (38) mit der Abtriebswelle (18) verbunden ist und dessen Außenrad (42) mit dem Planetenradträger (30) des als Doppelplanetenradsatz aus- geführten Differenziales (10) gekoppelt ist, wobei der weitere Planetenradträger (30) auf die zweite Abtriebswelle (16) wirkt (Fig. 1).
4. Antriebsvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine weitere als Elektromotor und als Generator schaltbare Elektromaschine (50) vorge- sehen ist, mittels der direkt oder indirekt im elektromotorischen Betrieb zusätzliches Antriebsmoment einsteuerbar oder im Generatorbetrieb elektrische Energie rekuperierbar ist.
5. Antriebsvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die weitere Elektromaschine auf der das Differenzial (10; 100) antreibenden Antriebswelle (20) angeordnet ist (Fig. 1 und 5).
6. Antriebsvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine weitere Elektromaschine (70) mit einem zweiten Überlagerungsgetriebe (56; 32) auf der zweiten Abtriebsweile (16) des Differenziales (10; 100) angeordnet ist (Fig. 2 und 4).
7. Antriebsvorrichtung nach den Ansprüchen 3 und 6, dadurch gekennzeichnet, dass das weitere Überlagerungsgetriebe (56) als einfacher Planetenradsatz ausgebildet ist, dessen Sonnenrad (58) mit dem Rotor (68) der Elektromaschine (70) verbunden ist, dessen Planetenradträger (60) mit der Abtriebswelle (16) verbunden ist und dessen Außenrad (64) über eine parallel zu den Abtriebswellen (16, 18) angeordnete Vorgelegewelle (74) mit dem Planetenradträger (38') des ersten Überlagerungsgetriebes (32) über Zahnradsätze (76, 78, 80, 82) trieblich verbunden ist (Fig. 2).
8. Antriebsvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Elektromaschinen 34, 70) auf der einen Abtriebswelle (18) angeordnet sind und mittels ineinander verschachtelter Planetenradsätze (32', 84) mit den beiden Abtriebswellen (16, 18) trieblich verbunden sind (Fig. 3).
9. Antriebsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die eine Elektromaschine (34) auf das Sonnenrad (36) eines einfachen Planetenradsatzes als das eine Überlagerungsgetriebe (32') wirkt, dessen Planetenradträger (38") mit der einen Abtriebswelle (18) verbunden ist, dass die zweite Elektromaschine (70) auf das Sonnenrad (86) eines
Doppelplanetenradsatzes als zweites Überlagerungsgetriebe (84) wirkt, dessen Planetenradträger (90) mit dem Planetenradträger (38") des ersten Planetenradsatzes (32') gekoppelt ist und dass die beiden, gemeinsamen Außenräder (22') der Planetenradsätze (32', 84) mit dem Planetenradträger (30) des als Doppelplanetenradsatz ausgebildeten
Differenziales (10) trieblich verbunden sind (Fig. 3).
10. Antriebsvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Differenzial (100) als Ke- gelraddifferenzial ausgebildet ist, auf dessen Abtriebswellen (116, 118) zwei Elektromaschinen (34, 70) angeordnet sind, die über als einfache Planetenradsätze ausgeführte Überlagerungsgetriebe (32) trieblich mit den korrespondierenden Abtriebswellen (116, 118) und dem Ausgleichsgehäuse (108) des Kegelraddifferenziales (100) verbunden sind (Fig. 4).
11. Antriebsvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass jeweils das Sonnenrad (36) der Planetenradsätze (32) mit den Elektromaschinen (34, 70) verbunden ist, während der Planetenradträger (38) und das Außenrad (42) mit dem Ausgleichsgehäuse (108) und der kor- respondierenden Abtriebswelle (116, 118) gekoppelt sind (Fig. 4).
12. Antriebsvorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Differenzial (100) ein Ke- gelraddifferenzial ist, dessen Abtriebswellen (116, 118) über Zahnrad- sätze (122, 124, 126, 128) mit einer parallel zu den Abtriebswellen (116, 118) angeordneten Vorgelegewelle (121) miteinander gekoppelt sind und dass eine Drehmoment zwischen den beiden Abtriebswellen (116, 118) verlagernde Elektromaschine (130) integriert ist, deren Rotor (132) mit einer der besagten Wellen und deren quasi Stator (134) mit einem der Zahnräder (122) der Zahnradsätze (122, 124, 126, 128) trieblich verbunden ist (Fig. 5).
13. Antriebs Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Elektromaschine (130) auf der Vorgelegewelle (121) angeordnet ist, wobei der Rotor (132) der Elektromaschine (130) mit der Vorgelegewelle
(121) und deren Stator (134) mit dem korrespondierenden Zahnrad (122) der Zahnradsätze (122, 124, 126, 28) trieblich verbunden ist (Fig. 5).
PCT/EP2005/005082 2004-05-14 2005-05-11 Antriebsvorrichtung für kraftfahrzeuge WO2005110790A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05745320A EP1747110A2 (de) 2004-05-14 2005-05-11 Antriebsvorrichtung für kraftfahrzeuge
US11/596,344 US8012057B2 (en) 2004-05-14 2005-05-11 Drive device for motor vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004024086.8 2004-05-14
DE102004024086A DE102004024086A1 (de) 2004-05-14 2004-05-14 Antriebsvorrichtung für Kraftfahrzeuge

Publications (2)

Publication Number Publication Date
WO2005110790A2 true WO2005110790A2 (de) 2005-11-24
WO2005110790A3 WO2005110790A3 (de) 2008-05-29

Family

ID=34968391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005082 WO2005110790A2 (de) 2004-05-14 2005-05-11 Antriebsvorrichtung für kraftfahrzeuge

Country Status (4)

Country Link
US (1) US8012057B2 (de)
EP (1) EP1747110A2 (de)
DE (1) DE102004024086A1 (de)
WO (1) WO2005110790A2 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061497A1 (en) * 2005-11-23 2007-05-31 Caterpillar Inc. Electric drive system with plural motors
EP1832462A1 (de) 2006-03-10 2007-09-12 Nissan Motor Company, Limited Vorrichtung und Verfahren zur Antriebskraftverteilung
EP1966516A2 (de) * 2005-10-26 2008-09-10 Solomon Technologies, Inc. Elektrisches differentialmotor-übertragungssystem mit mehreren eingängen und zwei ausgängen
CN100421979C (zh) * 2007-02-02 2008-10-01 吉林大学 混合动力汽车用的动力耦合装置
WO2008141887A1 (de) * 2007-05-19 2008-11-27 Zf Friedrichshafen Ag Überlagerungsgetriebe zum verteilen eines antriebsmomentes auf wenigstens zwei abtriebswellen
EP2050609A1 (de) * 2006-08-30 2009-04-22 Tai-Her Yang Elektrisch gedämpftes Dreiwellenausgleichsgetriebe
WO2009080474A1 (de) * 2007-12-20 2009-07-02 Zf Friedrichshafen Ag Getriebevorrichtung mit wenigstens zwei ausgangswellen und mindestens zwei mehrwelligen planetenradsätzen
EP2149474A1 (de) * 2007-05-23 2010-02-03 Honda Motor Co., Ltd. Leistungsgerät
EP2221207A1 (de) * 2009-02-20 2010-08-25 Audi AG Achsantriebsvorrichtung für eine Achse eines Kraftfahrzeugs sowie Kraftfahrzeug
EP2452846A1 (de) * 2010-11-12 2012-05-16 Aristotle University of Thessaloniki Differentialvorrichtung mit steuerbarer Drehmomentverteilung
US8182386B2 (en) 2007-12-20 2012-05-22 Zf Friedrichshafen Ag Transmission device comprising at least two output shafts
US8343000B2 (en) 2009-11-24 2013-01-01 BAE Systems Hägglunds Aktiebolag Electric drive system
US8419579B2 (en) 2007-12-20 2013-04-16 Zf Friedrichshafen Ag Transmission device
US20140315675A1 (en) * 2013-04-17 2014-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Drive torque distribution apparatus
CN104670010A (zh) * 2015-02-11 2015-06-03 吉林大学 一种具备转矩定向分配功能的电动主动正齿轮差速器
EP2775171A4 (de) * 2011-11-02 2015-07-15 Honda Motor Co Ltd Antriebskraftvorrichtung

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021023A1 (de) * 2005-05-06 2006-11-09 Höhn, Bernd-Robert, Prof. Dr.-Ing. Antriebsvorrichtung für Kraftfahrzeuge
DE102005049707A1 (de) * 2005-10-18 2007-04-26 Zf Friedrichshafen Ag Fahrzeug mit einer in Fahrzeugquerrichtung angeordneten Antriebsmaschine
JP2007154966A (ja) * 2005-12-02 2007-06-21 Toyota Motor Corp 車両用駆動力配分装置
DE102006031089A1 (de) * 2006-07-05 2008-01-17 Fzgmbh Antriebsvorrichtung für ein Kraftfahrzeug
DE102006057857B4 (de) * 2006-12-08 2016-04-21 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Vorrichtung und Verfahren zum Betrieb eines Kraftfahrzeuges mit mehreren Antriebseinheiten
DE102007017185B4 (de) * 2007-04-12 2008-12-18 Fzgmbh Verteilergetriebe für Kraftfahrzeuge
JP4894609B2 (ja) * 2007-05-10 2012-03-14 トヨタ自動車株式会社 車両用駆動力制御装置
GB2449489B (en) * 2007-05-25 2010-03-10 Patrick Chi-Kwong Luk Dual in-wheel electric machines linked by differential gear assembly
US8567540B2 (en) 2008-01-25 2013-10-29 Ford Global Technologies, Llc Drive unit for an electric hybrid vehicle
US7951035B2 (en) * 2008-02-07 2011-05-31 American Axle & Manufacturing, Inc. Continuously variable torque vectoring axle assembly
DE102008013462A1 (de) 2008-03-10 2009-09-17 Schopf, Walter, Dipl.-Ing. Einrichtung an Kfz-Ausgleichsgetrieben zum Verlagern der Antriebskräfte zwischen achsgleichen Treibrädern des Kfz-Fahrwerkes
MX2008014349A (es) * 2008-11-10 2010-05-10 Vehizero S A P I De C V Sistema de acoplamiento entre dos motores para un sistema de traccion de un vehiculo o automovil.
DE102008061946A1 (de) * 2008-12-12 2010-06-17 Schaeffler Kg Elektrische Antriebseinheit mit variabler Momentenverteilung
GB2466975B (en) * 2009-01-16 2013-06-19 Gm Global Tech Operations Inc Torque distributing drive mechanism for motorized vehicles
KR101760499B1 (ko) * 2009-03-05 2017-07-21 보그워너 스웨덴 아베 토크 벡터링을 위한 장치
DE102009028384A1 (de) * 2009-08-10 2011-02-17 Zf Friedrichshafen Ag Vorrichtung zum Verteilen eines Drehmomentes einer Antriebsmaschine in Fahrzeugquerrichtung
US8998765B2 (en) 2010-07-14 2015-04-07 E-Aam Driveline Systems Ab Axle assembly with torque distribution drive mechanism
US8663051B2 (en) 2010-07-14 2014-03-04 E-Aam Driveline Systems Ab Axle assembly with torque distribution drive mechanism
DE102010036240A1 (de) 2010-09-03 2012-03-08 Schaeffler Technologies Gmbh & Co. Kg Antriebsvorrichtung
DE102010036241A1 (de) * 2010-09-03 2012-03-08 Schaeffler Technologies Gmbh & Co. Kg Antriebseinheit
DE102010047443A1 (de) 2010-10-04 2012-04-05 Audi Ag Kraftfahrzeug mit einem Allradantrieb
DE102010053855A1 (de) 2010-12-08 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Antriebsvorrichtung
WO2012082059A1 (en) * 2010-12-15 2012-06-21 Borgwarner Torqtransfer Systems Ab A torque vectoring device
DE102010054871A1 (de) 2010-12-17 2012-06-21 Schaeffler Technologies Gmbh & Co. Kg Antriebsstrang für Kraftfahrzeuge
DE102010055408A1 (de) 2010-12-21 2012-06-21 Schaeffler Technologies Gmbh & Co. Kg Verteilerplanetengetriebe mit Winkeltrieb und hydraulisch verfahrbarer Spielausgleichsvorrichtung
DE102010055414A1 (de) 2010-12-21 2012-06-21 Schaeffler Technologies Gmbh & Co. Kg Antriebsvorrichtung für Kraftfahrzeuge
DE102010055413A1 (de) 2010-12-21 2012-06-21 Schaeffler Technologies Gmbh & Co. Kg Antriebsvorrichtung für Kraftfahrzeuge
CN102166947B (zh) * 2011-03-10 2013-05-01 上海交通大学 多模无级变速混合动力驱动系统
US8591369B2 (en) * 2011-04-06 2013-11-26 Remy Technologies, L.L.C. Asynchronous boost assist system for a motor vehicle
US8768551B2 (en) 2011-04-19 2014-07-01 Honda Motor Co., Ltd. Vehicle driving apparatus
JP5335025B2 (ja) * 2011-04-19 2013-11-06 本田技研工業株式会社 車両用駆動装置
DE102011107565A1 (de) 2011-07-16 2013-01-17 Volkswagen Aktiengesellschaft Differentialanordnung für ein Kraftfahrzeug
DE102011079370A1 (de) 2011-07-19 2013-01-24 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung mit zwei Antriebsaggregaten
DE102011082016A1 (de) 2011-09-01 2013-03-07 Schaeffler Technologies AG & Co. KG Vorspannmutter
EP2750910A1 (de) 2011-09-01 2014-07-09 Schaeffler Technologies GmbH & Co. KG Lageranordnung für eine antriebsvorrichtung
DE102011082017B4 (de) 2011-09-01 2022-03-17 Schaeffler Technologies AG & Co. KG Lageranordnung für eine Antriebsvorrichtung
DE102011088907B4 (de) * 2011-12-16 2019-02-14 Schaeffler Technologies AG & Co. KG Hybridantrieb für ein Fahrzeug
US9150118B2 (en) * 2012-03-21 2015-10-06 Honda Motor Co., Ltd. Vehicle driving system and vehicle driving system control method
CA2810942C (en) * 2012-03-26 2018-05-01 Mcmaster University Integrated electro-mechanical powertrain system for hybrid vehicles
US9133925B2 (en) * 2012-03-27 2015-09-15 Honda Motor Co., Ltd. Power plant
WO2013174553A1 (de) * 2012-05-25 2013-11-28 Schaeffler Technologies AG & Co. KG Kombinierte gleitlagerung in einem planetentrieb
JP5932520B2 (ja) * 2012-06-27 2016-06-08 本田技研工業株式会社 動力伝達装置
DE102012220970B4 (de) * 2012-11-16 2017-03-02 Schaeffler Technologies AG & Co. KG Antriebsstrang für ein Fahrzeug
DE102013007354B4 (de) * 2013-04-27 2018-05-30 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Antriebseinrichtung
US9387756B1 (en) 2013-10-31 2016-07-12 Quanta Products LLC Vehicle hybrid drive arrangement
DE102013019907B4 (de) 2013-11-28 2021-02-04 Audi Ag Aktives Differential und Kraftfahrzeug
DE102015200470A1 (de) 2015-01-14 2016-07-14 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
JP6569372B2 (ja) * 2015-08-07 2019-09-04 株式会社豊田中央研究所 動力配分装置
US9400034B1 (en) * 2015-08-12 2016-07-26 Borgwarner Inc. Electric drive system
US10113630B2 (en) * 2016-01-08 2018-10-30 Dana Automotive Systems Group, Llc Drive unit for shifting a torque balance
US9664261B1 (en) 2016-06-22 2017-05-30 Schaeffler Technologies AG & Co. KG Planetary differential CVT with anti-freewheel one way clutch
US20180172124A1 (en) * 2016-12-20 2018-06-21 American Axle & Manufacturing, Inc. Electric drive axle with traction and vectoring capabilities
US9958049B1 (en) 2017-05-15 2018-05-01 E-Aam Driveline Systems Ab Electric drive module with Ravigneaux gearset
DE102017110941A1 (de) 2017-05-19 2018-11-22 Lucas Automotive Gmbh Feststellbremsanlage für ein Kraftfahrzeug und Kraftfahrzeug
US10316946B2 (en) 2017-10-13 2019-06-11 E-Aam Driveline Systems Ab Two mode electric drive module with Ravigneaux gearset
CN107757338A (zh) * 2017-11-06 2018-03-06 苏州亚太金属有限公司 一种靠差速器控制的混合动力系统
JP6571157B2 (ja) * 2017-12-25 2019-09-04 本田技研工業株式会社 動力配分装置
DE102018108547B3 (de) 2018-04-11 2019-06-06 Schaeffler Technologies AG & Co. KG Antriebsanordnung für ein Kraftfahrzeug
JP6798525B2 (ja) * 2018-04-12 2020-12-09 株式会社豊田中央研究所 動力分配装置
US10899237B2 (en) 2018-09-07 2021-01-26 Ford Global Technologies, Llc Methods and system for torque vectoring
US11085516B2 (en) 2018-09-17 2021-08-10 Ford Global Technologies, Llc Methods and system for operating a torque vectoring electric machine
CN109442009A (zh) * 2018-12-20 2019-03-08 潍柴动力股份有限公司 一种变速传动机构及轮式驱动机械
US10982745B2 (en) * 2019-01-15 2021-04-20 GM Global Technology Operations LLC Planetary differential drive system
CN109899467A (zh) * 2019-03-22 2019-06-18 陈扬珑 双阶行星轮组两档电驱变速器
US11674566B2 (en) 2019-04-10 2023-06-13 Dana Heavy Vehicle Systems Group, Llc Methods and systems for a multi-speed electric axle assembly
DE102019209460A1 (de) * 2019-06-28 2020-12-31 Zf Friedrichshafen Ag Getriebe mit einer Torque-Vectoring-Überlagerungseinheit
DE102019209461A1 (de) * 2019-06-28 2020-12-31 Zf Friedrichshafen Ag Getriebe mit einer Torque-Vectoring-Überlagerungseinheit
DE102019119953B4 (de) * 2019-07-24 2023-05-04 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug mit drehfest verbundenem ersten Planetenradträger an zweitem Sonnenrad und drehfest verbundenem zweiten Planetenradträger an erstem Sonnenrad
CN114450506B (zh) * 2019-09-11 2023-12-12 武藏精密工业株式会社 传动装置
DE102019129633A1 (de) * 2019-11-04 2021-05-06 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
DE102019129635A1 (de) * 2019-11-04 2021-05-06 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
DE102019129637A1 (de) * 2019-11-04 2021-05-06 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
DE102019131754B3 (de) * 2019-11-25 2021-02-11 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
DE102019131764A1 (de) * 2019-11-25 2021-05-27 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
DE102019131765A1 (de) * 2019-11-25 2021-05-27 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
DE102019131763A1 (de) * 2019-11-25 2021-05-27 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
DE102019131758A1 (de) * 2019-11-25 2020-11-19 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
US11236811B1 (en) 2020-09-18 2022-02-01 The Hilliard Corporation Center differential and drive system for four wheel drive
JP7302578B2 (ja) * 2020-11-11 2023-07-04 トヨタ自動車株式会社 差動装置
SE2150342A1 (en) * 2021-03-24 2022-09-25 Borgwarner Sweden Ab Electric drive module
DE102021006012A1 (de) 2021-12-06 2023-06-07 Mercedes-Benz Group AG Elektrisches Antriebssystem für ein Kraftfahrzeug
DE102021006011A1 (de) 2021-12-06 2023-06-07 Mercedes-Benz Group AG Elektrisches Antriebssystem für ein Kraftfahrzeug
DE102021006118B3 (de) 2021-12-13 2023-03-16 Mercedes-Benz Group AG Elektrisches Antriebssystem für ein Kraftfahrzeug mit zwei Elektromotoren und schaltbarer Torque- Vectoring-Funktion
DE102022000042B3 (de) 2022-01-03 2023-04-13 Mercedes-Benz Group AG Elektrische Antriebsvorrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102022000515B4 (de) 2022-02-10 2023-10-12 Mercedes-Benz Group AG Elektrisches Antriebssystem eines Kraftfahrzeugs für Ein- und Zweimotorenbetrieb und Torque-Vectoring- Funktion
CN114508575A (zh) * 2022-02-23 2022-05-17 浙江吉利控股集团有限公司 行星轮式差速器、汽车动力系统及汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1519309A (en) * 1922-08-24 1924-12-16 Bethlehem Steel Corp Variable-speed driving mechanism
US5409425A (en) * 1992-02-10 1995-04-25 Honda Giken Kogyo Kabushiki Kaisha Torque distributing mechanism in differential
JP2001039179A (ja) * 1999-05-25 2001-02-13 Toyota Motor Corp 駆動力分配装置
FR2844858A1 (fr) * 2002-09-25 2004-03-26 Peugeot Citroen Automobiles Sa Differentiel asymetrique a caractere actif pour vehicule automobile
US20040220011A1 (en) * 2003-05-02 2004-11-04 Gerhard Gumpoltsberger Transmission for distributing a drive torque
WO2005043008A1 (de) * 2003-10-22 2005-05-12 Zf Friedrichshafen Ag Getriebevorrichtung und antriebsstrang eines fahrzeugs

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1991094A (en) * 1933-01-10 1935-02-12 Frank R Higley Vehicle drive
US1984830A (en) * 1933-05-05 1934-12-18 Frank R Higley Vehicle drive
US4998591A (en) * 1987-08-24 1991-03-12 Renk Aktiengesellschaft Electro-mechanical drive system for a full-track vehicle
JPH06297977A (ja) 1993-04-19 1994-10-25 Honda Motor Co Ltd 差動装置のトルク分配機構
KR100418730B1 (ko) * 1995-09-11 2004-05-20 혼다 기켄 고교 가부시키가이샤 차량의좌우륜간의연결장치
JP3547582B2 (ja) * 1997-04-21 2004-07-28 本田技研工業株式会社 車両の左右輪間の連結装置
US6830529B2 (en) * 2002-06-14 2004-12-14 Visteon Global Technologies, Inc. Torque transfer assembly with planetary differential
AT6549U1 (de) 2002-09-03 2003-12-29 Magna Steyr Powertrain Ag & Co Antriebsachse für ein kraftfahrzeug mit variabler momentenverteilung
CN100366952C (zh) * 2003-06-30 2008-02-06 丰田自动车株式会社 复合驱动装置及搭载该装置的汽车
US7294086B2 (en) * 2003-07-28 2007-11-13 Magna Powertrain, Usa, Inc. Hydraulic control system for multiple clutches in a motor vehicle
US7344469B2 (en) * 2005-06-28 2008-03-18 Magna Powertrain Usa, Inc. Torque distributing drive mechanism with ravigneaux gearset
DE102005043008A1 (de) 2005-09-09 2007-03-15 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Ventilgehäusekörper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1519309A (en) * 1922-08-24 1924-12-16 Bethlehem Steel Corp Variable-speed driving mechanism
US5409425A (en) * 1992-02-10 1995-04-25 Honda Giken Kogyo Kabushiki Kaisha Torque distributing mechanism in differential
JP2001039179A (ja) * 1999-05-25 2001-02-13 Toyota Motor Corp 駆動力分配装置
FR2844858A1 (fr) * 2002-09-25 2004-03-26 Peugeot Citroen Automobiles Sa Differentiel asymetrique a caractere actif pour vehicule automobile
US20040220011A1 (en) * 2003-05-02 2004-11-04 Gerhard Gumpoltsberger Transmission for distributing a drive torque
WO2005043008A1 (de) * 2003-10-22 2005-05-12 Zf Friedrichshafen Ag Getriebevorrichtung und antriebsstrang eines fahrzeugs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 1995, Nr. 01, 28. Februar 1995 (1995-02-28) -& JP 06 297977 A (HONDA MOTOR CO LTD), 25. Oktober 1994 (1994-10-25) *
PATENT ABSTRACTS OF JAPAN Bd. 2000, Nr. 19, 5. Juni 2001 (2001-06-05) -& JP 2001 039179 A (TOYOTA MOTOR CORP), 13. Februar 2001 (2001-02-13) *
See also references of EP1747110A2 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516993A (ja) * 2005-10-26 2009-04-23 ソロモン テクノロジーズ, インコーポレーテッド マルチ入力、デュアル出力電気差動モータ伝動システム
EP1966516A2 (de) * 2005-10-26 2008-09-10 Solomon Technologies, Inc. Elektrisches differentialmotor-übertragungssystem mit mehreren eingängen und zwei ausgängen
EP1966516A4 (de) * 2005-10-26 2010-11-24 Solomon Technologies Inc Elektrisches differentialmotor-übertragungssystem mit mehreren eingängen und zwei ausgängen
US7309300B2 (en) 2005-11-23 2007-12-18 Caterpillar Inc. Electric drive system with plural motors
WO2007061497A1 (en) * 2005-11-23 2007-05-31 Caterpillar Inc. Electric drive system with plural motors
EP1832462A1 (de) 2006-03-10 2007-09-12 Nissan Motor Company, Limited Vorrichtung und Verfahren zur Antriebskraftverteilung
US7780563B2 (en) 2006-03-10 2010-08-24 Nissan Motor Co., Ltd. Drive force distribution apparatus
EP2050609A1 (de) * 2006-08-30 2009-04-22 Tai-Her Yang Elektrisch gedämpftes Dreiwellenausgleichsgetriebe
CN100421979C (zh) * 2007-02-02 2008-10-01 吉林大学 混合动力汽车用的动力耦合装置
WO2008141887A1 (de) * 2007-05-19 2008-11-27 Zf Friedrichshafen Ag Überlagerungsgetriebe zum verteilen eines antriebsmomentes auf wenigstens zwei abtriebswellen
US8272989B2 (en) 2007-05-19 2012-09-25 Zf Friedrichshafen Ag Variable ratio transmission for distributing a drive torque to at least two output shafts
US8177007B2 (en) 2007-05-23 2012-05-15 Honda Motor Co., Ltd. Power unit
EP2149474A1 (de) * 2007-05-23 2010-02-03 Honda Motor Co., Ltd. Leistungsgerät
EP2149474A4 (de) * 2007-05-23 2010-05-26 Honda Motor Co Ltd Leistungsgerät
US8308600B2 (en) 2007-12-20 2012-11-13 Zf Friedrichshafen Ag Transmission device comprising at least two output shafts and at least two multi-shaft planetary gear sets
US8182386B2 (en) 2007-12-20 2012-05-22 Zf Friedrichshafen Ag Transmission device comprising at least two output shafts
WO2009080474A1 (de) * 2007-12-20 2009-07-02 Zf Friedrichshafen Ag Getriebevorrichtung mit wenigstens zwei ausgangswellen und mindestens zwei mehrwelligen planetenradsätzen
US8419579B2 (en) 2007-12-20 2013-04-16 Zf Friedrichshafen Ag Transmission device
EP2221207A1 (de) * 2009-02-20 2010-08-25 Audi AG Achsantriebsvorrichtung für eine Achse eines Kraftfahrzeugs sowie Kraftfahrzeug
US8343000B2 (en) 2009-11-24 2013-01-01 BAE Systems Hägglunds Aktiebolag Electric drive system
EP2452846A1 (de) * 2010-11-12 2012-05-16 Aristotle University of Thessaloniki Differentialvorrichtung mit steuerbarer Drehmomentverteilung
EP2775171A4 (de) * 2011-11-02 2015-07-15 Honda Motor Co Ltd Antriebskraftvorrichtung
US9248732B2 (en) 2011-11-02 2016-02-02 Honda Motor Co., Ltd. Power plant
US20140315675A1 (en) * 2013-04-17 2014-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Drive torque distribution apparatus
US9334942B2 (en) * 2013-04-17 2016-05-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Drive torque distribution apparatus
CN104670010A (zh) * 2015-02-11 2015-06-03 吉林大学 一种具备转矩定向分配功能的电动主动正齿轮差速器

Also Published As

Publication number Publication date
EP1747110A2 (de) 2007-01-31
WO2005110790A3 (de) 2008-05-29
US8012057B2 (en) 2011-09-06
US20070249456A1 (en) 2007-10-25
DE102004024086A1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
WO2005110790A2 (de) Antriebsvorrichtung für kraftfahrzeuge
EP3003766B1 (de) Mittendifferentialgetriebeanordnung für eine antriebseinrichtung eines kraftfahrzeugs
DE102009004414B4 (de) Fahrzeug mit einem drehmomentverteilungssystem zum einführen einer drehmomentdifferenz ziwschen zwei axial ausgerichteten rädern
DE19810374B4 (de) Hybridantrieb für ein Kraftfahrzeug
EP2914876B1 (de) Doppelkupplungsgetriebe
DE102006031089A1 (de) Antriebsvorrichtung für ein Kraftfahrzeug
EP3074256B1 (de) Antriebsvorrichtung für ein hybridgetriebenes kraftfahrzeug
EP3487721B1 (de) Getriebeanordnung für ein hybridfahrzeug, antriebssystem und hybridfahrzeug
DE102017206205A1 (de) Hybridantriebsstrang für ein Kraftfahrzeug
DE102007004458A1 (de) Hybridantriebsanordnung für ein Fahrzeug mit einem Antriebsstrang
DE102006057857B4 (de) Vorrichtung und Verfahren zum Betrieb eines Kraftfahrzeuges mit mehreren Antriebseinheiten
DE102013222721A1 (de) Antriebsstrang für ein Fahrzeug sowie Fahrzeug mit dem Antriebsstrang
DE102013222724A1 (de) Antriebsstrang für ein Fahrzeug sowie Fahrzeug mit dem Antriebsstrang
DE102017101744A1 (de) Antriebsanordnung für ein Kraftfahrzeug
DE102022000463B3 (de) Elektrische Antriebseinheit für ein Kraftfahrzeug mit wählbarer Boost- oder Torque-Vectoring- Funktion
DE102011085953A1 (de) Elektrischer Zusatzantrieb für ein Kraftfahrzeug
DE102018005372A1 (de) Antriebseinrichtung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
DE102022000466A1 (de) Elektrische Antriebseinheit für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
WO2018133998A1 (de) Getriebeanordnung zur steuerbaren verteilung eines antriebsmoments von einem eingangselement auf zumindest ein ausgangselement in einem allradantriebsstrang eines allradkraftfahrzeugs
DE102020006869A1 (de) Antriebsachse für einen Kraftwagen, insbesondere für einen Personenkraftwagen
DE102013222725A1 (de) Antriebsstrang für ein Fahrzeug sowie Fahrzeug mit dem Antriebsstrang
DE102021210740B3 (de) Getriebe für ein Fahrzeug sowie Antriebsstrang mit einem solchen Getriebe
DE102013219397A1 (de) Antriebsvorrichtung
DE102021208560B3 (de) Getriebe und Antriebsstrang für ein Fahrzeug
DE102016221087A1 (de) Antriebseinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug mit einer solchen Antriebseinrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005745320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11596344

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005745320

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11596344

Country of ref document: US