WO2005108271A1 - ハイブリッド駆動型エレベータの制御装置 - Google Patents

ハイブリッド駆動型エレベータの制御装置 Download PDF

Info

Publication number
WO2005108271A1
WO2005108271A1 PCT/JP2005/008627 JP2005008627W WO2005108271A1 WO 2005108271 A1 WO2005108271 A1 WO 2005108271A1 JP 2005008627 W JP2005008627 W JP 2005008627W WO 2005108271 A1 WO2005108271 A1 WO 2005108271A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
power
energy
power storage
value
Prior art date
Application number
PCT/JP2005/008627
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Takasaki
Original Assignee
Toshiba Elevator Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Kabushiki Kaisha filed Critical Toshiba Elevator Kabushiki Kaisha
Publication of WO2005108271A1 publication Critical patent/WO2005108271A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor

Definitions

  • the present invention relates to a hybrid drive type elevator control device that drives an elevator (car) using regenerative energy.
  • the energy generated during the regenerative operation is stored in the power storage device without being released, and the energy is used during the power running operation, thereby realizing power saving.
  • the power source Since only the equipment was used, the energy required for the car to run could not be obtained sufficiently, and the car could stop halfway between floors.
  • an object of the present invention is to provide a hybrid drive type elevator control device capable of preventing a car from stopping halfway between floors due to energy shortage and ensuring passenger safety. .
  • a control apparatus for a hybrid drive type elevator stores energy generated during regenerative operation of a car, and supplies the stored energy to the drive system of the car during power running operation.
  • Power storage means energy capacity calculation means for calculating the energy capacity of the power storage means, and when the energy capacity calculated by the energy capacity calculation means falls below a predetermined capacity, it is determined that there is an energy shortage, and the car travels.
  • Running direction reversing means for changing the direction from the driving direction to the regenerating direction and stopping the car at the nearest floor.
  • a hybrid drive elevator control device stores energy generated during regenerative operation of a car and supplies the stored energy to the drive system of the car during power running operation.
  • Power storage means current detection means for detecting a current value of charging / discharging of the power storage means, and when the current value detected by the current detection means exceeds a predetermined value, it is determined that there is insufficient energy, and
  • the vehicle is provided with a traveling direction reversing means for changing the traveling direction to the regenerative direction and stopping the car to the nearest floor.
  • a control device for a hybrid drive type elevator stores energy generated during regenerative operation of a car, and supplies the stored energy to the drive system of the car during power running operation.
  • Power storage means voltage detection means for detecting a voltage value of the power storage means, and when the voltage value detected by the voltage detection means falls below a predetermined value, it is determined that energy is insufficient and the traveling direction of the car is detected.
  • a running direction reversing means for changing from the row direction to the regeneration direction is provided.
  • a control apparatus for a hybrid drive type elevator stores energy generated during regenerative operation of a car, and supplies the stored energy to the drive system of the car during power running operation.
  • Power storage means and calculating a power value of the power storage means Power calculating means, and when the power value calculated by the power calculating means falls below a predetermined value, it is determined that the energy is insufficient, and the running direction of the car is changed from the driving direction to the regenerative direction to change the running direction of the car.
  • Running direction reversing means for stopping to the nearest floor.
  • control apparatus for a hybrid drive type elevator stores energy generated during regenerative operation of the riding car, and stores the stored energy during power running operation of the car.
  • Power storage means for supplying power to the system, first power calculation means for calculating a power value of the power storage means, second power calculation means for calculating a power value generated in the driving system of the car, and If the first power value calculated by the power calculation means is lower than the second power value calculated by the second power calculation means, it is determined that there is insufficient energy, and the traveling direction of the car is changed.
  • Running direction reversing means for changing the running direction from the row direction to the regenerating direction and stopping the above-mentioned car at the nearest floor.
  • FIG. 1 is a diagram showing a configuration of a control device of a hybrid drive type elevator according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a relationship between a switch of a load signal calculation device used in a control device of the hybrid drive type elevator according to the embodiment and a torque compensation value.
  • FIG. 3 is a diagram for explaining an operating state of the car by the control device for the hybrid drive type elevator according to the embodiment.
  • FIG. 4 is a diagram showing a configuration of a control device for a hybrid drive type elevator according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart showing a processing operation of a control device of the hybrid drive type elevator according to the embodiment.
  • FIG. 6 is a diagram showing a configuration of a control device for a hybrid drive type elevator according to a third embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a control device for a hybrid drive type elevator according to a fourth embodiment of the present invention.
  • FIG. 8 is a control apparatus for a hybrid drive type elevator according to a fifth embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the device.
  • FIG. 9 is a diagram showing a configuration of a control device for a hybrid drive type elevator according to a sixth embodiment of the present invention.
  • FIG. 10 is a diagram showing a configuration of a control device for a hybrid drive type elevator according to a seventh embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a control device for a hybrid drive type elevator according to a first embodiment of the present invention.
  • the elevator includes an electric motor 11, a sheave 12, a rope 13, a riding power 14, and a counterweight (balance weight) 15.
  • the electric motor 11 rotates upon receiving a predetermined drive power.
  • the sheave 12 is attached to a rotating shaft of the electric motor 11.
  • the rope 13 is wound around a sheave 12, and a car 14 and a counterweight 15 are attached to both ends thereof.
  • the elevator includes a commercial power supply 21, a rectifier 22, a smoothing capacitor 23, an inverter 24, and an inverter current detecting device 25 as a drive system of the car 14.
  • the commercial power supply 21 supplies a predetermined AC voltage to the drive system of the car 14.
  • Rectifier 22 converts an AC voltage from commercial power supply 21 to a DC voltage.
  • the smoothing capacitor 23 smoothes the ripple of the DC voltage and supplies it to the inverter 24.
  • the inverter 24 is a device for driving the electric motor 11 to rotate.
  • the inverter 24 generates an AC voltage whose voltage value and frequency are arbitrarily changed based on the DC voltage applied via the smoothing capacitor 23.
  • the inverter current detection device 25 is provided between the inverter 24 and the motor 11, and detects a current supplied to the motor 11.
  • the commercial power supply 21 is a three-phase power supply.
  • the AC voltage generated by the three-phase power supply is full-wave rectified by the rectifier 22, and the ripple component is absorbed by the smoothing capacitor 23 to be smoothed to DC.
  • the smoothed DC power inverter 24 supplies the DC power inverter 24 with an AC voltage having a predetermined frequency, which is then supplied to the motor 11 as driving power.
  • the electric motor 11 is driven to rotate, and accordingly, the sheave 12 is rotated.
  • the car 14 and the counterweight 15 move up and down in a hoistway in a hoistway via a rope 13 wound around the sheave 12.
  • this elevator includes a speed command device 26, a speed detection device 27, a speed control device 28, a load detection switch device 29, a load signal calculation device 30, a torque command determination device 31 and an inverter current control device 32.
  • Speed command device 26 receives an operation command of elevator motor 11 (not shown) and outputs a speed command value.
  • the speed detecting device 27 detects the current speed of the electric motor 11.
  • the speed controller 28 calculates a deviation between the speed command value and the detected speed value, and outputs a torque command that eliminates the difference.
  • the load detection switch device 29 is a switch for detecting the load of the car 14 and includes, for example, a plurality of switch forces that selectively turn on according to the load value.
  • the load signal calculating device 30 calculates a torque compensation value based on the load signal output from the load detecting switch device 29.
  • the load detection switch device 29 is assumed to be composed of three switches a, b, and c.
  • Switch a is turned on when the load value of the car 14 is heavier than a predetermined load weight (weight that balances with the counterweight 15).
  • Switch b is turned ON when the load value of car 14 is at the above-mentioned prescribed load weight.
  • Switch c is turned on when the load value of car 14 is lighter than the above-mentioned predetermined load capacity.
  • the load signal calculating device 30 generates a torque compensation value of, for example, “ ⁇ 10”, “0”, “+10” for each of the ON signals of these switches a, b, and c. Output.
  • the torque command determination device 31 allows a final torque command value obtained by adding the torque command value output from the speed control device 28 and the torque compensation value output from the load signal calculation device 30. It is determined whether or not the power is within the range. As a result, if the torque command value is out of the allowable range, a limiter is set so that the torque command value falls within the allowable range.
  • the inverter current control device 32 converts the current flowing through the electric motor 11 into a torque command value based on the current value detected by the inverter current detection device 25 and the torque command value output from the torque command determination device 31. Control together.
  • the elevator according to the present embodiment has the above configuration, and further includes a power storage device 41, a voltage detector 42, a charge / discharge control device 42a, and a charge / discharge circuit 43 as a hybrid drive system. .
  • the power storage device 41 also has, for example, a large number of large capacity batteries or capacitors. This power storage device 41 stores regenerative energy generated during regenerative operation, and discharges the stored regenerative energy during the next power running operation.
