WO2005104350A1 - テレビスイッチモジュール - Google Patents

テレビスイッチモジュール Download PDF

Info

Publication number
WO2005104350A1
WO2005104350A1 PCT/JP2005/007635 JP2005007635W WO2005104350A1 WO 2005104350 A1 WO2005104350 A1 WO 2005104350A1 JP 2005007635 W JP2005007635 W JP 2005007635W WO 2005104350 A1 WO2005104350 A1 WO 2005104350A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
amplifier
input
signal
output
Prior art date
Application number
PCT/JP2005/007635
Other languages
English (en)
French (fr)
Inventor
Atsushi Misawa
Masakazu Nishikawa
Kaori Yagata
Mamoru Tateishi
Original Assignee
Matsushita Electric Works, Ltd.
Scitex Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd., Scitex Inc. filed Critical Matsushita Electric Works, Ltd.
Priority to US10/571,467 priority Critical patent/US7595845B2/en
Priority to JP2006515327A priority patent/JPWO2005104350A1/ja
Publication of WO2005104350A1 publication Critical patent/WO2005104350A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics

Definitions

  • the present invention relates to a television switch module mounted on a television receiver, and more particularly to a technique for reducing and stabilizing power consumption.
  • TV switch module for switching a plurality of line input signals such as CATV (cable television) and terrestrial (Air) TV to a specific output terminal for output (for example, see Japanese Patent Application Laid-Open No. No. 15715).
  • This type of TV switch module generally has a built-in amplifier for signal amplification, but the above publication does not describe the power control of the amplifier.
  • FIG. 11 A TV switch module with a built-in amplifier of this type is shown in FIG. 11 and will be described below.
  • This TV switch module has two input lines 11, 21 (INPUT1 and INPUT2) to which the high frequency signals of the TV are input, amplifiers 12 and 22 (AMP1 and AMP2) that amplify the input signal, and an input signal.
  • the relay switches 16 and 26 have a switching contact of a relay to which the lines 14, 15 and 24 and 25 after branching by the branching devices 13 and 23 are connected, respectively, and a common contact of the relay.
  • Connected to lines 17, 27. 31 is a relay control line, and 32 is a power supply line to the amplifiers 12 and 22.
  • This TV switch module enables two input lines 11, 21 to be selectively switched to two output lines 17, 27 by selecting four types of combinations with the relay switches 16, 26. It is. For example, when the signal on the input line 11 is output to the output line 17, the input high-frequency signal is output to the output line 17 via the amplifier 12 and the relay switch 16. When outputting the signal on input line 21 to output line 27, The signal is output to an output line 27 via an amplifier 22 and a relay switch 26. When the signal on the input line 11 is output to the output line 27, the input high-frequency signal is output to the output line 27 via the amplifier 12 and the relay switch 26. When the signal on the input line 21 is output to the output line 17, the input high-frequency signal is output to the output line 17 via the amplifier 22 and the relay switch 16. In the case of these selection paths, a high-frequency signal is input to both the amplifier 12 and the amplifier 22.
  • This amplifier circuit is an amplifier circuit using a transistor called a self-bias circuit. Since the current consumption of the amplifier circuit varies due to the variation of the transistor's current amplification factor hfe, the self-biasing circuit is designed to minimize the effect.
  • Ic + IB (hfe + 1)-(Vcc-VBE) / (RL + RB + hfe-RL)
  • a current mirror circuit is added to stabilize current consumption even when hfe varies (see, for example, Japanese Patent Application Laid-Open No. 10-70419).
  • the bias current of the signal amplification transistor is configured to be supplied by a current mirror circuit.
  • the performance of the high-frequency transistor and the transistor on the bias side, particularly, the base-emitter potential VBE must be matched. In order to realize this, it is necessary to integrate all of these transistors at a close position on the semiconductor, and there is no problem in the case of an integrated circuit, but it is not suitable for forming a discrete circuit. Therefore, it has been demanded to stabilize current consumption in a discrete circuit configuration having a large degree of freedom in design.
  • An object of the present invention is to solve the above problem and to provide a television switch module having a simple configuration and capable of operating only a necessary amplifier and reducing power consumption. .
  • the present invention provides a circuit for stabilizing the current consumption of the amplifier circuit, so that the degree of freedom in design is ensured and the variation in the current consumption of the amplifier circuit caused by the variation in the current amplification factor of the transistor is ensured. It is an object of the present invention to provide a TV switch module capable of suppressing the problem. Means for solving the problem
  • the present invention provides a television switch module for switching an output line of a high-frequency signal of a television, wherein the first and second input lines to which the high-frequency signal of the television are respectively inputted are provided.
  • First and second output lines for outputting a signal after signal amplification, first and second amplifiers interposed between the input lines and amplifying input signals, respectively, and the first or second amplifier.
  • a branching device that is arranged on at least one line on the input side or the output side of the amplifier and branches the input signal, and an output line that is arranged on another line different from the above and outputs the signal.
  • a relay switch for switching to either the branch line or the line by the branching device; a relay switch control means for switching the relay switch based on an external operation; Power supply control means for controlling the power supply to the amplifier and stopping the power supply to the amplifier inserted in the unused input line.
  • the power supply switch to the amplifier and the switch in the high-frequency path can be used in common, and In addition, wiring of complicated control signal lines can be omitted, and cost can be reduced.
  • an active current stabilizing circuit is added, the current consumption becomes almost constant.
  • the power is supplied to the amplifier, thereby simplifying the circuit configuration for stopping the current supply to the amplifier that does not need to operate.
  • the amplifier by providing the amplifier with a current stabilization circuit, it is possible to realize constant power consumption without worrying about variations in transistor hfe. As a result, the maximum power consumption value of the module can be suppressed as compared with the conventional circuit.
  • the above-described operation can be achieved in a discrete circuit configuration having a large degree of freedom in design.
  • the current stabilization circuit is configured so that the collector potential Vc of the signal amplification transistor becomes the reference voltage. Since it operates, if the resistance value of the load resistor is set to a high-precision one (generally, there is little variation), the current flowing through the load resistor becomes almost constant, and constant power consumption can be realized.
  • the branching device includes one device arranged on a line on an input side of the first amplifier, and the re-switch is configured to be connected to the second amplifier.
  • One switching force arranged on the input side line comprising a switching contact of a relay to which one of the branch lines by the branching device is connected to the other line, and a common contact point of the relay.
  • a common contact is connected to the line on the input side of the second amplifier, and the power control means always supplies power to the first amplifier, and supplies power to the second amplifier through a standby circuit.
  • the standby circuit supplies power to the second amplifier when the power switch of the television is turned on, and stops the power supply during other standby states.
  • a television switch module (hereinafter, referred to as an RF module) according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 shows a block configuration of the RF module according to the first embodiment
  • FIG. 2 shows a circuit of the RF module.
  • the RF module 101 is built into a television, and has a first input terminal INPUT1 and a second input terminal INPUT2 to which a high frequency signal of the television is inputted, a first output terminal OUTPOTl for outputting the same signal, and a second It has an output terminal OUTPUT2.
  • a CATV cable is connected to the first input terminal INPUT1
  • a terrestrial (Air) antenna cable is connected to the second input terminal INPUT2.
  • the first input terminal INPUT1 and the second input terminal INPUT2 need to be separated by a predetermined distance for isolation.
  • the RF module 101 includes a first input line 11 to which a first input terminal INPUT1 is connected, a second input line 21 to which a second input terminal INPUT2 is connected, and a first output terminal.
  • the second output line 27 connected to OUTPUT2 and the input lines 11 and 21 are inserted and input to the input lines 11 and 21.
  • Amplifier 12 (AMP1) and second amplifier 22 (AMP2) for amplifying the amplified signals, branching devices 13 and 23 for branching each amplifier output signal, and first relay switch 16 for switching the output line.
  • the RF module 101 includes a power switch 33 (SW3) and a power switch 34 (SW4) for opening and closing the power supply lines 32 to the first and second amplifiers 12 and 22, respectively, and a power supply control interface. (Release switch control means and power supply control means).
  • the first and second relay switches 16, 26 are mechanical opening / closing switches using a relay (RELAY).
  • the branch lines 14 and 15 of the branching device 13 and the branch lines 24 and 25 of the branching device 23 are respectively connected to the switching contacts of each relay (RELAY) of the two relay switches 16 and 26, and the common contact of each relay is These are a first output line 17 and a second output line 27, respectively.
  • the branch lines 15, 25 of the respective branching devices 13, 23 are cross-connected to each other on the other line side.
  • the control signal line 31 of the relay is a control signal line for the first and second relay switches 16, 26.
  • a power supply line 32 for supplying power to the amplifiers 12 and 22 is connected.
  • the power switch 33 and the power switch 34 are opened and closed by an opening and closing control signal transmitted through power control signal lines 35 and 36.
  • the power supply switch control interface 30 does not supply power to an amplifier that is not used and supplies power to a necessary amplifier, that is, stops power supply. Therefore, when outputting the signal input to the first input line 11 to the first and second output lines 17 and 27, only the third switch 33 is turned on. When the signal input to the second input line 21 is to be output to the first and second output lines 17 and 27, only the fourth switch 34 is turned on.
  • the power switches 33 and 34 of the amplifiers 12 and 22 that operate in conjunction with the relay switches 16 and 26 that determine the combination of input and output are provided. is there.
  • the power switches 33, 34 Both are turned on, and power is supplied to amplifiers 12 and 22.
  • the power switch 33 , 34 are both ON and supply power to amplifiers 12, 22.
  • FIG. 3 shows an RF module according to the second embodiment.
  • the functions of the power supply switches 33 and 34 to the amplifier in the first embodiment are fulfilled by the relay switches 16 and 26 which are mechanical opening / closing switches, that is, the switches of the high-frequency path are provided. It is configured to be used for both purposes.
  • the power to the first and second amplifiers 12 and 22 is superimposed on the output lines 17 and 27 through which a high-frequency signal passes through the power supply line 32 at a high frequency and supplied via the re-switches 16 and 26 I did it.
  • the point of this embodiment is that a power supply is superimposed on a high-frequency signal line, and can be implemented when the relay switches 16 and 26 are mechanical relays.
  • the relay switches 16 and 26 are mechanical relays.
  • the power supplied to each of the amplifiers 12 and 22 can be superimposed and passed in addition to the high-frequency signal, the power superimposed on the high-frequency signal line must be a relay switch. , 26 to the amplifiers 12, 22.
  • FIG. 4 shows a circuit example of one of the amplifiers 12 and 22 used in the first and second embodiments.
  • This amplifier circuit makes it possible to stabilize the current consumption irrespective of the variation in the current amplification factor of the signal amplification transistor Tr.
  • the base of the transistor Tr is an input terminal RFin of the amplifier circuit, the collector is an output terminal RFout, and an active current stabilization circuit is connected between the collector and the base of the transistor Tr.
  • the current stabilization circuit uses Vcc as a power supply, and includes transistors Trl and Tr2 and voltage dividing resistors Rl and R2 for generating a reference voltage Vref.
  • the reference voltage Vref is applied to the base of the transistor Tr2, the emitter of the transistor Trl is connected to the collector of the transistor Tr (collector potential Vc), and the collector of the transistor Trl is connected to the base of the signal amplification transistor Tr via the resistor RB. It is connected.
  • the reference voltage Vref is determined by the accuracy of the resistors R1 and R2.
  • this current stabilization circuit can be used as the collector potential of the signal amplifying transistor Tr. It operates so that Vc becomes the reference voltage Vref. As a result, the current (IC + IB) flowing through the resistor RL becomes almost constant, and as a result, the current of the transistor of the operating amplifier can be set to the minimum necessary, and the power consumption is not unnecessarily increased due to the variation. Can be prevented.
  • the active current stabilizing circuit may use an emitter current detection type.
  • Figure 5 shows an example.
  • This current stabilizing circuit detects the emitter current of the signal amplifying transistor Tr and controls the current to be constant, and includes transistors Tr3 and Tr4 and diodes Dl and D2.
  • the emitter current IE Becomes an approximate value to VrefZRE and becomes a constant value.
  • FIG. 6 shows a circuit in which the amplifier circuit of FIG. 4 is specifically arranged in the configuration of the embodiment of FIG.
  • the amplifier 22 (AMP2) side is shown in detail, and the amplifier 12 (AMP1) side is not shown in detail.
  • the power supplied through the relay switches 16 and 26 is also separated from the high-frequency line power through the series inductance L component of the bias tee 40 that passes the DC component, and is supplied to the amplifier 22 (AMP2). .
  • FIG. 7 shows an amplifier circuit configuration.
  • This circuit is an active current stabilization circuit that works to keep the collector potential Vc of the signal amplification transistor Tr constant.
  • a constant voltage circuit 10 is added to the signal amplification transistor Tr to keep the current flowing through the load resistance RL constant. That is to say.
  • IN is a signal input terminal
  • OUT is a signal output terminal.
  • the variation in current consumption is determined by the externally applied voltage Vcc, the accuracy of the voltage Vc of the constant voltage circuit, and the accuracy of the load resistance RL.
  • the current amplification factor hfe of the transistor Tr is related, .
  • FIG. 8 shows a specific configuration of the constant voltage circuit 10 in the amplifier circuit.
  • the configuration and operation principle of the constant voltage circuit 10 will be described.
  • the constant voltage circuit 10 It operates so that Vc becomes the reference voltage Vref.
  • the current (IC + IB) flowing through the resistor RL becomes almost constant, and as a result, the current of the transistor of the amplifier can be set to a necessary minimum, thereby preventing an unnecessary increase in power consumption due to variation.
  • the maximum power consumption value can be suppressed as compared with the conventional circuit. More specifically, consider the case where the resistance values of the resistors RL, Rl, and R2 are set to high accuracy, for example, a 1% accuracy product.
  • the present invention has a discrete circuit configuration having a large degree of freedom in design, and can obtain the above-described effects.
  • FIG. 9 shows a block configuration of an RF module according to the third embodiment of the present invention.
  • This embodiment is basically the same configuration as the first embodiment shown in FIG. 1 described above, but differs in some configurations and functions. That is, in the RF module 101 of the first embodiment, the two branching devices 13 and 23, the relay switches 16 and 26, and the power are connected to the output sides of the amplifiers 12 and 22 respectively inserted into the two lines. Each branch line is arranged, and each branch line is cross-connected to the other side.
  • each one branching device 13, the re-switch 26 and the input side of the first amplifier 12 interposed in one line and the other line Are arranged on the input side of the second amplifier 22 interposed therebetween, and only one branch line 15 is connected to the line on the other side.
  • the RF module 102 has a branching device 230 disposed on the output line of the second amplifier 22, thereby forming second and third output lines 271, 272, and an output terminal OUTPOT2 of these lines.
  • tuners 52 and 53 are connected to OUTPUT3.
  • FIG. 10 shows a circuit of an RF module according to the third embodiment.
  • the branching device 13 is arranged on the first line 11 on the input side of the first amplifier 12.
  • the relay switch 26 is disposed on a line on the input side of the second amplifier 22, and has a switching contact (NC) of a relay to which the branch line 15 by the branching device 13 and the other second input line 21 are connected. , NO) and a common contact of a relay, and this common contact is connected to the input line of the second amplifier 22.
  • NC switching contact
  • the power supplied to the power supply terminal 30C is constantly supplied to the first amplifier 12 through the power supply line 32, and the second amplifier 22 is an electronic switch provided in the power supply line 32.
  • the power supply is controlled via the standby circuit 302.
  • the Stannoy circuit 302 opens and closes according to the signal given to the standby signal terminal 30B.
  • Standby signal terminal 30B When the power switch of the television is turned on, a signal is given to close the standby circuit 302 (supply power) and to open the standby circuit 302 (stop power supply) in other standby states.
  • the configuration including these standby circuits 302 constitutes a power control means for controlling power supply to the amplifier.
  • the relay switch 26 is switched and controlled by a relay drive circuit 301 which is an electronic switch.
  • the relay drive circuit 301 is controlled through the relay control signal line 31 according to an input signal to the control signal terminal 30A.
  • a signal based on a user's operation instruction is input to the control signal terminal 30A.
  • the relay switch 26 normally connects the branch line 15 from the first input line 11 to the line interposed by the second amplifier 22 by an NC contact.
  • the relay drive circuit 301 operates, the relay switch 26 switches to the NO contact side, and the second input line 21 is connected to the second input line 21. Connect to the line of amplifier 22.
  • the user can arbitrarily change the content to be output to the second and third output lines 271, 272.
  • the RF module 102 of the present embodiment configured as described above, power is always supplied to the first amplifier 12, and power supply to the second amplifier 22 is stopped during standby, and Power can be supplied only when necessary. Thereby, the power consumption of the RF module 102 can be reduced.
  • the CATV signal is out of the video band (out-of-band). Character information signal included in the first output line 17 can be output to the first output line 17.
  • the present invention is not limited to the configuration of the above embodiment, and various modifications are possible.
  • the configuration of the current stabilizing circuit and the configuration of the power supply thereof can adopt any forms.
  • the inductance for power supply is a concept that includes an element that almost becomes a resistance component at a high frequency, such as a ferrite wire, instead of a series inductance.
  • the configuration of the current stabilizing circuit and the configuration of the power supply thereof can adopt any mode.
  • the present invention is used for an RF switch module that switches a plurality of line input signals of a CATV, a terrestrial TV or the like to a specific output terminal and outputs the signals.
  • FIG. 1 is a block diagram of an RF module according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the RF module.
  • FIG. 3 is a circuit diagram of an RF module according to a second embodiment of the present invention.
  • FIG. 4 is a diagram showing a circuit example of an amplifier used in the first and second embodiments.
  • FIG. 5 is a diagram showing another circuit example of the amplifier.
  • FIG. 6 is a circuit diagram in which the amplifier circuit of FIG. 4 is specifically arranged in the embodiment of FIG. 2.
  • FIG. 7 is a circuit diagram of an amplifier of the RF module according to the embodiment of the present invention.
  • FIG. 8 is a circuit diagram showing an example of the amplifier.
  • FIG. 9 is a block diagram of an RF module according to a third embodiment of the present invention.
  • FIG. 10 is a circuit diagram of the RF module.
  • FIG. 11 is a configuration diagram of a conventional RF module.
  • FIG. 12 is a circuit diagram of a conventional RF module amplifier.

Abstract

テレビの高周波信号の出力ラインを切換えるテレビスイッチモジュールにおいて、第1及び第2の入力ラインと、入力信号を各々増幅する第1及び第2のアンプと、増幅後の信号を出力する第1及び第2の出力ラインと、入力信号を分岐する分岐装置と、信号ラインを切換えるリレースイッチと、リレースイッチを切換え動作させるリレースイッチ制御手段と、各アンプへの電源供給を制御し、使用しない入力ラインに介挿されたアンプへの電源供給を停止させる電源制御手段と、を備えた。これにより、必要なアンプのみを動作させ、消費電力を低減することができる。

Description

明 細 書
テレビスィッチモジユーノレ
技術分野
[0001] 本発明は、テレビ受像機に搭載されるテレビスィッチモジュールに係り、特に、その 消費電力の低減及び安定化の技術に関する。
背景技術
[0002] 従来から、 CATV (cable television)や地上波(Air) TV等の複数のライン入力信号 を特定の出力端子に切換え出力するテレビスィッチモジュールが知られている(例え は、特開平 7— 15715号公報参照)。この種のテレビスィッチモジュールは、一般に 信号増幅用のアンプを内蔵しているが、上記公報には、そのアンプの電力制御に関 する記述はない。
[0003] この種のアンプ内蔵のテレビスィッチモジュールを図 11に示し、以下説明する。こ のテレビスィッチモジュールは、テレビの高周波信号が各々入力される 2つの入カラ イン 11, 21 (INPUT1, INPUT2)と、入力信号を増幅するアンプ 12, 22 (AMP1, AMP2)と、入力信号を分岐する分岐装置 13, 23と、その後に接続され信号出力ライ ンを任意に選択切換える 2つのリレースィッチ 16, 26(SW1, SW2)と、 2つの出力ライ ン 17, 27 (0UTPUT1, OUTPUT2)と、リレースィッチ 16, 26を切換え動作するととも に、アンプ 12, 22に電源を供給する電源'制御インターフェース 30とを備える。リレ 一スィッチ 16, 26は、分岐装置 13, 23による分岐後のライン 14, 15及び 24, 25が それぞれ接続されるリレーの切換接点とリレーの共通接点とを有し、この共通接点が 各出力ライン 17, 27に接続される。 31はリレー制御線であり、 32はアンプ 12, 22へ の電源供給線である。
[0004] このテレビスィッチモジュールは、リレースィッチ 16, 26で 4種類の組み合わせを選 択することにより、 2つの入力ライン 11, 21を、 2つの出力ライン 17, 27に選択切換え 出力可能とするものである。例えば、入力ライン 11の信号を出力ライン 17へ出力する 場合、入力高周波信号は、アンプ 12、リレースィッチ 16を経て、出力ライン 17へ出力 される。また、入力ライン 21の信号を出力ライン 27へ出力する場合、入力高周波信 号は、アンプ 22、リレースィッチ 26を経て、出力ライン 27へ出力される。入力ライン 1 1の信号を出力ライン 27へ出力する場合、入力高周波信号は、アンプ 12、リレースィ ツチ 26を経て、出力ライン 27へ出力される。また、入力ライン 21の信号を出力ライン 17へ出力する場合、入力高周波信号は、アンプ 22、リレースィッチ 16を経て、出力 ライン 17へ出力される。これら選択経路の場合、アンプ 12及びアンプ 22には、ともに 高周波信号が入力される。
[0005] 他方、入力ライン 11又は入力ライン 21の信号を 2つの出力ライン 17, 27へ出力す る場合、入力ライン 11から入力された高周波信号は、アンプ 13、リレースィッチ 16及 び 26を経て、出力ライン 17及び 27へ、また、入力ライン 21から入力された高周波信 号は、アンプ 23、リレースィッチ 16及び 26を経て、出力ライン 17及び 27へ到達する 。すなわち、入力ライン 11を出力ライン 17及び 27へ出力する場合、アンプ 12への高 周波信号の入力はある力 アンプ 22への高周波信号の入力はない。また、同様に、 入力ライン 21を出力ライン 17及び 27へ出力する場合、アンプ 22への高周波信号の 入力はあるが、アンプ 12への高周波信号の入力はな 、。
[0006] 上記のように、 1つの入力から 2つの出力をする場合、高周波信号が入力されるァ ンプのみを動作させる、すなわち高周波信号が入力されるアンプに対してのみ電源 を供給することにより、消費電力が削減できることになる。
し力しながら、従来の構成においては、常時、各々のアンプに電源を供給しており、 必要以上の電力を消費していることになる。また、従来の構成では、増幅用トランジス タの電流安定化は、抵抗帰還回路による方法が一般に使用されており、増幅用トラン ジスタの直流電流増幅率のバラツキや変化等に対する電流安定度が不十分であつ た。このため、増幅用トランジスタの電流が必要以上に大きくなるものがあり、これも必 要以上の電力を消費する原因となっていた。
[0007] ここで、アンプ回路 12, 22の具体例を、図 12に示す。このアンプ回路は、 自己バイ ァス回路と呼ばれるトランジスタを用いたアンプ回路である。トランジスタの電流増幅 率 hfeのばらつきにより、アンプ回路の消費電流はばらつきを持っため、その影響を できるだけ小さくするように、自己バイアス回路が工夫されている。
[0008] このアンプ回路の動作原理を説明する。本回路は、コレクタ電流 Icが増加すると、 抵抗 RLに生じる電圧降下が大きくなり、それに伴い抵抗 RBに流れるベース電流 IB が減少し、それに伴いコレクタ電流 Icも減少するように動作する。従って、アンプ回路 の消費電流は、以下の関係式で表すことができる。
Ic+IB=(hfe + 1) · (Vcc-VBE)/(RL+RB+hfe · RL)
[0009] この関係式から言えることは、抵抗 RLを大きぐまた抵抗 RBを小さく設定することで 、 hfeのばらつきによる影響を小さくすることが可能であるということである。しかしなが ら、実際は、 hfeのばらつきによる電流のばらつきが無視できる程度まで抵抗 RLを大 きぐまた RBを小さくした場合、抵抗 RLによる電圧降下が非常に大きくなり、トランジ スタを、そのコレクタ電圧が非常に低いところで使うことになり、ダイナミックレンジが確 保できなくなる。従って、従来は、ある程度の電流ばらつきを許容して、動作させざる を得なかった。
[0010] なお、アンプ回路において、カレントミラー回路を追加して、 hfeがばらついても、消 費電流を安定ィ匕させることが知られている(例えば、特開平 10— 70419号公報参照 ) oこの回路においては、信号増幅トランジスタのバイアス電流をカレントミラー回路に より供給するように構成している。カレントミラー回路を用いる場合、高周波のトランジ スタとバイアス側のトランジスタの性能、特に、ベース'ェミッタ電位 VBEを揃える必要 がある。これを実現するには、半導体上の近い位置にこれら全てのトランジスタを集 積する必要かあり、集積回路の場合には問題ないが、ディスクリートな回路を構成す るには不向きであった。そこで、設計の自由度の大きいディスクリートな回路構成にあ つて、消費電流を安定ィ匕させることが要請されていた。
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、上記問題を解消するもので、簡単な構成でもって、必要なアンプのみを 動作させ、消費電力を低減することが可能なテレビスィッチモジュールを提供するこ とを目的とする。また、本発明は、アンプ回路にその消費電流を安定させる回路を搭 載することで、設計の自由度が確保しつつ、トランジスタの電流増幅率のばらつきに より生じる、アンプ回路の消費電流のばらつきを抑えることが可能な、テレビスィッチ モジュールを提供することを目的とする。 課題を解決するための手段
[0012] 上記目的を達成するために本発明は、テレビの高周波信号の出力ラインを切換え るテレビスィッチモジュールにおいて、テレビの高周波信号が各々入力される第 1及 び第 2の入力ラインと、同信号の増幅後の信号を出力する第 1及び第 2の出力ライン と、前記各入力ラインに介挿され、入力信号を各々増幅する第 1及び第 2のアンプと 、前記第 1叉は第 2のアンプの入力側叉は出力側の少なくとも一つのラインに配置さ れ、入力信号を分岐する分岐装置と、前記とは別のもう一つのラインに配置され、信 号を出力する出力ラインとして、前記分岐装置による分岐ライン叉は当該ラインのい ずれかに切換えるリレースィッチと、外部からの操作に基づいて前記リレースィッチを 切換え動作させるリレースィッチ制御手段と、前記各アンプへの電源供給を制御し、 使用しない入力ラインに介挿されたアンプへの電源供給を停止させる電源制御手段 と、を備えたものである。
[0013] 本発明によれば、いずれか一方の入力ラインに入力された信号を 2つの出力ライン へ出力する場合は、両方のアンプに電源を供給するが、いずれか一方の入力ライン に入力された信号を 1つの出力ラインへ出力する場合は、電源供給が必要なアンプ のみに電源を供給し、他方のラインに介挿されたアンプには電源を供給しないので、 テレビスィッチモジュールを低消費電力化することができる。
[0014] また、アンプへの電力供給を、リレースィッチを介して高周波信号が通るラインに重 畳して行うものとすれば、アンプへの電源スィッチと高周波経路のスィッチとを兼用で き、かつ、複雑な制御信号線の配線を省略でき、コストダウンが図れる。また、ァクティ ブ電流安定回路を付加した場合、消費電流はほぼ一定になる。また、インダクタンス を介して高周波リレー回路に直流電流を重畳、分離することで、アンプに電源を供給 することにより、動作不要のアンプの電流供給を停止する回路の構成が簡単になる。
[0015] また、アンプに電流安定ィ匕回路を備えることで、トランジスタの hfeのばらつきを気に することなぐ定消費電力化を実現することができる。このことにより、モジュールの最 大消費電力値も、従来回路と比較して抑えることができる。し力も、設計の自由度が 大きいディスクリートな回路構成にあって、上記作用を達成することができる。また、 電流安定ィ匕回路は、信号増幅トランジスタのコレクタ電位 Vcが参照電圧になるように 動作するので、負荷抵抗の抵抗値を高精度なもの(一般に、ばらつきは少ない)もの に設定すれば、負荷抵抗を流れる電流はほぼ一定になり、定消費電力化を実現する ことができる。
[0016] さらに、本発明の特徴によれば、前記分岐装置は、前記第 1のアンプの入力側のラ インに配置された一つの装置力 成り、前記リレースィッチは、前記第 2のアンプの入 力側のラインに配置された一つのスィッチ力 成り、前記分岐装置による分岐ライン の一つと他方のラインとがそれぞれ接続されるリレーの切換接点と、リレーの共通接 点とを有し、この共通接点が前記第 2のアンプの入力側のラインに接続され、前記電 源制御手段は、前記第 1のアンプには常時、電源を供給し、前記第 2のアンプにはス タンバイ回路を通して電源を供給し、前記スタンバイ回路は、前記第 2のアンプに、テ レビの電源スィッチ ON時に電源を供給し、それ以外の待機時は電源供給を停止す る。これにより、テレビスィッチモジュールの低消費電力化を図りつつ、例えば、第 1 の入力ラインに、映像帯域外に文字情報を含むテレビ信号が入力されているとき、第 1のアンプの出力ラインは、待機時においても、該文字情報信号を出力することがで きる。
発明を実施するための最良の形態
[0017] 以下、本発明の実施形態によるテレビスィッチモジュール(以下、 RFモジュールと いう)について図面を参照して説明する。
[0018] (第 1の実施形態)
図 1は、第 1の実施形態による RFモジュールのブロック構成を、図 2は同 RFモジュ ールの回路を示す。 RFモジュール 101は、テレビに内蔵され、テレビの高周波信号 が各々入力される第 1の入力端子 INPUT1、及び第 2の入力端子 INPUT2と、同信号 を出力する第 1の出力端子 OUTPOTl、及び第 2の出力端子 OUTPUT2を持つ。第 1 の入力端子 INPUT1には、例えば、 CATVケーブルが接続され、第 2の入力端子 INPUT2には、地上波 (Air)アンテナケーブルが接続される。第 1の入力端子 INPUT1 と第 2の入力端子 INPUT2との間は、アイソレーションのために所定距離だけ間隔を おく必要がある。第 1の出力端子 OUTPOT1及び第 2の出力端子 OUTPUT2には、そ れぞれチューナ 51, 52が接続される。 [0019] RFモジュール 101は、第 1の入力端子 INPUT1が接続された第 1の入力ライン 11及 び第 2の入力端子 INPUT2が接続された第 2の入力ライン 21と、第 1の出力端子
OUTPOTlに接続される第 1の出力ライン 17及び第 2の出力端子 OUTPUT2に接続さ れる第 2の出力ライン 27と、各入力ライン 11, 21に介挿され、各入力ライン 11, 21に 入力された信号を各々増幅する第 1のアンプ 12 (AMP1)及び第 2のアンプ 22 (AMP2 )と、各アンプ出力信号を分岐する分岐装置 13, 23と、出力ラインを切換える第 1のリ レースイッチ 16 (SW1)及び第 2のリレースィッチ 26 (SW2)とを備える。さらに、 RFモ ジュール 101は、第 1及び第 2のアンプ 12, 22への電源供給ライン 32をそれぞれ開 閉する電源スィッチ 33 (SW3)及び電源スィッチ 34 (SW4)と、電源'制御インターフエ ース 30 (リレースィッチ制御手段 ·電源制御手段)とを備える。
[0020] 第 1及び第 2のリレースィッチ 16, 26は、リレー(RELAY)による機械的開閉スィッチ である。分岐装置 13の分岐ライン 14, 15、及び分岐装置 23の分岐ライン 24, 25は 、それぞれ 2つのリレースィッチ 16, 26の各リレー(RELAY)の切換接点に接続され、 各リレーの共通接点は、それぞれ第 1の出力ライン 17及び第 2の出力ライン 27とされ る。ここに、各分岐装置 13, 23の分岐ライン 15, 25は、互いに他方のライン側にクロ スして接続される。リレーの制御信号線 31は、第 1及び第 2のリレースィッチ 16, 26 に対する制御信号線である。アンプ 12, 22へは電源を供給する電源供給線 32が結 線されている。電源スィッチ 33及び電源スィッチ 34は、電源制御信号線 35, 36によ り伝えられる開閉制御信号により開閉される。
[0021] 電源'スィッチ制御インターフェース 30は、必要なアンプに対しては電源を供給す る力 使用しないアンプに対しては電源を供給しない、つまり、電源を停止させるもの である。従って、第 1の入力ライン 11に入力された信号を第 1及び第 2の出力ライン 1 7, 27へ出力する場合は、第 3のスィッチ 33のみを ONさせる。また、第 2の入力ライ ン 21に入力された信号を同じく第 1及び第 2の出力ライン 17, 27へ出力する場合は 、第 4のスィッチ 34のみを ONさせる。
[0022] このように、入出力の組み合わせを決定するリレースィッチ 16, 26と連動して動作 するアンプ 12, 22の電源スィッチ 33, 34が設けられている点力 本発明の 1つの特 徴である。 [0023] 上記回路構成の具体的な動作を次に説明する。第 1の入力ライン 11への入力を第 1の出力ライン 17へ出力し、第 2の入力ライン 21への入力を第 2の出力ライン 27へそ れぞれ出力する場合は、電源スィッチ 33, 34ともに ON状態となり、アンプ 12, 22に 電源を供給する。また、第 1の入力ライン 11への入力を第 2の出力ライン 27へ出力し 、第 2の入力ライン 21への入力を第 1の出力ライン 17へ出力する場合も同様に、電 源スィッチ 33, 34ともに ON状態となり、アンプ 12, 22に電源を供給する。しかし、第 1の入力ライン 11への入力を第 1及び第 2の出力ライン 17, 27へ出力する場合は、 電源スィッチ 33のみを ONさせる。また、第 2の入力ライン 21への入力を第 1及び第 2 の出力ライン 17, 27へ出力する場合は、電源スィッチ 34のみを ONさせればよい。 本構成の RFモジュールにより、必要最低限の消費電力で運用することが可能になる
[0024] (第 2の実施形態)
図 3は、第 2の実施形態による RFモジュールを示す。この RFモジュールは、上記第 1の実施形態におけるアンプへの電源スィッチ 33, 34の機能を、メカ-カルな開閉ス イッチであるリレースィッチ 16, 26でまかなうように、すなわち、高周波経路のスィッチ と兼用するように構成したものである。具体的には、第 1及び第 2のアンプ 12, 22へ の電源を、高周波で電源供給ライン 32により高周波信号が通る出力ライン 17, 27に 重畳し、リレースィッチ 16, 26を介して供給するようにした。
[0025] この実施形態は、高周波信号ラインに電源を重畳することがポイントであり、リレース イッチ 16, 26がメカ-カルリレーである場合に実施することができる。メカ-カルリレ 一の場合、高周波信号の他に、各アンプ 12, 22に供給する電源も重畳して通過させ ることが可能であるため、高周波信号ライン上に重畳された電源は、リレースィッチ 16 , 26を介してアンプ 12, 22に供給される。
[0026] この実施形態によれば、上記第 1の実施形態と同様に、必要最低限の消費電力で 運用することが可能になるとともに、個々のアンプ 12, 22に対して電源スィッチ(第 1 の実施形態の 33, 34)を用意する必要もなぐまた電源スィッチ用の制御信号線 (第 1の実施形態の 35, 36)も必要ないため、電源スィッチのコストダウンと、配線が少な くなることによるレイアウトの簡単化も実現できる。 [0027] 図 4は、上記第 1及び第 2の実施形態で使用するアンプ 12, 22の 1つの回路例を 示す。このアンプ回路は、信号増幅トランジスタ Trの電流増幅率のばらつきとは無関 係に、消費電流を安定させることを可能とするものである。同トランジスタ Trのベース がアンプ回路の入力端 RFinであり、コレクタが出力端 RFoutであり、同トランジスタ T rのコレクタとベースとの間にアクティブ電流安定ィ匕回路が接続されている。電流安定 化回路は、 Vccを電源とし、トランジスタ Trl, Tr2と、参照電圧 Vref発生用の分圧抵 抗 Rl, R2等を含む。トランジスタ Tr2のベースには参照電圧 Vrefが与えられ、トラン ジスタ Trlのェミッタがトランジスタ Trのコレクタ(コレクタ電位 Vc)に接続され、トラン ジスタ Trlのコレクタが抵抗 RBを介して信号増幅トランジスタ Trのベースに接続され ている。
[0028] この電流安定ィ匕回路の動作原理を説明する。信号増幅トランジスタ Trのコレクタ電 位 Vcは、トランジスタ Trlのベース電位を基準電圧 V'refとした場合、 Vc=V'ref+V belと表すことができる。また、トランジスタ Trlのベース電位 V'refは、 V,ref=Vref— Vbe2 (ここに、トランジスタ Tr2のベース電位は Vref)で表すことができる。ここで、トラ ンジスタ Trl及び Tr2は 2石を集積したトランジスタユニットであり、限りなく Vbel = V be2であるとすると、
Vc=V,ref+Vbel =Vref— Vbe2+Vbel =Vrefとなる。参照電圧 Vrefは、抵抗 R1と R2の精度により決定される。
[0029] 従って、抵抗 RL及び Rl、 R2の抵抗値を高精度なもの(一般に、ばらつきは少な!/ヽ )ものに設定すれば、この電流安定化回路は、信号増幅トランジスタ Trのコレクタ電 位 Vcが参照電圧 Vrefになるように動作する。カゝくして、抵抗 RLを流れる電流 (IC + I B)はほぼ一定になり、その結果、動作させるアンプのトランジスタの電流を必要最小 に設定でき、バラツキにより不必要に消費電力を増大するのを防止できる。
[0030] アクティブ電流安定化回路は、ェミッタ電流検出型も使用できる。その例を図 5に示 す。この電流安定化回路は、信号増幅トランジスタ Trのェミッタ電流を検出して、その 電流を一定に制御するもので、トランジスタ Tr3, Tr4、ダイオード Dl, D2を有する。 ここに、トランジスタ Tr3のベース電位 VBは、 VB=VD+Vrefであり、信号増幅トラ ンジスタ Trのェミッタ電位 VE (=VB— VD)は、 Vrefに近似値となり、ェミッタ電流 IE は、 VrefZREに近似値となり、一定値となる。
[0031] 図 6は、図 3の実施形態構成に図 4のアンプ回路を具体的に配置した回路を示す。
ここでは、アンプ 22 (AMP2)側を詳細に示しており、アンプ 12 (AMP1)側については 詳細図示を省略している。リレースィッチ 16, 26を介して供給される電源は、直流分 を通過するバイアスティー 40の直列インダクタンス L成分を介して高周波ライン力も分 離され、アンプ 22 (AMP2)に供給されるようにしている。インダクタンスを介して高周 波リレー回路に直流電流を重畳、分離して、アンプに電源を供給することにより、動 作不要のアンプへの電流供給を停止する回路の構成を簡単ィ匕することができる。
[0032] 次に、本発明の実施形態に係る RFモジュールに用いられるアンプ回路を説明する 。図 7は、アンプ回路構成を示す。本回路は、信号増幅トランジスタ Trのコレクタ電位 Vcを一定に保持するように働くアクティブ電流安定回路、ここでは定電圧回路 10を 信号増幅トランジスタ Trに付加し、負荷抵抗 RLを流れる電流を一定に保つことにあ る。 INは信号入力端、 OUTは信号出力端である。この回路構成の場合、消費電流 のばらつきは、外部から印加される電圧 Vccと、定電圧回路の電圧 Vcの精度、負荷 抵抗 RLの精度により決定され、トランジスタ Trの電流増幅率 hfeは関係な 、。
[0033] 図 8は、アンプ回路における定電圧回路 10の具体的構成を示す。定電圧回路 10 の構成と動作原理を説明する。電圧 Vcは、トランジスタ Trlのベース電圧を基準電 圧 V'refとした場合、 Vc=V,ref+VBElと表すことができる。また、トランジスタ Trlの ベース電圧である V, refは、トランジスタ Tr2のベース電圧である Vref— VBE2で表す ことができる。ここで、トランジスタ Trlおよびトランジスタ Tr2は 2石を集積したトランジ スタユニットであり、限りなく VBE1=VBE2であるとすると、 Vc=V' ref+VBEl=Vref- VBE2+VBEl =Vrefとなる。 Vrefは、抵抗 R1と抵抗 R2の精度により決定される。
[0034] このこと〖こより、抵抗 RL及び Rl、 R2の抵抗値を高精度なもの(一般に、ばらつきは 少ない)ものに設定すれば、この定電圧回路 10は、信号増幅トランジスタ Trのコレク タ電位 Vcが参照電圧 Vrefになるように動作する。カゝくして、抵抗 RLを流れる電流 (IC + IB)はほぼ一定になり、その結果、アンプのトランジスタの電流を必要最小に設定 でき、バラツキにより不必要に消費電力を増大するのを防止でき、また、最大消費電 力値も、従来回路と比較して抑えることができる。 [0035] 具体的には、抵抗 RLおよび Rl、 R2の抵抗値を高精度なものに設定、例えば 1% 精度品の場合を考える。抵抗 R1が 101%、抵抗 R2が 99%、抵抗 RLが 99%のとき、 消費電流は最大になる。この場合、規格通りの抵抗値の場合と比較して、 2. 02%消 費電流が増えるだけである。また、本発明は、設計の自由度が大きいディスクリートな 回路構成にあって上記作用効果が得られる。
[0036] (第 3の実施形態)
図 9は、本発明の第 3の実施形態による RFモジュールのブロック構成を示す。本実 施形態は、上述の図 1に示した第 1の実施形態と基本的には同等の構成であるが、 一部の構成及び機能を相違する。すなわち、第 1の実施形態の RFモジュール 101 においては、各 2つの分岐装置 13, 23とリレースィッチ 16, 26と力 2つのラインにそ れぞれ介挿されたアンプ 12, 22の出力側にそれぞれ配置され、各分岐ラインが他方 側にクロスして接続されている。それに対して、この第 3の実施形態の RFモジュール 102においては、各 1つの分岐装置 13とリレースィッチ 26と力 一方のラインに介揷 された第 1のアンプ 12の入力側と、他方のラインに介挿された第 2のアンプ 22の入力 側に各々配置され、 1つの分岐ライン 15のみが他方側のラインに接続されている。な お、この RFモジュール 102は、第 2のアンプ 22の出力ラインに配置された分岐装置 230を持ち、これにより第 2及び第 3の出力ライン 271, 272を形成し、これらラインの 出力端子 OUTPOT2及び OUTPUT3にチューナ 52, 53が接続される。
[0037] 図 10は、同上第 3の実施形態による RFモジュールの回路を示す。分岐装置 13は 、第 1のアンプ 12の入力側の第 1のライン 11に配置されている。リレースィッチ 26は、 第 2のアンプ 22の入力側のラインに配置されており、分岐装置 13による分岐ライン 1 5と他方の第 2の入力ライン 21とがそれぞれ接続されるリレーの切換接点 (NC, NO) と、リレーの共通接点とを有し、この共通接点が第 2のアンプ 22の入力側ラインに接 続されている。
[0038] 第 1のアンプ 12には、電源端子 30Cに印加される電源を、電源供給線 32を通して 常時供給し、第 2のアンプ 22には、電源供給線 32中に設けた電子スィッチであるス タンバイ回路 302を介して電源を供給制御する。スタンノ ィ回路 302は、スタンバイ 信号端子 30Bに与えられた信号に応じて開閉動作する。スタンバイ信号端子 30Bに は、テレビの電源スィッチ ON時にスタンバイ回路 302を閉じ (電源供給)、それ以外 の待機時にはスタンバイ回路 302を開く(電源供給停止)ように信号が与えられる。こ れらスタンバイ回路 302を含む構成は、アンプへの電源供給を制御する電源制御手 段を構成している。
[0039] リレースィッチ 26は、電子スィッチであるリレードライブ回路 301により切り替え制御 される。リレードライブ回路 301は、制御信号端子 30Aへの入力信号に応じてリレー 制御信号線 31を通して制御される。制御信号端子 30Aには、ユーザの操作指示に 基づく信号が入力される。リレースィッチ 26は、通常時は NC接点により、第 1の入力 ライン 11からの分岐ライン 15を、第 2のアンプ 22の介挿されているラインに接続して いる。ここで、制御信号端子 30Aにユーザの操作指示の信号が与えられると、リレー ドライブ回路 301が動作して、リレースィッチ 26は NO接点側に切り替り、第 2の入力 ライン 21を、第 2のアンプ 22の介挿されているラインに接続する。こうして、ユーザは 、第 2及び第 3の出力ライン 271, 272に出力させる内容を任意に変更することができ る。
[0040] 上記のように構成された本実施形態の RFモジュール 102においては、第 1のアン プ 12には常時電源を供給し、第 2のアンプ 22にはスタンバイ時には電源供給を停止 し、必要な時にのみ電源を供給することができる。それにより、 RFモジュール 102の 低消費電力化が図れる。また、第 1のアンプ 12に常時電源が供給されていることから 、第 1の入力ライン 11に、 CATVの信号が入力されていると、待機時においても、 C ATVの映像帯域外 (アウトォブバンド)に含まれる文字情報信号を、第 1の出力ライ ン 17に出力することができる。
[0041] 本発明は、上記実施形態の構成に限られず、種々の変形が可能であり、例えば、 電流安定化回路の構成や、その電源供給の構成は任意の形態を採用可能である。 また、電源供給のためのインダクタンスは、直列インダクタンスに代えて、フェライトビ ースのように、高周波では殆ど抵抗成分となる素子であってもよぐそのようなものを 含む概念である。また、例えば、電流安定化回路の構成や、その電源供給の構成は 任意の形態を採用可能である。
産業上の利用の可能性 [0042] 本発明は、 CATVや地上波 TV等の複数のライン入力信号を特定の出力端子に切 換え出力する RFスィッチモジュールに利用される。
図面の簡単な説明
[0043] [図 1]本発明の第 1の実施形態による RFモジュールのブロック図。
[図 2]同上 RFモジュールの回路図。
[図 3]本発明の第 2の実施形態による RFモジュールの回路図。
[図 4]第 1及び第 2の実施形態で使用するアンプの回路例を示す図。
[図 5]アンプの他の回路例を示す図。
[図 6]図 2の実施形態に図 4のアンプ回路を具体的に配置した回路図。
[図 7]本発明の実施形態による RFモジュールのアンプの回路図。
[図 8]同上アンプの一例を示す回路図。
[図 9]本発明の第 3の実施形態による RFモジュールのブロック図。
[図 10]同上 RFモジュールの回路図。
[図 11]従来の RFモジュールの構成図。
[図 12]従来の RFモジュールのアンプの回路図。

Claims

請求の範囲
[1] テレビの高周波信号の出力ラインを切換えるテレビスィッチモジュールにおいて、 テレビの高周波信号が各々入力される第 1及び第 2の入力ラインと、
同信号の増幅後の信号を出力する第 1及び第 2の出力ラインと、
前記各入力ラインに介挿され、入力信号を各々増幅する第 1及び第 2のアンプと、 前記第 1叉は第 2のアンプの入力側叉は出力側の少なくとも一つのラインに配置さ れ、入力信号を分岐する分岐装置と、
前記とは別のもう一つのラインに配置され、信号を出力する出力ラインとして、前記 分岐装置による分岐ライン叉は当該ラインのいずれかに切換えるリレースィッチと、 外部力 の操作に基づいて前記リレースィッチを切換え動作させるリレースィッチ制 御手段と、
前記各アンプへの電源供給を制御し、使用しな 、入力ラインに介挿されたアンプへ の電源供給を停止させる電源制御手段と、
を備えたことを特徴とするテレビスィッチモジュール。
[2] 前記分岐装置は、前記各入力ラインに介挿された第 1及び第 2のアンプの出力側 にそれぞれ配置された 2つの装置力 成り、
前記リレースィッチは、各ラインに配置される第 1及び第 2のリレースィッチ力 成り、 各リレースィッチは、一方のラインに配置された前記分岐装置による分岐ラインの一 つと、他方のラインに配置された前記分岐装置による分岐ラインの一つがそれぞれ 接続されるリレーの切換接点と、リレーの共通接点とを有し、この共通接点が前記各 出力ラインに接続されることを特徴とする請求項 1に記載のテレビスィッチモジュール
[3] 前記第 1及び第 2のアンプへの電源を、電源供給ラインを通して供給し、
前記電源制御手段は、前記電源供給ラインを開閉する電源スィッチと、この電源ス イッチを開閉制御する信号を伝える電源制御信号線とを備えることを特徴とする請求 項 2に記載のテレビスィッチモジュール。
[4] 前記アンプの増幅出力トランジスタにアクティブ電流安定回路を付加したことを特 徴とする請求項 2に記載のテレビスィッチモジュール。
[5] 前記第 1及び第 2のアンプへの電源を、前記出力ライン側力 前記リレースィッチの 接点を介して供給することを特徴とする請求項 2に記載のテレビスィッチモジュール。
[6] 前記アンプの増幅出力トランジスタにアクティブ電流安定回路を付加したことを特 徴とする請求項 5に記載のテレビスィッチモジュール。
[7] 前記アンプは、
ベースに信号が入力され、コレクタが負荷抵抗を介して電源 Vccに接続され、コレ クタを信号出力端とする、ェミッタ接地の信号増幅用トランジスタと、
このトランジスタのコレクタとベースとの間に付加され、負荷抵抗に流れる電流を一 定に保つように作用して該トランジスタのコレクタ電位 Vcを一定に保持する電流安定 回路と、を備えたことを特徴とする請求項 6に記載のテレビスィッチモジュール。
[8] 前記電流安定回路は、
少なくとも 2個のトランジタユニットから成り、電源 Vccを抵抗分圧して得られる該電 流安定回路用の参照電圧と、信号増幅用トランジスタのコレクタ電位 Vcとが等しくな るように作用する回路構成を有することを特徴とする請求項 8に記載のテレビスィッチ モジユーノレ。
[9] 前記アンプへの電源を、高周波信号が流れるラインからインダクタンスにより供給す ることを特徴とする請求項 5に記載のテレビスィッチモジュール。
[10] 前記分岐装置は、前記第 1のアンプの入力側のラインに配置された一つの装置か ら成り、
前記リレースィッチは、前記第 2のアンプの入力側のラインに配置された一つのスィ ツチ力 成り、前記分岐装置による分岐ラインの一つと他方のラインとがそれぞれ接 続されるリレーの切換接点と、リレーの共通接点とを有し、この共通接点が前記第 2の アンプの入力側のラインに接続され、
前記電源制御手段は、前記第 1のアンプには常時、電源を供給し、前記第 2のアン プにはスタンバイ回路を通して電源を供給し、
前記スタンバイ回路は、前記第 2のアンプに、テレビの電源スィッチ ON時に電源を 供給し、それ以外の待機時は電源供給を停止することを特徴とする請求項 1に記載 のテレビスィッチモジュール。 前記第 1の入力ラインに、映像帯域外に文字情報を含むテレビ信号が入力されて いるとき、前記第 1のアンプの出力ラインは、待機時においても、該文字情報信号を 出力可能としたことを特徴とする請求項 10に記載のテレビスィッチモジュール。
PCT/JP2005/007635 2004-04-23 2005-04-21 テレビスイッチモジュール WO2005104350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/571,467 US7595845B2 (en) 2004-04-23 2005-04-21 Television switch module
JP2006515327A JPWO2005104350A1 (ja) 2004-04-23 2005-04-21 テレビスイッチモジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004129064A JP2004248323A (ja) 2004-04-23 2004-04-23 テレビスイッチモジュールのアンプ回路
JP2004-129064 2004-04-23
JP2004128988A JP2004343739A (ja) 2004-04-23 2004-04-23 テレビスイッチモジュール
JP2004-128988 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005104350A1 true WO2005104350A1 (ja) 2005-11-03

Family

ID=35197321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007635 WO2005104350A1 (ja) 2004-04-23 2005-04-21 テレビスイッチモジュール

Country Status (6)

Country Link
US (1) US7595845B2 (ja)
JP (2) JP2004248323A (ja)
KR (1) KR100806990B1 (ja)
CN (1) CN100536317C (ja)
TW (1) TWI258989B (ja)
WO (1) WO2005104350A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188515A (ja) * 2008-02-04 2009-08-20 Sharp Corp 複合チューナ
CN104410373B (zh) 2012-06-14 2016-03-09 西凯渥资讯处理科技公司 包含相关系统、装置及方法的功率放大器模块
WO2013188694A1 (en) 2012-06-14 2013-12-19 Skyworks Solutions, Inc. Process-compensated hbt power amplifier bias circuits and methods
US9621119B2 (en) * 2015-02-13 2017-04-11 Skyworks Solutions, Inc. Power amplifier bias signal multiplexing
JP6761374B2 (ja) * 2017-05-25 2020-09-23 株式会社東芝 半導体装置
CN107017917B (zh) * 2017-05-27 2019-08-02 福建三元达科技有限公司 一种td-lte三频自动识别的功放方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105490A (ja) * 1990-08-27 1992-04-07 Sony Corp 受信装置
JPH08340219A (ja) * 1994-12-23 1996-12-24 Thomcast 無線周波数で作動するaクラス増幅器
JP2003008460A (ja) * 2001-06-20 2003-01-10 Matsushita Electric Works Ltd 切換分配器
JP2003046399A (ja) * 2001-04-26 2003-02-14 Zarlink Semiconductor Ltd 無線周波数入力インタフェース装置およびその複合装置
JP2004015224A (ja) * 2002-06-04 2004-01-15 Sharp Corp テレビジョン受信機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4424968Y1 (ja) 1966-09-01 1969-10-21
US4672687A (en) * 1985-01-29 1987-06-09 Satellite Technology Services, Inc. Polarity switch for satellite television receiver
JP2778293B2 (ja) * 1991-07-04 1998-07-23 ソニー株式会社 衛星放送受信システム及び切換分配器
JP2606074B2 (ja) 1993-06-15 1997-04-30 日本電気株式会社 画像暗号化伝送方式
US5959592A (en) * 1996-03-18 1999-09-28 Echostar Engineering Corporation "IF" bandstacked low noise block converter combined with diplexer
JP2853763B2 (ja) 1996-08-29 1999-02-03 日本電気株式会社 増幅回路
JPH114357A (ja) 1997-06-10 1999-01-06 Nippon Antenna Co Ltd 増幅装置
JP3653215B2 (ja) * 1999-10-01 2005-05-25 シャープ株式会社 衛星放送受信システム、ならびに衛星放送受信システムで用いられるローノイズブロックダウンコンバータおよび衛星放送受信機
JP2003204278A (ja) * 2002-01-07 2003-07-18 Sharp Corp 衛星放送受信用コンバータ
EP1507409A4 (en) 2003-02-06 2007-10-03 Matsushita Electric Ind Co Ltd ANTENNA SWITCHING DEVICE AND RELATED METHOD
JP2004336462A (ja) 2003-05-08 2004-11-25 Canon Inc 受信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105490A (ja) * 1990-08-27 1992-04-07 Sony Corp 受信装置
JPH08340219A (ja) * 1994-12-23 1996-12-24 Thomcast 無線周波数で作動するaクラス増幅器
JP2003046399A (ja) * 2001-04-26 2003-02-14 Zarlink Semiconductor Ltd 無線周波数入力インタフェース装置およびその複合装置
JP2003008460A (ja) * 2001-06-20 2003-01-10 Matsushita Electric Works Ltd 切換分配器
JP2004015224A (ja) * 2002-06-04 2004-01-15 Sharp Corp テレビジョン受信機

Also Published As

Publication number Publication date
TWI258989B (en) 2006-07-21
US7595845B2 (en) 2009-09-29
JP2004248323A (ja) 2004-09-02
TW200537940A (en) 2005-11-16
CN1879292A (zh) 2006-12-13
KR20060058727A (ko) 2006-05-30
CN100536317C (zh) 2009-09-02
KR100806990B1 (ko) 2008-02-25
US20080252792A1 (en) 2008-10-16
JP2004343739A (ja) 2004-12-02

Similar Documents

Publication Publication Date Title
EP1325555B1 (en) Configurable power amplifier and bias control
US8138836B2 (en) Emitter-follower type bias circuit
US6617928B2 (en) Configurable power amplifier and bias control
US5640084A (en) Integrated switch for selecting a fixed and an adjustable voltage reference at a low supply voltage
US7282894B2 (en) Method and apparatus for performing lossless sensing and negative inductor currents in a high side switch
US20060125461A1 (en) Constant voltage generator and electronic equipment using the same
US7705571B2 (en) Reverse-connect protection circuit with a low voltage drop
US5594381A (en) Reverse current prevention method and apparatus and reverse current guarded low dropout circuits
US5929616A (en) Device for voltage regulation with a low internal dissipation of energy
US7564230B2 (en) Voltage regulated power supply system
WO2005104350A1 (ja) テレビスイッチモジュール
US5847556A (en) Precision current source
US7372332B2 (en) Optimizing power consumption in amplifiers
EP1220071B1 (en) Semiconductor device
US6356061B1 (en) Fully integrated linear regulator with darlington bipolar output stage
JP2010258509A (ja) バイアス安定化機能付き増幅回路
US7012469B2 (en) Integrated circuit device having high efficiency at the time of low power output
JPWO2005104350A1 (ja) テレビスイッチモジュール
US4803442A (en) Low power buffer amplifier
JP2003526981A (ja) 高周波数トランジスタのための動作点調整用の回路構造、および、増幅器回路
US7667532B1 (en) Bias control system for a power amplifier
JP3907640B2 (ja) 過電流防止回路
US7245174B2 (en) Analogue switch
US7170337B2 (en) Low voltage wide ratio current mirror
EP1127407B1 (en) An amplifier for use in a mobile phone

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001201.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006515327

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10571467

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067006207

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067006207

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase