WO2005106341A1 - 空気調和システム - Google Patents

空気調和システム Download PDF

Info

Publication number
WO2005106341A1
WO2005106341A1 PCT/JP2005/008190 JP2005008190W WO2005106341A1 WO 2005106341 A1 WO2005106341 A1 WO 2005106341A1 JP 2005008190 W JP2005008190 W JP 2005008190W WO 2005106341 A1 WO2005106341 A1 WO 2005106341A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat medium
heat
conditioning system
heating
Prior art date
Application number
PCT/JP2005/008190
Other languages
English (en)
French (fr)
Inventor
Manabu Yoshimi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US11/578,987 priority Critical patent/US20080000243A1/en
Priority to EP05736755.9A priority patent/EP1746355B1/en
Publication of WO2005106341A1 publication Critical patent/WO2005106341A1/ja
Priority to NO20065448A priority patent/NO20065448L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/001Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1435Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification comprising semi-permeable membrane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to an air conditioning system, and more particularly to an air conditioning system capable of performing indoor heating.
  • an air conditioning system capable of performing indoor heating is configured by connecting an indoor heating device such as a radiator to a fan convector to a heat source unit having a vapor compression type refrigerant circuit. (For example, refer to Patent Documents 1, 2, and 3.) 0
  • Such an air conditioning system achieves indoor heating by heating indoor floors and indoor air.
  • a refrigerant circuit using CO as a refrigerant is used as a heat source unit of such an air conditioning system.
  • the air conditioning system radiates the heat of the heat medium heated in the use side heat exchanger of the heat source unit to the indoors by the indoor heating device.
  • the temperature level that can be used for indoor heating in the indoor heating device can be increased in some cases. As a result, comfortable indoor heating is realized.
  • Patent Document 1 JP-A-2003-5500
  • Patent Document 2 JP 2003-172523 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-50035
  • the total amount of heating load can be reduced by improving the heat insulation performance
  • the ventilation and heating load required to maintain the IAQ cannot be reduced, so it is treated in the air conditioning system
  • the ratio of ventilation heating load to total heating load is relatively large. For this reason, in an air conditioning system capable of performing indoor heating, it is desired to prevent a cold draft while processing a ventilation and heating load.
  • the temperature level that can be used in the unit can be increased, the temperature difference at the entrance and exit of the use-side heat exchanger is reduced, and as a result, the coefficient of performance (COP) of the heat source unit is reduced. It is getting lower. Therefore, a heat source unit that uses CO as a refrigerant is used.
  • An object of the present invention is to prevent cold draft due to ventilation air supplied indoors for indoor ventilation in an air conditioning system capable of performing indoor heating.
  • the system is an air conditioning system capable of performing indoor heating, and includes a heat source unit, an air supply device, and a heat medium circuit.
  • the heat source unit has a vapor compression type refrigerant circuit including a compressor, a heat source side heat exchanger, an expansion mechanism, and a use side heat exchanger, and is used for indoor heating in the use side heat exchange. It is possible to heat the heating medium.
  • the air supply unit supplies outdoor air to the room as ventilation air.
  • the heat medium circuit heats the heat of the heat medium heated in the use-side heat exchanger indoors by one or more indoor heating devices and heats the ventilation air by the heat of the heat medium heated in the use-side heat exchanger And a heat medium is circulated between the indoor heating device and the heat exchanger for outside air heating and the use side heat exchanger.
  • the high-temperature and high-pressure refrigerant compressed and discharged by the compressor heats the heat medium in the use-side heat exchanger.
  • the heat medium heated in the use-side heat exchanger is sent to one or more indoor heating devices and releases heat of the heat medium indoors to be used for indoor heating, and also for outside air heating.
  • the indoor heating device refers to, for example, a radiator, a fan heating device and a floor heating device.
  • the air conditioning system includes the heat exchange device for heating the outside air, when heating the room, the air for ventilation can be heated and then supplied to the room. As a result, it is possible to prevent cold draft due to ventilation air supplied indoors for indoor ventilation, thereby improving indoor comfort.
  • An air conditioning system is the air conditioning system according to the first invention, wherein the heat medium circuit is configured such that the heat medium heated in the use-side heat exchanger is an indoor heating device. Are connected to the use-side heat exchanger so that they are supplied in this order to the outside air heating heat exchanger.
  • the heat medium heated in the use-side heat exchanger is connected to the use-side heat exchanger such that the heat medium is supplied to the indoor heating device and the heat exchange device for outside air in this order. Therefore, in the indoor heating device, the heat of the high-temperature heat medium immediately after being heated in the use side heat exchanger can be used, and in the heat exchange device for outside air heating, the indoor heating device heats the indoor space. The heat of the heat medium after the heat is radiated and cooled can be used.
  • the ventilation air supplied into the room by the air supply device is lower than the temperature of the indoor air, so the heat is radiated indoors by the indoor heating device and heated using the heat medium that has been cooled. It is possible to do.
  • the heat medium used to heat the ventilation air supplied indoors in the heat exchange device for outside air heating is further cooled by heating the ventilation air, and then returned to the use-side heat exchange ⁇ .
  • the heat medium that has been radiated and cooled in the indoor heating device is supplied to a heat exchange device for heating outside air, and is used to heat ventilation air supplied indoors. Therefore, the temperature difference at the entrance and exit of the use-side heat exchange can be increased, and the COP of the heat source unit can be improved.
  • the heat medium circuit includes at least one bypass that bypasses the indoor heating device and the heat exchange device for outdoor air heating. It further has a heat medium circuit.
  • the heat medium circuit has a bypass heat medium circuit that bypasses at least one of the indoor heating device and the external air heating heat exchange device.
  • the heat medium can be supplied to only a part of the heat exchange device for heating.
  • the bypass heat medium circuit is “at least one”, it may be provided in each of the indoor heating device and the heat exchange device for outside air heating, may be provided only in part, or may be provided in the indoor heating device. The device and some of the external air heating heat exchange devices may be provided so that they can be bypassed together.
  • the bypass heat medium circuit has a heat medium flow control mechanism.
  • the bypass heat medium circuit since the bypass heat medium circuit has the heat medium flow rate adjusting mechanism, it is supplied to at least a part of the indoor heating device and the outside air heat exchange device provided with the bypass heat medium circuit.
  • the flow rate of the heat medium to be performed can be adjusted.
  • the heat medium flow control mechanism refers to an electromagnetic valve that shuts off the heat medium flowing in the bypass heat medium circuit as necessary, an electric valve that adjusts the flow rate of the heat medium flowing in the bypass heat medium circuit, or the like.
  • the heat medium circuit in the air conditioning system according to the first invention, is provided between at least one of an indoor heating device and a heat exchange device for outdoor air heating and the use-side heat exchange ⁇ . And a plurality of divided heat medium circuits that circulate the heat medium independently.
  • the heat medium circuit includes a plurality of divided heat medium circuits that circulate the heat medium independently between at least one of the indoor heating device and the heat exchange device for outside air heating and the use-side heat exchange ⁇ .
  • the indoor heating system and the outside air The heat medium can be supplied to only a part of the heat exchange device for heating. Since the split heat medium circuit is “independently with at least one”, it may be provided to circulate the heat medium to each of the indoor heating device and the heat exchange device for outdoor air heating. Alternatively, the heat medium may be circulated collectively for some of the indoor heating device and the heat exchange device for outside air heating.
  • the use-side heat exchanger includes a plurality of divided heat medium circuits corresponding to the plurality of divided heat medium circuits. It is composed of a split-use heat exchanger.
  • the heat source unit further includes at least one binos refrigerant circuit that bypasses the plurality of divided use side heat exchangers. Puru.
  • the heat source unit further includes at least one bypass refrigerant circuit that bypasses the plurality of split-use-side heat exchangers.
  • the refrigerant can be supplied to only a part of ⁇ . Since the bypass refrigerant circuit is “at least one”, it may be provided in each of the plurality of divided-use-side heat exchanges, may be provided only in a part thereof, or may be provided in a plurality of divided-use heat exchangers. Some side heat exchangers may be provided so that they can be binosed together.
  • the bypass refrigerant circuit has a refrigerant flow rate adjusting mechanism.
  • the bypass refrigerant circuit has a refrigerant flow rate adjusting mechanism
  • the flow rate of the refrigerant supplied to at least a part of the plurality of divided use side heat exchangers provided with the bypass refrigerant circuit is adjusted. can do.
  • the refrigerant flow rate adjusting mechanism includes an electromagnetic valve that shuts off the refrigerant flowing in the bypass refrigerant circuit as necessary, an electric valve that adjusts the flow rate of the refrigerant flowing in the bypass refrigerant circuit, and the like.
  • the plurality of divided heat medium circuits include heat supplied to the outside air heating heat exchanger.
  • the medium is connected to the use side heat exchange so that the temperature of the medium is lower than the temperature of the heat medium after being used in the indoor heating device.
  • the plurality of divided heat medium circuits are arranged such that the temperature of the heat medium supplied to the heat exchange device for heating outside air is equal to or lower than the temperature of the heat medium used in the indoor heating device.
  • the indoor heating device can use the heat of the high-temperature heat medium immediately after being heated in the use-side heat exchanger
  • the heat of the heat medium lower than the temperature of the heat medium after being used in the indoor heating device can be used.
  • the ventilation air supplied into the room by the air supply device is lower than the temperature of the indoor air. It is possible to heat by utilizing the above.
  • the heat medium used for heating the ventilation air supplied indoors in the outside air heating heat exchange device is further cooled by heating the ventilation air, and then returned to the use side heat exchanger.
  • the heat medium radiated and cooled in the indoor heating device is supplied to the heat exchange device for outdoor air heating, and is used to heat the ventilation air supplied indoors. Therefore, the temperature difference at the entrance and exit of the use side heat exchanger can be increased, and the COP of the heat source unit can be improved.
  • a part of the indoor heating device and the heat exchange device for outside air heating includes a heat medium circuit.
  • the refrigerant that flows in the refrigerant circuit without passing through is used.
  • the heat of the high-temperature and high-pressure refrigerant flowing in the refrigerant circuit of the heat source unit is supplied only to the indoor heating device and the heat exchanger for outside air heating via the heat medium circulating in the heat medium circuit. Since the heat of the refrigerant flowing in the refrigerant circuit can be directly radiated indoors or the ventilation air supplied indoors by the air supply device can be directly heated, the heat medium circuit can be simplified.
  • the heat medium circuit in the air conditioning system according to any one of the first to L0, includes a heat medium storage container.
  • the heat medium circuit has a heat medium storage container, there are devices that constitute the heat medium circuit due to volume expansion due to temperature change of the heat medium circulating in the heat medium circuit. Problems such as breakage can be prevented.
  • the heat held by the heat medium circuit As the amount of medium increases, the heat capacity of the entire heat medium circuit increases, and the temperature of the heat medium supplied to the indoor heating device and the heat exchange device for outside air heating and the temperature of the heat medium returned to the use side heat exchanger Therefore, the controllability of the refrigerant circuit and the heat medium circuit of the heat source unit can be improved.
  • the ventilation air heated by the outside air heating heat exchange device and supplied indoors is provided. Further equipped with a humidifying device that performs humidification! /
  • This air conditioning system can humidify the ventilation air that is heated by the outside air heating heat exchange device and supplied indoors, so if the absolute humidity of the ventilation air is lower than the absolute humidity of the indoor air Even in such a case, it is possible to prevent the inside of the building from drying by supplying the ventilation air indoors.
  • the humidifier in the air conditioning system according to the twelfth invention, has a moisture permeable membrane that allows water vapor to pass therethrough. By bringing the supplied water into contact with the ventilation air through the moisture permeable membrane, it is possible to humidify the ventilation air.
  • this air conditioning system is equipped with a humidifier using a moisture permeable membrane, the water supplied to the moisture permeable membrane is brought into contact with the ventilation air through the moisture permeable membrane to humidify the ventilation air. It is possible to do.
  • the humidifier in the air conditioning system according to a fourteenth aspect, can absorb moisture and can desorb the absorbed moisture by heating. It has a hygroscopic liquid, and it is possible to humidify the ventilation air by heating the hygroscopic liquid that has absorbed the moisture using the ventilation air to release the moisture into the ventilation air. .
  • this air conditioning system is provided with a humidifying device using a moisture absorbing liquid, the moisture absorbing liquid having the moisture absorbed by the ventilation air is heated to desorb the moisture into the ventilation air. By doing so, it is possible to humidify the ventilation air.
  • the humidifying device is configured such that the humidifying device includes the moisture contained in the exhaust air discharged from indoors to outdoors. Is used to absorb moisture in the moisture absorbent to humidify the ventilation air.
  • the moisture contained in the exhaust air discharged from indoors to outdoors is used as the moisture absorbed by the hygroscopic liquid, so that the ventilation air can be supplied without supplying water to the humidifier. Humidification can be performed.
  • the humidifying device absorbs moisture contained in outdoor air different from the ventilation air into the moisture absorbing liquid, and performs ventilation. Used to humidify the working air.
  • the humidifying device is provided in a mixed air of outdoor air different from the exhaust air discharged from indoors to the outdoors and the ventilation air. It is used to absorb the moisture contained in the humidified liquid to humidify the ventilation air.
  • the humidifier in the air conditioning system according to the eighteenth invention, can adsorb moisture, and desorbs the adsorbed moisture by heating. Humidification of ventilation air by heating the adsorbent to which moisture has been adsorbed using ventilation air to release moisture into the ventilation air It is possible.
  • this air conditioning system is equipped with a humidifier using an adsorbent, the adsorbent to which moisture has been adsorbed is heated using ventilation air to release moisture into the ventilation air. It is possible to humidify the ventilation air.
  • the humidifying device is configured such that the humidifying device includes the moisture contained in the exhaust air discharged from indoors to outdoors. Is used to humidify the ventilation air by adsorbing it on the adsorbent.
  • the humidifier adsorbs moisture contained in outdoor air different from the ventilation air to the adsorbent, and performs ventilation. Used to humidify the working air.
  • the humidifying device is provided in a mixed air of outdoor air different from exhaust air and ventilation air discharged from indoors to outdoors. It is used to humidify the ventilation air by adsorbing the water contained in the air into the adsorbent.
  • the heat medium flowing in the heat medium circuit is water.
  • the heat medium circuit can be configured at low cost.
  • the heat medium flowing in the heat medium circuit is a brine that does not freeze at 0 ° C or less.
  • the heat exchange device for external heating can be used even at a low outside air temperature. There is no risk that the heat medium will freeze in the, using a heat exchange device for external heating, This improves the reliability of heating the ventilation air supplied indoors by the air supply device.
  • the refrigerant flowing in the refrigerant circuit is CO 2
  • CO is used as the refrigerant flowing in the vapor compression type refrigerant circuit of the heat source unit, so the refrigerant temperature on the discharge side of the compressor must be raised.
  • the temperature level available in the indoor heating system can be increased. As a result, comfortable indoor heating is realized.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a temperature entropy diagram showing the operation of the air conditioning system.
  • FIG. 3 is a pressure-enthalpy diagram showing the operation of the air conditioning system.
  • FIG. 5 is a psychrometric chart showing the operation of the air conditioning system according to one embodiment of the present invention.
  • FIG. 5 A schematic configuration diagram of an air conditioning system of a conventional example.
  • FIG. 6 is a psychrometric chart showing the operation of a conventional air conditioning system.
  • FIG. 7 is a schematic configuration diagram of an air conditioning system according to a first modification of the present invention.
  • FIG. 8 is a schematic configuration diagram of an air conditioning system according to Modification 2 of the present invention.
  • FIG. 9 is a schematic configuration diagram of an air conditioning system according to Modification 3 of the present invention.
  • FIG. 10 is a schematic configuration diagram of an air conditioning system according to Modification 4 of the present invention.
  • FIG. 11 is a schematic configuration diagram of an air conditioning system according to Modification Example 5 of the present invention.
  • FIG. 12 is a schematic configuration diagram of an air conditioning system according to Modification 6 of the present invention.
  • FIG. 13 is a schematic configuration diagram of an air conditioning system according to Modification 7 of the present invention.
  • FIG. 14 is a schematic configuration diagram of an air conditioning system according to Modification 8 of the present invention.
  • FIG. 15 is a schematic configuration diagram of an air conditioning system according to Modification 9 of the present invention.
  • FIG. 16 is a schematic configuration diagram of an air conditioning system according to Modification 10 of the present invention.
  • FIG. 17 is a psychrometric chart showing the operation of the air-conditioning system according to Modification 10 of the present invention.
  • FIG. 18 is a schematic configuration diagram of an air conditioning system according to Modification Example 11 of the present invention.
  • FIG. 19 is a schematic configuration diagram of an air-conditioning system according to Modification Example 12 of the present invention.
  • FIG. 20 is a schematic configuration diagram of an air conditioning system according to Modification 12 of the present invention.
  • FIG. 21 is a schematic configuration diagram of an air conditioning system according to Modification Example 13 of the present invention.
  • FIG. 22 is a schematic configuration diagram of an air conditioning system according to Modification Example 13 of the present invention. Explanation of symbols
  • Moisture permeable membrane module (moisture permeable membrane) 185a adsorbent
