WO2005108567A1 - 改変タンパク質の作製方法 - Google Patents
改変タンパク質の作製方法 Download PDFInfo
- Publication number
- WO2005108567A1 WO2005108567A1 PCT/JP2005/008362 JP2005008362W WO2005108567A1 WO 2005108567 A1 WO2005108567 A1 WO 2005108567A1 JP 2005008362 W JP2005008362 W JP 2005008362W WO 2005108567 A1 WO2005108567 A1 WO 2005108567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- dna
- acid sequence
- protein
- microorganism
- Prior art date
Links
- 102000035118 modified proteins Human genes 0.000 title claims abstract description 74
- 108091005573 modified proteins Proteins 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims description 44
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 139
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 135
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 131
- 239000012634 fragment Substances 0.000 claims abstract description 129
- 244000005700 microbiome Species 0.000 claims abstract description 113
- 238000012216 screening Methods 0.000 claims abstract description 12
- 108020004414 DNA Proteins 0.000 claims description 177
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 235000018102 proteins Nutrition 0.000 description 105
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 53
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 51
- 239000000523 sample Substances 0.000 description 30
- 210000004027 cell Anatomy 0.000 description 22
- 239000013598 vector Substances 0.000 description 22
- 241000588724 Escherichia coli Species 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- 239000002689 soil Substances 0.000 description 16
- 108010006785 Taq Polymerase Proteins 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 239000002609 medium Substances 0.000 description 12
- 108091008146 restriction endonucleases Proteins 0.000 description 12
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 11
- 241000589500 Thermus aquaticus Species 0.000 description 11
- 239000002773 nucleotide Substances 0.000 description 11
- 125000003729 nucleotide group Chemical group 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 241000193830 Bacillus <bacterium> Species 0.000 description 9
- 241000193758 [Bacillus] caldotenax Species 0.000 description 9
- 238000001962 electrophoresis Methods 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 241000053227 Themus Species 0.000 description 7
- 229960000723 ampicillin Drugs 0.000 description 7
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 244000063299 Bacillus subtilis Species 0.000 description 6
- 235000014469 Bacillus subtilis Nutrition 0.000 description 6
- 238000010230 functional analysis Methods 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- 108010031025 Alanine Dehydrogenase Proteins 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 102000012286 Chitinases Human genes 0.000 description 4
- 108010022172 Chitinases Proteins 0.000 description 4
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 4
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 4
- 241000186660 Lactobacillus Species 0.000 description 4
- 244000199885 Lactobacillus bulgaricus Species 0.000 description 4
- 235000013960 Lactobacillus bulgaricus Nutrition 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 241000193761 [Bacillus] caldolyticus Species 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 229940039696 lactobacillus Drugs 0.000 description 4
- 229940004208 lactobacillus bulgaricus Drugs 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000011499 joint compound Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 241000893512 Aquifex aeolicus Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241001302160 Escherichia coli str. K-12 substr. DH10B Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241001148466 Janthinobacterium lividum Species 0.000 description 2
- 241001147748 Lactobacillus heterohiochii Species 0.000 description 2
- 241001468190 Lactobacillus homohiochii Species 0.000 description 2
- 239000006142 Luria-Bertani Agar Substances 0.000 description 2
- 241000186359 Mycobacterium Species 0.000 description 2
- 241000192608 Phormidium Species 0.000 description 2
- 241000193448 Ruminiclostridium thermocellum Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 241000863430 Shewanella Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241001235254 Thermococcus kodakarensis Species 0.000 description 2
- 241000204666 Thermotoga maritima Species 0.000 description 2
- 108091023045 Untranslated Region Proteins 0.000 description 2
- 241000607598 Vibrio Species 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- ZVQAVWAHRUNNPG-LMVFSUKVSA-N 2-deoxy-alpha-D-ribopyranose Chemical compound O[C@@H]1C[C@H](O)[C@H](O)CO1 ZVQAVWAHRUNNPG-LMVFSUKVSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 241001429558 Caldicellulosiruptor bescii Species 0.000 description 1
- 241000206594 Carnobacterium Species 0.000 description 1
- 241000191382 Chlorobaculum tepidum Species 0.000 description 1
- 229920002271 DEAE-Sepharose Polymers 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 241001072247 Oceanobacillus iheyensis Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 241000122973 Stenotrophomonas maltophilia Species 0.000 description 1
- 241000205101 Sulfolobus Species 0.000 description 1
- 241000205091 Sulfolobus solfataricus Species 0.000 description 1
- 241000192584 Synechocystis Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241000186339 Thermoanaerobacter Species 0.000 description 1
- 241000589017 Thermomicrobium roseum Species 0.000 description 1
- 241000589596 Thermus Species 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000001038 ionspray mass spectrometry Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- the present invention relates to a method for producing a modified protein, a method for producing a modified protein library, and a method for screening a modified protein.
- the present invention also relates to a method for estimating the function of a protein derived from a microorganism.
- Methods for obtaining a protein having excellent functions include (1) a method for identifying a novel protein and analyzing its function, and (2) modifying the amino acid sequence of an existing protein by introducing a random mutation.
- There are methods for producing proteins and analyzing their functions for example, Patent Document 1).
- Patent Document 1 JP 2003-304870A
- PCR is performed using primers designed based on the amino acid sequence or base sequence conserved between existing proteins or genes, and the PCR-amplified fragment is used as a probe.
- a modified protein in the above method (2), can be easily and rapidly produced, and thus a high-throughput functional analysis of the modified protein can be performed. Shinagashi In addition, the introduction of random mutations into the amino acid sequence of existing proteins often leads to a loss of function.
- the present invention can realize high-throughput and efficient functional analysis and screening of a modified protein by easily and quickly producing a modified protein that can be expected to have improved functions.
- Another object of the present invention is to provide a method for producing a modified protein, a method for producing a modified protein library, and a method for screening a modified protein.
- the present invention also provides a method for estimating the function of a protein derived from a microorganism, which eliminates the need to identify the full-length sequence of the protein or the DNA encoding the protein, and eliminates the need to separate and culture the microorganism. It is an object of the present invention to provide a method for estimating the function of a protein derived from a microorganism.
- the present invention provides a method for preparing a modified protein, a method for preparing a modified protein library, a method for screening for a modified protein, and a microorganism derived from a microorganism described in the following (1) to (7).
- a method for estimating the function of a protein is provided.
- a method for producing a modified protein comprising the following steps (a) to (g).
- a modified DNA is prepared by replacing the region encoding the amino acid sequence showing the homology in the DNA encoding the known protein found in the step (e) with the DNA fragment.
- step (f) a step of replacing the region encoding the amino acid sequence showing the homology in the DNA encoding the known protein found in the step (e) with the DNA fragment to prepare a modified DNA
- step (f) a step of replacing the region encoding the amino acid sequence showing the homology in the DNA encoding the known protein found in the step (e) with the DNA fragment to prepare a modified DNA
- a method for estimating the function of a protein derived from a microorganism comprising the following steps (a) to (g) and (j).
- step (f) a step of replacing the region encoding the amino acid sequence showing the homology in the DNA encoding the known protein found in the step (e) with the DNA fragment to prepare a modified DNA
- the degenerate primer prepared in the step (b) is any of the first to n-th known proteins.
- high-throughput and efficient functional analysis and screening of a modified protein can be realized by easily and quickly preparing a modified protein that can be expected to have improved functions.
- a method for producing a modified protein, a method for producing a modified protein library, and a method for screening a modified protein are provided.
- a method for estimating the function of a protein derived from a microorganism is provided.
- FIG. 1 is a diagram showing the results of electrophoresis of genomic DNA from which soil power in a high-temperature environment is also extracted.
- FIG. 2 is a view showing an alignment result of amino acid sequences of family A type DNA polymerases derived from a plurality of microorganisms (Bacillus subtilis, Bacillus caldotenax, Thermus aquaticus, Themus thermophilus, Escherichia coli).
- FIG. 3 is a diagram (continuation of FIG. 2) showing the amino acid sequence of a family A type DNA polymerase derived from a plurality of microorganisms (Bacillus subtilis, Bacillus caldotenax, Thermus aquaticus ⁇ Themus thermophilus, Escherichia coli).
- FIG. 3 is a diagram showing the results of electrophoresis of PCR-amplified fragments obtained by performing PCR using primers.
- FIG. 5 is a diagram showing the results of electrophoresis of PCR-amplified fragments obtained by performing PCR using degenerate primers in the presence of genomic DNA recovered from high-temperature environment soil.
- FIG. 6 is a view showing an amino acid sequence encoded by a PCR-amplified fragment obtained by performing PCR using degenerate primers in the presence of genomic DNA recovered from high-temperature environment soil.
- FIG. 7 is a view showing the results of electrophoresis of a BlplZBglll fragment cut out from plasmid DNA.
- FIG. 8 is a view showing the results of subjecting a crude DNA polymerase fraction to SDS-PAGE and staining with CBB (Coomassie Brilliant Blue).
- FIG. 9 shows the results of electrophoresis of PCR-amplified fragments obtained by PCR using a modified DNA polymerase.
- FIG. 10 is a view showing alignment results of amino acid sequences of chitinases derived from a plurality of microorganisms (3 ⁇ 4erratia marcescens, Bacillus circurans, Stenotrophomonas maltophilia, Janthinobacterium lividum, Thermococcus kodakaraensis, Clostridium thermocellum, Bacillus licheniformis).
- FIG. 11 is a view showing the alignment results of amino acid sequences of alanine dehydrogenase derived from a plurality of microorganisms (Bacillus, Carnobacterium, Synechocystis, Phormidium, Vibrio, Shewanella, Mycobacterium).
- FIG. 12 A diagram showing the alignment results of the amino acid sequences of oD-2-oxoxyribo-s-5-phosphate aldolase derived from multiple microorganisms (Bacillus subtuis, Oceanooacilius iheyensis, Escherichia col "Thermotoga maritima, Aquifex aeolicus). is there.
- Step (a) is a step of preparing DNA derived from a microorganism from a sample containing the microorganism.
- sample is not particularly limited as long as it contains one or more microorganisms.
- Samples include, for example, soil, water, mud, sediment, etc. collected from various environments. Natural samples can be used.
- the environment in which natural samples are collected is not limited to various conditions (for example, various temperature conditions such as room temperature, high temperature, low temperature, neutral, acidic, etc.
- Natural samples under various pH conditions such as alkalinity, and various pressure conditions such as normal pressure, high pressure, and low pressure).
- Specific examples of the environment for collecting a natural sample include a high temperature environment such as a hot spring, an acidic environment such as an acidic hot spring, an alkaline environment such as an alkaline hot spring, and a high pressure environment such as the deep sea.
- the sample it is preferable to use a sample containing two or more types of microorganisms.
- a sample containing two or more types of microorganisms When a sample containing two or more types of microorganisms is used, the possibility of obtaining PCR-amplified fragments in step (c) increases. In addition, the possibility of obtaining two or more types of PCR-amplified fragments is increased, and one sample can produce many types of modified proteins. Two or more types of PCR amplified fragments can be obtained as a mixture. By determining the nucleotide sequence of each PCR amplified fragment in step (d), the types of each PCR amplified fragment can be distinguished.