  • the voltage detector 42 detects a voltage between both ends of the smoothing capacitor 23 as a voltage between DC buses, which are power supply lines.
  • the charging / discharging control device 42a determines whether the current operating state is the regenerative operation or the power running operation based on the voltage value detected by the voltage detector 42, and determines the charging / discharging circuit 43 according to the operating state. Controls charging and discharging operations.
  • power storage device 41 is provided on the input terminal side of inverter 24.
  • a voltage detector 42 is provided in parallel with the smoothing capacitor 23. The voltage detector 42 detects the terminal voltage of the smoothing capacitor 23.
  • the voltage of the smoothing capacitor 23 maintains a predetermined voltage value.
  • regenerative energy is returned from the inverter 24 to the input terminal side, so that the terminal voltage of the smoothing capacitor 23 rises above the predetermined voltage value.
  • the charge / discharge control device 42a determines whether the operation is the power running operation or the regenerative operation.
  • a charge / discharge circuit 43 and a power storage device 41 are provided in parallel with the smoothing capacitor 23.
  • the charging / discharging circuit 43 is a circuit for switching charging / discharging of the power storage device 30.
  • the charging / discharging circuit 43 also includes a power such as a charging switching element 44, a discharging switching element 45, and a DC reactor 46.
  • the charging switching element 44 and the discharging switching element 45 are connected in parallel between DC buses, which are power supply lines to the inverter 24.
  • the DC rear turtle 46 is connected to a common connection of these switching elements 44 and 45, and smoothes DC power.
  • the charging switching element 44 in the charging / discharging circuit 43 is turned on when the voltage between the DC buses is equal to or higher than a preset reference value. As a result, the regenerative energy is charged in the power storage device 41.
  • the direct current smoothed by the smoothing capacitor 23 is supplied to the inverter 24. Therefore, the voltage between the DC buses, which is the power supply line to the inverter 24, is lower than at the time of stop. The voltage drop at this time is detected by the voltage detector 42 and given to the charge / discharge control device 42a.
  • the discharge switching element 45 in the charge / discharge circuit 431 is turned on. As a result, the regenerative energy stored in power storage device 30 is discharged to the power supply line.
  • the hybrid drive type elevator having such a configuration, for example, when the power of the commercial power supply 21 cannot be normally supplied due to a power failure or the like, the voltage of the smoothing capacitor 23 drops, and this state is equal to that of the smoothing capacitor 23. It is detected by the installed voltage detector 42. As a result, energy is released from the power storage device 41 by the discharging operation of the charging / discharging circuit 43 and supplied to the inverter 24.
  • the current detection device 50, the voltage detection device 51, and the energy capacity monitoring device 52 are configured to safely stop the car 14 at the nearest floor when energy is insufficient.
  • a running direction reversing device 53 is provided.
  • the current detection device 50 is connected to the power storage device 41 through a current detector 48 connected to the power storage device 41. Outputs a current value of 1.
  • Voltage detection device 51 detects a voltage value of power storage device 41.
  • the energy capacity monitoring device 52 calculates the current energy capacity of the power storage device 41 by integrating a time component into the current value detected by the current detection device 50 and the voltage value detected by the voltage detection device 51. .
  • the traveling direction reversing device 53 outputs a command to reverse the traveling direction of the car 14 to the speed command device 26 based on the energy capacity calculated by the energy capacity monitoring device 52.
  • the current energy capacity of power storage device 41 is calculated by energy capacity monitoring device 52.
  • the energy capacity Q of the power storage device 41 is as follows. It is represented by the following equation (1). Note that t is time.
  • the energy capacity monitoring device 52 assumes that the capacity required for the traveling of the car 14 is insufficient. Judgment is made and a capacity shortage signal is output to the traveling direction reversing device 53.
  • the predetermined capacity Qt is set to, for example, about 20% of the total capacity according to characteristics of the power storage device 41 which are not zero.
  • the speed command device 26 changes the running direction to the regenerative direction if the car 14 is in the running operation when the car 14 is in the power running operation. Command.
  • the speed command device 26 reverses the direction of the car 14 from the driving direction to the regenerative direction, and drives to the nearest floor to stop.
  • FIG. 3 is a diagram for explaining the operating state of the car 14.
  • the upper force is also the speed command output from the speed command device 26, the operating pattern of the car 14 during a power failure, and the energy capacity.
  • a capacity shortage signal output from the quantity monitoring device 52 is shown.
  • a downward pattern indicates that the vehicle is traveling in the opposite direction.
  • the energy capacity monitoring device 52 outputs a capacity shortage signal.
  • the traveling direction of the car 14 is switched to the regenerative direction, and the car 14 stops at the nearest floor. For example, if there is insufficient capacity between the 2nd and 3rd floors, at that point the car 14 will be driven in the opposite direction and will stop at the nearest 2nd floor.
  • the traveling direction of the car 14 is switched to the reverse direction, that is, the regeneration direction.
  • the traveling direction of the car 14 is switched to the reverse direction, that is, the regeneration direction.
  • the direction of the car 14 is immediately reversed, assuming that the vehicle is in the power running operation.
  • FIG. 4 is a diagram illustrating a configuration of a control device for a hybrid drive type elevator according to a second embodiment of the present invention.
  • the same parts as those in the configuration of FIG. 1 in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the difference from the configuration of FIG. 1 is that a car position detector 54 is added.
  • a car position detector 54 detects the position of the car 14 in the hoistway, and outputs a position detection signal to the traveling direction reversing device 53.
  • the traveling direction reversing device 53 determines, based on the car position obtained from the car position detector 54, whether driving in the regenerative direction is closer to the nearest floor than driving in the car direction, and the judgment is made.
  • the direction inversion command is output to the speed command device 26 according to the result.
  • FIG. 5 is a flowchart showing a processing operation of the control device of the hybrid drive type elevator according to the embodiment, and shows an operation when a capacity shortage signal is output from the energy capacity monitoring device 52.
  • the traveling direction reversing device 53 first obtains the current car position from the car position detector 54 by receiving the capacity shortage signal (step S11) (step S12). Then, the traveling direction reversing device 53 calculates the distance to the nearest floor (L1) when the car 14 advances in the car direction without changing the current car position force (step S13). It is assumed that the position information of each floor is given to the traveling direction reversing device 53 in advance.
  • the traveling direction reversing device 53 calculates the distance (L2) to the nearest floor when the current car position force is reversed and the car 14 is driven in the regenerative direction (step S14). ).
  • the traveling direction reversing device 53 compares the distance L1 calculated in step S13 with the distance L2 calculated in step S14. As a result, if L1> L2, that is, if driving in the regenerative direction is closer to the nearest floor (Yes in step S15), the driving direction reversing device 53 uses the regenerative operation to A direction reversal command for causing the vehicle 14 to travel in the reverse direction is output to the speed command device 26 (step S16).
  • step S15 if L1 ⁇ L2, that is, if driving in the vehicle direction is closer to the nearest floor or the same distance (Yes in step S15), the driving direction is reversed. apparatus 53 does not issue the direction reversal command, and advances the car 14 in the car direction as it is (step S17).
  • the third embodiment is characterized in that, when an abnormal current is detected in the power storage device 41 during the operation of the elevator, the car 14 is turned around and stopped at the nearest floor.
  • FIG. 6 is a diagram showing a configuration of a control device for a hybrid drive type elevator according to a third embodiment of the present invention.
  • the same parts as those in the configuration of FIG. 1 in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the difference from the configuration of FIG. 1 is that a current abnormality detection device 60 is provided instead of the energy capacity monitoring device 52.
  • current abnormality detection device 60 monitors the current value of charging / discharging of power storage device 41 detected by current detection device 50, and when the current value exceeds a predetermined value, energy shortage occurs. It judges that there is, and outputs a traveling reversal command to the traveling direction reversing device 53.
  • the current abnormality detection device 60 detects the instantaneously rising current abnormality as energy shortage. In this case, since the power storage device 41 is in the energy consuming state, it is determined that the car 14 is in the power running operation.
  • the current abnormality of the power storage device 41 is reduced. If the car 14 is operating in the driving direction at that time, if the car 14 is driving in the regenerative direction by reversing the running direction, as in the first embodiment, the car 14 Can be stopped midway between floors and safely stopped on the nearest floor.
  • the charge / discharge controller 42a determines the current operating state of the car 14 (power running operation Z regenerative operation) based on the voltage value (DC bus voltage) across the smoothing capacitor 23 and outputs the operating state signal. To the traveling direction reversing device 53.
  • a comparison between the distance to the nearest floor in the power direction and the distance to the nearest floor in the regeneration direction is performed.
  • the configuration may be such that the direction is reversed based on the result.
  • the fourth embodiment is characterized in that, when an abnormal voltage of the power storage device 41 is detected during operation of the elevator, the direction of the car 14 is reversed and the car 14 is stopped at the nearest floor.