  • FIG. 1 is a schematic configuration diagram of an air conditioning system 101 according to an embodiment of the present invention.
  • the air-conditioning system 101 is a system that can perform indoor heating by performing a vapor compression refrigeration cycle operation.
  • the air conditioning system 101 mainly includes a heat source unit 102, an air supply device 103, and a heat medium circuit 104.
  • the heat source unit 102 is installed outdoors, for example, and mainly includes a compressor 121, a heat medium-refrigerant heat exchanger 122 as a use side heat exchanger, an expansion mechanism 123, and a heat source side heat exchange.
  • a refrigerant circuit 120 of a vapor compression type including a refrigerant circuit 124 can heat a heat medium used for indoor heating of the building U in the heat medium refrigerant heat exchanger 122.
  • the compressor 121 is a compressor that is rotationally driven by a drive mechanism such as an electric motor, compresses low-pressure refrigerant, and discharges it as high-temperature, high-pressure refrigerant.
  • the expansion mechanism 123 is an electric expansion valve that reduces the pressure of the refrigerant flowing out of the heat medium-refrigerant heat exchanger 122.
  • the heat source side heat exchange 124 is a heat exchanger that evaporates the refrigerant decompressed in the expansion mechanism 123 by exchanging heat with water or outdoor air as a heat source.
  • the heat medium-refrigerant heat exchanger 122 heats the heat medium by exchanging heat between the high-temperature high-pressure refrigerant compressed and discharged in the compressor 121 and the heat medium circulating in the heat medium circuit 104. It is an exchanger.
  • the heat medium-refrigerant heat exchanger 122 has a flow path in which the heat medium and the refrigerant flow so that the heat medium and the refrigerant flow in opposite directions.
  • the working refrigerant of the refrigerant circuit 120 of the heat source unit 102 includes HCFC refrigerant, HFC Although it is possible to use refrigerant and HC refrigerant ⁇ CO, in this embodiment, the critical
  • the refrigerant pressure at the discharge side of the compressor 121 is critical for the refrigerant.
  • the rise in the refrigerant pressure on the discharge side of the compressor 121 causes the refrigerant temperature on the discharge side of the compressor 121, that is, the refrigerant temperature at the refrigerant inlet of the heat medium-refrigerant heat exchanger 122, You can get higher.
  • the refrigerant flowing into the heat medium-refrigerant heat exchanger 122 is compressed to a critical pressure or higher by the compressor 121, the supercritical refrigerant heats the heat medium in the heat medium-refrigerant heat exchanger 122. ing.
  • the air supply device 103 is a device for supplying outdoor air (illustrated as OA in FIG. 1) to the inside of the building U.
  • the air supply device 103 mainly supplies outdoor air from indoors to indoors as ventilation air.
  • indoor ventilation can be performed.
  • indoor ventilation is performed using the exhaust fan 131.
  • indoor ventilation may be performed by providing an air supply fan at the air supply port, or the exhaust fan and the exhaust fan may be used.
  • Indoor ventilation may be provided by providing both air supply fans.
  • the heat medium circuit 104 includes a radiator 141 as an indoor heating device that radiates heat of the heat medium heated in the heat medium-refrigerant heat exchanger 122 indoors, a fan control vector 142, a floor heating device 143, and an air supply device 103. And a heat exchanger 144 for outside air heating for heating the ventilation air supplied indoors by the heat of the heat medium heated in the heat medium-refrigerant heat exchanger 122, and includes a radiator 141 and a fan control vector. 142, a circuit for circulating the heat medium between the floor heating device 143 and the heat exchange device for outside air heating 144 and the heat medium-refrigerant heat exchanger 122.
  • the radiator 141 is, for example, a device that is disposed indoors and mainly radiates heat of the heat medium to the indoors by radiant heat transfer.
  • the heat medium passes therethrough to exchange heat with surrounding indoor air.
  • the heat exchange for the radiator to be performed has 14 la (the indoor air immediately after the heat exchange in the heat exchange for the radiator ⁇ 141a is referred to as SA1 shown in FIG. 1).
  • the fancon vector 142 is, for example, a device that is disposed indoors and radiates heat of the heat medium to the room mainly by forced convection heat transfer.
  • the fancon vector 142 passes through the heat medium.
  • Heat exchange for convector 142a which exchanges heat with air, and indoor air supplied to heat exchanger 142a for convector, and indoor air heat-exchanged in heat exchanger 142a for convector supply air (Fig. 1).
  • SA1 ′ and a compressor fan 142b that supplies indoors as SA1 ′).
  • the floor heating device 143 is, for example, a device having a floor heating pipe 143a that is disposed under the floor of the building U and that mainly radiates heat of the heat medium to the room through a heat transfer panel provided on the floor surface. It is.
  • the outdoor-air heating heat exchanger 144 has, for example, an outdoor-air heating heat exchanger 144a that is arranged outdoors and that mainly heats ventilation air supplied indoors by the air supply device 103 by the heat of the heat medium. This is the equipment (here, the supply air that is heat-exchanged in the outside air heating heat exchanger 144a and supplied indoors is referred to as SA3 shown in FIG. 1).
  • the heat medium circuit 104 is configured so that the heat medium heated in the heat medium-refrigerant heat exchanger 122 is connected to the radiator heat exchange 141 a of the radiator 141 and the heat exchanger vector 142. Heat exchange between the heat medium and the refrigerant so that the heat exchange for the convector 142a, the floor heating piping 143a for the floor heating device 143, and the external air heating heat exchanger 144a for the external air heating heat exchanger 144 are supplied in this order. Connected to 122.
  • the heat medium circuit 104 is configured such that the heat medium heated by performing heat exchange with the refrigerant in the heat medium-refrigerant heat exchanger 122 is supplied from the heat medium outlet of the heat medium-refrigerant heat exchanger 122 to the radiator.
  • the pump 145 returns to the heat medium inlet of the heat medium-refrigerant heat exchanger 122.
  • a single heat medium circuit connected in series is configured. That is, the heat medium circuit 104 is connected in order from the radiator heat exchange 141 & which requires the highest temperature heat medium to the outside air heating heat exchanger 144a which can use even the lowest temperature heat medium. ⁇ This is it.
  • the heat medium circulation pump 145 is connected between the heat medium outlet of the outside air heating heat exchanger 144a and the heat medium inlet of the heat medium coolant heat exchange 122, and is driven by a drive mechanism such as an electric motor.
  • a pump for circulating a heat medium is connected between the heat medium outlet of the outside air heating heat exchanger 144a and the heat medium inlet of the heat medium coolant heat exchange 122, and is driven by a drive mechanism such as an electric motor.
  • the heat medium flowing in the heat medium circuit 104 water or brine can be used.
  • water used as the heat medium
  • brine used as the heat medium
  • the heat medium is prevented from freezing in the outside air heating heat exchanger 144 (specifically, the outside air heating heat exchanger 144a) even at a low outside air temperature.
  • a brine include an aqueous solution of calcium chloride, an aqueous solution of sodium chloride, and an aqueous solution of magnesium salt.
  • FIG. 2 is a temperature-entropy diagram showing the operation of the air conditioning system 101.
  • FIG. 3 is a pressure-enthalpy diagram showing the operation of the air conditioning system 101.
  • FIG. 4 is a psychrometric chart showing the operation of the air conditioning system 101.
  • the heat medium circulation pump 145 is started to circulate the heat medium in the heat medium circuit 104.
  • the compressor 121 of the heat source unit 102 is started.
  • the low-pressure refrigerant (see point Rc shown in FIGS. 1 to 3) sucked into the compressor 121 is compressed and discharged by the compressor 121 to become a high-temperature and high-pressure refrigerant (see FIGS. 1 to 3). See point Ri shown).
  • the high-temperature and high-pressure refrigerant flows into the heat medium-refrigerant heat exchanger 122 and heats the heat medium, and is cooled to become a low-temperature and high-pressure refrigerant (see a point Ro3 shown in FIGS. 1 to 3).
  • This heat medium refrigerant heat The refrigerant cooled by the heating of the heat medium in the exchange 122 is decompressed by the expansion mechanism 123 to become a low-temperature low-pressure refrigerant in a gas-liquid two-phase state (see a point Re3 shown in FIGS. 1 to 3).
  • the gas-liquid two-phase refrigerant is heated by a heat source such as water or outdoor air in the heat source side heat exchange 124 to evaporate to become a low-temperature low-pressure gas refrigerant (see the points shown in FIGS. 1 to 3). Rc). Then, the low-temperature and low-pressure gas refrigerant is sucked into the compressor 121 again.
  • the heat medium circulating in the heat medium circuit 104 also has a heat medium inlet force flowing into the heat medium-refrigerant heat exchanger 122 (see the point Wi3 shown in FIGS. 1, 2 and 4),
  • the heat medium-refrigerant heat exchanger 122 the refrigerant is heated by performing heat exchange with the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 121 (see a point Wo shown in FIGS. 1, 2 and 4).
  • the high-temperature heat medium heated in the heat medium refrigerant heat exchanger 122 flows into the radiator heat exchanger 141a of the radiator 141, and radiates the heat of the heat medium indoors (specifically, the radiator 141).
  • the heat medium flowing out of the radiator heat exchange ⁇ 141a flows into the convector heat exchanger 142a of the fan con vector 142, and dissipates the heat of the heat medium indoors.
  • the indoor air (see point RA shown in FIG. 1) is supplied indoors as supply air SA1 ′ (see FIG. 1) by the convector heat exchanger ⁇ 142a.
  • the heat medium flowing out of the convector heat exchanger 142a flows into the floor heating pipe 143a of the floor heating device 143, and releases the heat of the heat medium indoors (specifically, the floor heating system).
  • the floor is heated by the tube 143a) and cools itself to a lower temperature (eg, as shown in FIG. 2, the force at about 55 ° C is also reduced to about 40 ° C).
  • the heat medium flowing out from the floor heating pipe 143a flows into the outside air heat exchanger 144a of the outside air heat exchanger 144, and is supplied indoors by the air supply device 103 by the heat of the heat medium.
  • Heated ventilation air which cools itself and cools down (see Figure 2 for example).
  • the ventilation air (see point OA shown in Fig. 4; about 10 ° C) is changed to the state of point SA3 shown in Fig. 4 (about 20 ° C in Fig. 4) by the outside air heating heat exchanger 144a. ).
  • the temperature of the indoor air RA is heated to about 20 ° C. (see point RA shown in FIG.
  • the air conditioning system 101 of the present embodiment has the following features.
  • FIG. 5 As shown in FIG. 5, as a conventional air conditioning system 901, as shown in FIG. 5, a heat source unit 102, an air supply device 103, a radiator 141, a fan control vector 142, and a heat medium circulation unit similar to the air conditioning system 101 of the present embodiment. And a heat medium circuit 904 having a pump 145.
  • the ventilation air (FIG. OA) is supplied indoors as it is. Therefore, as shown in Fig. 6, the indoor air temperature is determined by mixing indoor air (see point RA shown in Fig. 6) and ventilation air (see point OA shown in Fig. 6). (Refer to the point MA shown in Fig.
  • the air-conditioning system 101 of the present embodiment includes the outside-air heating heat exchange device 144, when heating the indoor space, as shown in FIG. After heating outdoor air OA as ventilation air supplied indoors, supply air S As it can be supplied indoors as A3, it is possible to prevent cold draft due to ventilation air supplied indoors for indoor ventilation and improve indoor comfort Can be.
  • the heat medium circuit 904 since the heat medium circuit 904 does not have the floor heating device 143 and the heat exchange device 144 for outside air heating, the heat medium is exchanged with the refrigerant in the heat medium-refrigerant heat exchanger 122 to perform heating. As shown in FIG. 2, FIG. 3, and FIG. 5, the transferred heat medium shifts from the state at the point Wo to the state at the point Wil, and is returned to the heat medium-refrigerant heat exchanger 122 again. It will circulate in the heat medium circuit 104. Along with this, as shown in FIGS.
  • the refrigerant changes from the state of the point Rc on the suction side of the compressor 121 to the state of the point Ri corresponding to the point Wo, and the point Rol corresponding to the point Wil.
  • the state is sequentially shifted to the state at the point Rel, and the refrigerant circulates through the refrigerant circuit 120 again so that the compressor 121 is sucked.
  • the COP (evaporation side standard) of the heat source unit 102 in the conventional air conditioning system 901 is calculated in the refrigeration cycle of the point Rc ⁇ point Ri ⁇ point Rol ⁇ point Rel ⁇ point Rc.
  • the heat medium circuit 104 has the floor heating device 143 and the outside air heating heat exchange device 144, and is further heated in the heat medium-refrigerant heat exchanger 122.
  • the heat medium is connected to the heat medium refrigerant heat exchange 122 so that the heat medium is supplied to the radiator 141, the fan control vector 142, the floor heating device 143, and the heat exchange device 144 for outside air heating in this order.
  • the heat medium heated by performing the heat exchange with the refrigerant in the exchanger 122 shifts to the state of the point Wo and the state of the point Wi3 as shown in FIG. 1, FIG. 2 and FIG.
  • the heat is circulated in the heat medium circuit 104 so as to be returned to the heat medium-refrigerant heat exchanger 122 again.
  • the refrigerant changes from the state of point Rc on the suction side of the compressor 121 to the state of point Ri corresponding to point Wo, to the state of point Ro3 corresponding to point Wi3.
  • the state sequentially shifts to the state at the point Re3, and again circulates through the refrigerant circuit 120 so that the compressor 121 is sucked.
  • the heat medium The heat of the high-temperature heat medium immediately after being heated in the refrigerant heat exchanger 122 can be used, and in the outside air heating heat exchange device 144, the radiator 141, the fan convector 142 and the floor heating device 143 can be used indoors. After the heat is released and cooled (see point Wi2 in Figs. 1 and 2), the heat of the heat medium can be used.
  • the ventilation air illustrated as OA in FIG. 1
  • the air supply device 103 is lower than the temperature of the indoor air (illustrated as RA in FIG. 1), the radiator 141 and the fan control vector 14 are used.
  • the heat medium used for heating the ventilation air supplied into the building in the outside air heating heat exchanger 144 is further cooled by heating the ventilation air (see FIGS. 1 and 2).
  • the heat medium / refrigerant heat exchanger 122 see point Wi3.
  • the heat medium that has been radiated and cooled by the radiator 141, the fan control vector 142, and the floor heating device 143 is supplied to the outside air heating heat exchange device 144, and is supplied indoors.
  • the temperature difference between the inlet and outlet of the heat medium-refrigerant heat exchanger 122 that is, the temperature of the heat medium at the point Wo and the point Wi3 (Temperature difference from the temperature of the heat medium in the state).
  • the COP (evaporation side reference) of the heat source unit 102 in the air-conditioning system 101 of the present embodiment becomes, as shown in FIG. 3, a refrigeration cycle of point Rc ⁇ point Ri ⁇ point Ro3 ⁇ point Re3 ⁇ point Rc.
  • the COP is improved compared to the air conditioning system 901.
  • the air conditioning system 101 of the present embodiment includes the floor heating device 143 in addition to the outside air heating heat exchange device 144, the heat medium and the refrigerant are smaller than the conventional air conditioning system 901. The temperature difference and COP at the entrance and exit of the heat exchanger 122 are further increasing.
  • the heat medium circuit 104 when water is used as the heat medium flowing in the heat medium circuit 104, the heat medium circuit 104 can be configured at low cost. Also, if brine that does not freeze below 0 ° C. is used as the heat medium flowing through the heat medium circuit 104, the heat medium will freeze in the external heat exchanger 144 even at low outside temperatures. This eliminates the danger, and the reliability of heating the ventilation air supplied indoors by the air supply device 103 using the external heating heat exchange device 144 can be improved.
  • the temperature of the refrigerant in the radiator 141, the fan control vector 142, the floor heating device 143, and the heat exchanger 144 for outside air heating can be increased. Thereby, comfortable indoor heating is realized.
  • the heat medium circuit 104 further includes a bypass heat medium circuit that bypasses at least one of the radiator 141, the fan control vector 142, the floor heating device 143, and the heat exchange device 144 for outside air heating. It may be.
  • a binos heat medium circuit 151, 153 is provided for each of the radiator 141, the floor heating device 143, and the heat exchange device 144 for outside air.
  • 154 may be provided. Thereby, the heat medium can be supplied to only a part of the radiator 141, the floor heating device 143, and the outside air heating heat exchange device 144 as needed.
  • no-pass heat medium circuits 151, 153, and 154 are provided with a solenoid valve 151a, a motor-operated valve 153a, and a solenoid valve 154a, respectively, as a heat medium flow control mechanism.
  • the bypass heat medium circuits 151 and 154 the heat medium flowing through each of the bypass heat medium circuits 151 and 154 can be cut off as necessary, and the radiator 141 and the outside air heat exchanger 144 The flow rate of the heat medium supplied to the heater can be adjusted.
  • the bypass heat medium circuit 153 the flow rate of the heat medium flowing through the bypass heat medium circuit 153 can be adjusted, and the flow rate of the heat medium supplied to the floor heating device 143 can be adjusted with high accuracy.
  • the bypass heat medium circuit may be provided in each of the radiator 141, the floor heating device 143, and the outside air heating heat exchange device 144, or may be provided in the radiator 141, the floor heating device 143, and the outside air.
  • the radiator 141, the floor heating device 143, and some of the outside air heat exchange devices 144 may be provided so as to be able to be bypassed collectively.
  • the type of valve provided in the bypass heat medium circuit can be selected according to the accuracy of the flow rate adjustment of the heat medium required for each bypass heat medium circuit.
  • a part of the radiator 141, the fan control vector 142, the floor heating device 143, and a part of the heat exchange device 144 for outside air heating supply the refrigerant flowing in the refrigerant circuit 120 without passing through the heat medium circuit 104. It may be used.
  • the floor heating device 143 and the heat exchange device 144 for outside air heating are provided via a heat medium circulating in the heat medium circuit 104.
  • the heat of the refrigerant flowing in the refrigerant circuit 120 of the heat source unit 102 Utilizing the heat of the refrigerant flowing in the refrigerant circuit 120 of the heat source unit 102, the high-temperature high-pressure refrigerant compressed and discharged by the compressor 121 flows into the radiator heat exchanger 141 a of the radiator 141. Then, the heat of the refrigerant may be directly radiated indoors. Thus, the heat medium circuit 104 can be simplified.
  • the refrigerant flowing in the refrigerant circuit 120 flows into the floor heating pipe 143a and the outside air heating heat exchanger 144a.
  • the heat of the refrigerant may be used.
  • the vinos heat medium circuit of the first modification may be provided.
  • a heat medium storage tank may be provided in the heat medium circuit 104.
  • a heat medium storage tank 161 may be provided on the suction side of the heat medium circulation pump 145. It may be.
  • the heating medium It is possible to prevent troubles such as breakage of devices constituting the heat medium circuit 104 due to volume expansion caused by temperature change of the heat medium circulating in the path 104.
  • the heat capacity of the entire heat medium circuit 104 increases, and the heat medium is supplied to the radiator 141, the floor heating device 143, and the outside air heat exchanger 144. Since the temperature of the heat medium and the temperature of the heat medium returned to the heat medium-refrigerant heat exchanger 122 are stabilized, controllability of the heat source unit 102 and the heat medium circuit 104 can be improved.
  • the heat medium circuit 104 includes at least one of the radiator 141, the fan control vector 142, the floor heating device 143, and the heat exchange device 144 for outside air heating, and the heat medium-refrigerant heat exchanger 122. It may be composed of a plurality of divided heating medium circuits that independently circulate the heating medium between them.
  • the heat medium circuit 104 circulates the heat medium independently between the radiator 141 and the heat medium-refrigerant heat exchanger 122.
  • a third heat medium circuit 104c that independently circulates the heat medium between the heat medium-refrigerant heat exchanger 122 and the heat medium-refrigerant heat exchanger 122 may be used.
  • the divided heat medium circuits 104a, 104b, 104c have heat medium circulation pumps 145a, 145b, 145c, respectively. Accordingly, as necessary, the heat medium can be supplied to only a part of the radiator 141, the floor heating device 143, and the outside air heating heat exchange device 144.
  • the second divided heating medium circuit 104b is such that a temperature below the heat medium after being used at temperatures force S radiators 14 1 of the heat medium supplied to the floor heating device 143, the heat medium -The third heat medium circuit 104c is connected to the heat exchanger 122, and the third heat medium circuit 104c uses the heat of the heat medium supplied to the outside air heat exchanger 144 after the heat medium is used in the floor heater 143.
  • the heat medium-refrigerant heat exchanger 122 is connected so that the temperature of the medium becomes equal to or lower than the temperature of the medium.
  • the refrigerant changes from the state of the point Rc on the suction side of the compressor 121 to the state of the point Ri corresponding to the point Wo, and the point Ro3 corresponding to the point Wi3.
  • the state sequentially shifts to the state at the point Re3, and again circulates through the refrigerant circuit 120 so that the compressor 121 is sucked.
  • the heat medium having a temperature equal to or lower than the temperature of the heat medium radiated and cooled by the radiator 141 and the floor heating device 143 is supplied to the outside air heating heat exchange device 144. Since it is used to supply and heat the ventilation air supplied indoors, as a result, as in the air conditioning systems according to the above-described embodiments and modified examples, heat medium-refrigerant heat exchange is performed. The temperature difference at the entrance and exit of the vessel 122 can be increased, and the COP of the heat source unit 102 can be improved.
  • the heat medium-refrigerant heat exchanger 122 is divided so as to correspond to the divided heat medium circuits 104a, 104b, and 104c.
  • the divided use side heat exchange is composed of three divided heat mediums-refrigerant heat exchange 122 & 122b, 122c power!
  • the refrigerant (see the point Ri shown in FIG. 2, FIG. 3, and FIG. 11) compressed and discharged in the compressor 121 in the first divided heat medium refrigerant heat exchange 122a. It is possible to use the heat of the heat medium just after heating. (See points Wo and Wil shown in FIGS. 2, 3 and 11), the floor heating device 143 flows through the first divided heat medium circuit 104a in the first divided heat medium-refrigerant heat exchange 122a. The heat of the heat medium not higher than the temperature of the heat medium after being used in the radiator 141 heated by the radiator 141 heated by the refrigerant (see the point Rol shown in FIGS.
  • the refrigerant changes from the state of the point Rc on the suction side of the compressor 121 to the state of the point Ri corresponding to the point Wo, and the point Rol corresponding to the point Wil.
  • the state of point Ro2 corresponding to point Wi2 the state of point Ro3 corresponding to point Wi3, and the state of point Re3 sequentially, and circulates in the refrigerant circuit 120 again so that the compressor 121 is sucked. Will do.
  • the heat medium circuit 104 includes divided heat medium circuits 104a, 104b, and 104c corresponding to the radiator 141, the floor heating device 143, and the outside air heat exchange device 144, respectively.
  • the heat is divided and the heat medium-refrigerant heat exchanger 122 is also divided into the divided heat medium refrigerant heat exchanges 122a, 122b, and 122c corresponding to the divided heat medium circuits 104a, 104b, and 104c.
  • the air conditioning system 101 includes a heat medium circuit 104 including a first heat medium circulation pump 145a dedicated to the radiator 141.
  • the first heat medium circuit 104a is divided into a second heat medium circuit 104d including a second heat medium circulation pump 145d common to the floor heating device 143 and the outside air heating heat exchange device 144.
  • Exchanger 122 for radiator 141 1 divided heating medium-refrigerant heat exchange transliteration 122a and the floor heating device 143 and a common second divided heating medium to the outdoor air heating device 144 - may be divided into a refrigerant heat ⁇ 122d.
  • the refrigerant circuit 120 may further include at least one bypass refrigerant circuit that bypasses the divided heat medium-refrigerant heat exchange.
  • a bypass refrigerant circuit 171 may be provided in the first heat medium-refrigerant heat exchanger 122a.
  • the bypass refrigerant circuit 171 is provided with an electromagnetic valve 171a as a heat medium flow control mechanism. This makes it possible for the bypass refrigerant circuit 171 to block the heat medium flowing through each bypass heat medium circuit 171 as necessary, and to control the refrigerant supplied to the divided heat medium-refrigerant heat exchanger 122a. The flow rate can be adjusted.
  • the bypass refrigerant circuit may be provided only in the first divided heat medium-refrigerant heat exchanger 122a, or may be provided in each of the divided heat medium-refrigerant heat exchangers 122a, 122b, 122c.
  • the heat exchangers 122a, 122b, and 122c may be collectively bypassed.
  • the type of valve provided in the bypass refrigerant circuit can be selected according to the accuracy of adjusting the flow rate of the heat medium required for each bypass refrigerant circuit. For example, instead of an electromagnetic valve, an electric valve may be used. By using this, the flow rate of the refrigerant supplied to the bypass refrigerant circuit can be adjusted with high accuracy.
  • a part of the radiator 141, the fan control vector 142, the floor heating device 143, and the heat exchange device 144 for outside air heating is connected to the refrigerant circuit without passing through the heat medium circuit 104. It is also possible to use a refrigerant flowing in the inside 120.
  • the floor heating device 143 and the heat exchange device 144 for outside air heating have the divided heat medium circuits 104b and 104c.
  • the radiator 141 utilizes the heat of the refrigerant flowing in the refrigerant circuit 120 of the heat source unit 102 through the heat medium circulating through the heat source.
  • the radiator 141 compresses the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 121 to the radiator 141.
  • the heat of the refrigerant may be directly radiated indoors by flowing into the heat exchanger 141a for the eater. This makes it possible to simplify the heat medium circuit 104.
  • the refrigerant flowing in the refrigerant circuit 120 flows into the floor heating piping 143a and the outside air heating heat exchanger 144a.
  • the heat of the refrigerant may be used.
  • the heat medium circuit 104 may be provided with a heat medium storage tank.
  • the heat medium storage tank 161a is provided on the suction side of the heat medium circulation pumps 145a, 145b, and 145c.
  • 161b, 161c may be provided.
  • each of the divided heat medium circuits 104a, 104b, 104c is increased by increasing the amount of heat medium held by the divided heat medium circuits 104a, 104b, 104c, and the radiator 141, the floor heating device 143, and the outside air Since the temperature of the heat medium supplied to the heat exchanger 144 for heat and the temperature of the heat medium returned to the divided heat medium-refrigerant heat exchangers 122a, 122b, 122c are stabilized, the heat source unit 102 and the divided heat medium circuit 104a , 104b and 104c can be improved.
  • the air conditioning system 101 of the above-described embodiment and the modified example since the outside air heating heat exchange device 144 is provided, the cold draft by the ventilation air supplied into the room for the indoor ventilation is reduced. It is designed to improve indoor comfort. However, if the absolute humidity of the ventilation air is lower than the absolute humidity of the indoor air, the supply of ventilation air may dry the interior. For this reason, in this modified example, in the air conditioning system 101 of the above-described embodiment and the modified example, a humidifying device that humidifies the ventilation air that is heated by the heat exchange device for outside air heat 144 and supplied indoors is provided. In addition, it is provided.
  • a humidifier 182 having a spray nozzle 182a for spraying water into the ventilation air supplied indoors after being heated by the heat exchanger 144, and a water supply pipe 181 for supplying water to the spray nozzle 182a of the humidifier 182. Can be provided.
  • ventilation air (shown as SA3 in FIG. 16) heated by heat exchange with a heat medium in the outside air heating heat exchange device 144 is supplied indoors. Then, the water is introduced into the humidifier 182, humidified by the water sprayed from the spray nozzle 182a of the humidifier 182, and then supplied indoors (shown as SA3 'in FIG. 16).
  • SA3 indoors
  • the ventilation air can be humidified, even if the absolute humidity of the ventilation air is lower than the absolute humidity of the indoor air, By supplying air to the interior, it is possible to prevent the interior from drying.
  • the temperature of the ventilation air after being humidified by the humidifier 182 is lower than the temperature after being heated by the outside air heat exchanger 144 due to the evaporation of the water sprayed from the spray nozzle 182a. It will be connected.
  • the heating amount of the ventilation air in the outside air heating heat exchanger 144 is increased in consideration of the evaporation of the water in the humidifier 182, for example, as shown in FIG. As shown, the ventilation air (shown as SA3 in FIG. 17) was heated to the temperature of the ventilation air (shown as SA3 in FIG. 4) in the air conditioning system of FIG. 1 without the humidifier 182 (FIG. 4).
  • the outdoor air heat exchange device 144 and the humidifier 182 allow the ventilation air having a lower temperature and lower humidity than the indoor air to be in the same temperature and humidity as the indoor air. After heating and humidification up to the point where it can be supplied indoors, indoor comfort can be further improved!
  • a spray nozzle or an air washer is used as a humidifier that humidifies the ventilation air that is heated by the outside air heating heat exchanger 144 and supplied indoors.
  • the force is not limited to this, and a device using a moisture-permeable membrane having a property of transmitting water vapor may be employed.
  • the air conditioning system 101 does not have the fan control vector 142 as shown in FIG. 18 and the air conditioning system 101 includes the moisture permeable membrane module 183a having a plurality of tube-shaped moisture permeable membranes.
  • a humidifier 183 and a water supply pipe 181 that supplies water to the moisture permeable membrane module 183a of the carohumidifier 183 may be provided.
  • the moisture permeable membrane module 183a is provided with a flow path through which ventilation air heated by the outside air heating heat exchange device 144 and supplied indoors passes through the outside of the moisture permeable membrane.
  • the water supplied to the moisture permeable membrane module 183a is introduced into the moisture permeable membrane, and the water supplied to the moisture permeable membrane is brought into contact with the ventilation air through the moisture permeable membrane. By doing so, it is possible to humidify the ventilation air.
  • the moisture permeable membrane it is possible to use polytetrafluoroethylene (PTFE) or the like.
  • the amount of heating of the ventilation air in the heat exchanger for outside air 144 is increased in consideration of the evaporation of water in the humidifier 183, as in the case of Modification 10. Since the air for ventilation, which is lower in temperature and humidity than indoor air, can be heated and humidified to the same temperature and humidity as indoor air, it can be supplied indoors. The comfort can be further improved.
  • a so-called water supply type humidifier of a type in which water is supplied to the humidifier through a water supply pipe 181 is employed.
  • the present invention is not limited to this, and a device using a moisture absorbing liquid capable of absorbing moisture and capable of desorbing the absorbed moisture by heating may be employed.
  • the first and second moisture permeable membrane modules 184a and 184b having a plurality of tubular moisture permeable membranes, and the first permeable membrane modules 184a and 184b.
  • the humidifier 184 may be provided with a hygroscopic liquid circulation pump 184c for circulating a hygroscopic liquid between the wet membrane module 184a and the second moisture permeable membrane module 184b.
  • the ventilation air heated by the outside air heating heat exchange device 144 and supplied indoors flows through the outside of the moisture-permeable membrane. Roads are provided. Further, a moisture absorbent circulated by the moisture absorbent circulation pump 184c is introduced into the moisture permeable membrane of the first moisture permeable membrane module 184a, and the moisture absorbent supplied to the moisture permeable membrane is supplied. The ventilation air is brought into contact with the ventilation air through the moisture permeable membrane, and the ventilation air is heated by using the ventilation air to heat the moisture-absorbing liquid, thereby releasing the moisture into the ventilation air. It is possible to humidify.
  • the second moisture-permeable membrane module 184b is provided with a flow path through which exhaust air exhausted from indoors to outdoors passes outside the moisture-permeable membrane. Further, the moisture absorbent circulated by the moisture absorbent circulation pump 184c is introduced into the moisture permeable membrane of the second moisture permeable membrane module 184b, and the moisture absorbent supplied to the moisture permeable membrane is supplied to the second moisture permeable membrane module 184b. Is made to come into contact with the discharged air via a moisture permeable membrane, so that the moisture contained in the discharged air can be absorbed by the hygroscopic liquid.
  • the moisture permeable membrane polytetrafluoroethylene (PTFE) or the like can be used.
  • aqueous solution of lithium chloride or the like can be used as the moisture absorbing liquid.
  • the humidifying device 184 an operation of circulating the hygroscopic liquid by the hygroscopic liquid circulation pump 184c in the order of the second moisture permeable membrane module 184b and the first moisture permeable membrane module 184a is performed.
  • the moisture contained in the exhaust air is absorbed by the moisture absorbent through the moisture permeable membrane of the second moisture permeable membrane module 184b.
  • the moisture absorbing liquid containing the water is sent to the first moisture permeable membrane module 184a.
  • the second moisture permeable membrane module 184b is moved from the second moisture permeable membrane module 184b to the first moisture permeable membrane module 184a.
  • the sent moisture absorbing liquid is heated through the moisture permeable membrane, moisture is desorbed from the heated moisture absorbing liquid into the ventilation air through the moisture absorbing membrane, and the ventilation air is humidified. It can be supplied indoors.
  • the air conditioning system 101 of the present modification includes the humidifier 184 using the moisture absorbing liquid, the moisture absorbing liquid whose moisture has been absorbed using the ventilation air is heated to remove the moisture. By desorbing into the ventilation air, it is possible to humidify the ventilation air. Further, in the air conditioning system 101, since the moisture contained in the exhaust air discharged from indoors to outdoors is used as the moisture absorbed by the moisture absorbing liquid, the ventilation is performed without supplying water to the humidifying device 184. It can humidify the working air.
  • the second air-permeable membrane module 184b supplies exhaust air discharged from indoors to outdoors (see FIG. 20).
  • the air passing through the mixed air generated by the outside air (illustrated as OA on the left side of the second moisture-permeable membrane module 184b in FIG. 20) is different from the ventilation air to the second moisture-permeable membrane module 184b as RA on the left side.
  • the moisture is absorbed by the moisture absorbent through the moisture permeable membrane of the second moisture permeable membrane module 184b, and the moisture is absorbed in the ventilation air through the moisture permeable membrane in the first moisture permeable membrane module 184a. You may let it be desorbed.
  • the humidifier 184 using the moisture absorbing liquid is provided with moisture between the moisture absorbing liquid and the air via the moisture permeable membrane modules 184a and 184b having moisture permeable membranes.
  • the configuration is such that the transfer is performed, the present invention is not limited to this, and the configuration may be such that the moisture absorbing liquid and the air come into direct contact.
  • the second moisture-permeable membrane module 184b is made to pass both the exhaust air discharged from indoors to the outdoors and the outdoor air different from the ventilation air. However, only outdoor air other than the ventilation air may be allowed to pass.
  • a humidifier 185 having a desiccant rotor 185a carrying an adsorbent may be provided.
  • the humidifying device 185 is provided with a flow path through which a portion of the desiccant rotor 185a passes ventilation air heated by the outside air heating heat exchange device 144 and supplied indoors. Further, a flow path through which exhaust air discharged from indoors to outdoors passes is provided in another part of the desiccant rotor 185a.
  • the desiccant port 185a is configured to be rotatable by a driving mechanism such as an electric motor, so that ventilation air and exhaust air can flow through each part of the desiccant rotor 185a.
  • adsorbent zeolite, silica gel, activated alumina and the like can be used.
  • the humidifying device 185 when the exhaust air passes through a portion of the desiccant rotor 185a other than the portion through which the ventilation air passes, moisture in the exhaust air is adsorbed by the adsorbent of the desiccant rotor 185a. You. Then, the desiccant rotor 185a is rotated to move the portion where the moisture in the discharged air is adsorbed to the corresponding position to the flow path through which the ventilation air passes.
  • the ventilation air passes through a part of the desiccant rotor 185a to which the moisture in the discharged air is adsorbed, and the moisture of the desiccant rotor 185a is reduced by the ventilation air heated in the outside air heat exchanger 144.
  • the adsorbed portion is heated, and moisture is desorbed from the heated adsorbent into the ventilation air to humidify the ventilation air and supply it indoors.
  • a part of the desiccant rotor 185a located at a position corresponding to the flow path for ventilation air of the desiccant rotor 185a passes to the flow path for passing the exhaust air of the desiccant rotor 185a.
  • the moisture in the exhaust air will be adsorbed.
  • the air conditioning system 101 of the present modification includes the humidifying device 185 using the adsorbent, the adsorbent to which the moisture has been adsorbed is heated using the ventilation air to remove the moisture. By desorbing into the ventilation air, the ventilation air can be humidified. Further, in the air conditioning system 101, since the moisture contained in the exhaust air discharged from indoors to outdoors is used as the moisture adsorbed by the adsorbent, the ventilation is performed without supplying the humidifier 185 with water. It can humidify the working air.
  • the desiccant rotor 185a supplies exhaust air discharged from indoors to outdoors (the left side of the desiccant rotor 185a in FIG. 21). Then, the mixed air in which outdoor air (shown as OA is shown on the left side of the desiccant rotor 185a in FIG. 21) separate from the ventilation air is passed through the mixed air, and water is added to the adsorbent of the desiccant rotor 185a. May be adsorbed and desorbed into the ventilation air.
  • the desiccant rotor 185a allows both the exhaust air discharged from indoors to the outdoors and the outdoor air different from the ventilation air to pass through! / However, only air outside the ventilation air may be allowed to pass.
  • a heat source unit having a refrigerant circuit dedicated to heating is used as the heat source unit, but a heat source unit that can be operated by switching between cooling and heating may be used.