- the type of microorganisms contained in the sample is not particularly limited, and examples thereof include bacteria, fungi (filamentous fungi), basidiomycetes, yeasts, and viruses.
- thermophilic bacteria is a general term for bacteria that can grow at high temperatures, and generally refers to bacteria that can grow at 55 ° C or higher.
- the thermophile is a highly thermophilic bacterium that can normally grow above 75 ° C, a hyperthermophilic bacterium that can usually grow above 85-90 ° C, and a facultative thermophilic bacterium that can grow at room temperature (normally 37 ° C). And absolute thermophiles that can only grow above about 40 ° C.
- the type of microorganism (family, genus, species, etc.) contained in the sample may or may not be identified. Even if the type of the microorganism contained in the sample has been identified, it is not necessary to identify the type of the microorganism.
- the microorganism contained in the sample may be a microorganism that cannot be cultured or whose culture conditions are unknown.
- the present invention is particularly useful when the microorganisms contained in the sample cannot be cultured or the culture conditions are unknown because there is no need to separate and culture the microorganisms contained in the sample.
- DNA derived from a microorganism may be genomic DNA or cDNA.
- Genomic DNA derived from microorganisms can also be extracted for microbial activity according to conventional methods.
- CDNA derived from a microorganism can be prepared by reverse transcription of mRNA extracted from a microorganism according to a conventional method.
- Genomic DNA or mRNA extracted from microorganisms usually contains only a part of the genomic DNA or mRNA that the microorganism has, including all genomic DNA or mRNA that the microorganism has! ! / ,.
- Step (b) is a step of preparing a degenerate primer based on the amino acid sequence conserved among the first to n-th known proteins having the same kind of function.
- the first to n-th known proteins are natural proteins whose amino acid sequence, derived species, function, and the like are known.
- the functions of the same type possessed by the first to n-th known proteins are not particularly limited. Examples thereof include heat resistance, DNA polymerase activity, chitinase activity, alanine dehydrogenase activity, and D-2. —Doxyribose-5-phosphate aldolase activity, nuclease activity, helicase activity and the like.
- one kind of function may be the same, or two or more kinds of functions may be the same.
- the species from which the first to n-th known proteins are derived are not particularly limited, but may be microorganisms closely related to microorganisms contained in a sample that is preferably a microorganism. More preferred.
- the microorganisms contained in the sample are closely related to the species from which the first to n-th known proteins are derived, the possibility of obtaining PCR-amplified fragments in step (c) increases.
- a protein derived from an organism closely related to the microorganism contained in the sample can be selected as the first to n-th known proteins.
- a natural sample collected from a high-temperature environment it is considered that the natural sample contains thermophiles, and proteins derived from thermophiles are used as the first to n-th known proteins. You can choose.
- the degenerate primer can be prepared based on the amino acid sequence conserved among the first to n-th known proteins. That is, the amino acid sequences of the first to n-th known proteins are aligned to identify a conserved region (the conserved region), and the base sequence of the degenerate primer is determined based on the amino acid sequence of the conserved region. Degenerate ply in accordance with Mer can be made.
- the degenerate primers include, among double-stranded DNAs encoding the first to n-th known proteins, a primer capable of hybridizing to the sense strand and a primer capable of hybridizing to the antisense strand, and each primer Can be prepared based on the amino acid sequences of different conserved regions.
- Examples are Bacillus subtiiis, Bacillus caldotenax ⁇ Thermus aquaticus, Themus
- amino acid sequences such as DPNLQNIP and QVHDELX are conserved in Family A DNA polymerases derived from microorganisms such as thermophilus and Escherichia coli.
- a degenerate primer represented by 5′-gaycchaacytscaraayathcc-3 ′ can be produced based on DPNLQNIP
- a degenerate primer represented by 5′-kassakytcrtcgtgnacytg-3 ′ can be produced based on QVHDELX.
- the Ik organisms (row f, Bacillus caldotenax, Bacillus caldolyticus, Escherichia coli, Bacillus subtilis, Lactobacillus bulgaricus, Lactobacillus homohiochn,
- Lactobacillus heterohiocnn Thermus aquaticus, Themus thermophilus, Sulfolobus solfataricus
- the PCR-amplified fragment thus obtained is considered to be a DNA fragment (a part of the DNA encoding the family A DNA polymerase) obtained by amplifying the DNA encoding the family A DNA polymerase into type III.
- Examples include chitinase derived from microorganisms such as Serratia marcescens, Bacillus circurans, Stenotropnomonas maltophilia, Janthinobacterium lividum, Thermococcus kodakaraensis, Clostridium thermocellum, Bacillus licheniformis; Amino acid sequences such as GLGGAMFWE, etc. are conserved, and degenerate primers represented by acncayathaaytaygcntt -3 'based on THINYAF are represented by 5'-athwsigtiggnggntggac -3' based on ISVGGWT.
- chitinase derived from microorganisms such as Serratia marcescens, Bacillus circurans, Stenotropnomonas maltophilia, Janthinobacterium lividum, Thermococcus kod
- the PCR-amplified fragment obtained in this manner is considered to be a DNA fragment (a part of the DNA encoding chitinase) amplified with chitinase-encoding DNA as type III.
- AlDH Alanine dehydrogenase
- J3 ⁇ 4 Bacillus rot, arnobactenum panyu, 3 ⁇ 4ynechocystis genus, Phormidium / yu, Vibrio J3 ⁇ 4, Shewanella genus, Mycobacterium genus, etc.