  • FIG. 7 is a diagram illustrating a configuration of a control device for a hybrid drive type elevator according to a fourth embodiment of the present invention.
  • the same parts as those in the configuration of FIG. 1 in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the difference from the configuration of FIG. 1 is that a voltage abnormality detection device 61 is provided instead of the energy capacity monitoring device 52.
  • voltage abnormality detection device 61 monitors the value of the voltage across power storage device 41 detected by voltage detection device 51, and when the voltage value falls below a predetermined value, the energy is insufficient. And outputs a traveling reversal command to the traveling direction reversing device 53.
  • the voltage abnormality detection device 61 detects voltage abnormality due to the voltage drop as energy shortage. In this case, since the power storage device 41 is in the energy consuming state, it is determined that the car 14 is in the power running operation. As described above, in the elevator of the hybrid drive type, the abnormal voltage of the power storage device 41 is detected, and if the car 14 is operating in the car direction at that time, the running direction is reversed to regenerate. By driving in the direction, similarly to the first embodiment, it is possible to prevent the car 14 from stopping halfway between floors due to lack of energy and to safely stop at the nearest floor.
  • the charge / discharge controller 42a determines the current operating state of the car 14 (power running operation Z regenerative operation) based on the voltage value (DC bus voltage) across the smoothing capacitor 23 and outputs the operating state signal. To the traveling direction reversing device 53.
  • the distance between the nearest floor in the power direction and the distance to the nearest floor in the regeneration direction is compared.
  • the configuration may be such that the direction is reversed based on the result.
  • the third embodiment is characterized in that, when an abnormality in the power of the power storage device 41 is detected during the operation of the elevator, the car 14 is turned around and stopped at the nearest floor.
  • FIG. 8 is a diagram showing a configuration of a hybrid drive type elevator control apparatus according to a fifth embodiment of the present invention.
  • the same parts as those in the configuration of FIG. 1 in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the difference from the configuration of FIG. 1 is that a power calculation device 62 and a power abnormality detection device 63 are provided instead of the energy capacity monitoring device 52.
  • power calculating device 62 stores the power based on the charging / discharging current to power storage device 41 detected by current detection device 50 and the voltage of power storage device 41 detected by voltage detection device 51.
  • the power value of the device 41 is calculated.
  • the power abnormality detection device 63 determines that the energy is insufficient when the power value calculated by the power calculation device 62 falls below the predetermined value, and outputs a traveling reversal command to the traveling direction reversing device 53.
  • the electric power supplied from power storage device 41 by electric power A force value is calculated.
  • the power value P is represented by the following equation (2) ).
  • the energy capacity Q is a value obtained by integrating the current value I and the voltage value V with the time t (see Equation (1))
  • the power value P is the value at that moment, and the current value I and the voltage It is obtained by multiplying the value V.
  • power abnormality detection device 63 determines that the energy is insufficient, and sends an abnormality signal to traveling direction reversing device 53 to that effect. Is output.
  • the traveling direction reversing device 53 When the traveling direction reversing device 53 receives the abnormality signal from the power abnormality detecting device 63, if the car 14 is traveling in the traveling direction at that time, the traveling direction reversing device 53 changes the driving direction to the regenerative direction. Sends a command to the command device 26. In this case, in this case, since the power storage device 41 is in the energy-consuming state, it is determined that the car 14 is in the power running operation. Therefore, the traveling direction of the car 14 is changed from the driving direction to the regenerative direction, and the car 14 moves to the nearest floor by the regenerative operation and stops.
  • the hybrid drive type elevator when the power abnormality of the power storage device 41 is detected, and the car 14 is operating in the power direction at that time, the running direction is reversed to the regenerative direction.
  • the car 14 By driving, as in the first embodiment, the car 14 can be prevented from stopping halfway between floors due to energy shortage, and can be safely stopped at the nearest floor.
  • the direction of the car 14 is reversed after confirming that the vehicle is in the fog operation.
  • the charge / discharge controller 42a also determines the current operating state of the car 14 (power running operation Z regenerative operation) based on the voltage value (DC bus voltage) across the smoothing capacitor 23 and outputs the operating state signal.
  • the traveling direction reversing device 53 To the traveling direction reversing device 53.
  • the distance between the nearest floor in the power direction and the distance to the nearest floor in the regeneration direction is compared. Based on the result Alternatively, a configuration in which the direction is reversed may be adopted.
  • the sixth embodiment is characterized in that an abnormal state is detected by comparing the electric power of the power storage device 41 and the electric power of the electric motor 11, and the car 14 is turned around to stop at the nearest floor.
  • FIG. 9 is a diagram showing a configuration of a control device for a hybrid drive type elevator according to a sixth embodiment of the present invention.
  • the same parts as those in the configuration of FIG. 1 in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the difference from the configuration of FIG. 1 is that a power calculation device 62, a motor power calculation device 64, and a power comparison device 65 are provided instead of the energy capacity monitoring device 52.
  • power calculation device 62 stores the power based on the charging / discharging current to power storage device 41 detected by current detection device 50 and the voltage of power storage device 41 detected by voltage detection device 51.
  • the power value of the device 41 is calculated.
  • the motor power calculation device 64 calculates a power value of the motor 11 based on the torque command output from the torque command determination device 31 and the speed of the motor 11 detected by the speed detection device 27.
  • the power comparison device 65 detects a power abnormality by comparing the power of the power storage device 41 calculated by the power calculation device 62 with the power of the motor 11 calculated by the motor power calculation device 64, and reverses the traveling direction.
  • the running reverse command is output to the device 53.
  • the value of the power generated in power storage device 41 is calculated by power calculation device 62.
  • the power value P is calculated by the above equation (2). Is represented as
  • the value of the electric power supplied to the electric motor 11 is calculated by the electric motor electric power calculation device 64.
  • the torque value obtained from the torque command judging device 31 is T and the speed value (rotation speed) obtained from the speed detecting device 27 is ⁇
  • the power value Pm generated by the motor 11 is expressed by the following equation. It is represented by (3).
  • the power comparison device 65 When it is determined that there is, an abnormal signal to that effect is output to the traveling direction reversing device 53.
  • the traveling direction reversing device 53 receives the abnormal signal from the power comparing device 65, if the car 14 is traveling in the driving direction at that time, a speed command is issued to change the driving direction to the regenerative direction. Command the device 26.
  • the traveling direction of the riding power 14 is changed from the driving direction to the regenerative direction, and the car 14 moves to the nearest floor by the regenerative operation and stops.
  • a power abnormality is also detected as a result of the comparison between the power value of the power storage device 41 and the power value of the electric motor 11, and at that time, the car 14 operates in the car direction. If the vehicle is in the middle, driving the vehicle in the regenerative direction by reversing the running direction can also prevent the car 14 from stopping halfway between floors due to energy shortage as in the first embodiment, and Can be safely stopped.
  • the direction of the car 14 be reversed after confirming that the vehicle is in the fog operation.
  • the charge / discharge controller 42a also determines the current operating state of the car 14 (power running operation Z regenerative operation) based on the voltage value (DC bus voltage) across the smoothing capacitor 23 and outputs the operating state signal.
  • the traveling direction reversing device 53 To the traveling direction reversing device 53.
  • the distance between the nearest floor in the power direction and the distance to the nearest floor in the regeneration direction is compared.
  • the configuration may be such that the direction is reversed based on the result.
  • the seventh embodiment is characterized in that when the direction of the car 14 is reversed, guidance to that effect is given to the passengers in the car 14.
  • FIG. 10 is a control apparatus for a hybrid drive type elevator according to a seventh embodiment of the present invention.
  • FIG. 3 is a diagram showing the configuration of FIG. The same parts as those in the configuration of FIG. 1 in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The difference from the configuration of FIG. 1 is that a guide device 70 is added in the car 14.
  • the guide device 70 is installed at a predetermined place in the car 14, for example, above a front door.
  • the guide device 70 When receiving the traveling direction reversal command from the traveling direction reversing device 53, the guide device 70 notifies the car 14 of the direction reversal by voice or text.
  • the in-vehicle device 70 notifies the car 14 in advance that the direction of the car 14 will be reversed, so that the passengers' anxiety can be reduced.
  • guide device 70 according to the seventh embodiment can be applied to all the configurations of the first to sixth embodiments.
  • the present invention is not limited to the above embodiments, and at the stage of implementation, the components can be modified and embodied without departing from the scope of the invention.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, components of different embodiments may be appropriately combined.
  • the traveling direction of the car is changed from the car driving direction to the regenerative direction to be the nearest. Since the stop control is performed on the floor, it is possible to prevent the car from stopping halfway between floors due to lack of energy, and to ensure passenger safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

