WO2005106063A1 - Verfahren zur oberflächenbehandlung - Google Patents

Verfahren zur oberflächenbehandlung Download PDF

Info

Publication number
WO2005106063A1
WO2005106063A1 PCT/EP2005/051077 EP2005051077W WO2005106063A1 WO 2005106063 A1 WO2005106063 A1 WO 2005106063A1 EP 2005051077 W EP2005051077 W EP 2005051077W WO 2005106063 A1 WO2005106063 A1 WO 2005106063A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitriding
metallic surface
nitrocarburizing
subjected
plasma
Prior art date
Application number
PCT/EP2005/051077
Other languages
English (en)
French (fr)
Inventor
Rolf Zeller
Nils Lippmann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP05716985A priority Critical patent/EP1745158B1/de
Priority to DE502005010685T priority patent/DE502005010685D1/de
Publication of WO2005106063A1 publication Critical patent/WO2005106063A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks

Definitions

  • the invention relates to a method for treating a metallic surface and its use according to the preamble of the independent claims.
  • Nitriding creates hard surface layers, which increases the hardness, wear resistance and fatigue strength of the metallic surface.
  • a first possibility for nitriding metallic ear surfaces is to subject the surface to so-called gas nitriding.
  • gas nitriding Such a method can be found, for example, in DE 101 47205 Cl.
  • a workpiece is heated in a nitriding furnace to a temperature of around 400 ° C. This heating is preferably carried out under an ammonia atmosphere.
  • the workpiece is then heated to a nitriding temperature in a second step, which is approximately between 500 ° C and 600 ° C.
  • a nitriding temperature in a second step, which is approximately between 500 ° C and 600 ° C.
  • the actual nitriding of the workpiece takes place in an atmosphere of ammonia and an oxidizing agent, an atmosphere of ammonia and a carbon carrier or in a pure ammonia atmosphere.
  • Another possibility for nitriding metallic surfaces is the so-called plasma nitriding.
  • the workpiece is exposed to a gas mixture at an elevated temperature, the nitriding being supported by the action of a plasma.
  • a plasma nitriding Such a method can be found, for example, in DE 100 568 142 AI.
  • nitrided component surfaces can only be machined after a nitriding treatment.
  • partial heat treatment is often carried out during nitriding. Areas that are mechanically processed at a later point in time and thus should not be nitrided are locally covered. This takes place, for example, in gas nitriding by applying appropriate pastes beforehand, thereby preventing the nitrogen-containing atmosphere from interacting with the covered surface areas.
  • the surface areas that are not to be nitrided are masked, as a result of which the occurrence of a glow seam on the masked component surface is avoided and the generation of reactive nitrogen is thus prevented.
  • both methods for covering surface areas that are not to be nitrided are limited to small surface areas, and only areas with low geometric complexity can be effectively masked, particularly in the case of plasma nitriding.
  • a gas nitriding method is also known from US Pat. No. 5,399,207, in which, in order to improve the nitriding effect, the corresponding workpiece is subjected to a mechanical load in the form of a rubbing action of particles.
  • the object of the present invention is to provide a method for treating metallic surfaces, in which nitriding or nitrocarburizing of predetermined surface areas is prevented while a nitriding or nitrocarburizing method is being carried out.
  • the method according to the invention with the characterizing features of claim 1 has the advantage that certain areas can be easily and inexpensively nitriding surface can be effectively removed from the action of a nitriding or nitrocarburizing treatment, so that they are accessible for subsequent mechanical processing.
  • those areas of the metallic surface that are not to be nitrided or nitrocarburized are subjected to cold working before the nitriding or nitrocarburizing process is carried out.
  • the surface areas pretreated in this way can then be subjected to both gas and plasma nitriding without further covering.
  • This enables the partial treatment of component surfaces with high geometric complexity.
  • Another advantage is that cold forming can be easily automated and can therefore be carried out inexpensively. In addition, contamination of the components or furnace systems from paste residues is prevented.
  • FIG. 1 shows a flow diagram of the method according to the invention
  • FIG. 2 shows the hardness of a Vickers surface cold-deformed before the nitriding process over the distance of the measuring point from the building surface