- An amino acid sequence such as DVAIDQG is stored, and a degenerate primer represented by 5'-ttyacitwyyticaytigc -3 'based on FTYLHLA and a degenerated primer represented by ccytgrtcdatigciayrtc -3' based on DVAIDQG Imagine can be made.
- a PCR-amplified fragment can be obtained by performing PCR using the above-described degenerate primers in the presence of DNA derived from any microorganism.
- the PCR-amplified fragment obtained in this manner is considered to be a DNA fragment (a part of the DNA encoding alanine dehydrogenase) amplified with the DNA encoding aranine dehydrogenase as type III.
- Examples are D-2 deoxyribose-5-phosphate aldolase (DERA) derived from Bacillus subtiiis, Oceanobacillus iheyensis, Escherichia coli, Thermotoga maritima, Aquifex aeolicus, etc. As shown in Fig. 12, the amino acid sequences of VIGFPLG, VKASGGV, etc. are conserved, and the degenerate primer represented by 5'-gtnathggittycciytigg-3 'based on VIGFPLG, and the A degenerate primer represented by 3 ′ can be prepared.
- DEA D-2 deoxyribose-5-phosphate aldolase
- a PCR-amplified fragment can be obtained by performing PCR using the above-mentioned degenerate primer in the presence of DNA derived from any microorganism.
- the thus obtained PCR-amplified fragment was a DNA fragment (D-2 deoxyribose-5 phosphate) amplified using DNA encoding D-2 deoxyribose 5 phosphate aldolase as a type II. Part of the DNA encoding rudolase).
- Y is t or c
- s is c or g
- k is g or t
- r is a or g
- h is a or t or c
- n Represents a or g or c or t
- d represents a or t or g.
- the degenerate primer is usually an oligonucleotide having a power of 15 to 30 bases, preferably 20 to 25 bases, and can be chemically synthesized according to a conventional method.
- a label such as a restriction enzyme recognition sequence, a tag sequence, a fluorescent dye, or a radioisotope can be added to the degenerate primer.
- the degenerate primer is preferably prepared so as to amplify a region encoding a functional domain of the first to n-th known proteins among DNAs encoding the first to n-th known proteins.
- the ⁇ functional domain '' refers to a domain involved in the same type of function possessed by the first to n-th known proteins (for example, the same type of domain possessed by the first to n-th known proteins).
- the function is DNA polymerase activity, it means a domain that is involved in DNA polymerase activity).
- the DNA derived from the microorganism has a protein having the same type of function as the first to n-th known proteins. It is thought that it is possible to amplify the region coding for the functional domain of the modified protein, and it is likely that the function of the modified protein will be improved by using such a PCR-amplified fragment to produce the modified protein. In addition, there is a high possibility that the function of the modified protein reflects the function of the protein derived from the microorganism.
- Step (c) is performed using the degenerate primer in the presence of DNA derived from the microorganism.
- PCR-amplified fragment having the DNA derived from the microorganism as a type III can be obtained.
- PCR can be performed according to a conventional method, and the PCR-amplified fragment can be purified according to a conventional method such as polyacrylamide electrophoresis.
- (Dl Step (d) is a step of determining the base sequence of the DNA fragment amplified by the PCR and determining the amino acid sequence encoded by the DNA fragment.
- the base sequence of the PCR-amplified fragment can be determined according to a conventional method such as a chemical modification method of Maxam Gilbert or a dideoxynucleotide chain termination method.
- a conventional method such as a chemical modification method of Maxam Gilbert or a dideoxynucleotide chain termination method.
- base sequence analysis for example, a commercially available base sequence analyzer can be used.
- the PCR-amplified fragment may be closed according to a conventional method before base sequence analysis.
- a recombinant vector is prepared by incorporating the PCR-amplified fragment into an appropriate closing vector, and a host cell such as Escherichia coli is transformed using the recombinant vector, and transformation is performed using tetracycline resistance and ampicillin resistance as indices.
- the PCR amplified fragment can be cloned.
- a cloning vector is not limited as long as it can replicate autonomously in a host cell.
- a phage vector, a plasmid vector and the like can be used.
- the host cell for example, Escherichia coli or the like can be used.
- the determined nucleotide sequence may include an error
- X @ (e) was evaluated for homology between the amino acid sequence encoded by the DNA fragment and the amino acid sequence of the known protein, and a known amino acid sequence having homology with the amino acid sequence encoded by the DNA fragment was evaluated. This is the process of finding proteins.
- the known protein to be subjected to homology evaluation is a naturally-occurring protein having a known amino acid sequence, derived species, function, and the like, and the type is not particularly limited.
- the function of the known protein to be evaluated for homology is not particularly limited, and may be the same type of function as the first to n-th known proteins, or may be the first to n-th known proteins. Although the function may be different from that of the protein, it is preferably the same type of function as the first to n-th known proteins.
- the homology can be evaluated using an existing database or the like.
- Steps (f) and (g) may be performed when the amino acid sequence encoded by the PCR amplified fragment is known, but should be performed when the amino acid sequence encoded by the PCR amplified fragment is novel. Is preferred,.
- the homology evaluation it can be determined whether or not the known protein has an amino acid sequence showing homology with the amino acid sequence encoded by the PCR amplified fragment.
- the region showing homology is usually 50% or more with the amino acid sequence encoded by the PCR amplified fragment.
- step (f) a region encoding the amino acid sequence showing homology described above in the DNA encoding the known protein found in the step (e) is replaced with the DNA fragment to prepare a modified DNA. This is the step of doing.