 蓄電装置41は、乗りかご14の回生運転時に発生するエネルギーを蓄え、力行運転時にその蓄えたエネルギーを乗りかご14の駆動系に供給する。この蓄電装置41のエネルギー容量を監視し、そのエネルギー容量が所定容量を下回る場合に、乗りかご14の走行方向を力行方向から回生方向へ変更して最寄階で停止させる。これにより、エネルギー不足により乗りかご14が階間途中で止まることを防止して乗客の安全を確保する。

Description

明 細 書
ハイブリッド駆動型エレベータの制御装置
技術分野
[0001] 本発明は、回生エネルギーを利用してエレベータ (乗りかご)を駆動するハイブリツ ド駆動型エレベータの制御装置に関する。
背景技術
[0002] 一般に、エレベータでは、電動機 (卷上げ機)の回転軸に巻き掛けられたロープの 両端に乗りかごとカウンタウェイトが吊り下げられる。上記電動機の回転により、ロープ を介して乗りかごがカウンタウェイトと反対方向につるべ式に昇降動作する。
[0003] ここで、例えば乗りかごが昇降路の下方向に動く場合に、そのときの乗りかごの荷重 力 Sカウンタウェイトより重ければ、動力を必要としない。この場合、電動機は発電機とし て機能することになり、回生エネルギーが生じる。また、乗りかごが上方向に動く場合 に、そのときの乗りかごの荷重がカウンタウェイトより軽ければ、動力を必要としない。 よって、上記同様に回生エネルギーが生じる。
[0004] このように、動力を必要とせずに乗りかごを運転することを「回生運転」と呼び、その ときに乗りかごが移動する方向を「回生方向」と呼ぶ。その逆に、動力を必要する運 転を「カ行運転」と呼び、そのときに乗りかごが移動する方向を「カ行方向」と呼んで いる。
[0005] ところで、近年の省電力化の要求に伴い、上述した回生運転時に生じる電力つまり 回生エネルギーを利用したハイブリッド駆動型のエレベータが考えられて 、る。例え ば、特開平 10— 236743号では、大容量のコンデンサを蓄電装置として備え、回生 運転時に生じたエネルギーを蓄電装置に蓄えておき、次のカ行運転時に上記蓄電 装置に蓄えられたエネルギーを利用して乗りかごを運転することが開示されている。 発明の開示
[0006] 上述したように、ノ、イブリツド駆動型エレベータでは、回生運転時に生じるエネルギ 一を放出せずに蓄電装置に蓄え、これをカ行運転時に利用することで省電力化を実 現している。しかし、例えばエレベータの運転中に停電が発生すると、動力源が蓄電 装置だけとなるため、乗りかごの走行に必要なエネルギーが十分に得られずに、乗り 力ごが階間の途中で停止してしまう可能性があった。
[0007] そこで、本発明の目的は、エネルギー不足により乗りかごが階間途中で止まることを 防止して、乗客の安全を確保することのできるハイブリッド駆動型エレベータの制御 装置を提供することにある。
[0008] 本発明の第 1の観点によるハイブリッド駆動型エレベータの制御装置は、乗りかご の回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたエネルギー を上記乗りかごの駆動系に供給する蓄電手段と、この蓄電手段のエネルギー容量を 算出するエネルギー容量算出手段と、このエネルギー容量算出手段によって算出さ れたエネルギー容量が所定容量を下回った場合にエネルギー不足と判断し、上記 乗りかごの走行方向をカ行方向から回生方向へ変更して上記乗りかごを最寄階へ停 止させる走行方向反転手段とを具備して構成される。
[0009] 本発明の第 2の観点によるハイブリッド駆動型エレベータの制御装置は、乗りかご の回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたエネルギー を上記乗りかごの駆動系に供給する蓄電手段と、この蓄電手段に対する充放電の電 流値を検出する電流検出手段と、この電流検出手段によって検出された電流値が所 定値を超えた場合にエネルギー不足と判断し、上記乗りかごの走行方向をカ行方向 力も回生方向へ変更して上記乗りかごを最寄階へ停止させる走行方向反転手段とを 具備して構成される。
[0010] 本発明の第 3の観点によるハイブリッド駆動型エレベータの制御装置は、乗りかご の回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたエネルギー を上記乗りかごの駆動系に供給する蓄電手段と、この蓄電手段の電圧値を検出する 電圧検出手段と、この電圧検出手段によって検出された電圧値が所定値を下回った 場合にエネルギー不足と判断し、上記乗りかごの走行方向をカ行方向から回生方向 へ変更する走行方向反転手段とを具備して構成される。
[0011] 本発明の第 4の観点によるハイブリッド駆動型エレベータの制御装置は、乗りかご の回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたエネルギー を上記乗りかごの駆動系に供給する蓄電手段と、この蓄電手段の電力値を算出する 電力算出手段と、この電力算出手段によって算出された電力値が所定値を下回った 場合にエネルギー不足と判断し、上記乗りかごの走行方向をカ行方向から回生方向 へ変更して上記乗りかごを最寄階へ停止させる走行方向反転手段とを具備して構成 される。
[0012] また、本発明の第 5の観点によるハイブリッド駆動型エレベータの制御装置は、乗り 力ごの回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたェネル ギーを上記乗りかごの駆動系に供給する蓄電手段と、この蓄電手段の電力値を算出 する第 1の電力算出手段と、上記乗りかごの駆動系に発生する電力値を算出する第 2の電力算出手段と、上記第 1の電力算出手段によって算出された第 1の電力値が 上記第 2の電力算出手段によって算出された第 2の電力値よりも低い場合にェネル ギー不足と判断し、上記乗りかごの走行方向をカ行方向から回生方向へ変更して上 記乗りかごを最寄階へ停止させる走行方向反転手段とを具備して構成される。
図面の簡単な説明
[0013] [図 1]図 1は、本発明の第 1の実施形態に係るハイブリッド駆動型エレベータの制御装 置の構成を示す図である。
[図 2]図 2は、同実施形態におけるハイブリッド駆動型エレベータの制御装置に用い られる荷重信号演算装置のスィッチとトルク補償値との関係を示す図である。
[図 3]図 3は、同実施形態におけるハイブリッド駆動型エレベータの制御装置による乗 りかごの運転状態を説明するための図である。
[図 4]図 4は、本発明の第 2の実施形態に係るハイブリッド駆動型エレベータの制御装 置の構成を示す図である。
[図 5]図 5は、同実施形態におけるハイブリッド駆動型エレベータの制御装置の処理 動作を示すフローチャートである。
[図 6]図 6は、本発明の第 3の実施形態に係るハイブリッド駆動型エレベータの制御装 置の構成を示す図である。
[図 7]図 7は、本発明の第 4の実施形態に係るハイブリッド駆動型エレベータの制御装 置の構成を示す図である。
[図 8]図 8は、本発明の第 5の実施形態に係るハイブリッド駆動型エレベータの制御装 置の構成を示す図である。
[図 9]図 9は、本発明の第 6の実施形態に係るハイブリッド駆動型エレベータの制御装 置の構成を示す図である。
[図 10]図 10は、本発明の第 7の実施形態に係るハイブリッド駆動型エレベータの制 御装置の構成を示す図である。
発明を実施するための最良の形態
[0014] 以下、図面を参照して本発明の実施形態を説明する。
[0015] (第 1の実施形態)
図 1は本発明の第 1の実施形態に係るハイブリッド駆動型エレベータの制御装置の 構成を示す図である。
[0016] このエレベータは、電動機 11と、シーブ 12と、ロープ 13と、乗り力ご 14と、カウンタ ウェイト (釣り合い重り) 15とを備える。
[0017] 電動機 11は、所定の駆動電力を受けて回転動作する。シーブ 12は、電動機 11の 回転軸に取り付けられている。ロープ 13は、シーブ 12に巻き掛けられており、その両 端に乗りかご 14とカウンタウェイト 15が取り付けられている。
[0018] また、このエレベータは、乗りかご 14の駆動系として、商用電源 21と、整流器 22と、 平滑コンデンサ 23と、インバータ 24と、インバータ電流検出装置 25とを備える。
[0019] 商用電源 21は、所定の交流電圧を乗りかご 14の駆動系に供給している。整流器 2 2は、商用電源 21からの交流電圧を直流電圧に変換する。平滑コンデンサ 23は、直 流電圧のリプルを平滑化してインバータ 24に与える。インバータ 24は、電動機 11を 回転駆動するための装置である。このインバータ 24は、平滑コンデンサ 23を介して 与えられた直流電圧に基づいて、電圧値と周波数を任意に変えた交流電圧を生成 する。インバータ電流検出装置 25は、インバータ 24と電動機 11との間に設けられ、 電動機 11に供給される電流を検出する。
[0020] なお、上記商用電源 21は三相電源である。この三相電源による交流電圧が整流器 22で全波整流され、平滑コンデンサ 23にてリプル分が吸収されて直流に平滑ィ匕され る。この平滑ィ匕された直流力インバータ 24に与えられ、所定周波数の交流電圧に変 換されて電動機 11に駆動電力として供給される このような電力供給により、電動機 11が回転駆動され、これに伴いシーブ 12が回 転する。そして、シーブ 12に巻き掛けられたロープ 13を介して乗りかご 14とカウンタ ウェイト 15が昇降路内をつるべ式に昇降動作する。
[0021] また、このエレベータは、運転制御系として、速度指令装置 26と、速度検出装置 27 と、速度制御装置 28と、荷重検出スィッチ装置 29と、荷重信号演算装置 30と、トルク 指令判断装置 31と、インバータ電流制御装置 32とを備える。
