WO2005108567A1 - 改変タンパク質の作製方法 - Google Patents

改変タンパク質の作製方法 Download PDF

Info

Publication number
WO2005108567A1
WO2005108567A1 PCT/JP2005/008362 JP2005008362W WO2005108567A1 WO 2005108567 A1 WO2005108567 A1 WO 2005108567A1 JP 2005008362 W JP2005008362 W JP 2005008362W WO 2005108567 A1 WO2005108567 A1 WO 2005108567A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
dna
acid sequence
protein
microorganism
Prior art date
Application number
PCT/JP2005/008362
Other languages
English (en)
French (fr)
Inventor
Hideji Tajima
Masaaki Takahashi
Yukiko Miyashita
Original Assignee
Precision System Science Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Precision System Science Co., Ltd. filed Critical Precision System Science Co., Ltd.
Priority to EP05737205A priority Critical patent/EP1760149A4/en
Publication of WO2005108567A1 publication Critical patent/WO2005108567A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a method for producing a modified protein, a method for producing a modified protein library, and a method for screening a modified protein.
  • the present invention also relates to a method for estimating the function of a protein derived from a microorganism.
  • Methods for obtaining a protein having excellent functions include (1) a method for identifying a novel protein and analyzing its function, and (2) modifying the amino acid sequence of an existing protein by introducing a random mutation.
  • There are methods for producing proteins and analyzing their functions for example, Patent Document 1).
  • Patent Document 1 JP 2003-304870A
  • PCR is performed using primers designed based on the amino acid sequence or base sequence conserved between existing proteins or genes, and the PCR-amplified fragment is used as a probe.
  • a modified protein in the above method (2), can be easily and rapidly produced, and thus a high-throughput functional analysis of the modified protein can be performed. Shinagashi In addition, the introduction of random mutations into the amino acid sequence of existing proteins often leads to a loss of function.
  • the present invention can realize high-throughput and efficient functional analysis and screening of a modified protein by easily and quickly producing a modified protein that can be expected to have improved functions.
  • Another object of the present invention is to provide a method for producing a modified protein, a method for producing a modified protein library, and a method for screening a modified protein.
  • the present invention also provides a method for estimating the function of a protein derived from a microorganism, which eliminates the need to identify the full-length sequence of the protein or the DNA encoding the protein, and eliminates the need to separate and culture the microorganism. It is an object of the present invention to provide a method for estimating the function of a protein derived from a microorganism.
  • the present invention provides a method for preparing a modified protein, a method for preparing a modified protein library, a method for screening for a modified protein, and a microorganism derived from a microorganism described in the following (1) to (7).
  • a method for estimating the function of a protein is provided.
  • a method for producing a modified protein comprising the following steps (a) to (g).
  • a modified DNA is prepared by replacing the region encoding the amino acid sequence showing the homology in the DNA encoding the known protein found in the step (e) with the DNA fragment.
  • step (f) a step of replacing the region encoding the amino acid sequence showing the homology in the DNA encoding the known protein found in the step (e) with the DNA fragment to prepare a modified DNA
  • step (f) a step of replacing the region encoding the amino acid sequence showing the homology in the DNA encoding the known protein found in the step (e) with the DNA fragment to prepare a modified DNA
  • a method for estimating the function of a protein derived from a microorganism comprising the following steps (a) to (g) and (j).
  • step (f) a step of replacing the region encoding the amino acid sequence showing the homology in the DNA encoding the known protein found in the step (e) with the DNA fragment to prepare a modified DNA
  • the degenerate primer prepared in the step (b) is any of the first to n-th known proteins.
  • high-throughput and efficient functional analysis and screening of a modified protein can be realized by easily and quickly preparing a modified protein that can be expected to have improved functions.
  • a method for producing a modified protein, a method for producing a modified protein library, and a method for screening a modified protein are provided.
  • a method for estimating the function of a protein derived from a microorganism is provided.
  • FIG. 1 is a diagram showing the results of electrophoresis of genomic DNA from which soil power in a high-temperature environment is also extracted.
  • FIG. 2 is a view showing an alignment result of amino acid sequences of family A type DNA polymerases derived from a plurality of microorganisms (Bacillus subtilis, Bacillus caldotenax, Thermus aquaticus, Themus thermophilus, Escherichia coli).
  • FIG. 3 is a diagram (continuation of FIG. 2) showing the amino acid sequence of a family A type DNA polymerase derived from a plurality of microorganisms (Bacillus subtilis, Bacillus caldotenax, Thermus aquaticus ⁇ Themus thermophilus, Escherichia coli).
  • FIG. 3 is a diagram showing the results of electrophoresis of PCR-amplified fragments obtained by performing PCR using primers.
  • FIG. 5 is a diagram showing the results of electrophoresis of PCR-amplified fragments obtained by performing PCR using degenerate primers in the presence of genomic DNA recovered from high-temperature environment soil.
  • FIG. 6 is a view showing an amino acid sequence encoded by a PCR-amplified fragment obtained by performing PCR using degenerate primers in the presence of genomic DNA recovered from high-temperature environment soil.
  • FIG. 7 is a view showing the results of electrophoresis of a BlplZBglll fragment cut out from plasmid DNA.
  • FIG. 8 is a view showing the results of subjecting a crude DNA polymerase fraction to SDS-PAGE and staining with CBB (Coomassie Brilliant Blue).
  • FIG. 9 shows the results of electrophoresis of PCR-amplified fragments obtained by PCR using a modified DNA polymerase.
  • FIG. 10 is a view showing alignment results of amino acid sequences of chitinases derived from a plurality of microorganisms (3 ⁇ 4erratia marcescens, Bacillus circurans, Stenotrophomonas maltophilia, Janthinobacterium lividum, Thermococcus kodakaraensis, Clostridium thermocellum, Bacillus licheniformis).
  • FIG. 11 is a view showing the alignment results of amino acid sequences of alanine dehydrogenase derived from a plurality of microorganisms (Bacillus, Carnobacterium, Synechocystis, Phormidium, Vibrio, Shewanella, Mycobacterium).
  • FIG. 12 A diagram showing the alignment results of the amino acid sequences of oD-2-oxoxyribo-s-5-phosphate aldolase derived from multiple microorganisms (Bacillus subtuis, Oceanooacilius iheyensis, Escherichia col "Thermotoga maritima, Aquifex aeolicus). is there.
  • Step (a) is a step of preparing DNA derived from a microorganism from a sample containing the microorganism.
  • sample is not particularly limited as long as it contains one or more microorganisms.
  • Samples include, for example, soil, water, mud, sediment, etc. collected from various environments. Natural samples can be used.
  • the environment in which natural samples are collected is not limited to various conditions (for example, various temperature conditions such as room temperature, high temperature, low temperature, neutral, acidic, etc.
  • Natural samples under various pH conditions such as alkalinity, and various pressure conditions such as normal pressure, high pressure, and low pressure).
  • Specific examples of the environment for collecting a natural sample include a high temperature environment such as a hot spring, an acidic environment such as an acidic hot spring, an alkaline environment such as an alkaline hot spring, and a high pressure environment such as the deep sea.
  • the sample it is preferable to use a sample containing two or more types of microorganisms.
  • a sample containing two or more types of microorganisms When a sample containing two or more types of microorganisms is used, the possibility of obtaining PCR-amplified fragments in step (c) increases. In addition, the possibility of obtaining two or more types of PCR-amplified fragments is increased, and one sample can produce many types of modified proteins. Two or more types of PCR amplified fragments can be obtained as a mixture. By determining the nucleotide sequence of each PCR amplified fragment in step (d), the types of each PCR amplified fragment can be distinguished.
  • the type of microorganisms contained in the sample is not particularly limited, and examples thereof include bacteria, fungi (filamentous fungi), basidiomycetes, yeasts, and viruses.
  • thermophilic bacteria is a general term for bacteria that can grow at high temperatures, and generally refers to bacteria that can grow at 55 ° C or higher.
  • the thermophile is a highly thermophilic bacterium that can normally grow above 75 ° C, a hyperthermophilic bacterium that can usually grow above 85-90 ° C, and a facultative thermophilic bacterium that can grow at room temperature (normally 37 ° C). And absolute thermophiles that can only grow above about 40 ° C.
  • the type of microorganism (family, genus, species, etc.) contained in the sample may or may not be identified. Even if the type of the microorganism contained in the sample has been identified, it is not necessary to identify the type of the microorganism.
  • the microorganism contained in the sample may be a microorganism that cannot be cultured or whose culture conditions are unknown.
  • the present invention is particularly useful when the microorganisms contained in the sample cannot be cultured or the culture conditions are unknown because there is no need to separate and culture the microorganisms contained in the sample.
  • DNA derived from a microorganism may be genomic DNA or cDNA.
  • Genomic DNA derived from microorganisms can also be extracted for microbial activity according to conventional methods.
  • CDNA derived from a microorganism can be prepared by reverse transcription of mRNA extracted from a microorganism according to a conventional method.
  • Genomic DNA or mRNA extracted from microorganisms usually contains only a part of the genomic DNA or mRNA that the microorganism has, including all genomic DNA or mRNA that the microorganism has! ! / ,.
  • Step (b) is a step of preparing a degenerate primer based on the amino acid sequence conserved among the first to n-th known proteins having the same kind of function.
  • the first to n-th known proteins are natural proteins whose amino acid sequence, derived species, function, and the like are known.
  • the functions of the same type possessed by the first to n-th known proteins are not particularly limited. Examples thereof include heat resistance, DNA polymerase activity, chitinase activity, alanine dehydrogenase activity, and D-2. —Doxyribose-5-phosphate aldolase activity, nuclease activity, helicase activity and the like.
  • one kind of function may be the same, or two or more kinds of functions may be the same.
  • the species from which the first to n-th known proteins are derived are not particularly limited, but may be microorganisms closely related to microorganisms contained in a sample that is preferably a microorganism. More preferred.
  • the microorganisms contained in the sample are closely related to the species from which the first to n-th known proteins are derived, the possibility of obtaining PCR-amplified fragments in step (c) increases.
  • a protein derived from an organism closely related to the microorganism contained in the sample can be selected as the first to n-th known proteins.
  • a natural sample collected from a high-temperature environment it is considered that the natural sample contains thermophiles, and proteins derived from thermophiles are used as the first to n-th known proteins. You can choose.
  • the degenerate primer can be prepared based on the amino acid sequence conserved among the first to n-th known proteins. That is, the amino acid sequences of the first to n-th known proteins are aligned to identify a conserved region (the conserved region), and the base sequence of the degenerate primer is determined based on the amino acid sequence of the conserved region. Degenerate ply in accordance with Mer can be made.
  • the degenerate primers include, among double-stranded DNAs encoding the first to n-th known proteins, a primer capable of hybridizing to the sense strand and a primer capable of hybridizing to the antisense strand, and each primer Can be prepared based on the amino acid sequences of different conserved regions.