- the modified DNA is obtained by treating a DNA encoding a known protein found in step (e) with a restriction enzyme and encoding an amino acid sequence having homology with the amino acid sequence encoded by the PCR amplified fragment. Can be prepared by ligating the PCR amplified fragment to this portion. The PCR amplified fragments are ligated so that the reading frame of the triplet (codon) does not shift (that is, so that no frame shift occurs).
- the modified DNA is, among the amino acid sequences of the known proteins found in step (e), an amino acid sequence having homology to the amino acid sequence encoded by the PCR amplified fragment. Encodes a variant protein that has been replaced with a sequence.
- the amino acid sequence encoded by the PCR-amplified fragment is an amino acid sequence that exists in nature and has been naturally selected, so that the amino acid sequence is considered to have some significance. Therefore, the modified protein in which the amino acid sequence showing homology to the amino acid sequence encoded by the PCR-amplified fragment is replaced with the amino acid sequence encoded by the PCR-amplified fragment, randomly mutates the amino acid sequence of the existing protein. Improved function can be expected compared to modified proteins.
- the modified DNA contains an open reading frame encoding the modified protein and a stop codon located on the 3 'end side thereof.
- the modified DNA may contain an untranslated region (UTR) at the 5 'end and Z or 3' end of the open reading frame.
- UTR untranslated region
- the DNA may include open reading frames encoding other proteins or peptides, such that the variant protein is expressed as a fusion protein! /.
- X @ (g) is a step of producing the modified protein by expressing the modified DNA.
- the modified protein can be produced, for example, as follows.
- a modified vector is prepared by inserting the modified DNA downstream of the promoter of an appropriate expression vector, and the recombinant vector is introduced into an appropriate host cell to prepare a transformant capable of producing the modified protein.
- the transformant is cultured.
- the modified protein accumulates in the cells of the transformant, the cells in the culture are collected by centrifuging the culture, the cells are washed, and the cells are crushed to recover the modified protein. Extract.
- the modified protein is secreted out of the cells of the transformant, use the culture supernatant as it is or remove the cells or cells by centrifugation or the like. Thus, a modified protein can be produced.
- the modified DNA needs to be incorporated so that its function is exhibited.
- the recombinant vector is composed of a cis element such as Enhansa, It may contain a splicing signal, a poly-A addition signal, a selection marker (eg, a dihydrofolate reductase gene, an ampicillin resistance gene, a neomycin resistance gene), a ribosome binding sequence (SD sequence), and the like.
- the type of the expression vector is not particularly limited as long as it is capable of autonomous replication in a host cell, and examples thereof include a plasmid vector, a phage vector, and Pinores vector.
- examples of the plasmid vector include E.
- coli-derived plasmids for example, pRSET, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19
- Bacillus subtilis-derived plasmids for example, pUB110, pTP5
- yeast-derived plasmids for example, ⁇ 13, YEp24, YCp50
- phage vectors include, for example, ⁇ phage (for example, Charon4A, Charon21A ⁇ EMBL3, EMBL4, gtl0, gtll, ⁇ ZAP).
- animal viruses such as retrovirus, vaccinia virus, and insect viruses such as baculovirus.
- the type of host cell is not particularly limited as long as the modified DNA can be expressed. Examples include prokaryotic cells, yeast, animal cells, insect cells, plant cells, and the like.
- Examples of a method for introducing a thread-recombinant vector include an electoral porosion method, a spheroplast method, a lithium acetate method, a calcium phosphate method, and a ribofusion method.
- Culture of the transformant can be performed according to a usual method used for culturing host cells.
- Modified proteins can be obtained by solvent extraction, salting out with ammonium sulfate, desalting, precipitation with organic solvents, getylaminoethyl (DEAE) -Sepharose, ion exchange chromatography, hydrophobic chromatography, gel filtration. It can be purified by an affinity chromatography method or the like.
- Step (h) is a step of performing the above steps (a) to (g) on two or more types of samples containing microorganisms.
- a modified protein library that is an aggregate of two or more types of modified proteins can be prepared.
- samples for example, natural samples such as soil, water, mud, sediment, etc. collected from environmental forces having different temperatures, pH, and the like can be used.
- Step (i) is a step of evaluating the function of the modified protein and screening for a modified protein having a predetermined function.
- the function of the modified protein can be analyzed according to a conventional method. Functional analysis of the modified protein is performed at least for the functions of the known protein before modification, but may be performed for other functions.
- the predetermined function of the modified protein to be screened is not particularly limited, and can be appropriately selected depending on the purpose.
- Step (j) is a step of evaluating the function of the modified protein and estimating the function of the protein derived from the microorganism based on the function of the modified protein.
- the modified protein is a part of a protein derived from a microorganism (encoded by a PCR amplified fragment). Therefore, the function of the modified protein may reflect the function of the protein derived from the microorganism. Since the functional domain is considered to be involved in the function of the protein, a part of the microorganism-derived protein (the amino acid sequence encoded by the PCR-amplified fragment) of the modified protein has the same type as the first to n-th known proteins. In the case of a functional domain of a protein having the function of, the function of the modified protein is likely to reflect the function of a protein derived from a microorganism.
- a part of the microorganism-derived protein (amino acid sequence encoded by the PCR amplified fragment) of the modified protein is a part of a protein having the same type of function as the first to n-th known proteins. Therefore, the known protein found in step (e) (a protein into which a part of a protein derived from a microorganism is incorporated) 1S If the protein has the same type of function as the 1st to nth known proteins, The function is likely to reflect the function of the protein derived from the microorganism.
- Example 1 Acquisition of genomic DNA derived from microorganisms contained in soil at high temperature environment
- thermostable enzyme In order to use DNA polymerase effectively, it is important to have heat resistance that can be used for PCR and the like. In order to obtain a thermostable enzyme, it is most efficient to obtain a high-temperature environmental force sample. Therefore, hot spring areas with different properties ( PH ) were selected as the high temperature environment.
- PH hot spring areas with different properties
- Genomic DNA from various microorganisms was extracted. Genomic DNA was extracted from soil using Ultra Clean TM Soil DNA Purification kit (MO Bio, Catalog No. 12800-50, Funakoshi Catalog No. M128000), a DNA extraction kit from soil. The operation followed the operating procedure attached to this kit.
- Ultra Clean TM Soil DNA Purification kit MO Bio, Catalog No. 12800-50, Funakoshi Catalog No. M128000
- a 1Z50 amount of 2 ⁇ L of the actually extracted DNA solution was taken and 18 ⁇ L of the ⁇ buffer solution.
- genomic DNA having a length of 10 kilobase pairs or more was recovered from some points, although the amount was small.
- M represents a molecular weight marker
- lanes 1 to 38 represent results regarding different points. From these results, it was confirmed that there was a sufficient amount of microorganisms in the high-temperature environment soil to extract a sufficient amount of genomic DNA.
- FIG. 2 Alignment results of the amino acid sequences of family A type DNA polymerases derived from a small number of microorganisms (Bacillus subtiiis, Bacillus caldotenax, Thermus aquaticus, Themus thermophilus, Escherichia coli) are shown in FIG. 2 and FIG. FIG. 3 is a continuation of FIG.
- two regions (DPNLQNIP and QVHDELX (X represents I, V or L)) enclosed by a square are amino acid sequences having high homology between a plurality of microorganisms. It is presumed that this amino acid sequence is also conserved in Family 1 type A DNA polymerase of other microorganisms.
- PCR was performed in a solution containing NTP and 5 units of TAKARA Ex Taq polymerase (manufactured by Takara Bio Inc.). In the PCR, 30 temperature cycles consisting of 94 ° C for 30 seconds, 55 ° C for 1 minute, and 72 ° C for 2 minutes were performed.
- ⁇ M '' indicates a molecular weight marker
- lane 2 is Bacillus caldotenax
- lane 3 is Bacillus caldolyticus
- Escherichia coli ⁇ 5 ⁇ Bacillus suDtilis
- ⁇ 6i Lactobacillus bulgaricus ⁇ ⁇ ⁇ // ⁇ Lactobacillus homohiochu, ⁇ ⁇ ⁇ 8 ⁇ Lactobacillus heterohiochiu ⁇ ⁇ i 9i
- Thermus aquaticus is there.
- the above-mentioned degenerate primer can be used as a primer for a family A type DNA polymerase gene derived from any microorganism.
- 50 ⁇ L of the total recovered amount of genomic DNA recovered from high-temperature environmental soils such as the Kirishima hot spring area and the Onikobe hot spring area was determined using 150 ⁇ L of the above degenerated primer lOOpmol in the presence of 1. 10 mM Tris-HCl (pH 8.3), 50 mM KC1, 15 mM MgCl, 200 ⁇ M dNT PCR was performed in a solution containing P and 5 units of TAKARA EX Taq polymerase (manufactured by Takara Bio Inc.). The PCR was performed for 30 cycles of a temperature cycle at 94 ° C for 30 seconds, 55 ° C for 1 minute, and 72 ° C for 2 minutes.
- liquid 1 ⁇ medium containing 10 g of tryptone, 5 g of yeast extract, 5 g of sodium salt and lg glucose
- 150 L of the culture after the completion of the shaking culture was inoculated on an LB agar medium containing lOO ⁇ g / mL ampicillin, and cultured at -37 ° C.
- E. coli colonies amplified on agar medium containing approximately 2 mL of 100 ⁇ g / mL ampicillin Inoculum was inoculated in LB medium and cultured at ⁇ 37 ° C. with shaking.
- the grown cells were collected by centrifugation at 10, OOOrpm for 10 minutes, and plasmid DNA was recovered using QIAprep Spin Miniprep Kit (QIAGEN, Catalog No. 27104).
- the recovered plasmid DNA was converted into type I, and PCR was performed using primers for decoding the base sequence (M13 primer M4 and T promoter primer).
- Dye terminator one-cycle sequencing kit (ABI) was used for PCR, and ABI 3700 automatic nucleotide sequence detector was used for decoding the nucleotide sequence.
- the base sequence of the amplified PCR fragment may contain mechanical errors
- the base sequence was corrected manually to eliminate mechanical errors
- the amino acid sequence encoded in the base sequence was determined.
- a homology search was performed using a public protein database, and the amino acid sequence encoded by the PCR-amplified fragment was compared with the amino acid sequence of a known family A type DNA polymerase (DNA polymerase from Thermus aquaticus (Taq DNA polymerase)). A comparison was made with the acid sequence.
- the amino acid sequence encoded by the PCR amplified fragment contained the amino acid sequence of the functional domain of family A type DNA polymerase.
- “Taq” represents the amino acid sequence of Taq DNA polymerase
- “No.l”, “No.2” and “No.3” are genomic DNAs collected from different points Represents the amino acid sequence encoded by the PCR amplified fragment obtained, and shows 90%, 57% and 52% homology to the amino acid sequence of Taq DNA polymerase, respectively.
