WO2005102521A1 - 酸化チタン系光触媒とその製造方法、およびその利用 - Google Patents

酸化チタン系光触媒とその製造方法、およびその利用 Download PDF

Info

Publication number
WO2005102521A1
WO2005102521A1 PCT/JP2005/007451 JP2005007451W WO2005102521A1 WO 2005102521 A1 WO2005102521 A1 WO 2005102521A1 JP 2005007451 W JP2005007451 W JP 2005007451W WO 2005102521 A1 WO2005102521 A1 WO 2005102521A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
visible light
photocatalyst
signal
intensity
Prior art date
Application number
PCT/JP2005/007451
Other languages
English (en)
French (fr)
Inventor
Katsuhiro Nishihara
Yasuhiro Masaki
Tadashi Fukuda
Katsumi Okada
Shinji Shimosaki
Sadanobu Nagaoka
Hideaki Kanno
Kazuomi Azuma
Tadashi Ogasawara
Original Assignee
Sumitomo Metal Industries, Ltd.
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd., Sumitomo Titanium Corporation filed Critical Sumitomo Metal Industries, Ltd.
Priority to US11/578,874 priority Critical patent/US20070248831A1/en
Priority to EP20050734431 priority patent/EP1757365A1/en
Priority to JP2006512542A priority patent/JP4957244B2/ja
Publication of WO2005102521A1 publication Critical patent/WO2005102521A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • Titanium oxide photocatalyst method for producing the same, and use thereof
  • the present invention relates to a highly active visible light responsive titanium oxide photocatalyst capable of exhibiting a photocatalytic action not only by ultraviolet light but also by irradiation with visible light, and a method for producing the same.
  • the present invention also relates to a visible light responsive photocatalyst functional member using the photocatalyst, a method for producing the same, and a dispersion and a coating solution containing the photocatalyst.
  • the bandgap of an anatase-type titanium oxide as a photocatalyst is about 3.2 eV, and it receives ultraviolet rays having a wavelength shorter than about 380 nm to progress reactions such as decomposition of organic substances. Therefore, irradiation of ultraviolet light is indispensable for the expression of the photocatalytic activity, and there is a problem that the installation environment and the use are limited.
  • Japanese Patent Application Laid-Open No. 9-262482 discloses a titanium oxide-based photocatalyst having visible light activity, characterized by ion implantation of vanadium and chromium. Visible light catalytic activity is expressed in titanium oxide having oxygen deficiency, which is described in the Journal of the Chemical Society of Japan, 8, P.1084-1090, 1986, Japanese Patent Application Laid-Open No. 10-146530. Puru.
  • WO 00Z10706 discloses a titanium oxide-based photocatalyst capable of exhibiting visible light activity by providing stable oxygen defects in titanium oxide.
  • JP-A-2001-205103 discloses a photocatalyst having visible light activity by containing nitrogen in titanium oxide crystals.
  • WO03 / 080244 reports a titanium oxide based visible light responsive photocatalyst containing a metal compound such as a metal halide, a metal oxide, or a metal hydroxide. Disclosure of the invention
  • An object of the present invention is to provide an oxide titanium photocatalyst capable of stably exhibiting a high photocatalytic action by visible light, a method of producing the photocatalyst suitable for mass production, and a functional member having the photocatalyst provided on a substrate surface. And a coating liquid.
  • a visible light responsive photocatalyst contains oxygen vacancies and metal ions! /, And therefore, separates electrons and holes (called carriers) into these defects and ions.
  • the photocatalytic activity tends to decrease as soon as recombination occurs via the reaction.
  • charge separation if electrons and Z or holes can be quickly transferred to the surface where chemical reaction occurs, charge recombination will be suppressed and photocatalysis will be accelerated as a whole.
  • the present inventors have conducted studies based on this idea. As a result, by growing titanium oxide crystals, the specific surface area was reduced to 120 m 2 Zg or less, and the amount of hydroxyl groups (OH groups) on the surface was reduced. The inventors have found that when the amount is increased to 600 eqZg (eq: equivalent) or more, high visible light catalytic activity is exhibited, and the present invention has been achieved.
  • the present invention is characterized in that the specific surface area is 120 m 2 Zg or less and the amount of surface hydroxyl groups measured by a fluorine ion adsorption method is 600 eqZg or more.
  • a titanium oxide-based photocatalyst that exhibits photocatalytic activity upon irradiation.
  • the titanium oxide-based photocatalyst of the present invention is a visible light responsive type that exhibits photocatalytic activity upon irradiation with visible light. Visible light is generally light having a wavelength of 400 nm or more.
  • the titanium oxide-based photocatalyst of the present invention has a 400 nm or less It also exhibits photocatalytic activity by ultraviolet light.
  • the specific surface area generally decreases, but the crystallinity of the titanium oxide itself improves, and the efficiency of charge separation increases.
  • the specific surface area is large, the reactive substance is easily adsorbed, so that the catalytic activity generally increases.
  • the decomposition speed becomes slow and the dirt becomes conspicuous.
  • the amount of surface hydroxyl groups of the titanium oxide is 600 eqZg or more.
  • the hydroxyl group density per unit area (m 2 ) of the surface hydroxyl groups is preferably 8 eqZm 2 or more.
  • the hydroxyl group on the surface of the titanium oxide serves as a catalytically active site while capturing carriers generated inside the titanium dioxide.
  • the specific surface area is 120 m 2 Zg or more, or if the surface hydroxyl group content is 600 ⁇ eqZg or less, a highly active visible light responsive photocatalyst cannot be obtained.
  • the specific surface area can be measured by the well-known BET method using nitrogen adsorption.
  • Quantification of hydroxyl groups on the surface of titanium oxide is determined by a fluorine ion adsorption method [for example, H. P. Boehm,
  • a titanium oxide sample is added to a buffer solution containing a certain amount of fluorine ions, and the hydroxyl group on the surface is replaced with fluorine ions to take in the sample. Calculate the amount of hydroxyl group also from the amount of fluorine ion obtained.
  • spectroscopic measurement using FT-IR or the like can be used, but the fluorine ion adsorption method is preferred from the viewpoint of simplicity and reproducibility.
  • the amount of surface hydroxyl groups of the titanium oxide is a value determined by a fluorine ion adsorption method.
  • the hydroxyl group density ( ⁇ eqZm 2 ) of the titanium oxide surface was determined using the surface determined by the above-described method. It is calculated from the amount of the hydroxyl group with (eqZg) and a specific surface area (m 2 Zg).
  • terminal hydroxyl groups There are two types of terminal hydroxyl groups and bridge type hydroxyl groups on the surface of the titanium oxide.
  • the terminal type is a hydroxyl group bonded to one Ti 4+
  • the bridge type is a hydroxyl group bonded to two Ti 4+ .
  • the terminal type hydroxyl group has a property of dissociating as OH— and exhibits the property of a base, so that it is easily bonded to another acid ion.
  • the bridge-type hydroxyl group is strongly polarized by the Ti cation, and the OH bond is loosened, acting as an acid and reacting with amine in the gas phase.
  • the ratio of the terminal type hydroxyl group amount (T) (eqZg) to the bridge type hydroxyl group amount (B) (eqZg) satisfies TZB ⁇ 0.20.
  • Both terminal-type and bridge-type hydroxyl groups on the surface of titanium oxide can be replaced with fluorine in the above-mentioned fluorine ion adsorption method using a buffer as a reaction medium. Therefore, the total amount of surface hydroxyl groups is determined by this method. However, if a non-buffer solution is used instead of a buffer solution as the medium for fluorine ions, the amount of terminal hydroxyl groups will be replaced by S-fluorine ions, so that the amount of terminal surface hydroxyl groups can be determined. Wear. By subtracting the total amount of surface hydroxyl groups from that amount, the amount of bridge type hydroxyl groups can be obtained.
  • the oxygenated titanium contain oxygen vacancies in order to enhance the response to visible light.
  • the oxidized titanium-based photocatalyst of the present invention comprising oxidized titanium having a surface hydroxyl group amount of 600 eq / g or more and a specific surface area of 120 m 2 / g or less is selected from the group consisting of oxidized titanium and its precursor. Is heat-treated in an atmosphere containing a hydrolyzable compound, then brought into contact with water, and further heat-treated at 350 ° C. or higher.
  • the preferred raw material used in this method is a nitrogen-containing base containing an acidic titanium compound and a pH at the end of the reaction.
  • a titanium oxide and a zinc oxide or titanium oxide obtained by a method including neutralization under a condition of not more than a force.
  • the raw material obtained as a precipitate by this method is titanium hydroxide. After drying, it becomes titanium oxide at least incompletely depending on the drying temperature. Therefore, the raw material is one or both of titanium oxide and titanium hydroxide.
  • the visible light responsive titanium oxide photocatalyst according to the present invention can be identified by the following ESR spectrum.
  • the intensity of the main signal of the triplet signal A is larger than that of the main signal of the triplet signal B.
  • the main signal intensity of the triplet signal B is larger.
  • the ratio (lb Zlb) of the intensity lb under visible light irradiation to the intensity lb before visible light irradiation of the main signal of the triplet signal B of this ESR ⁇ vector is larger than 3. Good.
  • the intensity of the main signal of triplet signal B is larger than the intensity of the main signal of triplet signal A.
  • the main signal power of the triplet signal A in the ESR spectrum measured at a temperature of 5 K or less At least two powers of g value power 1.993 to 2.000 and 1.998 to 2.003.
  • the titanium oxide preferably contains one or both of anatase type and rutile type.
  • the method for producing the visible light responsive titanium oxide photocatalyst according to the present invention is not limited to the above method. Titanium oxide having the above specific surface area and amount of surface hydroxyl groups Alternatively, if it is possible to produce titanium oxide having an oxygen vacancy exhibiting an ESR spectrum specified by at least one of the above (1) to (9), other production methods can be adopted.
  • the visible light responsive titanium oxide-based photocatalyst of the present invention can be used in various forms such as a powder, a film (including a thin film), a liquid, and a fiber.
  • the photocatalyst adhered to the surface of the substrate and fixed thereon can be used as a photocatalytic functional member having photocatalytic activity.
  • the photocatalyst functional member has a coating containing the above-mentioned titanium oxide-based photocatalyst in the binder component on the substrate surface, and the content of the titanium oxide-based photocatalyst in the coating is 5 to 95% by mass. That is within the range.
  • the present invention also provides a photocatalyst dispersion liquid and a coating liquid that can be used for producing such a functional member.
  • the visible light responsive photocatalyst functional member of the present invention can be manufactured by a method including applying the coating liquid to a substrate surface.
  • a raw material selected from titanium oxide and its precursor is adhered to the surface of a heat-resistant base material, and the base material is heat-treated in an atmosphere containing a hydrolyzable compound.
  • the visible light responsive photocatalytic functional member of the present invention can also be manufactured by a method characterized by contacting and further heat treating at a temperature of 350 ° C. or more.
  • the above raw materials can be heat-treated in an atmosphere containing a hydrolyzable compound, brought into contact with water, and then adhered to the surface of the heat-resistant substrate, and only the final heat treatment at 350 ° C or higher can be performed on the substrate surface. it can.
  • a visible light responsive high activity titanium oxide based photocatalyst and a photocatalytic functional member exhibiting a high photocatalytic action stably by irradiation with visible light are produced by a method suitable for mass production. Therefore, it can be provided at relatively low cost.
  • FIG. 1 shows ESR spectra of a titanium oxide-based photocatalyst according to the present invention measured at a temperature of 5 K or lower in the atmosphere before visible light irradiation, immediately after irradiation start, and immediately after irradiation stop.
  • FIG. 2 shows a similar ESR ⁇ vector of a commercially available visible light responsive Oxidation titanium-based photocatalyst.
  • FIG. 3 is a graph showing the results of a hydrophilization test in Examples and Comparative Examples. BEST MODE FOR CARRYING OUT THE INVENTION
  • the visible light-responsive titanium oxide-based photocatalyst according to the present invention has a surface hydroxyl group amount of 600 eq / g or more and a specific surface area of 120 m 2 / g or less.
  • the hydroxyl group density is 8 eqZm 2 or more, and the ratio between the terminal type hydroxyl group amount (T) (eqZg) and the bridge type hydroxyl group amount (BX / zeqZg) satisfies the relationship of TZB ⁇ 0.20.
  • the amount of surface hydroxyl groups is preferably 650 ⁇ eqZg or more, more preferably 700 ⁇ eqZg or more.
  • the specific surface area is preferably 100 m 2 Zg or less, more preferably 80 m 2 Zg or less.
  • the lower limit of the specific surface area is preferably 40 m 2 Zg.
  • the hydroxyl group density is more preferably 10 eq / m 2 or more, and the TZB ratio is more preferably 0.25 or more.
  • the structure of the titanium oxide photocatalyst of the present invention may be either crystalline or amorphous, or a mixture of both.
  • possible crystal forms include anatase type, rutile type, and brookite type, and any one of them, or a mixture of two or more thereof may be used.
  • the titanium oxide is preferably crystalline and has a structure of an anatase type and a Z or rutile type.
  • the titanium oxide constituting the photocatalyst of the present invention has the above surface hydroxyl group amount and specific surface area, it contains oxygen-deficient oxidized titanium, oxidized titanium containing lower titanium ions, and nitrogen.
  • oxygen-deficient oxidized titanium oxidized titanium containing lower titanium ions
  • nitrogen any of titanium oxide, rutile-type titanium oxide, and titanium oxide in which these are mixed may be used.
  • Preferred as the visible light responsive type are oxygen deficient type and nitrogen-containing type titanium oxide, particularly those having oxygen deficiency.
  • titanium oxide having both oxygen deficiency and nitrogen-containing characteristics may be used. The presence or absence of oxygen vacancies can be confirmed by ESR.
  • the oxygen deficiency may occur at a temperature of 5K or less, immediately before visible light irradiation, one minute after starting visible light irradiation, and visible light irradiation.
  • the following three types are identified by the change in the ESR spectrum measured at each time point immediately after the stoppage and its g value.
  • the ESR signal attributable to the electrons trapped by this oxygen deficiency consists of a main signalore with a g-value force of 1.993 to 2.003 and g-value forces of 1.976 to 1.982 and 2.010 to 2.02 It is identified by a triplet (triple signal A), which also has two secondary signal forces of 0, whose intensity decreases and disappears when visible light is irradiated, and increases and generates when visible light irradiation is stopped.
  • This oxygen deficiency enhances the photocatalytic activity in order to increase the generation efficiency of electrons and holes by irradiation with visible light.
  • the ESR signal attributed to the electrons trapped in this oxygen vacancy is a major signal with a g-value force of 2.003 to 2.011 and two minor signal forces with g-value forces of 1.982 to 1.988 and 2.018 to 2.028.
  • the intensity increases and is generated when visible light is irradiated, and decreases and disappears when the irradiation of visible light is stopped.
  • This oxygen deficiency enhances the photocatalytic activity in order to increase the generation efficiency of active radical species by electrons * holes generated by irradiation with visible light.
  • titanium oxide has a large number of the oxygen vacancies (a) and (b), and It is advantageous that there are few oxygen vacancies.
  • the abundance ratios of these three types of oxygen vacancies are determined by the major and minor signals of the triplet signals A and B in the ESR spectra measured in air and vacuum at temperatures below 5 K. It can be characterized by changes in intensity before and after visible light irradiation.