  • Examples are Bacillus subtiiis, Bacillus caldotenax ⁇ Thermus aquaticus, Themus
  • amino acid sequences such as DPNLQNIP and QVHDELX are conserved in Family A DNA polymerases derived from microorganisms such as thermophilus and Escherichia coli.
  • a degenerate primer represented by 5′-gaycchaacytscaraayathcc-3 ′ can be produced based on DPNLQNIP
  • a degenerate primer represented by 5′-kassakytcrtcgtgnacytg-3 ′ can be produced based on QVHDELX.
  • the Ik organisms (row f, Bacillus caldotenax, Bacillus caldolyticus, Escherichia coli, Bacillus subtilis, Lactobacillus bulgaricus, Lactobacillus homohiochn,
  • Lactobacillus heterohiocnn Thermus aquaticus, Themus thermophilus, Sulfolobus solfataricus
  • the PCR-amplified fragment thus obtained is considered to be a DNA fragment (a part of the DNA encoding the family A DNA polymerase) obtained by amplifying the DNA encoding the family A DNA polymerase into type III.
  • Examples include chitinase derived from microorganisms such as Serratia marcescens, Bacillus circurans, Stenotropnomonas maltophilia, Janthinobacterium lividum, Thermococcus kodakaraensis, Clostridium thermocellum, Bacillus licheniformis; Amino acid sequences such as GLGGAMFWE, etc. are conserved, and degenerate primers represented by acncayathaaytaygcntt -3 'based on THINYAF are represented by 5'-athwsigtiggnggntggac -3' based on ISVGGWT.
  • chitinase derived from microorganisms such as Serratia marcescens, Bacillus circurans, Stenotropnomonas maltophilia, Janthinobacterium lividum, Thermococcus kod
  • the PCR-amplified fragment obtained in this manner is considered to be a DNA fragment (a part of the DNA encoding chitinase) amplified with chitinase-encoding DNA as type III.
  • AlDH Alanine dehydrogenase
  • J3 ⁇ 4 Bacillus rot, arnobactenum panyu, 3 ⁇ 4ynechocystis genus, Phormidium / yu, Vibrio J3 ⁇ 4, Shewanella genus, Mycobacterium genus, etc.
  • An amino acid sequence such as DVAIDQG is stored, and a degenerate primer represented by 5'-ttyacitwyyticaytigc -3 'based on FTYLHLA and a degenerated primer represented by ccytgrtcdatigciayrtc -3' based on DVAIDQG Imagine can be made.
  • a PCR-amplified fragment can be obtained by performing PCR using the above-described degenerate primers in the presence of DNA derived from any microorganism.
  • the PCR-amplified fragment obtained in this manner is considered to be a DNA fragment (a part of the DNA encoding alanine dehydrogenase) amplified with the DNA encoding aranine dehydrogenase as type III.
  • Examples are D-2 deoxyribose-5-phosphate aldolase (DERA) derived from Bacillus subtiiis, Oceanobacillus iheyensis, Escherichia coli, Thermotoga maritima, Aquifex aeolicus, etc. As shown in Fig. 12, the amino acid sequences of VIGFPLG, VKASGGV, etc. are conserved, and the degenerate primer represented by 5'-gtnathggittycciytigg-3 'based on VIGFPLG, and the A degenerate primer represented by 3 ′ can be prepared.
  • DEA D-2 deoxyribose-5-phosphate aldolase
  • a PCR-amplified fragment can be obtained by performing PCR using the above-mentioned degenerate primer in the presence of DNA derived from any microorganism.
  • the thus obtained PCR-amplified fragment was a DNA fragment (D-2 deoxyribose-5 phosphate) amplified using DNA encoding D-2 deoxyribose 5 phosphate aldolase as a type II. Part of the DNA encoding rudolase).
  • Y is t or c
  • s is c or g
  • k is g or t
  • r is a or g
  • h is a or t or c
  • n Represents a or g or c or t
  • d represents a or t or g.
  • the degenerate primer is usually an oligonucleotide having a power of 15 to 30 bases, preferably 20 to 25 bases, and can be chemically synthesized according to a conventional method.
  • a label such as a restriction enzyme recognition sequence, a tag sequence, a fluorescent dye, or a radioisotope can be added to the degenerate primer.
  • the degenerate primer is preferably prepared so as to amplify a region encoding a functional domain of the first to n-th known proteins among DNAs encoding the first to n-th known proteins.
  • the ⁇ functional domain '' refers to a domain involved in the same type of function possessed by the first to n-th known proteins (for example, the same type of domain possessed by the first to n-th known proteins).
  • the function is DNA polymerase activity, it means a domain that is involved in DNA polymerase activity).
  • the DNA derived from the microorganism has a protein having the same type of function as the first to n-th known proteins. It is thought that it is possible to amplify the region coding for the functional domain of the modified protein, and it is likely that the function of the modified protein will be improved by using such a PCR-amplified fragment to produce the modified protein. In addition, there is a high possibility that the function of the modified protein reflects the function of the protein derived from the microorganism.
  • Step (c) is performed using the degenerate primer in the presence of DNA derived from the microorganism.
  • PCR-amplified fragment having the DNA derived from the microorganism as a type III can be obtained.
  • PCR can be performed according to a conventional method, and the PCR-amplified fragment can be purified according to a conventional method such as polyacrylamide electrophoresis.
  • (Dl Step (d) is a step of determining the base sequence of the DNA fragment amplified by the PCR and determining the amino acid sequence encoded by the DNA fragment.
  • the base sequence of the PCR-amplified fragment can be determined according to a conventional method such as a chemical modification method of Maxam Gilbert or a dideoxynucleotide chain termination method.
  • a conventional method such as a chemical modification method of Maxam Gilbert or a dideoxynucleotide chain termination method.
  • base sequence analysis for example, a commercially available base sequence analyzer can be used.
  • the PCR-amplified fragment may be closed according to a conventional method before base sequence analysis.
  • a recombinant vector is prepared by incorporating the PCR-amplified fragment into an appropriate closing vector, and a host cell such as Escherichia coli is transformed using the recombinant vector, and transformation is performed using tetracycline resistance and ampicillin resistance as indices.
  • the PCR amplified fragment can be cloned.
  • a cloning vector is not limited as long as it can replicate autonomously in a host cell.
  • a phage vector, a plasmid vector and the like can be used.
  • the host cell for example, Escherichia coli or the like can be used.
  • the determined nucleotide sequence may include an error
  • X @ (e) was evaluated for homology between the amino acid sequence encoded by the DNA fragment and the amino acid sequence of the known protein, and a known amino acid sequence having homology with the amino acid sequence encoded by the DNA fragment was evaluated. This is the process of finding proteins.
  • the known protein to be subjected to homology evaluation is a naturally-occurring protein having a known amino acid sequence, derived species, function, and the like, and the type is not particularly limited.
  • the function of the known protein to be evaluated for homology is not particularly limited, and may be the same type of function as the first to n-th known proteins, or may be the first to n-th known proteins. Although the function may be different from that of the protein, it is preferably the same type of function as the first to n-th known proteins.
  • the homology can be evaluated using an existing database or the like.
  • Steps (f) and (g) may be performed when the amino acid sequence encoded by the PCR amplified fragment is known, but should be performed when the amino acid sequence encoded by the PCR amplified fragment is novel. Is preferred,.
  • the homology evaluation it can be determined whether or not the known protein has an amino acid sequence showing homology with the amino acid sequence encoded by the PCR amplified fragment.
  • the region showing homology is usually 50% or more with the amino acid sequence encoded by the PCR amplified fragment.
  • step (f) a region encoding the amino acid sequence showing homology described above in the DNA encoding the known protein found in the step (e) is replaced with the DNA fragment to prepare a modified DNA. This is the step of doing.
  • the modified DNA is obtained by treating a DNA encoding a known protein found in step (e) with a restriction enzyme and encoding an amino acid sequence having homology with the amino acid sequence encoded by the PCR amplified fragment. Can be prepared by ligating the PCR amplified fragment to this portion. The PCR amplified fragments are ligated so that the reading frame of the triplet (codon) does not shift (that is, so that no frame shift occurs).
  • the modified DNA is, among the amino acid sequences of the known proteins found in step (e), an amino acid sequence having homology to the amino acid sequence encoded by the PCR amplified fragment. Encodes a variant protein that has been replaced with a sequence.
  • the amino acid sequence encoded by the PCR-amplified fragment is an amino acid sequence that exists in nature and has been naturally selected, so that the amino acid sequence is considered to have some significance. Therefore, the modified protein in which the amino acid sequence showing homology to the amino acid sequence encoded by the PCR-amplified fragment is replaced with the amino acid sequence encoded by the PCR-amplified fragment, randomly mutates the amino acid sequence of the existing protein. Improved function can be expected compared to modified proteins.
  • the modified DNA contains an open reading frame encoding the modified protein and a stop codon located on the 3 'end side thereof.
  • the modified DNA may contain an untranslated region (UTR) at the 5 'end and Z or 3' end of the open reading frame.
  • UTR untranslated region
  • the DNA may include open reading frames encoding other proteins or peptides, such that the variant protein is expressed as a fusion protein! /.
  • X @ (g) is a step of producing the modified protein by expressing the modified DNA.
  • the modified protein can be produced, for example, as follows.
  • a modified vector is prepared by inserting the modified DNA downstream of the promoter of an appropriate expression vector, and the recombinant vector is introduced into an appropriate host cell to prepare a transformant capable of producing the modified protein.
  • the transformant is cultured.
  • the modified protein accumulates in the cells of the transformant, the cells in the culture are collected by centrifuging the culture, the cells are washed, and the cells are crushed to recover the modified protein. Extract.
  • the modified protein is secreted out of the cells of the transformant, use the culture supernatant as it is or remove the cells or cells by centrifugation or the like. Thus, a modified protein can be produced.
  • the modified DNA needs to be incorporated so that its function is exhibited.
  • the recombinant vector is composed of a cis element such as Enhansa, It may contain a splicing signal, a poly-A addition signal, a selection marker (eg, a dihydrofolate reductase gene, an ampicillin resistance gene, a neomycin resistance gene), a ribosome binding sequence (SD sequence), and the like.
  • the type of the expression vector is not particularly limited as long as it is capable of autonomous replication in a host cell, and examples thereof include a plasmid vector, a phage vector, and Pinores vector.
  • examples of the plasmid vector include E.
  • coli-derived plasmids for example, pRSET, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19
  • Bacillus subtilis-derived plasmids for example, pUB110, pTP5
  • yeast-derived plasmids for example, ⁇ 13, YEp24, YCp50
  • phage vectors include, for example, ⁇ phage (for example, Charon4A, Charon21A ⁇ EMBL3, EMBL4, gtl0, gtll, ⁇ ZAP).
  • animal viruses such as retrovirus, vaccinia virus, and insect viruses such as baculovirus.
  • the type of host cell is not particularly limited as long as the modified DNA can be expressed. Examples include prokaryotic cells, yeast, animal cells, insect cells, plant cells, and the like.
  • Examples of a method for introducing a thread-recombinant vector include an electoral porosion method, a spheroplast method, a lithium acetate method, a calcium phosphate method, and a ribofusion method.
  • Culture of the transformant can be performed according to a usual method used for culturing host cells.
  • Modified proteins can be obtained by solvent extraction, salting out with ammonium sulfate, desalting, precipitation with organic solvents, getylaminoethyl (DEAE) -Sepharose, ion exchange chromatography, hydrophobic chromatography, gel filtration. It can be purified by an affinity chromatography method or the like.
  • Step (h) is a step of performing the above steps (a) to (g) on two or more types of samples containing microorganisms.
  • a modified protein library that is an aggregate of two or more types of modified proteins can be prepared.
  • samples for example, natural samples such as soil, water, mud, sediment, etc. collected from environmental forces having different temperatures, pH, and the like can be used.
  • Step (i) is a step of evaluating the function of the modified protein and screening for a modified protein having a predetermined function.
  • the function of the modified protein can be analyzed according to a conventional method. Functional analysis of the modified protein is performed at least for the functions of the known protein before modification, but may be performed for other functions.
  • the predetermined function of the modified protein to be screened is not particularly limited, and can be appropriately selected depending on the purpose.
  • Step (j) is a step of evaluating the function of the modified protein and estimating the function of the protein derived from the microorganism based on the function of the modified protein.
  • the modified protein is a part of a protein derived from a microorganism (encoded by a PCR amplified fragment). Therefore, the function of the modified protein may reflect the function of the protein derived from the microorganism. Since the functional domain is considered to be involved in the function of the protein, a part of the microorganism-derived protein (the amino acid sequence encoded by the PCR-amplified fragment) of the modified protein has the same type as the first to n-th known proteins. In the case of a functional domain of a protein having the function of, the function of the modified protein is likely to reflect the function of a protein derived from a microorganism.
  • a part of the microorganism-derived protein (amino acid sequence encoded by the PCR amplified fragment) of the modified protein is a part of a protein having the same type of function as the first to n-th known proteins. Therefore, the known protein found in step (e) (a protein into which a part of a protein derived from a microorganism is incorporated) 1S If the protein has the same type of function as the 1st to nth known proteins, The function is likely to reflect the function of the protein derived from the microorganism.
  • Example 1 Acquisition of genomic DNA derived from microorganisms contained in soil at high temperature environment
  • thermostable enzyme In order to use DNA polymerase effectively, it is important to have heat resistance that can be used for PCR and the like. In order to obtain a thermostable enzyme, it is most efficient to obtain a high-temperature environmental force sample. Therefore, hot spring areas with different properties ( PH ) were selected as the high temperature environment.
  • PH hot spring areas with different properties
  • Genomic DNA from various microorganisms was extracted. Genomic DNA was extracted from soil using Ultra Clean TM Soil DNA Purification kit (MO Bio, Catalog No. 12800-50, Funakoshi Catalog No. M128000), a DNA extraction kit from soil. The operation followed the operating procedure attached to this kit.
  • Ultra Clean TM Soil DNA Purification kit MO Bio, Catalog No. 12800-50, Funakoshi Catalog No. M128000
  • a 1Z50 amount of 2 ⁇ L of the actually extracted DNA solution was taken and 18 ⁇ L of the ⁇ buffer solution.
  • genomic DNA having a length of 10 kilobase pairs or more was recovered from some points, although the amount was small.
  • M represents a molecular weight marker
  • lanes 1 to 38 represent results regarding different points. From these results, it was confirmed that there was a sufficient amount of microorganisms in the high-temperature environment soil to extract a sufficient amount of genomic DNA.
  • FIG. 2 Alignment results of the amino acid sequences of family A type DNA polymerases derived from a small number of microorganisms (Bacillus subtiiis, Bacillus caldotenax, Thermus aquaticus, Themus thermophilus, Escherichia coli) are shown in FIG. 2 and FIG. FIG. 3 is a continuation of FIG.
  • two regions (DPNLQNIP and QVHDELX (X represents I, V or L)) enclosed by a square are amino acid sequences having high homology between a plurality of microorganisms. It is presumed that this amino acid sequence is also conserved in Family 1 type A DNA polymerase of other microorganisms.
  • PCR was performed in a solution containing NTP and 5 units of TAKARA Ex Taq polymerase (manufactured by Takara Bio Inc.). In the PCR, 30 temperature cycles consisting of 94 ° C for 30 seconds, 55 ° C for 1 minute, and 72 ° C for 2 minutes were performed.
  • ⁇ M '' indicates a molecular weight marker
  • lane 2 is Bacillus caldotenax
  • lane 3 is Bacillus caldolyticus
  • Escherichia coli ⁇ 5 ⁇ Bacillus suDtilis
  • ⁇ 6i Lactobacillus bulgaricus ⁇ ⁇ ⁇ // ⁇ Lactobacillus homohiochu, ⁇ ⁇ ⁇ 8 ⁇ Lactobacillus heterohiochiu ⁇ ⁇ i 9i
  • Thermus aquaticus is there.
  • the above-mentioned degenerate primer can be used as a primer for a family A type DNA polymerase gene derived from any microorganism.
  • 50 ⁇ L of the total recovered amount of genomic DNA recovered from high-temperature environmental soils such as the Kirishima hot spring area and the Onikobe hot spring area was determined using 150 ⁇ L of the above degenerated primer lOOpmol in the presence of 1. 10 mM Tris-HCl (pH 8.3), 50 mM KC1, 15 mM MgCl, 200 ⁇ M dNT PCR was performed in a solution containing P and 5 units of TAKARA EX Taq polymerase (manufactured by Takara Bio Inc.). The PCR was performed for 30 cycles of a temperature cycle at 94 ° C for 30 seconds, 55 ° C for 1 minute, and 72 ° C for 2 minutes.
  • liquid 1 ⁇ medium containing 10 g of tryptone, 5 g of yeast extract, 5 g of sodium salt and lg glucose
  • 150 L of the culture after the completion of the shaking culture was inoculated on an LB agar medium containing lOO ⁇ g / mL ampicillin, and cultured at -37 ° C.
  • E. coli colonies amplified on agar medium containing approximately 2 mL of 100 ⁇ g / mL ampicillin Inoculum was inoculated in LB medium and cultured at ⁇ 37 ° C. with shaking.
  • the grown cells were collected by centrifugation at 10, OOOrpm for 10 minutes, and plasmid DNA was recovered using QIAprep Spin Miniprep Kit (QIAGEN, Catalog No. 27104).
  • the recovered plasmid DNA was converted into type I, and PCR was performed using primers for decoding the base sequence (M13 primer M4 and T promoter primer).
  • Dye terminator one-cycle sequencing kit (ABI) was used for PCR, and ABI 3700 automatic nucleotide sequence detector was used for decoding the nucleotide sequence.
  • the base sequence of the amplified PCR fragment may contain mechanical errors
  • the base sequence was corrected manually to eliminate mechanical errors
  • the amino acid sequence encoded in the base sequence was determined.
  • a homology search was performed using a public protein database, and the amino acid sequence encoded by the PCR-amplified fragment was compared with the amino acid sequence of a known family A type DNA polymerase (DNA polymerase from Thermus aquaticus (Taq DNA polymerase)). A comparison was made with the acid sequence.
  • the amino acid sequence encoded by the PCR amplified fragment contained the amino acid sequence of the functional domain of family A type DNA polymerase.
  • “Taq” represents the amino acid sequence of Taq DNA polymerase
  • “No.l”, “No.2” and “No.3” are genomic DNAs collected from different points Represents the amino acid sequence encoded by the PCR amplified fragment obtained, and shows 90%, 57% and 52% homology to the amino acid sequence of Taq DNA polymerase, respectively.
  • the amino acid sequences related to “No. 1”, “No. 2” and “No. 3” indicate only amino acid sequences different from Taq DNA polymerase.
  • the amino acid sequences encoded by the PCR amplified fragments obtained by using genomic DNA recovered from different points (a to g) as type III are derived from different microorganisms, respectively. It showed homology with the amino acid sequence of Family A DNA polymerase, confirming that many unknown Family A DNA polymerases exist in a high temperature environment.
  • the amino acid sequence of Taq DNA polymerase has homology with the amino acid sequence encoded by the PCR amplified fragment.
  • the modified DNA polymerase in which the indicated region is substituted with the amino acid sequence encoded by the PCR amplified fragment is considered to exhibit a DNA polymerase activity different from that of Taq DNA polymerase, and may exhibit improved DNA polymerase activity.
  • the function of the modified DNA polymerase is considered to reflect the function of the unknown family type A DNA polymerase present in high-temperature soil.
  • PTAQ9 vector containing DNA encoding Taq DNA polymerase Ishino Y, Ueno T, Miyagi M, Uemori T, Imamura M, Tsunasawa S, Kato I. Overproduction of Thermus aquaticus DNA polymerase and its structural analysis by ion-spray mass spectrometry " (1994) J Biochem (Tokyo), 116 (5), 1019-24) 50 ⁇ L of 10 mM Tris-HCl (pH 8.3), 50 mM KCl using 2 pmol of primers A and B in the presence of lOng , 15 mM MgCl, 200 M dNTP and 2.5 units PfoUltra DNA polymerase (Ishino Y, Ueno T, Miyagi M, Uemori T, Imamura M, Tsunasawa S, Kato I. Overproduction of Thermus aquaticus DNA polymerase and its structural analysis by ion-spray mass spectrometry "
  • PCR was performed in a solution containing Stratagene). The PCR was performed 30 cycles of a temperature cycle of 95 ° C for 1 minute, 55 ° C for 1 minute, and 72 ° C for 2 minutes.
  • PCR was performed in a solution containing The PCR was carried out 30 cycles of 1 minute at 95 ° C, 1 minute at 55 ° C, and 2 minutes at 72 ° C.
  • each PCR amplification reaction solution contains 5 L of 10-fold concentrated restriction enzyme buffer (200 mM Tris-HCl (pH 8.2), 100 mM MgCl, 600 mM NaCl, lOmM DTT) and 42 ⁇ L of sterile distilled water.
  • restriction yeast After mixing 3 ⁇ L of elemental Blpl and mixing well, the mixture was kept at 37 ° C. for 3 hours.
  • 5 M NaC1 solution and 3 L of restriction enzyme Bglll were added and mixed well, and the mixture was kept at 60 ° C. for 3 hours. After completion of thermal insulation, in addition to 10 i u 10 mM EDTA and 2% SDS solution L, the reaction was stopped.
  • each DNA fragment was recovered and purified using QuiaQuickTip manufactured by QUIAGEN.
  • the PCR amplified fragment was incorporated into the pTAQ9 vector containing the DNA encoding Taq DNA polymerase, that is, the pTAQ9 vector having the DNA encoding the modified DNA polymerase could be constructed. It was confirmed that.
  • “M” represents a marker
  • lanes 1 to 3 show the results for the pTAQ9 vector into which a PCR amplified fragment obtained from genomic DNA collected from different points and obtained as type III was incorporated.
  • E. coli BL21-CodonPlus (DE3) -RIL The competent cells of E. coli BL21-CodonPlus (DE3) -RIL were thawed and transferred to two Falcon tubes in a volume of 0.1 mL.
  • the solutions corresponding to the two pTAQ9 vectors were separately added thereto, left on ice for 30 minutes, and then heat-shocked at 42 ° C for 30 seconds, and 0.9 mL of SOC medium was added thereto.
  • the seeds were shaken and cultured at 37 ° C for 1 hour with shaking. Thereafter, an appropriate amount was spread on an LB agar plate containing ampicillin, and cultured overnight at 37 ° C to obtain a transformant Escherichia coli BL21-CodonPlus (DE3) -RIL / ST0452-1.
  • IPTG isopropyl-bD-thiogalactopyranoside
  • FIG. 8 shows the results of subjecting the crude DNA polymerase fraction to SDS-PAGE and staining with CBB (Coomassie brilliant blue).
  • ⁇ M '' represents a molecular weight marker
  • ⁇ Q9J represents the results for the crude DNA polymerase fraction obtained by expressing the pTAQ9 vector containing DNA encoding Taq DNA polymerase
  • lanes 1 and 2 Shows the results for the crude DNA polymerase fraction obtained by expressing the pTAQ9 vector having the DNA encoding the modified DNA polymerase.
  • crude DNA polymerase The ze fraction was an almost uniform protein sample.
  • M indicates a molecular weight marker
  • lane 1 shows the results of electrophoresis of the PCR-amplified fragment obtained using a commercially available Taq DNA polymerase (control)
  • lane 2 shows the modified DNA polymerase. The results of electrophoresis of the PCR-amplified fragments obtained using the method are shown.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 微生物を含有する試料から微生物に由来するDNAを調製し、同一種類の機能を有する第1~第nの既知タンパク質の間で保存されているアミノ酸配列に基づいて縮重プライマーを作製し、微生物に由来するDNAの存在下、縮重プライマーを用いてPCRを行い、PCRにより増幅されたDNA断片の塩基配列を決定し、DNA断片にコードされるアミノ酸配列を確定し、DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との相同性を評価し、DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸配列を有する既知タンパク質を見出し、見出された既知タンパク質をコードするDNAのうち相同性を示すアミノ酸配列をコードする領域をDNA断片で置換して改変DNAを作製し、改変DNAを発現させて改変タンパク質を作製することにより、改変タンパク質のハイスループットかつ効率的な機能解析及びスクリーニングを実現する。