  • FIG. 3 shows a comparison of the hardness of a Vickers surface that was not cold-formed before nitriding the distance of the measuring point from the building surface according to DE 100 56 842 AI and
  • FIG. 4 shows a comparison of the hardness of a Vickers surface that was not cold-formed before nitriding the distance of the measuring point from the building surface according to DE 100 56 842 AI and FIG. 4
  • FIG. 1 shows a flow diagram of the method according to the invention in accordance with a first exemplary embodiment.
  • the building block 10 is subjected to cold deformation 12 in some areas, whereby shot blasting, stamping or rolling can be carried out as cold deformation.
  • the building block 10 is subjected to cold deformation 12 in some areas, whereby shot blasting, stamping or rolling can be carried out as cold deformation.
  • Building surface 10a superficially the cold-formed areas 14.
  • the cold-forming process changes the crystalline structure of the steel so that nitrogen is not emitted.
  • the nitriding 16 of the building surface is carried out.
  • the resulting component 10b which is shown in the form of a longitudinal section along the line AA of the building menu 10a, has a nitrogen-containing diffusion layer 18, the previously cold-deformed regions 14 being resistant to an effect of the nitriding process and no nitrogen diffusion layer of any kind exhibit.
  • FIG. 2 A hardness distribution of the cold-formed areas 14 after the nitriding process is shown in FIG. 2. It can be seen that the measured hardness according to Vickers practically does not change regardless of the distance from the measuring point to the surface of the building. This is an indication that no nitrogen-containing diffusion layer has arisen in the area of the cold-formed areas 14 during the nitriding process.
  • the measured hardness is shown in FIG. 3 on a building surface which has been subjected to a nitriding process according to the prior art without prior cold working. It can be seen that the Vickers hardness increases significantly, in particular in an edge area of 0.1 mm on the surface of the building, and thus the existence of a nitrogen-containing diffusion layer can be concluded.
  • FIG. 4 a grinding of the building surface in the area of the cold-deformed surface areas 14 is further magnified after nitriding, wherein it can be seen that the building surface consists of a uniform material layer and there is no nitrogen-containing surface layer.
  • Nitriding the surface of the building board can be carried out, for example, by gas nitriding, the building board being exposed at higher temperatures to an atmosphere which contains nitrogen or a nitrogen-containing compound such as ammonia, and additionally oxygen-containing ones May contain compounds such as oxygen or water.
  • the gas nitriding can be carried out, for example, as can be seen in DE 10056842 AI.
  • the nitriding of the building surface is preferably carried out using a plasma nitriding process.
  • the nitriding process takes place at a negative pressure of 250 Pa in a gas atmosphere which contains 30 to 40 vol.% Nitrogen, 15 to 25 vol.% Hydrogen, 15 to 25 vol.% Argon and 25 to 35 vol.% Methane.
  • a temperature of 350 to 450 ° C is selected as the process temperature, the nitriding time is approximately 24 hours.
  • the inserted electrical voltage is between 400 and 600 volts, preferably a pulsed AC voltage is used which has a pulse / pause ratio of 1: 1 to 1: 3.
  • the nitriding process or the cold deformation can optionally be preceded by a heat treatment of the workpiece surface to be nitrided, which is referred to as so-called tempering.
  • the workpieces to be nitrided are subjected to a cleaning treatment, for example by treatment with alkaline-aqueous cleaning agents or alcohol-based cleaning agents.
  • fine cleaning of the workpiece surface can further be carried out by sputtering in a hydrogen or hydrogen-argon plasma before the actual plasma nitriding.
  • After-treatment of the nitrided or partially nitrided components can also follow the nitriding process.
  • This post-treatment can take the form of mechanical post-processing, for example by microstructuring the workpiece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Es wird ein Verfahren zur Behandlung einer metallischen Oberfläche (10), insbesondere eines Federstahldrahts zur Herstellung von Druckspiralfedern, beschrieben, wobei die metallische Oberfläche (10) einem Nitrier- oder einem Nitrocarburierverfahren unterzogen wird. Dabei werden diejenigen Bereiche (14) der metallischen Oberfläche, die nicht nitriert oder nitrocarburiert werden sollen, vor der Durchführung des Nitrier- oder Nitrocarburierverfahrens einer Kaltverformung unterzogen.