  • the triplet signals A and B show the intensity changes shown in the above (1) to (9). These changes in strength indicate that the titanium oxide photocatalyst has a large number of oxygen vacancies in (a) and (b) and a small number of oxygen vacancies in (c). As a result, the generation efficiency of active radical species generated by the irradiation of visible light with oxygen deficiency can be sufficiently increased, and a high visible light responsive photocatalytic activity can be obtained.
  • the above (a) and (b) are oxygen vacancies present in the crystal phase on and near the surface of titanium oxide, and (c) are oxygen vacancies present in the amorphous and crystalline phases in the balta.
  • the preferable Y value is 0.5> Y> 0.
  • is 0.
  • the nitrogen content is preferably within 5 at% of the oxygen content.
  • the titanium oxide photocatalyst of the present invention can be produced by thermally treating titanium oxide or a precursor thereof as a raw material, or by chemical vapor deposition or wet synthesis. Among them, a method of heat-treating titanium oxide or a precursor thereof is preferred.
  • the starting material i.e., titanium oxide
  • the precursor of titanium oxide means a titanium oxide conjugate whose main structure is changed to titanium oxide by heat treatment.
  • Such precursors include titanium hydroxide, hydrous titanium oxide, and various hydrolyzable titanium compounds.
  • Specific examples of the hydrolyzable titanium compound include chlorinated titanium conjugates such as titanium oxide and titanium chloride, titanium alkoxides and partial hydrolysates thereof.
  • the hydrous oxidized titanium also includes titanium sol. Since the boundary between titanium hydroxide and hydrous titanium oxide is unclear, the term “titanium hydroxide” in the present invention includes hydrous titanium oxide.
  • the form may be either amorphous or crystalline, and may be a mixture of these. Preferably, it is sufficiently crystalline. It is a raw material. In the case of containing crystals, the crystals may be of anatase type, rutile type, or a mixture thereof! / ⁇ . High heat treatment! Titanium oxide with photocatalytic activity For this purpose, it is preferable to use a raw material containing at least partially anatase-type titanium oxide.
  • Particularly preferred as a raw material is one or two or more acidic titanyl conjugates such as titanyl sulfate, titanium sulfate and tetrachloride titanium, which are reacted with a nitrogen-containing base such as ammonia or amine. Neutralization is performed under the condition that the pH at the end of the reaction is 7 or less, and then drying is performed. Then, titanium hydroxide and / or titanium oxide (hereinafter collectively referred to as (water) Titanium). If the neutralization proceeds until the pH becomes alkaline, the crystallinity of the raw material decreases.
  • acidic titanyl conjugates such as titanyl sulfate, titanium sulfate and tetrachloride titanium
  • the temperature of the neutralization reaction can be increased, or an aging period can be provided after the neutralization is completed.
  • the end point of the neutralization reaction is adjusted to pH 7 or less, the obtained (aqueous) titanium oxide becomes sufficiently crystalline.
  • a more preferred end point of the neutralization reaction is PH5 or less.
  • the raw material titanium oxide or its precursor is heat-treated in an atmosphere containing a hydrolyzable compound.
  • this heat treatment is also referred to as a first-stage heat treatment.
  • the hydrolyzable compound in the atmosphere is bonded to the surface of the titanium oxide or the precursor.
  • the raw material is titanium oxide
  • its crystallinity can be improved.
  • the precursor can be converted to titanium oxide during this heat treatment, and the crystallinity can be further increased in some cases.
  • complete improvement of the crystallinity of the precursor force to the titanium oxide can also be achieved during the second-stage heat treatment described below.
  • a contact treatment with water is performed to hydrolyze the hydrolyzable conjugate bonded to the raw material surface in the first heat treatment.
  • the hydrolyzable compound bonded to the surface of the raw material changes into a hydroxyl group, so that the amount of surface hydroxyl groups of the titanium oxide finally obtained can be increased.
  • a second heat treatment is performed at a temperature of 350 ° C. or more.
  • the specific surface area is reduced and the crystallinity can be further increased.
  • high photocatalytic activity can be achieved by irradiation with visible light having a low specific surface area and a large amount of surface hydroxyl groups.
  • a titanium oxide-based photocatalyst exhibiting properties is obtained.
  • titanium tetrachloride titanium trichloride
  • titanium chloride such as titanium oxide, titanium sulfate, titanyl sulfate, etc.
  • a hydrolyzable titanium oxide such as other titanium salts such as titanium fluoride and titanium alkoxides such as titanium butoxide and titanium isoproxide.
  • titanium such as SnCl, SiCl, BiCl, etc.
  • the heating temperature in the first heat treatment can be selected from a wide range of 50 to 600 ° C. A more preferred temperature range is 100-400 ° C. If the raw material is a precursor of titanium oxide, an elevated (e.g., 200 ° C or higher) temperature is used to convert the precursor to titanium oxide at least incompletely, and preferably to further crystallize during this heat treatment. It is preferable to select
  • the temperature of the first heat treatment is too low, the reaction between the raw material and the hydrolyzable compound does not sufficiently occur, and the amount of surface hydroxyl groups may not be able to be increased. If the heat treatment temperature is too high, the titanium oxide may be excessively reduced and the photocatalytic activity may decrease.
  • the atmosphere in which the hydrolyzable compound is contained is not particularly limited! For example, one or more of hydrogen, argon, nitrogen, carbon monoxide, ammonia, oxygen, steam, nitric oxide, nitrogen dioxide, air, steam and the like can be used. That is, the atmosphere may be any of oxidizing, reducing, and inert atmospheres. An air (atmosphere) atmosphere is sufficient from a cost perspective.
  • the content of the hydrolyzable compound in the atmosphere is preferably not more than 10 vol%, which is limited by the ambient temperature and the vapor pressure of the compound.
  • the lower limit of the content is not particularly limited, but if the content is too low, the amount of the hydrolyzable compound bonded to the surface of the raw material decreases, so that the content is preferably O.lvol% or more, more preferably O.lvol% or more. It is more than .5vol%.
  • the raw material that has been subjected to the first-stage heat treatment is subsequently brought into contact with water to hydrolyze the hydrolyzable conjugate bonded to the surface to convert it into OH groups.
  • This contact treatment can be performed by immersing the raw material in water and allowing it to stand or stirred. Or with water spray Another method may be used.
  • the water used may be pure water or may contain a nitrogen-containing base such as ammonia. At this time, it is possible to perform the treatment under heating or cooling in which the room temperature is sufficient. Further, the contact treatment with water can be performed by a method of heating the raw material in an atmosphere containing a component generating steam or water.
  • the raw material that has been brought into contact with water is dried if necessary, and then subjected to the following second-stage heat treatment to obtain the visible light-responsive titanium oxide-based photocatalyst according to the present invention.
  • the second heat treatment is performed, if necessary, in order to completely change the raw material to titanium oxide and to enhance its crystallinity.
  • the atmosphere of the second heat treatment may be any of an oxygen-containing atmosphere including an air atmosphere as long as it is non-reducing, a vacuum, and an inert atmosphere.
  • a reducing atmosphere is not preferred because it tends to reduce photocatalytic activity. Moisture is contained in the atmosphere.
  • the atmosphere containing oxygen is more effective in increasing the activity of the catalyst, and therefore the preferred atmosphere is an oxygen-containing atmosphere.
  • the oxygen concentration in the atmosphere is in the range of 1 to: LOOvol%, preferably 20 vol% or more. The higher the oxygen concentration, the more the catalyst tends to be more active.
  • a base gas nitrogen, argon, or the like may be used.
  • the oxygen-containing atmosphere may be air or a mixed gas atmosphere of air and oxygen.
  • a reducing gas such as hydrogen can be mixed with the atmosphere.
  • the oxygen in the atmosphere reacts with the reducing gas by the catalytic action of the titanium oxide surface to generate highly active water, which modifies the surface of the titanium oxide to provide a high hydroxyl group density of the present invention. May give a photocatalyst.
  • the temperature of the second stage heat treatment is 350 ° C or higher, preferably 400 ° C or higher, and the upper limit is preferably 600 ° C or lower for the same reason as in the first stage heat treatment. If the heat treatment temperature is lower than 350 ° C, the specific surface area of the product will be high and the surface hydroxyl density will be low. On the other hand, if the heat treatment temperature is too high, the amount of hydroxyl groups becomes low, and titanium oxide cannot have sufficient visible light catalytic activity.
  • the preferred heat treatment temperature for the second stage is 400-500 ° C.
  • the heat treatment time depends on the temperature and the type of the raw material (whether it is a precursor or titanium oxide), but is usually within 30 minutes to 6 hours.
  • the visible light-responsive type iridani-titanium-based photocatalyst according to the present invention which has a specific surface area of 120 m 2 / g or less and an amount of surface hydroxyl groups of 600 ⁇ eq / g or more and also has an iridescent titanium power, comprises: It may be supported on a substance which is not substantially subjected to the photocatalytic action of titanium dioxide, for example, silica, alumina, zeolite, inert titanium and the like. Further, a co-catalyst such as a noble metal such as platinum, ruthenium, and noradium can be doped for the purpose of improving the efficiency of the reaction.
  • a co-catalyst such as a noble metal such as platinum, ruthenium, and noradium can be doped for the purpose of improving the efficiency of the reaction.
  • the shape of the photocatalyst includes a particle shape, a fiber shape, a thin film shape and the like, and it is preferable to use the photocatalyst properly according to the application.
  • a fine powder force of about several nanometers can have a particle size of about several tens of millimeters, and the size and form are not limited.
  • a thin film it is generally fixed on a substrate, but the thickness and the like are not limited.
  • a catalyst such as a thin film or a fibrous material is formed into an arbitrary shape, it is preferable to add a molding aid / binder and the like to the titanium oxide-based photocatalyst particles of the present invention.
  • the titanium oxide photocatalyst of the present invention can be used as a photocatalyst functional member by attaching and fixing the titanium oxide photocatalyst to the substrate surface.
  • the form of the fixing layer is not particularly limited as long as it can be performed according to the surface shape and use of the substrate, but is typically a film (including a thin film).
  • the base material metal materials such as carbon steel, plating steel, chromate treated steel, enamel, stainless steel, aluminum, titanium, and aluminum; inorganic materials such as ceramic, glass, ceramics, and quartz; plastics; Any material such as an organic material such as activated carbon may be used. Further, a composite material of these, for example, a coated steel plate may be used. However, when a substrate made of an organic material is used as a whole or on the surface, it may be degraded or decomposed due to the oxidizing power of the photocatalyst.In such a case, use a material that is not decomposed by the photocatalyst. Cover in advance.
  • the shape of the substrate is not particularly limited, and may be any shape such as a thin plate, a thick plate, a fibrous shape (including a knitted fabric and a nonwoven fabric), a net shape, and a tubular shape. It may be an object with a complicated shape that can be used as a product as it is, or an existing or in-use object.
  • the surface of the substrate may be porous or dense.
  • the method for producing the visible light responsive photocatalyst functional member of the present invention includes (1) a dispersion or coating in which particles of the visible light responsive titanium oxide photocatalyst according to the present invention are dispersed in a solvent. (2) After applying titanium oxide or its precursor before heat treatment to the substrate, apply the same treatment as described for the photocatalyst manufacturing method to the substrate surface. The method can be carried out in the following manner.
  • the coating liquid used in the method (1) may consist essentially of only a photocatalyst and a dispersion medium (medium), but preferably contains a binder.
  • the titanium oxide-based photocatalyst produced by the above-described method is very easily aggregated because the average primary particle system is generally as fine as several nm to 100 nm.
  • the diameter of the formed condensate becomes as large as several tens / z m, and it is difficult to uniformly disperse the condensate in the medium.
  • the titanium oxide photocatalyst particles are sufficiently dispersed in a medium in advance to prepare a dispersion of the photocatalyst particles. It is preferable to prepare a coating liquid by using this dispersion liquid and adding a binder thereto. In this case, a thinner and more uniform photocatalytic film can be formed, and film characteristics and photocatalytic activity are improved.
  • the average particle diameter of the photocatalyst in the dispersion is preferably 500 nm or less. If the particle size is larger than the above range, powdering of the film and storage stability are reduced.
  • the average particle size of the photocatalyst is more preferably 300 nm or less, and even more preferably 200 nm.
  • the medium in which the photocatalyst particles are dispersed includes water such as distilled water, ion-exchanged water, and ultrapure water; alcohols such as methanol, ethanol, and 2-propanol; ketones such as methylethyl ketone; And aromatic hydrocarbons such as toluene and xylene. As long as they are compatible with each other, these two or more solvents may be used as a mixture.
  • the dispersion treatment is preferably performed by mixing the photocatalyst with a medium such that the solid content concentration is in the range of several mass% to 30 mass%. If the solid content is outside this range, the dispersibility may decrease. If necessary, a dispersant or a deflocculant may be added.
  • the dispersing agent include those of the carbon type and the sulfone type.
  • the peptization include acids such as hydrochloric acid and sulfuric acid. Also A base or an acid may be added for pH adjustment.
  • the dispersion treatment can be performed using a paint shaker that is commonly used for preparing a coating solution.
  • a more powerful method such as a media mill, shearing using a rotary blade, thin-film turning, and ultrasonic waves can be used. It is preferable to use a suitable dispersing means. You may use a combination of two or more dispersing methods!
  • the obtained dispersion contains aggregated coarse particles, it is preferable to remove them by filtration or centrifugation. This is because the coarse particles easily become a starting point of peeling and powdering in the film.
  • a solvent is added to the dispersion liquid after the dispersion treatment to adjust the solid content concentration.
  • This dispersion can be used as it is as a coating liquid and applied to a substrate.
  • the photocatalyst becomes fine particles having an average particle diameter of 500 nm or less, it is possible to form a film without a binder, and it is possible to form a film in which substantially only the photocatalyst particles are powerful.
  • a binder solution may be applied thereon to impregnate the photocatalyst particles with the binder.
  • a preferred coating liquid further contains a binder in addition to the photocatalyst and the medium.
  • the medium may be the same as described for the dispersion above, but is selected so that the binder dissolves or emulsifies.
  • the amount of the binder is adjusted so that the content of the titanium oxide photocatalyst in the resulting film is 5 to 95% by mass.