[0022] 速度指令装置 26は、図示せぬエレベータ制御盤力 電動機 11の運転指令を受け て、速度指令値を出力する。速度検出装置 27は、電動機 11の現在の速度を検出す る。速度制御装置 28は、速度指令値と速度検出値との偏差を求め、その偏差をなく すようなトルク指令を出力する。
[0023] 荷重検出スィッチ装置 29は、乗りかご 14の荷重を検出するためのスィッチであり、 例えば荷重値に応じて選択的にオン動作する複数のスィッチ力 なる。荷重信号演 算装置 30は、荷重検出スィッチ装置 29から出力される荷重信号に基づいてトルク補 償値を演算する。
[0024] 具体的には、上記荷重検出スィッチ装置 29は 3つのスィッチ a、 b、 cから構成される ものとする。スィッチ aは乗りかご 14の荷重値が所定の積載重量 (カウンタウェイト 15と 釣り合う重量)よりも重いときに ONする。スィッチ bは乗りかご 14の荷重値が上記所定 の積載重量のときに ONする。スィッチ cは乗りかご 14の荷重値が上記所定の積載重 量よりも軽いときに ONする。荷重信号演算装置 30は、図 2に示すように、これらのス イッチ a、b、cのそれぞれの ON信号に対し、例えば「— 10」、 「0」、 「 + 10」なるトルク 補償値を出力する。
[0025] トルク指令判断装置 31は、速度制御装置 28から出力されたトルク指令値と荷重信 号演算装置 30から出力されたトルク補償値とを加算して得られる最終的なトルク指令 値が許容範囲内にあるカゝ否かを判断する。その結果、トルク指令値が許容範囲外で あれば、許容範囲内に収めるようにリミッタをかける。
[0026] インバータ電流制御装置 32は、インバータ電流検出装置 25によって検出された電 流値とトルク指令判断装置 31から出力されるトルク指令値とに基づいて、電動機 11 に流す電流をトルク指令値に合わせて制御する。 [0027] また、本実施形態におけるエレベータでは、上記のような構成にカ卩え、ハイブリッド 駆動系として、さらに蓄電装置 41、電圧検出器 42、充放電制御装置 42a、充放電回 路 43を備える。
[0028] 蓄電装置 41は、例えば大容量の多数のバッテリあるいはコンデンサ力もなる。この 蓄電装置 41は、回生運転時に生じる回生エネルギーを蓄えておき、次のカ行運転 時に上記蓄えた回生エネルギーを放電する。電圧検出器 42は、平滑コンデンサ 23 の両端電圧を電力供給ラインである直流母線間の電圧として検出する。充放電制御 装置 42aは、電圧検出器 42によって検出された電圧値に基づいて現在の運転状態 が回生運転またはカ行運転であるかを判断し、その運転状態に応じて充放電回路 4 3の充放電動作を制御する。
[0029] 詳しくは、蓄電装置 41は、インバータ 24の入力端子側に設けられる。このインバー タ 24の入力端子側には、平滑コンデンサ 23と並列に電圧検出器 42が設けられる。 この電圧検出器 42により平滑コンデンサ 23の端子電圧が検出される。
[0030] 乗りかご 14がカ行運転であるときは、平滑コンデンサ 23の電圧は所定の電圧値を 保っている。ここで、乗りかご 14が回生運転に切り替わると、インバータ 24から入力 端子側に回生エネルギーが戻されるので、平滑コンデンサ 23の端子電圧は上記所 定の電圧値より上昇する。この電圧値の変化を電圧検出器 42にて検出することで、 充放電制御装置 42aはカ行運転であるか回生運転であるかを判断する。
[0031] また、平滑コンデンサ 23と並列に充放電回路 43および蓄電装置 41が設けられる。
充放電回路 43は、蓄電装置 30に対する充放電を切り替えるための回路である。この 充放電回路 43は、充電用スイッチング素子 44、放電用スイッチング素子 45、直流リ ァクトル 46など力も構成される。充電用スイッチング素子 44および放電用スィッチン グ素子 45は、インバータ 24への電力供給ラインである直流母線間に並列に接続さ れる。直流リアタトル 46は、これらのスイッチング素子 44, 45の共通接続部に接続さ れ、直流電力を平滑化する。
[0032] ここで、蓄電装置 41を備えたノヽイブリツド駆動式エレベータにおける回生エネルギ 一の充電と放電の動作について簡単に説明しておく。
[0033] (a)回生エネルギーの充電動作 上述したように、乗りかご 14の回生運転時には、インバータ 24から入力端子側に回 生エネルギーが戻される。したがって、平滑コンデンサ 23に回生エネルギーが蓄積 され、インバータ 24への電力供給ラインである直流母線間の電圧は徐々に上昇する 。このときの電圧上昇は電圧検出器 42にて検出されて、充放電制御装置 42aに与え られる。
[0034] 充放電制御装置 42aでは、上記直流母線間の電圧が予め設定された基準値以上 となると、充放電回路 43内の充電用スイッチング素子 44を ONする。これにより、回 生エネルギーが蓄電装置 41に充電されることになる。
[0035] (b)回生エネルギーの放電動作
乗りかご 14のカ行運転時には、平滑コンデンサ 23で平滑化された直流がインバー タ 24に供給される。したがって、インバータ 24への電力供給ラインである直流母線間 電圧は停止時よりも降下する。このときの電圧降下は電圧検出器 42にて検出されて 、充放電制御装置 42aに与えられる。
[0036] 充放電制御装置 42aでは、上記直流母線間の電圧が予め設定された基準値よりも 下がると、充放電回路 431内の放電用スイッチング素子 45を ONする。これにより、蓄 電装置 30に蓄積された回生エネルギーが電力供給ラインへ放電されることになる。
[0037] このような構成のハイブリッド駆動型のエレベータにおいて、例えば停電などにより 商用電源 21の電力を正常に供給できない状態になると、平滑コンデンサ 23の電圧 が降下し、この状態が平滑コンデンサ 23に並設された電圧検出器 42にて検出され る。これにより、上述した充放電回路 43の放電動作により蓄電装置 41からエネルギ 一が放出されてインバータ 24に供給される。
[0038] このような状況では、蓄電装置 41だけが動力源となるため、蓄電装置 41の容量が 不足すると、インバータ 24により電動機 11を駆動できず、走行中に乗りかご 14が各 階の途中で停止してしまう可能性がある。
[0039] そこで、第 1の実施形態では、エネルギー不足のときに乗りかご 14を最寄階へ安全 に停止させるための構成として、電流検出装置 50、電圧検出装置 51、エネルギー容 量監視装置 52、走行方向反転装置 53が備えられている。
[0040] 電流検出装置 50は、蓄電装置 41に接続された電流検出器 48を通じて蓄電装置 4 1の電流値を出する。電圧検出装置 51は、蓄電装置 41の電圧値を検出する。エネ ルギ一容量監視装置 52は、電流検出装置 50によって検出された電流値と電圧検出 装置 51によって検出された電圧値に時間成分を積算して、蓄電装置 41の現在のェ ネルギー容量を算出する。
[0041] また、走行方向反転装置 53は、エネルギー容量監視装置 52によって算出された エネルギー容量に基づいて、乗りかご 14の走行方向を反転させる指令を速度指令 装置 26に出力する。
[0042] このような構成によれば、エネルギー容量監視装置 52によって蓄電装置 41の現在 のエネルギー容量が算出される。この場合、電流検出装置 50によって検出される蓄 電装置 41の電流値を I、電圧検出装置 51によって検出される蓄電装置 41の電圧値 を Vとすると、蓄電装置 41のエネルギー容量 Qは以下のような式(1)で表される。な お、 tは時間である。
[0043] Q=i xv x t[W-h]
ここで、停電などにより蓄電装置 41のエネルギーが消費され続け、上記 Qの値が所 定容量 Qtを下回ると、エネルギー容量監視装置 52は、乗りかご 14の走行に必要な 容量が足りないものと判断し、走行方向反転装置 53に対して容量不足信号を出力 する。なお、上記所定容量 Qtはゼロではなぐ蓄電装置 41の特性などによって例え ば全容量の 20%程度に設定される。
[0044] 走行方向反転装置 53は、エネルギー容量監視装置 52から容量不足信号を受信 すると、乗りかご 14がカ行運転中にあれば、その走行方向を回生方向へ変更するよ うに速度指令装置 26に指令を出す。
[0045] この場合、蓄電装置 41のエネルギーが消費状態にあるため、乗りかご 14はカ行運 転中にあると判断できる。もし、回生運転中であれば、蓄電装置 41のエネルギーは 消費されないため、容量不足にはならない。したがって、速度指令装置 26では、走 行方向反転装置 53からの指令を受けると、乗りかご 14をカ行方向から回生方向へ 方向反転し、最寄階まで運転して停止させる。
[0046] 図 3は乗りかご 14の運転状態を説明するための図である。上力も順に速度指令装 置 26から出力される速度指令、停電時の乗りかご 14の運転パターン、エネルギー容 量監視装置 52から出力される容量不足信号を示している。なお、停電時の乗りかご 14の運転パターンにお 、て、下向きのパターンは逆方向に走行して 、ることを表し ている。
[0047] 今、乗りかご 14が所定の速度で 1Fから 3Fへ走行中に停電が生じたとする。このよ うな場合、蓄電装置 41に蓄積されていた回生エネルギーを利用して、乗りかご 14は 速度を落としながらも、ある程度まで進む。なお、このときの運転は蓄電装置 41の回 生エネルギーを動力として 、るのでカ行運転である。
[0048] ここで、蓄電装置 41のエネルギー容量 Q上記所定容量 Qtを下回ると、エネルギー 容量監視装置 52から容量不足信号が出力される。これにより、乗りかご 14の走行方 向が回生方向に切り替えられて、最寄階で停止する。例えば、 2Fと 3Fの間で容量不 足となれば、その時点で乗りかご 14は逆方向に運転され、最も近い 2Fの階床で停 止すること〖こなる。