Abstract

 屋内の暖房を行うことが可能な空気調和システムにおいて、屋内の換気のために屋内に供給される換気用空気によるコールドドラフトを防ぐ。空気調和システム(101)は、熱源ユニット(102)と、給気装置(103)と、熱媒体回路(104)とを備える。熱源ユニット(102)は、熱媒体-冷媒熱交換器(122)において屋内の暖房に使用される熱媒体を加熱する。給気装置(103)は、屋内に屋外空気を換気用空気として供給する。熱媒体回路(104)は、熱媒体-冷媒熱交換器(122)において加熱された熱媒体の熱を屋内に放熱する1以上の屋内暖房装置(141、142、143)と、換気用空気を熱媒体-冷媒熱交換器(122)において加熱された熱媒体の熱により加熱する外気加熱用熱交換装置(144)とを有し、屋内暖房装置(141、142、143)及び外気加熱用熱交換装置(144)と熱媒体-冷媒熱交換器(122)との間で熱媒体を循環させる。

Description

明 細 書
空気調和システム
技術分野
[0001] 本発明は、空気調和システム、特に、屋内の暖房を行うことが可能な空気調和シス テムに関する。
背景技術
[0002] 従来より、屋内の暖房を行うことが可能な空気調和システムとして、蒸気圧縮式の 冷媒回路を有する熱源ユニットに、ラジエーターゃフアンコンベクター等の屋内暖房 装置が接続されることによって構成されたシステムがある(例えば、特許文献 1、 2及 び 3参照。 )0このような空気調和システムは、屋内の床面や屋内空気を加熱すること によって、屋内の暖房を実現している。
また、このような空気調和システムの熱源ユニットとして、 COを冷媒とする冷媒回
2
路を有するユニットを使用することがある。このような COを冷媒とする熱源ユニットで
2
は、圧縮機の吐出側における冷媒温度を高くすることができるため、例えば、空気調 和システムが熱源ユニットの利用側熱交換器において加熱された熱媒体の熱を屋内 暖房装置によって屋内に放熱するように構成されて 、る場合等にぉ 、て、屋内暖房 装置において屋内の暖房に利用可能な温度レベルを高くすることができる。これによ り、快適な屋内の暖房を実現している。
特許文献 1:特開 2003— 50050号公報
特許文献 2 :特開 2003— 172523号公報
特許文献 3:特開 2003 - 50035号公報
発明の開示
[0003] 上述のような空気調和システムを高気密性の住宅の空気調和に適用する際には、 屋内空気環境 (以下、 IAQとする)を維持するために、屋内の必要最低限の換気を 行う必要がある。しかし、冬季等のように屋外空気が低温の場合 (以下、低外気温時 とする)には、屋内空気の温度に比べて温度の低い屋外空気が換気用空気として屋 内に供給されることになるため、屋内の換気による暖房負荷 (以下、換気暖房負荷と する)が発生する。この換気暖房負荷は、換気用空気が屋内に供給されて屋内空気 と混合された後に、屋内暖房装置によって処理されることになるため、屋内の居住者 に低温の換気用空気が供給されることによる不快感 (以下、コールドドラフトとする)を 感じさせる要因となっている。特に、近年では、高気密性に加えて高断熱性を付加し た高気密 ·高断熱性の住宅が増加しており、このような高気密 ·高断熱性の住宅では
、断熱性能の向上により暖房負荷の総量は減少することができる力 IAQ維持のた めに必要な換気暖房負荷にっ 、ては減少させることができな 、ため、空気調和シス テムにおいて処理される暖房負荷の総量に占める換気暖房負荷の割合が相対的に 大きくなつている。このため、屋内の暖房を行うことが可能な空気調和システムにおい て、換気暖房負荷を処理しつつ、コールドドラフトを防ぐことが望まれている。
また、上述のような COを冷媒とする熱源ユニットを使用する際には、屋内暖房装
2
置において利用可能な温度レベルを高くすることができるが、利用側熱交換器の出 入口における温度差が小さくなつてしまうため、結果的に、熱源ユニットの成績係数( 以下、 COPとする)が低くなつている。このため、 COを冷媒とする熱源ユニットを使
2
用する屋内の暖房を行うことが可能な空気調和システムにおいて、 COPの向上が望 まれている。
本発明の課題は、屋内の暖房を行うことが可能な空気調和システムにおいて、屋内 の換気のために屋内に供給される換気用空気によるコールドドラフトを防ぐことにある 第 1の発明にかかる空気調和システムは、屋内の暖房を行うことが可能な空気調和 システムであって、熱源ユニットと、給気装置と、熱媒体回路とを備えている。熱源ュ ニットは、圧縮機と、熱源側熱交換器と、膨張機構と、利用側熱交換器とを含む蒸気 圧縮式の冷媒回路を有し、利用側熱交 において屋内の暖房に使用される熱媒 体を加熱することが可能である。給気装置は、屋内に屋外空気を換気用空気として 供給する。熱媒体回路は、利用側熱交換器において加熱された熱媒体の熱を屋内 に放熱する 1以上の屋内暖房装置と、換気用空気を利用側熱交換器において加熱 された熱媒体の熱により加熱する外気加熱用熱交換装置とを有しており、屋内暖房 装置及び外気加熱用熱交換装置と利用側熱交換器との間で熱媒体を循環させる。 [0005] この空気調和システムでは、圧縮機によって圧縮され吐出された高温高圧の冷媒 が利用側熱交換器にお ヽて熱媒体を加熱する。この利用側熱交換器にお ヽて加熱 された熱媒体は、 1以上の屋内暖房装置に送られて、屋内に熱媒体の熱を放出して 屋内の暖房に使用され、また、外気加熱用熱交換装置に送られて、給気装置によつ て屋内に換気用空気として供給される屋外空気を加熱するのに使用される。そして、 屋内暖房装置及び外気加熱用熱交換装置において屋内の暖房及び換気用空気の 加熱に使用された熱媒体は、再び、利用側熱交換器に戻される。一方、利用側熱交 において熱媒体の加熱により冷却された冷媒は、膨張機構において減圧され、 熱源側熱交換器において加熱されて低圧の冷媒となった後に、再度、圧縮機に吸 入される。尚、屋内暖房装置とは、例えば、ラジエーター、フアンコンベクターゃ床暖 房装置等をいう。このように、この空気調和システムでは、外気加熱用熱交換装置を 備えているため、屋内の暖房を行う際に、換気用空気を加熱した後に、屋内に供給 することができる。これにより、屋内の換気のために屋内に供給される換気用空気に よるコールドドラフトを防ぐことができて、屋内の快適性を向上させることができる。
[0006] 第 2の発明に力かる空気調和システムは、第 1の発明に力かる空気調和システムに おいて、熱媒体回路は、利用側熱交換器において加熱された熱媒体が、屋内暖房 装置、外気加熱用熱交換装置の順に供給されるように、利用側熱交換器に接続され ている。
この空気調和システムでは、利用側熱交換器にお ヽて加熱された熱媒体が屋内暖 房装置、外気加熱用熱交換装置の順に供給されるように、利用側熱交換器に接続さ れているため、屋内暖房装置においては、利用側熱交換器において加熱された直 後の高温の熱媒体の熱を利用することができ、外気加熱用熱交換装置においては、 屋内暖房装置において屋内に熱が放熱されて冷却された後の熱媒体の熱を利用す ることができる。ここで、給気装置によって屋内に供給される換気用空気は、屋内空 気の温度よりも低いため、屋内暖房装置において屋内に熱が放熱されて冷却された 後の熱媒体を利用して加熱することが可能である。そして、外気加熱用熱交換装置 において屋内に供給される換気用空気の加熱に使用された熱媒体は、換気用空気 を加熱することによってさらに冷却された後に、利用側熱交^^に戻される。このよう に、この空気調和システムでは、屋内暖房装置において放熱されて冷却された熱媒 体を、外気加熱用熱交換装置に供給して、屋内に供給される換気用空気を加熱する のに使用しているため、利用側熱交^^の出入口における温度差を大きくすることが できるようになり、熱源ユニットの COPを向上させることができる。
[0007] 第 3の発明に力かる空気調和システムでは、第 2の発明に力かる空気調和システム において、熱媒体回路は、屋内暖房装置及び外気加熱用熱交換装置をバイパスす る少なくとも 1つのバイパス熱媒体回路をさらに有して 、る。
この空気調和システムでは、熱媒体回路が、屋内暖房装置及び外気加熱用熱交 換装置の少なくとも 1つをバイパスするバイパス熱媒体回路を有しているため、必要 に応じて、屋内暖房装置及び外気加熱用熱交換装置の一部のみに熱媒体を供給 することができる。尚、バイパス熱媒体回路は、「少なくとも 1つ」であるから、屋内暖房 装置及び外気加熱用熱交換装置のそれぞれに設けてもよいし、一部のみに設けて もよいし、又は、屋内暖房装置及び外気加熱用熱交換装置のいくつかをまとめてバ ィパスできるように設けてもよ 、。
第 4の発明に力かる空気調和システムでは、第 3の発明に力かる空気調和システム において、バイパス熱媒体回路は、熱媒体流量調節機構を有している。
[0008] この空気調和システムでは、バイパス熱媒体回路が熱媒体流量調節機構を有して いるため、バイパス熱媒体回路が設けられた屋内暖房装置及び外気加熱用熱交換 装置の少なくとも一部に供給される熱媒体の流量を調節することができる。尚、熱媒 体流量調節機構とは、バイパス熱媒体回路を流れる熱媒体を必要に応じて遮断する 電磁弁やバイパス熱媒体回路を流れる熱媒体の流量を調節する電動弁等をいう。 第 5の発明にかかる空気調和システムでは、第 1の発明にかかる空気調和システム において、熱媒体回路は、屋内暖房装置及び外気加熱用熱交換装置の少なくとも 1 つと利用側熱交^^との間で独立して熱媒体を循環させる複数の分割熱媒体回路 から構成されている。
この空気調和システムでは、熱媒体回路が、屋内暖房装置及び外気加熱用熱交 換装置の少なくとも 1つと利用側熱交^^との間で独立して熱媒体を循環させる複数 の分割熱媒体回路から構成されているため、必要に応じて、屋内暖房装置及び外気 加熱用熱交換装置の一部のみに熱媒体を供給することができる。尚、分割熱媒体回 路は、「少なくとも 1つとの間で独立して」であるから、屋内暖房装置及び外気加熱用 熱交換装置のそれぞれに対して熱媒体を循環させるように設けてもょ 、し、屋内暖房 装置及び外気加熱用熱交換装置のいくつかに対してまとめて熱媒体を循環させるよ うに設けてもよい。
[0009] 第 6の発明に力かる空気調和システムでは、第 5の発明に力かる空気調和システム において、利用側熱交換器は、複数の分割熱媒体回路に対応するように分割された 複数の分割利用側熱交換器から構成されて 、る。
第 7の発明に力かる空気調和システムでは、第 6の発明に力かる空気調和システム において、熱源ユニットは、複数の分割利用側熱交換器をバイパスする少なくとも 1 つのバイノス冷媒回路をさらに有して ヽる。
この空気調和システムでは、熱源ユニットが、複数の分割利用側熱交換器をバイパ スする少なくとも 1つのバイパス冷媒回路をさらに有しているため、必要に応じて、複 数の分割利用側熱交^^の一部のみに冷媒を供給することができる。尚、バイパス 冷媒回路は、「少なくとも 1つ」であるから、複数の分割利用側熱交^^のそれぞれに 設けてもよいし、一部のみに設けてもよいし、又は、複数の分割利用側熱交換器のい くつかをまとめてバイノスできるように設けてもよ!ヽ。
[0010] 第 8の発明に力かる空気調和システムでは、第 7の発明に力かる空気調和システム において、バイパス冷媒回路は、冷媒流量調節機構を有している。
この空気調和システムでは、バイパス冷媒回路が冷媒流量調節機構を有して 、る ため、バイパス冷媒回路が設けられた複数の分割利用側熱交換器の少なくとも一部 に供給される冷媒の流量を調節することができる。尚、冷媒流量調節機構とは、バイ パス冷媒回路を流れる冷媒を必要に応じて遮断する電磁弁やバイパス冷媒回路を 流れる冷媒の流量を調節する電動弁等を 、う。
第 9の発明に力かる空気調和システムでは、第 5〜8の 、ずれかの発明にかかる空 気調和システムにおいて、複数の分割熱媒体回路は、外気加熱用熱交換装置に供 給される熱媒体の温度が、屋内暖房装置で使用された後の熱媒体の温度以下にな るように、利用側熱交^^に接続されている。 [0011] この空気調和システムでは、外気加熱用熱交換装置に供給される熱媒体の温度が 屋内暖房装置で使用された後の熱媒体の温度以下になるように、複数の分割熱媒 体回路が利用側熱交^^に接続されているため、屋内暖房装置においては、利用 側熱交換器において加熱された直後の高温の熱媒体の熱を利用することができ、外 気加熱用熱交換装置においては、屋内暖房装置で使用された後の熱媒体の温度以 下の熱媒体の熱を利用することができる。ここで、給気装置によって屋内に供給され る換気用空気は、屋内空気の温度よりも低いため、屋内暖房装置において屋内に熱 が放熱されて冷却された後の熱媒体の温度以下の熱媒体を利用して加熱することが 可能である。そして、外気加熱用熱交換装置において屋内に供給される換気用空気 の加熱に使用された熱媒体は、換気用空気の加熱によってさらに冷却された後に、 利用側熱交換器に戻される。このように、この空気調和システムでは、屋内暖房装置 において放熱されて冷却された熱媒体を、外気加熱用熱交換装置に供給して、屋内 に供給される換気用空気を加熱するのに使用して 、るため、利用側熱交換器の出入 口における温度差を大きくすることができるようになり、熱源ユニットの COPを向上さ せることができる。
[0012] 第 10の発明に力かる空気調和システムでは、第 1〜9のいずれかの発明にかかる 空気調和システムにおいて、屋内暖房装置及び外気加熱用熱交換装置の一部は、 熱媒体回路を介さずに冷媒回路内を流れる冷媒を利用している。
この空気調和システムでは、熱源ユニットの冷媒回路を流れる高温高圧の冷媒の 熱を、熱媒体回路内を循環する熱媒体を介して、屋内暖房装置及び外気加熱用熱 交換装置に供給するだけでなぐ冷媒回路内を流れる冷媒の熱を、屋内に直接放熱 したり、給気装置によって屋内に供給される換気用空気を直接加熱することができる ため、熱媒体回路の簡素化を図ることができる。
第 11の発明に力かる空気調和システムでは、第 1〜: L0の 、ずれかの発明にかかる 空気調和システムにおいて、熱媒体回路は、熱媒体貯留容器を有している。
[0013] この空気調和システムでは、熱媒体回路が熱媒体貯留容器を有して 、るため、熱 媒体回路内を循環する熱媒体の温度変化に伴う体積膨張により熱媒体回路を構成 する機器が破損する等の不具合を防ぐことができる。また、熱媒体回路が保有する熱 媒体の量が増加することで熱媒体回路全体の熱容量が大きくなり、屋内暖房装置及 び外気加熱用熱交換装置に供給される熱媒体の温度や利用側熱交換器に戻される 熱媒体の温度が安定するため、熱源ユニットの冷媒回路及び熱媒体回路の制御性 の改善を図ることができる。
第 12の発明にかかる空気調和システムでは、第 1〜第 11のいずれかの発明にか カゝる空気調和システムにおいて、外気加熱用熱交換装置によって加熱されて屋内に 供給される換気用空気の加湿を行う加湿装置をさらに備えて!/、る。
この空気調和システムでは、外気加熱用熱交換装置によって加熱されて屋内に供 給される換気用空気を加湿することができるため、換気用空気の絶対湿度が屋内空 気の絶対湿度よりも低い場合であっても、換気用空気を屋内に供給することにより屋 内が乾燥するのを防ぐことができる。
[0014] 第 13の発明に力かる空気調和システムでは、第 12の発明に力かる空気調和シス テムにおいて、加湿装置は、水蒸気を透過させる透湿膜を有しており、透湿膜に供 給される水を換気用空気に透湿膜を介して接触させることによって、換気用空気を加 湿することが可能である。
この空気調和システムでは、透湿膜を用いた加湿装置を備えているため、透湿膜 に供給される水を換気用空気に透湿膜を介して接触させることによって、換気用空 気を加湿することが可能である。
第 14の発明にかかる空気調和システムでは、第 12の発明にかかる空気調和シス テムにおいて、加湿装置は、水分を吸湿することが可能、かつ、吸湿した水分を加熱 により脱離させることが可能な吸湿液を有しており、換気用空気を用いて水分が吸湿 された吸湿液を加熱して水分を換気用空気中に脱離させることによって、換気用空 気を加湿することが可能である。
[0015] この空気調和システムでは、吸湿液を用いた加湿装置を備えて 、るため、換気用 空気を用いて水分が吸湿された吸湿液を加熱して水分を換気用空気中に脱離させ ることによって、換気用空気を加湿することが可能である。
第 15の発明にかかる空気調和システムでは、第 14の発明にかかる空気調和シス テムにおいて、加湿装置は、屋内から屋外に排出される排出空気中に含まれる水分 を吸湿液に吸湿させて、換気用空気の加湿を行うために使用して 、る。 この空気調和システムでは、吸湿液に吸湿される水分として、屋内から屋外に排出 される排出空気中に含まれる水分を利用して 、るため、加湿装置に水を供給すること なく換気用空気の加湿を行うことができる。
第 16の発明にかかる空気調和システムでは、第 14の発明にかかる空気調和シス テムにおいて、加湿装置は、換気用空気とは別の屋外空気中に含まれる水分を吸湿 液に吸湿させて、換気用空気の加湿を行うために使用して 、る。
[0016] この空気調和システムでは、吸湿液に吸湿される水分として、換気用空気とは別の 屋外空気中に含まれる水分を利用しているため、加湿装置に水を供給することなく換 気用空気の加湿を行うことができる。
第 17の発明にかかる空気調和システムでは、第 14の発明にかかる空気調和シス テムにおいて、加湿装置は、屋内から屋外に排出される排出空気及び換気用空気と は別の屋外空気の混合空気中に含まれる水分を吸湿液に吸湿させて、換気空気の 加湿を行うために使用して 、る。
この空気調和システムでは、吸湿液に吸湿される水分として、屋内から屋外に排出 される排出空気及び換気用空気とは別の屋外空気の混合空気中に含まれる水分を 利用しているため、加湿装置に水を供給することなく換気用空気の加湿を行うことが できる。
[0017] 第 18の発明に力かる空気調和システムでは、第 12の発明に力かる空気調和シス テムにおいて、加湿装置は、水分を吸着することが可能、かつ、吸着した水分を加熱 により脱離させることが可能な吸着剤を有しており、換気用空気を用いて水分が吸着 された吸着剤を加熱して水分を換気用空気中に脱離させることによって、換気用空 気を加湿することが可能である。
この空気調和システムでは、吸着剤を用いた加湿装置を備えているため、換気用 空気を用いて水分が吸着された吸着剤を加熱して水分を換気用空気中に脱離させ ることによって、換気用空気を加湿することが可能である。
第 19の発明にかかる空気調和システムでは、第 18の発明にかかる空気調和シス テムにおいて、加湿装置は、屋内から屋外に排出される排出空気中に含まれる水分 を吸着剤に吸着させて、換気用空気の加湿を行うために使用して 、る。
[0018] この空気調和システムでは、吸着剤に吸着される水分として、屋内から屋外に排出 される排出空気中に含まれる水分を利用して 、るため、加湿装置に水を供給すること なく換気用空気の加湿を行うことができる。
第 20の発明にかかる空気調和システムでは、第 18の発明にかかる空気調和シス テムにおいて、加湿装置は、換気用空気とは別の屋外空気中に含まれる水分を吸着 剤に吸着させて、換気用空気の加湿を行うために使用して 、る。
この空気調和システムでは、吸着剤に吸着される水分として、換気用空気とは別の 屋外空気中に含まれる水分を利用しているため、加湿装置に水を供給することなく換 気用空気の加湿を行うことができる。
第 21の発明にかかる空気調和システムでは、第 18の発明にかかる空気調和シス テムにおいて、加湿装置は、屋内から屋外に排出される排出空気及び換気用空気と は別の屋外空気の混合空気中に含まれる水分を吸着剤に吸着させて、換気用空気 の加湿を行うために使用して 、る。
[0019] この空気調和システムでは、吸着剤に吸着される水分として、屋内から屋外に排出 される排出空気及び換気用空気とは別の屋外空気の混合空気中に含まれる水分を 利用しているため、加湿装置に水を供給することなく換気用空気の加湿を行うことが できる。
第 22の発明に力かる空気調和システムでは、第 1〜21のいずれかの発明にかかる 空気調和システムにおいて、熱媒体回路内を流れる熱媒体は、水である。
この空気調和システムでは、熱媒体回路内を流れる熱媒体として水を使用している ため、安価に熱媒体回路を構成することができる。
第 23の発明に力かる空気調和システムでは、第 1〜21のいずれかの発明にかかる 空気調和システムにおいて、熱媒体回路内を流れる熱媒体は、 0°C以下で凍結しな いブラインである。
[0020] この空気調和システムでは、熱媒体回路内を流れる熱媒体として 0°C以下で凍結し ないブラインを使用しているため、低外気温時であっても、外部加熱用熱交換装置に おいて熱媒体が凍結してしまうおそれがなくなり、外部加熱用熱交換装置を用いて、 給気装置によって屋内に供給される換気用空気の加熱を行う際の信頼性を高めるこ とがでさる。
第 24の発明に力かる空気調和システムでは、第 1〜23のいずれかの発明に力かる 空気調和システムにおいて、冷媒回路内を流れる冷媒は、 CO
2である。
この空気調和システムでは、熱源ユニットの蒸気圧縮式の冷媒回路内を流れる冷 媒として COを使用しているため、圧縮機の吐出側における冷媒温度を高くすること
2
ができて屋内暖房装置において利用可能な温度レベルを高くすることができる。これ により、快適な屋内の暖房が実現されている。
図面の簡単な説明
圆 1]本発明の一実施形態に力かる空気調和システムの概略の構成図である。
[図 2]空気調和システムの動作を示す温度 エントロピ一線図である。
[図 3]空気調和システムの動作を示す圧力―ェンタルピー線図である。
圆 4]本発明の一実施形態に力かる空気調和システムの動作を示す空気線図である 図 5]従来例の空気調和システムの概略の構成図である。
図 6]従来例の空気調和システムの動作を示す空気線図である。
図 7]本発明の変形例 1にかかる空気調和システムの概略の構成図である。
図 8]本発明の変形例 2にかかる空気調和システムの概略の構成図である。
図 9]本発明の変形例 3にかかる空気調和システムの概略の構成図である。
図 10]本発明の変形例 4にかかる空気調和システムの概略の構成図である。
図 11]本発明の変形例 5にかかる空気調和システムの概略の構成図である。
図 12]本発明の変形例 6にかかる空気調和システムの概略の構成図である。
図 13]本発明の変形例 7にかかる空気調和システムの概略の構成図である。
図 14]本発明の変形例 8にかかる空気調和システムの概略の構成図である。
図 15]本発明の変形例 9にかかる空気調和システムの概略の構成図である。
図 16]本発明の変形例 10にかかる空気調和システムの概略の構成図である。
図 17]本発明の変形例 10にかかる空気調和システムの動作を示す空気線図である [図 18]本発明の変形例 11にかかる空気調和システムの概略の構成図である。
[図 19]本発明の変形例 12にかかる空気調和システムの概略の構成図である。
[図 20]本発明の変形例 12にかかる空気調和システムの概略の構成図である。
[図 21]本発明の変形例 13にかかる空気調和システムの概略の構成図である。
[図 22]本発明の変形例 13にかかる空気調和システムの概略の構成図である。 符号の説明
101 空気調和システム
102 熱源ユニット
103 給気装置
104 熱媒体回路
120 冷媒回路
121 圧縮機
122 熱媒体ー冷媒熱交換器 (利用側熱交換器)
122a, 122b, 122c, 122d 分割熱媒体ー冷媒熱交換器 (分割利用側熱交換器
)
123 膨張機構
124 熱源側熱交換器
141 ラジエーター (屋内暖房装置)
142 フアンコンベクター (屋内暖房装置)
143 床暖房装置 (屋内暖房装置)
144 外気加熱用熱交換装置
151、 153、 154 ノ ィパス熱媒体回路
151a, 153a, 154a 電磁弁、電動弁 (熱媒体流量調節機構)
161、 161a, 161b, 161c 熱媒体貯留ダンク (熱媒体貯留容器)
171 バイパス冷媒回路
171a 電磁弁、電動弁 (冷媒流量調節機構)
182、 183、 184、 185 カロ湿装置
183a, 184a, 184b 透湿膜モジュール(透湿膜) 185a 吸着剤
発明を実施するための最良の形態
[0023] 以下、図面に基づいて、本発明に力かる空気調和システムの実施形態について説 明する。
(1)空気調和システムの構成
図 1は、本発明の一実施形態に力かる空気調和システム 101の概略の構成図であ る。空気調和システム 101は、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋 内の暖房を行うことが可能なシステムである。
空気調和システム 101は、主として、熱源ユニット 102と、給気装置 103と、熱媒体 回路 104とを備えている。
<熱源ユニット >
熱源ユニット 102は、例えば、屋外に設置されており、主として、圧縮機 121と、利 用側熱交換器としての熱媒体ー冷媒熱交換器 122と、膨張機構 123と、熱源側熱交
124とを含む蒸気圧縮式の冷媒回路 120を有しており、熱媒体 冷媒熱交換 器 122において建物 Uの屋内の暖房に使用される熱媒体を加熱することが可能であ る。
[0024] 圧縮機 121は、電動機等の駆動機構によって回転駆動されて、低圧の冷媒を圧縮 して高温高圧の冷媒として吐出する圧縮機である。
膨張機構 123は、熱媒体ー冷媒熱交換器 122から流出する冷媒を減圧する電動 膨張弁である。
熱源側熱交翻 124は、膨張機構 123において減圧された冷媒を、熱源としての 水や屋外空気と熱交換させることによって蒸発させる熱交換器である。
熱媒体ー冷媒熱交換器 122は、圧縮機 121において圧縮され吐出された高温高 圧の冷媒と熱媒体回路 104内を循環する熱媒体とを熱交換させることによって、熱媒 体を加熱する熱交換器である。また、熱媒体ー冷媒熱交換器 122は、本実施形態に おいて、熱媒体と冷媒とが対向流になるように、熱媒体及び冷媒が流れる流路が形 成されている。
[0025] ここで、熱源ユニット 102の冷媒回路 120の作動冷媒としては、 HCFC冷媒、 HFC 冷媒、 HC冷媒ゃ COを使用することが可能であるが、本実施形態においては、臨界
2
温度の低い COが使用されており、圧縮機 121の吐出側の冷媒圧力が冷媒の臨界
2
圧力以上の超臨界冷凍サイクルが実現できるようになつている。この COを冷媒とし
2 て使用する超臨界冷凍サイクルでは、圧縮機 121の吐出側の冷媒圧力の上昇により 、圧縮機 121の吐出側の冷媒温度、すなわち、熱媒体ー冷媒熱交換器 122の冷媒 入口における冷媒温度を高くすることができるようになつている。また、熱媒体—冷媒 熱交 l22に流入する冷媒は、圧縮機 121で臨界圧力以上まで圧縮されている ため、熱媒体ー冷媒熱交換器 122において、超臨界状態の冷媒が熱媒体を加熱し ている。
<給気装置 >
給気装置 103は、建物 Uの屋内に屋外空気(図 1に OAとして図示)を供給する装 置であり、本実施形態において、主として、屋外から屋内に屋外空気を換気用空気と して給気する給気口(図示せず)と、屋内から屋外に屋内空気(図 1に RAとして図示 )を排気する排気口(図示せず)と、排気口に設けられ屋内から屋外に屋内空気の一 部を排出空気(図 1に EAとして図示)として排気する排気ファン 131とを有している。 そして、排気ファン 131を運転することによって、屋内の換気を行うことができるように なっている。尚、本実施形態においては、排気ファン 131を用いて屋内の換気を行つ ているが、例えば、給気口に給気ファンを設けることによって屋内の換気を行うように したり、排気ファン及び給気ファンの両方を設けることによって屋内の換気を行うよう にしてもよい。
<熱媒体回路 >
熱媒体回路 104は、熱媒体ー冷媒熱交換器 122において加熱された熱媒体の熱 を屋内に放熱する屋内暖房装置としてのラジエーター 141、フアンコンベクター 142 及び床暖房装置 143と、給気装置 103によって屋内に供給される換気用空気を熱媒 体ー冷媒熱交換器 122において加熱された熱媒体の熱により加熱する外気加熱用 熱交換装置 144とを有しており、ラジエーター 141、フアンコンベクター 142、床暖房 装置 143及び外気加熱用熱交換装置 144と熱媒体ー冷媒熱交換器 122との間で熱 媒体を循環させる回路である。 ラジエーター 141は、例えば、屋内に配置されており、主として熱媒体の熱を輻射 伝熱によって屋内に放熱する装置であり、本実施形態において、熱媒体が通過して 周囲の屋内空気と熱交換を行うラジエーター用熱交^^ 14 laを有している(ここで、 ラジエーター用熱交^^ 141aにおいて熱交換された直後の屋内空気を図 1に示さ れる SA1とする)。
[0027] フアンコンベクター 142は、例えば、屋内に配置されており、主として熱媒体の熱を 強制対流伝熱によって屋内に放熱する装置であり、本実施形態において、熱媒体が 通過して周囲の空気と熱交換を行うコンベクター用熱交^^ 142aと、コンベクター用 熱交換器 142aに屋内空気を供給しコンベクター用熱交換器 142aにおいて熱交換 された屋内空気を供給空気(図 1に SA1 'として図示)として屋内に供給するコンペク ター用ファン 142bとを有して!/、る。
床暖房装置 143は、例えば、建物 Uの床下に配置されており、主として熱媒体の熱 を床面に設けられた伝熱パネルを介して屋内に放熱する床暖房用配管 143aを有す る装置である。
外気加熱用熱交換装置 144は、例えば、屋外に配置されており、主として給気装 置 103によって屋内に供給される換気用空気を熱媒体の熱により加熱する外気加熱 用熱交換器 144aを有する装置である(ここで、外気加熱用熱交換器 144aにおいて 熱交換されて屋内に供給される供給空気を図 1に示される SA3とする)。
[0028] そして、熱媒体回路 104は、本実施形態において、熱媒体-冷媒熱交換器 122に おいて加熱された熱媒体が、ラジエーター 141のラジエーター用熱交^^ 141a、フ アンコンベクター 142のコンベクター用熱交^^ 142a、床暖房装置 143の床暖房用 配管 143a、外気加熱用熱交換装置 144の外気加熱用熱交換器 144aの順に供給さ れるように、熱媒体-冷媒熱交翻122に接続されている。より具体的にいえば、熱 媒体回路 104は、熱媒体ー冷媒熱交換器 122において冷媒と熱交換を行って加熱 された熱媒体が、熱媒体ー冷媒熱交換器 122の熱媒体出口からラジエーター用熱 交換器 141a、コンベクター用熱交換器 142a、床暖房用配管 143a、外気加熱用熱 交換器 144aの順に通過し、外気加熱用熱交換器 144aの熱媒体出口に接続された 熱媒体循環ポンプ 145によって熱媒体ー冷媒熱交換器 122の熱媒体入口に戻され るように直列に接続された単一の熱媒体回路を構成している。すなわち、熱媒体回 路 104は、最も高温の熱媒体を必要とするラジエーター用熱交翻141&から最も低 温の熱媒体でも利用可能な外気加熱用熱交換器 144aの順に接続されていること〖こ なる。
[0029] 熱媒体循環ポンプ 145は、外気加熱用熱交換器 144aの熱媒体出口と熱媒体 冷 媒熱交翻 122の熱媒体入口との間に接続されており、電動機等の駆動機構によつ て回転駆動されて、ラジエーター用熱交換器 141a、コンベクター用熱交換器 142a、 床暖房用配管 143a及び外気加熱用熱交換器 144aと、熱媒体ー冷媒熱交換器 12 2との間で、熱媒体を循環させるポンプである。
ここで、熱媒体回路 104内を流れる熱媒体としては、水やブラインを使用することが 可能である。熱媒体として水を使用する場合には、熱媒体回路 104を構成する機器 や配管として安価なものを使用することができるという利点がある。また、熱媒体として ブラインを使用する場合には、低外気温時であっても、外気加熱用熱交換装置 144 ( 具体的には、外気加熱用熱交換器 144a)において熱媒体が凍結しないようにするた めに、 0°C以下で凍結しない特性を有するものを用いることが望ましい。このようなブ ラインとして、例えば、塩化カルシウム水溶液、塩ィ匕ナトリウム水溶液や塩ィ匕マグネシ ゥム水溶液等がある。
[0030] (2)空気調和システムの動作
次に、本実施形態の空気調和システム 101の動作について、図 1〜図 4を用いて説 明する。ここで、図 2は、空気調和システム 101の動作を示す温度—エントロピ一線 図である。図 3は、空気調和システム 101の動作を示す圧力—ェンタルピー線図であ る。図 4は、空気調和システム 101の動作を示す空気線図である。
まず、熱媒体循環ポンプ 145を起動し、熱媒体回路 104内の熱媒体を循環する。 そして、熱源ユニット 102の圧縮機 121を起動する。すると、圧縮機 121に吸入され た低圧の冷媒(図 1〜図 3に示される点 Rc参照)は、圧縮機 121によって圧縮され吐 出されて高温高圧の冷媒となる(図 1〜図 3に示される点 Ri参照)。この高温高圧の 冷媒は、熱媒体ー冷媒熱交換器 122に流入して熱媒体を加熱し、自身は冷却され て低温高圧の冷媒となる(図 1〜図 3に示される点 Ro3参照)。この熱媒体 冷媒熱 交 l22において熱媒体の加熱により冷却された冷媒は、膨張機構 123において 減圧されて低温低圧の気液二相状態の冷媒となる(図 1〜図 3に示される点 Re3参 照)。この気液二相状態の冷媒は、熱源側熱交^^に 124おいて水や屋外空気等 の熱源によって加熱されて蒸発し低温低圧のガス冷媒となる(図 1〜図 3に示される 点 Rc参照)。そして、この低温低圧のガス冷媒は、再度、圧縮機 121に吸入される。
[0031] ここで、熱媒体回路 104を循環する熱媒体は、熱媒体ー冷媒熱交換器 122に熱媒 体入口力も流入し(図 1、図 2及び図 4に示される点 Wi3参照)、熱媒体—冷媒熱交 換器 122において、圧縮機 121によって圧縮され吐出された高温高圧の冷媒と熱交 換を行って加熱される(図 1、図 2及び図 4に示される点 Wo参照)。そして、熱媒体 冷媒熱交換器 122において加熱された高温の熱媒体は、ラジエーター 141のラジェ 一ター用熱交換器 141aに流入し、熱媒体の熱を屋内に放熱し (具体的には、ラジェ 一ター用熱交換器 141aの周囲の屋内空気を加熱し)、自身は冷却されて温度が低 くなる(例えば、図 2に示されるように、約 70°C力も約 65°Cまで低くなる)。このとき、屋 内空気(図 4に示される点 RA参照)は、ラジエーター用熱交換器 141aによって図 4 に示される点 SA1の状態まで加熱される。
[0032] 次に、ラジエーター用熱交^^ 141aから流出した熱媒体は、フアンコンベクター 1 42のコンベクター用熱交換器 142aに流入し、熱媒体の熱を屋内に放熱し (具体的 には、コンベクター用ファン 142bによって供給される屋内空気を加熱し)、自身は冷 却されて温度が低くなる(例えば、図 2に示されるように、約 65°C力も約 55°Cまで低く なる)。このとき、屋内空気(図 1に示される点 RA参照)は、コンベクター用熱交^^ 1 42aによって供給空気 SA1 ' (図 1参照)となって屋内に供給される。
次に、コンベクター用熱交換器 142aから流出した熱媒体は、床暖房装置 143の床 暖房用配管 143aに流入し、熱媒体の熱を屋内に放出し (具体的には、床暖房用配 管 143aによって床面を加熱し)、自身は冷却されて温度が低くなる(例えば、図 2に 示されるように、約 55°C力も約 40°Cまで低くなる)。
[0033] 次に、床暖房用配管 143aから流出した熱媒体は、外気加熱用熱交換装置 144の 外気加熱用熱交換器 144aに流入し、熱媒体の熱により給気装置 103によって屋内 に供給される換気用空気を加熱し、自身は冷却されて温度が低くなる (例えば、図 2 に示されるように、約 40°Cから約 5°Cまで低くなる)。このとき、換気用空気(図 4に示 される点 OA参照、約 10°C)は、外気加熱用熱交 144aによって図 4に示され る点 SA3の状態(図 4では、約 20°C)まで加熱される。一方、屋内空気 RAの温度は 、ラジエーター 141、フアンコンベクター 142及び床暖房装置 143を用いた暖房運転 によって、約 20°C (図 4に示される点 RA参照)まで加熱されている。このため、この外 気加熱用熱交換器 144aによって加熱された換気用空気が屋内に供給されて屋内 空気 RAと混合されても、屋内空気の温度変化はほとんど生じな 、ようになって!/、る。
[0034] そして、外気加熱用熱交換器 144aから流出した熱媒体は、熱媒体循環ポンプ 145 を通じて、再度、熱媒体ー冷媒熱交換器 122に流入する(図 1、図 2及び図 4に示さ れる点 Wi3参照)。
(3)空気調和システムの特徴
本実施形態の空気調和システム 101には、以下のような特徴がある。
(A)
従来の空気調和システム 901として、図 5に示されるように、本実施形態の空気調 和システム 101と同様の熱源ユニット 102と、給気装置 103と、ラジエーター 141、フ アンコンベクター 142及び熱媒体循環ポンプ 145を有する熱媒体回路 904とを備え たものがある。このような空気調和システム 901では、熱媒体回路 904が外気加熱用 熱交換装置 144を有していないため、屋内の暖房を行う際に、給気装置 103によつ て換気用空気(図 5に OAとして図示)がそのまま屋内に供給されることになる。このた め、屋内空気の温度は、図 6に示されるように、屋内空気(図 6に示される点 RA参照) と、換気用空気(図 6に示される点 OA参照)とが混合されて(図 6に示される点 MA参 照)、ラジエーター 141、フアンコンベクター 142及び床暖房装置 143を用いた暖房 運転によって加熱された屋内空気の温度よりも低い温度(図 4では、約 12°C)になつ てしまう。このため、屋内の換気のために屋内に供給される換気用空気によるコール ドドラフトが生じている。
[0035] しかし、本実施形態の空気調和システム 101では、外気加熱用熱交換装置 144を 備えているため、屋内の暖房を行う際に、図 4に示されるように、給気装置 103によつ て屋内に供給される換気用空気としての屋外空気 OAを加熱した後に、供給空気 S A3として屋内に供給することができるようになって 、るため、屋内の換気のために屋 内に供給される換気用空気によるコールドドラフトを防ぐことができて、屋内の快適性 を向上させることができる。
(B)
従来の空気調和システム 901では、熱媒体回路 904が床暖房装置 143及び外気 加熱用熱交換装置 144を有していないため、熱媒体—冷媒熱交換器 122において 冷媒と熱交換を行うことによって加熱された熱媒体は、図 2、図 3及び図 5に示される ように、点 Woの状態から点 Wilの状態に移行して、再び、熱媒体ー冷媒熱交換器 1 22に戻されるように熱媒体回路 104内を循環することになる。これに伴って、冷媒は 、図 2及び図 3に示されるように、圧縮機 121の吸入側における点 Rcの状態から点 W oに対応する点 Riの状態、点 Wilに対応する点 Rolの状態、点 Relの状態に順次移 行して、再び、圧縮機 121の吸入されるように冷媒回路 120内を循環することになる 。ここで、従来の空気調和システム 901における熱源ユニット 102の COP (蒸発側基 準)は、図 3に示されるように、点 Rc→点 Ri→点 Rol→点 Rel→点 Rcの冷凍サイク ルにおける蒸発側のェンタルピー差 Δ hiの値と圧縮機 121における消費動力に相 当するェンタルピー差 Δ heの値とを除算した値( = Δ hlZ Δ he)である。
一方、本実施形態の空気調和システム 101では、熱媒体回路 104が床暖房装置 1 43及び外気加熱用熱交換装置 144を有しており、しかも、熱媒体ー冷媒熱交換器 1 22において加熱された熱媒体がラジエーター 141、フアンコンベクター 142、床暖房 装置 143、外気加熱用熱交換装置 144の順に供給されるように、熱媒体 冷媒熱交 122に接続されているため、熱媒体ー冷媒熱交換器 122において冷媒と熱交 換を行うことによって加熱された熱媒体は、図 1、図 2及び図 3に示されるように、点 W oの状態力ゝら点 Wi3の状態に移行して、再び、熱媒体ー冷媒熱交換器 122に戻され るように熱媒体回路 104内を循環することになる。これに伴って、冷媒は、図 2及び図 3に示されるように、圧縮機 121の吸入側における点 Rcの状態から点 Woに対応する 点 Riの状態、点 Wi3に対応する点 Ro3の状態、点 Re3の状態に順次移行して、再び 、圧縮機 121の吸入されるように冷媒回路 120内を循環することになる。このため、ラ ジエーター 141、フアンコンベクター 142及び床暖房装置 143においては、熱媒体 冷媒熱交換器 122において加熱された直後の高温の熱媒体の熱を利用することが でき、外気加熱用熱交換装置 144においては、ラジエーター 141、フアンコンベクタ 一 142及び床暖房装置 143において屋内に熱が放熱されて冷却された後(図 1及び 図 2に示される点 Wi2参照)の熱媒体の熱を利用することができる。ここで、給気装置 103によって屋内に供給される換気用空気(図 1に OAとして図示)は、屋内空気(図 1に RAとして図示)の温度よりも低いため、ラジエーター 141、フアンコンベクター 14 2及び床暖房装置 143において屋内に熱が放熱されて冷却された後の熱媒体を利 用して加熱することが可能である。そして、外気加熱用熱交換装置 144において屋 内に供給される換気用空気の加熱に使用された熱媒体は、換気用空気の加熱によ つてさらに冷却された後(図 1及び図 2に示される点 Wi3参照)に、熱媒体 冷媒熱 交換器 122に戻される。このように、空気調和システム 101では、ラジエーター 141、 フアンコンベクター 142及び床暖房装置 143において放熱されて冷却された熱媒体 を、外気加熱用熱交換装置 144に供給して、屋内に供給される換気用空気を加熱 するのに使用しているため、空気調和システム 901に比べて、熱媒体—冷媒熱交換 器 122の出入口における温度差 (すなわち点 Woの状態における熱媒体の温度と点 Wi3の状態における熱媒体の温度との温度差)を大きくすることができるようになる。 これにより、本実施形態の空気調和システム 101における熱源ユニット 102の COP ( 蒸発側基準)は、図 3に示されるように、点 Rc→点 Ri→点 Ro3→点 Re3→点 Rcの冷 凍サイクルにおける蒸発側のェンタルピー差 Δ h3の値と圧縮機 121における消費動 力に相当するェンタルピー差 Δ heの値とを除算した値(= A h3/ A hc)になるため 、従来の外気加熱用熱交換装置 144を備えて 、な 、空気調和システム 901に比べ て COPが向上している。特に、本実施形態の空気調和システム 101においては、外 気加熱用熱交換装置 144に加えて床暖房装置 143を有して ヽるため、従来の空気 調和システム 901に比べて、熱媒体ー冷媒熱交換器 122の出入口における温度差 や COPがさらに大きくなつている。
(C)
本実施形態の空気調和システム 101において、熱媒体回路 104内を流れる熱媒体 として水を使用する場合には、安価に熱媒体回路 104を構成することができる。また 、熱媒体回路 104内を流れる熱媒体として 0°C以下で凍結しないブラインを使用する 場合には、低外気温時であっても、外部加熱用熱交換装置 144において熱媒体が 凍結してしまうおそれがなくなり、外部加熱用熱交換装置 144を用いて、給気装置 1 03によって屋内に供給される換気用空気の加熱を行う際の信頼性を高めることがで きる。
(D)
本実施形態の空気調和システム 101では、熱源ユニット 102の蒸気圧縮式の冷媒 回路 120内を流れる冷媒として COを使用しているため、圧縮機 121の吐出側にお
2
ける冷媒温度を高くすることができてラジエーター 141、フアンコンベクター 142、床 暖房装置 143及び外気加熱用熱交換装置 144にお ヽて利用可能な温度レベルを 高くすることができる。これにより、快適な屋内の暖房が実現されている。
(4)変形例 1
上述の空気調和システム 101において、熱媒体回路 104が、ラジエーター 141、フ アンコンベクター 142、床暖房装置 143及び外気加熱用熱交換装置 144の少なくと も 1つをバイパスするバイパス熱媒体回路をさらに有していてもよい。例えば、図 7に 示されるようなフアンコンベクター 142を有しない熱媒体回路 104において、ラジェ一 ター 141、床暖房装置 143及び外気加熱用熱交換装置 144のそれぞれにバイノ ス 熱媒体回路 151、 153、 154を設けるようにしてもよい。これにより、必要に応じて、ラ ジエーター 141、床暖房装置 143及び外気加熱用熱交換装置 144の一部のみに熱 媒体を供給することができるようになる。
そして、これらのノ ィパス熱媒体回路 151、 153、 154には、熱媒体流量調節機構 としての電磁弁 151a、電動弁 153a、電磁弁 154aがそれぞれ設けられている。これ により、バイパス熱媒体回路 151、 154については、各バイパス熱媒体回路 151、 15 4を流れる熱媒体を必要に応じて遮断することができるようになり、ラジエーター 141 及び外気加熱用熱交換装置 144に供給される熱媒体の流量を調節することができる 。また、バイパス熱媒体回路 153については、バイパス熱媒体回路 153を流れる熱媒 体の流量を調節することができるようになり、床暖房装置 143に供給される熱媒体の 流量を高 、精度で調節することができる。 [0039] 尚、バイパス熱媒体回路は、上述のように、ラジエーター 141、床暖房装置 143及 び外気加熱用熱交換装置 144のそれぞれに設けてもよいし、ラジエーター 141、床 暖房装置 143及び外気加熱用熱交換装置 144の一部のみに設けてもよいし、又は、 ラジエーター 141、床暖房装置 143及び外気加熱用熱交換装置 144のいくつかをま とめてバイパスできるように設けてもよい。また、バイパス熱媒体回路に設ける弁の種 類については、各バイパス熱媒体回路に必要とされる熱媒体の流量調節の精度等 に応じて選択することが可能である。
(5)変形例 2
上述の空気調和システム 101において、ラジエーター 141、フアンコンベクター 142 、床暖房装置 143及び外気加熱用熱交換装置 144の一部が、熱媒体回路 104を介 さずに冷媒回路 120内を流れる冷媒を利用するものであってもよい。例えば、図 8に 示されるようなフアンコンベクター 142を有しない空気調和システム 101において、床 暖房装置 143及び外気加熱用熱交換装置 144については熱媒体回路 104内を循 環する熱媒体を介して熱源ユニット 102の冷媒回路 120内を流れる冷媒の熱を利用 して 、る力 ラジエーター 141については圧縮機 121で圧縮され吐出された高温高 圧の冷媒をラジエーター 141のラジエーター用熱交換器 141aに流入させて冷媒の 熱を屋内に直接放熱するようにしてもよい。これにより、熱媒体回路 104の簡素化を 図ることができる。
[0040] 尚、ラジエーター 141以外の床暖房装置 143や外気加熱用熱交換装置 144につ いても、冷媒回路 120内を流れる冷媒を床暖房用配管 143aや外気加熱用熱交換 器 144aに流入させて冷媒の熱を利用するようにしてもよい。また、本変形例の空気 調和システム 101において、変形例 1のバイノス熱媒体回路を設けるようにしてもよ い。
(6)変形例 3
上述の空気調和システム 101において、熱媒体回路 104に熱媒体貯留タンクを設 けるようにしてもよい。例えば、図 9に示されるような変形例 1と同様のバイパス熱媒体 回路 151、 153、 154を有する空気調和システム 101において、熱媒体循環ポンプ 1 45の吸込側に熱媒体貯留タンク 161を設けるようにしてもよい。これにより、熱媒体回 路 104内を循環する熱媒体の温度変化に伴う体積膨張により熱媒体回路 104を構 成する機器が破損する等の不具合を防ぐことができる。また、熱媒体回路 104が保有 する熱媒体の量が増加することで熱媒体回路 104全体の熱容量が大きくなり、ラジェ 一ター 141、床暖房装置 143及び外気加熱用熱交換装置 144に供給される熱媒体 の温度や熱媒体ー冷媒熱交換器 122に戻される熱媒体の温度が安定するため、熱 源ユニット 102及び熱媒体回路 104の制御性の改善を図ることができる。
[0041] (7)変形例 4
上述の空気調和システム 101において、熱媒体回路 104が、ラジエーター 141、フ アンコンベクター 142、床暖房装置 143及び外気加熱用熱交換装置 144の少なくと も 1つと熱媒体ー冷媒熱交換器 122との間で独立して熱媒体を循環させる複数の分 割熱媒体回路から構成されて ヽてもよ ヽ。
例えば、図 10に示されるようなフアンコンベクター 142を有しない空気調和システム 101において、熱媒体回路 104が、ラジエーター 141と熱媒体-冷媒熱交換器 122 との間で独立して熱媒体を循環させる第 1分割熱媒体回路 104aと、床暖房装置 143 と熱媒体ー冷媒熱交換器 122との間で独立して熱媒体を循環させる第 2分割熱媒体 回路 104bと、外気加熱用熱交換装置 144と熱媒体ー冷媒熱交換器 122との間で独 立して熱媒体を循環させる第 3分割熱媒体回路 104cとから構成するようにしてもよい 。ここで、分割熱媒体回路 104a、 104b, 104cは、熱媒体循環ポンプ 145a、 145b, 145cをそれぞれ有している。これにより、必要に応じて、ラジエーター 141、床暖房 装置 143及び外気加熱用熱交換装置 144の一部のみに熱媒体を供給することがで さるようになる。
[0042] し力も、第 2分割熱媒体回路 104bは、床暖房装置 143に供給される熱媒体の温度 力 Sラジエーター 141で使用された後の熱媒体の温度以下になるように、熱媒体-冷 媒熱交換器 122に接続されており、第 3分割熱媒体回路 104cは、外気加熱用熱交 換装置 144に供給される熱媒体の温度が床暖房装置 143で使用された後の熱媒体 の温度以下になるように、熱媒体—冷媒熱交換器 122に接続されている。これにより 、ラジエーター 141においては、熱媒体—冷媒熱交換器 122において圧縮機 121に おいて圧縮され吐出された冷媒(図 2、図 3及び図 10に示される点 Ri参照)によって 加熱された直後の熱媒体の熱を利用することができ(図 2、図 3及び図 10に示される 点 Wo及び点 Wil参照)、床暖房装置 143においては、熱媒体ー冷媒熱交換器 122 において第 1分割熱媒体回路 104aを流れる熱媒体と熱交換を行った後の冷媒 (図 2 、図 3及び図 10に示される点 Rol参照)によって加熱されたラジエーター 141で使用 された後の熱媒体の温度以下の熱媒体の熱を利用することができ(図 2、図 3及び図 10に示される点 Wil及び点 Wi2参照)、外気加熱用熱交換装置 144においては、 熱媒体ー冷媒熱交換器 122において第 2分割熱媒体回路 104bを流れる熱媒体と 熱交換を行った後の冷媒(図 2、図 3及び図 10に示される点 Ro2参照)によって加熱 された床暖房装置 143で使用された後の熱媒体の温度以下の熱媒体の熱を利用す ることができるようになつている(図 2、図 3及び図 10に示される点 Wi2及び点 Wi3参 照)。これに伴って、冷媒は、図 2及び図 3に示されるように、圧縮機 121の吸入側に おける点 Rcの状態から点 Woに対応する点 Riの状態、点 Wi3に対応する点 Ro3の 状態、点 Re3の状態に順次移行して、再び、圧縮機 121の吸入されるように冷媒回 路 120内を循環することになる。
[0043] このように、本変形例の空気調和システム 101においては、ラジエーター 141や床 暖房装置 143において放熱されて冷却された熱媒体の温度以下の熱媒体を、外気 加熱用熱交換装置 144に供給して、屋内に供給される換気用空気を加熱するのに 使用しているため、結果的に、上述の実施形態及び変形例にかかる空気調和システ ムと同様に、熱媒体ー冷媒熱交換器 122の出入口における温度差を大きくすること ができるようになり、熱源ユニット 102の COPを向上させることができる。
(8)変形例 5
上述の変形例 4と同様の空気調和システム 101にお 、て、図 11に示されるように、 熱媒体ー冷媒熱交換器 122が、分割熱媒体回路 104a、 104b, 104cに対応するよ うに分割された分割利用側熱交 として 3つの分割熱媒体—冷媒熱交 122& 、 122b, 122c力ら構成されて!ヽてもよ!ヽ。
[0044] この場合においては、ラジエーター 141においては、第 1分割熱媒体 冷媒熱交 l22aにおいて圧縮機 121において圧縮され吐出された冷媒(図 2、図 3及び図 11に示される点 Ri参照)によって加熱された直後の熱媒体の熱を利用することがで き(図 2、図 3及び図 11に示される点 Wo及び点 Wil参照)、床暖房装置 143におい ては、第 1分割熱媒体-冷媒熱交翻 122aにおいて第 1分割熱媒体回路 104aを 流れる熱媒体と熱交換を行った後の冷媒(図 2、図 3及び図 11に示される点 Rol参 照)によって加熱されたラジエーター 141で使用された後の熱媒体の温度以下の熱 媒体の熱を利用することができ(図 2、図 3及び図 11に示される点 Wil及び点 Wi2参 照)、外気加熱用熱交換装置 144においては、第 2分割熱媒体-冷媒熱交換器 122 bにおいて第 2分割熱媒体回路 104bを流れる熱媒体と熱交換を行った後の冷媒 (図 2、図 3及び図 11に示される点 Ro2参照)によって加熱された床暖房装置 143で使 用された後の熱媒体の温度以下の熱媒体の熱を利用することができるようになって いる(図 2、図 3及び図 11に示される点 Wi2及び点 Wi3参照)。これに伴って、冷媒は 、図 2及び図 3に示されるように、圧縮機 121の吸入側における点 Rcの状態から点 W oに対応する点 Riの状態、点 Wilに対応する点 Rolの状態、点 Wi2に対応する点 R o2の状態、点 Wi3に対応する点 Ro3の状態、点 Re3の状態に順次移行して、再び、 圧縮機 121の吸入されるように冷媒回路 120内を循環することになる。
[0045] (9)変形例 6
上述の変形例 5の空気調和システム 101においては、熱媒体回路 104がラジェ一 ター 141、床暖房装置 143及び外気加熱用熱交換装置 144のそれぞれに対応する 分割熱媒体回路 104a、 104b, 104cに分割されており、熱媒体ー冷媒熱交換器 12 2についても分割熱媒体回路 104a、 104b, 104cに対応する分割熱媒体 冷媒熱 交 122a、 122b, 122cに分割されている力 これに限定されず、例えば、図 12 に示されるようなフアンコンベクター 142を有しな!/、空気調和システム 101にお!/、て、 熱媒体回路 104をラジエーター 141専用の第 1熱媒体循環ポンプ 145aを含む第 1 分割熱媒体回路 104aと床暖房装置 143及び外気加熱用熱交換装置 144に共通の 第 2熱媒体循環ポンプ 145dを含む第 2分割熱媒体回路 104dとに分割するとともに、 熱媒体ー冷媒熱交換器 122をラジエーター 141専用の第 1分割熱媒体 冷媒熱交 翻 122aと床暖房装置 143及び外気加熱用熱交換装置 144に共通の第 2分割熱 媒体—冷媒熱交翻 122dとに分割するようにしてもよい。
[0046] (10)変形例 7 上述の変形例 5、 6の空気調和システム 101において、冷媒回路 120が、分割熱媒 体-冷媒熱交翻をバイパスする少なくとも 1つのバイパス冷媒回路をさらに有して いてもよい。例えば、図 13に示されるような変形例 5と同様の分割熱媒体 冷媒熱交
Figure imgf000027_0001
122b, 122cを有する冷媒回路 120において、第 1分割熱媒体—冷媒 熱交^^ 122aにバイパス冷媒回路 171を設けるようにしてもよい。これにより、必要 に応じて、分割熱媒体ー冷媒熱交換器 122b、 122cのみに冷媒を供給することがで さるようになる。
そして、バイパス冷媒回路 171には、熱媒体流量調節機構としての電磁弁 171aが 設けられている。これにより、バイパス冷媒回路 171については、各バイパス熱媒体 回路 171を流れる熱媒体を必要に応じて遮断することができるようになり、分割熱媒 体ー冷媒熱交換器 122aに供給される冷媒の流量を調節することができる。
尚、バイパス冷媒回路は、上述のように、第 1分割熱媒体-冷媒熱交換器 122aの み設けてもよいし、分割熱媒体ー冷媒熱交換器 122a、 122b, 122cのそれぞれに 設けてもよいし、又は、分割熱媒体—冷媒熱交換器 122a、 122b, 122cのいくつか をまとめてバイパスできるように設けてもよい。また、バイパス冷媒回路に設ける弁の 種類については、各バイパス冷媒回路に必要とされる熱媒体の流量調節の精度等 に応じて選択することが可能であり、例えば、電磁弁の代わりに電動弁を使用するこ とによって、バイパス冷媒回路に供給される冷媒の流量を高い精度で調節することが できる。
(11)変形例 8
上述の変形例 5〜7の空気調和システム 101において、ラジエーター 141、ファンコ ンベクター 142、床暖房装置 143及び外気加熱用熱交換装置 144の一部が、熱媒 体回路 104を介さずに冷媒回路 120内を流れる冷媒を利用するものであってもよい 。例えば、図 14に示されるような変形例 5と同様のフアンコンベクター 142を有しない 空気調和システム 101において、床暖房装置 143及び外気加熱用熱交換装置 144 については分割熱媒体回路 104b、 104c内を循環する熱媒体を介して熱源ユニット 102の冷媒回路 120内を流れる冷媒の熱を利用している力 ラジエーター 141につ いては圧縮機 121で圧縮され吐出された高温高圧の冷媒をラジエーター 141のラジ エーター用熱交換器 141aに流入させて冷媒の熱を屋内に直接放熱するようにして もよい。これにより、熱媒体回路 104の簡素化を図ることができる。
[0048] 尚、ラジエーター 141以外の床暖房装置 143や外気加熱用熱交換装置 144につ いても、冷媒回路 120内を流れる冷媒を床暖房用配管 143aや外気加熱用熱交換 器 144aに流入させて冷媒の熱を利用するようにしてもよい。
(12)変形例 9
上述の変形例 5〜7の空気調和システム 101において、熱媒体回路 104に熱媒体 貯留タンクを設けるようにしてもよい。例えば、図 15に示されるような変形例 5と同様 の分割熱媒体回路 104a、 104b, 104cを有する空気調和システム 101において、 熱媒体循環ポンプ 145a、 145b, 145cの吸込側に熱媒体貯留タンク 161a、 161b, 161cをそれぞれ設けるようにしてもよい。これにより、熱媒体回路 104内を循環する 熱媒体の温度変化に伴う体積膨張により分割熱媒体回路 104a、 104b, 104cを構 成する機器が破損する等の不具合を防ぐことができる。また、分割熱媒体回路 104a 、 104b, 104cが保有する熱媒体の量が増加することで各分割熱媒体回路 104a、 1 04b、 104cの熱容量が大きくなり、ラジエーター 141、床暖房装置 143及び外気カロ 熱用熱交換装置 144に供給される熱媒体の温度や分割熱媒体ー冷媒熱交換器 12 2a、 122b, 122cに戻される熱媒体の温度が安定するため、熱源ユニット 102及び 分割熱媒体回路 104a、 104b, 104cの制御性の改善を図ることができる。
[0049] (13)変形例 10
上述の実施形態及び変形例の空気調和システム 101にお 、ては、外気加熱用熱 交換装置 144を備えているため、屋内の換気のために屋内に供給される換気用空 気によるコールドドラフトを防ぐことができるようになっており、屋内の快適性の向上が 図られている。しかし、換気用空気の絶対湿度が屋内空気の絶対湿度よりも低い場 合には、換気用空気の供給により、屋内が乾燥してしまうことがある。このため、本変 形例では、上述の実施形態及び変形例の空気調和システム 101において、外気カロ 熱用熱交換装置 144によって加熱されて屋内に供給される換気用空気の加湿を行う 加湿装置をさらに設けて 、る。
例えば、図 16に示されるような図 1と同様の空気調和システム 101において、外気 加熱用熱交換装置 144によって加熱されて屋内に供給される換気用空気に水を噴 霧するスプレーノズル 182aを有する加湿装置 182と、加湿装置 182のスプレーノズ ル 182aに水を供給する給水配管 181とを設けることができる。
[0050] この場合にお 、て、外気加熱用熱交換装置 144にお 、て熱媒体との熱交換により 加熱された換気用空気(図 16に SA3として図示)は、屋内に供給される際に、加湿 装置 182に導入されて、加湿装置 182のスプレーノズル 182aから噴霧された水によ つて加湿された後に屋内に供給されることになる(図 16に SA3 'として図示)。これに より、本変形例の空気調和システム 101においては、換気用空気の加湿を行うことが できるため、換気用空気の絶対湿度が屋内空気の絶対湿度よりも低い場合であって も、換気用空気を屋内に供給することにより屋内が乾燥するのを防ぐことができる。 ところで、加湿装置 182によって加湿された後の換気用空気の温度は、スプレーノ ズル 182aから噴霧された水の蒸発により、外気加熱用熱交換装置 144においてカロ 熱された後の温度に比べて低くなつてしまう。しかし、本変形例の空気調和システム 1 01では、加湿装置 182における水の蒸発を考慮して外気加熱用熱交換装置 144に おける換気用空気の加熱量を大きくすることよって、例えば、図 17に示されるように、 換気用空気(図 17に SA3として図示)を、加湿装置 182が設けられていない図 1の空 気調和システムにおける換気用空気(図 4に SA3として図示)の温度(図 4では、約 2 0°C)よりも高い温度(図 17では、約 30°C)まで、外気加熱用熱交換装置 144によつ て加熱することによって、加湿装置 182における水の蒸発により換気用空気の温度 が低くなつても、屋内に供給される換気用空気(図 17に SA3'として図示)の温度は、 屋内空気(図 17に RAとして図示)の温度に近い温度(図 17では、約 20°C)となる。し 力も、換気用空気 SA3'の絶対湿度も屋内空気 RAの絶対湿度(図 17では、相対湿 度 50%に相当)とほぼ同じである。このため、本変形例の空気調和システム 101では 、外気加熱用熱交換装置 144及び加湿装置 182によって、屋内空気に比べて低温 · 低湿度の換気用空気を、屋内空気と同じ温度及び湿度の状態まで加熱及び加湿を 行った後に、屋内に供給することができるようになり、屋内の快適性の向上をさらに図 ることができるようになって!/、る。
[0051] 尚、加湿装置として、スプレーノズルの代わりに、エアワッシャーを用いてもよい。 (14)変形例 11
上述の変形例 10の空気調和システム 101においては、外気加熱用熱交換装置 14 4によって加熱されて屋内に供給される換気用空気の加湿を行う加湿装置としてスプ レーノズルやエアワッシャーを用いたもの採用した力 これに限定されず、水蒸気を 透過する性質を有する透湿膜を用いたもの採用してもよい。例えば、図 18に示され るようなフアンコンベクター 142を有しな!/、空気調和システム 101にお!/、て、複数のチ ユーブ形状の透湿膜を有する透湿膜モジュール 183aを備えた加湿装置 183と、カロ 湿装置 183の透湿膜モジュール 183aに水を供給する給水配管 181とを設けるように してもよい。ここで、透湿膜モジュール 183aには、外気加熱用熱交換装置 144によ つて加熱されて屋内に供給される換気用空気が透湿膜の外部を通過する流路が設 けられている。また、透湿膜の内部には、透湿膜モジュール 183aに供給された水が 導入されるようになっており、透湿膜に供給される水を換気用空気に透湿膜を介して 接触させること〖こよって、換気用空気を加湿することが可能になっている。透湿膜とし ては、ポリテトラフルォロエチレン (PTFE)等を使用することが可能である。
[0052] この場合においても、加湿装置 183の透湿膜モジュール 183aの透湿膜に供給さ れる水を換気用空気に透湿膜を介して接触させることによって、換気用空気を加湿 することが可能であるため、変形例 10と同様に、換気用空気の絶対湿度が屋内空気 の絶対湿度よりも低い場合であっても、換気用空気を屋内に供給することにより屋内 が乾燥するのを防ぐことができる。
しかも、本変形例の空気調和システム 101では、加湿装置 183における水の蒸発 を考慮して外気加熱用熱交換装置 144における換気用空気の加熱量を大きくするこ とよって、変形例 10と同様に、屋内空気に比べて低温,低湿度の換気用空気を、屋 内空気と同じ温度及び湿度の状態まで加熱及び加湿を行った後に、屋内に供給す ることができるようになるため、屋内の快適性の向上をさらに図ることができるようにな つている。
[0053] (15)変形例 12
上述の変形例 10、 11の空気調和システム 101においては、給水配管 181を通じて 加湿装置に水が供給される型式の、いわゆる給水式の加湿装置が採用されているが 、これに限定されず、水分を吸湿することが可能、かつ、吸湿した水分を加熱により 脱離させることが可能な吸湿液を用いたものを採用してもよい。
例えば、図 19に示されるようなフアンコンベクター 142を有しない空気調和システム 101において、複数のチューブ形状の透湿膜を有する第 1及び第 2透湿膜モジユー ル 184a、 184bと、第 1透湿膜モジュール 184aと第 2透湿膜モジュール 184bとの間 で吸湿液を循環させる吸湿液循環ポンプ 184cとを備えた加湿装置 184を備えて ヽ てもよい。
[0054] より具体的には、第 1透湿膜モジュール 184aには、外気加熱用熱交換装置 144〖こ よって加熱されて屋内に供給される換気用空気が透湿膜の外部を通過する流路が 設けられている。また、第 1透湿膜モジュール 184aの透湿膜の内部には、吸湿液循 環ポンプ 184cによって循環される吸湿液が導入されるようになっており、透湿膜に供 給される吸湿液を換気用空気に透湿膜を介して接触させて、換気用空気を用いて水 分が吸湿された吸湿液を加熱して水分を換気用空気中に脱離させることによって、 換気用空気を加湿することが可能になっている。第 2透湿膜モジュール 184bには、 屋内から屋外に排出される排出空気が透湿膜の外部を通過する流路が設けられて いる。また、第 2透湿膜モジュール 184bの透湿膜の内部には、吸湿液循環ポンプ 18 4cによって循環される吸湿液が導入されるようになっており、透湿膜に供給される吸 湿液を排出空気に透湿膜を介して接触させて、排出空気中に含まれる水分を吸湿 液に吸湿させることが可能になっている。透湿膜としては、ポリテトラフルォロエチレン (PTFE)等を使用することが可能である。また、吸湿液としては、塩化リチウム水溶液 等を使用することが可能である。
[0055] そして、この加湿装置 184では、吸湿液循環ポンプ 184cによって吸湿液を第 2透 湿膜モジュール 184b、第 1透湿膜モジュール 184aの順に循環させる運転を行う。こ の状態において、第 2透湿膜モジュール 184bに排出空気を通過させると、第 2透湿 膜モジュール 184bの透湿膜を介して排出空気中に含まれる水分が吸湿液に吸収さ れる。この水分を含む吸湿液は、第 1透湿膜モジュール 184aに送られる。次に、第 1 透湿膜モジュール 184aに外気加熱用熱交換装置 144にお 、て加熱された換気用 空気を通過させると、第 2透湿膜モジュール 184bから第 1透湿膜モジュール 184aに 送られた吸湿液を、透湿膜を介して加熱することになり、この加熱された吸湿液から 吸湿膜を介して換気用空気中に水分を脱離させて、換気用空気を加湿し、屋内に供 給することができる。
[0056] このように、本変形例の空気調和システム 101では、吸湿液を用いた加湿装置 184 を備えて 、るため、換気用空気を用いて水分が吸湿された吸湿液を加熱して水分を 換気用空気中に脱離させることによって、換気用空気を加湿することが可能である。 また、空気調和システム 101では、吸湿液に吸湿される水分として、屋内から屋外に 排出される排出空気中に含まれる水分を利用しているため、加湿装置 184に水を供 給することなく換気用空気の加湿を行うことができる。
また、図 20に示されるように、加湿装置 184による湿度調節の範囲を拡大すること 等を目的として、第 2透湿膜モジュール 184bに、屋内から屋外へ排出される排出空 気(図 20の第 2透湿膜モジュール 184bの左側に RAとして図示)に換気用空気とは 別の屋外空気(図 20の第 2透湿膜モジュール 184bの左側に OAとして図示)をカロえ た混合空気を通過させて、第 2透湿膜モジュール 184bの透湿膜を介して吸湿液に 水分を吸収し、この水分を第 1透湿膜モジュール 184aにおいて、吸湿液を透湿膜を 介して換気用空気中に脱離させるようにしてもょ 、。
[0057] 尚、本変形例にお!ヽては、吸湿液を用いた加湿装置 184が、透湿膜を有する透湿 膜モジュール 184a、 184bを介して吸湿液と空気との間の水分の授受を行うように構 成されているが、これに限定されず、吸湿液と空気とが直接接触するように構成され ていてもよい。また、図 20に示される加湿装置 184では、第 2透湿膜モジュール 184 bに、屋内から屋外へ排出される排出空気及び換気用空気とは別の屋外空気の両 方を通過させるようにして 、るが、換気用空気とは別の屋外空気のみを通過させるよ うにしてもよい。
(16)変形例 13
上述の変形例 12の空気調和システム 101にお 、ては、無給水加湿が可能な加湿 装置として、水分を吸湿することが可能、かつ、吸湿した水分を加熱により脱離させる ことが可能な吸湿液を用いたものを採用しているが、水分を吸着することが可能、か つ、吸着した水分を加熱により脱離させることが可能な吸着剤を用いたものを採用し てもよい。
[0058] 例えば、図 21に示されるようなフアンコンベクター 142を有しない空気調和システム 101において、吸着剤を担持させたデシカントローター 185aを有する加湿装置 185 を備えていてもよい。
より具体的には、加湿装置 185には、外気加熱用熱交換装置 144によって加熱さ れて屋内に供給される換気用空気がデシカントローター 185aの一部を通過する流 路が設けられている。また、デシカントローター 185aの一部の他の部分に屋内から 屋外に排出される排出空気が通過する流路が設けられている。そして、デシカント口 一ター 185aは、電動機等の駆動機構により回転駆動することができるように構成され ており、デシカントローター 185aの各部に換気用空気及び排出空気を流すことがで きるようになつている。吸着剤としては、ゼォライト、シリカゲル、活性アルミナ等を使 用することが可能である。
[0059] そして、この加湿装置 185では、デシカントローター 185aの換気用空気を通過させ る部分を除く部分に排出空気を通過させると、排出空気中の水分がデシカントロータ 一 185aの吸着剤に吸着される。そして、デシカントローター 185aを回転させて、換 気用空気を通過させる流路に排出空気中の水分が吸着された部分を対応する位置 に移動させる。すると、排出空気中の水分が吸着されたデシカントローター 185aの 一部を換気用空気が通過するようになり、外気加熱用熱交換装置 144において加熱 された換気用空気によって、デシカントローター 185aの水分が吸着された部分を加 熱することになり、この加熱された吸着剤から換気用空気中に水分を脱離させて、換 気用空気を加湿し、屋内に供給することができる。このとき、デシカントローター 185a の回転によって、デシカントローター 185aの換気用空気を通過させる流路に対応す る位置にあったデシカントローター 185aの一部分は、デシカントローター 185aの排 出空気を通過させる流路に対応する位置に移動させられて、排出空気中の水分が 吸着することになる。この動作を繰り返すことによって、換気用空気の加湿を連続的 に行うことができる。
[0060] このように、本変形例の空気調和システム 101では、吸着剤を用いた加湿装置 185 を備えているため、換気用空気を用いて水分が吸着された吸着剤を加熱して水分を 換気用空気中に脱離させることによって、換気用空気を加湿することが可能である。 また、空気調和システム 101では、吸着剤に吸着される水分として、屋内から屋外に 排出される排出空気中に含まれる水分を利用しているため、加湿装置 185に水を供 給することなく換気用空気の加湿を行うことができる。
また、図 22に示されるように、加湿装置 185による湿度調節の範囲を拡大すること 等を目的として、デシカントローター 185aに、屋内から屋外へ排出される排出空気( 図 21のデシカントローター 185aの左側に RAとして図示)に換気用空気とは別の屋 外空気(図 21のデシカントローター 185aの左側に OAとして図示)をカ卩えた混合空 気を通過させて、デシカントローター 185aの吸着剤に水分を吸着し、換気用空気中 に脱離させるようにしてもよ 、。
[0061] 尚、図 22に示される加湿装置 185では、デシカントローター 185aに、屋内から屋 外へ排出される排出空気及び換気用空気とは別の屋外空気の両方を通過させるよう にして!/、るが、換気用空気とは別の屋外空気のみを通過させるようにしてもょ 、。
(17)他の実施形態
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、 これらの実施形態に限られるものではなぐ発明の要旨を逸脱しない範囲で変更可 能である。
例えば、上述の実施形態における空気調和システムでは、熱源ユニットとして暖房 専用の冷媒回路を有する熱源ユニットを採用しているが、冷房及び暖房を切り換えて 運転可能な熱源ユニットを採用してもよい。
産業上の利用可能性
[0062] 本発明を利用すれば、屋内の暖房を行うことが可能な空気調和システムにおいて、 屋内の換気のために屋内に供給される換気用空気によるコールドドラフトを防ぐこと ができる。

Claims

請求の範囲
[1] 屋内の暖房を行うことが可能な空気調和システムであって、
圧縮機(121)と、熱源側熱交換器 (124)と、膨張機構 (123)と、利用側熱交換器( 122)とを含む蒸気圧縮式の冷媒回路(120)を有し、前記利用側熱交換器において 屋内の暖房に使用される熱媒体を加熱することが可能な熱源ユニット(102)と、 屋内に屋外空気を換気用空気として供給する給気装置(103)と、
前記利用側熱交換器において加熱された熱媒体の熱を屋内に放熱する 1以上の 屋内暖房装置(141、 142、 143)と、前記換気用空気を前記利用側熱交換器にお いて加熱された熱媒体の熱により加熱する外気加熱用熱交換装置(144)とを有して おり、前記屋内暖房装置及び前記外気加熱用熱交換装置と前記利用側熱交換器と の間で熱媒体を循環させる熱媒体回路(104)と、
を備えた空気調和システム(101)。
[2] 前記熱媒体回路(104)は、前記利用側熱交換器 (122)において加熱された熱媒 体が、前記屋内暖房装置(141、 142、 143)、前記外気加熱用熱交換装置(144) の順に供給されるように、前記利用側熱交^^に接続されている、請求項 1に記載の 空気調和システム(101)。
[3] 前記熱媒体回路(104)は、前記屋内暖房装置(141、 142、 143)及び前記外気 加熱用熱交換装置(144)をバイパスする少なくとも 1つのバイパス熱媒体回路(151 、 153、 154)をさらに有している、請求項 2に記載の空気調和システム(101)。
[4] 前記バイパス熱媒体回路(151、 153、 154)は、熱媒体流量調節機構(151a、 15 3a、 154a)を有している、請求項 3に記載の空気調和システム(101)。
[5] 前記熱媒体回路(104)は、前記屋内暖房装置(141、 142、 143)及び前記外気 加熱用熱交換装置( 144)の少なくとも 1つと前記利用側熱交 ( 122)との間で独 立して熱媒体を循環させる複数の分割熱媒体回路(104a、 104b, 104c, 104d)か ら構成されて 、る、請求項 1に記載の空気調和システム(101)。
[6] 前記利用側熱交翻(122)は、前記複数の分割熱媒体回路(104a、 104b, 104 c、 104d)に対応するように分割された複数の分割利用側熱交換器(122a、 122b, 122c, 122d)力も構成されている、請求項 5に記載の空気調和システム(101)。
[7] 前記熱源ユニット(102)は、前記複数の分割利用側熱交換器(122a、 122b, 122 c、 122d)をバイノスする少なくとも 1つのバイノス冷媒回路(171)をさらに有してい る、請求項 6に記載の空気調和システム(101)。
[8] 前記バイパス冷媒回路(171)は、冷媒流量調節機構(171a)を有している、請求 項 7に記載の空気調和システム(101)。
[9] 前記複数の分割熱媒体回路(104a、 104b, 104c, 104d)は、前記外気加熱用熱 交換装置(144)に供給される熱媒体の温度が、前記屋内暖房装置(141、 142、 14 3)で使用された後の熱媒体の温度以下になるように、前記利用側熱交換器(122) に接続されて 、る、請求項 5〜8の 、ずれか〖こ記載の空気調和システム(101)。
[10] 前記屋内暖房装置(141、 142、 143)及び前記外気加熱用熱交換装置(144)の 一部は、前記熱媒体回路(104)を介さずに前記冷媒回路(120)内を流れる冷媒を 利用している、請求項 1〜9のいずれかに記載の空気調和システム(101)。
[11] 前記熱媒体回路(104)は、熱媒体貯留容器(161、 161a, 161b, 161c)を有して いる、請求項 1〜10のいずれかに記載の空気調和システム(101)。
[12] 前記外気加熱用熱交換装置(144)によって加熱されて屋内に供給される前記換 気用空気の加湿を行う加湿装置(182、 183、 184、 185)をさらに備えている、請求 項 1〜: L 1のいずれかに記載の空気調和システム(101)。
[13] 前記加湿装置(183、 184)は、水蒸気を透過させる透湿膜(183a、 184a)を有し ており、前記透湿膜に供給される水を前記換気用空気に前記透湿膜を介して接触さ せることによって、前記換気用空気を加湿することが可能である、請求項 12に記載の 空気調和システム(101)。
[14] 前記加湿装置(184)は、水分を吸湿することが可能、かつ、吸湿した水分を加熱 により脱離させることが可能な吸湿液を有しており、前記換気用空気を用いて水分が 吸湿された前記吸湿液を加熱して水分を前記換気用空気中に脱離させることによつ て、前記換気用空気を加湿することが可能である、請求項 12に記載の空気調和シス テム(101)。
[15] 前記加湿装置(184)は、屋内から屋外に排出される排出空気中に含まれる水分を 前記吸湿液に吸湿させて、前記換気用空気の加湿を行うために使用している、請求 項 14に記載の空気調和システム(101)。
[16] 前記加湿装置(184)は、前記換気用空気とは別の屋外空気中に含まれる水分を 前記吸湿液に吸湿させて、前記換気用空気の加湿を行うために使用している、請求 項 14に記載の空気調和システム(101)。
[17] 前記加湿装置(184)は、屋内から屋外に排出される排出空気及び前記換気用空 気とは別の屋外空気の混合空気中に含まれる水分を前記吸湿液に吸湿させて、前 記換気用空気の加湿を行うために使用して 、る、請求項 14に記載の空気調和シス テム(101)。
[18] 前記加湿装置(185)は、水分を吸着することが可能、かつ、吸着した水分を加熱 により脱離させることが可能な吸着剤(185a)を有しており、前記換気用空気を用い て水分が吸着された前記吸着剤を加熱して水分を前記換気用空気中に脱離させる ことによって、前記換気用空気を加湿することが可能である、請求項 12に記載の空 気調和システム(101)。
[19] 前記加湿装置(185)は、屋内から屋外に排出される排出空気中に含まれる水分を 前記吸着剤(185a)に吸着させて、前記換気用空気の加湿を行うために使用してい る、請求項 18に記載の空気調和システム(101)。
[20] 前記加湿装置(185)は、前記換気用空気とは別の屋外空気中に含まれる水分を 前記吸着剤(185a)に吸着させて、前記換気用空気の加湿を行うために使用してい る、請求項 18に記載の空気調和システム(101)。
[21] 前記加湿装置(185)は、屋内から屋外に排出される排出空気及び前記換気用空 気とは別の屋外空気の混合空気中に含まれる水分を前記吸着剤(185a)に吸着さ せて、前記換気用空気の加湿を行うために使用している、請求項 18に記載の空気 調和システム(101)。
[22] 前記熱媒体回路(104)内を流れる熱媒体は、水である、請求項 1〜21のいずれか に記載の空気調和システム(101)。
[23] 前記熱媒体回路(104)内を流れる熱媒体は、 0°C以下で凍結しないブラインである
、請求項 1〜21のいずれかに記載の空気調和システム(101)。
[24] 前記冷媒回路(104)内を流れる冷媒は、 COである、請求項 1〜23のいずれかに 記載の空気調和システム(101)。
PCT/JP2005/008190 2004-04-28 2005-04-28 空気調和システム WO2005106341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/578,987 US20080000243A1 (en) 2004-04-28 2005-04-28 Air Conditioning System
EP05736755.9A EP1746355B1 (en) 2004-04-28 2005-04-28 Air conditioner system
NO20065448A NO20065448L (no) 2004-04-28 2006-11-27 Luftkondisjoneringssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004134352A JP2005315516A (ja) 2004-04-28 2004-04-28 空気調和システム
JP2004-134352 2004-04-28

Publications (1)

Publication Number Publication Date
WO2005106341A1 true WO2005106341A1 (ja) 2005-11-10

Family

ID=35241760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008190 WO2005106341A1 (ja) 2004-04-28 2005-04-28 空気調和システム

Country Status (7)

Country Link
US (1) US20080000243A1 (ja)
EP (1) EP1746355B1 (ja)
JP (1) JP2005315516A (ja)
KR (1) KR100735990B1 (ja)
CN (3) CN100507382C (ja)
NO (1) NO20065448L (ja)
WO (1) WO2005106341A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813887A1 (en) * 2006-01-31 2007-08-01 Sanyo Electric Co., Ltd. Air conditioning device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281640A (ja) * 2008-05-21 2009-12-03 Daikin Ind Ltd 空調システム
JP2011127874A (ja) * 2009-12-21 2011-06-30 Kansai Electric Power Co Inc:The 床暖房システム
CN103153434A (zh) 2010-09-07 2013-06-12 戴斯分析公司 使用选择性传递膜的流体处理系统和方法
CN101968243B (zh) * 2010-09-21 2012-11-28 东南大学 同时制取双温度水的空气源热泵装置及驱动方法
CN102537470B (zh) * 2010-12-20 2014-03-19 杨伯钢 自控式双路直流低压电动温控阀
DE102012011519A1 (de) * 2012-06-08 2013-12-12 Yack SAS Klimaanlage
US9869476B1 (en) * 2015-06-03 2018-01-16 II Valdemar R. Losse Non-electric forced air heating and cooling apparatus
CN105509202A (zh) * 2016-01-22 2016-04-20 珠海格力电器股份有限公司 机房空调系统
US10655888B2 (en) * 2016-03-08 2020-05-19 Heatcraft Refrigeration Products Llc Modular rack for climate control system
JP7258143B2 (ja) * 2018-12-07 2023-04-14 ダイキン工業株式会社 空調装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531459Y2 (ja) * 1974-02-14 1980-07-26
JPS6291134U (ja) 1985-11-28 1987-06-11
JPH02225924A (ja) * 1989-02-28 1990-09-07 Hitachi Cable Ltd 床暖房併用蓄熱空調システム
JPH0351677A (ja) * 1989-07-19 1991-03-06 Mitsubishi Electric Corp ヒートポンプ式冷暖房給湯装置
JP2000257936A (ja) * 1999-03-09 2000-09-22 Daikin Ind Ltd 調湿換気装置
JP2000257912A (ja) * 1999-03-05 2000-09-22 Daikin Ind Ltd 吸着体及び空気調和装置
JP3119062B2 (ja) * 1993-12-29 2000-12-18 ダイキン工業株式会社 空気調和機
JP2001241693A (ja) * 2000-02-25 2001-09-07 Daikin Ind Ltd 空気調和装置
JP2003050050A (ja) 2001-08-03 2003-02-21 Denso Corp ヒートポンプ式給湯装置
JP2003050035A (ja) 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd 冷暖房装置
JP2003172523A (ja) 2001-09-28 2003-06-20 Mitsubishi Electric Corp ヒートポンプ床暖房空調装置
JP2004003801A (ja) * 2002-04-26 2004-01-08 Matsushita Electric Ind Co Ltd 二酸化炭素を冷媒として用いた冷凍装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1801371A (en) * 1929-03-13 1931-04-21 Earl E Snader Automatic temperature-controlled refrigerating system
US4289272A (en) * 1978-03-31 1981-09-15 Matsushita Electric Industrial Co., Ltd. Temperature control apparatus
DE2837248A1 (de) * 1978-08-25 1980-02-28 Hatz Motoren Heizungsanlage mit waermepumpe und zusatzheizung
JPS60178009A (ja) * 1984-02-25 1985-09-12 Color Toronitsuku Kk 合成樹脂乾燥用の高温除湿空気発生方法およびその装置
JPH05306849A (ja) * 1992-04-30 1993-11-19 Matsushita Refrig Co Ltd 多室冷暖房装置
KR0152291B1 (ko) * 1993-06-10 1998-11-02 김광호 벌마이어 히트펌프의 냉,난방장치
FI954953A (fi) * 1995-10-17 1997-04-18 Abb Installaatiot Oy Lämmösiirtoneste
US6026652A (en) 1996-10-18 2000-02-22 Sanyo Electric Co., Ltd. Air conditioning system having single bus line
JPH10197171A (ja) * 1996-12-27 1998-07-31 Daikin Ind Ltd 冷凍装置及びその製造方法
JP3514110B2 (ja) * 1998-05-01 2004-03-31 トヨタ自動車株式会社 エアコンシステムの運転制御方法
JP4066553B2 (ja) * 1999-03-17 2008-03-26 ダイキン工業株式会社 空気調和装置
KR100441008B1 (ko) 2001-12-05 2004-07-21 삼성전자주식회사 냉난방 공기조화시스템
KR100473823B1 (ko) * 2002-08-06 2005-03-08 삼성전자주식회사 냉수 및 온수 제조 장치를 구비한 공기 조화기
KR20040104300A (ko) * 2003-06-03 2004-12-10 삼성전자주식회사 공기조화시스템
KR100535687B1 (ko) 2003-12-09 2005-12-09 삼성전자주식회사 멀티형 공기조화시스템

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531459Y2 (ja) * 1974-02-14 1980-07-26
JPS6291134U (ja) 1985-11-28 1987-06-11
JPH02225924A (ja) * 1989-02-28 1990-09-07 Hitachi Cable Ltd 床暖房併用蓄熱空調システム
JPH0351677A (ja) * 1989-07-19 1991-03-06 Mitsubishi Electric Corp ヒートポンプ式冷暖房給湯装置
JP3119062B2 (ja) * 1993-12-29 2000-12-18 ダイキン工業株式会社 空気調和機
JP2000257912A (ja) * 1999-03-05 2000-09-22 Daikin Ind Ltd 吸着体及び空気調和装置
JP2000257936A (ja) * 1999-03-09 2000-09-22 Daikin Ind Ltd 調湿換気装置
JP2001241693A (ja) * 2000-02-25 2001-09-07 Daikin Ind Ltd 空気調和装置
JP2003050050A (ja) 2001-08-03 2003-02-21 Denso Corp ヒートポンプ式給湯装置
JP2003050035A (ja) 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd 冷暖房装置
JP2003172523A (ja) 2001-09-28 2003-06-20 Mitsubishi Electric Corp ヒートポンプ床暖房空調装置
JP2004003801A (ja) * 2002-04-26 2004-01-08 Matsushita Electric Ind Co Ltd 二酸化炭素を冷媒として用いた冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1746355A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813887A1 (en) * 2006-01-31 2007-08-01 Sanyo Electric Co., Ltd. Air conditioning device
US7716934B2 (en) 2006-01-31 2010-05-18 Sanyo Electric Co., Ltd. Air conditioning device

Also Published As

Publication number Publication date
CN1942719A (zh) 2007-04-04
CN101498485A (zh) 2009-08-05
US20080000243A1 (en) 2008-01-03
JP2005315516A (ja) 2005-11-10
KR20070003985A (ko) 2007-01-05
EP1746355A4 (en) 2009-12-02
NO20065448L (no) 2007-01-29
EP1746355A1 (en) 2007-01-24
CN100507382C (zh) 2009-07-01
KR100735990B1 (ko) 2007-07-06
EP1746355B1 (en) 2013-09-18
CN101498486A (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
WO2005106341A1 (ja) 空気調和システム
US10619867B2 (en) Methods and systems for mini-split liquid desiccant air conditioning
US7685835B2 (en) Air conditioning system
JP5822931B2 (ja) 調湿装置、空気調和システム及び調湿装置の制御方法
JP2017537293A (ja) 小型のスプリット型液体乾燥剤空調方法及びシステム
US20120031133A1 (en) Air conditioner
JP5868416B2 (ja) 冷凍空調装置及び調湿装置
KR100904592B1 (ko) 조습장치
JP2010151376A (ja) 空気調和装置、空調システム
JP2001241693A (ja) 空気調和装置
JP4683548B2 (ja) デシカント式換気装置
JP2002022291A (ja) 空気調和装置
JP2004020086A (ja) 除湿乾燥空調装置
JP2010175108A (ja) 調湿装置
JP4970084B2 (ja) 空気調和システム
JP2008304113A (ja) 調湿空調システム
JP2005164220A (ja) 空気調和装置
JP2006343020A (ja) 空調システム
JP4339149B2 (ja) 除湿空調装置
JP2024044236A (ja) 除菌機能付き除加湿装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067020100

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580011505.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11578987

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005736755

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020100

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005736755

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11578987

Country of ref document: US