Description

Verfahren zur Oberflächenbehandlung
Die Erfindung bezieht sich auf ein Verfahren zur Behandlung einer metallischen Oberfläche und dessen Verwendung nach dem Oberbegriff der unabhängigen Ansprüche.
Stand der Technik
Es ist bekannt, metallische Oberflächen mittels Nitrier- oder Nitrocarburierverfahren zu härten. Die Härtung beruht auf einer Diffusion von Stickstoff beispielsweise in den Stahl der zu behandelnden metallischen Oberfläche. Dabei kommt es zur Einlagerung von
Stickstoff auf Zwischengitterplätze und Bildung von Nitriden sowie zur Stickstoffanlagerung an Carbide unter Bildung von Carbonitriden. Durch die Nitrierung werden harte Oberflächenschichten erzeugt, wodurch die Härte, der Verschleißwiderstand und die Dauerfestigkeit der metallischen Oberfläche erhöht werden.
Eine erste Mögüchkeit zur Nitrierung metallischer Ohrflächen besteht darin, die entsprechend Oberfläche einem sogenannten Gasnitrieren zu unterziehen. Ein derartiges Verfahren ist beispielsweise der DE 101 47205 Cl zu entnehmen. Dabei wird ein Werkstück in einem Nitrierofen in einem ersten Schritt auf eine Temperatur von etwa 400 °C erwärmt. Diese Erwärmung erfolgt vorzugsweise unter einer Ammoniakatmosphäre.
Danach wird das Werkstück in einem zweiten Schritt auf eine Nitriertemperatur erwärmt, die etwa zwischen 500 °C und 600 °C liegt. Das eigentliche Nitrieren des Werkstücks erfolgt in einer Atmosphäre aus Ammoniak und einem Oxidationsmittel, einer Atmosphäre aus Ammoniak und einem Kohlenstof-träger bzw. in einer reinen Ammoniakatmosphäre. Eine weitere Möglichkeit zur Nitrierung metallischer Oberflächen stellt die sogenannte Plasmarritrierung dar. Hierbei wird das Werkstück bei einer erhöhten Temperatur einem Gasgemisch ausgesetzt, wobei die Nitrierung durch Einwirkung eines Plasmas unterstützt wird. Ein solches Verfahren ist beispielsweise der DE 100 568 142 AI zu entnehmen.
Nitrierte Bauteiloberflächen sind jedoch aufgrund ihrer Schichtcharakteristik und Härte nach einer Nitrierbehandlung nur emgescbränkt mechanisch bearbeitbar. Zur Verbesserung der Verarbeitbarkeit wird beim Nitrieren häufig eine partielle Wärmebehandlung durchgeführt. Dabei werden Bereiche, die zu einem späteren Zeitpunkt mechanisch bearbeitet und somit nicht nitriert werden sollen, lokal abgedeckt. Dies erfolgt beispielsweise beim Gasnitrieren durch den vorherigen Auftrag entsprechender Pasten, wodurch eine Wechselwirkung der stickstoffhaltigen Atmosphäre mit den abgedeckten Oberflächenbereichen verhindert wird. Bei der Plasmamtrierung wird eine Maskierung der nicht zu nitrierenden Oberflächeribereiche vorgenommen, wodurch das Auftreten eines Glimmsaumes an der maskierten Bauteiloberfläche vermieden und somit die Erzeugung reaktiven Stickstoffs verhindert wird.
Beide Methoden zu Abdeckung nicht zu nitrierender Oberflächenbereiche sind jedoch auf kleine Oberflächenbereiche beschränkt und es können insbesondere beim Plasmanitrieren nur Bereiche mit geringer geometrischer Komplexität wirkungsvoll maskiert werden.