Description

明 細 書
改変タンパク質の作製方法
技術分野
[0001] 本発明は、改変タンパク質の作製方法、改変タンパク質ライブラリーの作製方法及 び改変タンパク質のスクリーニング方法に関する。また、本発明は、微生物に由来す るタンパク質の機能推定方法に関する。
背景技術
[0002] 優れた機能を有するタンパク質を取得する方法としては、(1)新規なタンパク質を 同定し、その機能を解析する方法、(2)既存のタンパク質のアミノ酸配列にランダム 変異を導入して改変タンパク質を作製し、その機能を解析する方法 (例えば、特許文 献 1)がある。
特許文献 1:特開 2003— 304870号公報
発明の開示
発明が解決しょうとする課題
[0003] 上記(1)の方法では、既存のタンパク質又は遺伝子の間で保存されているアミノ酸 配列又は塩基配列に基づ 、て設計したプライマーを用いて PCRを行 、、 PCR増幅 断片をプローブとして新規なタンパク質をコードする遺伝子を取得する。しかしながら 、新規なタンパク質の機能を評価するためには、それをコードする遺伝子の全長塩 基配列を決定する必要があり、既存のタンパク質又は遺伝子の間で保存されている アミノ酸配列又は塩基配列以外の情報は未知であるので、新規なタンパク質をコード する遺伝子の全長塩基配列を決定するには多大な労力と時間を要する。また、上記 (1)の方法を利用して微生物に由来するタンパク質又は遺伝子を同定する際、微生 物に由来するゲノム DNA、 mRNA等を得るために微生物の分離培養が必要となる 場合があるが、微生物が培養不能又は培養条件が未知である場合には対処の仕様 がない。
[0004] 一方、上記(2)の方法では、改変タンパク質を容易かつ迅速に作製することができ るので、改変タンパク質のハイスループットな機能解析を行うことができる。し力しなが ら、既存のタンパク質のアミノ酸配列にランダム変異を導入した結果、力えって機能 が低下してしまう場合が多 、。
[0005] そこで、本発明は、機能の向上が期待できる改変タンパク質を容易かつ迅速に作 製することにより、改変タンパク質のハイスループットかつ効率的な機能解析及びスク リー-ングを実現することができる、改変タンパク質の作製方法、改変タンパク質ライ ブラリーの作製方法及び改変タンパク質のスクリーニング方法を提供することを目的 とする。
[0006] また、本発明は、微生物に由来するタンパク質の機能を推定する際、タンパク質又 はそれをコードする DNAの全長配列を同定する必要がなぐまた、微生物を分離培 養する必要がない、微生物に由来するタンパク質の機能推定方法を提供することを 目的とする。
課題を解決するための手段
[0007] 上記目的を解決するために、本発明は、下記(1)〜(7)の改変タンパク質の作製方 法、改変タンパク質ライブラリーの作製方法、改変タンパク質のスクリーニング方法及 び微生物に由来するタンパク質の機能推定方法を提供する。
[0008] (1)下記工程 (a)〜(g)を含む、改変タンパク質の作製方法。
(a)微生物を含有する試料から、前記微生物に由来する DNAを調製する工程
(b)同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存されているアミ ノ酸配列に基づいて縮重プライマーを作製する工程
(c)前記微生物に由来する DNAの存在下、前記縮重プライマーを用 、て PCRを行 工程
(d)前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DNA断片にコ ードされるアミノ酸配列を確定する工程
(e)前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との 相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸 配列を有する既知タンパク質を見出す工程
(f)前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前記相同性を 示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 DNAを作製 する工程
(g)前記改変 DNAを発現させて、改変タンパク質を作製する工程
[0009] (2)下記工程 (a)〜 (h)を含む、改変タンパク質ライブラリーの作製方法。
(a)微生物を含有する試料から、前記微生物に由来する DNAを調製する工程
(b)同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存されているアミ ノ酸配列に基づいて縮重プライマーを作製する工程
(c)前記微生物に由来する DNAの存在下、前記縮重プライマーを用 、て PCRを行 工程
(d)前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DNA断片にコ ードされるアミノ酸配列を確定する工程
(e)前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との 相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸 配列を有する既知タンパク質を見出す工程
(f)前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前記相同性を 示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 DNAを作製 する工程
(g)前記改変 DNAを発現させて、改変タンパク質を作製する工程
(h)微生物を含有する 2種類以上の試料にっ ヽて前記工程 (a)〜 (g)を行う工程 [0010] (3)下記工程 (a)〜 (i)を含む、所定機能を有する改変タンパク質のスクリーニング方 法。
(a)微生物を含有する試料から、前記微生物に由来する DNAを調製する工程
(b)同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存されているアミ ノ酸配列に基づいて縮重プライマーを作製する工程
(c)前記微生物に由来する DNAの存在下、前記縮重プライマーを用 、て PCRを行 工程
(d)前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DNA断片にコ ードされるアミノ酸配列を確定する工程
(e)前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との 相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸 配列を有する既知タンパク質を見出す工程
(f)前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前記相同性を 示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 DNAを作製 する工程
(g)前記改変 DNAを発現させて、改変タンパク質を作製する工程
(h)微生物を含有する 2種類以上の試料にっ ヽて前記工程 (a)〜 (g)を行う工程
(i)前記改変タンパク質の機能を評価し、所定機能を有する改変タンパク質をスクリー ユングする工程
[0011] (4)下記工程 (a)〜(g)及び (j)を含む、微生物に由来するタンパク質の機能推定方 法。
(a)微生物を含有する試料から、前記微生物に由来する DNAを調製する工程
(b)同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存されているアミ ノ酸配列に基づいて縮重プライマーを作製する工程
(c)前記微生物に由来する DNAの存在下、前記縮重プライマーを用 、て PCRを行 工程
(d)前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DNA断片にコ ードされるアミノ酸配列を確定する工程
(e)前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との 相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸 配列を有する既知タンパク質を見出す工程
(f)前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前記相同性を 示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 DNAを作製 する工程
(g)前記改変 DNAを発現させて、改変タンパク質を作製する工程
(j)前記改変タンパク質の機能を評価し、前記改変タンパク質の機能に基づいて、前 記微生物に由来するタンパク質の機能を推定する工程
[0012] (5)前記工程 (b)で作製される縮重プライマーが、前記第 1〜第 nの既知タンパク質 をコードする DNAのうち、前記第 1〜第 nの既知タンパク質の機能ドメインをコードす る領域を増幅できる前記 (4)記載の方法。
[0013] (6)前記工程 (e)で見出される既知タンパク質が、前記第 1〜第 nの既知タンパク質と 同一種類の機能を有する前記 (4)又は(5)記載の方法。
[0014] (7)前記微生物が培養不能又は培養条件が未知の微生物である前記 (4)〜(6)の いずれかに記載の方法。
発明の効果
[0015] 本発明によれば、機能の向上が期待できる改変タンパク質を容易かつ迅速に作製 することにより、改変タンパク質のハイスループットかつ効率的な機能解析及びスクリ 一-ングを実現することができる、改変タンパク質の作製方法、改変タンパク質ライブ ラリーの作製方法及び改変タンパク質のスクリーニング方法が提供される。
[0016] また、本発明によれば、微生物に由来するタンパク質の機能を推定する際、タンパ ク質又はそれをコードする DNAの全長配列を同定する必要がなぐまた、微生物を 分離培養する必要がない、微生物に由来するタンパク質の機能推定方法が提供さ れる。
図面の簡単な説明
[0017] [図 1]高温環境土壌力も抽出したゲノム DNAの電気泳動結果を示す図である。
[図 2]複数の微生物 (Bacillus subtilis、 Bacillus caldotenax、 Thermus aquaticus、 Themus thermophilus, Escherichia coli)に由来するファミリー A型 DNAポリメラーゼ のアミノ酸配列のァライメント結果を示す図である。
[図 3]複数の微生物 (Bacillus subtilis、 Bacillus caldotenax、 Thermus aquaticus ^ Themus thermophilus, Escherichia coli)に由来するファミリー A型 DNAポリメラーゼ のアミノ酸配列のァライメント結果を示す図(図 2の続き)である。
[図 4] 数の微生物 (Bacillus caldotenax, Bacillus caldolyticus, Escherichia coli, Bacillus subtilis, Lactobacillus bulgaricus, Lactobacillus homohiochii, Lactobacillus heterohiochii, Thermus aquaticus, Themus thermophilus, Sulfolobus solfataricus)力 ら抽出したゲノム DNAの存在下、縮重プライマーを用いて PCRを行うことにより得ら れた PCR増幅断片の電気泳動結果を示す図である。 [図 5]高温環境土壌から回収したゲノム DNAの存在下、縮重プライマーを用いて PC Rを行うことにより得られた PCR増幅断片の電気泳動結果を示す図である。
[図 6]高温環境土壌から回収したゲノム DNAの存在下、縮重プライマーを用いて PC Rを行うことにより得られた PCR増幅断片にコードされるアミノ酸配列を示す図である
[図 7]プラスミド DNA力 切り出した BlplZBglll断片の電気泳動結果を示す図である
[図 8]粗 DNAポリメラーゼ画分を SDS— PAGEに供した後、 CBB (クマシーブリリア ントブルー)染色した結果を示す図である。
[図 9]改変 DNAポリメラーゼを用いた PCRにより得られた PCR増幅断片の電気泳動 結果を示す図である。
[図 10]複数の微生物 (¾erratia marcescens、 Bacillus circurans、 Stenotrophomonas maltophilia、 Janthinobacterium lividum、 Thermococcus kodakaraensis、 Clostridium thermocellum、 Bacillus licheniformis)に由来するキチナーゼのアミノ酸配列のァライ メント結果を示す図である。
[図 11]複数の微生物 (Bacillus属、 Carnobacterium属、 Synechocystis属、 Phormidium 属、 Vibrio属、 Shewanella属、 Mycobacterium属)に由来するァラニンデヒドロゲナーゼ のアミノ酸配列のァライメント結果を示す図である。
[図 12]複数の微生物 (Bacillus subtuis、 Oceanooacilius iheyensis、 Escherichia col" Thermotoga maritima、 Aquifex aeolicus)に由来す oD— 2—ァォキシリボ ~~ス一 5— フォスフェートアルドラーゼのアミノ酸配列のァライメント結果を示す図である。
発明を実施するための最良の形態
[0018] 以下、本発明の方法に含まれる工程について詳細に説明する。
丁-程 ω
工程 (a)は、微生物を含有する試料から、前記微生物に由来する DNAを調製する 工程である。
[0019] 試料の種類は、 1種類又は 2種類以上の微生物を含有する限り特に限定されるもの ではない。試料としては、例えば、各種環境から採取した土壌、水、泥、堆積物等の 天然試料を使用することができる。天然試料を採取する環境は特に限定されるもの ではなぐ様々な条件 (例えば、常温、高温、低温等の様々な温度条件、中性、酸性
、アルカリ性等の様々な pH条件、常圧、高圧、低圧等の様々な圧力条件)下にある 環境カゝら天然試料を採取することができる。天然試料を採取する環境の具体例として は、温泉等の高温環境、酸性温泉等の酸性環境、アルカリ性温泉等のアルカリ環境 、深海等の高圧環境等が挙げられる。
[0020] 試料としては、 2種類以上の微生物を含有する試料を使用することが好ましい。 2種 類以上の微生物を含有する試料を使用すると、工程 (c)において PCR増幅断片が 得られる可能性が高くなる。また、 2種類以上の PCR増幅断片が得られる可能性も高 くなり、 1つの試料力も多種類の改変タンパク質を作製することが可能となる。なお、 2 種類以上の PCR増幅断片は混合物として得られる力 工程 (d)において各 PCR増 幅断片の塩基配列を決定することにより、各 PCR増幅断片の種類を区別することが できる。
[0021] 試料に含有される微生物の種類は特に限定されるものではなぐ例えば、細菌、力 ビ類 (糸状菌類)、担子菌類、酵母類、ウィルス等が挙げられる。
[0022] 試料として、高温環境から採取した天然試料を使用する場合、試料には好熱菌が 含有されると考えられる。「好熱菌」は、高温下に生育できる細菌の総称であり、通常 55°C以上で生育できる細菌を指す。好熱菌には、通常 75°C以上でも生育できる高 度好熱菌、通常 85〜90°C以上で生育できる超好熱菌、常温 (通常 37°C)でも生育 できる通性好熱菌、約 40°C以上でのみ生育できる絶対好熱菌等が含まれる。
[0023] 試料に含有される微生物の種類 (科、属、種等)は同定されていてもよいし同定され て 、なくてもょ 、。試料に含有される微生物の種類が同定されて ヽな 、場合であって も、当該微生物の種類を同定する必要はない。
[0024] 試料に含有される微生物は、培養不能又は培養条件が未知の微生物であってもよ い。本発明は、試料に含有される微生物を分離培養する必要がないので、試料に含 有される微生物が培養不能又は培養条件が未知である場合に特に有用である。
[0025] 微生物に由来する DNAは、ゲノム DNAであってもよいし cDNAであってもよい。
微生物に由来するゲノム DNAは、常法に従って微生物力も抽出することができる。 微生物に由来する cDNAは、常法に従って微生物力 抽出された mRNAを逆転写 すること〖こより調製することができる。微生物カゝら抽出されたゲノム DNA又は mRNA には、通常、微生物が有する全てのゲノム DNA又は mRNAが含まれる力 微生物 が有する一部のゲノム DNA又は mRNAのみが含まれて!/、てもよ!/、。
[0026] 工程 (b)
工程 (b)は、同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存され て 、るアミノ酸配列に基づ 、て縮重プライマーを作製する工程である。
[0027] 第 1〜第 nの既知タンパク質は、アミノ酸配列、由来生物種、機能等が既知の天然 型タンパク質である。
[0028] 第 1〜第 nの既知タンパク質が有する同一種類の機能は特に限定されるものではな いが、例えば、耐熱性、 DNAポリメラーゼ活性、キチナーゼ活性、ァラニンデヒドロゲ ナーゼ活性、 D— 2—デォキシリボースー5—フォスフェートアルドラーゼ活性、ヌクレ ァーゼ活性、ヘリカーゼ活性等が挙げられる。第 1〜第 nの既知タンパク質が有する 機能のうち、 1種類の機能が同一であってもよいし、 2種類以上の機能が同一であつ てもよい。
[0029] 第 1〜第 nの既知タンパク質が由来する生物種は特に限定されるものではないが、 微生物であることが好ましぐ試料に含有される微生物と近縁の微生物であることがさ らに好ましい。試料に含有される微生物と、第 1〜第 nの既知タンパク質が由来する 生物種とが近縁である場合、工程 (c)において PCR増幅断片が得られる可能性が高 くなる。試料に含有される微生物が未同定であっても、試料に含有される微生物と近 縁の生物種に由来するタンパク質を第 1〜第 nの既知タンパク質として選択すること ができる。例えば、高温環境から採取された天然試料を使用する場合、当該天然試 料には好熱菌が含有されると考えられるので、好熱菌に由来するタンパク質を第 1〜 第 nの既知タンパク質として選択することができる。
[0030] 縮重プライマーは、第 1〜第 nの既知タンパク質の間で保存されているアミノ酸配列 に基づいて作製することができる。すなわち、第 1〜第 nの既知タンパク質のアミノ酸 配列をァライメントして保存領域湘同領域)を同定し、保存領域のアミノ酸配列に基 づ 、て縮重プライマーの塩基配列を決定し、化学合成等の常法に従って縮重プライ マーを作製することができる。
[0031] 縮重プライマーには、第 1〜第 nの既知タンパク質をコードする 2本鎖 DNAのうち、 センス鎖にノ、イブリダィズできるプライマー及びアンチセンス鎖にハイブリダィズでき るプライマーが含まれ、各プライマーはそれぞれ異なる保存領域のアミノ酸配列に基 づ 、て作製することができる。
[0032] 微生物に由来する DNAの存在下、第 1〜第 nの既知タンパク質の間で保存されて V、るアミノ酸配列に基づ 、て作製した縮重プライマーを用いて PCRを行うことにより、 微生物に由来する DNAのうち、第 1〜第 nの既知タンパク質と同一種類の機能を有 するタンパク質をコードする DNAの一部が増幅されると考えられる。
[0033] 例 は、 Bacillus subtiiis、 Bacillus caldotenax^ Thermus aquaticus、 Themus
thermophilus, Escherichia coli等の微生物に由来するファミリー A型 DNAポリメラー ゼには、図 2及び図 3に示すように、 DPNLQNIP、 QVHDELX(Xは I、 V又は Lを 表す)等のアミノ酸配列が保存されており、 DPNLQNIPに基づいて 5'- gaycchaacytscaraayathcc -3'で表される縮重プライマーを、 QVHDELXに基づいて 5'- kassakytcrtcgtgnacytg -3'で表される縮重プライマーを作製することができる。そ し飞、任, の Ik生物 (f列 、 Bacillus caldotenax, Bacillus caldolyticus, Escherichia coli, Bacillus subtilis, Lactobacillus bulgaricus, Lactobacillus homohiochn,
Lactobacillus heterohiocnn, Thermus aquaticus, Themus thermophilus, Sulfolobus solfataricus)に由来する DNAの存在下、上記縮重プライマーを用いて PCRを行うこ とにより、 PCR増幅断片を得ることができる。こうして得られた PCR増幅断片は、フアミ リー A型 DNAポリメラーゼをコードする DNAを铸型として増幅した DNA断片(フアミ リー A型 DNAポリメラーゼをコードする DNAの一部)であると考えられる。
[0034] 例 は、 Serratia marcescens、 Bacillus circurans、 Stenotropnomonas maltophilia、 Janthinobacterium lividum、 Thermococcus kodakaraensis、 Clostridium thermocellum 、 Bacillus licheniformis等の微生物に由来するキチナーゼには、図 10に示すように、 THINYAF、 ISVGGWT, DIDWEYPゝ INVMTYD, GLGGAMFWE等のアミノ 酸配列が保存されており、 THINYAFに基づいて 5し acncayathaaytaygcntt -3'で表 される縮重プライマーを、 ISVGGWTに基づいて 5'- athwsigtiggnggntggac -3'で表 される縮重プライマーを、 DIDWEYPに基づいて 5'- gayathgaytgggartaycc -3'で表 される縮重プライマーを、 INVMTYDに基づいて 5'- athaaygtnatgacntayga -3'で表 される縮重プライマーを、 GLGGAMFWEに基づ!/、て 5'- tcccadatcatiacnccncciarncc -3'で表される縮重プライマーを作製することができる。そ して、任意の微生物に由来する DNAの存在下、上記縮重プライマーを用いて PCR を行うことにより、 PCR増幅断片を得ることができる。こうして得られた PCR増幅断片 は、キチナーゼをコードする DNAを铸型として増幅した DNA断片(キチナーゼをコ ードする DNAの一部)であると考えられる。
[0035] f列? J¾、 Bacillus腐、し arnobactenum禺、 ¾ynechocystis属、 Phormidium/禺、 Vibrio J¾ 、 Shewanella属、 Mycobacterium属等の微生物に由来するァラニンデヒドロゲナーゼ( AlaDH)には、図 11〖こ示すよう〖こ、 FTYLHLA、 DVAIDQG等のアミノ酸配列が保 存されており、 FTYLHLAに基づいて 5'- ttyacitwyyticayytigc -3'で表される縮重プ ライマーを、 DVAIDQGに基づいて 5し ccytgrtcdatigciayrtc -3'で表される縮重プラ イマ一を作製することができる。そして、任意の微生物に由来する DNAの存在下、 上記縮重プライマーを用いて PCRを行うことにより、 PCR増幅断片を得ることができ る。こうして得られた PCR増幅断片は、ァラニンデヒドロゲナーゼをコードする DNAを 铸型として増幅した DNA断片(ァラニンデヒドロゲナーゼをコードする DNAの一部) であると考えられる。
[0036] 例 は、 Bacillus subtiiis、 Oceanobacillus iheyensis、 Escherichia coli、 Thermotoga maritima、 Aquifex aeolicus等に由来する D— 2 デォキシリボース 5 フォスフエ一 トアルドラーゼ(D- 2- deoxyribose- 5- phosphate aldolase: DERA)は、図 12に示すよう に、 VIGFPLG, VKASGGV等のアミノ酸配列が保存されており、 VIGFPLGに基 づいて 5'- gtnathggittycciytigg -3'で表される縮重プライマーを、 VKASGGVに基 づいて 5'- ayiccicciswngcyttnac -3'で表される縮重プライマーを作製することができ る。そして、任意の微生物に由来する DNAの存在下、上記縮重プライマーを用いて PCRを行うことにより、 PCR増幅断片を得ることができる。こうして得られた PCR増幅 断片は、 D— 2 デォキシリボース 5 フォスフェートアルドラーゼをコードする DN Aを铸型として増幅した DNA断片(D— 2 デォキシリボース 5 フォスフェートァ ルドラーゼをコードする DNAの一部)であると考えられる。
[0037] なお、上記縮重プライマーの塩基配列にぉ 、て、「i」はイノシンを、「w」は a又は tを、
「y」は t又は cを、「s」は c又は gを、「k」は g又は tを、「r」は a又は gを、「h」は a又は t又は c を、「n」は a又は g又は c又は tを、「d」は a又は t又は gを表す。
[0038] 縮重プライマーは、通常 15〜30塩基、好ましくは 20〜25塩基力もなるオリゴヌタレ ォチドであり、常法に従って化学合成することができる。縮重プライマーには、制限酵 素認識配列、タグ配列、蛍光色素、ラジオアイソトープ等の標識を付加することができ る。
[0039] 縮重プライマーは、第 1〜第 nの既知タンパク質をコードする DNAのうち、第 1〜第 nの既知タンパク質の機能ドメインをコードする領域を増幅できるように作製すること が好ましい。ここで、「機能ドメイン」とは、第 1〜第 nの既知タンパク質が有する同一種 類の機能に関与するドメインを意味する (例えば、第 1〜第 nの既知タンパク質が有す る同一種類の機能が DNAポリメラーゼ活性である場合、 DNAポリメラーゼ活性に関 与するドメインを意味する)。縮重プライマーが、第 1〜第 nの既知タンパク質の機能ド メインをコードする領域を増幅できる場合、微生物に由来する DNAのうち、第 1〜第 nの既知タンパク質と同一種類の機能を有するタンパク質の機能ドメインをコードする 領域を増幅することができると考えられ、このような PCR増幅断片を利用して改変タン ノ^質を作製することにより、改変タンパク質の機能が向上する可能性が高くなるとと もに、改変タンパク質の機能が微生物に由来するタンパク質の機能を反映する可能 '性が高くなる。
[0040] 工程(c)
工程 (c)は、前記微生物に由来する DNAの存在下、前記縮重プライマーを用いて
PCRを行う工程である。
[0041] 微生物に由来する DNAの存在下、縮重プライマーを用いて PCRを行うことにより、 微生物に由来する DNAを铸型とした PCR増幅断片を得ることができる。 PCRは常 法に従って行うことができ、 PCR増幅断片は、ポリアクリルアミド電気泳動等の常法に 従って精製することができる。
[0042] . (dl 工程 (d)は、前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DN A断片にコードされるアミノ酸配列を確定する工程である。
[0043] PCR増幅断片の塩基配列は、マキサム ギルバートの化学修飾法、ジデォキシヌ クレオチド鎖終結法等の常法に従って決定することができる。塩基配列解析の際に は、例えば、市販の塩基配列分析装置を使用することができる。
[0044] PCR増幅断片は、塩基配列解析の前に、常法に従ってクローユングしてもよい。例 えば、 PCR増幅断片を適当なクローユングベクターに組み込んで組換えベクターを 作製し、当該組換えベクターを用いて大腸菌等の宿主細胞を形質転換し、テトラサイ クリン耐性、アンピシリン耐性を指標として形質転換体を選択することにより、 PCR増 幅断片をクローユングすることができる。クローユングベクターは、宿主細胞中で自立 複製できるものであればよぐ例えば、ファージベクター、プラスミドベクター等を使用 することができる。宿主細胞としては、例えば、大腸菌(Escherichia coli)等を使用す ることがでさる。
[0045] 決定された塩基配列には誤差が含まれる場合があるので、決定された塩基配列を 修正して誤差を取り除いた後、塩基配列にコードされるアミノ酸配列を確定することが 好ましい。
[0046] 工程(e)
X@ (e)は、前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸 配列との相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示 すアミノ酸配列を有する既知タンパク質を見出す工程である。
[0047] 相同性評価の対象となる既知タンパク質は、アミノ酸配列、由来生物種、機能等が 既知の天然型タンパク質であり、その種類は特に限定されるものではない。
[0048] 相同性評価の対象となる既知タンパク質が有する機能は特に限定されるものでは なぐ第 1〜第 nの既知タンパク質と同一種類の機能であってもよいし、第 1〜第 nの 既知タンパク質と異なる種類の機能であってもよいが、第 1〜第 nの既知タンパク質と 同一種類の機能であることが好ま 、。
[0049] 相同性の評価は、既存のデータベース等を利用して行うことができる。
相同性の評価により、 PCR増幅断片にコードされるアミノ酸配列が新規である力否 かを判別することができる。工程 (f)及び (g)は、 PCR増幅断片にコードされるァミノ 酸配列が既知である場合に行ってもよいが、 PCR増幅断片にコードされるアミノ酸配 列が新規である場合に行うことが好まし 、。
[0050] 相同性の評価により、既知タンパク質が、 PCR増幅断片にコードされるアミノ酸配 列と相同性を示すアミノ酸配列を有する力否かを判定することができる。
相同性を示す領域は、 PCR増幅断片にコードされるアミノ酸配列と通常 50%以上
、好ましくは 60%以上、さらに好ましくは 70%以上の相同性を示す領域である。
[0051] 工程 (f)
工程 (f)は、前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前 記相同性を示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 D NAを作製する工程である。
[0052] 改変 DNAは、工程 (e)で見出された既知タンパク質をコードする DNAを制限酵素 で処理して、 PCR増幅断片にコードされるアミノ酸配列と相同性を示すアミノ酸配列 をコードする領域を除去し、この部分に PCR増幅断片を連結することにより作製する ことができる。 PCR増幅断片は、トリプレット (コドン)の読みとり枠がずれないように( すなわちフレームシフトが生じな 、ように)連結する。
[0053] 改変 DNAは、工程(e)で見出された既知タンパク質のアミノ酸配列のうち、 PCR増 幅断片にコードされるアミノ酸配列と相同性を示すアミノ酸配列力 PCR増幅断片に コードされるアミノ酸配列で置換された改変タンパク質をコードする。 PCR増幅断片 にコードされるアミノ酸配列は自然界に存在するアミノ酸配列であり、自然淘汰された ものであるので、そのアミノ酸配列は何らかの意義を有しているものと考えられる。し たがって、 PCR増幅断片にコードされるアミノ酸配列と相同性を示すアミノ酸配列が 、 PCR増幅断片にコードされるアミノ酸配列で置換された改変タンパク質は、既存の タンパク質のアミノ酸配列をランダムに変異させた改変タンパク質よりも、機能の向上 を期待することができる。
[0054] 改変 DNAは、改変タンパク質をコードするオープンリーディングフレームとその 3' 末端側に位置する終止コドンとを含む。改変 DNAは、オープンリーディングフレーム の 5'末端及び Z又は 3'末端に非翻訳領域 (UTR)を含んでいてもよい。また、改変 DNAは、改変タンパク質が融合タンパク質として発現されるように、他のタンパク質 又はペプチドをコードするオープンリーディングフレームを含んで 、てもよ!/、。
[0055] 工程 (g)
X@ (g)は、前記改変 DNAを発現させて、改変タンパク質を作製する工程である。
[0056] 改変タンパク質は、例えば、次のようにして作製することができる。
まず、改変 DNAを適当な発現ベクターのプロモーターの下流に挿入して組換えべ クタ一を作製し、組換えベクターを適当な宿主細胞に導入して改変タンパク質を生産 できる形質転換体を作製する。次いで、形質転換体を培養する。改変タンパク質が 形質転換体の細胞内に蓄積される場合には、培養物を遠心分離することにより、培 養物中の細胞を集め、該細胞を洗浄した後に細胞を破砕して、改変タンパク質を抽 出する。改変タンパク質が形質転換体の細胞外に分泌される場合には、培養上清を そのまま使用するか、遠心分離等により培養上清力も細胞又は菌体を除去する。こう して、改変タンパク質を作製することができる。
[0057] 組換えベクターにお 、て、改変 DNAは、その機能が発揮されるように組み込まれ ていることが必要であり、組換えベクターは、プロモーターの他、ェンハンサ一等のシ スエレメント、スプライシングシグナル、ポリ A付加シグナル、選択マーカー(例えば、 ジヒドロ葉酸還元酵素遺伝子、アンピシリン耐性遺伝子、ネオマイシン耐性遺伝子)、 リボソーム結合配列(SD配列)等を含有することができる。
[0058] 発現ベクターの種類は、宿主細胞にお!、て自立複製が可能なものであれば特に限 定されるものではなぐ例えば、プラスミドベクター、ファージベクター、ゥイノレスべクタ 一等が挙げられる。プラスミドベクターとしては、例えば、大腸菌由来のプラスミド (例 えば、 pRSET、 pBR322、 pBR325、 pUC118、 pUC119、 pUC18、 pUC19)、枯草菌由来 のプラスミド(例えば、 pUB110、 pTP5)、酵母由来のプラスミド(例えば、 ΥΕρ13、 YEp24、 YCp50)が挙げられ、ファージベクターとしては、例えば、 λファージ(例えば 、 Charon4A、 Charon21Aゝ EMBL3、 EMBL4、 gtl0、 gtll、 λ ZAP)が挙げられ、ゥ ィルスべクタ一としては、例えば、レトロウイルス、ワクシニアウィルス等の動物ウィルス 、バキュロウィルス等の昆虫ウィルスが挙げられる。
[0059] 宿主細胞の種類は、改変 DNAを発現できる限り特に限定されるものではなぐ例え ば、原核細胞、酵母、動物細胞、昆虫細胞、植物細胞等が挙げられる。
[0060] 糸且換えベクターの導入方法としては、例えば、エレクト口ポレーシヨン法、スフエロプ ラスト法、酢酸リチウム法、リン酸カルシウム法、リボフヱクシヨン法等が挙げられる。
[0061] 形質転換体の培養は、宿主細胞の培養に用いられる通常の方法に従って行うこと ができる。
改変タンパク質は、溶媒抽出法、硫安等による塩析法脱塩法、有機溶媒による沈 殿法、ジェチルアミノエチル(DEAE)—セファロース、イオン交換クロマトグラフィー 法、疎水性クロマトグラフィー法、ゲルろ過法、ァフィユティークロマトグラフィー法等 により精製することができる。
[0062] 工程 (h)
工程 (h)は、微生物を含有する 2種類以上の試料にっ ヽて前記工程 (a)〜 (g)を行 う工程である。
[0063] 2種類以上の試料について工程 (a)〜(g)を行うことにより、 2種類以上の改変タン ノ ク質の集合物である改変タンパク質ライブラリーを作製することができる。
2種類以上の試料としては、例えば、温度、 pH等が異なる環境力 採取された土壌 、水、泥、堆積物等の天然試料を使用することができる。
[0064] 工程 (i)
工程 (i)は、前記改変タンパク質の機能を評価し、所定機能を有する改変タンパク 質をスクリーニングする工程である。
[0065] 改変タンパク質の機能は、常法に従って解析することができる。改変タンパク質の 機能解析は、少なくとも改変前の既知タンパク質が有する機能について行うが、それ 以外の機能にっ 、て行ってもょ 、。
スクリーニングする改変タンパク質が有する所定機能は特に限定されるものではな く、 目的に応じて適宜選択することができる。
[0066] 工程 (i)
工程 (j)は、前記改変タンパク質の機能を評価し、前記改変タンパク質の機能に基 づいて、前記微生物に由来するタンパク質の機能を推定する工程である。
[0067] 改変タンパク質は、微生物に由来するタンパク質の一部(PCR増幅断片にコードさ れるアミノ酸配列)を有しているので、改変タンパク質の機能は、微生物に由来するタ ンパク質の機能を反映して 、る可能性がある。タンパク質の機能には機能ドメインが 関与すると考えられるので、改変タンパク質が有する微生物に由来するタンパク質の 一部 (PCR増幅断片にコードされるアミノ酸配列)が、第 1〜第 nの既知タンパク質と 同一種類の機能を有するタンパク質の機能ドメインである場合、改変タンパク質の機 能は、微生物に由来するタンパク質の機能を反映している可能性が高い。また、改変 タンパク質が有する微生物に由来するタンパク質の一部 (PCR増幅断片にコードさ れるアミノ酸配列)は、第 1〜第 nの既知タンパク質と同一種類の機能を有するタンパ ク質の一部であると考えられるので、工程 (e)で見出される既知タンパク質 (微生物に 由来するタンパク質の一部が組み込まれるタンパク質) 1S 第 1〜第 nの既知タンパク 質と同一種類の機能を有する場合、改変タンパク質の機能は、微生物に由来するタ ンパク質の機能を反映して 、る可能性が高 、。
実施例
[0068] 〔実施例 1〕高温環境土壌に含まれる微生物に由来するゲノム DNAの獲得
(1)高温環境土壌の採取
DNAポリメラーゼを有効に利用するためには、 PCR等に使用できるような耐熱性を 有することが重要であると考えられる。そして、耐熱性酵素を得るためには、高温環 境力 試料を取得することが最も効率的である。そこで、高温環境として性質 (PH)の 異なる温泉地帯を選択した。一つは強酸性を示す九州鹿児島霧島温泉地域で、もう 一つは中性に近い pHを示す宮城県鬼首温泉地域及び秋田県大噴湯温泉地域で ある。
[0069] 温泉地域内の特定の領域には、マッドポット(泥が煮立って 、るような穴)が天然の 状態 (人手の入らない状態)で幾つも存在している。これらの地点から、採取地点ごと に、温度、 pH等のデータとともに採取試料の色、水分量等の状態を映像等により記 録した。各地点からは、十分量の DNAが回収できるように、 100g程度の土壌、泥又 は堆積物を採取した。
[0070] (2)高温環境土壌からのゲノム DNAの抽出
採取された土壌 lgを滅菌したエツペンドルフチューブに分取した後、土壌に含まれ る微生物に由来するゲノム DNAを抽出した。土壌力ものゲノム DNAの抽出は、土壌 からの DNA抽出キットである Ultra Clean™ Soil DNA Purification kit(MO Bio社製, カタログ No.12800-50,フナコシカタログ No丄 M128000)を用いて行った。操作は本キ ットに添付されて 、る操作手順書に従った。
[0071] 実際に抽出した DNA溶液の 1Z50量である 2 μ Lを分取し、 18 μ Lの ΤΑΕ緩衝液
(0. 04Μ Tris, 0. 02M酢酸, 0. 001M EDTA (pH8. 0) )及び Lの電気泳 動用濃縮染色液(0. 25%ブロモフエノールブルー, 0. 25%キシレンシァノール, 3 0%グリセロール)をカ卩え、 0. 8%ァガロースゲル電気泳動で確認した。
[0072] その結果、図 1に示すように、量の多少は有るが、幾つかの地点からは 10キロ塩基 対以上の長さのゲノム DNAが回収されていることが確認できた。なお、図 1中、「M」 は分子量マーカーを表し、レーン 1〜38は異なる地点に関する結果を表す。この結 果から、高温環境土壌中には、十分量のゲノム DNAを抽出できる量の微生物が存 在することが確認できた。
[0073] 〔実施例 2〕ファミリー A型 DNAポリメラーゼ特異的プライマーを用いた PCR
(1)ファミリー A型 DNAポリメラーゼ特異的プライマーの設計
¾数の微生物 (Bacillus subtiiis、 Bacillus caldotenax、 Thermus aquaticus、 Themus thermophilus, Escherichia coli)に由来するファミリー A型 DNAポリメラーゼのアミノ酸 配列のァライメント結果を図 2及び図 3に示す。なお、図 3は図 2の続きである。
[0074] 図 2及び図 3中、四角で囲んだ 2つの領域(DPNLQNIP及び QVHDELX (Xは I、 V又は Lを表す))は、複数の微生物間で相同性が高いアミノ酸配列である。このアミ ノ酸配列は、その他の微生物が有するファミリ一 A型 DNAポリメラーゼにおいても保 存されていると推測される。
[0075] そこで、上記アミノ酸配列に基づいて、表 1に示す 2種類(5'プライマー(配列番号 1 )及び 3'プライマー(配列番号 2) )の縮重プライマーを設計した (Takashi Uemori, oshizumi Ishino, Kayo Pujita, Kiyozo Asaaa and Ikunoshin Kato Cloning of the DNA Polymerase Gene of Bacillus caldotenax and Characterization of the Gene Product" (1993) J. Biocem" 113, 401—410.)。
[0076] [表 1] プライマーの種類 塩基配列
5 'プライマー gaycchaacy tscar ayathcc
3 'プライマー kassakytcr tcgtgnacy tg
[0077] なお、「y」は t又は cを、「s」は c又は gを、「k」は g又は tを、「r」は a又は gを、「h」は a又 は t又は cを、「n」は a又は g又は c又は tを表す。
[0078] (2)ファミリー A型 DNAポリメラーゼ特異的プライマーを用いた PCR
10種類の 生物 (Bacillus caldotenax, Bacillus caldolyticus, Escherichia coli, Bacillus subtilis, Lactobacillus bulgaricus, Lactobacillus homohiochii, Lactobacillus heterohiochii, Thermus aquaticus, Themus thermophilus, Sulfolobus solfataricus)力 ら抽出したゲノム DNA 0. 5ngの存在下、上記縮重プライマー lOOpmolを用いて、 50 μ Lの 10mM Tris— HCl(pH8. 3)、 50mM KC1、 15mM MgCl、 200 ^ M d
2
NTP及び 5ユニット TAKARA Ex Taqポリメラーゼ(タカラバイオ社製)を含む溶液 中で PCRを行った。 PCRは、 94°Cで 30秒間、 55°Cで 1分間、 72°Cで 2分間からなる 温度サイクルを 30サイクル行った。
[0079] その結果、図 4に示すように、 10種全ての微生物において、ファミリー A型 DNAポリ メラーゼに由来すると推定される PCR増幅断片が得られた。なお、図 4中、「M」は分 子量マーカーを表し、レーン 2は Bacillus caldotenax^レーン 3は Bacillus caldolyticus 、レ ~~ ~ ^Escherichia coli、レ ~~ン 5ίま Bacillus suDtilis、レ ~~ン 6i Lactobacillus bulgaricus ^レ ~~ン/ ίま Lactobacillus homohiochu、レ ~~ ^8 ^Lactobacillus heterohiochiuレ ~~ン 9i Thermus aquaticus ^レ ~~ン lOi^rhemus thermophilus ^レ ~~ ン 11は Sulfolobus solfataricusに関する結果である。
この結果から、上記縮重プライマーは、任意の微生物に由来するファミリー A型 DN Aポリメラーゼ遺伝子に対するプライマーとして使用できることが明らかになった。
[0080] 次に、霧島温泉地域、鬼首温泉地域等の高温環境土壌より回収されたゲノム DNA の全回収量の 1 50(1 の存在下、上記縮重プライマー lOOpmolを用いて、 50 μ Lの 10mM Tris-HCl(pH8. 3)、 50mM KC1、 15mM MgCl、 200 μ M dNT P及び 5ユニット TAKARA EX Taqポリメラーゼ(タカラバイオ社製)を含む溶液中 で PCRを行った。 PCRは、 94°Cで 30秒間、 55°Cで 1分間、 72°Cで 2分間の温度サ イタルを 30サイクル行った。
[0081] その結果、図 5に示すように、幾つかの地点から回収したゲノム DNAを铸型とした 場合、ファミリー A型 DNAポリメラーゼに由来すると推定される DNA断片が増幅され た。 DNA断片の長さが予測とほぼ一致していた場合に、 DNA断片がファミリー A型 DNAポリメラーゼに由来する DNA断片であると推定した。なお、図 5中、「M」は分 子量マーカーを表し、レーン 1〜29は異なる地点に関する結果を表す。
[0082] (3)増幅断片のクローニング
PCR終了後の反応液に等量の 10mM Tris-HCl (pH7. 5)及び ImM EDTA 溶液を加えた後、水溶液と等量の水飽和フエノール Zクロロフオルム液をカ卩えてよく 攪拌し、 70°Cで 10分間加温した後、 10, OOOrpmで 5分間遠心し、上層水溶液画分 を注意して分取した。分取した水溶液画分を、 MicroconlOO (ミリポア社製)に加え 、 2500rpmで 15分間遠心した。再度、 10mM Tris—HCl(pH7. 5)及び ImM ED TA溶液を 200 L加え、 2, 500rpmで 15分間遠心した。以上の操作により、未反 応プライマー、ヌクレオチド、塩等を除去した。
[0083] PCR増幅断片約 0. 05 μ gと、 10mM Tris—HCl(pH7. 5)及び ImM EDTA溶 液に溶解した pGEM T—ベクター(Promega社製) 0. 1 ^ gと、 10mM Tris— HC1( pH7. 5)/ ImM EDTA溶液 8 Lとを混合した後、ライゲーシヨンキット'バージョン 2 (タカラバィォ社製) 10 Lを加えて 16°Cで 30分間保温することにより、 PCR増幅 断片をプラスミド DNAにライゲートさせた。 PCR増幅断片がライゲートされたプラスミ ド DNA 1 μ Lを、氷中で溶解したカルシウム処理済大腸菌 DH10B 50 Lにカロえ、 氷上で 20分間静置し、 42°Cで 2分間加温した後、 950 1^の液体1^培地(11^ぁたり 10gトリプトン、 5g酵母抽出液、 5g塩ィ匕ナトリウム及び lgグルコースを含む)をカ卩え、 3 7°Cで 60分間震盪培養した。震盪培養終了後の培養物 150 Lを、 lOO ^ g/mL アンピシリンを含む LB寒天培地上に植菌し、ー晚 37°Cで培養を行った。
[0084] (4) PCR増幅断片の塩基配列の解読
寒天培地上に増幅した大腸菌のコロニーを 100 μ g/mLアンピシリン約 2mLを含 む LB培地に植菌し、ー晚 37°Cで震盪培養した。増殖した菌体を 10, OOOrpmで 10 分間の遠心で集菌し、 QIAprep Spin Miniprep Kit (QIAGEN社製,カタログ No.27104 )を用いてプラスミド DNAを回収した。回収されたプラスミド DNAを铸型とし、塩基配 列解読用プライマー(Ml 3プライマー M4及び Tプロモータープライマー)を用いて PCRを行った。 PCRには、ダイターミネータ一サイクルシーケンシングキット(ABI社 製)を使用し、塩基配列の解読には、 ABI社製 3700自動塩基配列検出装置を使用し た。
[0085] (5) PCR増幅断片にコードされるアミノ酸配列の確定
決定された PCR増幅断片の塩基配列は機械的な誤差を含む場合があるので、塩 基配列を人手によって修正して機械的な誤差を除いた後、塩基配列にコードされる アミノ酸配列を決定した。公共のタンパク質データベースを使用して相同性検索を行 い、 PCR増幅断片にコードされるアミノ酸配列と、既知のファミリー A型 DNAポリメラ ーゼ(Thermus aquaticus由来の DNAポリメラーゼ(Taq DNAポリメラーゼ))のァミノ 酸配列と比較を行った。
[0086] その結果、図 6に示すように、 PCR増幅断片にコードされるアミノ酸配列には、フアミ リー A型 DNAポリメラーゼの機能ドメインのアミノ酸配列が含まれていることが確認さ れた。
なお、図 6中、「Taq」は TaqDNAポリメラーゼのアミノ酸配列を表し、「No.l」、「 No.2」及び「No.3」は、異なる地点から回収されたゲノム DNAを铸型として得られた P CR増幅断片にコードされるアミノ酸配列を表し、それぞれ TaqDNAポリメラーゼのァ ミノ酸配列と 90%、 57%及び 52%の相同性を示す。また、「No.l」、「No.2」及び「No.3 」に関するアミノ酸配列は、 TaqDNAポリメラーゼと異なるアミノ酸配列のみを示す。
[0087] また、表 2に示すように、異なる地点(a〜g)から回収されたゲノム DNAを铸型とし て得られた PCR増幅断片にコードされるアミノ酸配列は、それぞれ異なる微生物に 由来するファミリー A型 DNAポリメラーゼのアミノ酸配列と相同性を示したことから、 数多くの未知ファミリー A型 DNAポリメラーゼが高温環境中に存在することが確認で きた。
[0088] [表 2] 試料 No. 微生物の種類 相同性
a Anaerocel lum thermophi lum 44% b Thermoanaerobacter yonseines 52% c Thermomicrobium roseum 55% d E. col i klenow fragment 49% e Chlorobium tepidum 61% f Thermus f i 1 i formis 65% g Thermus aquat icus 95%
[0089] 〔実施例 3〕改変 DNAポリメラーゼをコードする DNAを有するプラスミドの構築
(1)制限酵素部位を導入するためのプライマーの設計
実施例 2で得られた PCR増幅断片は、 DNAポリメラーゼ活性の中心を担う領域を カバーするものであるから、 Taq DNAポリメラーゼのアミノ酸配列のうち、 PCR増幅 断片にコードされるアミノ酸配列と相同性を示す領域が、 PCR増幅断片にコードされ るアミノ酸配列で置換された改変 DNAポリメラーゼは、 Taq DNAポリメラーゼとは異 なる DNAポリメラーゼ活性を示すと考えられ、向上した DNAポリメラーゼ活性を示す 可能性がある。また、改変 DNAポリメラーゼの機能は、高温土壌中に存在する未知 ファミリー A型 DNAポリメラーゼの機能を反映していると考えられる。
[0090] そこで、 Taq DNAポリメラーゼをコードする DNAのうち、 PCR増幅断片で置換さ れる領域の外側に制限酵素部位 (Blpl部位及び Bglll部位)を導入するために、表 3に 示す 2種類のプライマー A (配列番号 3)及びプライマー B (配列番号 4)を設計した。 プライマー A及び Bは、 Taq DNAポリメラーゼのアミノ酸配列に影響することなぐ新 たな制限酵素部位を導入できるように設計されて!、る。
[0091] 一方、 PCR増幅断片の外側に制限酵素部位 (Blpl部位及び Bglll部位)を導入する ために、表 3に示す 2種類のプライマー C (配列番号 5)及びプライマー D (配列番号 6 )を設計した。プライマー C及び Dは、 PCR増幅断片にコードされるアミノ酸配列に影 響することなぐ新たな制限酵素部位を導入できるように設計されている。 [0092] [表 3]
Figure imgf000023_0001
[0093] なお、表 3中、一重下線部分は新たに導入された Blpl部位を表し、二重下線部分は 新たに導入された Bglll部位を表す。
[0094] (2)制限酵素部位導入プライマーを用いた PCR
Taq DNAポリメラーゼをコードする DNAを含む pTAQ9ベクター(Ishino Y, Ueno T, Miyagi M, Uemori T, Imamura M, Tsunasawa S, Kato I. Overproduction of Thermus aquaticus DNA polymerase and its structural analysis by ion-spray mass spectrometry" (1994) J Biochem (Tokyo), 116(5), 1019-24) lOngの存在下、プライ マー A及び B 2pmolを用いて、 50 μ Lの 10mM Tris— HCl (pH8. 3)、 50mM K Cl、 15mM MgCl、 200 M dNTP及び 2. 5ユニット PfoUltra DNAポリメラーゼ(
2
Stratagene社製)を含む溶液中で PCRを行った。 PCRは、 95°Cで 1分間、 55°Cで 1 分間、 72°Cで 2分間の温度サイクルを 30サイクル行った。
[0095] 次に、実施例 2で得られたプラスミドクローン lOngの存在下、プライマー C及び D 2 pmolを用いて、 の 10mM Tris— HCl (pH8. 3)、 50mM KC1、 15mM Mg CI、 200 M dNTP及び 2. 5ユニット PlUUltra DNAポリメラーゼ(Stratagene社製)
2
を含む溶液中で PCRを行った。 PCRは、 95°Cで 1分間、 55°Cで 1分間、 72°Cで 2分 間の温度サイクルを 30サイクル行つた。
[0096] (3) PCR増幅断片の制限酵素処理
PCR増幅断片を制限酵素 Blpl及び Bglllで切断した。すなわち、各 PCR増幅反応 液 50 /z Lに 10倍濃縮制限酵素用緩衝液(200mM Tris— HCl (pH8. 2)、 100m M MgCl、 600mM NaCl、 lOmM DTT) 5 L、滅菌蒸留水 42 μ L及び制限酵 素 Blpl 3 μ Lをカ卩えて、十分に混合した後、 37°Cで 3時間保温した。次に、 5M NaC 1溶液を 及び制限酵素 Bglll 3 Lをカ卩えて、十分に混合した後、 60°Cで 3時間 保温した。保温終了後、 10 iu Lの10mM EDTA及び 2%SDS液を加えて、反応を 止めた。
0. 8%ァガロースゲル電気泳動により切断された各 DNA断片を分離した後、 QUIAGEN社製 QuiaQuickTipを用いて各 DNA断片を回収 ·精製した。
[0097] (4)制限酵素処理された DNA断片のライゲーシヨン
回収'精製された各 DNA断片 0. 5 g (1 L)を氷上で混合し、 10mM Tris— H Cl(pH7. 5)及び ImM EDTA溶液 3 μ Lカロえ、さらにタカラバィォ社製 Takara Ligation Kit version2を 5 μ L加えて、よく混合した後、 16°Cで 1時間保温した。
[0098] (5)大腸菌への導入
ライゲーシヨン反応液のうち 1 Lをカルシウム処理済大腸菌 DH10B菌体液 20 μ L と氷上で混合し、 20分間静置し、 42°Cで 2分間の熱処理後、 LB液体培地 980 L を加え、 37°Cで 50分間震盪培養を行った。次いで、 100 /z Lを分取し、 100 /z gZm Lアンピシリンを含む寒天 LB培地上に均一に植菌した後、ー晚 37°Cで保温した。
[0099] (6)組み換えの確認
寒天培地上に植菌された大腸菌のうち、プラスミド DNAを有するもののみが寒天培 地上で増殖しコロニーを形成した。形成されたコロニーのうち、無作為に 10個を選択 し、 2mLの LB液体培地に植菌し、 37°Cでー晚震盪培養した後、 QIAGEN社製 QIAprep Spin Miniprep Kit (カタログ No.27104)を用いてプラスミド DNAを回収した。 回収したプラスミド DNAを Blpl及び Bglllで処理し、 BlplZBglll断片を切り出した。そ の結果、図 7に示すように、 Taq DNAポリメラーゼをコードする DNAを含む pTAQ9 ベクターに PCR増幅断片が組み込まれていること、すなわち、改変 DNAポリメラー ゼをコードする DNAを有する pTAQ9ベクターを構築できたことが確認された。なお 、図 7中、「M」はマーカーを表し、レーン 1〜3は、それぞれ異なる地点から回収され たゲノム DNAを铸型として得られた PCR増幅断片が組み込まれた pTAQ9ベクター に関する結果を示す。
[0100] 〔実施例 4〕改変 DNAポリメラーゼの発現及び機能解析 (1)ベクターの発現用大腸菌への導入
異なる改変 DNAポリメラーゼをコードする DNAを有する 2種類の pTAQ9ベクター を、外来タンパク質の発現効率が高 、大腸菌 BL21-CodonPlus(DE3)-RIL (
Stratagene社製)に形質転換した。
大腸菌 BL21-CodonPlus(DE3)-RILのコンビテント細胞を融解して、 2本のファルコン チューブに 0. lmLずつ移した。その中に、 2種類の pTAQ9ベクター lOngに相当す る溶液を別々に加え、氷中に 30分間放置した後、 42°Cのヒートショックを 30秒間行 い、そこに SOC培地 0. 9mLをカ卩え、 37°Cで 1時間振とう培養した。その後、アンピシ リンを含む LB寒天プレート上に適量まき、 37°Cで一晩培養し、形質転換体大腸菌 BL21- CodonPlus(DE3)- RIL/ST0452- 1を得た。
[0101] (2)改変 DNAポリメラーゼの発現
寒天培地上に現れた形質転換体を、アンピシリンを含む LB培地 5mL中、 37°Cで ー晚培養した後、 IPTG (isopropyl-b-D-thiogalactopyranoside)を ImMになるように 加え、さらに 30°Cで 5時間培養した。培養後、遠心分離 (6, OOOrpmで 20分間)によ り集菌を行った。
集菌した菌体を 75°Cで 30分間加熱処理した後、 2倍量の 50mMトリス塩酸緩衝液 (pH7. 5)、 1錠のプロテアーゼ阻害剤(Complete EDTA- free, Roche社製)、 0. 5mg の DNase RQ1 (プロメガ社製)をカ卩え、懸濁した。得られた懸濁液を超音波破砕し、 37°Cで 10分間保温した後、遠心分離(11, OOOrpmで 20分間)により上清を得た。こ の上清に終濃度 0. 2Mとなるように硫酸アンモ-ゥムを加えた後、 1,8000 X gで 10 分間遠心し、上清を得た。この上清を HiTrapフエニール HPカラムで処理した後、 HiTrapへパリン HPカラムで処理し、粗 DNAポリメラーゼ画分とした。
[0102] 粗 DNAポリメラーゼ画分を SDS— PAGEに供した後、 CBB (クマシ一ブリリアント ブルー)染色した結果を図 8に示す。図 8中、「M」は分子量マーカーを表し、 ΓρΤΑ Q9Jは、 Taq DNAポリメラーゼをコードする DNAを含む pTAQ9ベクターを発現さ せて得られた粗 DNAポリメラーゼ画分に関する結果を表し、レーン 1及び 2は、改変 DNAポリメラーゼをコードする DNAを有する pTAQ9ベクターを発現させて得られた 粗 DNAポリメラーゼ画分に関する結果を表す。図 8に示すように、粗 DNAポリメラー ゼ画分はほぼ均一なタンパク質評品であった。
(3)改変 DNAポリメラーゼの機能解析
改変 DNAポリメラーゼが耐熱性 DNAポリメラーゼ活性を有するカゝ否かを、本酵素 を用いて PCRを行うことにより確認した。 lOmM Tris— HCl(pH8. 3)、 50mM KC 1、 15mM MgCl及び 200 μ M dNTPを含む緩衝液 50 μ Lに、 pET32プラスミド D
2
NA lng、該プラスミド DNAに特異的な T7プロモータープライマー及び T7ターミネ 一タープライマー各 lOpmol (いずれも Novagen社製)、並びに粗 DNAポリメラーゼ 液 1 Lを混合し、 94°Cで 30秒間、 55°Cで 30秒間及び 72°Cで 1分間の温度サイク ルを 30サイクル行った。また、コントロールとして、市販の TaqDNAポリメラーゼ( TaKaRa Taq)を用いて同様の条件で PCRを行った。その結果、図 9に示すように、予 定していた DNA領域の増幅が確認された。この結果から、改変 DNAポリメラーゼが 耐熱性 DNAポリメラーゼ活性を有することが確認された。なお、図 9中、「M」は分子 量マーカーを表し、レーン 1は、市販の TaqDNAポリメラーゼ(コントロール)を用いて 得られた PCR増幅断片の電気泳動結果を示し、レーン 2は改変 DNAポリメラーゼを 用いて得られた PCR増幅断片の電気泳動結果を示す。

Claims

請求の範囲
[1] 下記工程 (a)〜 (g)を含む、改変タンパク質の作製方法。
(a)微生物を含有する試料から、前記微生物に由来する DNAを調製する工程
(b)同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存されているアミ ノ酸配列に基づいて縮重プライマーを作製する工程
(c)前記微生物に由来する DNAの存在下、前記縮重プライマーを用 、て PCRを行 工程
(d)前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DNA断片にコ ードされるアミノ酸配列を確定する工程
(e)前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との 相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸 配列を有する既知タンパク質を見出す工程
(f)前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前記相同性を 示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 DNAを作製 する工程
(g)前記改変 DNAを発現させて、改変タンパク質を作製する工程
[2] 下記工程 (a)〜 (h)を含む、改変タンパク質ライブラリーの作製方法。
(a)微生物を含有する試料から、前記微生物に由来する DNAを調製する工程
(b)同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存されているアミ ノ酸配列に基づいて縮重プライマーを作製する工程
(c)前記微生物に由来する DNAの存在下、前記縮重プライマーを用 、て PCRを行 工程
(d)前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DNA断片にコ ードされるアミノ酸配列を確定する工程
(e)前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との 相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸 配列を有する既知タンパク質を見出す工程
(f)前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前記相同性を 示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 DNAを作製 する工程
(g)前記改変 DNAを発現させて、改変タンパク質を作製する工程
(h)微生物を含有する 2種類以上の試料にっ ヽて前記工程 (a)〜 (g)を行う工程
[3] 下記工程 (a)〜 (i)を含む、所定機能を有する改変タンパク質のスクリーニング方法
(a)微生物を含有する試料から、前記微生物に由来する DNAを調製する工程
(b)同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存されているアミ ノ酸配列に基づいて縮重プライマーを作製する工程
(c)前記微生物に由来する DNAの存在下、前記縮重プライマーを用 、て PCRを行 工程
(d)前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DNA断片にコ ードされるアミノ酸配列を確定する工程
(e)前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との 相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸 配列を有する既知タンパク質を見出す工程
(f)前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前記相同性を 示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 DNAを作製 する工程
(g)前記改変 DNAを発現させて、改変タンパク質を作製する工程
(h)微生物を含有する 2種類以上の試料にっ ヽて前記工程 (a)〜 (g)を行う工程
(i)前記改変タンパク質の機能を評価し、所定機能を有する改変タンパク質をスクリー ユングする工程
[4] 下記工程 (a)〜(g)及び (j)を含む、微生物に由来するタンパク質の機能推定方法
(a)微生物を含有する試料から、前記微生物に由来する DNAを調製する工程
(b)同一種類の機能を有する第 1〜第 nの既知タンパク質の間で保存されているアミ ノ酸配列に基づいて縮重プライマーを作製する工程 (c)前記微生物に由来する DNAの存在下、前記縮重プライマーを用 、て PCRを行 工程
(d)前記 PCRにより増幅された DNA断片の塩基配列を決定し、前記 DNA断片にコ ードされるアミノ酸配列を確定する工程
(e)前記 DNA断片にコードされるアミノ酸配列と既知タンパク質のアミノ酸配列との 相同性を評価し、前記 DNA断片にコードされるアミノ酸配列と相同性を示すアミノ酸 配列を有する既知タンパク質を見出す工程
(f)前記工程 (e)で見出された既知タンパク質をコードする DNAのうち前記相同性を 示すアミノ酸配列をコードする領域を前記 DNA断片で置換して、改変 DNAを作製 する工程
(g)前記改変 DNAを発現させて、改変タンパク質を作製する工程
(j)前記改変タンパク質の機能を評価し、前記改変タンパク質の機能に基づいて、前 記微生物に由来するタンパク質の機能を推定する工程
[5] 前記工程 (b)で作製される縮重プライマーが、前記第 1〜第 nの既知タンパク質をコ ードする DNAのうち、前記第 1〜第 nの既知タンパク質の機能ドメインをコードする領 域を増幅できる請求項 4記載の方法。
[6] 前記工程 (e)で見出される既知タンパク質が、前記第 1〜第 nの既知タンパク質と同 一種類の機能を有する請求項 4又は 5記載の方法。
[7] 前記微生物が培養不能又は培養条件が未知の微生物である請求項 4〜6の 、ず れかに記載の方法。
PCT/JP2005/008362 2004-05-07 2005-05-06 改変タンパク質の作製方法 WO2005108567A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05737205A EP1760149A4 (en) 2004-05-07 2005-05-06 PROCESS FOR CONSTRUCTING MODIFIED PROTEIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004139147A JP2007159401A (ja) 2004-05-07 2004-05-07 改変タンパク質の作製方法
JP2004-139147 2004-05-07

Publications (1)

Publication Number Publication Date
WO2005108567A1 true WO2005108567A1 (ja) 2005-11-17

Family

ID=35320228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008362 WO2005108567A1 (ja) 2004-05-07 2005-05-06 改変タンパク質の作製方法

Country Status (3)

Country Link
EP (1) EP1760149A4 (ja)
JP (1) JP2007159401A (ja)
WO (1) WO2005108567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207931A1 (ja) * 2017-05-12 2018-11-15 三井化学株式会社 組換え微生物、組換え微生物を用いたピリドキサミン又はその塩の製造方法、及び組換え微生物を用いたピリドキサール又はその塩の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175427A1 (ja) * 2013-04-26 2014-10-30 日本ソフトウェアマネジメント株式会社 Dnaの状態を評価する方法、装置及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013385A2 (en) * 1993-11-12 1995-05-18 Gilead Sciences Thrombin mutants
JP2001178476A (ja) * 1999-12-28 2001-07-03 Agency Of Ind Science & Technol 機能性タンパク質のスクリーニング方法
EP1350841A2 (en) * 2002-04-02 2003-10-08 Roche Diagnostics GmbH Thermostable or thermoactive DNA polymerase with attenuated 3'-5' exonuclease activity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512612A (ja) * 1995-09-22 1999-11-02 ターラジェン ディバーシティ インコーポレイテッド 土壌dnaからのキシラナーゼ遺伝子配列の単離方法、この方法で有用な組成物、およびこうして得られる組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013385A2 (en) * 1993-11-12 1995-05-18 Gilead Sciences Thrombin mutants
JP2001178476A (ja) * 1999-12-28 2001-07-03 Agency Of Ind Science & Technol 機能性タンパク質のスクリーニング方法
EP1350841A2 (en) * 2002-04-02 2003-10-08 Roche Diagnostics GmbH Thermostable or thermoactive DNA polymerase with attenuated 3'-5' exonuclease activity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1760149A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207931A1 (ja) * 2017-05-12 2018-11-15 三井化学株式会社 組換え微生物、組換え微生物を用いたピリドキサミン又はその塩の製造方法、及び組換え微生物を用いたピリドキサール又はその塩の製造方法
CN110678546A (zh) * 2017-05-12 2020-01-10 三井化学株式会社 重组微生物、使用重组微生物的吡哆胺或其盐的制造方法、及使用重组微生物的吡哆醛或其盐的制造方法
JPWO2018207931A1 (ja) * 2017-05-12 2020-03-19 三井化学株式会社 組換え微生物、組換え微生物を用いたピリドキサミン又はその塩の製造方法、及び組換え微生物を用いたピリドキサール又はその塩の製造方法

Also Published As

Publication number Publication date
JP2007159401A (ja) 2007-06-28
EP1760149A4 (en) 2007-08-01
EP1760149A1 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
Watanabe et al. Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree
US20080299609A1 (en) Uracil-DNA glycosylase of psychrobacter sp. HJ147 and use thereof
JPH09506783A (ja) テルモトガ・ネアポリタナからクローニングされたdnaポリメラーゼおよびその変異体
EP0799319B1 (en) Purified thermococcus barossii dna polymerase
JP2000508538A (ja) バシラス ステアロテルモフィルスdnaポリメラーゼの生物学的に活性な断片
US7422882B2 (en) Modified thermostable DNA polymerase
JP7363063B2 (ja) 変異型dnaポリメラーゼ
WO2005108567A1 (ja) 改変タンパク質の作製方法
Taguchi et al. Functional mapping of amino acid residues responsible for the antibacterial action of apidaecin
US8986968B2 (en) Thermostable DNA polymerase
JP3891330B2 (ja) 改変された耐熱性dnaポリメラーゼ
JP2002247991A (ja) タンパク質の耐熱性を向上させる方法、該方法により耐熱性の向上したタンパク質、および該タンパク質をコードする核酸
CN115975978A (zh) Bst DNA聚合酶大片段突变体及其应用
KR100777230B1 (ko) 써모코커스 유래 돌연변이 dna 중합효소들 및 그의유전자들
JP4633488B2 (ja) 熱安定性又は熱活性dnaポリメラーゼ及びそれをコードするdna
WO2006109578A1 (ja) 改変型ピロロキノリンキノン依存性グルコース脱水素酵素、及びピロロキノリンキノン依存性グルコース脱水素酵素の基質特異性改良法
WO2007117331A2 (en) Novel dna polymerase from thermoanaerobacter tengcongenesis
US20110020896A1 (en) Mutant dna polymerases and their genes
CN113637085A (zh) 融合dna聚合酶突变体及其在等温扩增中的应用
JP7342403B2 (ja) 改変されたdnaポリメラーゼ
EP1075525B1 (en) Dna polymerase from pyrobaculum islandicum
WO2024117270A1 (ja) 耐熱性タンパク質をスクリーニングするための方法およびキット
JP5515373B2 (ja) 改良された耐熱性dnaポリメラーゼ
CN114574464B (zh) 高保真dna聚合酶突变体及其应用
JP5357445B2 (ja) 環状核酸の単離方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005737205

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005737205

Country of ref document: EP