- the amino acid sequences related to “No. 1”, “No. 2” and “No. 3” indicate only amino acid sequences different from Taq DNA polymerase.
- the amino acid sequences encoded by the PCR amplified fragments obtained by using genomic DNA recovered from different points (a to g) as type III are derived from different microorganisms, respectively. It showed homology with the amino acid sequence of Family A DNA polymerase, confirming that many unknown Family A DNA polymerases exist in a high temperature environment.
- the amino acid sequence of Taq DNA polymerase has homology with the amino acid sequence encoded by the PCR amplified fragment.
- the modified DNA polymerase in which the indicated region is substituted with the amino acid sequence encoded by the PCR amplified fragment is considered to exhibit a DNA polymerase activity different from that of Taq DNA polymerase, and may exhibit improved DNA polymerase activity.
- the function of the modified DNA polymerase is considered to reflect the function of the unknown family type A DNA polymerase present in high-temperature soil.
- PTAQ9 vector containing DNA encoding Taq DNA polymerase Ishino Y, Ueno T, Miyagi M, Uemori T, Imamura M, Tsunasawa S, Kato I. Overproduction of Thermus aquaticus DNA polymerase and its structural analysis by ion-spray mass spectrometry " (1994) J Biochem (Tokyo), 116 (5), 1019-24) 50 ⁇ L of 10 mM Tris-HCl (pH 8.3), 50 mM KCl using 2 pmol of primers A and B in the presence of lOng , 15 mM MgCl, 200 M dNTP and 2.5 units PfoUltra DNA polymerase (Ishino Y, Ueno T, Miyagi M, Uemori T, Imamura M, Tsunasawa S, Kato I. Overproduction of Thermus aquaticus DNA polymerase and its structural analysis by ion-spray mass spectrometry "
- PCR was performed in a solution containing Stratagene). The PCR was performed 30 cycles of a temperature cycle of 95 ° C for 1 minute, 55 ° C for 1 minute, and 72 ° C for 2 minutes.
- PCR was performed in a solution containing The PCR was carried out 30 cycles of 1 minute at 95 ° C, 1 minute at 55 ° C, and 2 minutes at 72 ° C.
- each PCR amplification reaction solution contains 5 L of 10-fold concentrated restriction enzyme buffer (200 mM Tris-HCl (pH 8.2), 100 mM MgCl, 600 mM NaCl, lOmM DTT) and 42 ⁇ L of sterile distilled water.
- restriction yeast After mixing 3 ⁇ L of elemental Blpl and mixing well, the mixture was kept at 37 ° C. for 3 hours.
- 5 M NaC1 solution and 3 L of restriction enzyme Bglll were added and mixed well, and the mixture was kept at 60 ° C. for 3 hours. After completion of thermal insulation, in addition to 10 i u 10 mM EDTA and 2% SDS solution L, the reaction was stopped.
- each DNA fragment was recovered and purified using QuiaQuickTip manufactured by QUIAGEN.
- the PCR amplified fragment was incorporated into the pTAQ9 vector containing the DNA encoding Taq DNA polymerase, that is, the pTAQ9 vector having the DNA encoding the modified DNA polymerase could be constructed. It was confirmed that.
- “M” represents a marker
- lanes 1 to 3 show the results for the pTAQ9 vector into which a PCR amplified fragment obtained from genomic DNA collected from different points and obtained as type III was incorporated.
- E. coli BL21-CodonPlus (DE3) -RIL The competent cells of E. coli BL21-CodonPlus (DE3) -RIL were thawed and transferred to two Falcon tubes in a volume of 0.1 mL.
- the solutions corresponding to the two pTAQ9 vectors were separately added thereto, left on ice for 30 minutes, and then heat-shocked at 42 ° C for 30 seconds, and 0.9 mL of SOC medium was added thereto.
- the seeds were shaken and cultured at 37 ° C for 1 hour with shaking. Thereafter, an appropriate amount was spread on an LB agar plate containing ampicillin, and cultured overnight at 37 ° C to obtain a transformant Escherichia coli BL21-CodonPlus (DE3) -RIL / ST0452-1.
- IPTG isopropyl-bD-thiogalactopyranoside
- FIG. 8 shows the results of subjecting the crude DNA polymerase fraction to SDS-PAGE and staining with CBB (Coomassie brilliant blue).
- ⁇ M '' represents a molecular weight marker
- ⁇ Q9J represents the results for the crude DNA polymerase fraction obtained by expressing the pTAQ9 vector containing DNA encoding Taq DNA polymerase
- lanes 1 and 2 Shows the results for the crude DNA polymerase fraction obtained by expressing the pTAQ9 vector having the DNA encoding the modified DNA polymerase.
- crude DNA polymerase The ze fraction was an almost uniform protein sample.
- M indicates a molecular weight marker
- lane 1 shows the results of electrophoresis of the PCR-amplified fragment obtained using a commercially available Taq DNA polymerase (control)
- lane 2 shows the modified DNA polymerase. The results of electrophoresis of the PCR-amplified fragments obtained using the method are shown.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05737205A EP1760149A4 (en) | 2004-05-07 | 2005-05-06 | PROCESS FOR CONSTRUCTING MODIFIED PROTEIN |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-139147 | 2004-05-07 | ||
JP2004139147A JP2007159401A (ja) | 2004-05-07 | 2004-05-07 | 改変タンパク質の作製方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005108567A1 true WO2005108567A1 (ja) | 2005-11-17 |
Family
ID=35320228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/008362 WO2005108567A1 (ja) | 2004-05-07 | 2005-05-06 | 改変タンパク質の作製方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1760149A4 (ja) |
JP (1) | JP2007159401A (ja) |
WO (1) | WO2005108567A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018207931A1 (ja) * | 2017-05-12 | 2018-11-15 | 三井化学株式会社 | 組換え微生物、組換え微生物を用いたピリドキサミン又はその塩の製造方法、及び組換え微生物を用いたピリドキサール又はその塩の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014175427A1 (ja) * | 2013-04-26 | 2017-02-23 | 日本ソフトウェアマネジメント株式会社 | Dnaの状態を評価する方法、装置及びプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995013385A2 (en) * | 1993-11-12 | 1995-05-18 | Gilead Sciences | Thrombin mutants |
JP2001178476A (ja) * | 1999-12-28 | 2001-07-03 | Agency Of Ind Science & Technol | 機能性タンパク質のスクリーニング方法 |
EP1350841A2 (en) * | 2002-04-02 | 2003-10-08 | Roche Diagnostics GmbH | Thermostable or thermoactive DNA polymerase with attenuated 3'-5' exonuclease activity |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5849491A (en) * | 1995-09-22 | 1998-12-15 | Terragen Diversity Inc. | Method for isolating xylanase gene sequences from soil DNA, compositions useful in such method and compositions obtained thereby |
-
2004
- 2004-05-07 JP JP2004139147A patent/JP2007159401A/ja active Pending
-
2005
- 2005-05-06 WO PCT/JP2005/008362 patent/WO2005108567A1/ja active Application Filing
- 2005-05-06 EP EP05737205A patent/EP1760149A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995013385A2 (en) * | 1993-11-12 | 1995-05-18 | Gilead Sciences | Thrombin mutants |
JP2001178476A (ja) * | 1999-12-28 | 2001-07-03 | Agency Of Ind Science & Technol | 機能性タンパク質のスクリーニング方法 |
EP1350841A2 (en) * | 2002-04-02 | 2003-10-08 | Roche Diagnostics GmbH | Thermostable or thermoactive DNA polymerase with attenuated 3'-5' exonuclease activity |
Non-Patent Citations (1)
Title |
---|
See also references of EP1760149A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018207931A1 (ja) * | 2017-05-12 | 2018-11-15 | 三井化学株式会社 | 組換え微生物、組換え微生物を用いたピリドキサミン又はその塩の製造方法、及び組換え微生物を用いたピリドキサール又はその塩の製造方法 |
CN110678546A (zh) * | 2017-05-12 | 2020-01-10 | 三井化学株式会社 | 重组微生物、使用重组微生物的吡哆胺或其盐的制造方法、及使用重组微生物的吡哆醛或其盐的制造方法 |
JPWO2018207931A1 (ja) * | 2017-05-12 | 2020-03-19 | 三井化学株式会社 | 組換え微生物、組換え微生物を用いたピリドキサミン又はその塩の製造方法、及び組換え微生物を用いたピリドキサール又はその塩の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2007159401A (ja) | 2007-06-28 |
EP1760149A4 (en) | 2007-08-01 |
EP1760149A1 (en) | 2007-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Watanabe et al. | Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree | |
EP0799319B1 (en) | Purified thermococcus barossii dna polymerase | |
JP2000508538A (ja) | バシラス ステアロテルモフィルスdnaポリメラーゼの生物学的に活性な断片 | |
JP7363063B2 (ja) | 変異型dnaポリメラーゼ | |
CN113637085A (zh) | 融合dna聚合酶突变体及其在等温扩增中的应用 | |
JP3891330B2 (ja) | 改変された耐熱性dnaポリメラーゼ | |
JP2017178804A (ja) | 融合タンパク質 | |
Taguchi et al. | Functional mapping of amino acid residues responsible for the antibacterial action of apidaecin | |
US8986968B2 (en) | Thermostable DNA polymerase | |
WO2005108567A1 (ja) | 改変タンパク質の作製方法 | |
JP2002247991A (ja) | タンパク質の耐熱性を向上させる方法、該方法により耐熱性の向上したタンパク質、および該タンパク質をコードする核酸 | |
CN115975978B (zh) | Bst DNA聚合酶大片段突变体及其应用 | |
KR100777230B1 (ko) | 써모코커스 유래 돌연변이 dna 중합효소들 및 그의유전자들 | |
WO2006109578A1 (ja) | 改変型ピロロキノリンキノン依存性グルコース脱水素酵素、及びピロロキノリンキノン依存性グルコース脱水素酵素の基質特異性改良法 | |
JP4633488B2 (ja) | 熱安定性又は熱活性dnaポリメラーゼ及びそれをコードするdna | |
US20110020896A1 (en) | Mutant dna polymerases and their genes | |
JP5515373B2 (ja) | 改良された耐熱性dnaポリメラーゼ | |
JP4568571B2 (ja) | 熱安定性又は熱活性dnaポリメラーゼ及びそれをコードするdna | |
JP7612678B2 (ja) | 海洋性dnaポリメラーゼi | |
JP7624978B2 (ja) | Dnaポリメラーゼおよびdnaポリメラーゼ由来3’-5’エキソヌクレアーゼ | |
EP1075525B1 (en) | Dna polymerase from pyrobaculum islandicum | |
JP7342403B2 (ja) | 改変されたdnaポリメラーゼ | |
JP5357445B2 (ja) | 環状核酸の単離方法 | |
WO2024117270A1 (ja) | 耐熱性タンパク質をスクリーニングするための方法およびキット | |
EP3390629A1 (en) | Pectinases with improved thermostability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005737205 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005737205 Country of ref document: EP |