Aus der US 5, 399,207 ist weiterhin ein Gasnitrierverfahren bekannt, bei dem zur Verbesserung der Nitrierwirkung das entsprechende Werkstück einer mechanischen Belastung in Form einer reibenden Einwirkung von Partikeln ausgesetzt wird.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Behandlung metallischer Oberflächen bereitzustellen, bei dem während der Durchführung eines Nitrier- oder Nitrocarburierverfahrens ein Nitrieren bzw. Nitrocarburieren vorbestimmter Oberflächenbereiche verhindert wird.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass auf einfache und kostengünstige Weise bestimmte Bereiche einer zu nitrierenden Oberfläche dem Einwirken einer Nitrier- oder Nitrocarburierbehandlung wirkungsvoll entzogen werden können, sodass diese einer späteren mechanischen Weiterverarbeitung zugänglich sind. Dazu werden diejenigen Bereiche der metallischen Oberfläche, die nicht nitriert oder nitrocarburiert werde sollen, vor der Durchfuhrung des Nitrier- oder Nitrocarburierverfahrens einer Kaltverformung unterzogen.
Die so vorbehandelten Oberflächenbereiche können danach ohne eine weitere Abdeckung sowohl einer Gas- als auch einer Plasmanitrierung unterzogen werden. Dies ermöglicht die partielle Behandlung auch von Bauteiloberflächen mit hoher geometrischer Komplexität. Ein weiterer Vorteil besteht < rin, dass eine Kaltverformung leicht automatisierbar und somit kostengünstig durchgeführt werden kann. Darüber hinaus wird eine Verschmutzung der Bauteile bzw. Ofenanlagen durch Pastenrückstände verhindert.
Mit den in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen möglich.
So ist es von Vorteil, wenn als Kaltverformung ein Kugelstrahlen, Prägen oder Überwalzen erfolgt, da diese Kaltverformungsverfahren wirkungsvoll sind und dennoch einfach durchgeführt werden können.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt ein Ablaufschema des erfindungsgemäßen Verfahrens, Figur 2 eine Auftragung der Härte einer vor dem Nitrierprozess kaltverformten Oberfläche nach Vickers über dem Abstand des Messpunktes von der Bauteüoberfläche, Figur 3 zum Vergleich eine Auftragung der Härte einer vor der Nitrierung nicht kaltverformten Oberfläche nach Vickers über dem Abstand des Messpunktes von der Bauteüoberfläche gemäß der DE 100 56 842 AI und Figur 4 ein
Schliffbüd einer gemäß dem erfindungsgemäßen Verfahren vor dem Nitrierprozess kaltverformten Bauteüoberfläche nach dem Nitrierprozess.
Ausführungsbeispiel In Figur 1 ist ein Ablaufschema des erfmdungsgemäßen Verfahrens gemäß einem ersten Ausfuhrungsbeispiel dargesteüt. Dabei wird in einem ersten Schritt das Bauteü 10 bereichsweise einer Kaltverformung 12 unterworfen, wobei als Kaltverformung ein Kugelstrahlen, Prägen oder Überwalzen durchgeführt werden kann. Danach weist das
Bauteü 10a oberflächlich die kaltverformten Bereiche 14 auf. Durch den Kaltverformungsvorgang wird die kristalline Struktur des Stahles verändert, sodass ein EmdiJ-tundieren von Stickstoff verhindert wird. In einem weiteren Schritt erfolgt die Nitrierung 16 der Bauteüoberfläche. Das dabei resultierende Bauteil 10b, das in Form eines Längsschnitts entlang der Linie A-A des Bauteüs 10a dargestellt ist, weist eine stickstoffhaltige Diffüsionsschicht 18 auf, wobei die zuvor kaltverformten Bereiche 14 gegenüber einer Emwirkung des Nitrierverfahrens resistent sind und keine wie auch immer geartete, stickstoffhaltige Diffusionsschicht aufweisen.
Eine Härteverteilung der kaltverformten Bereiche 14 nach dem Nitrierprozess ist in Figur 2 dargestellt. Dabei ist erkennbar, dass die gemessene Härte nach Vickers sich unabhängig vom Abstand des Messpunkts zur Bauteüoberfläche praktisch nicht verändert. Dies ist ein Indiz, das während des Nitrierprozesses im Bereich der kaltverformten Bereiche 14 keine stickstoffhaltige Diffusionsschicht entstanden ist.
Zum Vergleich ist in Figur 3 die gemessene Härte einer Bauteüoberfläche dargesteüt, die gemäß dem Stand der Technik ohne vorherige Kaltverformung einem Nitrierprozess unterzogen wurde. Dabei ist erkennbar, dass die Vickershärte insbesondere in einem Randbereich von 0,1 mm an der Bauteüoberfläche stark zunimmt und somit auf die Existenz einer stickstoffhaltigen Diffusionsschicht geschlossen werden kann.
In Figur 4 ist weiterhin in tausendfacher Vergrößerung ein Schlifϊbüd der Bauteüoberfläche im Bereich der kaltverformten Oberflächenbereiche 14 nach erfolgter Nitrierung abgebüdet, wobei erkennbar ist, dass die Bauteüoberfläche aus einer einheitlichen Materialschicht besteht und keine stickstoffhaltige Oberflächenschicht existiert.
Die Nitrierung der Bauteüoberfläche kann bspw. durch Gasnitrieren erfolgen, wobei das Bauteü bei höheren Temperaturen einer Atmosphäre ausgesetzt wird, die Stickstoff oder eine stickstoffhaltige Verbindung wie Ammoniak enthält, und zusätzlich sauerstoffhaltige Verbindungen wie Sauerstoff oder Wasser enthalten kann. Das Gasnitrieren kann beispielsweise so durchgeführt werden, wie es der DE 10056842 AI zu entnehmen ist.
Vorzugsweise erfolgt die Nitrierung der Bauteüoberfläche jedoch mittels eines Plasmanitrierverfahrens. Der Nitrierprozess erfolgt dabei bei einem Unterdruck von 250 Pa in einer Gasatmosphäre, die 30 bis 40 Vol.% Stickstoff, 15 bis 25 Vol.% Wasserstoff, 15 bis 25 Vol.% Argon und 25 bis 35 Vol.% Methan enthält. Als Prozesstemperatur wird eine Temperatur von 350 bis 450 °C gewählt, die Nitrierdauer beträgt ungefähr 24 Stunden. Die eingesteüte elektrische Spannung liegt zwischen 400 und 600 Volt, wobei vorzugsweise eine gepulste Wechselspannung verwendet wird, die ein Puls-/Pausen- verhältnis von 1:1 bis 1:3 aufweist.
Dem Nitrierprozess bzw. der Kaltverformung kann optional eine Wärmebehandlung der zu nitrierenden Werkstückoberfläche vorangehen, die als sogenanntes Anlassen bezeichnet wird. Weiterhin werden die zu nitrierenden Werkstücke einer Reinigungsbehandlung, bspw. durch Behandlung mit alkalisch-wässrigen Reinigungsmitteln oder ReMgungsmitteln auf Alkoholbasis, unterzogen. Insbesondere bei der Plasmanitrierung kann weiterhin eine Feinreinigung der Werkstückoberfläche durch Sputtern in einem Wasserstoff- bzw. Wasserstoff-Argon-Plasma vor der eigentlichen Plasmanitrierung erfolgen.
An den Nitrierprozess kann sich darüber hinaus eine Nachbehandlung der nitrierten bzw. teilnitrierten Bauteüe anschließen. Diese Nachbehandlung kann in Form einer mechanischen Nachbearbeitung beispielsweise durch Mikrostrukturierung des Werkstücks erfolgen.

Claims

Ansprüche
1. Verfahren zur Behandlung einer metallischen Oberfläche, insbesondere eines Federstahldrahts zur Herstellung von Druckspiralfedem, wobei die metallische Oberfläche einem Nitrier- oder einem Nitrocarburierverfahren unterzogen wird, dadurch gekennzeichnet, dass diejemgen Bereiche (14) der metallischen Oberfläche, die nicht nitriert oder nitrocarburiert werden sollen, vor der Durchführung des Nitrier- oder Nitrocarburierverfahrens einer Kaltverformung unterzogen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Kaltverformung ein Kugelstrahlen, Prägen oder Überwalzen erfolgt. i
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Nitrier- oder Nitrocarburierbehandlung bei einer Temperatur von 360 bis 480°C erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Nitrier- oder Nitrocarburierbehandlung über einen Zeitraum von 5 bis 24 Stunden erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die metallische Oberfläche (10, 14) einer Plasmanitrierung oder einer Plasmanitrocarburierung unterzogen wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Plasmanitrierung eine gepulste Hochspannung zugrunde liegt.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die metallische Oberfläche (10, 14) vor der Nitrierung oder Nitrocarburierung angelassen wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die metaUische Oberfläche (10, 14) nach der Nitrierung oder Nitrocarburierung mikrostrukturiert wird.
9. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 8 zur HersteUung von Draclcspiralfedern für Emspritzvorrichtungen.
PCT/EP2005/051077 2004-04-29 2005-03-10 Verfahren zur oberflächenbehandlung WO2005106063A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05716985A EP1745158B1 (de) 2004-04-29 2005-03-10 Verfahren zur oberflächenbehandlung
DE502005010685T DE502005010685D1 (de) 2004-04-29 2005-03-10 Verfahren zur oberflächenbehandlung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410021043 DE102004021043A1 (de) 2004-04-29 2004-04-29 Verfahren zur Oberflächenbehandlung
DE102004021043.8 2004-04-29

Publications (1)

Publication Number Publication Date
WO2005106063A1 true WO2005106063A1 (de) 2005-11-10

Family

ID=34962107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/051077 WO2005106063A1 (de) 2004-04-29 2005-03-10 Verfahren zur oberflächenbehandlung

Country Status (3)

Country Link
EP (1) EP1745158B1 (de)
DE (2) DE102004021043A1 (de)
WO (1) WO2005106063A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177256A (zh) * 2015-08-31 2015-12-23 哈尔滨工业大学 一种Cr4Mo4V钢轴承强力喷丸和升温注渗复合表面强化方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652757A (zh) * 2018-12-28 2019-04-19 宁波合力模具科技股份有限公司 一种高真空挤压压铸模的表面复合处理方法
DE102019134498B4 (de) * 2019-12-16 2022-02-17 Scherdel Innotec Forschungs- Und Entwicklungs-Gmbh Verfahren zum Herstellen einer hochbelasteten Feder und hochbelastete Feder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2038486A5 (en) * 1969-03-17 1971-01-08 Comp Generale Electricite Metallic coating having specific geometry
SU800235A1 (ru) * 1979-01-05 1981-01-30 Научно-Исследовательский Институтпорошковой Металлургии Белорусскогоордена Трудового Красного Знамениполитехнического Института "Способ обработки стальных изделий
JPH02301552A (ja) * 1989-05-17 1990-12-13 Aisin Takaoka Ltd 着色チタン材の製造方法
US5399207A (en) * 1990-01-18 1995-03-21 Fike Corporation Process for surface hardening of refractory metal workpieces
DE10056842A1 (de) * 2000-11-16 2002-06-06 Bosch Gmbh Robert Verfahren zur Oberflächenbehandlung von Druckspiralfedern und Druckspiralfeder für Einspritzdüsen
JP2003193197A (ja) * 2001-12-25 2003-07-09 Togo Seisakusho Corp 高強度コイルばねおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2038486A5 (en) * 1969-03-17 1971-01-08 Comp Generale Electricite Metallic coating having specific geometry
SU800235A1 (ru) * 1979-01-05 1981-01-30 Научно-Исследовательский Институтпорошковой Металлургии Белорусскогоордена Трудового Красного Знамениполитехнического Института "Способ обработки стальных изделий
JPH02301552A (ja) * 1989-05-17 1990-12-13 Aisin Takaoka Ltd 着色チタン材の製造方法
US5399207A (en) * 1990-01-18 1995-03-21 Fike Corporation Process for surface hardening of refractory metal workpieces
DE10056842A1 (de) * 2000-11-16 2002-06-06 Bosch Gmbh Robert Verfahren zur Oberflächenbehandlung von Druckspiralfedern und Druckspiralfeder für Einspritzdüsen
JP2003193197A (ja) * 2001-12-25 2003-07-09 Togo Seisakusho Corp 高強度コイルばねおよびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198143, Derwent World Patents Index; Class M13, AN 1981-79172D, XP002330034 *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 076 (C - 0809) 21 February 1991 (1991-02-21) *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 11 5 November 2003 (2003-11-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177256A (zh) * 2015-08-31 2015-12-23 哈尔滨工业大学 一种Cr4Mo4V钢轴承强力喷丸和升温注渗复合表面强化方法

Also Published As

Publication number Publication date
EP1745158B1 (de) 2010-12-15
DE102004021043A1 (de) 2005-11-24
DE502005010685D1 (de) 2011-01-27
EP1745158A1 (de) 2007-01-24

Similar Documents

Publication Publication Date Title
EP0105835B1 (de) Verfahren zur Bildung einer Härteschicht im Bauteil aus Titan oder Titanlegierungen
DE102006025008B4 (de) Verfahren zum Härten von Laufflächen von Wälzlagerkomponenten
DE102013010024B4 (de) Strukturbauteil für ein Kraftfahrzeug und Verfahren zur Herstellung eines solchen Strukturbauteils
EP2430210A2 (de) Verfahren zur carbonitrierung
DE4139975A1 (de) Verfahren zur behandlung von legierten staehlen und refraktaermetallen
EP1745158B1 (de) Verfahren zur oberflächenbehandlung
EP3538676B1 (de) Verfahren zur wärmebehandlung eines aus einem hochlegierten stahl bestehenden werkstücks
WO2003027349A2 (de) Verfahren zur wärmebehandlung von werkstücken aus temperaturbeständigen stählen
DE102004037067B3 (de) Verfahren zur Wärmebehandlung von Werkstücken aus Stahl
DE10254846B4 (de) Verfahren zum Einsatzhärten von Bauteilen aus Warmarbeitsstählen mittels Unterdruckaufkohlung
DE102015204773B4 (de) Schichtbildung für Wälzlagerkäfige
DE2929634C3 (de) Verfahren zur Herstellung von Turboschaufeln aus Titan bzw. Titanbasislegierung mit einer harten Oberfläche
WO2024037954A1 (de) Verfahren zum wärmebehandeln von chromstählen
EP3824106B1 (de) Verfahren zur herstellung eines brennstoffzellensystems enthaltend ein bauteil aus einem stahl mit einer stickstoffhaltigen schutzschicht
EP2071047A1 (de) Verfahren zur Herstellung eines verzinkten Formbauteils aus Stahl
DE10118029C1 (de) Verfahren zur thermochemischen Vorbehandlung von metallischen Werkstücken und Anwendung des Verfahrens
DE102018222387A1 (de) Verfahren zum Carbonitrieren eines Metallteils und Metallteil
EP3183378B1 (de) Verfahren zur herstellung einer retorte für einen nitrierofen sowie retorte
EP0812929A1 (de) Verfahren zum Nitrieren und/oder Nitrocarburieren metallischer Werkstücke
DE102011050641A1 (de) Verfahren zur Herstellung eines Metallbauteils
DE102021213888A1 (de) Verfahren und Einrichtung zum örtlich begrenzten Nitrieren oder Nitrocarburieren der Oberfläche eines Bauteils
EP2646592A1 (de) Kunstoffverarbeitungskomponente mit modifizierter stahloberfläche
EP3611289A1 (de) Verfahren zur herstellung von gehärteten werkstücken für getriebekomponente und getriebe
EP1391525A1 (de) Verfahren und Vorrichtung zum Schwärzen von Bauteilen
WO2014008983A1 (de) Dlc beschichtungen mit erhöhter korrosionsbeständigkeit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005716985

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005716985

Country of ref document: EP