  • a film having a photocatalyst content of less than 5% by mass shows almost no photocatalytic activity upon irradiation with visible light. If the content exceeds 95% by mass, the amount of the binder component is too small, the film forming property is deteriorated, and the film is easily peeled.
  • the content of the photocatalyst is preferably 30 to 90% by mass, and is more preferably 50% by mass or more to obtain sufficient photocatalytic activity.
  • binder component examples include silica, alumina, titania, magnesia, zirconia, and other metal oxide sols (which become gels in the film), organosilane hydrides, and silicone resins.
  • Organic resins such as fat, fluorine resin, urethane resin, and acrylic resin can be used.
  • a metal oxidizing substance which is hardly decomposable, such as a sol or a silicone resin.
  • an appropriate amount of an organic resin such as a fluorine resin, an acrylic resin, or a urethane resin is added to the hardly decomposable binder component. , Required characteristics can be secured.
  • the binder component is silica (eg, silica sol), hydrolyzing an organic silane compound.
  • Silicon compounds such as Z condensate and silicone resin.
  • Silica is a silica sol (silica colloid) formed by the hydrolysis and condensation of kei dai ester (eg, ethyl silicate).
  • organic silane conjugate a film-forming hydrolyzable organic silane compound, for example, an alkoxysilane-silane coupling agent can be used.
  • the coating liquid contains other components other than the above!
  • examples of such other components include a titanium oxide-based photocatalyst that is not a visible light responsive type (eg, a conventional titanium oxide-based photocatalyst) and a carrier when the photocatalyst is a carrier particle.
  • a component such as a coloring material (preferably, an inorganic pigment) may be contained in the film.
  • the application of the coating liquid can be selected from various known methods according to the properties of the coating liquid and the shape of the substrate. After application, the coating film is dried (if necessary, further cured) while heating, if necessary.
  • the drying (curing) temperature may be determined according to the composition of the coating liquid (a type of solvent or binder), the heat-resistant temperature of the substrate, and the like.
  • the thickness of the photocatalyst-containing film formed on the substrate is preferably 0.5 ⁇ m or more. If the coating is thinner than 0.5 m, the amount of photocatalyst is too small and the photocatalytic activity by visible light irradiation is very low.
  • the thickness of the film can be appropriately selected depending on the required catalyst performance and cost, but is preferably 3 m or more, more preferably 5 m or more, from the viewpoint of stability of the catalyst performance and catalytic activity. .
  • the upper limit of the thickness is not particularly limited, but is 30 ⁇ m or less, preferably 25 ⁇ m or less in consideration of saturation of the cost effect.
  • the second method for producing a photocatalyst functional member includes a process similar to that of producing the photocatalyst particles of the present invention, in which titanium oxide and Z as a raw material or a precursor thereof are attached in advance to the surface of a base material. That is, the first-stage heat treatment in an atmosphere containing a hydrolyzable compound, In this method, the contact treatment and the second-stage heat treatment at 350 ° C or more are sequentially performed. Since heat treatment is performed on the substrate surface, use a heat-resistant substrate (eg, metal or ceramic) that can withstand it.
  • a heat-resistant substrate eg, metal or ceramic
  • the adhesion of titanium oxide and Z or a precursor thereof to the surface of the base material is performed by preparing a coating liquid containing titanium oxide and a raw material which also has a precursor power. It can be carried out by coating and drying in the same manner as described above. In the next step, it is necessary to heat-treat the adhered raw material, so that it is desirable to reduce the amount of force or the amount of binder not used.
  • a preferred method of adhesion is to prepare a solution-type coating solution in which a partially hydrolyzed titanium conjugate (e.g., a partially hydrolyzed titanium alkoxide) or a titanium sol is dissolved in a solvent, and apply this to the substrate surface.
  • a coating solution prepared from particles of titanium oxide or an insoluble precursor thereof and a titanium sol of a binder is used, and substantially only titanium oxide and Z or a precursor thereof are used.
  • a strong film is formed on the substrate surface.
  • the method of attaching titanium oxide and Z or its precursor to the substrate surface is not limited to the above-mentioned coating method. The operation is complicated and the cost is high.
  • the well-known gas-phase film forming method such as CVD and PVD is used. May be used.
  • the first-stage heat treatment in an atmosphere containing a hydrolyzable compound in an atmosphere containing a hydrolyzable compound, the subsequent contact treatment with water, and the final
  • the photocatalyst raw material on the surface of the substrate becomes a visible light responsive titanium oxide photocatalyst, and the photocatalytic functional member of the present invention is obtained. If the deposit does not contain solder, or if the film strength is insufficient, a coating containing noinder can be applied later to increase the film strength.
  • Particles obtained by subjecting the raw material to only the first-stage heat treatment may be attached to the base material.
  • the contact treatment with water and the adhesion to the substrate can be performed at the same time.
  • a second stage heat treatment is performed on the substrate, and if necessary, a binder is added.
  • the photocatalytic functional member of the present invention can be manufactured.
  • the titanium oxide-based photocatalyst and photocatalyst functional member of the present invention described above exhibit a photocatalytic action by irradiating not only ultraviolet light but also visible light having a wavelength of 400 nm or more, and various harmful effects are exhibited. It has an excellent effect on decomposing, removing and detoxifying substances and attached substances.
  • the photocatalyst can be used in an environment in which the photocatalyst can be brought into contact with a substance to be decomposed and at the same time the photocatalyst can be irradiated with visible light.
  • Any light source that contains visible light of at least 400 nm can be used, such as sunlight, a fluorescent lamp, a halogen lamp, a black light, a xenon lamp, and a mercury lamp.
  • the harmful substances include, but are not limited to, gases contained in the atmosphere such as NOx, SOx, chlorofluorocarbon, ammonia, and hydrogen sulfide; aldehydes, amines, mercaptans, and alcohols. , BTX, phenols, etc .; organic halogen compounds such as trihalomethane, trichloroethylene, chlorofluorocarbon; various pesticides such as herbicides, fungicides, insecticides; various biological oxygen demanding substances such as proteins and amino acids; Surfactants; inorganic compounds such as cyanide conjugates and sulfur compounds; various heavy metal ions; and microorganisms such as bacteria, actinomycetes, fungi, and algae.
  • gases contained in the atmosphere such as NOx, SOx, chlorofluorocarbon, ammonia, and hydrogen sulfide
  • the attached substance means a substance directly attached to the surface of the photocatalyst or the photocatalytic functional member, and includes bacteria such as Escherichia coli, staphylococci, Pseudomonas aeruginosa, mold, oil, tobacco key, fingerprints, rain streaks, and mud. It is exemplified.
  • Hydrogen gas was introduced into the apparatus, and the raw material powder was brought into contact with the raw material powder for 20 minutes to perform a first heat treatment to bind the titanium powder to the surface of the powder. Thereafter, the inside of the system was replaced with argon gas, and the system was gradually cooled to room temperature. After the pre-treatment was washed with water, the second stage heat treatment was performed for 2 hours under the conditions shown in Table 1 to produce a titanium oxide-based photocatalyst of the present invention. Washing was performed by pouring the powder into water, stirring, filtering, and drying at 80 ° C. Two types of heat treatment equipment were used: a matsufur furnace and a kiln furnace. Kiln furnaces tend to supply more oxygen than Matsufur furnaces.
  • the ESR ⁇ vector was measured under the following conditions immediately before starting, immediately after starting visible light irradiation, and immediately after stopping visible light irradiation.
  • Measuring device J-Electron X-band (9GHz band) electron spin resonance device ([ES-RE2X),
  • Magnetic field modulation width 0.05mT
  • Amplification rate 500 times, Delay time: 0.1 seconds,
  • Microwave power 0.1mW.
  • the detected ESR signal is a differential signal
  • the difference between the maximum value and the minimum value of the differential signal is regarded as the ESR signal intensity, and the intensity is determined in the same way as the signal intensity of the third Mn marker. It was standardized by the ratio.
  • the ESR signal intensity of triplet signal A is smaller immediately after the start of irradiation than before or immediately after the stop of the irradiation.
  • the ESR signal intensity of signal B is greater immediately after the start of irradiation than before or immediately after the irradiation is stopped.
  • a sample (0.3 g) was placed on a 40 mm square dish, placed in a quartz reaction cell, connected to a closed circulation line (total internal volume of about 3.8 L), and diluted with nitrogen gas containing 20 vol% oxygen.
  • Rudealdehyde (about 240 ppm) was introduced into the system.
  • Light was irradiated from a 250 W high-pressure mercury lamp through a UV cut filter (L42, manufactured by Toshiba) while circulating gas. Due to the characteristics of the filter, this light contains near-ultraviolet light with a wavelength of only 390 nm or more and a power of 400 nm. In this region, there is no emission line of a mercury lamp, and thus almost all visible light with a wavelength of 400 nm or more.
  • the main signal of triplet signal A (g value 1.993 to 2.003) and the triplet signal: the main signal of triplet signal: the main signal of 6 ⁇ value 2.003 to 2.011)
  • Table 1 shows the rate of change (i.e., Ic / Ic and Id / Id) relative to the signal intensity immediately after the start of irradiation (Id, for triplet signal B), along with the photocatalytic activity measurement results.
  • the change rate of the ESR signal intensity immediately after the stop of the irradiation before the irradiation with the visible light is the change rate of the main signal intensity of the triplet signal A in the atmosphere (la / la, A2 in Table 1).
  • Photocatalytic activity increased when A3) was greater than 0.4 (preferably greater than 0.6) and the rate of change in vacuum was greater than the rate of change in air.
  • the change rate of the ESR signal intensity immediately after the stop of the irradiation during the irradiation with visible light is the change rate of the main signal intensity of the triplet signal B in the atmosphere (lb / lb, B2 in Table 1).
  • the hydrogen gas to be introduced into the apparatus was brought into contact with the raw material powder for 20 minutes, and the first heat treatment was performed to bind the titanium powder to the surface of the powder. After that, the inside of the system is replaced with argon gas again. And slowly cooled to room temperature. The removed powder was put into water at room temperature and stirred to hydrolyze the group bonded to the powder surface to change it into a hydroxyl group. Then the powder was filtered off and dried at 80 ° C. The powder was subjected to a second-stage heat treatment at 450 ° C. for 2 hours in the air using a Matsufuru furnace to produce a titanium oxide photocatalyst of the present invention.
  • the sample after the force heat treatment which was titanium oxide mainly composed of anatase crystals, also contained rutile crystals. Furthermore, in the ESR measurement of the heat-treated sample at 5K or less, two types of triplet signals A and B derived from oxygen vacancies were observed, confirming that they had oxygen vacancies.
  • the ESR sturtle of this photocatalyst was the same as Test No. 2 of Example 1.
  • the amount of surface hydroxyl groups of the titanium oxide obtained by the second-stage heat treatment was determined by the following fluorine ion adsorption method (the method described in HP Boehm, Angew. Chem., 78, 617 (1966)). For reference, Satoko.
  • a 40 cm 3 solution of 0.01 M NaF in 0.2 M acetic acid—0.2 M sodium acetate buffer (pH 4.6) was prepared in a resin bottle.
  • To this solution was added the above-mentioned titanium oxide powder sample O.lg, and the mixture was stirred for 24 hours. After filtration, the concentration of fluorine ions in the filtrate was measured using a fluorine ion electrode and an ion meter.
  • the amount of hydroxyl-substituted fluorine (eq) in the sample was determined, and that amount was used as the amount of hydroxyl groups per catalyst lg (eq), and the amount of surface hydroxyl groups (eqZg) was calculated.
  • the surface hydroxyl group amount (total hydroxyl group amount) of the oxidized titanium was 822 ⁇ eqZg, and the terminal hydroxyl group amount (T) was 190 eqZg. Therefore, the bridge type hydroxyl group amount (B) was 632 / zeqZg from the difference between the two.
  • the ratio of the two hydroxyl groups (TZB) was calculated to be 0.30.
  • the specific surface area of the titanium oxide measured by the BET method was 49 m 2 Zg. Surface hydroxyl Based on the amount of the group and the specific surface area, the surface hydroxyl group density was 16.8 eqZm 2 .
  • Example 2 Using a commercially available visible light responsive titanium oxide photocatalyst powder (Comparative Example 1) and titanium oxide manufactured by Nippon Aerosil (P25X Comparative Example 2), the amount of surface hydroxyl groups and the specific surface area were measured by the method described in Example 2. . Further, their photocatalytic activities were measured by an acetaldehyde decomposition test described in Example 1. The results are shown in Table 2.
  • the heat treatment temperature of the second stage was 400 ° C (No. 2), 450 ° C (No. 3), 500 ° C (No. A titanium oxide photocatalyst was prepared in the same manner as in No. 1, except that the procedure was changed to .4).
  • the titanium oxide photocatalyst was prepared by treating the raw material powder of (water) oxidized titanium prepared in No. 1 in the same manner as in No. 1 except that the heat treatment temperature in the second stage was changed to 300 ° C. did.
  • the raw material powder of (aqueous) titanium oxide prepared in No. l was treated in the same manner as No. l except that the second stage heat treatment was performed in an argon atmosphere at 300 ° C without contacting with water. Thus, a titanium oxide-based photocatalyst was prepared.
  • the raw material powder of (water) titanium oxide prepared in No. l was treated in the same manner as No. l except that the second heat treatment was performed in an argon atmosphere at 450 ° C without contacting with water.
  • a titanium oxide-based photocatalyst was prepared.
  • This example illustrates the production of the photocatalytic functional member of the present invention.
  • Example 2 20 parts of the titanium oxide photocatalyst prepared in Example 2 was dispersed in 180 parts of distilled water together with zirconia beads having a diameter of 0.1 mm to obtain a photocatalyst having a solid content of 10%. A dispersion was prepared. The particle size of the titanium oxide-based photocatalyst in this dispersion was measured using a particle size analyzer (LA700) manufactured by HORIBA, Ltd. and found to be about 140 nm. The average particle size of the photocatalyst particles before the dispersion treatment was about 15 m.
  • LA700 particle size analyzer manufactured by HORIBA, Ltd.
  • This coating solution was applied to a coated steel sheet as follows to produce a photocatalytic functional steel sheet.
  • a commercially available silicone resin-based primer layer with a thickness of 0.8 m was formed on a painted steel plate (thickness 0.3 mm, polyester coating).
  • the coating solution of the present invention is applied on the primer layer using a roll coater, and dried at 200 ° C. for 1 minute to contain the titanium oxide-based photocatalyst of the present invention on a coated steel plate of a substrate.
  • a photocatalytic functional steel sheet having a rough coating was obtained.
  • the thickness of the film was about 1 ⁇ m.
  • a conventional titanium oxide photocatalyst powder (ultraviolet type, specifically, ST01 manufactured by Ishihara Sangyo Co., Ltd.) was used as the titanium oxide photocatalyst powder, and the photocatalyst dispersion liquid, the coating liquid, and the photocatalytic function were used as in Example 4.
  • a steel plate was manufactured. Furthermore, using this photocatalytic functional steel sheet, an acetoaldehyde decomposition test and a hydrophilization test were similarly performed under visible light irradiation.o

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

 可視光応答型の高活性の酸化チタン系光触媒が、酸性チタン化合物をアンモニアまたはアミンにより終点pHが7以下となる条件で中和して得た(水)酸化チタン原料を、加水分解性化合物を含む雰囲気で熱処理した後、水と接触させ、さらに350°C以上の温度で熱処理することにより製造される。得られた酸化チタン系光触媒は、比表面積が120m2/g以下で、かつ表面水酸基の量が600μeq/g以上の酸化チタンからなる。好ましくは、表面水酸基の密度が8μeq/m2以上で、表面水酸基のターミナル型水酸基量(T)とブリッジ型水酸基量(B)の比がT/B≧0.20である。この酸化チタン系光触媒は、主スペクトルのg値が1.993~2.003および2.003~2.011の2種類の三重線シグナルを有するESRスペクトルを有し、これらのシグナルの可視光照射前、照射中および照射停止直後の強度比が従来品と異なることでも同定される。

Description

明 細 書
酸化チタン系光触媒とその製造方法、およびその利用
技術分野
[0001] 本発明は、紫外光のみならず、可視光の照射によっても光触媒作用を発揮しうる、 高活性の可視光応答型酸ィ匕チタン系光触媒とその製造方法に関する。本発明はま た、この光触媒を利用した可視光応答型の光触媒機能部材とその製造方法、ならび にこの光触媒を含有する分散液およびコーティング液にも関する。
背景技術
[0002] 近年、酸化チタンが示す光触媒作用は、防臭、抗菌、防汚など多様な環境浄化技 術に応用されている。光触媒として一般的なアナターゼ型酸ィ匕チタンのバンドギヤッ プは約 3.2eVであり、波長約 380nmより短波長の紫外線を受けて有機物の分解作 用などの反応を進行させる。したがって、その光触媒活性の発現には紫外線の照射 が不可欠であり、設置環境、用途などが限定される問題点があった。
[0003] 光触媒のエネルギー源として太陽光線や室内光に多く存在する可視光が利用でき れば、反応活性は強化され、様々な場所での光触媒の利用が可能となる。そこで、 可視光によって光触媒活性を発現する可視光応答型光触媒材料の開発が進められ ている。
[0004] 例えば、特開平 9— 262482号公報には、バナジウム、クロムをイオン注入したこと を特徴とする、可視光活性を有する酸化チタン系光触媒が示されている。可視光触 媒活性は酸素欠陥を有する酸ィ匕チタンにおいて発現されることが、日本化学会誌, 8 , P.1084— 1090, 1986年ゃ特開平 10— 146530号公報など【こ記載されて!ヽる。こ れに関連して、 WO 00Z10706号公報〖こは、酸ィ匕チタン中に安定した酸素欠陥を 与えることによって可視光活性を発現可能にした、酸化チタン系光触媒が報告され ている。さらに、特開 2001— 205103号公報には、酸化チタン結晶中に窒素を含有 させることにより可視光活性を持たせた光触媒が開示されている。 WO03/080244 号公報には、金属ハロゲン化物、金属酸化物、金属水酸化物などの金属化合物を 含有させた酸ィヒチタン系可視光応答型光触媒が報告されている。 発明の開示
[0005] 酸化チタンに金属イオンや酸素欠陥を導入することは、酸化チタン系光触媒の可 視光応答化の目的には有効である。しかし、他方で、これらは電子、正孔の分離を伴 う光触媒反応を失活させる起点となるため、光触媒活性の発現の悪化や、光触媒活 性自体の低下を生ずることがある。
[0006] また、金属ハロゲンィ匕物や金属水酸ィ匕物を含有させた酸ィ匕チタンでは、製造時の 処理温度が低いため、比表面積が大きぐ結晶性はそれほど高くない。そのため、分 解対象物をよく吸着するもの、分解力が十分でないという問題点がある。特に、付着 汚れの場合、吸着性が高いため、光触媒に汚れがつき易い。この汚れの分解には、 照射条件にもよるが、相当の時間を要するため、防汚性が低くなる可能性がある。
[0007] 本発明の課題は、可視光によって高い光触媒作用を安定的に発現できる酸ィ匕チタ ン系光触媒と、量産に適したその製造方法、その光触媒を基材表面に設けた機能部 材及びコーティング液を提供することにある。
[0008] 可視光応答型光触媒では、前述のように、酸素欠陥や金属イオンを含んで!/、るた め、ー且分離した電子と正孔 (キャリアと呼ぶ)力 それらの欠陥やイオンを経由して再 結合を起こしやすぐ光触媒活性が低くなる傾向がある。電荷分離した直後に、電子 および Zまたは正孔を素早く化学反応が起こる表面まで移動させることができれば、 電荷再結合は抑えられ、全体として光触媒反応が促進されると考えられる。
[0009] 本発明者らは、この着想に基づいて検討した結果、酸化チタンの結晶を成長させる ことにより、比表面積を 120m2Zg以下と小さくし、且つ表面の水酸基 (OH基)の量を 600 eqZg(eq:等量)以上に増大させると、高い可視光触媒活性が発現されること を見出し、本発明に到達した。
[0010] ここに、本発明は、比表面積が 120m2Zg以下で、かつフッ素イオン吸着法で測定 した表面水酸基の量が 600 eqZg以上の酸ィ匕チタン力もなることを特徴する、可視 光の照射により光触媒活性を発現する酸化チタン系光触媒である。
[0011] 本発明の酸化チタン系光触媒は、可視光の照射により光触媒活性を発現する可視 光応答型である。可視光とは一般的には波長 400nm以上の光である。本発明の酸 化チタン系光触媒は、可視光だけなぐ通常の酸ィ匕チタンと同様に、 400nm以下の 紫外線によっても光触媒活性を発現する。
[0012] 酸化チタンを熱処理すると、一般に比表面積は減少するが、一方で酸化チタン自 体の結晶性は向上して、電荷分離の効率が高くなる。比表面積が大きいと、反応基 質を吸着しやすくなるので、一般に触媒活性は高まる。しかし、汚れなどの分解に対 しては、特に光量が低い場合、分解速度が遅くなつて、逆に汚れが目立つようになる 。熱処理により酸ィ匕チタンの比表面積を 120m2/g以下とすることで、結晶性が高く なり、かつ比表面積も適度で、バランス良く光触媒作用を利用することができ、防汚 目的の場合に汚れが目立たなくなる。
[0013] さらに、本発明の酸化チタン系触媒では、酸化チタンの表面水酸基の量が 600 e qZg以上である。この表面水酸基の単位面積 (m2)あたりの水酸基密度は 8 eqZm 2以上とすることが好ましい。酸ィ匕チタン表面の水酸基は、酸ィ匕チタン内部で生成した キャリアを捕捉すると同時に、触媒活性サイトとして機能する。限られた比表面積をも つ反応表面において、水酸基の量を増大させ、好ましくは水酸基密度も増大させるこ とにより、電荷分離で生成したキャリアを効率よく捕捉することができる。このサイトと同 一あるいは極力近いサイトで光触媒反応が起こることにより、反応を確実に進行させ 、光触媒活性を増進させることができる。
[0014] 比表面積が 120m2Zg以上である力 または表面水酸基量が 600 μ eqZg以下で あると、高活性な可視光応答型光触媒にはならない。
比表面積の測定は、周知の窒素吸着による BET法で行うことができる。
[0015] 酸ィ匕チタン表面の水酸基の定量は、フッ素イオン吸着法 [例えば、 H. P. Boehm,
Angew. Chem., 78, 617 (1966)参照]により行うことができる。この方法では、実施例に 詳述するように、一定量のフッ素イオンを含有させた緩衝液に酸ィ匕チタン試料を加え 、表面の水酸基がフッ素イオンに置換されることを利用して、取り込まれたフッ素ィォ ン量カも水酸基の量を求める。この方法以外に、 FT— IRなどによる分光測定なども 利用できるが、簡便性や再現性などの点から、フッ素イオン吸着法が好ましい。本発 明における酸ィ匕チタンの表面水酸基の量は、フッ素イオン吸着法で求めた値である
[0016] 酸化チタン表面の水酸基密度 ( μ eqZm2)は、前述の方法でそれぞれ求めた表面 水酸基量 ( eqZg)と比表面積 (m2Zg)とから算出される。
酸ィ匕チタンの表面水酸基にはターミナル型とブリッジ型の 2種類がある。ターミナル 型は 1個の Ti4+と結合した水酸基であり、ブリッジ型は 2個の Ti4+と結合した水酸基で ある。ターミナル型水酸基は OH—として解離する性質を持ち、塩基の性質を示すので 、他の酸ァ-オンと結合し易い。一方、ブリッジ型水酸基は Tiカチオンにより強く極性 化されていて、 O— Hの結合が弛み、酸として作用し、気相中のァミンと反応する。
[0017] 本発明の好適態様では、ターミナル型水酸基量 (T)( eqZg)とブリッジ型水酸基 量 (B)( eqZg)との比が、 TZB≥0.20を満たす。それにより、可視光触媒活性がさ らに改善され、また、液中への分散性が優れた酸ィ匕チタンになる。
[0018] その理由は現時点では定かでないが、通常熱処理を加えると、熱的に不安定なタ 一ミナル型水酸基は消失しやすぐ熱的に安定で酸点として機能するブリッジ型水酸 基が触媒表面に多く残ることが知られている。本発明の光触媒では、塩基点として機 能するターミナル型水酸基が多く残ることで、活性点の多様性が増し、中途生成物の 分解が促進されるため、全体としての光触媒活性が高まると考えられる。
[0019] 酸ィ匕チタン表面のターミナル型とブリッジ型のいずれの水酸基も、前述した緩衝液 を反応媒質とするフッ素イオン吸着法においてフッ素に置換可能である。従って、こ の方法により、表面水酸基の総量が定量される。しかし、フッ素イオンの媒質として、 緩衝液ではなぐ非緩衝液を用いて同様に定量すると、ターミナル型の水酸基だけ 力 Sフッ素イオンに置換されるので、ターミナル型の表面水酸基量を定量することがで きる。その量を表面水酸基の総量力も差し引くと、ブリッジ型の水酸基量を求めること ができる。
[0020] 酸ィ匕チタンには、可視光への応答性を高めるために、酸素欠陥を含有させることが 好ましい。
表面水酸基量が 600 eq/g以上で、比表面積が 120m2/g以下の酸ィ匕チタンか らなる本発明の酸ィ匕チタン系光触媒は、酸ィ匕チタンおよびその前駆体力 選ばれた 原料を、加水分解性化合物を含む雰囲気で熱処理した後、水と接触させ、さらに 35 0°C以上の温度で熱処理することを含む方法により製造することができる。この方法 に使用する好ましい原料は、酸性チタン化合物を含窒素塩基で、反応終了時の pH 力^以下となる条件で中和することを含む方法により得られた酸ィ匕チタンおよび Zま たは水酸ィ匕チタンである。この方法で沈殿として得られる原料は水酸ィ匕チタンである 力 その後に乾燥すると、乾燥温度によっては少なくとも不完全に酸ィ匕チタンになる。 従って、原料は酸ィ匕チタンと水酸ィ匕チタンの一方または両方でょ 、。
[0021] 上記方法により製造された酸素欠陥を有する酸ィ匕チタン系光触媒について、 5K以 下の温度で ESRスペクトルを測定したところ、次に説明するような、酸素欠陥に由来 する新規な ESR (電子スピン共鳴)スペクトルを示すことが判明した。従って、本発明 に係る可視光応答型の酸化チタン系光触媒は、下記の ESRスペクトルによって特定 することができる。
[0022] (1)5K以下の温度で可視光照射前に測定した ESRスペクトルにおいて、 g値が 1.9 93〜2.003の主シグナノレと g値力 .976〜1.982および 2.010〜2.020の二つの畐 IJ シグナルとからなる第一の三重線 (トリプレット) (この三重線を本発明では三重線シグ ナル Aという)が観測される。この ESR ^ベクトルにはさらに、 g値力 .003〜2.011の 主シグナルと g値が 1.982〜1.988ぉょび2.018〜2.028のニっの副シグナルとから なる第二の三重線 (三重線シグナル Bという)も同時に観測される。即ち、酸化チタン 力 三重線シグナル Aと三重線シグナル Bでそれぞれ同定される二種類の酸素欠陥 を有するという特徴を示す。この ESRスペクトルにおいて、三重線シグナル Aの主シ グナルの強度の方が三重線シグナル Bの主シグナルの強度より大き!/ヽと!、うのも別の 特徴である。従来品では、三重線シグナル Bの主シグナル強度の方が大きい。
[0023] (2)5K以下の温度で可視光照射下に測定した ESRスペクトルでは、三重線シグナ ル Αの主シグナルおよび二つの副シグナルの各強度力 V、ずれも可視光照射前の 強度より小さいか、あるいはシグナルが観測されない。一方、この ESRスペクトルの三 重線シグナル Bの主シグナルおよび二つの副シグナルの各強度は、 、ずれも可視光 照射前の強度より大きい。
[0024] (3)大気中 5K以下の温度で測定した ESRスペクトルの三重線シグナル Aの主シグ ナルの可視光照射前の強度 laに対する可視光照射下での強度 laの比率 (la /la )
0 1 1 0 は 0.4より小さい。一方、この ESR ^ベクトルの三重線シグナル Bの主シグナルの可 視光照射前の強度 lbに対する可視光照射下での強度 lbの比率 (lb Zlb )は 3より大 きい。
[0025] (4)5K以下の温度で可視光照射下に測定した ESRスペクトルにおいて、三重線シ グナル Aの主シグナルの強度より三重線シグナル Bの主シグナルの強度の方が大き い。
(5)5K以下の温度で可視光照射停止直後に測定した ESRスペクトルでは、三重線 シグナル Αの主シグナルおよび二つの副シグナルの各強度は、 、ずれも可視光照 射下での強度より大きい。一方、この ESRスペクトルの三重線シグナル Bの主シグナ ルおよび二つの副シグナルの各強度は、 V、ずれも可視光照射下の強度より小さ!/、。
[0026] (6)大気中 5K以下の温度で測定した ESRスペクトルにおいて、三重線シグナル A の主シグナルの可視光照射前の強度 laに対する可視光照射停止直後の強度 laの
0 2 比率 (la /la )が 0.3より大きぐかつ真空中 5K以下の温度で測定した三重線シグナ
2 0
ル Aの主シグナルの可視光照射前の強度 Icに対する可視光停止直後の強度 Icの
0 2 比率 (Ic /Ic )が 0.4より大きい。また、大気中での比率 la /laより真空中での比率 Ic
2 0 2 0
/Icの方が大きい。
2 0
[0027] (7)大気中 5K以下の温度で測定した ESRスペクトルにおいて、三重線シグナル B の主シグナルの可視光照射下の強度 lbに対する可視光照射停止直後の強度 lbの
1 2 比率 (lb /lb )力 より小さく、かつ真空中 5K以下の温度で測定した三重線シグナ
2 1
ル Bの主シグナルの可視光照射下の強度 Idに対する可視光停止直後の強度 Idの
1 2 比率 (Id /Id )が 0.45より小さい。
2 1
[0028] (8)5K以下の温度で測定した ESRスペクトルの三重線シグナル Aの主シグナル力 少なくとも g値力 1.993〜2.000および 1.998〜2.003の 2つシグナノレ力らなる。
[0029] (9)5K以下の温度で測定した ESRスペクトルの三重線シグナル Bの主シグナル力 少なくとも g値力 2.003〜2.0045、 2.004〜2.006、 2.0065~2.0085,および 2.0
09〜2.011の 4つのシグナルからなる。
[0030] 酸化チタンの結晶形については、酸化チタンがアナターゼ型とルチル型のいずれ か一方または両方を含むことが好ま 、。
本発明に係る可視光応答型の酸ィ匕チタン系光触媒の製造方法は上記方法に制限 されるものではな 、。前述した比表面積および表面水酸基の量を有する酸化チタン 、あるいは上記 (1)〜(9)の少なくとも 1つで特定される ESRスペクトルを示す酸素欠陥 を有する酸化チタン、を生成することができれば、他の製造方法を採用することもでき る。
[0031] 本発明の可視光応答型酸化チタン系光触媒は、粉末状、皮膜状 (薄膜を含む)、液 状、繊維状など様々な形態で利用できる。特に、この光触媒を基材表面に付着させ て固定ィ匕したものは、光触媒活性を有する光触媒機能部材として利用することができ る。
[0032] 好ま 、光触媒機能部材は、バインダー成分中に上記酸ィ匕チタン系光触媒を含有 する皮膜を基材表面に有し、皮膜中の酸化チタン系光触媒の含有量が 5〜95質量 %の範囲内であるものである。
[0033] 本発明は、またこのような機能部材を製造するのに利用できる光触媒分散液ならび にコ一ティング液も提供する。
本発明の可視光応答型の光触媒機能部材は、前記コーティング液を基材表面に 塗布することを含む方法により製造することができる。別の方法として、酸化チタンお よびその前駆体力ゝら選ばれた原料を耐熱性基材の表面に付着させた後、基材を、加 水分解性化合物を含む雰囲気で熱処理した後、水と接触させ、さらに 350°C以上の 温度で熱処理することを特徴とする方法によっても、本発明の可視光応答型の光触 媒機能部材を製造することができる。上記原料を、加水分解性化合物を含む雰囲気 で熱処理し、水と接触させてから、耐熱性基材の表面に付着させ、最後の 350°C以 上の熱処理だけを基材表面で行うこともできる。
[0034] 本発明によれば、可視光の照射により高い光触媒作用を安定して示す可視光応答 型の高活性の酸ィ匕チタン系光触媒および光触媒機能部材を、量産に適した方法で 製造して、比較的安価に提供することが可能となる。
図面の簡単な説明
[0035] [図 1]大気中 5K以下の温度で、可視光照射前、照射開始直後および照射停止直後 に測定された本発明に係る酸化チタン系光触媒の ESRスペクトルを示す。
[図 2]市販の可視光応答型酸ィ匕チタン系光触媒の同様の ESR ^ベクトルを示す。
[図 3]実施例および比較例における親水化試験の結果を示すグラフである。 発明を実施するための最良の形態
[0036] 1側面において、本発明に係る可視光応答型の酸化チタン系光触媒は、表面水酸 基量が 600 eq/g以上で、かつ比表面積が 120m2/g以下である。好ましくは、水 酸基密度が 8 eqZm2以上であり、ターミナル型水酸基量 (T)( eqZg)とブリッジ型 水酸基量 (BX/z eqZg)との比が TZB≥0.20の関係を満たす。
[0037] 表面水酸基量は好ましくは 650 μ eqZg以上、より好ましくは 700 μ eqZg以上で ある。比表面積は好ましくは 100m2Zg以下であり、より好ましくは 80m2Zg以下であ る。比表面積の下限は好ましくは 40m2Zgである。水酸基密度はより好ましくは 10 eq/m2以上であり、 TZB比はより好ましくは 0.25以上である。
[0038] 本発明の酸ィ匕チタン系光触媒の構造は結晶質でも非晶質でのいずれでもよぐま たその両方が混在したものでもよい。結晶質を含む場合、可能な結晶形にはアナタ ーゼ型、ルチル型、ブルッカイト型があり、そのいずれか 1種でも、また 2種以上が混 在したものであってもよい。最も高い可視光触媒活性を得るには、酸ィ匕チタンは結晶 質であって、その構造はアナターゼ型および Zまたはルチル型であるのが好まし 、。
[0039] 本発明の光触媒を構成する酸化チタンは、上記の表面水酸基量と比表面積を有 する限り、酸素欠陥型酸ィ匕チタン、低次チタンイオンを含んだ酸ィ匕チタン、窒素を含 有した酸化チタン、あるいはルチル型酸ィ匕チタン、これらが混在した酸化チタンなど のいずれでもよい。可視光応答型として好ましいのは、酸素欠陥型と窒素含有型酸 化チタンであり、特に酸素欠陥を有するものが好ましい。もちろん、酸素欠陥と窒素 含有の両方の特徴を備える酸化チタンでもよい。酸素欠陥の有無は ESRなどによつ て確認できる。
[0040] 酸化チタン系光触媒が酸素欠陥を有する酸化チタンから構成される場合、酸素欠 陥としては、 5K以下の温度で、可視光照射直前、可視光照射開始 1分後、および可 視光照射停止直後の各時点で測定した ESRスペクトルの変化及びその g値で同定さ れる下記の三種類がある。
[0041] (a)可視光照射によって電子を放出し、可視光照射を停止すると再び電子を捕獲す る特徴を有する酸素欠陥。この酸素欠陥に捕獲された電子に帰属される ESR信号 は、 g値力 1.993〜2.003の主シグナノレと g値力 1.976〜1.982および 2.010〜2.02 0の二つの副シグナル力もなる三重線 (三重線シグナル A)によって同定され、その強 度は可視光を照射すると減少 ·消失し、可視光照射を停止すると逆に増大 ·生成する 。この酸素欠陥は、可視光照射による電子,正孔の生成効率を高めるため、光触媒 活性を強化する。
[0042] (b)可視光照射によって電子を捕獲し、可視光照射を停止すると再び電子を放出す る特徴を有する酸素欠陥。この酸素欠陥に捕獲された電子に帰属される ESR信号 は、 g値力 2.003〜2.011の主シグナノレと g値力 1.982〜1.988および 2.018〜2.02 8の二つの副シグナル力 なる三重線 (三重線シグナル B)によって同定され、その強 度は可視光を照射すると増大 ·生成し、可視光照射を停止すると逆に減少 ·消失する 。この酸素欠陥は、可視光照射によって生成された電子 *正孔による活性ラジカル種 の生成効率を高めるために、光触媒活性を強化する。
[0043] (c)可視光照射によって電子を捕獲するが、可視光照射を停止しても電子を放出し ない特徴を有する酸素欠陥。この酸素欠陥に捕獲された電子に帰属される ESR信 号は、(b)と同じ g値を持つ三重線 (三重線シグナル B)によって同定される力 その強 度は可視光を照射すると増大 *生成するが、可視光照射しても減少 *消失しにくい。こ の酸素欠陥は、可視光照射によって生成された電子 '正孔による活性ラジカル種の 生成効率を下げるために、光触媒活性を阻害する。
[0044] 従って、酸素欠陥に起因する可視光応答型の光触媒活性を高めるためには、酸ィ匕 チタンが、上記 (a)および (b)の酸素欠陥を多く保有し、上記 (c)の酸素欠陥が少ないこ とが有利である。詳細は実施例で示すが、これらの 3種類の酸素欠陥の存在比は、 5 K以下の温度での大気中および真空中で測定した ESRスペクトルの三重線シグナ ル Aおよび Bの主および副シグナルの可視光照射前後における強度変化によって特 徴づけることが可能である。
[0045] 本発明の酸化チタン光触媒は、三重線シグナル Aおよび Bが前述した (1)〜(9)に示 す強度変化を示す。これらの強度変化は、この酸ィ匕チタン系光触媒が、上記 (a)およ び (b)の酸素欠陥が多ぐ上記 (c)の酸素欠陥は少ないことを示している。その結果、 酸素欠陥が可視光照射によって生成した活性ラジカル種の生成効率を十分に高め ることができ、高い可視光応答型光触媒活性をもたらす。 [0046] 上記 (a)及び (b)は酸化チタンの表面および表面近傍の結晶相に存在する酸素欠 陥、そして (c)はバルタ中の非晶質相や結晶相に存在する酸素欠陥であると考えられ る。酸ィ匕チタン系光触媒の表面及び表面近傍が結晶相であって、ほとんどの酸素欠 陥がこの表面近傍の結晶相に存在すれば、可視光照射による電子'正孔の生成、光 触媒活性発現点までの電子 ·正孔の移動、光触媒活性発現点での活性ラジカル種 の生成がすべて表面もしくは表面近傍で行われるため、全体としての光触媒反応効 率が上がり、高い光触媒活性を実現できると考えられる。
[0047] 酸素欠陥型酸ィ匕チタン、低次チタンイオンを含んだ酸ィ匕チタン、これらが混在した 酸化チタンを全体として TiO としたとき、好ましい Y値は 0.5 >Y>0である。 Υが 0.
(2-Υ)
5より大きくなると、触媒内部に不活性点が多くなるため、光触媒活性は殆どなくなる 。窒素含有型酸化チタンの場合、窒素の含有量は酸素含有量の 5at%以内が好まし い。
[0048] 本発明の酸ィ匕チタン系光触媒は、原料となる酸化チタンまたはその前駆体を熱処 理するか、あるいは化学蒸着や湿式合成などによって製造することができる。中でも 、酸化チタンまたはその前駆体を熱処理する方法が好ま ヽ。
[0049] 原料の酸ィ匕チタンは、上述した酸素欠陥型をはじめとする各種の酸ィ匕チタンを包 含する。酸化チタンの前駆体とは、熱処理により、主構造が酸化チタンに変化するチ タンィ匕合物を意味する。このような前駆体は、水酸化チタン、含水酸化チタン、ならび に各種の加水分解性のチタン化合物を包含する。加水分解性チタン化合物の具体 例としては、チタンォキシクロライドや塩ィ匕チタンといった塩素化チタンィ匕合物、チタ ンアルコキシドおよびその部分加水分解物などが挙げられる。含水酸ィ匕チタンには、 チタ-ァゾルも包含される。なお、水酸ィ匕チタンと含水酸ィ匕チタンとの境界は不明確 であるので、本発明にお!/、て「水酸化チタン」とは含水酸化チタンも包含するものとす る。
[0050] 原料が酸ィ匕チタンまたは水酸ィ匕チタンである場合、その形態は非晶質でも結晶質 のいずれでもよぐこれらが混合したものでもよいが、好ましいのは十分に結晶質の原 料である。結晶質を含む場合、結晶はアナターゼ型、ルチル型、或いはそれらが混 在したものであってもよ!/ヽ。熱処理によって高!ヽ光触媒活性を有する酸化チタンとす るには、少なくとも部分的にはアナターゼ型の酸ィ匕チタンを含有する原料を用いるこ とが好ましい。
[0051] 原料として特に好ましいのは、硫酸チタニル、硫酸チタン、四塩ィ匕チタンのような 1 種または 2種以上の酸性のチタンィ匕合物を、アンモニアまたはァミンのような含窒素 塩基により、反応終了時の pHが 7以下となる条件で中和し、その後に乾燥することに より得られた水酸ィ匕チタン、酸化チタンまたはその両者 (以下、これらをまとめて (水) 酸ィ匕チタンと表記する)である。中和を pHがアルカリ性になるまで進めると、原料の結 晶性が低下する。
[0052] 原料を十分に結晶質とするために、中和反応の温度を高くしたり、あるいは中和終 了後に熟成期間を設けることができる。中和反応の終点を pH7以下とすると、得られ る (水)酸ィ匕チタンが十分に結晶質となる。より好ましい中和反応の終点は PH5以下で ある。また、中和をアンモニアゃァミンといった含窒素塩基を用いて行うことにより、ァ ルカリ金属やアルカリ土類金属といった金属の光触媒への混入を避けることができる
[0053] 原料の酸化チタンまたはその前駆体を、加水分解性化合物を含む雰囲気中で熱 処理する。以下では、この熱処理を第一段の熱処理とも言う。この熱処理により、雰 囲気中の加水分解性化合物が酸化チタンまたは前駆体の表面に結合する。また、原 料が酸ィ匕チタンである場合には、その結晶性を高めることができる。原料が酸化チタ ンの前駆体である場合には、この熱処理中に前駆体を酸化チタンに転化させ、場合 によりさらに結晶性も高めることができる。しかし、前駆体力も酸ィ匕チタンへの完全な 転ィ匕ゃ結晶性の向上は、後述する第二段の熱処理中にぉ 、ても達成しうる。
[0054] 第一段の熱処理後に水との接触処理を行って、第一段の熱処理で原料表面に結 合させた加水分解性ィ匕合物を加水分解させる。それにより、原料の表面に結合した 加水分解性化合物は水酸基に変化するので、最終的に得られる酸化チタンの表面 水酸基量を高めることができる。
[0055] 水との接触処理後に、 350°C以上の温度で第二段の熱処理を行う。この最終熱処 理により、比表面積は低下する力 結晶性はさらに高めることができる。こうして、本発 明に係る、低比表面積で表面水酸基量が大きぐ可視光の照射により高い光触媒活 性を示す酸化チタン系光触媒が得られる。
[0056] 第一段の熱処理において雰囲気中に含有させる加水分解性化合物としては、四塩 化チタン、三塩ィ匕チタン、チタンォキシクロライドなどのチタン塩ィ匕物、硫酸チタン、硫 酸チタニル、フッ化チタンなどの他のチタン塩、チタンブトキシド、チタンイソプロキシ ドなどのチタンアルコキシドといった加水分解性のチタンィ匕合物を利用することが好 ましい。し力し、 SnCl、 SiCl、 BiClなどの、チタン以外の元素のハロゲン化物や他
4 4 4
の加水分解性化合物も使用できる。熱処理温度において十分な量が蒸発するような 蒸気圧を示す加水分解性化合物を使用する。
[0057] 第一段の熱処理における加熱温度は 50〜600°Cの広 、範囲力 選択することが できる。より好ましい温度範囲は 100〜400°Cである。原料が酸化チタンの前駆体で ある場合には、この熱処理中に前駆体を少なくとも不完全に酸化チタンに転化させ、 好ましくはさらに結晶化させるように、高め (例えば、 200°C以上)の温度を選択するこ とが好ましい。
[0058] 第一段の熱処理の温度が低すぎると、原料と加水分解性化合物との反応が十分に 起こらず、表面水酸基量を増大させることができない場合がある。熱処理温度が高す ぎると、酸化チタンが過度に還元され、光触媒活性が低下することがある。
[0059] 加水分解性化合物を含有させる雰囲気は特に制限されな!、。例えば、水素、アル ゴン、窒素、一酸化炭素、アンモニア、酸素、水蒸気、酸化窒素、二酸化窒素、空気 、水蒸気等の 1種または 2種以上とすることができる。即ち、酸化性、還元性、不活性 のいずれの雰囲気でもよい。コスト面からは空気 (大気)雰囲気で十分である。雰囲気 中の加水分解性化合物の含有率は、雰囲気温度やその化合物の蒸気圧によって制 限される力 おおむね 10vol%以下とすることが好ましい。この含有率の下限も特に 制限されるものではないが、含有率が低すぎると、原料表面に結合する加水分解性 化合物の量が少なくなるので、好ましくは O.lvol%以上、より好ましくは O.5vol%以 上である。
[0060] 第一段の熱処理を施した原料を、続ヽて水と接触させ、表面に結合した加水分解 性ィ匕合物を加水分解させて、 OH基に変化させる。この接触処理は、水中に原料を 浸漬して、静置または攪拌することにより実施することができる。あるいは、水の散布と いった別の方法でもよい。使用する水は、純水でもよいが、アンモニアなどの含窒素 塩基を含有させてもよい。この時の処理温度は室温で十分である力 加温下または 冷却下で処理を行うことも可能である。また、水蒸気または水を発生する成分を含有 する雰囲気中で原料を加熱する方法により、水との接触処理を行うこともできる。
[0061] 水と接触させた原料は、必要に応じて乾燥してから、次の第二段の熱処理を施し、 本発明に係る可視光応答型酸化チタン系光触媒を得る。第二段の熱処理は、必要 に応じて、原料を完全に酸ィ匕チタンに変化させるとともに、その結晶性を高めるため に行う。
[0062] 第二段の熱処理の雰囲気は非還元性であればよぐ大気雰囲気を含む酸素含有 雰囲気、真空、不活性雰囲気のいずれでもよい。還元性雰囲気は光触媒活性を低 下させる傾向があるので好ましくな 、。雰囲気中に水分が含まれて 、てもよ 、。
[0063] ただし、第二段の熱処理の場合、雰囲気が酸素を含有する方が触媒の高活性ィ匕 に有効であるので、好ましい雰囲気は酸素含有雰囲気である。その場合の雰囲気の 酸素濃度は 1〜: LOOvol%の範囲でよぐ好ましくは 20vol%以上である。酸素濃度が 高いほど、触媒が高活性ィ匕する傾向にある。ベースガスとしては窒素、アルゴンなど を用いればよい。もちろん、酸素含有雰囲気は空気または空気と酸素との混合ガス 雰囲気であってもよい。
[0064] 酸素含有雰囲気の場合には、水素などの還元性ガスを雰囲気に混ぜることができ る。その場合、酸化チタン表面の触媒作用によって雰囲気中の酸素と還元性ガスと が反応し、高活性な水が生成し、これが酸ィ匕チタンの表面を改質して、水酸基密度 の高い本発明の光触媒を与えることがある。
[0065] 第二段の熱処理の温度は 350°C以上、好ましくは 400°C以上であり、上限は第一 段の熱処理と同様の理由で 600°C以下とすることが好ましい。熱処理温度が 350°C より低いと、生成物の比表面積が高くなり、表面水酸基密度が低くなる。一方、熱処 理温度が高すぎると、水酸基量が低くなり、酸化チタンには十分な可視光触媒活性 が付与できない。第二段の好ましい熱処理温度は 400〜500°Cである。熱処理時間 は、温度や原料の種類 (前駆体であるか、酸ィ匕チタンであるか)にも依存するが、通常 30分〜 6時間以内である。 [0066] 比表面積が 120m2/g以下で、表面水酸基の量が 600 μ eq/g以上の酸ィ匕チタン 力もなる、本発明に係る可視光応答型の酸ィ匕チタン系光触媒は、酸ィ匕チタンによる 光触媒作用を実質的に受けることがない物質、例えば、シリカ、アルミナ、ゼォライト、 不活性なチタ-ァなど、に担持してもよい。また、反応の効率向上などを目的に、白 金、ルテニウム、ノラジウムなどの貴金属類などの助触媒をドープさせることもできる。
[0067] 光触媒の形状は、粒子状、繊維状、薄膜状などが挙げられ、用途に応じて使い分 けるのが好ましい。粒子状の場合、数ナノメートル程度の微粉末力も数十ミリメートル 程度の造粒体までの粒径が可能であり、その大きさ、形態などは限定されない。薄膜 の場合、基材の上に固定することが一般的であるが、その厚みなどは限定されない。 薄膜や繊維状など触媒を任意の形に成形する場合は、本発明の酸化チタン系光触 媒の粒子にカ卩えて、成形助材ゃバインダーなどを添加することが望ましい。これらの 添カロによって、その薄膜の厚みや繊維径を増したり、また膜や繊維の強度、加工性 などを上げることが可能である。
[0068] 本発明の酸ィ匕チタン系光触媒は、これを基材表面に付着させて固定ィ匕することに より、光触媒機能部材として利用することができる。固定ィ匕の形態は、基材の表面形 状や用途などに応じて行えばよぐ特に限定されないが、代表的には皮膜 (薄膜を含 む)である。
[0069] 基材としては、炭素鋼、メツキ鋼、クロメート処理鋼、琺瑯、ステンレス、アルミ、チタ ン、アルミニウムなどの金属材料、セラミック、ガラス、陶磁器、石英などの無機材料、 プラスチック、榭脂、活性炭などの有機材料など、その材質はいずれでもよい。又こ れらが複合した材料、例えば塗装鋼板などであってもよい。ただし全体又は表面が 有機材料の基材を用いるときは、光触媒の酸化力により劣化ないし分解することがあ るので、そのような場合には、基材表面を、光触媒で分解しない材料を用いて予め被 覆しておく。
[0070] 基材の形状も特に限定されず、薄板、厚板、繊維状 (編織物、不織布を含む)、網状 、筒状など、任意の形状でよい。そのまま製品として使用されるような複雑な形状の物 体、さらには既設または使用中の物体であってもよい。基材の表面は、多孔質でも、 緻密質でもよい。 [0071] 本発明の可視光応答型光触媒機能部材の製造方法については、(1)本発明に係 る可視光応答型酸化チタン系光触媒の粒子を溶媒中に分散させた分散液またはコ 一ティング液を基材に塗布する方法、または (2)熱処理前の酸ィ匕チタンまたはその前 駆体を基材に付着させた後、光触媒の製造方法に関して述べたのと同様の処理を 基材表面で行う方法、によって製造することができる。
[0072] 上記 (1)の方法に用いるコーティング液は、実質的に光触媒と分散媒 (媒質)のみか らなるものでもよ 、が、好ましくはバインダーを含有する。
本発明の酸ィ匕チタン系光触媒を単に媒質およびバインダーと十分に混合すること によりコーティング液を調製することも可能である。しかし、上述した方法では製造さ れた酸ィ匕チタン系光触媒は、一般に平均一次粒子系が数 nmから百 nmと微細であ るため、非常に凝集し易い。凝集が起こると、生成した凝縮体の径は数十/ z mと大き くなり、媒質中に均質に分散させることが困難となる。
[0073] そのため、本発明の好適態様においては、酸化チタン系光触媒の粒子を予め媒質 中で十分に分散処理して、光触媒粒子の分散液を調製する。この分散液を利用して 、これにバインダーを含有させることによりコーティング液を調製することが好ましい。 こうすると、より薄くより均質な光触媒皮膜の形成が可能となり、皮膜特性や光触媒活 性が向上する。
[0074] 分散液中の光触媒の平均粒子径 (凝集体の粒子径)は、 500nm以下であることが 好ましい。この粒子径より大きいと、皮膜の粉化や保存安定性が低下する。光触媒の 平均粒子径は、より好ましくは 300nm以下、さらに一層好ましくは 200nmである。
[0075] 光触媒粒子を分散させる媒質としては、蒸留水、イオン交換水、超純水などの水;メ タノール、エタノール、 2—プロパノールなどのアルコール類;メチルェチルケトンなど のケトン類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、などが挙げられ る。互いに相溶性であれば、これらの 2以上の溶媒を混合して使用してもよい。
[0076] 分散処理は、光触媒を固形分濃度が数質量%〜30質量%の範囲となるように媒 質と混合して行うことが好ましい。固形分濃度がこの範囲外では、分散性が低下する ことがある。必要に応じて、分散剤や解膠剤を添加してもよい。分散剤としてはカルボ -ル系、スルホン系のもの力 解膠割としては塩酸、硫酸などの酸が例示される。また 、 pH調整のため、塩基や酸を添カ卩してもよい。
[0077] 分散処理は、コーティング液の調製に慣用されているペイントシェーカーを用いて 行うこともできるが、例えば、メディアミル、回転刃を用いた剪断、薄膜旋回、超音波と いった、より強力な分散手段により実施することが好ましい。 2種以上の分散手段を組 み合わせて利用してもよ!、。
[0078] 得られた分散液が凝集した粗大粒子を含んで ヽる場合、それらを濾過または遠心 分離によって除去することが好ましい。粗大粒子は、皮膜中で剥離ゃ粉ィ匕の起点と なり易いからである。分散処理後の分散液に溶媒を加えて、固形分濃度を調整する ことちでさる。
[0079] この分散液をそのままコーティング液として使用し、基材に塗布することもできる。光 触媒が平均粒子径 500nm以下の微粒子になると、ノ インダーがなくても皮膜形成が 可能となり、実質的に光触媒粒子のみ力 なる皮膜を形成することができる。しかし、 そのままでは皮膜強度と密着性が低いので、その上にバインダー溶液を塗布して、 光触媒の粒子問にバインダーを含浸させてもよい。
[0080] 好ましいコーティング液は、光触媒と媒質に加え、さらにバインダーを含有する。媒 質は、上記の分散液に対して述べたものと同様でよいが、バインダーが溶解または 乳化するように選択する。上記の酸化チタン系光触媒を含有する分散液にバインダ 一を混合することによってコーティング液を調製すると、光触媒粒子の分散性に優れ 、保存安定性が良好で、光触媒活性の高い皮膜を形成できるコーティング液を得る ことができる。
[0081] ノインダ一の量は、生成する皮膜中の酸ィ匕チタン系光触媒の含有量が 5〜95質量 %となるように調整する。光触媒の含有量が 5質量%未満の皮膜は、可視光照射に よる光触媒活性をほとんど示さない。この含有量が 95質量%を超えると、バインダー 成分が少なすぎて成膜性が悪化し、皮膜が剥離し易くなる。光触媒の含有量は好ま しくは 30〜90質量%であり、光触媒活性を十分に得るには 50質量%以上であること 力 り好ましい。
[0082] バインダー成分としては、シリカ、アルミナ、チタ二了、マグネシア、ジルコ-ァなどの 金属酸ィ匕物ゾル (皮膜中ではゲルになる)、有機シランィ匕合物、ならびにシリコーン榭 脂、フッ素榭脂、ウレタン榭脂、アクリル榭脂などの有機樹脂が利用できる。ただし、 光触媒の酸ィ匕力によりバインダー成分の分解が起こるときは、金属酸ィ匕物ゾルゃシリ コーン榭脂なとの難分解性のものを用いることが望ましい。また、光触媒機能部材に 強い加工性や高い強度が要求される場合には、フッ素榭脂、アクリル榭脂、ウレタン 榭脂などの有機榭脂を前記難分解性のバインダー成分に適量添加することによって 、要求される特性を確保することができる。
[0083] 好ま ヽバインダー成分は、シリカ (例、シリカゾル)、有機シラン化合物の加水分解
Z縮合物、シリコーン榭脂などといったケィ素化合物である。シリカは、ケィ醍エステ ル (例、ェチルシリケート)の加水分解と縮合により生成させたシリカゾル (シリカコロイド
)でもよい。有機シランィ匕合物としては、皮膜形成性のある加水分解性の有機シラン 化合物、例えば、アルコキシシラン類ゃシランカップリング剤を使用することができる。
[0084] コーティング液は、上記以外の他の成分を含有して!/、てもよ 、。そのような他の成 分としては、可視光応答型ではない酸ィ匕チタン系光触媒 (例、従来の酸化チタン系光 触媒)、光触媒が担持粒子である場合の担体が挙げられる。また、着色材 (好ましくは 無機顔料)などの少量成分も皮膜中に含有させうる。
[0085] コーティング液の塗布は、コーティング液の性状や基材の形状に合わせて、周知の 各種方法力 選択することができる。塗布後、必要に応じて加熱しながら塗膜を乾燥 ( 場合によりさらに硬化)させる。乾燥 (硬化)温度は、コーティング液の組成 (溶媒やバイ ンダ一の種類)、基材の耐熱温度などに合わせて決めればよ 、。
[0086] 基材上に形成された光触媒を含有する皮膜の厚みは 0.5 μ m以上とすることが好 ましい。皮膜が 0.5 mより薄いと、光触媒の量が少なすぎて、可視光照射による光 触媒活性が非常に低くなる。皮膜の厚みは、必要とする触媒性能やコストによって適 宜選択しうるが、触媒性能の安定性や触媒活性の点から、より好ましくは 3 m以上 であり、 5 m以上とするのが一層好ましい。厚みの上限は特に規定されないが、コス トゃ効果の飽和を考慮すると、 30 μ m以下、好ましくは 25 μ m以下である。
[0087] 光触媒機能部材を製造する第二の方法は、基材表面に予め原料の酸化チタンお よび Zまたはその前駆体を付着させた後、本発明の光触媒粒子の製造と同様の処 理、即ち、加水分解性化合物を含有する雰囲気中での第一段の熱処理、水との接 触処理、および 350°C以上での第二段の熱処理を順に行う方法である。熱処理を基 材表面で行うことから、それに耐える耐熱性の基材 (例、金属またはセラミック)を使用 する。
[0088] この第二の方法において、基材表面への酸ィ匕チタンおよび Zまたはその前駆体の 付着は、酸ィ匕チタンおよび Zまたはその前駆体力もなる原料を含有するコーティング 液を調製して、既に述べたのと同様に塗布および乾燥することによって実施できる。 次工程で、付着させた原料を熱処理する必要があるので、バインダーは使用しない 力 またはその量を少なくすることが望ましい。好ましい付着方法は、部分加水分解さ せたチタンィ匕合物 (例、チタンアルコキシドの部分加水分解物)またはチタ-ァゾルを 溶媒に溶解させた溶液型のコーティング液を調製し、これを基材表面に塗布して、乾 燥後に実質的に酸ィ匕チタン前駆体のみ力もなる皮膜を基材表面に形成することであ る。別の好ましい方法として、酸ィ匕チタンまたはその不溶性前駆体の粒子とバインダ 一のチタ-ァゾルとから調製したコーティング液を使用して、実質的に酸ィ匕チタンお よび Zまたはその前駆体のみ力もなる皮膜を基材表面に形成する。基材表面に酸化 チタンおよび Zまたはその前駆体を付着させる方法は、上記のコーティング法に限ら れるものではなぐ操作が煩雑で高コストになる力 周知の CVD、 PVDなどの気相成 膜法を利用してもよい。
[0089] その後、本発明の光触媒の製造方法について説明したのと同様に、加水分解性化 合物を含有する雰囲気中での第一段の熱処理、その後の水との接触処理、および 最後の第二段の熱処理を基材に対して行うと、基材表面の光触媒原料は、可視光応 答型の酸化チタン系光触媒になり、本発明の光触媒機能部材が得られる。付着物が ノ^ンダ一を含有していない場合、あるいは皮膜強度が不足する場合には、後から ノインダー含有液を塗布して、皮膜強度を高めることができる。
[0090] 基材に付着させるのは、原料に対して上記の第一段熱処理だけを行った粒子であ つてもよい。その場合には、好ましくは水を含む媒質中にこの粒子を分散させ、バイ ンダーを含有させ、または含有させずに、基材に塗布して、この粒子を基材に付着さ せることが好ましい。それにより、水との接触処理と基材への付着とを同時に行うこと ができる。その後、第二段の熱処理を基材に対して行い、必要であればバインダーを 含浸させると、本発明の光触媒機能部材を製造することができる。
[0091] 以上に説明した本発明の酸化チタン系光触媒および光触媒機能部材は、紫外線 のみならず、波長 400nm以上の可視光だけを照射することによつても、光触媒作用 を発現し、様々な有害物質、付着物質などの分解、除去、無害化などに優れた効果 を発揮する。
[0092] 実際の使用に際しては、光触媒が分解対象となる物質と接触可能で、同時に光触 媒に可視光を照射できる環境下で使用すればよい。光源は、少なくとも 400nm以上 の可視光を含むものであればよぐ例えば、太陽光、蛍光灯、ハロゲンランプ、ブラッ クライト、キセノンランプ、水銀ランプなどが利用できる。
[0093] 前記有害物質には、それらに限定されな 、が、 NOx、 SOx、フロン、アンモニア、硫 化水素などの大気中に含まれるガス;アルデヒド類、アミン類、メルカプタン類、アルコ ール類、 BTX、フエノール類などの有機化合物;トリハロメタン、トリクロロエチレン、フ ロンなどの有機ハロゲン化合物;除草剤、殺菌剤、殺虫剤などの種々の農薬;蛋白質 やアミノ酸などの種々の生物学的酸素要求物質;界面活性剤;シアンィ匕合物、硫黄 化合物などの無機化合物;種々の重金属イオン;細菌、放線菌、菌類、藻類などの微 生物、が挙げられる。これらの物質は、水中に存在するものであってもよい。付着物 質は、光触媒または光触媒機能部材の表面に直接付着したものを意味し、大腸菌、 ブドウ球菌、緑膿菌、カビなどの菌類、油、タバコのャ-、指紋、雨筋、泥などが例示 される。
[0094] 以下の実施例は、本発明を例示するものであって、本発明を 、かなる意味でも制 限するものではない。実施例中、部および%は、特に指定しない限り、質量部および 質量%である。
実施例 1
[0095] [酸化チタン系光触媒の合成]
TiClの水溶液 (Ti分濃度で 8.25%)に、室温で攪拌しながら、アンモニア水 (28%)
4
を pHが 4.8になるまで滴下した。析出した固形物を濾取し、よく水洗した後、 80°Cで 真空乾燥して、原料となる (水)酸化チタンの粉末を得た。
[0096] こうして得た原料粉末 200gをキルン式熱処理装置に入れ、系内を窒素置換した後 、 315°Cまで昇温した。次いで、加水分解性ィ匕合物として TiClを 1.4vol%含有する
4
水素ガスを装置に導入し、原料粉末に 20分間接触させて、第一段の熱処理を行い、 粉末表面に塩ィ匕チタンを結合させた。その後、系内をアルゴンガスに置換し、室温ま で徐冷した。取り出した粉末に前処理の水洗を行った後、表 1に示す条件で第二段 の熱処理を 2時間行って、本発明の酸化チタン系光触媒を作製した。水洗は、粉末 を水中に投入して攪拌した後、濾取し、 80°Cで乾燥することにより行った。熱処理装 置としてはマツフル炉とキルン炉の 2種類を使用した。マツフル炉よりキルン炉の方が 酸素の供給量が多くなる傾向がある。
[0097] これらの酸化チタン系光触媒の粉末と市販の可視光応答型酸化チタン系光触媒の 粉末について、次に説明するように ESR ^ベクトルの測定とァセトアルデヒドの分解 試験による光触媒活性の測定を行った。
[0098] [ESR測定]
大気中で ESR測定用石英管 (外径 1.5mm、内径 0.8mm)に入れて大気封管した 試料と、試料を ESR測定用石英管 (外径 1.5mm、内径 0.8mm)に入れてロータリー 型真空ポンプにより真空封管した試料とに対して、 5K以下の温度 (液体ヘリウムで冷 却)で、 150Wのハロゲンランプカゝら紫外線カットフィルター (東芝製 L42)を通して可 視光照射を行い、照射を開始する直前、可視光照射を開始した直後、および可視光 照射を停止した直後にお 、て、それぞれ下記条件で ESR ^ベクトルの測定を行った
[0099] 測定装置:日本電子製 Xバンド (9GHz帯)電子スピン共鳴装置([ES— RE2X)、
ESRシグナル検出下限 (条件): 1E10個 ZmT
[同一 ESR信号に寄与するスピン (不対電子)が試料中に 1E10個]、 磁場走査域: 318± 5eV、
磁場変調幅: 0.05mT、
磁場変調周波数: 100kHz、
走査時間: 1分、
走査回数: 5回、
増幅率: 500倍、 遅延時間: 0.1秒、
マイクロ波出力: 0.1mW。
[0100] 試料の ESR信号の g値は、 Mn2+/MgOマーカー (装置付属)の 3本目(g = 2.0303 )と 4本目 (g= 1.981)を基準として、次式により算出した:
g = 2.0303-(2.0303- 1.981) X L3/(L3+L4)
L3:マーカー (3本目)と試料の ESR信号の磁場の差
L4:マーカー (4本目)と試料の ESR信号の磁場の差
ESRピーク強度については、検出される ESRシグナルが微分信号であるため、微 分信号の最大値と最小値の差を ESRシグナル強度とし、同様に決定される Mnマー カー 3本目のシグナル強度に対する強度比によって規格ィ匕した。
[0101] 可視光照射前、照射開始直後 (1分後)、照射停止直後 (1分後)に、大気中 5K以下 で測定した試験 No .1の試料 (発明例)の ESRスペクトルを図 1に、試験 No.7(巿販品) の試料の ESRスペクトルを図 2にそれぞれ示す。
[0102] 図 1および 2からわかるように、可視光応答型の酸化チタン光触媒の ESRスペクトル を 5K以下の温度で測定すると、それぞれ異なる酸素欠陥に帰属できる三重線シグ ナル Aのシグナル (g値 = 1.993〜2.003、 1.976〜1.982、 2.010〜2.020)と三重 線シグナル Bのシグナル (g値 = 2.033〜2.011、 1.982〜1.988、 2.018〜2.028) が観測される。
[0103] 本発明に係る酸ィ匕チタン系光触媒の ESRスペクトル (図 1)では、三重線シグナル A の ESRシグナル強度は、照射前や照射停止直後よりも照射開始直後が小さぐ逆に 三重線シグナル Bの ESRシグナル強度は、照射前や照射停止直後よりも照射開始 直後が大きい。
[0104] これに対して、市販品の酸ィ匕チタン系光触媒 (図 2)では、照射前、照射開始直後、 照射停止直後のいずれの場合も、三重線シグナル Aの ESRシグナル強度は、三重 線シグナル Bの ESRシグナル強度より小さい。
[0105] [光触媒活性の測定 (ァセトアルデヒドの分解試験)]
試料 (0.3g)を 40mm角の皿に置き、それを石英製反応セルに入れ、閉鎖循環ライ ンに接続し (合計内体積約 3.8L)、酸素を 20vol%含む窒素ガスで希釈したァセトァ ルデヒド (約 240ppm)を系内に導入した。ガスを循環させながら 250W高圧水銀灯か ら、紫外線カットフィルター (東芝製 L42)を通して光照射を行った。この光にはフィル ターの特性上僅か〖こ波長 390nm以上力 400nmまでの近紫外線が含まれる力 こ の領域に水銀灯の輝線がな 、ことから、ほとんどは波長 400nm以上の可視光であつ た。反応の追跡は、ァセトアルデヒドが分解して生成する二酸ィ匕炭素の濃度を、循環 ラインに接続した自動ガスクロマトグラフで経時的に測定することによって行った。光 触媒性能は二酸ィ匕炭素の生成速度力 評価した。結果を表 1にまとめた。
[0106] 大気中 5K以下の温度で測定した ESRスペクトルについて、三重線シグナル Aの主 シグナル (g値 1.993〜2.003)ぉょび三重線シグナル:6の主シグナル^値2.003〜2 .011)の照射開始直後のシグナル強度 (laおよび lb )の可視光照射前のそれぞれの
1 1
シグナル強度 (laおよび lb )に対する変化率 (すなわち、 la /laおよび lb /lb ),上
0 0 1 0 1 0 記主シグナルの照射停止直後のシグナル強度 (laおよび lb )の照射開始前のシグナ
2 2
ル強度 (la、三重線シグナル Aの場合)または照射開始直後のシグナル強度 (lb、三
0 1 重線シグナル Bの場合)に対する変化率 (すなわち、 la /laおよび lb /lb ),さらに真
2 0 2 1 空中 5K以下の温度で測定した ESRスペクトルの上記主シグナルの照射停止直後の シグナル強度 (Icおよび Id )の照射開始前のシグナル強度 (Ic、三重線シグナル Aの
2 2 0
場合)または照射開始直後のシグナル強度 (Id、三重線シグナル Bの場合)に対する 変化率 (すなわち、 Ic /Icおよび Id /Id )を、光触媒活性の測定結果と共に表 1に
2 0 2 1
示す。
[0107] [表 1]
Figure imgf000024_0001
' 20%酸素 + 80%アルゴン
2Al = Ia , /Iao, A2= Ia2/Ia0, A3= Ic2/Ic0, Bl = Ib , /Ib0, B2= Ibz/Ib , , B3= Id2/Id , [0108] 表 1に示すように、大気中での可視光照射前に対する照射中の ESRシグナル強度 の変化率については、三重線シグナル Aの主シグナルの変化率 (la /la、表 1の Al
1 0
)が 0.4より小さく (望ましくは 0.2より小さく)、かつ三重線シグナル Bの主シグナルの変 化率 (lb /lb、表 1の B1)が 3より大きい (望ましくは 4.5より大きい)場合に、光触媒活
1 0
'性が高くなつた。
[0109] また、可視光照射前に対する照射停止直後の ESRシグナル強度の変化率につい ては、三重線シグナル Aの主シグナル強度の大気中での変化率 (la /la、表 1の A2
2 0
)が 0.3より大きく (望ましくは 0.5より大きく)、かつ、真空中での変化率 (Ic /Ic、表 1の
2 0
A3)が 0.4より大きく (望ましくは 0.6より大きく)、そして真空中での変化率が大気中で の変化率より大きい場合に、光触媒活性が高くなつた。
[0110] 一方、可視光照射中に対する照射停止直後の ESRシグナル強度の変化率につい ては、三重線シグナル Bの主シグナル強度の大気中での変化率 (lb /lb、表 1の B2
2 1
)力 より小さく (望ましくは 0.4より小さく)、かつ、真空中での変化率 (Id /Id、表 1の
2 1
B3)が 0.45より小さい場合に、光触媒活性が高くなつた。
[0111] 表 1の試験 No.3と 4は、熱処理装置だけが異なる例である力 キルン炉で熱処理し た方がマツフル炉で熱処理した場合に比べて光触媒活性が高くなつた。熱処理中の 酸素濃度の差異がこの結果に関係しているものと考えられる。
[0112] 市販の可視光応答型の酸ィ匕チタン系光触媒は、これらの変化率がいずれも本発明 で規定する範囲を満たしておらず、光触媒活性も相対的に低くなつた。
実施例 2
[0113] [酸化チタン系光触媒の合成]
TiClの水溶液 (Ti分濃度で 8.25%)に、室温で攪拌しながら、アンモニア水 (28%)
4
を pHが 4.8になるまで滴下した。析出した固形物を濾取し、よく水洗した後、 80°Cで 真空乾燥して、原料となる (水)酸化チタンの粉末を得た。
[0114] こうして得た原料粉末 200gをキルン式熱処理装置に入れ、系内をアルゴン置換し た後、 315°Cまで昇温した。次いで、加水分解性ィ匕合物として TiClを 1.4vol%含有
4
する水素ガスを装置に導入し、原料粉末に 20分間接触させて、第一段の熱処理を 行い、粉末表面に塩ィ匕チタンを結合させた。その後、系内を再びアルゴンガスに置 換し、室温まで徐冷した。取り出した粉末を室温で水中に投入して攪拌することにより 、粉末表面に結合した基を加水分解して水酸基に変化させた。次いで、粉末を濾別 し、 80°Cで乾燥した。この粉末に対して、マツフル炉を用いて大気中 450°Cで 2時間 の第二段の熱処理を行い、本発明の酸ィ匕チタン系光触媒を作製した。
[0115] X線回折の結果、第二段熱処理の前後のいずれでも、アナターゼ結晶主体の酸ィ匕 チタンであった力 熱処理後の試料はルチル結晶も含んでいた。さらに、熱処理後の 試料の 5K以下での ESR測定において、酸素欠陥に由来する 2種類の三重線のシグ ナル A、 Bが認められ、酸素欠陥を有することが確認された。この光触媒の ESRスぺ タトルは、実施例 1の試験 No.2と同じであった。
[0116] 第二段の熱処理で得られた酸化チタンの表面水酸基量を、次に述べるフッ素ィォ ン吸着法 (H. P. Boehm, Angew. Chem., 78, 617 (1966)に記載の方法)を参考にして 里しァこ。
[フッ素イオン吸着法]
榭脂製ボトル内で 0.2M酢酸—0.2M酢酸ナトリウム緩衝液 (pH4.6)中の 0.01M N aF溶液 40cm3を調製した。この溶液に、前述の酸化チタン粉末の試料 O.lgを加え、 24時間攪拌した。ろ過後、ろ液中のフッ素イオン濃度を、フッ素イオン電極とイオンメ ータを用いて測定した。初期濃度とフッ素イオン吸着した後の濃度差から、試料の水 酸基が置換されたフッ素量 ( eq)を求め、その量を触媒 lgあたりの水酸基量 ( eq) として、表面水酸基量 ( eqZg)を算出した。
[0117] NaFの溶媒として、上記緩衝液の代わりに、蒸留水を用いて、非緩衝の NaF溶液 を調製し、その溶液を用いて、上記と同様にフッ素イオンで置換された表面水酸基量 を求めた。前述したように、非緩衝条件下では、ターミナル型水酸基だけがフッ素ィ オンで置換されることが知られて 、るので、この場合には表面水酸基のうちターミナ ル型水酸基の量が定量される。
[0118] 測定の結果、酸ィ匕チタンの表面水酸基量 (全水酸基量)は 822 μ eqZgであり、ター ミナル型水酸基量 (T)は 190 eqZgであった。従って、ブリッジ型水酸基量 (B)は、 両者の差から、 632 /z eqZgとなった。二つの水酸基の割合 (TZB)は 0.30と算出さ れた。 BET法により測定した酸ィ匕チタンの比表面積は 49m2Zgであった。表面水酸 基量と比表面積から、表面水酸基密度は 16.8 eqZm2となった。これらの結果を、 光触媒活性 (CO生成速度)の測定結果と一緒に表 2に示す。
2
[0119] (比較例 1〜2)
市販の可視光応答型酸化チタン系光触媒粉末 (比較例 1)と日本ァエロジル製酸化 チタン (P25X比較例 2)を用いて、実施例 2に記載した方法で表面水酸基量と比表面 積を測定した。また、これらの光触媒活性を実施例 1に記載したァセトアルデヒドの分 解試験により測定した。結果を表 2に併せて示す。
[0120] [表 2]
Figure imgf000027_0001
*本発明の範囲外の条件
[0121] 表 2から、実施例 2、比較例 1、比較例 2のいずれの光触媒も、比表面積は 120πΤ Zgより小さいが、本発明の酸ィ匕チタン系光触媒では、表面水酸基の総量が比較例 1 、 2の光触媒より多ぐまた、ターミナル型水酸基 Zブリッジ型水酸基の比も大きかつ た。その結果、高い可視光触媒活性が得られたことが分力ゝる。
実施例 3
[0122] No.l
TiClの水溶液 (Ti分濃度で 8.25%)に、室温で攪拌しながら、アンモニア水 (28%)
4
を pHが 4.1になるまで滴下した。この反応混合物を室温で 10日間放置して沈殿を熟 成させた後、固形物を濾取し、よく水洗し、 80°Cで真空乾燥して、原料となる (水)酸 化チタンの粉末を得た。
[0123] こうして得た原料粉末 200gをキルン式熱処理装置に入れ、系内をアルゴン置換し た後、 315°Cまで昇温した。次いで、加水分解性ィ匕合物として TiClを 1.4vol%含有 する水素ガスを装置に導入し、原料粉末に 20分間接触させて、第一段の熱処理を 行い、粉末表面に塩ィ匕チタンを結合させた。その後、系内を再びアルゴンガスに置 換し、室温まで徐冷した。取り出した粉末を室温で水中に投入して攪拌することにより 、粉末表面に結合した基を加水分解して水酸基に変化させた。次いで、粉末を濾別 し、 80°Cで乾燥した。この粉末に対して、マツフル炉を用いて大気中 350°Cで 2時間 の第二段の熱処理を行い、本発明の酸ィ匕チタン系光触媒を作製した。
[0124] No.2〜4
No.lで調製した (水)酸ィ匕チタンの原料粉末を用いて、第二段の熱処理温度を 400 °C(No.2)、 450°C(No.3)、 500°C(No.4)に変更した以外は No.lと同様に処理して、 酸化チタン系光触媒を調製した。
[0125] No.5
No.lで調製した (水)酸ィ匕チタンの原料粉末を、第二段の熱処理温度を 300°Cに変 更した以外は No.lと同様に処理して、酸化チタン系光触媒を調製した。
[0126] No.6
No.lで調製した (水)酸化チタンの原料粉末を、水との接触処理を実施せず、第二 段の熱処理を 300°Cのアルゴン雰囲気で実施した以外は No. lと同様に処理して、 酸化チタン系光触媒を調製した。
[0127] No.7
No.lで調製した (水)酸化チタンの原料粉末を、水との接触処理を実施せず、第二 段の熱処理を 450°Cのアルゴン雰囲気で実施した以外は No. lと同様に処理して、 酸化チタン系光触媒を調製した。
[0128] No.1〜7で得られた酸ィ匕チタン系光触媒を用いて、実施例 1に記載の方法により ァセトアルデヒドの分解試験を行った。試験結果と各触媒の各種水酸基量、 TZB比
、比表面積の測定結果と一緒に表 3に示す。
[0129] X線回折の結果、第二段熱処理の前は!、ずれもアナターゼ結晶主体の酸化チタン であった。熱処理後の試料は、第二段熱処理温度が 450°C以下の場合は全てアナ ターゼ結晶主体の酸ィ匕チタンであった力 500°Cで熱処理した場合には僅かにルチ ル結晶も含んでいた。 [0130] No.1〜4の酸化チタン系光触媒は、 5K以下での ESR測定において、酸素欠陥に 由来する 2種類の三重線のシグナル A、 Bが認められた。一方、 No.5〜7の酸化チタ ン系光触媒は、シグナル Aについて、 g値が 1.993〜2.003の主シグナルだけが観 測され、 g値が 1.976〜1.982ぉょび2.010〜2.020の副シグナルは実質的に観測 されなかった。
[0131] [表 3]
Figure imgf000029_0001
*本発明の範囲外の条件
[0132] No.5〜6に示すように、第二段の熱処理温度が 350°Cより低いと比表面積が大きく 、 No.7に示すように、第二段の熱処理温度が 450°Cでも、水との接触処理を行わな いと、全表面水酸基量を十分に増大させることができな力つた。その結果、本発明に 従った比表面積と水酸基量を有する No.1〜4の光触媒に比べて、 No.5〜7の光触 媒は可視光の光触媒活性が低くなつた。
[0133] (実施例 4)
本例は、本発明の光触媒機能部材の製造を例示する。
メディアミルを用いて、実施例 2で作製した酸ィ匕チタン系光触媒 20部を 180部の蒸 留水中で直径 0.1mmのジルコユアビーズと一緒に分散処理し、固形分 10%の光触 媒分散液を作製した。この分散液中の酸化チタン系光触媒の粒度を堀場製作所製 粒度測定器 (LA700)を用いて測定したところ、約 140nmであった。分散処理前の光 触媒粒子の平均粒径は約 15 mであった。
[0134] この光触媒分散液 100部に、硝酸を用いて部分的に加水分解させたメチルトリエト キシシラン含有水溶液 40部 (SiO換算で固形分 20質量%)、エタノール 50部、およ び微量のシリコーン系界面活性剤を加え、ペイントシエ一力を用いて 60分間よく混合 して、コーティング液を作製した。このコーティング液の不揮発成分中の Tiィ匕合物の 含有量は TiO換算で 55.4%であった。
2
[0135] このコーティング液を以下のように塗装鋼板に塗布することによって光触媒機能鋼 板を製造した。まず、塗装鋼板 (厚み 0.3mm、ポリエステル系塗装)に市販のシリコー ン榭脂を主成分とするプライマー層を厚み 0.8 mで形成した。このプライマー層の 上に、本発明のコーティング液を、ロールコータを用いて塗布し、 200°Cで 1分間乾 燥して、基材の塗装鋼板の上に本発明の酸化チタン系光触媒を含んだ皮膜を有す る光触媒機能鋼板を得た。皮膜の厚みは約 1 μ mであった。また、別途準備した亜鉛 めっき鋼板上に同じ方法で塗装したところ、光触媒皮膜中の Ti化合物は TiO換算で
2 約 55 ± 5%であった。
[0136] この光触媒機能鋼板を用いて、実施例 1と同様の方法でァセトアルデヒドの分解を 行った。その結果 CO O.l lppmZ
2生成速度は 分であった。
さらに、この試料を用いて可視光照射による親水化について評価した。
[0137] 親水化は、光源として白色蛍光灯を用い、光照射は市販のアクリル板を UVカツトフ ィルターとして用いて行った。照度は 10,000ルクスであった。光照射しながら一定時 間ごとに試料を取り出し、水滴を光触媒表面に垂らして、水との接触角を測定するこ とによって、親水化の程度を評価した。結果を図 3に示す。
[0138] (比較例 3)
酸化チタン系光触媒粉末として、従来の酸化チタン光触媒粉末 (紫外線タイプ、具 体的には石原産業株式会社製 ST01)を用い、実施例 4と同様に光触媒分散液、コ 一ティング液、および光触媒機能鋼板の作製を行った。さら〖こ、この光触媒機能鋼板 を用いて、同様に可視光照射下でのァセトアルデヒド分解試験と親水化試験とを行 つた o
[0139] ァセトアルデヒド分解試験における COの生成速度は O.OlppmZ分未満であった
2
。親水化試験の結果は図 3に示した。
図 3からわ力るように、本発明に係る実施例 4の光触媒機能部材では、可視光照射 とともに速やかに接触角が低下し、親水化することが認められた。さらに、グラフには 載せていないが、 10時間の照射で接触角は 0° になった。一方、比較例 3の光触媒 機能部材では、初期に僅かに接触角は低下したが、途中から親水化は止まった。

Claims

請求の範囲
[1] 可視光の照射により光触媒活性を発現する酸ィ匕チタン系光触媒であって、 5K以下 の温度で可視光照射前に測定した ESRスペクトルにおいて、 g値が 1.993〜2.003 の主シグナルと、 g値が 1.976〜1.982ぉょび2.010〜2.020のニっの副シグナル 力もなる三重線シグナル Aが観測されることを特徴とする、酸化チタン系光触媒。
[2] 三重線シグナル A力 5K以下の温度で可視光照射下に測定した ESRスペクトル にお 、ては観測されな 、か、または観測されても各シグナルの強度が可視光照射前 の強度よりも小さ!ヽ、請求項 1に記載の酸化チタン系光触媒。
[3] 大気中 5K以下の温度で測定した三重線シグナル Aの主シグナルの可視光照射前 の強度 laに対する可視光照射下の強度 laの比率 (la Zla )が 0.4より小さい、請求項
0 1 1 0
2記載の酸化チタン系光触媒。
[4] 5K以下の温度で可視光照射停止直後に測定した ESRスペクトルにおける三重線 シグナル Aの各シグナルの強度が、いずれも可視光照射下での強度よりも大きい、 請求項 1〜3のいずれか 1項に記載の酸ィ匕チタン系光触媒。
[5] 大気中 5K以下の温度で測定した三重線シグナル Aの主シグナルの可視光照射前 の強度 laに対する可視光照射停止直後の強度 laの比率 (la Zla )が 0.3より大きぐ
0 2 2 0 かつ真空中 5K以下の温度で測定したこの主シグナルの可視光照射前の強度 Icに
0 対する可視光停止直後の強度 Icの比率 (Ic /Ic )が 0.4より大きい、請求項 1〜4の
2 2 0
いずれか 1項に記載の酸ィヒチタン系光触媒。
[6] 5K以下の温度で測定した ESR ^ベクトルの三重線シグナル Aの主シグナル力 少 なくとも g値力 s1.993〜2.000および 1.998〜2.003の 2つのシグナノレ力らなる、請求 項 1〜5のいずれか 1項に記載の酸ィ匕チタン系光触媒。
[7] 5K以下の温度で可視光照射前に測定した ESRスペクトルにおいて、前記三重線 シグナル Aに加えて、 g値が 2.003〜2.011の主シグナルと、 g値がそれぞれ 1.982
〜1.988および 2.018〜2.028の二つの副シグナルとからなる三重線シグナル Bが さらに観測される、請求項 1〜6のいずれか 1項に記載の酸ィ匕チタン系光触媒。
[8] 5K以下の温度で可視光照射前に測定した ESRスペクトルにおいて、三重線シグ ナル Aの主シグナルの強度が三重線シグナル Bの主シグナルの強度より大き!/、、請 求項 7記載の酸化チタン系光触媒。
[9] 三重線シグナル Bが 5K以下の温度で可視光照射下に測定した ESRスペクトルに ぉ ヽても観測され、かつ可視光照射下での三重線シグナル Bの各シグナルの強度が 可視光照射前の強度よりも大きい請求項 7または 8に記載の酸ィヒチタン系光触媒。
[10] 大気中 5K以下の温度で測定した三重線シグナル Bの主シグナルの可視光照射前 の強度 lbに対する可視光照射下の強度 lbの比率 (lb /lb )が 3より大きい、請求項 9
0 1 1 0
に記載の酸化チタン系光触媒。
[11] 5K以下の温度で可視光照射下に測定された ESRスペクトルにおいて、三重線シ グナル Aの主シグナルの強度より三重線シグナル Bの主シグナルの強度の方が大き V、、請求項 7〜10の 、ずれか 1項に記載の酸化チタン系光触媒。
[12] 5K以下の温度で可視光照射停止直後に測定した ESRスペクトルにおける三重線 シグナル Bの各シグナルの各強度カ^、ずれも可視光照射下での強度より小さ!/、、請 求項 7〜: L 1のいずれ力 1項に記載の酸化チタン系光触媒。
[13] 大気中 5K以下の温度で測定した三重線シグナル Bの主シグナルの可視光照射下 の強度 lbに対する可視光照射停止直後の強度 lbの比率 (lb /lb )が 0.5より小さぐ
1 2 2 1 かつ真空中 5K以下の温度で測定したこの主シグナルの可視光照射下の強度 Idに
1 対する可視光停止直後の強度 Idの比率 (Id /Id )が 0.45より小さい、請求項 12に記
2 2 1
載の酸化チタン系光触媒。
[14] 5K以下の温度で測定した ESR ^ベクトルの三重線シグナル Bの主シグナル力 少 なくとも g値力 s2.003〜2.0045、 2.004~2.006, 2.0065〜2.0085および 2.009 〜2.011の 4つのシグナルからなる、請求項 7〜13のいずれ力 1項に記載の酸化チ タン系光触媒。
[15] 比表面積が 120m2Zg以下で、かつフッ素イオン吸着法で測定した表面水酸基の 量が 600 /z eqZg以上である、請求項 1〜14のいずれか 1項に記載の酸化チタン系 光触媒。
[16] 表面水酸基の密度が 8 μ eqZm2以上である、請求項 15に記載の酸ィ匕チタン系光 触媒。
[17] 前記表面水酸基の量のうち、ターミナル型水酸基の量 (T)( eqZg)とブリッジ型水 酸基の量 (Β)(/ζ eqZg)との関係が ΤΖΒ≥0.20を満たす、請求項 15または 16に記 載の酸化チタン系光触媒。
[18] 酸素欠陥を含む酸ィ匕チタン力もなる、請求項 1〜17のいずれか 1項に記載の酸ィ匕 チタン系光触媒。
[19] 酸ィ匕チタンがアナターゼ結晶、ルチル結晶またはその両者を含む請求項 18記載 の酸化チタン系光触媒。
[20] 酸化チタンおよびその前駆体から選ばれた原料を、加水分解性化合物を含む雰囲 気で熱処理した後、水と接触させ、さらに 350°C以上の温度で熱処理することを特徴 とする、請求項 1〜19のいずれか 1項に記載の酸ィ匕チタン系光触媒の製造方法。
[21] 前記原料が、酸性チタン化合物を含窒素塩基により、反応終了時の pHが 7以下と なる条件で中和することを含む方法によって得られた酸ィ匕チタンおよび Zまたは水 酸ィ匕チタンである、請求項 20に記載の方法。
[22] 請求項 1〜19のいずれか 1項に記載の酸ィ匕チタン系光触媒が基材表面に付着し て!、ることを特徴とする、可視光応答型の光触媒機能部材。
[23] 請求項 1〜19のいずれか 1項に記載の酸ィ匕チタン系光触媒とバインダー成分とを 含有する皮膜を基材表面に有し、皮膜中の該光触媒の含有量が 5〜95質量%であ ることを特徴とする可視光応答型の光触媒機能部材。
[24] 基材が主として金属からなる、請求項 22または 23に記載の光触媒機能部材。
[25] 請求項 1〜19のいずれか 1項に記載の酸ィ匕チタン系光触媒を分散質とすることを 特徴とする光触媒分散液。
[26] 請求項 25に記載の光触媒分散液を用いて調製されたことを特徴する、光触媒コー ティング液。
[27] 液体媒質中に請求項 1〜19のいずれ力 1項に記載の酸ィ匕チタン系光触媒とバイン ダ一とを含有し、前記酸化チタン系光触媒の含有量が不揮発分の合計量に基づい て 5〜95質量%であることを特徴とする、光触媒コーティング液。
[28] 請求項 25に記載の分散液または請求項 26もしくは 27に記載の光触媒コーティン グ液を基材に塗布する工程を含むことを特徴とする、可視光応答型の光触媒機能部 材の製造方法。
[29] 酸化チタンおよびその前駆体から選ばれた原料を耐熱性基材の表面に付着させた 後、基材を、加水分解性化合物を含む雰囲気で熱処理し、次いで水と接触させ、さら に 350°C以上の温度で熱処理することを特徴とする、可視光応答型の光触媒機能部 材の製造方法。
[30] 酸化チタンおよびその前駆体から選ばれた原料を、加水分解性化合物を含む雰囲 気で熱処理した後、この原料を水と接触させて力 耐熱性基材の表面に付着させ、 基材を 350°C以上の温度で熱処理することを特徴とする、可視光応答型の光触媒機 能部材の製造方法。
PCT/JP2005/007451 2004-04-20 2005-04-19 酸化チタン系光触媒とその製造方法、およびその利用 WO2005102521A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/578,874 US20070248831A1 (en) 2004-04-20 2005-04-19 Titanium Oxide Base Photocatalyst, Process for Producing the Same and Use Thereof
EP20050734431 EP1757365A1 (en) 2004-04-20 2005-04-19 Titanium oxide base photocatalyst, process for producing the same and use thereof
JP2006512542A JP4957244B2 (ja) 2004-04-20 2005-04-19 酸化チタン系光触媒とその製造方法、およびその利用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004124260 2004-04-20
JP2004-124260 2004-04-20
JP2004-225898 2004-08-02
JP2004225898 2004-08-02

Publications (1)

Publication Number Publication Date
WO2005102521A1 true WO2005102521A1 (ja) 2005-11-03

Family

ID=35196783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007451 WO2005102521A1 (ja) 2004-04-20 2005-04-19 酸化チタン系光触媒とその製造方法、およびその利用

Country Status (5)

Country Link
US (1) US20070248831A1 (ja)
EP (1) EP1757365A1 (ja)
JP (1) JP4957244B2 (ja)
KR (1) KR100822540B1 (ja)
WO (1) WO2005102521A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120835A (ja) * 2007-11-12 2009-06-04 Onid Technology (Shanghai) Corp 透明基材の可視光及び太陽光の透光率が低下しない透明アクアベースナノゾル・ゲルコーティング剤組成物およびそのコーティング方法
US8080315B2 (en) * 2007-02-27 2011-12-20 Horiba, Ltd. Responsive glass membrane and glass electrode
WO2013141063A1 (ja) * 2012-03-23 2013-09-26 株式会社クラレ 触媒およびこれを備える燃料電池
WO2015002324A1 (en) * 2013-07-05 2015-01-08 Nitto Denko Corporation Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
JPWO2015133316A1 (ja) * 2014-03-03 2017-04-06 株式会社鯤コーポレーション 光触媒塗工液及びそれを用いた光触媒フィルム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774029B2 (en) 2012-04-27 2017-09-26 Showa Denko K.K. Anode for secondary battery, method for producing same, and secondary battery
JP6961931B2 (ja) 2016-12-12 2021-11-05 富士フイルムビジネスイノベーション株式会社 メタチタン酸粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに、構造体
JP6872114B2 (ja) * 2016-12-12 2021-05-19 富士フイルムビジネスイノベーション株式会社 酸化チタン粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに、構造体
JP6876908B2 (ja) 2016-12-12 2021-05-26 富士フイルムビジネスイノベーション株式会社 酸化チタン粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに、構造体
KR101903991B1 (ko) * 2017-01-04 2018-10-04 울산대학교 산학협력단 높은 가시광 활성을 갖는 복합체 및 이의 제조방법
JP6939055B2 (ja) 2017-04-26 2021-09-22 富士フイルムビジネスイノベーション株式会社 メタチタン酸粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに構造体
JP6939056B2 (ja) 2017-04-26 2021-09-22 富士フイルムビジネスイノベーション株式会社 酸化チタン粒子及びその製造方法、光触媒形成用組成物、光触媒、並びに構造体
JP7000753B2 (ja) 2017-09-08 2022-01-19 富士フイルムビジネスイノベーション株式会社 酸化チタンエアロゲル粒子、酸化チタンエアロゲル粒子の製造方法、光触媒形成用組成物、光触媒、及び構造体
US10538434B2 (en) 2017-09-08 2020-01-21 Fuji Xerox Co., Ltd. Titanium oxide aerogel particle, photocatalyst forming composition, and photocatalyst
JP6604370B2 (ja) * 2017-11-02 2019-11-13 堺化学工業株式会社 水酸化チタンの製造方法
US11577224B2 (en) * 2018-05-01 2023-02-14 Hamilton Sundstrand Corporation Gas treatment method and materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010706A1 (fr) * 1998-08-21 2000-03-02 Ecodevice Laboratory Co., Ltd. Photocatalyseur de type a rayonnement visible et son procede de production
JP2001190953A (ja) * 1999-10-29 2001-07-17 Sumitomo Chem Co Ltd 酸化チタン、それを用いてなる光触媒体及び光触媒体コーティング剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959213B2 (ja) * 1999-06-30 2007-08-15 住友化学株式会社 酸化チタン、それを用いてなる光触媒体及び光触媒体コーティング剤
TWI279254B (en) * 1999-10-29 2007-04-21 Sumitomo Chemical Co Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
CN1396888A (zh) * 2000-01-31 2003-02-12 有限会社环境设备研究所 可见光应答材料及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010706A1 (fr) * 1998-08-21 2000-03-02 Ecodevice Laboratory Co., Ltd. Photocatalyseur de type a rayonnement visible et son procede de production
JP2001190953A (ja) * 1999-10-29 2001-07-17 Sumitomo Chem Co Ltd 酸化チタン、それを用いてなる光触媒体及び光触媒体コーティング剤

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080315B2 (en) * 2007-02-27 2011-12-20 Horiba, Ltd. Responsive glass membrane and glass electrode
JP2009120835A (ja) * 2007-11-12 2009-06-04 Onid Technology (Shanghai) Corp 透明基材の可視光及び太陽光の透光率が低下しない透明アクアベースナノゾル・ゲルコーティング剤組成物およびそのコーティング方法
WO2013141063A1 (ja) * 2012-03-23 2013-09-26 株式会社クラレ 触媒およびこれを備える燃料電池
JPWO2013141063A1 (ja) * 2012-03-23 2015-08-03 株式会社クラレ 触媒およびこれを備える燃料電池
WO2015002324A1 (en) * 2013-07-05 2015-01-08 Nitto Denko Corporation Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
US10549268B2 (en) 2013-07-05 2020-02-04 Nitto Denko Corporation Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
JPWO2015133316A1 (ja) * 2014-03-03 2017-04-06 株式会社鯤コーポレーション 光触媒塗工液及びそれを用いた光触媒フィルム

Also Published As

Publication number Publication date
US20070248831A1 (en) 2007-10-25
JP4957244B2 (ja) 2012-06-20
KR100822540B1 (ko) 2008-04-16
JPWO2005102521A1 (ja) 2008-03-13
EP1757365A1 (en) 2007-02-28
KR20070004980A (ko) 2007-01-09

Similar Documents

Publication Publication Date Title
WO2005102521A1 (ja) 酸化チタン系光触媒とその製造方法、およびその利用
JP4803180B2 (ja) 酸化チタン系光触媒とその製造方法及び用途
US7521133B2 (en) Titanium oxide photocatalyst, process for producing the same and application
JP3894144B2 (ja) 酸化チタン系光触媒とその製造方法および応用
JP5157561B2 (ja) 可視光応答型光触媒とその製造方法
WO2009116181A1 (ja) 可視光応答型光触媒とその製造方法
JPH06293519A (ja) 酸化チタンの粒子と膜の製造方法
JP4135921B2 (ja) 二酸化チタン微粒子およびその製造方法
KR100993457B1 (ko) 가시광 응답형 산화티탄 광촉매와 그 제조 방법 및 용도
JP4507066B2 (ja) 酸化タングステン含有酸化チタンゾル及びその製造方法並びにコーティング剤及び光機能体
WO2003048048A1 (en) Titanium dioxide photocatalyst and a method of preparation and uses of the same
JP2007117999A (ja) 酸化チタン系光触媒とその用途
JP2005170687A (ja) 中性酸化チタンゾルおよびその製造方法
JP2007289933A (ja) 可視光応答型酸化チタン光触媒とその製造方法および用途
JPH10128110A (ja) 光触媒組成物とその形成剤
JP3885248B2 (ja) 光触媒組成物
JP3981757B2 (ja) 光触媒体およびそれを用いてなる光触媒体コーティング剤
JPH11290696A (ja) 光触媒基材
JPH10337478A (ja) 酸化チタン光触媒用ゾル、光触媒多機能部材の製造方法および使用方法
JP2004322002A (ja) 光触媒セラミック分散液とコーティング液
JP2009022826A (ja) 可視光応答型光触媒の製造方法、および光触媒担持構造体
KR20070031441A (ko) 루틸형 산화티탄 초미립자
JP2010051923A (ja) 揮発性有機物分解用触媒体および揮発性有機物分解方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 550717

Country of ref document: NZ

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006512542

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005734431

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067024278

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580019415.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005734431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11578874

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11578874

Country of ref document: US