[0049] このように、ノ、イブリツド駆動型のエレベータにおいて、例えば停電等の発生により 蓄電装置 41がエネルギー不足になった場合に、乗りかご 14の走行方向を逆方向つ まり回生方向に切り替えて最寄階で停止させることで、乗りかご 14が階間途中で止ま ることを防止して、乗客の安全を確保することができる。
[0050] なお、上記第 1の実施形態では、蓄電装置 41のエネルギー不足を検出した際に、 カ行運転時であるものとして、乗りかご 14を直ちに方向反転した。しかし、より正確な 運転制御を行うためには、カ行運転であることを確認した上で乗りかご 14を方向反 転することが好ましい。これは、例えば充放電制御装置 42aにて平滑コンデンサ 23 の両端電圧値 (直流母線間電圧)から現在の乗りかご 14の運転状態 (カ行運転 Z回 生運転)を判断し、その運転状態信号を走行方向反転装置 53に与えることで実現で きる。
[0051] (第 2の実施形態)
次に、本発明の第 2の実施形態について説明する。
[0052] 上記第 1の実施形態では、蓄電装置 41の容量不足を検出した際に、乗りかご 14を 直ぐに方向反転した力 第 2の実施形態では、そのときの乗りかご 14の位置によって 方向反転するか否かを決定することを特徴とする。 [0053] 図 4は本発明の第 2の実施形態に係るハイブリッド駆動型エレベータの制御装置の 構成を示す図である。なお、上記第 1の実施形態における図 1の構成と同じ部分には 同一符号を付して、その詳しい説明は省略するものとする。図 1の構成と異なる点は 、かご位置検出器 54が追加されて 、る点である。
[0054] 図 4において、かご位置検出器 54は、昇降路内における乗りかご 14の位置を検出 し、その位置検出信号を走行方向反転装置 53に出力する。走行方向反転装置 53 は、かご位置検出器 54から得られるかご位置に基づいて、カ行方向へ運転するより も回生方向へ運転する方が最寄階に近いか否かを判断し、その判断結果に応じて 方向反転指令を速度指令装置 26に出力する。
[0055] 図 5は同実施形態におけるハイブリッド駆動型エレベータの制御装置の処理動作 を示すフローチャートであり、エネルギー容量監視装置 52から容量不足信号が出力 された場合の動作が示されて ヽる。
[0056] すなわち、今、例えば停電等の発生により、エネルギー容量監視装置 52から容量 不足信号が出力されたとする。
[0057] 走行方向反転装置 53は、容量不足信号を受信することにより(ステップ S11)、まず 、かご位置検出器 54から現在のかご位置を取得する (ステップ S 12)。そして、走行 方向反転装置 53は、現在のかご位置力もそのまま乗りかご 14がカ行方向に進んだ 場合の最寄階までの距離 (L1とする)を算出する (ステップ S13)。なお、各階の位置 情報は予め走行方向反転装置 53に与えられているものとする。
[0058] 続いて、走行方向反転装置 53は、現在のかご位置力も乗りかご 14が回生方向に 反転して運転した場合の最寄階までの距離 (L2とする)を算出する (ステップ S 14)。
[0059] ここで、走行方向反転装置 53は、上記ステップ S13によって算出された距離 L1と 上記ステップ S14によって算出された距離 L2とを比較する。その結果、 L1 >L2であ つた場合、つまり、回生方向に運転した方が最寄階に近い場合には (ステップ S15の Yes)、走行方向反転装置 53は、回生運転を利用して乗りかご 14を逆方向に走行さ せるベぐ方向反転指令を速度指令装置 26に対して出力する (ステップ S16)。
[0060] 一方、 L1≤L2であった場合、つまり、カ行方向に運転した方が最寄階に近い場合 あるいは同程度の距離であった場合には (ステップ S15の Yes)、走行方向反転装置 53は、方向反転指令を出さずに、乗りかご 14をそのままカ行方向に進ませる (ステツ プ S17)。
[0061] このような構成によれば、例えば図 3に示すように、乗りかご 14が 3Fの階床の近くま で来ているときには、方向反転により 2Fに戻ることなぐ蓄電装置 41の残量で使って 3Fまで進んで停止することになる。
[0062] このように、乗りかご 14がある階のすぐ近くまで来ているときには、乗りかご 14を方 向反転せずに、そのままカ行方向に進んで最寄階で停止することで、乗客に方向反 転による不安感を与えずに救出することができる。
[0063] (第 3の実施形態)
次に、本発明の第 3の実施形態について説明する。
[0064] 第 3の実施形態では、エレベータの運転中に蓄電装置 41の電流異常を検出した 際に、乗りかご 14を方向反転して最寄階に停止させることを特徴とする。
[0065] 図 6は本発明の第 3の実施形態に係るハイブリッド駆動型エレベータの制御装置の 構成を示す図である。なお、上記第 1の実施形態における図 1の構成と同じ部分には 同一符号を付して、その詳しい説明は省略するものとする。図 1の構成と異なる点は 、エネルギー容量監視装置 52に代えて電流異常検出装置 60が設けられていること である。
[0066] 図 6において、電流異常検出装置 60は、電流検出装置 50によって検出される蓄電 装置 41の充放電の電流値を監視し、その電流値が所定値を超えた場合にエネルギ 一不足であると判断し、走行方向反転装置 53に対して走行反転指令を出力する。
[0067] すなわち、蓄電装置 41のエネルギー容量が減ると、その蓄電装置 41の両端電圧 が降下するが、その一方で電流値が急激に上昇する現象がある。これは、回生運転 時に目標とするエネルギーが放出されな 、ために、その目標値に合わせて電流を多 く流すような制御が一時的に働いてしまうからである。上記電流異常検出装置 60で は、この瞬間的に上昇する電流異常をエネルギー不足として検出するものである。こ の場合、蓄電装置 41がエネルギー消費状態にあるので、乗りかご 14はカ行運転中 であると判断される。
[0068] このように、ハイブリッド駆動型のエレベータにおいて、蓄電装置 41の電流異常を 検出し、そのときに乗りかご 14がカ行方向の運転中であれば、走行方向を反転して 回生方向に運転することでも、上記第 1の実施形態と同様に、エネルギー不足により 乗りかご 14が階間途中で止まることを防止して、最寄階で安全に停止させることがで きる。
[0069] なお、上記第 1の実施形態で説明したように、より正確な運転制御を行うためには、 カ行運転であることを確認した上で乗りかご 14を方向反転することが好ましい。これ は、例えば充放電制御装置 42aにて平滑コンデンサ 23の両端電圧値 (直流母線間 電圧)力も現在の乗りかご 14の運転状態 (カ行運転 Z回生運転)を判断し、その運 転状態信号を走行方向反転装置 53に与えることで実現できる。
[0070] また、この第 3の実施形態にぉ 、ても、上記第 2の実施形態と組み合わせて、カ行 方向の最寄階までの距離と回生方向の最寄階までの距離との比較結果に基づいて 、方向反転を行うような構成にしても良い。
[0071] (第 4の実施形態)
次に、本発明の第 4の実施形態について説明する。
[0072] 第 4の実施形態では、エレベータの運転中に蓄電装置 41の電圧異常を検出した 際に、乗りかご 14を方向反転して最寄階に停止させることを特徴とする。
[0073] 図 7は本発明の第 4の実施形態に係るハイブリッド駆動型エレベータの制御装置の 構成を示す図である。なお、上記第 1の実施形態における図 1の構成と同じ部分には 同一符号を付して、その詳しい説明は省略するものとする。図 1の構成と異なる点は 、エネルギー容量監視装置 52に代えて電圧異常検出装置 61が設けられていること である。
[0074] 図 7において、電圧異常検出装置 61は、電圧検出装置 51によって検出される蓄電 装置 41の両端電圧の値を監視し、その電圧値が所定値を下回った場合にエネルギ 一不足であると判断し、走行方向反転装置 53に対して走行反転指令を出力する。
[0075] すなわち、蓄電装置 41のエネルギー容量が減ると、その蓄電装置 41の両端電圧 が降下する。上記電圧異常検出装置 61では、その電圧降下による電圧異常をエネ ルギー不足として検出するものである。この場合、蓄電装置 41がエネルギー消費状 態にあるので、乗りかご 14はカ行運転中であると判断される。 [0076] このように、ノ、イブリツド駆動型のエレベータにおいて、蓄電装置 41の電圧異常を 検出し、そのときに乗りかご 14がカ行方向の運転中であれば、走行方向を反転して 回生方向に運転することでも、上記第 1の実施形態と同様に、エネルギー不足により 乗りかご 14が階間途中で止まることを防止して、最寄階で安全に停止させることがで きる。
[0077] なお、上記第 1の実施形態で説明したように、より正確な運転制御を行うためには、 カ行運転であることを確認した上で乗りかご 14を方向反転することが好ましい。これ は、例えば充放電制御装置 42aにて平滑コンデンサ 23の両端電圧値 (直流母線間 電圧)力も現在の乗りかご 14の運転状態 (カ行運転 Z回生運転)を判断し、その運 転状態信号を走行方向反転装置 53に与えることで実現できる。
[0078] また、この第 4の実施形態にぉ 、ても、上記第 2の実施形態と組み合わせて、カ行 方向の最寄階までの距離と回生方向の最寄階までの距離との比較結果に基づいて 、方向反転を行うような構成にしても良い。
[0079] (第 5の実施形態)
次に、本発明の第 5の実施形態について説明する。
[0080] 第 3の実施形態では、エレベータの運転中に蓄電装置 41の電力異常を検出した 際に、乗りかご 14を方向反転して最寄階に停止させることを特徴とする。
[0081] 図 8は本発明の第 5の実施形態に係るハイブリッド駆動型エレベータの制御装置の 構成を示す図である。なお、上記第 1の実施形態における図 1の構成と同じ部分には 同一符号を付して、その詳しい説明は省略するものとする。図 1の構成と異なる点は 、エネルギー容量監視装置 52に代えて電力算出装置 62および電力異常検出装置 63力 S設けられて 、ることである。
[0082] 図 8において、電力算出装置 62は、電流検出装置 50によって検出される蓄電装置 41への充放電の電流と、電圧検出装置 51によって検出される蓄電装置 41の電圧と に基づいて蓄電装置 41の電力値を算出する。電力異常検出装置 63は、電力算出 装置 62によって算出された電力値が所定値を下回った場合にエネルギー不足であ ると判断し、走行方向反転装置 53に対して走行反転指令を出力する。
[0083] このような構成によれば、電力算出装置 62によって蓄電装置 41にて供給される電 力の値が算出される。この場合、電流検出装置 50によって検出される蓄電装置 41の 電流値を I、電圧検出装置 51によって検出される蓄電装置 41の電圧値を Vとすると、 電力値 Pは以下のような式(2)で表される。
[0084] P=I XV[W] - -- (2)
つまり、エネルギー容量 Qが電流値 Iと電圧値 Vを時間 tで積分した値であるのに対 し (式(1)参照)、電力値 Pはその瞬間の値であり、電流値 Iと電圧値 Vを乗算すること で得られる。
[0085] ここで、蓄電装置 41の電力値 Pが上記所定値 Ptを下回ると、電力異常検出装置 63 では、エネルギー不足であると判断して、走行方向反転装置 53にその旨の異常信 号を出力する。
[0086] 走行方向反転装置 53は、電力異常検出装置 63から異常信号を受信すると、その ときに乗りかご 14がカ行方向へ走行中であれば、回生方向へ運転方向を変更する ように速度指令装置 26に指令を出す。この場合、この場合、蓄電装置 41がエネルギ 一消費状態にあるので、乗りかご 14はカ行運転中であると判断される。したがって、 乗りかご 14の走行方向がカ行方向から回生方向へ変更されることになり、乗りかご 1 4は回生運転により最寄階まで移動して停止することになる。
[0087] このように、ハイブリッド駆動型のエレベータにおいて、蓄電装置 41の電力異常を 検出し、そのときに乗りかご 14がカ行方向の運転中であれば、走行方向を反転して 回生方向に運転することでも、上記第 1の実施形態と同様に、エネルギー不足により 乗りかご 14が階間途中で止まることを防止して、最寄階で安全に停止させることがで きる。
[0088] なお、上記第 1の実施形態で説明したように、より正確な運転制御を行うためには、 カ行運転であることを確認した上で乗りかご 14を方向反転することが好ましい。これ は、例えば充放電制御装置 42aにて平滑コンデンサ 23の両端電圧値 (直流母線間 電圧)力も現在の乗りかご 14の運転状態 (カ行運転 Z回生運転)を判断し、その運 転状態信号を走行方向反転装置 53に与えることで実現できる。
[0089] また、この第 5の実施形態にぉ 、ても、上記第 2の実施形態と組み合わせて、カ行 方向の最寄階までの距離と回生方向の最寄階までの距離との比較結果に基づいて 、方向反転を行うような構成にしても良い。
[0090] (第 6の実施形態)
次に、本発明の第 6の実施形態について説明する。
[0091] 第 6の実施形態では、蓄電装置 41の電力と電動機 11の電力とを比較することで異 常状態を検出し、乗りかご 14を方向反転して最寄階に停止させることを特徴とする。
[0092] 図 9は本発明の第 6の実施形態に係るハイブリッド駆動型エレベータの制御装置の 構成を示す図である。なお、上記第 1の実施形態における図 1の構成と同じ部分には 同一符号を付して、その詳しい説明は省略するものとする。図 1の構成と異なる点は 、エネルギー容量監視装置 52に代えて電力算出装置 62、電動機電力算出装置 64 および電力比較装置 65が設けられていることである。
[0093] 図 9において、電力算出装置 62は、電流検出装置 50によって検出される蓄電装置 41への充放電の電流と、電圧検出装置 51によって検出される蓄電装置 41の電圧と に基づいて蓄電装置 41の電力値を算出する。電動機電力算出装置 64は、トルク指 令判断装置 31から出力されるトルク指令と速度検出装置 27によって検出される電動 機 11の速度とに基づいて電動機 11の電力値を算出する。電力比較装置 65は、電 力算出装置 62によって算出された蓄電装置 41の電力と電動機電力算出装置 64に よって算出された電動機 11の電力とを比較することで電力異常を検出し、走行方向 反転装置 53に対して走行反転指令を出力する。
[0094] このような構成によれば、電力算出装置 62によって蓄電装置 41で発生する電力の 値が算出される。この場合、電流検出装置 50によって検出される蓄電装置 41の電 流値を I、電圧検出装置 51によって検出される蓄電装置 41の電圧値を Vとすると、電 力値 Pは上記式(2)のように表される。
[0095] また、その一方、電動機 11に供給されている電力の値が電動機電力算出装置 64 によって算出される。この場合、トルク指令判断装置 31から得られるトルク値を T、速 度検出装置 27から得られる速度値(回転数)を ωとすると、電動機 11で発生する電 力値 Pmは以下のような式(3)で表される。
[0096] Pm=TX ω [W] · '· (3)
ここで、蓄電装置 41の電力値 Ρと電動機 11の電力値 Pmとを比較した結果、電力 値 P<電力値 Pmであった場合、つまり、蓄電装置 41によって供給される電力値 Pが 電動機 11の駆動に必要となる電力値 Pmよりも低い場合に、電力比較装置 65では、 エネルギー不足であると判断して、走行方向反転装置 53にその旨の異常信号を出 力する。
[0097] 走行方向反転装置 53は、電力比較装置 65から異常信号を受信すると、そのときに 乗りかご 14がカ行方向へ走行中であれば、回生方向へ運転方向を変更するように 速度指令装置 26に指令を出す。この場合、この場合、蓄電装置 41がエネルギー消 費状態にあるので、乗りかご 14はカ行運転中であると判断される。したがって、乗り 力ご 14の走行方向がカ行方向から回生方向へ変更されることになり、乗りかご 14は 回生運転により最寄階まで移動して停止することになる。
[0098] このように、ハイブリッド駆動型のエレベータにおいて、蓄電装置 41の電力値と電 動機 11の電力値との比較結果力も電力異常を検出し、そのときに乗りかご 14がカ行 方向の運転中であれば、走行方向を反転して回生方向に運転することでも、上記第 1の実施形態と同様に、エネルギー不足により乗りかご 14が階間途中で止まることを 防止して、最寄階で安全に停止させることができる。
[0099] なお、上記第 1の実施形態で説明したように、より正確な運転制御を行うためには、 カ行運転であることを確認した上で乗りかご 14を方向反転することが好ましい。これ は、例えば充放電制御装置 42aにて平滑コンデンサ 23の両端電圧値 (直流母線間 電圧)力も現在の乗りかご 14の運転状態 (カ行運転 Z回生運転)を判断し、その運 転状態信号を走行方向反転装置 53に与えることで実現できる。
[0100] また、この第 6の実施形態にぉ 、ても、上記第 2の実施形態と組み合わせて、カ行 方向の最寄階までの距離と回生方向の最寄階までの距離との比較結果に基づいて 、方向反転を行うような構成にしても良い。
[0101] (第 7の実施形態)
次に、本発明の第 7の実施形態について説明する。
[0102] 第 7の実施形態では、乗りかご 14を方向反転したときに、その旨の案内を乗りかご 1 4内の乗客に対して行うことを特徴としている。
[0103] 図 10は本発明の第 7の実施形態に係るハイブリッド駆動型エレベータの制御装置 の構成を示す図である。なお、上記第 1の実施形態における図 1の構成と同じ部分に は同一符号を付して、その詳しい説明は省略するものとする。図 1の構成と異なる点 は、乗りかご 14内に案内装置 70が追加されていることである。
[0104] 案内装置 70は、乗りかご 14内の所定の場所、例えば正面ドアの上部に設置される 。この案内装置 70は、走行方向反転装置 53からの走行方向反転指令を受けたとき に、乗りかご 14が方向反転することを音声または文字にて通知する。
[0105] このような構成によれば、エレベータの運転中に蓄電装置 41のエネルギー不足が 検出されると、乗りかご 14が方向反転されて、最寄階で停止制御される。その際、案 内装置 70によって、乗りかご 14が方向反転することが事前に通知されるので、乗客 の不安を軽減することができる。
[0106] なお、この第 7の実施形態による案内装置 70は、上記第 1乃至第 6の実施形態の すべての構成に適用することができる。
[0107] 要するに、本発明は上記各実施形態そのままに限定されるものではなぐ実施段階 ではその要旨を逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、上記各 実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発 明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を 削除してもよい。さら〖こ、異なる実施形態にわたる構成要素を適宜組み合わせてもよ い。
産業上の利用可能性
[0108] 本発明によれば、ハイブリッド駆動型エレベータにおいて、エレベータの運転中に 蓄電装置のエネルギー不足が検出された際に、乗りかごの走行方向をカ行方向から 回生方向へ変更して最寄階で停止制御するようにしたため、エネルギー不足により 乗りかごが階間途中で止まることを防止して、乗客の安全を確保することができる。

Claims

請求の範囲
[1] 乗りかごの回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたェ ネルギーを上記乗りかごの駆動系に供給する蓄電手段と、
この蓄電手段のエネルギー容量を算出するエネルギー容量算出手段と、 このエネルギー容量算出手段によって算出されたエネルギー容量が所定容量を下 回った場合にエネルギー不足と判断し、上記乗りかごの走行方向をカ行方向から回 生方向へ変更して上記乗りかごを最寄階へ停止させる走行方向反転手段と を具備したことを特徴とするハイブリッド駆動型エレベータの制御装置。
[2] 乗りかごの回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたェ ネルギーを上記乗りかごの駆動系に供給する蓄電手段と、
この蓄電手段に対する充放電の電流値を検出する電流検出手段と、
この電流検出手段によって検出された電流値が所定値を超えた場合にエネルギー 不足と判断し、上記乗りかごの走行方向をカ行方向から回生方向へ変更して上記乗 りかごを最寄階へ停止させる走行方向反転手段と
を具備したことを特徴とするハイブリッド駆動型エレベータの制御装置。
[3] 乗りかごの回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたェ ネルギーを上記乗りかごの駆動系に供給する蓄電手段と、
この蓄電手段の電圧値を検出する電圧検出手段と、
この電圧検出手段によって検出された電圧値が所定値を下回った場合にエネルギ 一不足と判断し、上記乗りかごの走行方向をカ行方向から回生方向へ変更する走行 方向反転手段と
を具備したことを特徴とするハイブリッド駆動型エレベータの制御装置。
[4] 乗りかごの回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたェ ネルギーを上記乗りかごの駆動系に供給する蓄電手段と、
この蓄電手段の電力値を算出する電力算出手段と、
この電力算出手段によって算出された電力値が所定値を下回った場合にエネルギ 一不足と判断し、上記乗りかごの走行方向をカ行方向から回生方向へ変更して上記 乗りかごを最寄階へ停止させる走行方向反転手段と を具備したことを特徴とするハイブリッド駆動型エレベータの制御装置。
[5] 乗りかごの回生運転時に発生するエネルギーを蓄え、カ行運転時にその蓄えたェ ネルギーを上記乗りかごの駆動系に供給する蓄電手段と、
この蓄電手段の電力値を算出する第 1の電力算出手段と、
上記乗りかごの駆動系に発生する電力値を算出する第 2の電力算出手段と、 上記第 1の電力算出手段によって算出された第 1の電力値が上記第 2の電力算出 手段によって算出された第 2の電力値よりも低い場合にエネルギー不足と判断し、上 記乗りかごの走行方向をカ行方向から回生方向へ変更して上記乗りかごを最寄階へ 停止させる走行方向反転手段と
を具備したことを特徴とするハイブリッド駆動型エレベータの制御装置。
[6] 上記乗りかごの位置を検出するかご位置検出手段をさらに備え、
上記走行方向反転手段は、上記かご位置検出手段によって検出された位置から上 記乗りかごをカ行方向へ運転するよりも回生方向へ運転する方が最寄階に近いと判 断される場合に、上記乗りかごの走行方向をカ行方向から回生方向へ変更すること を特徴とする請求項 1乃至 5のいずれか 1つに記載のハイブリッド駆動型エレベータ の制御装置。
[7] 上記走行方向反転手段により上記乗りかごの走行方向がカ行方向から回生方向 へ変更された場合に、その旨を上記乗りかご内の乗客に案内する案内手段をさらに 備えたことを特徴とする請求項 1乃至 5のいずれ力 1つに記載のハイブリッド駆動型ェ レベータの制御装置。
PCT/JP2005/008627 2004-05-12 2005-05-11 ハイブリッド駆動型エレベータの制御装置 WO2005108271A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004142403A JP2005324886A (ja) 2004-05-12 2004-05-12 ハイブリッド駆動型エレベータの制御装置
JP2004-142403 2004-05-12

Publications (1)

Publication Number Publication Date
WO2005108271A1 true WO2005108271A1 (ja) 2005-11-17

Family

ID=35320148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008627 WO2005108271A1 (ja) 2004-05-12 2005-05-11 ハイブリッド駆動型エレベータの制御装置

Country Status (3)

Country Link
JP (1) JP2005324886A (ja)
CN (1) CN1946625A (ja)
WO (1) WO2005108271A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035408A (ja) * 2007-08-03 2009-02-19 Toshiba Elevator Co Ltd エレベータ
JP5004133B2 (ja) * 2008-03-13 2012-08-22 東芝エレベータ株式会社 エレベータシステムの群管理制御装置
CN101638199A (zh) * 2008-07-28 2010-02-03 上海斯堪亚电气调速设备有限公司 一种具能量回馈及停电应急功能的一体化装置
JP2011136838A (ja) * 2010-01-04 2011-07-14 Hitachi Industrial Equipment Systems Co Ltd 巻上機
CN102198900B (zh) * 2010-03-23 2013-06-12 上海三菱电梯有限公司 能量回馈电梯后备电源运行控制系统
WO2014010051A1 (ja) * 2012-07-11 2014-01-16 三菱電機株式会社 エレベータ装置
JP2014139098A (ja) * 2013-01-21 2014-07-31 Hitachi Ltd エレベーター制御システム及び方法
JP7088356B1 (ja) 2021-03-30 2022-06-21 フジテック株式会社 エレベータの制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257848A (ja) * 1994-03-18 1995-10-09 Hitachi Ltd エレベーターの停電時運転装置
JP2001114482A (ja) * 1999-10-18 2001-04-24 Toshiba Fa Syst Eng Corp エレベータの停電時救出運転装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594283B2 (ja) * 1998-01-09 2004-11-24 東芝エレベータ株式会社 エレベータの停電時救出運転装置
JP2000255918A (ja) * 1999-03-04 2000-09-19 Mitsubishi Electric Corp エレベータ装置及びエレベータシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257848A (ja) * 1994-03-18 1995-10-09 Hitachi Ltd エレベーターの停電時運転装置
JP2001114482A (ja) * 1999-10-18 2001-04-24 Toshiba Fa Syst Eng Corp エレベータの停電時救出運転装置

Also Published As

Publication number Publication date
CN1946625A (zh) 2007-04-11
JP2005324886A (ja) 2005-11-24

Similar Documents

Publication Publication Date Title
WO2005108271A1 (ja) ハイブリッド駆動型エレベータの制御装置
JP5240685B2 (ja) エレベータ
JP2001240336A (ja) エレベータの制御装置
WO2005108270A1 (ja) エレベータ制御装置
CN101357725B (zh) 电梯
JP4619038B2 (ja) エレベータ制御装置
JP2002154759A (ja) エレベーターの非常電力制御装置
JPH092753A (ja) エレベーターの制御装置
WO2013128564A1 (ja) エレベータ装置及びその制御方法
JP3577543B2 (ja) 複数台エレベータの制御装置
EP3450376A1 (en) Automatic rescue and charging system for elevator drive
JP2020158286A (ja) エレベーター電力供給システム及びエレベーター電力供給方法
JP2004043078A (ja) エレベータの制御装置
JP5812106B2 (ja) エレベータの群管理制御装置
JP5839873B2 (ja) ハイブリッド駆動型エレベータの制御装置
JP2003333893A (ja) モータ駆動装置
JP2014009041A (ja) エレベーター制御装置
JP4663849B2 (ja) エレベータの制御装置
JP4463912B2 (ja) 交流エレベータの電源装置
JPS6146391B2 (ja)
JP4619039B2 (ja) エレベータ制御装置
JP2005324888A (ja) ハイブリッド駆動型エレベータの制御装置
JP2005324885A (ja) エレベータ制御装置
JP2004175548A (ja) エレベータシステム
JP2005324883A (ja) エレベータ制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580013464.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase