WO2005109139A1 - 位置・力制御装置 - Google Patents

位置・力制御装置 Download PDF

Info

Publication number
WO2005109139A1
WO2005109139A1 PCT/JP2004/010335 JP2004010335W WO2005109139A1 WO 2005109139 A1 WO2005109139 A1 WO 2005109139A1 JP 2004010335 W JP2004010335 W JP 2004010335W WO 2005109139 A1 WO2005109139 A1 WO 2005109139A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
slave
signal
master
acceleration
Prior art date
Application number
PCT/JP2004/010335
Other languages
English (en)
French (fr)
Inventor
Kouhei Ohnishi
Masaki Kitajima
Yasuhide Morikawa
Souji Ozawa
Toshiharu Furukawa
Toshiyuki Murakami
Kazuo Nakazawa
Wataru Iida
Tomoko Yano
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to US10/565,534 priority Critical patent/US7672741B2/en
Priority to JP2006519226A priority patent/JP4696307B2/ja
Publication of WO2005109139A1 publication Critical patent/WO2005109139A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41384Force estimation using position observer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42092Position and force control loop together

Definitions

  • the present invention relates to a position / force control device capable of controlling the position of an object without using a force sensor and the force acting on the object with good responsiveness.
  • a master's-slave control device which operates the controller.
  • a command can be sent to the slave side device via the master side device, but the slave side can not feed back the work reaction received from the work object etc. to the operator.
  • a bilateral control method capable of sending a command to a slave device via a slave device, and feeding back an operation reaction force received by the slave device from a work object or the like to an operator.
  • the slave side feeds back the work reaction force received from the work object or the like to the operator. Therefore, according to this control method, a tactile sensation in a remote place can be obtained in real time in the same manner as in reality. Can be.
  • the control device of the bilateral control system is composed of a master-slave type robot, and returns a force applied to a remote slave to a human through the master.
  • a human By moving the master, a human can make the slave perform the same movement as the master. So far The ability to get the feeling of touching a remote object as if it were at hand.
  • the device described in Patent Literature 1 is a master-slave device in which a slave operates in response to an operation of a master by an operator.
  • a force applied to the master by the operation of the operator The slave is controlled so as to follow the force f2 according to the force f3, the force f applied to the master, and the force f3 applied to the slave. While maintaining the advantages of the neural control method, it is possible to avoid complication of the control system, high cost, and the like.
  • the one shown in FIG. 14 obtains a deviation between the position of the master 201 and the position of the slave 202, controls the position on the slave side by the position control unit 203 according to the deviation, and acts on the master 201 and the slave 202.
  • the force is detected by a force detector, the deviation is fed back to the master side, and the force control unit 204 controls the force on the master side.
  • a deviation between the position of the master 201 and the position of the slave 202 is obtained, and the position on the slave side is controlled by the position control unit 203 in accordance with the deviation, and the position is controlled by the position control unit 203 ′.
  • the position on the master side is controlled, the force acting on the master 201 and the slave 202 is detected by a force detector, the deviation is fed back to the master side, and the force on the master side is controlled by the force control unit 204.
  • the slave side is controlled by a force control unit 204 '.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-307336
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-198870
  • a minute analog signal is amplified and detected, but noise included in the signal is also amplified.
  • the effect of high-frequency noise can be removed by passing it through a low-frequency bandpass filter, but in that case the frequency band of the required signal is also narrowed.
  • the force sensor Since the force sensor is installed directly in the system, the sensor inertia directly adds to the system model.
  • the force sensor measures the force using strain proportional to the applied force. 1S For this reason, a material with low physical rigidity is used for the force sensor. However, in systems involving contact with the environment, this low-rigidity force sensor changes the system model. Model change is a fatal problem in controlling a system.
  • the force sensor and the acceleration sensor are expensive, and therefore, the whole device is also expensive.
  • a position detector and a force detector are provided, and a position control system and a force control Generally, the position and force are controlled by a system.
  • the position and the force are controlled by the position control system and the force control system, respectively.
  • the position control system and the force control system interfere with each other and increase the gain. Cannot be performed, and an error may remain.
  • the measurable frequency band is limited to a narrow range due to the influence of noise of the force sensor and the natural frequency as described above.
  • the inertia and low rigidity of the force sensor affect the system model, making it impossible to improve the response performance in a high frequency band.
  • the present invention has been made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to improve response performance in a high frequency band and realize delicate work.
  • a possible position ' is to provide a force control device.
  • the analog information of force sensors using conventional strain gauges and analog information of acceleration sensors can be detected as force S, for which signal noise is inevitable, and position information can be detected as digital information, so they are not easily affected by noise.
  • a reaction force detecting means is provided instead of the force sensor, and the reaction force acting on the object is estimated from the position information.
  • the position detector can obtain position information in a non-contact manner with the motor axis, it is non-contact that limits the measurable frequency band due to the natural frequency, such as a force sensor, so inertia and stiffness due to sensor installation, etc. No change in the system model occurs. Further, since only the position sensor is used, the system can be constructed at low cost.
  • the position and the force are controlled by providing a position control system and a force control system, respectively, as in the related art, the position control system and the force control system interfere with each other and the gain cannot be increased. Therefore, in the present invention, the position and the force are converted into an acceleration signal, and the two are combined to obtain a drive signal for driving the object.
  • the force S can be set independently for each gain so that the position control and the force control do not interfere with each other.
  • the present invention solves the above problem as follows.
  • a position detecting means for detecting the position of an object is provided, and a reaction force applied to the object by the stress detecting means is estimated based on the position information and a drive signal to a driving means for driving the object.
  • a first acceleration signal is obtained from the reaction force received by the object and a target force signal
  • a second acceleration signal is obtained from the position signal and the target position, and the first and second acceleration signals are obtained. And outputs a drive signal to the drive means based on the acceleration signal.
  • the position detecting means for detecting the position of the object is provided, and the reaction force received by the object by the reaction detecting means is estimated as described above.
  • the control of (1) is performed by controlling the position of the slave-side object and the position of the master-side operation unit according to the positional deviation between the master-side operation unit and the slave-side object.
  • This method is applied to a bilateral control system that drives an object with a driving force corresponding to the force and transmits the force received by the object to the master.
  • the first and second position detectors for detecting the positions of the operation unit on the master side and the object on the slave side are provided, respectively, and the first and second reaction force detecting means are used for the master as described above.
  • the reaction force received by the operation unit on the side and the reaction force received by the object are estimated.
  • the first and third acceleration control signals are added, and the second and fourth acceleration control signals are added.
  • the operation unit on the master side is added. And outputs a drive signal to the slave-side object based on the addition result of the second and fourth acceleration control signals.
  • reaction force detection means Since the reaction force detection means is provided and the force applied to the object is estimated based on the output of the position detection means, the object applied without being affected by the signal noise, the natural frequency of the sensor itself, or the sensor inertia You can ask for power.
  • the position detecting means if a high-precision sensor is used as the position detecting means and the position detection result is sampled in a short period, the position of the object and the force applied to the object can be controlled with good responsiveness.
  • the system can be constructed at a low cost.
  • a first acceleration signal is obtained from the reaction force received by the object and a target force signal
  • a second acceleration signal is obtained from the position signal detected by the position detecting means and the target position
  • the present invention is applied to bilateral control, the output force of the position detection means provided on the master side and the slave side is also obtained as a position deviation, converted into an acceleration signal, and provided on the master side and the slave side.
  • the reaction force on the master side and the slave side estimated by the reaction force detection means are added and converted into an acceleration signal, and the acceleration signal obtained from the position deviation and the result of addition of the reaction force are used. Since the master and slave sides are controlled by synthesizing the obtained acceleration signals, it is possible to set the position control gain and force control gain independently as described above.
  • the master and slave sides can be controlled so that the position error on the slave side becomes zero and the force imitates the sum of the two.
  • the master's operation force which does not cause a position error between the master and the slave, can be transmitted to the slave with good responsiveness, and the force applied to the slave can be transmitted to the master with good responsiveness. And delicate work can be realized.
  • FIG. 1 is a diagram showing a schematic configuration of a position / force control device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration example of forceps used by a surgeon for an operation or the like.
  • FIG. 3 is a diagram illustrating a device configuration on a master side according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a device configuration on the slave side in the first embodiment of the present invention.
  • FIG. 5 is a block diagram of a control system according to a first example of the present invention.
  • FIG. 6 is a block diagram of a reaction force observer used in the present invention.
  • FIG. 7 is a diagram illustrating frequency characteristics of a conventional force sensor and a reaction force estimation observer.
  • FIG. 8 is a diagram showing outputs of a conventional force sensor and a counter-observer when a command value is changed in a sine wave shape.
  • FIG. 9 is a diagram showing another configuration example of the reaction force observer.
  • FIG. 10 is a diagram showing a response characteristic (position) of the control device of the present embodiment.
  • FIG. 11 is a diagram showing response characteristics (force) of the control device of the present embodiment.
  • FIG. 12 is a diagram showing a schematic configuration of a position / power control device according to a second embodiment of the present invention.
  • FIG. 13 is a block diagram of a control system according to a second embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration example (1) of a conventional bilateral control method.
  • FIG. 15 is a diagram showing a configuration example (2) of a conventional bilateral control method.
  • FIG. 1 is a diagram showing a schematic configuration of a position / force control device according to a first embodiment of the present invention.
  • FIG. 1 shows a schematic configuration when the present invention is applied to bilateral control.
  • reference numeral 1 denotes a master operated by an operator, for example, an operation unit operated by the operator, a master-side motor driving the operation unit, and a master-side position detector force for detecting the position of the motor. Be composed.
  • Reference numeral 2 denotes a reaction force observer, which obtains a force applied to the operation unit from an output of the master side position detector and a drive signal to the master side as described later.
  • Reference numeral 3 denotes a slave that operates in accordance with the operation of the master 1, and includes a slave motor that drives an object and a slave position detector that detects the position of the motor.
  • the target object is, for example, a hand of a robot performing various operations, a gripping portion of a forceps described later, or an operation unit that actually performs operations in a remote place (here, the object including these objects is included). Will be called).
  • Reference numeral 4 denotes a reaction force observer, which has the same configuration as the master reaction force observer, and adds to the object from the output of the slave position detector and the drive signal to the slave as described later. Ask for power.
  • the position signal of the operation unit detected by the master position detector and the position signals X, X of the object detected by the slave position detector are sent to the position control unit 5, and the position
  • the position controller 5 converts the position signal into acceleration reference values a and a.
  • the master-side force signal F detected by the master-side reaction force observer 2 is the master-side force signal F detected by the master-side reaction force observer 2
  • the operation force control unit 6 converts the force signals F, F into acceleration reference values a, a ms fm rs
  • the acceleration synthesis unit 7 outputs the acceleration reference values a, a, and the acceleration reference values a, a Pm ps fin fs
  • Acceleration command signal a which is a drive signal to the master side motor, drive signal m to the slave side motor m
  • the reaction force observers 2, 4, the position control unit 5, the operation force control unit 6, and the acceleration synthesis unit 7 of the control device of the present embodiment can be realized by a computer, and the control device of the present embodiment is implemented by a computer.
  • the output of the position detector is taken into a computer at a predetermined sampling cycle, and arithmetic processing for realizing the above functions is performed by software to control the master and slave motors.
  • the forceps are medical instruments used by surgeons for operations and the like. As shown in FIG. 2A, the forceps are composed of a handle portion 101 (hereinafter referred to as an operation portion 101) and a forceps portion 102 (hereinafter referred to as a grip portion 102). It is.
  • An operating member (not shown) penetrates the shaft 103 of the forceps, and the operating member moves in the left-right direction in FIG.
  • the grip 102 is connected to a link mechanism 104, and the operating member 105 is connected to the other end of the link mechanism 104.
  • the operating member 105 By operating the dollar le and moving the operation member in the direction of the arrow in FIG. 1 can be opened and closed.
  • the forceps are divided into the operation unit 101 and the grip unit 102, and the operation unit 101 is set as the master side and the grip unit 102 is set as the slave side, and a linear motor is connected to each of them.
  • the grip unit 102 installed at a remote place is controlled according to the operation of the operation unit 101.
  • one-axis control for opening and closing the gripping section in accordance with the operation of the operation section 101.
  • the gripping section is controlled in accordance with the operation of the operation section 101.
  • Multi-axis control such as rotating the entire unit or swinging the entire gripping unit can be performed.
  • FIG. 3 and FIG. 4 are diagrams showing the device configurations on the master side and the slave side in the present embodiment.
  • 3A is a top view of the master-side device
  • FIG. 3B is a side view
  • FIG. 3C is a view of FIG.
  • la is a linear motor
  • one of the handles le constituting the operation unit lc is connected to the movable shaft Id of the linear motor la, and the other of the handles le is fixed to the case of the linear motor la. Therefore, by manually operating the hand knob le of the operation unit lc, the movable axis Id of the linear motor la moves in the left and right directions in FIGS. lb is a master-side position detector that detects the position of the movable axis Id of the linear motor la.
  • FIG. 4A is a top view of the slave device
  • FIG. 4B is a side view
  • FIG. 4C is a view of FIG.
  • reference numeral 3a denotes a linear motor
  • the operating member 3e penetrating through the shaft portion 3d of the forceps is connected to a movable shaft 3d of the linear motor 3a via a mounting bracket 3c, and the distal end of the operating member 3e
  • the grip 3f is attached to the side via the link mechanism as described above. Therefore, when the movable shaft 3d of the linear motor 3a moves in the left and right directions in FIGS. 9A and 9B, the operating member 3e moves in the left and right directions, and the grip 3f opens and closes.
  • Reference numeral 3b denotes a slave position detector which detects the position of the movable shaft 3d of the linear motor 3a.
  • FIG. 5 is a block diagram of a control system according to the present embodiment.
  • 1 is a master
  • the master 1 is a linear motor la and a position detector as shown in FIG. Consists of lb and lc.
  • the reaction force observer 2 on the master side receives the current signal Iref supplied to the linear motor la of the master 1 and the position of the movable axis Id of the linear motor 1a detected by the position detector lb (that is, the operation unit lc).
  • Position detection signal X force according to the position of the master) Find the estimated value F of the force applied to the master side.
  • Reference numeral 3 denotes a slave, and as shown in FIG. 4, the slave 3 includes a linear motor 3a, a position detector 3b, and a grip 3f operated by the mechanism.
  • the reaction force observer 4 on the slave side includes a current signal Iref supplied to the linear motor 3a of the slave 2 and a position of the movable shaft 3d of the linear motor 3a detected by the position detector 3b.
  • Reference numeral 5 denotes a position control unit.
  • the subtractor 5a for calculating the difference between the position signal X of the part If and the output of the subtractor 5a have (K s +
  • K is the position gain
  • K is the speed gain
  • M is the inertia on the master side
  • M is the inertia on the slave side.
  • Reference numeral 6 denotes an operating force control unit, which includes an estimated value F of the force applied to the operating unit lc on the master side output by the reaction force observer 2 on the master side and a gripping unit 3f on the slave side output by the reaction force observer 4 on the slave side.
  • An adder 6a that outputs the sum of the estimated value F of the applied force and a converter 6b that multiplies the output of the adder 6a by a force gain Kf to generate acceleration reference values a, a.
  • the force gain K is the reciprocal of virtual inertia and can be set to any value. By properly setting, the equivalent mass can be apparently reduced.
  • Adder 7a for outputting a reference value (x ref ) ", and a converter 7b for multiplying the output of the adder 7a by [M / K] to generate a current reference value I for driving the linear motor la on the master side.
  • ms is the inertia on the master side and the inertia on the slave side
  • ⁇ and ⁇ are the master inertia, respectively.
  • first derivative and the second derivative are indicated by adding one or two dots to the sign.
  • first derivative is indicated by adding “'”
  • second derivative is represented by (X ref ) 'like"""
  • FIG. 6 is a block diagram of the reaction force observers 2 and 4.
  • 1 and 3 are block diagrams of the master side and the slave side, and I ref is a linear motor.
  • F is the load of the linear motor
  • M is the inertia of the master and slave
  • I ref is supplied to the linear motors la and 3a.
  • the side moves at the speed ⁇ ′ shown in the figure, and the position X is a value obtained by integrating the speed ⁇ ′.
  • the above-mentioned current reference value I ref and position X are input to the reaction force observers 2 and 4, and the reaction force observers
  • G / (s + g) is a first-order frequency selection filter.
  • M inertia
  • M nominal inertia
  • K nominal thrust constant
  • X position
  • x ' speed
  • F coulomb
  • reaction forces on the master side and the slave side can be estimated at low cost without being affected by the signal noise, the natural frequency of the sensor itself, or the sensor inertia. In addition, the effects of coulomb friction and viscous friction coefficient can be minimized.
  • Figure 7 shows the experimental results.
  • the horizontal axis in the figure is ⁇ (radZsec), and the vertical axis is gain (dB).
  • Figure (a) shows the frequency characteristics of the conventional force sensor, and (b) shows the frequency characteristics of the reaction force observer.
  • the measurable frequency band is limited to about 500 radZsec or less due to the presence of the natural frequency in the conventional force sensor, but the reaction force estimation observer sets the gain up to 1500 rad / sec. Can be measured over a wide band.
  • FIG. 8 is a diagram comparing the output of the reaction force observer with a conventional force sensor using a strain gauge while changing the command value (applied force) in a sine wave shape.
  • the horizontal axis in the figure is time (seconds)
  • the vertical axis is force (Newton)
  • the dotted line in the figure is the command value (given force)
  • the dashed line is the estimation result by the above-mentioned reaction force observer
  • the solid line is the conventional force sensor.
  • the output of the reaction force observer is almost equal to the command value.
  • the output of the conventional force sensor is slightly delayed from the above command value, and is detected by the influence of the natural frequency and inertia. The results are partly oscillatory.
  • reaction force observer enables measurement over a wide band, compared to the case of using a conventional force sensor.
  • the force applied to the slave side can be estimated, and the master and slave sides can be controlled with good response.
  • reaction force observer is disclosed, for example, in “Onishi,” Robust Motion Control by a Disturbance Observer ", Journal of the Robotics Society of Japan, vol. 11, no. 4, pp. 486-493, 1993.
  • FIG. 9 is a diagram showing another configuration example of the reaction force observer. As data, instead of shown in FIG. 6 [g / (s + g)], the transfer function of the [k / (s 2 + ks + k) ]
  • the output of the position detector la and the output of the position detector 3a on the slave side are sent to the position controller 5, and the position controller 5 generates and outputs acceleration reference values a and a based on the deviation.
  • reaction force observer 2 on the master side outputs the estimated value F of the force applied to the master side
  • the operating force control unit 6 calculates the estimated value F of the force applied to the master
  • the acceleration reference value a and the acceleration reference value a are sent to the acceleration synthesis unit 7,
  • Component 7 generates a current reference value Iref from the sum of the acceleration reference value a and the acceleration reference value a.
  • the current reference value I ref is generated from the sum of the acceleration reference value a and the acceleration reference value a.
  • the generated current value Iref is given to the linear motor 3a on the slave side, and the linear motor 3a
  • the linear motor la is driven.
  • the acceleration synthesis unit 7 Correct the above position error for the linear motor la on the slave side and the linear motor 3a on the slave side.
  • the movable signals of the master-side linear motor la and the slave-side linear motor 3a are driven.
  • control is performed such that the positions of the movable axes of the linear motor la on the master side and the linear motor 3a on the slave side match. That is, the opening of the grip part 3f on the slave side is controlled according to the position of the handle le of the operation part lc on the master side.
  • the force F applied to the grip portion 3f is estimated by the reaction force observer 4, and the force F applied to the operation section lc is estimated by the reaction force observer 2, and the force F is calculated according to the sum of F and F.
  • the acceleration reference values a, a are given to the acceleration synthesizing unit 7.
  • the acceleration synthesizing unit 7 responds to the sum of the force F applied to the grip 3f and the force F applied to the operation unit lc.
  • the master-side operation unit lc and the slave-side grip unit 3f are controlled so as to follow the sum of the force applied to the master-side operation unit lc and the force applied to the slave-side grip unit 3f. That is, when the master operating unit lc is operated and the object is gripped by the gripping unit 3f on the slave side, a force corresponding to the reaction force applied to the gripping unit 3f is transmitted to the operating unit lc. The reaction force from the object gripped by the unit 3f can be sensed by the operation unit lc.
  • the bilateral control device of the present embodiment is provided with the operation unit on the master side and the position detection means for detecting the position of the object on the slave side, and based on the output of the position detection means, the reaction force observer Estimates the reaction force received by the master side operation unit and the slave side object, so it is not affected by the signal noise, the natural frequency of the sensor itself, or the sensor inertia, and is applied to the slave side object at low cost.
  • the reaction force can be estimated.
  • the effects of Coulomb friction and viscous friction coefficient can be minimized.
  • the position detecting means if a high-precision sensor is used as the position detecting means, the position detection result is sampled at a relatively short cycle, and the control gain of the position control unit is set to a large value, a position error occurs between the master and slave.
  • the ability to control the position and operating force with good responsiveness a position control unit 5 and an operation force control unit 6 are provided, and the acceleration synthesis unit synthesizes the acceleration reference values generated by the position control unit 5 and the operation force control unit 6, and drives the linear motor to Therefore, the gain of the position control and the gain of the operation force control can be set independently.
  • the position control unit 5 so that the position error between the master side and the slave side is eliminated, and to control both so as to follow the sum of the reaction forces on the master side and the slave side. S can. Further, by setting the force gain Kf of the operation force control section 6, the operation force on the master side can be freely set.
  • control device was composed of a computer, a linear encoder with a resolution of about S1 ⁇ m was used as a position detector, and the control device was loaded with a computer at a sampling cycle of about 100 ⁇ s.
  • the forceps were bilaterally controlled. As a result, a response of about 160 Hz could be obtained.
  • FIGS 10 and 11 show the results of the above experiment.
  • the horizontal axis in FIGS. 10 and 11 is time (sec), the vertical axis in FIG. 10 is position, and the vertical axis in FIG. 11 is force (two eutons).
  • the response characteristics are shown.
  • the present invention is not limited to the above-described bilateral control, and the present invention is not limited to the above-described bilateral control.
  • FIG. 12 shows a schematic configuration of a position / force control device according to the second embodiment of the present invention that controls the slave according to the position command value and the force command value as described above.
  • reference numeral 11 denotes a position Z force command generation unit that generates a position command value and a force command value, and a position command value X output from the position / force command generation unit 11 is given to a position control unit 15.
  • the force command value f is given to the operating force control unit 16.
  • Reference numeral 13 denotes a slave that operates in accordance with the position command and the force command. As described above, the slave 13 includes the slave motor that drives the object and the slave position detector that detects the position of the motor. .
  • the target object is, for example, an operation unit that actually performs a work in a remote place, such as a hand of a robot that performs various works.
  • Reference numeral 14 denotes a reaction force observer, which obtains the force applied to the object from the output of the slave-side position detector and the drive signal to the slave as described above.
  • the position signal X is sent to the position control unit 15, and the position control unit 15
  • the acceleration synthesis unit 17 synthesizes the acceleration reference value a and the acceleration reference value a, and
  • Outputs acceleration command signal a which is a drive signal to the side motor.
  • the position command value and the force command value generated by the position / force command generation unit 11 are values programmed in advance, and can be obtained by, for example, storing operations performed by a skilled worker or the like. Power S can.
  • a skilled worker performs a desired operation using the bilateral control device shown in the above embodiment, and the position X (or X) of the master (or slave), the output f of the stress ms observer, etc. Or f) is stored as a position command value and a force command value, respectively. Then, the stored position command value and force command value are output to the position / force command generation unit 11 and the slave side is controlled, so that the work performed by a skilled worker can be reproduced.
  • FIG. 13 is a block diagram of a control system according to the present embodiment.
  • 11 is the position / force command generator
  • 13 is a slave
  • the slave 13 has a motor such as a linear motor and a position detector as described above.
  • Reference numeral 14 denotes a reaction force observer which has the configuration shown in FIGS. 6 and 9 and detects a current signal I ref supplied to the motor of the slave 13 and a position detection corresponding to a position detected by the position detector.
  • Outgoing signal xs force Find the estimated value F of the force applied to the slave side.
  • Reference numeral 15 denotes a position control unit which calculates a difference between the position command value X rer output by the position / force command generation unit 11 and the slave position signal X detected by the slave position detector.
  • is the speed gain
  • Reference numeral 16 denotes an operation force control unit, which outputs a force command value f and a slave ref output by the reaction force observer 14.
  • a subtractor 16a that outputs a deviation from the estimated value F of the force applied to the object on the side, and a subtractor 16a
  • the force gain K is a reciprocal of the virtual inertia as described above and should be set to an arbitrary value.
  • Reference numeral 7 denotes an acceleration synthesizing unit, which adds the acceleration reference values a and a to the acceleration ps fs on the slave side.
  • Adder 17a that outputs the reference value (x ref ) ′, and a converter that generates the current reference value I ref that drives the slave side motor by multiplying the output of the adder 17a by [M / K] ss tns. 17b
  • Position command value X output from position / force command generator 11 and slave position detector 3a
  • the operating force control unit 16 outputs the force command value f output by the position / force command generation unit 11.
  • the acceleration reference value a and the acceleration reference value a are sent to the acceleration synthesizing unit 17 and the acceleration sum s fb
  • the component 17 generates a current reference value I ref ps fs as from the sum of the acceleration reference value a and the acceleration reference value a.
  • the current generation value Iref is given to the slave side motor, and the motor is driven.
  • a drive signal for correcting the position error is supplied from the speed synthesizing unit 17 to the slave motor, and the slave motor is driven. Thereby, control is performed such that the position on the slave side matches the position command value.
  • the force F acting on the slave side is estimated by the reaction force observer 4, and the acceleration reference value a corresponding to the deviation between the force command values f and F is given to the acceleration synthesizing unit 17. If the magnitude of the force command value f is different from the magnitude of the force F on the slave side, the acceleration synthesizing unit 17 supplies a drive signal that matches the magnitude to the motor on the slave side. As a result, control is performed such that the force applied to the slave side matches the force command value f.
  • the position detecting means for detecting the position of the slave-side object is provided, and the reaction force received by the object is determined by the reaction force observer based on the output of the position detecting means.
  • the reaction force applied to the object on the slave side is estimated without being affected by the signal noise, the inherent frequency of the sensor itself, or the inertia of the sensor. it can.
  • the effects of Coulomb friction and viscous friction coefficient can be minimized.
  • the position detection means For this reason, if a high-precision sensor is used as the position detection means, the position detection result is sampled at a relatively short cycle, and the control gain of the position control unit is set to a large value, no position error occurs, and the Position and operation force can be controlled with good responsiveness. Also, a position control unit 15 and an operation force control unit 16 are provided, and the acceleration reference value generated by the position control unit 15 and the operation force control unit 16 is synthesized by the acceleration synthesis unit 17 to drive the slave-side object. Therefore, similarly to the first embodiment, the gain of the position control and the gain of the operation force control can be set independently.
  • the present invention can be applied to various fields such as the medical field, construction work robots, food processing and food handling, assembling, musical instrument operation, and the like. If applied to a bilateral control system, the master side In addition to transmitting the operating force of the slave to the slave with good responsiveness, the force applied to the slave can be transmitted to the master with good responsiveness.
  • the present invention is applied to remote control of forceps and the like used in the medical field, delicate sensory information that could not be realized by conventional remote surgery can be transmitted, and the forceps can be directly operated by hand. It can be used with the same feeling as when It is also possible to remotely perform palpation or the like that needs to transmit sensory information.

Abstract

 高い周波数帯域での応答性能を向上させ、繊細な作業を実現することを可能とする。  マスタ1側とスレーブ3側にそれぞれ位置検出器をそれぞれ設け、位置検出器の出力に基づき反力オブザーバ2,4により、マスタ側の操作部が受ける反力および、スレーブ側の対象物が受ける反力を推定する。位置制御部5は位置検出器が出力する位置信号に基づき、マスタ側およびスレーブ側の位置を制御するための加速度信号apm,apsに生成する。操作力制御部6は、マスタ側とスレーブ側に加わる力を制御するための加速度信号afm,afsを生成する。加速度合成部7は、上記加速度信号apm,aps、加速度信号afm,afsを合成してマスタ側とスレーブ側の駆動信号を出力する。

Description

明 細 書
位置,力制御装置
技術分野
[0001] 本発明は、力センサを用いることなぐ対象物の位置と対象物に作用する力を応答 性よく制御することができる位置'力制御装置に関する。
背景技術
[0002] 人と機械が接触するヒューマンインタラクションの分野において、人間の操作に応じ て遠隔に配置された対象物の位置や対象物に作用する力を応答性よく制御したいと レ、う要望がある。
例えば、人間が立ち入ることができない作業現場で用いられる遠隔操作装置や、 遠隔地の患者に対する遠隔医療等の分野では、操作者によるマスタ側の操作に応じ て遠隔地に配置されたスレーブ側の装置を作動させるようにしたマスタ'スレーブ制 御装置が用いられている。この種のマスタ'スレーブ制御装置では、対象物の位置と 対象物に作用する力を応答性よく制御し、繊細な作業を実現したいという要望がある 上記マスタ'スレーブ装置としては、操作者から、マスタ側装置を介して、スレーブ 側装置に指令を送ることができるが、スレーブ側が作業対象物等から受ける作業反 力を操作者にフィードバックすることができないュニラテラル制御方式や、操作者から マスタ側装置を介してスレーブ側装置に指令を送ることができ、かつ、上記スレーブ 側が作業対象物等から受ける作業反力を操作者にフィードバックすることができるバ イラテラル制御方式が知られてレ、る。
[0003] バイラテラル制御方式はスレーブ側が作業対象物等から受ける作業反力を操作者 にフィードバックしているので、この制御方式によれば、遠隔地における触覚を、現実 と同様にリアルタイムで得ることができる。
バイラテラル制御方式の制御装置は、マスタ'スレーブ型ロボットで構成されており、 遠隔地のスレーブに力かる力を、マスタを通じて人間に返す。また人間はマスタを動 かすことにより、スレーブにマスタと同一の動きをさせることができる。こうすることで遠 隔地の物体を、あたかも手元で触ってレ、る感覚を得ること力 Sできる。
上記マスタ'スレーブ制御装置としては、例えば特許文献 1に記載のものが提案さ れている。
上記特許文献 1に記載のものは、操作者によるマスタの操作に応じてスレーブが動 作するマスタ'スレーブ装置において、スレーブが物体と接触している状態では、操 作者の操作によりマスタに加わる力 flを求め、スレーブに力かる力 f3力 マスタにカロ わる力 fに応じた力 f2に追従するようにスレーブを制御するように構成したものであり 、引用文献 1に記載のものによれば、ノイラテラル制御方式による長所を維持したま ま、制御系の複雑化や高コストィ匕等を避けることができる。
上記バイラテラル制御方式としては、上記特許文献 1にも記載されるように図 14に 示すものや、図 15に示すものが知られている。
図 14に示すものは、マスタ 201の位置とスレーブ 202の位置との偏差を求め、この 偏差に応じて位置制御部 203によりスレーブ側の位置を制御するとともに、マスタ 20 1とスレーブ 202に作用する力を力検出器で検出し、その偏差をマスタ側にフィード バックして、力制御部 204によりマスタ側の力を制御するようにしたものである。
また、図 15に示すものは、マスタ 201の位置とスレーブ 202の位置との偏差を求め 、この偏差に応じて位置制御部 203によりスレーブ側の位置を制御するとともに、位 置制御部 203'によりマスタ側の位置を制御し、さらに、マスタ 201とスレーブ 202に 作用する力を力検出器で検出し、その偏差をマスタ側にフィードバックして、力制御 部 204によりマスタ側の力を制御するとともに、力制御部 204'によりスレーブ側を制 御するようにしたものである。
さらに、上記のような力検出器と力制御部を備え、固い制御対象物でも安定して高 精度な力制御を実現できるすると同時に、アームのどの部分に接触しても柔軟な特 性を持つことができるロボットの制御装置が提案されてレ、る(特許文献 2参照) 特許文献 1:特開 2002 - 307336号公報
特許文献 2:特開 2001 - 198870号公報
発明の開示
発明が解決しょうとする課題 [0005] 上記従来の制御装置において、力または加速度情報の検出をする場合、歪みゲ ージなどの力センサあるいはカ卩速度センサを用いて直接的に測定するのが一般的 であった。
しかし、上記力センサや加速度センサを用いた直接的な力または加速度情報の検 出では、以下のような問題点があった。
(i)信号ノイズの問題
力センサや加速度センサによる力の検出では微小なアナログ信号を増幅して検出 しているが、信号に含まれるノイズも増幅してしまう。高周波ノイズに関しては低周波 域通過フィルタを通すことによりその影響を除去することができるが、その場合には必 要としている信号の周波数帯域までも狭めてしまう。
(ii)センサの固有周波数の問題
力センサを用いた力検出では、環境を直接力センサに接触させて測定する。カセ ンサには物理的な固有周波数が存在し、それ以上高い周波数帯域での力測定は不 可能である。
(iii)システムモデルの変化
力センサはシステムに直接設置するため、センサ慣性がそのままシステムモデルに 加わってくる。また力センサでは加わった力に比例した歪みを利用して力を測定する 1S このため力センサには物理的に剛性の低い材料が用いられている。しかし環境と の接触を伴うシステムでは、この低剛性の力センサによりシステムモデルが変化して しまう。モデルの変化はシステムの制御においては致命的な問題である。
(iv)センサ価格の問題
一般的に力センサや加速度センサは高価であり、このため、装置全体も高価なもの となってしまう。
[0006] また、位置および力等のように複数の変量を制御する場合、例えば前記図 14、図 1 5に示したように、位置検出器と力検出器を設け、位置制御系と力制御系により位置 と力を制御するのが一般的である。
しかし、上記構成の制御系では、位置制御系と力制御系のそれぞれにより位置と力 を制御しているので、位置制御系と力制御系が互いに干渉して、ゲインを上げること ができず、誤差が残ってしまうことがある。
さらに、上記制御系において、歪みゲージなどの力センサを用いて力検出を行うと 、前記したように力センサのノイズや固有周波数等の影響により、測定可能周波数帯 域が狭い範囲に限定されてしまうとともに、力センサの慣性や低い剛性が、システム モデルに影響を与えてしまい、高い周波数帯域での応答性能を向上させることがで きない。
このため、従来のバイラテラル制御系においては、硬い環境に触ると不安定になつ たり、瞬間的な衝撃力が得られなレ、、また、操作感が重いといった問題があり、繊細 な感覚情報を伝えることができず、例えば遠隔医療等の分野などにおいて、繊細な 作業を実現することは困難であった。
また、従来の制御系では、位置センサに加え、比較的高価な力センサを使用して おり、装置価格が高くなるといった問題もあった。
本発明は上記従来技術の問題点を解決するためになされたものであって、本発明 の目的は、高い周波数帯域での応答性能を向上させることができ、繊細な作業を実 現することが可能な位置'力制御装置を提供することである。
課題を解決するための手段
従来の歪みゲージを用いた力センサや、加速度センサのアナログ情報には信号ノ ィズが不可避である力 S、位置情報はデジタル情報として検出可能なのでノイズの影 響を受けにくい。
そこで、本発明においては、力センサに代えて反力検出手段を設け、位置情報より 対象物に作用する反力を推定する。
これにより、ノイズを含まない反力を推定することができる。また、位置検出器はモー タ軸とは非接触に位置情報を得ることができるので、力センサのような固有周波数に よる測定可能周波数帯域の制限がなぐ非接触なのでセンサ設置による慣性および 剛性などのシステムモデルの変化は起こらない。また、位置センサのみを用いている ので、システムを安価に構築することができる。
また、従来のように位置制御系と力制御系をそれぞれ設けて位置および力を制御 すると、位置制御系と力制御系が互いに干渉して、ゲインを上げることができない。 そこで、本発明においては、位置および力を加速度信号に変換し、両者を合成して 、対象物を駆動する駆動信号を得るようにした。
これにより、位置制御と力制御が干渉することなぐそれぞれのゲインを独立して設 定すること力 Sできる。
以上に基づき、本発明においては、次のようにして前記課題を解決する。
(1)対象物の位置を検出する位置検出手段を設け、位置情報と対象物を駆動する 駆動手段への駆動信号に基づき、応力検出手段により対象物が受ける反力を推定 する。
そして、上記対象物が受ける反力と目標となる力信号とから第 1の加速度信号を求 め、また、上記位置信号と目標位置とから第 2の加速度信号を求め、上記第 1、第 2 の加速度信号に基づき、上記駆動手段への駆動信号を出力する。
(2)上記(1)の制御を、位置指令信号、力指令信号に応じて対象物の位置、対象物 が受ける力を制御する制御装置に適用する。
すなわち、対象物の位置を検出する位置検出手段を設け、上記のように、反カ検 出手段により対象物が受ける反力を推定する。
そして、位置指令信号と上記位置検出手段が出力する位置信号との偏差を求め、 該偏差信号を第 1の加速度信号に変換し、また、上記反力検出手段により検出され た上記反力と、力指令信号との偏差を求め、該偏差信号を第 2の加速度信号に変換 し、第 1、第 2の加速度信号を加算して、上記駆動手段への駆動信号を出力する。
(3)上記(1)の制御を、マスタ側の操作部とスレーブ側の対象物の位置偏差に応じ て、スレーブ側の対象物とマスタ側の操作部の位置を制御し、マスタ側の操作力に 応じた駆動力で対象物を駆動するとともに、対象物が受ける力をマスタ側に伝えるバ イラテラル制御方式に適用する。
すなわち、マスタ側の操作部とスレーブ側の対象物の位置を検出する第 1、第 2の 位置検出器をそれぞれ設け、また、上記のように第 1、第 2の反力検出手段によりマス タ側の操作部が受ける反力および、対象物が受ける反力を推定する。
そして、上記第 1の位置検出手段が出力する位置信号と、第 2の位置検出手段が 出力する位置信号との偏差を求め、該偏差をマスタ側およびスレーブ側を制御する ための第 1、第 2の加速度信号に変換する。また、上記第 1の反力検出手段と、第 2 の反力検出手段の出力の和を求め、該和を、マスタ側およびスレーブ側を制御する ための第 3、第 4の加速度信号に変換する。
上記第 1 ,第 3の加速度制御信号を加算するとともに、第 2,第 4の加速度制御信号 を加算し、上記第 1,第 3の加速度制御信号の加算結果に基づき、上記マスタ側の 操作部への駆動信号を出力するとともに、上記第第 2,第 4の加速度制御信号の加 算結果に基づき、上記スレーブ側の対象物への駆動信号を出力する。
発明の効果
本発明においては、以下の効果を得ることができる。
(1)反力検出手段を設け、位置検出手段の出力に基づき対象物に加わる力を推定 しているので、信号ノイズやセンサ自体の固有周波数やセンサ慣性に影響されること なぐ対象物の加わる力を求めることができる。
したがって、位置検出手段として高精度のセンサを用い、位置検出結果を短い周 期でサンプリングすれば、対象物の位置、対象物に加わる力を応答性よく制御するこ とができる。
また、センサとしては位置検出手段を設けるだけでよぐ比較的高価な力センサを 使用しないので、システムを安価に構築することができる。
(2)対象物が受ける反力と目標となる力信号とから第 1の加速度信号を求め、また、 上記位置検出手段により検出された位置信号と目標位置とから第 2の加速度信号を 求め、上記第 1、第 2の加速度信号を合成し、対象物を制御する駆動手段への駆動 信号を出力するようにしたので、従来の制御装置のように位置、力制御が互いに干 渉するといつた問題が生ずることがなぐ位置制御のゲインと力制御のゲインを独立 に設定することが可能となる。このため、位置制御のゲインを大きくすることにより、位 置誤差を生じさせることなぐリアルタイムで制御することができる。
( 3)本発明をバイラテラル制御に適用し、マスタ側とスレーブ側に設けた位置検出手 段の出力力も位置偏差を求めて、加速度信号に変換し、また、マスタ側とスレーブ側 に設けた反力検出手段により推定されたマスタ側とスレーブ側の反力を加算して加 速度信号に変換し、上記位置偏差から求めた加速度信号と、反力の加算結果から 求めた加速度信号を合成してマスタ側とスレーブ側を制御するようにしたので、上記 のように位置制御のゲインと力制御のゲインを独立に設定することが可能となり、例え ば、マスタ側とスレーブ側の位置誤差が零になるように、かつ、力については両者の 和に倣うようにマスタ側とスレーブ側を制御することができる。
このため、マスタ側とスレーブ側の位置誤差を生じさせることなぐマスタ側の操作 力をスレーブ側に応答性よく伝えることができるとともに、スレーブ側に加わる力をマ スタ側に応答性よく伝えることができ、繊細な作業を実現することが可能となる。 図面の簡単な説明
[0009] [図 1]本発明の第 1の実施例の位置'力制御装置の概略構成を示す図である。
[図 2]外科医が手術等に使用される鉗子の構成例を示す図である。
[図 3]本発明の第 1の実施例におけるマスタ側の装置構成を示す図である。
[図 4]本発明の第 1の実施例におけるスレーブ側の装置構成を示す図である。
[図 5]本発明の第 1の実施例の制御系のブロック図である。
[図 6]本発明で使用される反力オブザーバのブロック図である。
[図 7]従来の力センサと反力推定オブザーバの周波数特性を示す図である。
[図 8]指令値を正弦波状に変化させた場合における従来の力センサと反カオブザー バの出力を示す図である。
[図 9]反力オブザーバの他の構成例を示す図である。
[図 10]本実施例の制御装置の応答特性 (位置)を示す図である。
[図 11]本実施例の制御装置の応答特性 (力)を示す図である。
[図 12]本発明の第 2の実施例の位置 *カ制御装置の概略構成を示す図である。
[図 13]本発明の第 2の実施例の制御系のブロック図である。
[図 14]従来のバイラテラル制御方式の構成例(1)を示す図である。
[図 15]従来のバイラテラル制御方式の構成例(2)を示す図である。
符号の説明
[0010] 1 マスタ
la リニアモータ
lb 位置検出器 lc 操作部
2, 4 反力オブザーバ
3 スレーブ
3a リニアモータ
3b 位置検出器
3f 把持部
5 位置制御部
6 操作力制御部
7 加速度合成部
11 位置 Z力指令発生部
13 スレーブ
14 反力オブザーバ
15 位置制御部
16 操作力制御部
17 加速度合成部
発明を実施するための最良の形態
図 1は本発明の第 1の実施例の位置 ·力制御装置の概略構成を示す図であり、同 図は本発明をバイラテラル制御に適用した場合の概略構成を示してレ、る。
同図において、 1は作業者により操作されるマスタであり、例えば作業者により操作 される操作部、該操作部を駆動するマスタ側モータ、該モータの位置を検出するマス タ側位置検出器力 構成される。 2は反力オブザーバであり、後述するように上記マ スタ側位置検出器の出力と、上記マスタ側への駆動信号から上記操作部に加わる力 を求める。
3はマスタ 1の操作に応じて動作するスレーブであり、対象物を駆動するスレーブ側 モータと、該モータの位置を検出するスレーブ側位置検出器から構成される。上記対 象物とは、例えば、各種作業を行うロボットのハンドや、後述する鉗子であればその 把持部等、遠隔地において実際に作業を行う操作部である(ここではこれらを含めて 対象物と呼ぶこととする)。 4は反力オブザーバであり、上記マスタ側反力オブザーバと同様な構成を備え、後 述するように上記スレーブ側位置検出器の出力と、上記スレーブ側への駆動信号か ら上記対象物に加わる力を求める。
上記マスタ側位置検出器により検出された操作部の位置、スレーブ側位置検出器 により検出された対象物の位置信号 X , Xは、それぞれ位置制御部 5に送られ、位 m s
置制御部 5は上記位置信号を加速度参照値 a , a に変換する。
pm ps
また、マスタ側の反力オブザーバ 2により検出されたマスタ側の力信号 F 、スレー
m
ブ側の反力オブザーバ 2により検出されたスレーブ側の力信号 Fは操作力制御部 6
S
に送られ、操作力制御部 6は、上記力信号 F , Fを加速度参照値 a , aに変換する m s fm rs 加速度合成部 7は、上記加速度参照値 a , a 、加速度参照値 a , aを合成し、マ pm ps fin fs
スタ側モータへの駆動信号となる加速度指令信号 a 、スレーブ側モータへの駆動信 m
号となる加速度指令信号 aを出力する。
本実施例の制御装置の反力オブザーバ 2, 4、位置制御部 5、操作力制御部 6、加 速度合成部 7は、コンピュータにより実現することができ、本実施例の制御装置をコン ピュータで構成する場合には、上記位置検出器の出力を所定のサンプリング周期で コンピュータに取り込み、ソフトウェアにより上記機能を実現するための演算処理を行 つて、マスタ側、スレーブ側のモータを制御する。
次に、医療用の鉗子を遠隔制御する場合を例として、バイラテラル制御方式に適用 した本発明の実施例の位置'力制御装置について説明する。
鉗子は、外科医が手術等に使用する医療器具であり、図 2 (a)に示すように、ハンド ル部 101 (以下操作部 101という)と鉗子部 102 (以下把持部 102という)から構成さ れる。
鉗子の軸部 103内を操作部材(図示せず)が貫通しており、操作部 101のハンドノレ leを手で開閉することにより、上記操作部材が同図の左右方向に移動する。
把持部 102は図 2 (b)に示すように、把持部 102がリンク機構 104に連結され、リン ク機構 104の他端側に上記操作部材 105が連結されており、上記操作部 101のハン ドル l eを操作して、上記操作部材を同図の矢印方向に動かすことにより、把持部 10 1を開閉させることができる。
本実施例では、上記鉗子を上記操作部 101と把持部 102の 2つに分けて、操作部 101をマスタ側、把持部 102をスレーブ側とし、それぞれにリニアモータを連結し、該 リニアモータを前記図 1に示した制御系を用いて制御することにより、操作部 101の 操作に応じて、遠隔地に設置された把持部 102を制御するようにした。
なお、以下では、操作部 101の操作に応じて把持部を開閉させる 1軸制御につい て説明するが、本実施例で説明する制御系を複数設けることにより操作部 101の操 作に応じて把持部全体を回転させたり、把持部全体を揺動させる等の多軸制御を行 うことちできる。
図 3、図 4は本実施例におけるマスタ側とスレーブ側の装置構成を示す図である。 図 3 (a)はマスタ側装置の上面図、(b)は側面図、(c)は同図(a)を A方向から見た 図である。
同図において、 laはリニアモータであり、リニアモータ laの可動軸 Idに操作部 lcを 構成するハンドル leの一方が連結され、ハンドル leの他方はリニアモータ laのケー スに固定されている。従って、手で操作部 lcのハンドノレ leを操作することにより、リニ ァモータ laの可動軸 Idが同図(a) (b)の左右方向に動く。 lbはマスタ側位置検出器 でありリニアモータ laの可動軸 Idの位置を検出する。
図 4 (a)はスレーブ側装置の上面図、(b)は側面図、 (c)は同図(a)を A方向から見 た図である。
同図において、 3aはリニアモータであり、リニアモータ 3aの可動軸 3dには、取付け 金具 3cを介して鉗子の軸部 3d内を貫通する前記操作部材 3eが連結され、操作部 材 3eの先端側には前記したようにリンク機構を介して把持部 3fが取付けられている。 従って、リニアモータ 3aの可動軸 3dが同図(a) (b)の左右方向に動くことにより、操 作部材 3eが左右方向に動き把持部 3fが開閉する。 3bはスレーブ側位置検出器であ り、リニアモータ 3aの可動軸 3dの位置を検出する。
なお、上記モータとしては、摩擦力の少ないモータを用いるのが望ましぐ上記のよ うなリニアモータを使用する外、回転運動の場合にはダイレクトドライブモータ等を使 用すること力 Sできる。 また、上記位置検出器としては、高精度の検出器を用いるのが望ましぐまた、応答 性を向上させるには、位置検出器の検出結果を取り込むサンプリング周期を十分短 くすることが必要である。
[0014] 図 5は本実施例の制御系のブロック図である。
同図において、前記図 1の示したものと同一のものには同一の符号が付されており 、 1はマスタであり、マスタ 1は図 3に示したように、リニアモータ laと位置検出器 lbと 操作部 lcから構成される。マスタ側の反力オブザーバ 2は、上記マスタ 1のリニアモ ータ laに供給される電流信号 I refと、位置検出器 lbにより検出されるリニアモータ 1 aの可動軸 Idの位置(即ち操作部 lcの位置)に応じた位置検出信号 X 力 マスタ側 に加わる力の推定値 F を求める。
3はスレーブであり、スレーブ 3は図 4に示したように、リニアモータ 3aと位置検出器 3bと前記機構により動作する把持部 3fから構成される。
スレーブ側の反力オブザーバ 4は、上記スレーブ 2のリニアモータ 3aに供給される 電流信号 I refと、位置検出器 3bにより検出されるリニアモータ 3aの可動軸 3dの位置
(即ち把持部 Ifの位置)に応じた位置検出信号 X力 スレーブ側に加わる力の推定 値 Fを求める。
[0015] 5は位置制御部であり、上記マスタ側の位置検出器 lbにより検出されたマスタ側の 操作部 l cの位置信号 X と、スレーブ側の位置検出器 3bにより検出されたスレーブ 側の把持部 Ifの位置信号 Xとの差を求める減算部 5aと、減算部 5aの出力に (K s +
K )の演算を施す制御部 5bと、制御部 5bの出力に、〔M / (M +M )〕, [-M /
(M +M )〕を乗じて加速度参照値 a , a を生成する変換部 5c, 5dから構成される
。なお、ここで、 K は位置ゲイン、 K は速度ゲイン、 M はマスタ側の慣性、 M はス レーブ側の慣性である。
6は操作力制御部であり、マスタ側の反力オブザーバ 2が出力するマスタ側の操作 部 lcに加わる力の推定値 F とスレーブ側の反力オブザーバ 4が出力するスレーブ 側の把持部 3fに加わる力の推定値 Fとの和を出力する加算部 6aと、加算部 6aの出 力に力ゲイン Kfを乗算し、加速度参照値 a , aを生成する変換部 6bとから構成され る。上記力ゲイン Kは仮想慣性の逆数であり任意の値に設定することができ、 Kを 適切に設定することにより、等価質量を見かけ上小さくすることができる。
7は加速度合成部であり、上記加速度参照値 a , a を加算してマスタ側の加速
pm rm
度参照値 (x ref ) "を出力する加算部 7aと、加算部 7aの出力に〔M /K 〕を乗じて 、マスタ側のリニアモータ laを駆動する電流参照値 I を生成する変換部 7bと、上
am
記加速度参照値 a , a を加算してスレーブ側の加速度参照値 (x ref ) を出力する
s fs s 加算部 7cと、加算部 7cの出力に〔M /K 〕を乗じて、スレーブ側のリニアモータ 3a
s tns
を駆動する電流参照値 I refを生成する変換部 7dとから構成される。ここで、 M , M
as m s は前記したマスタ側の慣性、スレーブ側の慣性であり、 Κ , Κ はそれぞれマスタト
tnm tns
ルク定数、スレーブトルク定数である。
なお、図面上では、一次微分、 2次微分を符号の上にドットを 1または 2付けて示す 、明細書中では一次微分を「'」を付して示し、 2次微分を上記 (X ref) 'のように「"」
m
を付けて示す。
図 6は、反力オブザーバ 2, 4のブロック図である。
同図において、 1 , 3はマスタ側、スレーブ側のブロック図であり、 I refはリニアモータ
a
la, 3aに供給される電流参照値、 Ktは推力定数であり、 I ref X Kはリニアモータの
a t
駆動力に相当する。 Fはリニアモータの負荷、 Mはマスタ側、スレーブ側の慣性であ り、リニアモータ la, 3aに電流 I refが供給され、負荷が Fのとき、マスタ側、スレーブ
a 1
側は、同図に示す速度 χ'で動き、その位置 Xは速度 χ 'を積分した値となる。
反力オブザーバ 2, 4には上記電流参照値 I ref、位置 Xが入力され、反カオブザー
a
バ 2, 4は以下の(1)式によりマスタ側、スレーブ側の推定反力 F , F ( = F)を求める
m s
F= [g/ (s + g) ] X [I refK +xM sg-F ] -M sg- - - (l) ここで、 F =F + Dx
a tn n init n init dis
, + (M-M ) x'である。また、 g/ (s + g)は一次の周波数選択フィルタである。
n
上記式および図 6中の各記号は以下の値を表している。
M :慣性、 M :慣性公称値、 K :推力定数公称値、 X:位置、 x':速度、 F :クーロ
n tn dis ン摩擦、 D :粘性摩擦係数。
なお、 F , D, M, M等は予備実験により求めた既知の値であるとする。
dis n
上記反力オブザーバを用いて反力を推定することにより、力センサを用いる場合に 比べ、前記したように、信号ノイズやセンサ自体の固有周波数やセンサ慣性に影響さ れることなぐかつ安価にマスタ側、スレーブ側の反力を推定することができる。またク 一ロン摩擦、粘性摩擦係数による影響を最小限にすることもできる。
[0017] 間接的センシングの有効性を確認するため、従来の歪みゲージを用いた力センサ を用いて直接力を測定した場合と、反力推定オブザーバを用いて間接的に力を測定 した場合を比較した。
図 7に実験結果を示す。同図の横軸は ω (radZsec)、縦軸は gain (dB)であり、同 図(a)は従来の力センサの周波数特性、 (b)は反力オブザーバの周波数特性を示 す。
同図から明ら力、なように、従来の力センサでは固有周波数の存在により、測定可能 周波数帯域が約 500radZsec以下に限定されてしまうが、反力推定オブザーバで は設定したゲイン 1500rad/secまでの広帯域で測定できる。
図 8は指令値(印加する力)を正弦波状に変化させて、従来の歪みゲージを用いた 力センサと上記反力オブザーバの出力を比較した図である。同図の横軸は時間(秒) 、縦軸は力(ニュートン)であり、同図の点線は指令値 (与えた力)、破線は上記反力 オブザーバによる推定結果、実線は従来の力センサによる検出結果を示す (指令値 と反力オブザーバによる推定結果はほぼ重なっている)。
同図の示すように、反力オブザーバの出力は、指令値とほぼ一致している力 従来 の力センサの出力は、上記指令値よりやや遅れており、また、固有周波数や慣性の 影響により検出結果が一部振動的に変化している。
[0018] 図 7、図 8から明らかなように、反力オブザーバを用いれば、従来の力センサを用い た場合に比べ、広帯域での測定が可能であり、また、殆ど遅れなくマスタ側、スレー ブ側に加わる力を推定することができ、これによりマスタ側、スレーブ側を応答よく制 卸すること力 Sできる。
上記反力オブザーバは、例えば、「大西, "外乱オブザーバによるロバスト'モーショ ンコントロール"日本ロボット学会誌 vol. l l , no. 4 , pp. 486一 493, 1993」等に開示 されている。
図 9は、反力オブザーバの他の構成例を示す図であり、同図は、周波数選択フィル タ として、図 6に示した〔g/ (s + g)〕に替え、〔k / (s2 +k s + k )〕の伝達関数で
1 2 1
表される 2次フィルタを用いた場合を示している。
上記〔k / (s2 +k s + k )〕の極は、 s2 +k s + k = 0力も得られ、この極を α , βと
1 2 1 2 1
すると、 ひ + /3 =— k 、 ひ j3 =k となる。
2 1
なお、上記図 9に示した反力オブザーバについては、例えば「
k.Ohnism,M.Shibata, . urakami, Motion Control for Advanced
Mechatoronics",IEEE/ASME Transactions on Mechatronics」等を参照されたい。
[0019] 次に、図 3、図 4、図 5に示す本実施例の制御装置の動作について説明する。
マスタ側の操作部 l cを操作すると、リニアモータ l aの可動軸 Idが移動し、位置検 出器 laにより可動軸 Idの位置が検出される。
この位置検出器 laの出力と、スレーブ側の位置検出器 3aの出力が位置制御部 5 に送られ、位置制御部 5はその偏差に基づき加速度参照値 a , a を生成し出力する
pm ps 一方、マスタ側の反力オブザーバ 2はマスタ側に加わる力の推定値 F を出力する
m 操作力制御部 6は、上記マスタ側に加わる力の推定値 F と、スレーブ側の反カオ
m
ブザーバ 4が出力するスレーブ側に加わる力 F の和を求め、この和から加速度参照
s
値 a , aを生成し出力する。
im fs
上記加速度参照値 a と加速度参照値 a は、加速度合成部 7に送られ、加速度合
s fb
成部 7は上記加速度参照値 a と加速度参照値 a の和から、電流参照値 I refを生成
ps fs as
する。また、上記加速度参照値 a と加速度参照値 a の和から、電流参照値 I refを生
pm im am 成する。
上記電流生成値 I refはスレーブ側のリニアモータ 3aに与えられ、リニアモータ 3aが
as
駆動される。同様に、上記電流生成値 I refはマスタ側のリニアモータ laに与えられ、
am
リニアモータ laが駆動される。
[0020] マスタ側の操作部 l cを操作することにより、スレーブ側のリニアモータ 3aの可動軸と マスタ側のリニアモータ laの可動軸に位置誤差が生ずると、上記加速度合成部 7か ら、マスタ側のリニアモータ l aとスレーブ側のリニアモータ 3aに上記位置誤差を修正 するような駆動信号が与えられ、マスタ側のリニアモータ la、スレーブ側のリニアモー タ 3aの可動軸が駆動される。
これにより、マスタ側のリニアモータ laとスレーブ側のリニアモータ 3aの可動軸の位 置が一致するように制御される。すなわち、マスタ側の操作部 lcのハンドル leの位置 に応じて、スレーブ側の把持部 3fの開度が制御される。
また、これと同時に、把持部 3fに加わる力 Fが反力オブザーバ 4で推定されるととも に、操作部 lcに加わる力 F が反力オブザーバ 2で推定され、 Fと F との和に応じた
m s m
加速度参照値 a 、 aが加速度合成部 7に与えられる。
tm fs
加速度合成部 7は、把持部 3fに加わる力 Fと操作部 lcに加わる力 F の和に応じ
s m
て、マスタ側のリニアモータ laとスレーブ側のリニアモータ 3aを駆動する。
これにより、マスタ側の操作部 lcに加わる力とスレーブ側の把持部 3fに加わる力と の和に倣うように、マスタ側の操作部 lcとスレーブ側の把持部 3fが制御される。 すなわち、マスタ側の操作部 lcを操作して、スレーブ側の把持部 3fで物体を把持 すると、把持部 3fに加わる反力に応じた力が操作部 lcに伝わり、これにより、作業者 は把持部 3fで把持した物体からの反力等を操作部 lcで感じ取ることができる。
以上の説明では、マスタ側を操作した場合について説明した力 S、スレーブ側を操作 した場合でも上記と同様にマスタ側が制御され、スレーブ側にマスタ側の力が伝えら れる。
本実施例のバイラテラル制御装置は、上記のように、マスタ側の操作部、スレーブ 側の対象物の位置を検出する位置検出手段を設け、位置検出手段の出力に基づき 、反力オブザーバにより、マスタ側の操作部、スレーブ側の対象物が受ける反力を推 定しているので、信号ノイズやセンサ自体の固有周波数やセンサ慣性に影響される ことなぐかつ安価にスレーブ側の対象物に加わる反力を推定することができる。また クーロン摩擦、粘性摩擦係数による影響を最小限にすることもできる。
このため、位置検出手段として高精度のセンサを用い、位置検出結果を比較的短 い周期でサンプリングし、位置制御部の制御ゲインを大きく設定すれば、マスタ側と スレーブ側の位置誤差を生じさせることなぐ位置および操作力を応答性よく制御す ること力 Sできる。 また、位置制御部 5と操作力制御部 6を設けて、加速度合成部で位置制御部 5と操 作力制御部 6で生成した加速度参照値を合成して、リニアモータを駆動してレ、るので 、位置制御のゲインと操作力制御のゲインを独立に設定することが可能となる。 このため、マスタ側とスレーブ側の位置誤差が無くなるように位置制御部 5を設定す ること力 Sでき、また、マスタ側とスレーブ側の反力の和に倣うように両者を制御すること 力 Sできる。さらに、操作力制御部 6の力ゲイン Kfの設定により、マスタ側の操作力を 自由に設定することができる。
[0022] 本実施例のバイラテラル制御装置により前記鉗子を遠隔制御して、本発明の有効 性を確認した。
実験では、制御装置をコンピュータで構成し、位置検出器として、分解能力 S1 μ m 程度のリニアエンコーダを用レ、、 100 μ s程度のサンプリング周期でコンピュータで構 成された制御装置に取り込んで、鉗子をバイラテラル制御した。これにより、 160Hz 程度の応答性を得ることができた。
図 10、図 11に上記実験結果を示す。
なお、図 10、図 11の横軸は時間(sec)、図 10の縦軸は位置、図 11の縦軸は力(二 ユートン)であり、位置、力をステップ状に変化させたときの応答特性を示す。
前記した従来のバイラテラル制御系では環境接触時において位置偏差が生じてし まい位置再現性が悪かった力 本発明においては、計算機のサンプリング時間を十 分に短して周波数帯域を十分広く確保し、位置制御部 5の制御ゲインを上げることに より、図 10に示すように位置偏差を生じることなくリアルタイムに環境を再現できた。
[0023] 以上説明した実施例では、本発明をバイラテラル制御に適用する場合について説 明したが、本発明は、上記バイラテラル制御に限らず、位置指令値、力指令値に応じ てスレーブ側を制御する制御装置に適用することもできる。
図 12に上記のように位置指令値、力指令値に応じてスレーブ側を制御する本発明 の第 2の実施例の位置 ·力制御装置の概略構成を示す。
同図において、 11は位置指令値と力指令値を発生する位置 Z力指令発生部であ り、位置/力指令発生部 11が出力する位置指令値 X は位置制御部 15に与えられ
rer
、力指令値 f は、操作力制御部 16に与えられる。 13は上記位置指令、力指令に応じて動作するスレーブであり、前記したように、対 象物を駆動するスレーブ側モータと、該モータの位置を検出するスレーブ側位置検 出器から構成される。上記対象物とは、例えば、各種作業を行うロボットのハンド等、 遠隔地において実際に作業を行う操作部である。
14は反力オブザーバであり、前記したように、スレーブ側位置検出器の出力と、上 記スレーブ側への駆動信号から上記対象物に加わる力を求める。
上記位置指令値 X とスレーブ側に設けられた位置検出器により検出された対象物 ref
の位置信号 Xは、それぞれ位置制御部 15に送られ、位置制御部 15は上記位置信
S
号を加速度参照値 a に変換する。
ps
また、力指令値 f とスレーブ側の反力オブザーバ 12により検出されたスレーブ側 ref
の力信号 f は操作力制御部 16に送られ、操作力制御部 16は、上記力信号 f , f を s ref s 加速度参照値 aに変換する。
fs
加速度合成部 17は、上記加速度参照値 a 、加速度参照値 aを合成し、スレーブ
ps rs
側モータへの駆動信号となる加速度指令信号 aを出力する。
S
[0024] 上記位置/力指令発生部 11が発生する位置指令値、力指令値は、予めプログラミ ングされた値であり、例えば、熟練した作業者等による操作等を記憶することにより得 ること力 Sできる。
例えば、前記実施例に示したバイラテラル制御装置を用いて熟練した作業者により 所望の作業をしてもらい、マスタ側 (もしくはスレーブ側)の位置 X (または X )、応力 m s オブザーバの出力 f ほたは f )を、それぞれ位置指令値、力指令値として記憶して おく。そして、この記憶された位置指令値、力指令値を上記位置/力指令発生部 11 力 出力し、スレーブ側を制御することにより、熟練した作業者による作業を再現する こと力 sできる。
[0025] 図 13は、本実施例の制御系のブロック図である。
同図において、 11は上記位置/力指令発生部、 13はスレーブであり、スレーブ 13 は前記したように、リニアモータ等のモータと、位置検出器を備える。
14は反力オブザーバであり、前記図 6、図 9に示した構成を備え、スレーブ 13のモ ータに供給される電流信号 I refと、位置検出器により検出される位置に応じた位置検 出信号 xs力 スレーブ側に加わる力の推定値 Fを求める。
S
15は位置制御部であり、上記位置/力指令発生部 11が出力する位置指令値 X rer と、とスレーブ側の位置検出器により検出されたスレーブ側の位置信号 Xとの差を求
S
める減算部 15aと、減算部 15aの出力に (K s + K )の演算を施す制御部 15bと、加
V P
速度参照値 a を生成する変換部 15cから構成される。なお、ここで、 K は位置ゲイン
S P
、 κ は速度ゲインである。
16は操作力制御部であり、力指令値 f と反力オブザーバ 14が出力するスレーブ ref
側の対象物に加わる力の推定値 Fとの偏差を出力する減算部 16aと、減算部 16aの
S
出力に力ゲイン Kfを乗算し、加速度参照値 aを生成する変換部 16bとから構成され fs
る。上記力ゲイン Kは前記したように仮想慣性の逆数であり任意の値に設定すること f
ができ、 Kを適切に設定することにより等価質量を見かけ上小さくすることができる。
f
7は加速度合成部であり、上記加速度参照値 a , a を加算してスレーブ側の加速 ps fs
度参照値 (x ref) 'を出力する加算部 17aと、加算部 17aの出力に〔M /K 〕を乗じ s s tns て、スレーブ側のモータを駆動する電流参照値 I ref を生成する変換部 17bとから構 as
成される。ここで、 Mはスレーブ側の慣性であり、 K はスレーブトルク定数である。
s tns
次に、図 13に示す本実施例の制御装置の動作について説明する。
位置/力指令発生部 11が出力する位置指令値 X とスレーブ側の位置検出器 3a
ref
の出力が位置制御部 15に送られ、位置制御部 15はその偏差に基づき加速度参照 値 a を生成し出力する。
ps
一方、操作力制御部 16は、上記位置/力指令発生部 11が出力する力指令値 f
ref と反力オブザーバ 4が出力するスレーブ側に加わる力 F の偏差を求め、この偏差か s
ら加速度参照値 aを生成し出力する。
fs
上記加速度参照値 a と加速度参照値 a は、加速度合成部 17に送られ、加速度合 s fb
成部 17は上記加速度参照値 a と加速度参照値 aの和から、電流参照値 I refを生成 ps fs as する。上記電流生成値 I refはスレーブ側のモータに与えられ、モータが駆動される。
as
位置指令値 X が変化すると、スレーブ側のモータの位置との位置誤差が生じ、カロ ref
速度合成部 17から、スレーブ側のモータに上記位置誤差を修正するような駆動信号 が与えられ、スレーブ側のモータが駆動される。 これにより、上記位置指令値にスレーブ側の位置が一致するように制御される。 また、これと同時に、スレーブ側にカ卩わる力 Fが反力オブザーバ 4で推定され、力 指令値 f と Fとの偏差に応じた加速度参照値 aが加速度合成部 17に与えられる。 加速度合成部 17は、力指令値 f とスレーブ側の力 Fの大きさが異なると、この大 きさが一致するような駆動信号をスレーブ側のモータに与える。これにより、スレーブ 側に加わる力が力指令値 f 一致するように制御される。
[0027] 本実施例においては、上記のように、スレーブ側の対象物の位置を検出する位置 検出手段を設け、位置検出手段の出力に基づき、反力オブザーバにより、対象物が 受ける反力を推定しているので、第 1の実施例と同様、信号ノイズやセンサ自体の固 有周波数やセンサ慣性に影響されることなぐかつ安価にスレーブ側の対象物に加 わる反力を推定することができる。またクーロン摩擦、粘性摩擦係数による影響を最 小限にすることもできる。
このため、位置検出手段として高精度のセンサを用い、位置検出結果を比較的短 い周期でサンプリングし、位置制御部の制御ゲインを大きく設定すれば、位置誤差を 生じさせることなく、スレーブ側の位置、操作力を応答性よく制御するこができる。 また、位置制御部 15と操作力制御部 16を設けて、加速度合成部 17で位置制御部 15と操作力制御部 16で生成した加速度参照値を合成して、スレーブ側の対象物を 駆動しているので、第 1の実施例と同様、位置制御のゲインと操作力制御のゲインを 独立に設定することが可能となる。
産業上の利用可能性
[0028] 本発明は、医療分野、建築用作業ロボット、食品加工や食品のハンドリング、アツセ ッブル、楽器の操作等の各種分野に適用することができ、バイラテラル制御系に適用 すれば、マスタ側の操作力をスレーブ側に応答性よく伝えることができるとともに、ス レーブ側に加わる力をマスタ側に応答性よく伝えることができ、繊細な作業を実現す ること力 S可言 となる。
例えば、本発明を医療分野で使用される鉗子等の遠隔制御に適用すれば、従来 の遠隔手術では実現することができなかった繊細な感覚情報を伝えることができ、鉗 子を直接手で操作する場合と同様な感覚で使用することが可能となる、また、繊細な 感覚情報を伝えることが必要な触診等を遠隔から行うことも可能となる。
また、建築用作業ロボットに適用することにより、セメント塗り等の作業を熟練した作 業者が直接手で塗ったのと同様に行うことができ、さらに、食品のハンドリング作業や アッセンブル、楽器の操作等においても、人手による作業や操作と同様に行うことが 可能となる。

Claims

請求の範囲
[1] 対象物の位置を検出する位置検出手段と、
上記対象物を駆動する駆動手段と、
上記位置検出手段が出力する位置信号と上記駆動手段への駆動信号に基づき上 記対象物が受ける反力を求める反力検出手段と、
上記対象物が受ける反力と目標となる力信号とから第 1の加速度信号を求めるとと もに、上記位置信号と目標位置とから第 2の加速度信号を求め、上記第 1、第 2の加 速度信号に基づき、上記駆動手段への駆動信号を出力する制御手段を備えた ことを特徴とする位置 '力制御装置。
[2] 対象物の位置及び該対象物に作用する力を位置指令信号、力指令信号に応じて 制御する位置 ·力制御装置であって、
上記対象物を駆動する駆動手段と、
上記対象物の位置を検出する位置検出手段と、
上記位置検出手段が出力する位置信号から求めた加速度信号と上記駆動手段へ の駆動信号から、該対象物が受ける反力を求める反力検出手段と、
位置指令信号と上記位置検出手段が出力する位置信号との偏差を求め、該偏差 信号を第 1の加速度信号に変換する第 1の演算手段と、
上記反力検出手段により検出された上記反力と、力指令信号との偏差を求め、該 偏差信号を第 2の加速度信号に変換する第 2の演算手段と、
上記第 1、第 2の加速度信号を加算して、上記駆動手段への駆動信号を出力する 制御手段を備えた
ことを特徴とする位置 ·力制御装置。
[3] マスタ側の操作部とスレーブ側の対象物の位置偏差に応じて、スレーブ側の対象 物とマスタ側の操作部の位置を制御し、マスタ側の操作力に応じた駆動力で対象物 を駆動するとともに、対象物が受ける力をマスタ側に伝える位置 ·力制御装置であつ て、
マスタ側の操作部を駆動する第 1の駆動手段と、
マスタ側の操作部の位置を検出する第 1の位置検出手段と、 上記第 1の位置検出手段が出力する位置信号から求めた加速度信号と、上記第 1 の駆動手段への駆動信号から、上記操作部に作用する反力を求める第 1の反カ検 出手段と、
スレーブ側の対象物を駆動する第 2の駆動手段と、
スレーブ側の対象物の位置を検出する第 2の位置検出手段と、
上記第 2の位置検出手段が出力する位置信号から求めた加速度信号と、上記第 2 の駆動手段への駆動信号から、上記対象物が受ける反力を求める第 2の反力検出 手段と、
上記第 1の位置検出手段が出力する位置信号と、第 2の位置検出手段が出力する 位置信号との偏差を求め、該偏差をマスタ側およびスレーブ側を制御するための第 1、第 2の加速度信号に変換する第 1の演算手段と、
上記第 1の反力検出手段と、上記第 2の反力検出手段の出力の和を求め、該和を マスタ側およびスレーブ側を制御するための第 3、第 4の加速度信号に変換する第 2 の演算手段と、
上記第 1 ,第 3の加速度制御信号を加算する第 1の加算手段と、
上記第 2,第 4の加速度制御信号を加算する第 2の加算手段と、
上記第 1の加算手段の出力に基づき、上記マスタ側の操作部への駆動信号を出力 する第 1の制御手段と、
上記第 2の加算手段の出力に基づき、上記スレーブ側の対象物への駆動信号を出 力する第 2の制御手段とを備えた
ことを特徴とする位置 '力制御装置。
PCT/JP2004/010335 2003-07-24 2004-07-21 位置・力制御装置 WO2005109139A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/565,534 US7672741B2 (en) 2003-07-24 2004-07-21 Position/force control device
JP2006519226A JP4696307B2 (ja) 2003-07-24 2004-07-21 位置・力制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003278919 2003-07-24
JP2003-278919 2003-07-24

Publications (1)

Publication Number Publication Date
WO2005109139A1 true WO2005109139A1 (ja) 2005-11-17

Family

ID=35320369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010335 WO2005109139A1 (ja) 2003-07-24 2004-07-21 位置・力制御装置

Country Status (3)

Country Link
US (1) US7672741B2 (ja)
JP (1) JP4696307B2 (ja)
WO (1) WO2005109139A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259607A (ja) * 2007-04-11 2008-10-30 Hitachi Ltd マニピュレータ装置
JP2009279699A (ja) * 2008-05-21 2009-12-03 Nagaoka Univ Of Technology 位置・力再現方法および位置・力再現装置
WO2011080949A1 (ja) * 2009-12-28 2011-07-07 本田技研工業株式会社 ロボットの制御装置
WO2012133912A1 (en) * 2011-03-31 2012-10-04 Olympus Corporation Master manipulator
WO2015041046A1 (ja) 2013-09-19 2015-03-26 学校法人慶應義塾 位置・力制御装置、位置・力制御方法及びプログラム
JPWO2017033378A1 (ja) * 2015-08-25 2018-06-14 川崎重工業株式会社 ロボットシステム
JP2019034002A (ja) * 2017-08-21 2019-03-07 地方独立行政法人神奈川県立産業技術総合研究所 鉗子システム
JP2019214085A (ja) * 2018-06-11 2019-12-19 株式会社大林組 作業機械、作業機械の制御装置及び作業機械の制御方法
JP7324561B2 (ja) 2018-06-11 2023-08-10 株式会社大林組 建設機械、建設機械の制御装置及び建設機械の制御方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069095A1 (ja) * 2004-01-20 2005-07-28 Hitachi, Ltd. バイラテラルサーボ制御装置
DE102007059599B4 (de) * 2007-12-11 2017-06-22 Siemens Healthcare Gmbh Vorrichtung für eine medizinische Intervention und Betriebsverfahren für eine Vorrichtung für eine medizinische Intervention
EP2602676A1 (de) * 2011-12-08 2013-06-12 Siemens Aktiengesellschaft Bestimmen von reibungskomponenten eines antriebssystems
JP6112300B2 (ja) * 2013-01-10 2017-04-12 パナソニックIpマネジメント株式会社 マスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、並びに、制御プログラム
US10097127B2 (en) * 2013-12-20 2018-10-09 Fuji Corporation Thrust constant derivation method and movement control method of linear motor, and thrust constant derivation device and movement control device of linear motor
US10029366B2 (en) * 2014-11-21 2018-07-24 Canon Kabushiki Kaisha Control device for motor drive device, control device for multi-axial motor, and control method for motor drive device
JP7049069B2 (ja) * 2017-05-19 2022-04-06 川崎重工業株式会社 ロボットシステム及びロボットシステムの制御方法
WO2020195316A1 (ja) * 2019-03-28 2020-10-01 ソニー株式会社 制御装置及び制御方法、並びにマスタスレーブシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215211A (ja) * 1995-02-16 1996-08-27 Hitachi Ltd 遠隔手術支援装置とその方法
JPH11272334A (ja) * 1998-03-18 1999-10-08 Matsushita Electric Ind Co Ltd ハイブリッド制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6915878B2 (en) * 1994-05-27 2005-07-12 Deka Products Limited Partnership Self-balancing ladder and camera dolly
US6436107B1 (en) * 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
EP2362285B1 (en) * 1997-09-19 2015-03-25 Massachusetts Institute of Technology Robotic apparatus
JP4564175B2 (ja) * 1999-03-15 2010-10-20 デカ・プロダクツ・リミテッド・パートナーシップ 車椅子用制御システム及び方法
US6594552B1 (en) * 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6424885B1 (en) * 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
JP4639417B2 (ja) 2000-01-21 2011-02-23 株式会社安川電機 ロボットの制御装置
JP4538942B2 (ja) * 2000-10-30 2010-09-08 日本電気株式会社 ワイヤボンディング装置
JP2002207336A (ja) 2001-01-04 2002-07-26 Ricoh Co Ltd 画像形成装置
JP4613330B2 (ja) * 2001-04-17 2011-01-19 学校法人慶應義塾 マスタスレーブ装置、制御方法及びコンピュータープログラム
US7043696B2 (en) * 2002-01-15 2006-05-09 National Instruments Corporation Graphical program system having a single graphical user interface shared by a plurality of graphical programs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215211A (ja) * 1995-02-16 1996-08-27 Hitachi Ltd 遠隔手術支援装置とその方法
JPH11272334A (ja) * 1998-03-18 1999-10-08 Matsushita Electric Ind Co Ltd ハイブリッド制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHISHI K. ET AL.: "Chikara Sensor o Mochiinai Ichi to Chikara no Hybrid Seigyo.", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN., vol. 1, no. 3, 15 April 1993 (1993-04-15), pages 166 - 174, XP002995608 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259607A (ja) * 2007-04-11 2008-10-30 Hitachi Ltd マニピュレータ装置
JP2009279699A (ja) * 2008-05-21 2009-12-03 Nagaoka Univ Of Technology 位置・力再現方法および位置・力再現装置
WO2011080949A1 (ja) * 2009-12-28 2011-07-07 本田技研工業株式会社 ロボットの制御装置
JPWO2011080949A1 (ja) * 2009-12-28 2013-05-09 本田技研工業株式会社 ロボットの制御装置
JP5506823B2 (ja) * 2009-12-28 2014-05-28 本田技研工業株式会社 ロボットの制御装置
US8818553B2 (en) 2009-12-28 2014-08-26 Honda Motor Co., Ltd. Robot control device
WO2012133912A1 (en) * 2011-03-31 2012-10-04 Olympus Corporation Master manipulator
JP2012213425A (ja) * 2011-03-31 2012-11-08 Olympus Corp マスタマニピュレータ
WO2015041046A1 (ja) 2013-09-19 2015-03-26 学校法人慶應義塾 位置・力制御装置、位置・力制御方法及びプログラム
CN105555486A (zh) * 2013-09-19 2016-05-04 学校法人庆应义塾 位置/力控制装置、位置/力控制方法以及程序
US10220512B2 (en) 2013-09-19 2019-03-05 Keio University Position/force controller, and position/force control method and program
US10562183B2 (en) 2013-09-19 2020-02-18 Keio University Position/force controller, and position/force control method and storage medium
JPWO2017033378A1 (ja) * 2015-08-25 2018-06-14 川崎重工業株式会社 ロボットシステム
JP2019034002A (ja) * 2017-08-21 2019-03-07 地方独立行政法人神奈川県立産業技術総合研究所 鉗子システム
JP2019214085A (ja) * 2018-06-11 2019-12-19 株式会社大林組 作業機械、作業機械の制御装置及び作業機械の制御方法
JP7116600B2 (ja) 2018-06-11 2022-08-10 株式会社大林組 建設機械、建設機械の制御装置及び建設機械の制御方法
JP7324561B2 (ja) 2018-06-11 2023-08-10 株式会社大林組 建設機械、建設機械の制御装置及び建設機械の制御方法

Also Published As

Publication number Publication date
JP4696307B2 (ja) 2011-06-08
US7672741B2 (en) 2010-03-02
US20070112466A1 (en) 2007-05-17
JPWO2005109139A1 (ja) 2008-03-21

Similar Documents

Publication Publication Date Title
WO2005109139A1 (ja) 位置・力制御装置
CA2824588C (en) Robotic grasping device with multi-force sensing at base of fingers
Zhu et al. Velocity estimation by using position and acceleration sensors
US11850014B2 (en) Control system, control method, and surgical arm system
Sang et al. External force estimation and implementation in robotically assisted minimally invasive surgery
WO2011161765A1 (ja) ロボット制御装置
KR102023910B1 (ko) 로봇 및 로봇의 마찰 보상 방법
CN112566583A (zh) 用于手术机器人臂的外部扭矩观测和补偿的系统和设备
JP6831530B2 (ja) 外乱オブザーバ及びロボット制御装置
JP6044511B2 (ja) ロボットの制御方法及びロボットシステム
EP3956112A1 (en) Method of controlling a robot arm based on adaptive friction
JP2604929B2 (ja) ロボットの制御装置
JPH06246652A (ja) 重量物ハンドリング用マニピュレータ装置
JP4842561B2 (ja) 力覚コントローラ装置
JP2005212054A (ja) 力検出方法及び装置並びに力検出機能を備えた制御装置
JPS6077210A (ja) 空間運動機構の制御方法
JP2005329476A (ja) 操作部材の制御方法および装置
JP4524729B2 (ja) 遠隔操縦ロボットの制御装置
US20230052996A1 (en) Method of obtaining vibrational properties of robot arm
JPS60254209A (ja) ロボツトの制御方式
JPH0245806A (ja) 多自由作業機械の位置と力の制御装置
JP2007136564A (ja) マニピュレータ制御方法および装置
Yılmaz Development of a Sensorless Haptic Teleoperation System for Robotic Minimally Invasive Surgery
JP3302797B2 (ja) マニピュレータおよびその制御方法
JPS6328580A (ja) 力帰還形バイラテラルサ−ボマニピユレ−タ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006519226

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007112466

Country of ref document: US

Ref document number: 10565534

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10565534

Country of ref document: US