WO2005102972A1 - フルオロアルキルケトンの水和物の製造方法 - Google Patents

フルオロアルキルケトンの水和物の製造方法 Download PDF

Info

Publication number
WO2005102972A1
WO2005102972A1 PCT/JP2005/006905 JP2005006905W WO2005102972A1 WO 2005102972 A1 WO2005102972 A1 WO 2005102972A1 JP 2005006905 W JP2005006905 W JP 2005006905W WO 2005102972 A1 WO2005102972 A1 WO 2005102972A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogen
reaction
salt
oxidizing agent
general formula
Prior art date
Application number
PCT/JP2005/006905
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Yamamoto
Yoshichika Kuroki
Daisuke Karube
Tatsuya Ohtsuka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to CN2005800116810A priority Critical patent/CN1942422B/zh
Priority to US11/578,523 priority patent/US7598425B2/en
Priority to EP05728496A priority patent/EP1757572A4/en
Publication of WO2005102972A1 publication Critical patent/WO2005102972A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/30Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation

Definitions

  • the present invention relates to a method for producing a fluoroalkyl ketone, in particular, a hydrate of hexafluoroacetone (hereinafter sometimes abbreviated as “HFA”).
  • HFA hexafluoroacetone
  • the present invention relates to a method for producing a hydrate of HFA for the effective use of ropionic acid.
  • HFA hydrate is useful as a synthetic intermediate for various fluorine compounds.
  • HFA can be used as a rubber crosslinking agent or a fluorine-containing polyimide monomer by reacting with various aromatic compounds.
  • HFA hydrate is reduced to hexafluoroisopropanol by a hydrogen reduction reaction and can be used as a raw material for anesthetics.
  • Patent Documents 1 to 4 propose a method for isomerizing hexafluoropropylene oxide.
  • Hexafluoropropylene oxide has a problem in that the yield of cisfluoridone, which is known to be obtained by oxygen oxidation of hexafluoropropene, is low and expensive.
  • Patent Documents 5 to 8 and the like As another method, a method of oxidizing hexafluorothioacetone dimer (Patent Documents 5 to 8 and the like) is also known, but the yield is low and purification is difficult. There is a problem. Also known is a method of fluorinating hexaclotone acetone with HF. Power purification is not easy! There are problems of (1) and (2) (Patent Document 9).
  • Patent Document 10 discloses a method for oxidizing oxygen with octafluoroisobutyl methyl ether in the presence of an activated carbon catalyst. Although it was possible to obtain oroacetone, it was apparent that the catalytic activity of activated carbon deteriorated significantly and was not industrially feasible. Besides this, Patent Documents 11 to 14, etc. disclose methods for producing octafluoroisobutyl methyl ether derivative hexafluoroacetone, but in any case, the yield is low and the cost is low. It is not satisfactory as a method for producing fluoroacetone.
  • Non-Patent Document 1 reports the reaction of reacting a salt of a carboxylic acid with fluorine gas in an aqueous solution to react with fluorine gas, but such a decarboxylation reaction does not proceed with chlorine gas. Is described.
  • Patent Document 1 U.S. Pat.
  • Patent Document 2 JP-A-53-25512
  • Patent Document 3 JP-A-58-62130
  • Patent Document 4 WO 03/008366
  • Patent Document 5 U.S. Pat.No. 4,337,361
  • Patent Document 6 US Patent No. 4334099
  • Patent Document 7 JP-A-57-158736
  • Patent Document 8 JP-A-57-203026
  • Patent Document 9 Japanese Patent Publication No. 40-27173
  • Patent Document 10 JP-A-01-203339
  • Patent Document 11 JP-A-61-277645
  • Patent Document 12 JP-A 64-26527
  • Patent Document 13 Japanese Patent Publication No. 9-509425
  • Patent Document 14 Japanese Patent Application Laid-Open No. 2001-81056
  • Non-Patent Document 1 J. Org. Chem. 34, 2446 (1969)
  • An object of the present invention is to easily produce a hydrate of a fluoroalkyl ketone in a high yield.
  • the present inventors have proposed that a salt of a fluoroalkylhydroxycarboxylic acid is halogen or halogen. It has been found that a hydrate of the corresponding ketone is formed when reacted with a system oxidizing agent.
  • the present invention relates to the following method.
  • n and m each represent 0 to 10; and reacting a salt of the compound represented by the general formula (2) with a compound of the formula (2):
  • 2-hydroxyf. HFA hydrate which is a useful substance, can be obtained in high yield from the salt of ropionic acid.
  • M represents a monovalent (M +), divalent ( 1/2 M 2+ ) or trivalent ( 1/3 M 3+ ) ion
  • the present inventors have examined the conditions of halogenation in detail, and found that the carboxylic acid compound of the general formula (1) used hypochlorite Z hypobromite as a halogen-based oxidizing agent other than halogen alone. It was also found that hexafluoroacetone hydrate was formed. Hypochlorite generates chlorine in an acidic manner, so chlorine may be generated in the reaction system.However, this reaction proceeds even in alkaline conditions, and the reaction with hypochlorite occurs. It is not clear what kind of mechanism it is going on.
  • a salt of the compound of the general formula (1) is represented by the following general formula (1A).
  • M represents a monovalent (M +), divalent ( 1/2 M 2+ ) or trivalent ( 1/3 M 3+ ) ion, and is preferable.
  • M + is a monovalent cation such as L ", K-cho, Na +, NH +, Ag +
  • divalent cations such as l / 2Mg 2+ , l / 2Ca 2+ , l / 2Sr 2+ , l / 2Ba 2+ , l / 2Pb 2+ , l / 2Cu 2+ and 3 such as 1 / 3A1 3+ Shows a multivalent cation.
  • Salts other than those specifically exemplified above can be easily obtained from the compound of the general formula (1) or the salt of the general formula (1A) according to a conventional method.
  • HFA hydrate in which both n and m are 0 is a particularly useful compound, and 3,3,3-trifluoro-2-trifluoromethyl- 2-hydroxyf.
  • a method for producing lopionic acid ester is disclosed in JP-A-61-286348, JP-A-2002-234860, and the like, as described in V, by reacting octafluoroisobutene with methanol. It is known that isobutyl methyl ether is reacted with an alkali metal hydroxide and dehydrofluorinated to give heptafluoroisobutyr methyl ether, which is obtained by oxidation. .
  • the carboxylic acid salt of the raw material obtained by hydrolyzing the ester portion from the lopionate is a salt such as a salt of Li, K, Na, Mg, Ca, Sr, Ba, Pb, Cu, Al, NH or Ag.
  • a salt of Li, K, Na, Mg, Ca, Sr, Ba, Pb, Cu, Al, NH or Ag is a salt such as Li, K, Na, Mg, Ca, Sr, Ba, Pb, Cu, Al, NH or Ag.
  • Li salt, K salt, Na salt, Ca salt and Mg salt are preferable, and Na salt and K salt are more preferable.
  • the raw material carboxylate can be used by purifying it by a conventional method such as extraction with a solvent. Hydrolysis of methyl ester with an alkali metal hydroxide such as KOH or NaOH The used solution may be used as it is. The excessively used hydroxide may be used after being neutralized with an acid such as hydrochloric acid or sulfuric acid in order to accelerate the decomposition of the halogen when reacting with the halogen.
  • an alkali metal hydroxide such as KOH or NaOH
  • the excessively used hydroxide may be used after being neutralized with an acid such as hydrochloric acid or sulfuric acid in order to accelerate the decomposition of the halogen when reacting with the halogen.
  • the carboxylate uses a carboxylic acid as a raw material and forms a salt in the reaction solution.
  • Water is preferred as the solvent for the nodogenation reaction, but 3,3,3-trifluoro-2-trifluoromethyl-2-hydroxyphenyl is contained in the aqueous solution.
  • an organic solvent such as methanol, ethanol, acetate, dioxane, tetrahydrofuran, or acetonitrile, which is used when synthesizing a carboxylic acid salt from a ropionate, is contained.
  • the reaction temperature is not particularly limited as long as it is equal to or higher than the freezing point of the solvent.
  • the reaction can be usually carried out at about -20 to 100 ° C, but is preferably about -5 to 50 ° C.
  • the reaction temperature is not particularly limited as long as the water does not solidify due to freezing point depression, and can be cooled to about 20 ° C, but is usually about -5 to 80 ° C, preferably 0 to 80 ° C. It is around 50 ° C. If the reaction temperature is too high, undesired side reactions occur. If the reaction temperature is too low, the loss of halogen or halogen-based oxidizing agent increases. The optimum temperature depends on the halogen or halogen-based oxidizing agent. When chlorine is used as the halogen or halogen-based oxidizing agent, the reaction temperature is preferably about 30-50 ° C.
  • the raw material concentration in the reaction solution there is no particular limitation on the raw material concentration in the reaction solution, but it is preferable to carry out the reaction at 5 to 60 mass%. In a dilute solution, the reaction efficiency of halogen is worse and the loss increases. Therefore, a higher concentration is preferable. Even if the carboxylate is saturated and precipitated and the halogen is removed in a state where the carboxylate is saturated, the reaction proceeds without any particular problem.
  • the halogen or the halogen-based oxidizing agent is not particularly limited, but fluorine, chlorine, and bromine are preferably used as the halogen.
  • As the halogen-based oxidizing agent sodium hypochlorite, lithium hypochlorite, potassium hypochlorite, Hypochlorites such as calcium hypochlorite and hypobromite such as sodium hypobromite, lithium hypobromite, potassium hypobromite and calcium hypobromite are preferably used.
  • Chlorine is particularly preferred due to its low cost. Although purified gas can be used as it is as chlorine, it is generated in the reaction system. It can be used for the reaction while growing.
  • a method for generating chlorine in the reaction system for example, there is a method in which a chloride of an alkali metal or an alkaline earth metal is added to the reaction system, and this is electrolyzed. The same method can be applied to bromine.
  • F gas is diluted with a gas that is inert to fluorine.
  • the diluent gas can be selected from nitrogen, helium, air, or fluoralkane, perfluoroalkane, or perfluoroketone, but nitrogen is the most preferable in terms of cost.
  • the concentration of F is 1 ⁇ 30mass%, preferably 4-20mass%.
  • the F2 concentration is high, severe undesired side reactions such as combustion are likely to occur, which is dangerous. Although there is no particular problem in the case of a dilute gas, the entrainment loss of the target substance such as HFA hydrate by the diluent gas increases.
  • the amount of halogen or halogen-based oxidizing agent used in the reaction is not particularly limited, but it is preferable to carry out the reaction in an amount of about 0.5 to about 10 molar equivalents. More preferably, from about 0.9 to about 2 molar equivalents. If the equivalent of the halogen used is increased, the transfer ratio of the raw material can be improved.
  • the rate of addition of the halogen or halogen-based oxidizing agent is not particularly limited, but it is generally the case that one equivalent of the halogen is added over a period of about 0.5 to 50 hours, more preferably about 0.5 to 10 hours. It is a target.
  • the flow rate is preferably 0.1 to 5 times the capacity of the reactor per minute.
  • the flow rate can be in the range of 0.01 to 5 times, preferably 0.1 to 1 time, per minute of the capacity of the reactor.
  • the flow rate can be in the range of 0.01 to 5 times, preferably 0.1 to 1 time, per minute of the capacity of the reactor.
  • about 0.5 to about 10 molar equivalents of bromine (liquid) may be added to the reaction solution by dropping or the like.
  • the reaction time is not particularly limited, and the reaction can be usually performed for about 0.5 to 50 hours.
  • This reaction can be carried out continuously by supplying the carboxylic acid solution and the halogen as the raw materials to the reactor while extracting the reaction solution.
  • the pH of the solution, particularly the aqueous solution or aqueous solution, used in the present reaction is preferably 3.0 to
  • the alkali to be added is preferably an alkali metal or alkaline earth metal carbonate, hydrogencarbonate, sesquicarbonate, phosphate, hydroxide or the like.
  • Carbonates and bicarbonates are particularly preferred because they do not decompose hydrates of halogen or fluoroalkyl ketone (particularly hexafluoroacetone hydrate).
  • the addition amount of the alkaline conjugate is about 0.5 to 5.0 equivalents, preferably about 1.0 to 2.0 equivalents, to the halogen or the halogen-based oxidizing agent.
  • a buffer may be used as water.
  • Preferred buffers include organic or inorganic acids such as citrate, phosphate, succinate, Tris salt (eg, Tris hydrochloride), borate, acetate, lactate, propionate, and the like. And a mixture of the corresponding acid and the corresponding acid.
  • the hydrate of a fluoroalkyl ketone which is the object of the present invention, can be prepared by a known method, for example, HFA hydrate as disclosed in JP-A-57-81433, salted calcium and the like.
  • the salt can be extracted with an ethereal solvent such as diisopropyl ether or methyl tert-butyl ether, and then separated by distillation with an organic solvent.
  • the potassium salt solution of 3,3,3-trifluoro-2--2-trifluoromethyl-2-hydroxypropionic acid prepared in Reference Example 1 and water were added to a 100 ml four-necked flask.
  • the pH of the mixed solution was 13 due to excess KOH used during the hydrolysis.
  • F2 diluted to 5.7 vol% with nitrogen was blown into the mixture under ice-cooling and stirring to carry out a reaction. After flowing a predetermined amount of F2, the reaction system was purged with nitrogen, and the reaction solution was analyzed.
  • Example 9 A 100 ml PFA bottle is charged with 30.9 g (123.6 mmol) of potassium salt of 3,3,3-trifluoro-2-methyl-2-hydroxypropionate and 71.7 g of an aqueous solution containing 6 g (80 mmol) of KCl. A direct current of 1 A (8.0 to 8.2 V) was applied to this through a platinum electrode. After electrolysis for 9 hours, the reaction solution was quantified by NMR analysis. The conversion of the reaction was 90% and the selectivity was 99% or more. The reaction was performed at room temperature, but the internal temperature of the reaction solution was 39 to 41 ° C. What is the pH at the end of the reaction? Was ⁇ 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、一般式(1):[CF3(CF2)n][CF3(CF2)m]C(OH)COOH(式中 、n、mは0~10を示す。)で表される化合物の塩をハロゲンまたはハロゲン系酸化剤と反応させることを特徴とする一般式(2):[CF3(CF2)n][CF3(CF2)m]C(OH)2(2)(式中、n、mは0~10を示す。)で表される化合物の製造方法に関する。

Description

明 細 書
フルォロアルキルケトンの水和物の製造方法
技術分野
[0001] 本発明はフルォロアルキルケトン類、特に、へキサフルォロアセトン(以下「HFA」と 略記することがある)の水和物の製法に関する。
[0002] さらに詳しくは 3,3,3-トリフルオロ- 2-トリフルォロメチル- 2-ヒドロキシフ。ロピオン酸 の有効利用を目的とする HFAの水和物の製法に関する。
[0003] HFA水和物は、種々のフッ素化合物の合成中間体として有用であり、例えば HFA は各種芳香族化合物と反応させてゴムの架橋剤やフッ素含有ポリイミドのモノマーと して利用出来る。
[0004] また、 HFA水和物は水素還元反応により、へキサフルォロイソプロパノールに還元 され、麻酔薬原料として利用できる。
背景技術
[0005] HFAの製法としては、従来から種々の方法が知られており、例えば特許文献 1〜4 にはへキサフルォロプロピレンォキシドを異性ィ匕させる方法が提案されて 、る。へキ サフルォロプロピレンォキシドはへキサフルォロプロペンの酸素酸化によって得られ ることが知られている力 酸ィ匕での収率が低く高価であるという問題がある。
[0006] この他の方法としてへキサフルォロチォアセトンダイマーを酸ィ匕する方法 (特許文 献 5〜8等)も知られているが、収率が低いことや精製が困難である等の問題がある。 また、へキサクロ口アセトンを HFでフッ素化する方法も知られている力 精製が容易 ではな!/ヽと ヽぅ問題がある(特許文献 9)。
このような背景力 へキサフルォロプロペン製造時の副生成物であるォクタフルォロ イソブテンの誘導体を原料としてへキサフルォロアセトンを製造しょうとする試みがな されてきている。 例えば、特許文献 10はォクタフルォロイソブチルメチルエーテルを 活性炭触媒存在下に酸素酸化する方法を開示しているが、この方法を発明者らが追 試したところ、一時的にはへキサフルォロアセトンが得られるものの、活性炭の触媒 活性の劣化が著しぐ工業的に実施できるものではないことがわ力つた。この他にも、 特許文献 11〜 14等にォクタフルォロイソブチルメチルエーテル誘導体力ゝらへキサフ ルォロアセトンを製造する方法が開示されているが、いずれの方法も収率が低ぐ低 コストで工業的にへキサフルォロアセトンを製造する方法としては満足のゆくものでは ない。
[0007] カルボン酸類の塩を水溶液中でフッ素ガスと反応させ脱炭酸を行う反応は、非特許 文献 1に報告されて 、るが、このような脱炭酸反応は塩素ガスでは進行しな 、ことが 記載されている。
特許文献 1 :米国特許第 3321515号
特許文献 2:特開昭 53-25512号公報
特許文献 3:特開昭 58-62130号公報
特許文献 4:WO 03/008366
特許文献 5 :米国特許第 4337361号
特許文献 6:米国特許第 4334099号
特許文献 7:特開昭 57-158736号公報
特許文献 8:特開昭 57-203026号公報
特許文献 9:特公昭 40 - 27173号
特許文献 10:特開平 01-203339号公報
特許文献 11:特開昭 61-277645号公報
特許文献 12:特開昭 64-26527号公報
特許文献 13:特表平 9-509425号公報
特許文献 14:特開 2001-81056号公報
非特許文献 1: J.Org.Chem.34,2446 (1969)
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、フルォロアルキルケトンの水和物を高収率で簡便に製造することを目的 とする。
課題を解決するための手段
[0009] 本発明者らはフルォロアルキルヒドロキシカルボン酸の塩をハロゲンまたはハロゲン 系酸化剤と反応させると対応するケトンの水和物が生成することを見出した。
[0010] 本発明は、以下の方法に関する。
1. 一般式 (1) :
[CF (CF ) ][CF (CF ) ]C(OH)COOH (1)
3 2 n 3 2 m
(式中、 n、 mは 0〜10を示す。)で表される化合物の塩をノ、ロゲンまたはハロゲン系酸 ィ匕剤と反応させることを特徴とする一般式 (2):
[CF (CF ) ][CF (CF ) ]C(OH) (2)
3 2 n 3 2 m 2
(式中、 n、 mは 0〜10を示す。)で表される化合物の製造方法。
2. 一般式 (1)の化合物の塩が 3,3,3-トリフルォ口- 2-トリフルォロメチル- 2-ヒドロキシ プロピオン酸塩 (n=m=0)であることを特徴とする項 1に記載の方法。
3. ノ、ロゲンまたはハロゲン系酸化剤が不活性ガスで希釈されたフッ素である項 1ま たは 2に記載の方法。
4. ノ、ロゲンまたはハロゲン系酸化剤が塩素である項 1または 2に記載の方法。
5. ハロゲンまたはハロゲン系酸化剤が次亜塩素酸塩あるいは次亜臭素酸塩である 項 1または 2に記載の方法。
6. 一般式 (1)の化合物の塩をハロゲンまたはハロゲン系酸化剤と反応させる溶媒が 水であることを特徴とする項 1〜5のいずれかに記載の方法。
7. 一般式 (1)の化合物の塩が Li塩 ,Κ塩または Na塩であることを特徴とする項 1〜6 のいずれかに記載の方法。
8. ノ、ロゲンまたはハロゲン系酸化剤と反応させるときの溶媒の pHが 4以上である項 1〜6のいずれかに記載の方法。
9. 塩素あるいは臭素を反応系中で発生させることを特徴とする、項 1〜8のいずれ かに記載の方法。
発明の効果
[0011] 本発明によれば、一般式 (1) :
[CF (CF )n][CF (CF )m]C(OH)COOH (1)
3 2 3 2
(式中、 n、 mは 0〜10を示す。)で表される化合物の塩力 一般式 (2) :
[CF (CF )n][CF (CF )m]C(OH) (2) (式中、 n、 mは 0〜10を示す。)で表される化合物を高収率で得ることが出来る。
[0012] 特に、産業廃棄物から容易に合成される 3,3,3-トリフルォロ- 2-トリフルォロメチル
-2-ヒドロキシフ。ロピオン酸の塩より有用物質である HFA水和物を高収率で得ること が出来る。
発明を実施するための最良の形態
[0013] 理論により拘束されることを望むわけではないが、本発明者は本反応の機構を、下 記の HFA水和物の例に示すように、脱炭酸ハロゲン化の後、ハロゲンの加水分解に よって進行して 、るのではな 、かと考える。
[0014] [化 1]
Figure imgf000005_0001
[0015] (式中、 Xはハロゲンを表し、 Mは 1価(M+)、 2価(1/2M2+)または 3価(1/3M3+)のィ オンを示し、好ましい M+は Li+、 K+、 Na+、 NH +、 Ag+などの 1価のカチオン、 l/2Mg2
4
+、 l/2Ca2+、 l/2Sr2+、 l/2Ba2+、 l/2Pb2+、 l/2Cu2+などの 2価のカチオン、 1/3A13+ などの 3価のカチオンを示す。 )
一方、 J.Org.Chem.34,2446 (1969)の報告ではカルボン酸類の塩は水溶液中での ハロゲンィ匕脱炭酸反応はフッ素ガスでは進行するものの、塩素や臭素では中間体の 過ハロゲン化物(-COOX)が加水分解してカルボン酸となるために進行しな 、と!/、う ことが記載されている。
[0016] 驚くべきことに、本発明の方法では、フッ素のみでなぐ塩素や臭素によっても反応 が容易に進行することが確認されており、このような中間体を経るものかどうかは明ら かではない。
本発明者らはハロゲンィ匕の条件を詳細に検討した結果、一般式(1)のカルボン酸 化合物はハロゲンのみではなぐハロゲン系酸化剤として次亜塩素酸塩 Z次亜臭素 酸塩を使用した場合にもへキサフルォロアセトン水和物を生成することを見出した。 次亜塩素酸塩は酸性で塩素を発生するため、反応系中で塩素を発生している可能 性もあるが、本反応はアルカリ性でも進行するものであり、次亜塩素酸塩との反応が どのような機構で進行して 、るかは明らかではな 、。
[0017] 一般式 (1)の化合物の塩は、下記の一般式 (1A)で表され、該塩は、特開
2002-234860号公報に開示されて 、る公知物質であるか、或!、は該公知の塩または 対応するカルボン酸ィ匕合物から塩交換反応もしくは塩形成反応により容易に得ること ができる。
[0018] 一般式 (1A) :
[CF (CF ) ][CF (CF ) ]C(OH)COO"M+ (1A)
3 2 n 3 2 m
(式中、 n、 mは 0〜10を示す。 Mは、 1価(M+)、 2価(1/2M2+)または 3価(1/3M3+)の イオンを示し、好ましい M+は L「、 K丁、 Na+、 NH +、 Ag+などの 1価のカチオン、
4
l/2Mg2+、 l/2Ca2+、 l/2Sr2+、 l/2Ba2+、 l/2Pb2+、 l/2Cu2+などの 2価のカチオン、 1/3A13+などの 3価のカチオンを示す。)
上記で具体的に例示された以外の塩は、一般式 (1)の化合物または一般式 (1A)の 塩から常法に従 、容易に得ることができる。
[0019] 上記式 (2)において、 n、 mがともに 0である HFA水和物は特に有用な化合物であり、 その原料となる 3,3,3-トリフルオロ- 2-トリフルォロメチル- 2-ヒドロキシフ。ロピオン酸 エステルの製造方法は、特開昭 61-286348号、特開 2002-234860号等に開示されて V、るように、ォクタフルォロイソブテンをメタノールと反応させてォクタフルォロイソブチ ルメチルエーテルとした後、アルカリ金属水酸化物と反応させて脱フッ化水素を行 ヽ ヘプタフルォロイソブテュルメチルエーテルとし、これを酸化することによって得られ ることが知られている。
[0020] (CF ) C=CF +MeOH → (CF ) CHCF OMe → (CF ) C=CFOMe → (CF )
3 2 2 3 2 2 3 2 3 2
C(OH)-CO Me
2
上記 3,3,3-トリフルォロ- 2-トリフルォロメチル- 2-ヒドロキシフ。ロピオン酸エステル よりエステル部を加水分解して得られる原料のカルボン酸塩としては Li、 K、 Na、 Mg、 Ca、 Sr、 Ba、 Pb、 Cu、 Al、 NHまたは Agの塩等である力 その中で、本発明の方法の
4
原料としては、 Li塩、 K塩、 Na塩、 Ca塩、 Mg塩が好ましぐ Na塩、 K塩がより好ましい。
[0021] 原料のカルボン酸塩は溶媒による抽出などの常法によって精製したものを用いるこ とが出来る力 メチルエステルを KOHや NaOH等アルカリ金属水酸化物で加水分解 した溶液をそのまま用いても良い。過剰に使用したアル力リ水酸ィ匕物はハロゲンとの 反応の際にハロゲンの分解を促進する為、塩酸や硫酸などの酸を用いて中和して使 用しても良い。
[0022] また、前記カルボン酸塩は、原料としてカルボン酸を使用し、反応液中で塩を形成 させてちょい。
[0023] 本ノヽロゲン化反応の溶媒としては水が好まし 、が、その水溶液中に、 3,3,3-トリフル ォロ- 2-トリフルォロメチル- 2-ヒドロキシフ。ロピオン酸エステルよりそのカルボン酸 塩を合成する際に使用されるような有機溶剤、例えば、メタノール、エタノール、ァセト ン、ジ才キサン、テトラヒドロフラン、ァセトニトリルなどが含まれていても特に問題はな い。
[0024] 反応温度は、溶媒の凝固点以上であれば特に制限されないが通常- 20〜100°C程 度で実施可能であるが、 -5〜50°C程度が好ましい。また、反応溶媒が水の場合、反 応温度は凝固点降下により水が凝固しない限り特に制限されず、 20°C程度まで冷 却可能であるが通常- 5〜80°C程度、好ましくは 0〜50°C程度である。反応温度が高 いと望ましくない副反応が起こり、低すぎるとハロゲンまたはハロゲン系酸化剤のロス が多くなる。最適な温度はハロゲンまたはハロゲン系酸化剤にも依存する力 ハロゲ ンまたはハロゲン系酸化剤として塩素を用いる場合、反応温度は 30-50°C程度が好 ましい。
[0025] 反応液中の原料濃度には特に制限はな!/ヽが、 5〜60mass%で実施するのが好まし い。希薄な溶液ではハロゲンの反応効率が悪ぐロスが増える為、濃度が高い方が好 ま 、。カルボン酸塩が飽和して析出して 、る状態でハロゲンをカ卩えても特に問題な く反応は進行する。
ハロゲンまたはハロゲン系酸化剤としては特に制限はないが、ハロゲンとしてフッ素 、塩素、臭素が好適に用いられ、ハロゲン系酸化剤として次亜塩素酸ナトリウム、次 亜塩素酸リチウム、次亜塩素酸カリウム、次亜塩素酸カルシウムなどの次亜塩素酸塩 、次亜臭素酸ナトリウム、次亜臭素酸リチウム、次亜臭素酸カリウム、次亜臭素酸カル シゥム等の次亜臭素酸塩が好適に用いられる。価格が安価なことから、塩素が特に 好適である。塩素は精製されたガスをそのまま用いることも出来るが、反応系中で発 生させながら反応に使用することも出来る。反応系中で塩素を発生させる方法として は、例えばアルカリ金属やアルカリ土類金属の塩ィ匕物を反応系中に加えておき、こ れを電解する等の方法がある。臭素にっ 、ても同様の方法を行うことが出来る。
[0026] ノ、ロゲンとして Fガスを使用する場合、 Fガスはフッ素に対して不活性なガスで希釈
2 2
して使用することが望ましい。希釈ガスとしては窒素、ヘリウム、空気、あるいはハイド 口フルォロアルカン、パーフルォロアルカン、パーフルォロケトンから選択出来るが、 コスト上から窒素が最も好ましい。 Fの濃度は l〜30mass%、好ましくは 4-20mass%で実
2
施するのが好ましい。 F2濃度が高い場合、燃焼等の激しく望まない副反応が起こり やすく危険である。希薄な場合特に問題はないが、希釈ガスによる HFA水和物など の目的物の同伴ロスが大きくなる。
[0027] 反応に使用されるハロゲンまたはハロゲン系酸化剤の量には特に制限はないが、 約 0.5〜約 10モル当量で実施するのが好ましい。より好ましくは約 0.9〜約 2モル当量 である。使用するハロゲンの当量を高くすれば原料の転ィ匕率を向上させることが出来 る。
[0028] ハロゲンまたはハロゲン系酸化剤の添加速度は特に制限がないが、 1当量のハロ ゲンを 0.5時間から 50時間程度の速度、より好ましくは 0.5-10時間程度かけて添加す るのが一般的である。
[0029] 希釈した Fガスを使用する場合、流量は反応器の容量に対して毎分 0.1-5倍、好ま
2
しくは 0.5-2倍の範囲とすることが出来る。流量が大きい場合には Fガスのロスが大き
2
くなる。また、小さい場合には反応時間が長くなり、生産性が悪くなる。塩素ガスの場 合は流量は反応器の容量に対して毎分 0.01〜5倍、好ましくは 0.1〜1倍の範囲とする ことが出来る。なお、臭素では、約 0.5〜約 10モル当量の臭素 (液体)を滴下等により 反応液に加えればょ 、。
[0030] 反応時間には特に制限がなく通常は 0.5時間から 50時間程度で行うことが出来る。
本反応はバッチでも可能である力 原料のカルボン酸溶液及びハロゲンを反応器に 供給しつつ、反応溶液を抜き出すという方法で連続的に行うことも可能である。
[0031] 本反応を行う際の溶液、特に水溶液ないし含水溶液の好ましい pHとしては 3.0〜
13.0であり、より好ましくは 4.0-11.0である。 pHが低いと反応の進行が遅くなり、ハロゲ ンまたはハロゲン系酸化剤のロスが多くなる。また、 pHが高すぎるとアルカリによる、 フルォロアルキルケトンの水和物(特にへキサフルォロアセトン水和物)の分解が進 行する。反応の進行に伴って pHが低下するのを防ぐ為に、反応前あるいは反応中に 適宜アルカリ性の化合物を添加することが好ま ヽ。添加するアルカリとしてはアル力 リ金属あるいはアルカリ土類金属の炭酸塩、炭酸水素塩、セスキ炭酸塩、リン酸塩、 水酸化物等が好ましい。ハロゲンやフルォロアルキルケトンの水和物(特にへキサフ ルォロアセトン水和物)を分解しないため炭酸塩、炭酸水素塩は特に好ましい。アル カリ性ィ匕合物の添加量はハロゲンまたはハロゲン系酸化剤に対して 0.5-5.0当量程度 、好ましくは 1.0-2.0当量程度である。
[0032] ノ、ロゲンとして、塩素または臭素を用いる場合またはハロゲン系酸化剤を使用する 場合、水として緩衝液を用いることもできる。好ましい緩衝液としては、クェン酸塩、リ ン酸塩、コハク酸塩、 Tris塩 (例えば Tris塩酸塩)、ホウ酸塩、酢酸塩、乳酸塩、プロ ピオン酸塩、などの有機酸または無機酸の塩と対応する酸の混合液が例示される。
[0033] 本発明の目的物であるフルォロアルキルケトンの水和物は、公知の方法、例えば、 特開昭 57— 81433号公報に示されるような HFA水和物に塩ィ匕カルシウム等の塩をカロ えて分液させる方法、ある 、はジイソプロピルエーテルやメチル tブチルエーテル等 のエーテル系溶媒で抽出し、有機溶媒と蒸留分離する等の方法で精製することが出 来る。
実施例
[0034] 以下、実施例を挙げて本発明をより詳細に説明する。
参考例 1 : 3, 3,3-トリフルオロ- 2-トリフルォロメチル- 2-ヒドロキシフ。ロピオン酸 K塩水 溶液の調製
500mLの 3口フラスコに 3,3, 3-トリフルォロ- 2-トリフルォロメチル- 2-ヒドロキシフ。口 ピオン酸メチル 79.2g(0.35mol)を仕込み、水 50ml及びメタノール 50mlをカ卩えた後、 40°Cの温浴で加熱'撹拌下、 25%KOH水溶液 166g(0.742mol 2.1当量)をゆっくりと加 えた。 4時間反応した後、反応液を GCで分析し原料のエステルが消失しているのを 確認した。反応液をエバポレーターで濃縮してメタノール及び水を留去し、 154.3gの カリウム塩水溶液を得た。 [0035] 本水溶液を NMR分析で定量した結果、 3,3,3-トリフルォ口- 2-トリフルォロメチル -2- ヒドロキシフ。ロピオン酸カリウム塩濃度は 56.8%であった (87.9g 0.35mol)。
参考例 2: 3, 3,3-トリフルォ口- 2-トリフルォロメチル- 2-ヒドロキシフ。ロピオン酸 Na塩 水溶液の調製
50mLの 3口フラスコに 7.63MNaOH水溶液(8.26ml、 63mmol)をカ卩え、内温 40°Cから 65°Cで 3,3,3-トリフルォロ- 2-トリフルォロメチル- 2-ヒドロキシフ。ロピオン酸メチル 13.6g(60mmol)を 15分かけて滴下し、その後、反応液を 73_74°Cで 3時間加熱還流し た。反応液を GCで分析し原料のエステルが消失しているのを確認した。本水溶液を NMR分析で定量した結果、 3,3,3-トリフルォロ- 2-トリフルォロメチル- 2-ヒドロキシフ。 ロピオン酸ナトリウム塩が 60mmol、定量的に生成していた。
実施例 1〜4 Fによる脱炭酸反応
2
100mlの 4つ口フラスコに、参考例 1で調製した 3,3,3-トリフルォ口- 2-トリフルォロメ チル -2-ヒドロキシプロピオン酸のカリウム塩溶液及び水をカ卩えた。加水分解時に 過剰に使用した KOHの為、混合溶液の pHは 13となった。これに、氷冷'撹拌下、窒 素で 5.7vol%に希釈した F2を吹き込み反応を行った。所定量の F2を流通した後、反応 系を窒素パージした後、反応液を分析した。
結果を下記表 1に示した。
[0036] [表 1]
Figure imgf000010_0001
反応温度 0— 5°Cで行った
[0037] 実施例 5 C1による脱炭酸反応
2
50mlの 3つ口フラスコに、参考例 1で調製した 3,3,3-トリフルォ口- 2-トリフルォロメチ ル- 2-ヒドロキシフ。ロピオン酸カリウム 56.8%溶液 7.85g (17.8mmol)及び炭酸カリウム 2.46g(17.8mmol)を仕込み、水 16gを加えて溶解した。 pHは 13であった。水浴で温度 40°Cに加熱しつつ、攪拌しながら塩素ガスを 20mL/minで 37分間 (33mmol 1.85当量) 吹き込み反応を行った。反応終了時の pHは 6.6であった。原料の転化率は 99.7%、選 択率 99%以上でへキサフルォロアセトン水和物が得られた。
実施例 6 C1による脱炭酸反応
2
50mlの 3つ口フラスコに、参考例 2で調製した 3,3,3-トリフルォ口- 2-トリフルォロメチ ル -2-ヒドロキシフ。ロピオン酸ナトリウム溶液 20mmol及び炭酸ナトリウム
2.12g(20mmol)を仕込み、水 20gを加えて溶解した。 pHは 9.8であった。水浴で温度 40 °Cに加熱しつつ、攪拌しながら塩素ガスを 20mL/minで 29分間 (24.1mmol 1.2当量) 吹き込み反応を行った。この時の pHは 6.9であった。この水溶液に再度炭酸ナトリウム 1.06g(10mmol)をカ卩ぇ溶解した。 pHは 9.1であった。さらに温度 40°Cに加熱しつつ、攪 拌しながら塩素ガス lOmL/minで 22分間(9.2mmol 0.46当量)吹き込み反応を行った 。反応終了時の pHは 6.8であった。原料の転化率は 82%、選択率 99%以上でへキサ フルォロアセトン水和物が得られた。
[0038] 実施例 7 次亜塩素酸塩による脱炭酸反応
100mlの 3つ口フラスコに、参考例 1で調製した 3, 3,3-トリフルォ口- 2-トリフルォロメチ ル- 2-ヒドロキシフ。ロピオン酸カリウム 56.8%溶液 6.52g(14.8mmol)を入れ、ここに 35 %塩酸 1.7g、炭酸水素カリウム 0.8gを順にカ卩ぇ pHを 8とした。次に水浴で 40°Cに加熱 しつつ 10%次亜塩素酸ナトリウム水溶液 24.0g(32.3mmol)を 1時間かけてカ卩え、さらに そのままの温度を保ちながら 5時間攪拌した。反応終了時の pHは 8であった。原料の 転ィ匕率 90%、選択率 99%以上でへキサフルォロアセトン水和物が得られた。
実施例8 臭素による脱炭酸反応
50mlの 3つ口フラスコに、参考例 1で調製した 3,3,3-トリフルォ口- 2-トリフルォロメチ ル- 2-ヒドロキシフ。ロピオン酸カリウム 56.8%溶液 7.59g (17.2mmol)及び炭酸カリウム 4.98g(36mmol)を仕込み、水 25gを加えて溶解した。 pHは 13であった。水浴で温度 40 °Cに加熱しつつ、攪拌しながら臭素 5.75g(36mmol)を 60分かけて滴下した。滴下終了 後、更に同温度で 3時間反応を行い、反応を終了した。反応終了時の pHは 7〜8であ つた。原料の転化率は 64%、選択率 99%以上でへキサフルォロアセトン水和物が得ら れた。
[0039] 実施例 9 100mlの PFAボトルに 3,3,3-トリフルォ口- 2-トリフルォロメチル- 2-ヒドロキシプロピオ ン酸カリゥム塩30.9g (123.6mmol)、KCl 6g(80mmol)を含んだ水溶液 71.7gを入れ、 これに白金電極を通じて 1A(8.0〜8.2V)の直流電流を流した。 9時間電気分解を行 つた後、反応液を NMR分析で定量した結果、反応の転化率は 90%、選択率は 99%以 上であった。尚、反応は室温下で実施したが、反応液の内温は 39〜41°Cであった。 また、反応終了時の pHは?〜 8であった。

Claims

請求の範囲
[1] 一般式 (1) :
[CF (CF ) ][CF (CF ) ]C(0H)C00H (1)
3 2 n 3 2 m
(式中、 n、 mは 0〜10を示す。)で表される化合物の塩をノ、ロゲンまたはハロゲン系酸 ィ匕剤と反応させることを特徴とする一般式 (2):
[CF (CF ) ][CF (CF ) ]C(OH) (2)
3 2 n 3 2 m 2
(式中、 n、 mは 0〜10を示す。)で表される化合物の製造方法。
[2] 一般式 (1)の化合物の塩が 3, 3,3-トリフルオロ- 2-トリフルォロメチル- 2-ヒドロキシフ。
ロピオン酸塩 (n=m=0)であることを特徴とする請求項 1に記載の方法。
[3] ノ、ロゲンまたはハロゲン系酸化剤が不活性ガスで希釈されたフッ素である請求項 1ま たは 2に記載の方法。
[4] ハロゲンまたはハロゲン系酸化剤が塩素である請求項 1または 2に記載の方法。
[5] ノ、ロゲンまたはハロゲン系酸化剤が次亜塩素酸塩ある!/、は次亜臭素酸塩である請 求項 1または 2に記載の方法。
[6] 一般式 (1)の化合物の塩をハロゲンまたはハロゲン系酸化剤と反応させる溶媒が水で あることを特徴とする請求項 1〜5のいずれかに記載の方法。
[7] 一般式 (1)の化合物の塩力 Li塩 ,Κ塩または Na塩であることを特徴とする請求項 1〜6 のいずれかに記載の方法。
[8] ノ、ロゲンまたはハロゲン系酸化剤と反応させるときの溶媒の pHが 4以上である請求項
1〜6のいずれかに記載の方法。
[9] 塩素あるいは臭素を反応系中で発生させることを特徴とする、請求項 1〜8のいずれ かに記載の方法。
PCT/JP2005/006905 2004-04-19 2005-04-08 フルオロアルキルケトンの水和物の製造方法 WO2005102972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800116810A CN1942422B (zh) 2004-04-19 2005-04-08 氟烷基酮的水合物的制造方法
US11/578,523 US7598425B2 (en) 2004-04-19 2005-04-08 Method for producing hydrate of fluoroalkyl ketone
EP05728496A EP1757572A4 (en) 2004-04-19 2005-04-08 PROCESS FOR PRODUCING FLUOROALKYLCETONE HYDRATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004123045A JP4396831B2 (ja) 2004-04-19 2004-04-19 フルオロアルキルケトンの水和物の製造方法
JP2004-123045 2004-04-19

Publications (1)

Publication Number Publication Date
WO2005102972A1 true WO2005102972A1 (ja) 2005-11-03

Family

ID=35196893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006905 WO2005102972A1 (ja) 2004-04-19 2005-04-08 フルオロアルキルケトンの水和物の製造方法

Country Status (5)

Country Link
US (1) US7598425B2 (ja)
EP (1) EP1757572A4 (ja)
JP (1) JP4396831B2 (ja)
CN (1) CN1942422B (ja)
WO (1) WO2005102972A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315609B2 (ja) 2006-06-05 2013-10-16 ダイキン工業株式会社 新規カルボン酸化合物、その用途及びその製造方法
JP5114880B2 (ja) 2006-07-06 2013-01-09 ダイキン工業株式会社 新規α−フルオロメトキシカルボン酸エステル、該α−フルオロメトキシカルボン酸エステルの製造方法及びセボフルランの製造方法
JP2009149591A (ja) * 2007-05-28 2009-07-09 Daikin Ind Ltd フルオロアルキルアルコールの製造方法
JP5163064B2 (ja) 2007-11-13 2013-03-13 ダイキン工業株式会社 新規カルボン酸エステル、その用途及びその製造方法
US9359277B2 (en) 2011-03-22 2016-06-07 Purdue Research Foundation Compositions and processes of preparing and using the same
CN107915581A (zh) * 2017-12-08 2018-04-17 西安近代化学研究所 一种2,2,3,3,3‑五氟丙醇的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335537A (ja) * 1986-07-31 1988-02-16 Nippon Mektron Ltd ヘキサフルオロアセトン水和物の製造法
JPH0769959A (ja) * 1993-08-26 1995-03-14 Kuraray Co Ltd 2−ノルボルナノンの製造方法
JPH08231448A (ja) * 1994-12-06 1996-09-10 Cerestar Holding Bv キシリトールの生成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321515A (en) 1963-04-24 1967-05-23 Du Pont Method of making fluorinated carbonyl compounds
JPS5325521A (en) 1976-08-23 1978-03-09 Dai Ichi Seiyaku Co Ltd Preparation of pantethine
US4334099A (en) 1980-12-18 1982-06-08 Allied Corporation Preparation of hexafluoroacetone from hexafluorothioacetone dimer
US4337361A (en) 1981-02-27 1982-06-29 Allied Corporation Liquid phase synthesis of hexafluoroacetone
US4337362A (en) 1981-06-08 1982-06-29 Allied Corporation Conversion of hexafluorothioacetone dimer into hexafluoroacetone
JPS5862130A (ja) 1981-10-09 1983-04-13 Asahi Glass Co Ltd ヘキサフルオロアセトンの製法
JPS61277645A (ja) 1985-06-03 1986-12-08 Nippon Mektron Ltd ヘキサフルオロアセトンの製造法
JPH0788594B2 (ja) * 1986-07-31 1995-09-27 日本メクトロン株式会社 ヘキサフルオロアセトン水和物の製造法
JPH085823B2 (ja) 1988-02-05 1996-01-24 日本メクトロン株式会社 ヘキサフルオロアセトンまたはその水和物の製造法
JPS6426527U (ja) 1987-08-11 1989-02-15
EP0640579B1 (en) 1993-08-26 1998-04-22 Kuraray Co., Ltd. Process for producing optically active 2-norbornanone
US5466879A (en) 1994-02-28 1995-11-14 Minnesota Mining And Manufacturing Company Production of hexafluoroacetone and its oxime
JP4534274B2 (ja) 1999-09-13 2010-09-01 ユニマテック株式会社 ヘキサフルオロアセトンまたはその水和物の製造法
ATE345321T1 (de) 2001-07-19 2006-12-15 Daikin Ind Ltd Verfahren zur herstellung von hexafluoraceton und dessen hydrat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335537A (ja) * 1986-07-31 1988-02-16 Nippon Mektron Ltd ヘキサフルオロアセトン水和物の製造法
JPH0769959A (ja) * 1993-08-26 1995-03-14 Kuraray Co Ltd 2−ノルボルナノンの製造方法
JPH08231448A (ja) * 1994-12-06 1996-09-10 Cerestar Holding Bv キシリトールの生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1757572A4 *

Also Published As

Publication number Publication date
US20080262273A1 (en) 2008-10-23
JP4396831B2 (ja) 2010-01-13
CN1942422B (zh) 2010-07-07
US7598425B2 (en) 2009-10-06
EP1757572A1 (en) 2007-02-28
JP2005306747A (ja) 2005-11-04
CN1942422A (zh) 2007-04-04
EP1757572A4 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
WO2005102972A1 (ja) フルオロアルキルケトンの水和物の製造方法
BG66150B1 (bg) Междинни съединения при получаване на производни на циклопропилкарбоксилна киселина
JPH0687777A (ja) デスフルランの合成
WO2006046417A1 (ja) 3,3,3-トリフルオロプロピオン酸の製造方法
JP4922152B2 (ja) フッ素化プロリン誘導体の製造方法
JP2004115461A (ja) 3−メチルチオプロパナールの製造方法
JP5375273B2 (ja) 1,3−ジクロロ−1,2,3,3−テトラフルオロ酸化プロピレン及びその製造方法
JP2006298855A (ja) 3,3,3−トリフルオロプロピオン酸の製造方法
JP2009242370A (ja) トルイジン化合物の製造方法
JP2009035508A (ja) 光学活性カルボン酸の製造方法
JP4386881B2 (ja) 3,3,3−トリフルオロプロピオン酸の製造方法
JPWO2008075468A1 (ja) 2−イソプロペニル−5−メチル−4−ヘキセン−1−イル3−メチル−2−ブテノアートの製造方法
JP4371416B2 (ja) 高純度2,4−ジクロロ−3−アルキル−6−tert−ブチルフェノール類およびその製造方法
JP2004137182A (ja) N−アミノピペリジンの製造方法
JPS62132849A (ja) D−またはL−N−t−ブトキシカルボニル−O−ベンジルセリンの製造方法
JP2007055958A (ja) 含窒素化合物の製造方法
JP4482165B2 (ja) シアノベンズアルデヒド化合物の製造法
JP3965787B2 (ja) 2−クロロ−5−ヒドロキシピリジンの製造方法
CN106232572B (zh) 硝基化合物的制造方法
JP5152699B2 (ja) カルボン酸クロリド化合物の製造方法
JP2001288138A (ja) 含フッ素α,β−不飽和カルボン酸の製造方法
JP5003072B2 (ja) 3,3,3−トリフルオロプロピオンアルデヒドの製造方法
JP2004083424A (ja) 6−アシルオキシ−1−アシルインドールの製造方法
JP2004196723A (ja) ω−ヨウ化含フッ素アルキルビニルエーテルの製造方法
JP2005314406A (ja) カルボン酸化合物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580011681.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005728496

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005728496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11578523

Country of ref document: US