WO2005101626A1 - ノイズ抑制回路 - Google Patents

ノイズ抑制回路 Download PDF

Info

Publication number
WO2005101626A1
WO2005101626A1 PCT/JP2005/001364 JP2005001364W WO2005101626A1 WO 2005101626 A1 WO2005101626 A1 WO 2005101626A1 JP 2005001364 W JP2005001364 W JP 2005001364W WO 2005101626 A1 WO2005101626 A1 WO 2005101626A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
inductance
inductors
noise
noise suppression
Prior art date
Application number
PCT/JP2005/001364
Other languages
English (en)
French (fr)
Inventor
Mitsunari Suzuki
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/594,460 priority Critical patent/US7459995B2/en
Priority to JP2006512266A priority patent/JP4483863B2/ja
Publication of WO2005101626A1 publication Critical patent/WO2005101626A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/005Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5491Systems for power line communications using filtering and bypassing

Definitions

  • the present invention relates to a noise suppression circuit for suppressing noise propagating on a conductive line.
  • Power electronics devices such as switching power supplies, inverters, and lighting circuits for lighting devices have power conversion circuits that convert power.
  • the power conversion circuit has a switching circuit that converts a direct current into a rectangular wave alternating current. Therefore, the power conversion circuit generates a ripple voltage having a frequency equal to the switching frequency of the switching circuit and noise accompanying the switching operation of the switching circuit. This ripple voltage and noise adversely affect other devices. Therefore, it is necessary to provide a means for reducing ripple voltage and noise between the power conversion circuit and other devices or lines.
  • LC filters include T-type filters and ⁇ -type filters in addition to those having one inductance element and one capacitor.
  • a common noise filter for electromagnetic interference ( ⁇ ) is also a kind of LC filter.
  • a typical ⁇ filter is configured by combining discrete elements such as a common mode choke coil, a normal mode choke coil, an X capacitor, and a ⁇ capacitor.
  • power line communication has been regarded as promising as a communication technology used when constructing a communication network in a home, and its development is being promoted.
  • Power line communication is performed by superimposing a high-frequency signal on a power line.
  • noise is generated on the power line due to the operation of various electric and electronic devices connected to the power line, and this causes a decrease in communication quality such as an increase in an error rate. Therefore, means for reducing noise on power lines is required.
  • power line communication it is necessary to prevent communication signals on indoor power lines from leaking to outdoor power lines.
  • a C filter is used!
  • noise propagating through two conductive lines includes a normal mode (differential mode) noise that causes a potential difference between the two conductive lines, and a noise transmitted through the two conductive lines in the same phase.
  • Common mode noise common mode noise.
  • Japanese Patent Application Laid-Open No. 9-102723 describes a line filter using a transformer.
  • This line filter includes a transformer and a filter circuit.
  • the secondary winding of the transformer is inserted into one of the two conductive wires that carry the power supplied to the load from the AC power supply.
  • Two input terminals of the filter circuit are connected to both ends of the AC power supply, and two output terminals of the filter circuit are connected to both ends of the primary winding of the transformer.
  • a power supply voltage power noise component is extracted by a filter circuit, and this noise component is supplied to a primary winding of a transformer. From the noise component.
  • This line filter reduces normal mode noise.
  • Japanese Patent Application Laid-Open No. 5-121988 (FIG. 1) describes a low-pass filter composed of three impedance elements.
  • This low-pass filter has two high-impedance elements inserted in series into one of the two conductive lines, one end connected between the two high-impedance elements, and the other end connected between the two conductive lines. And a low-impedance element connected to the other end.
  • Each of the two high impedance elements is configured by a parallel connection circuit of a coil and a resistor, and the low impedance element is configured by a capacitor.
  • This low-pass filter reduces normal mode noise.
  • Japanese Patent No. 2784783 (FIG. 6) describes a normal mode noise filter circuit for reducing normal mode noise and a common mode noise filter circuit for reducing common mode noise.
  • the normal mode noise filter circuit is composed of two coils inserted into each of the two conductive wires, and a capacitor connecting midway between the windings of each coil.
  • the common mode noise filter circuit is composed of two coils inserted into each of the two conductive wires, and two capacitors provided between the winding of each coil and the ground. .
  • a filter inserted into a conductive wire for power transport is required to obtain desired characteristics while a current for power transport is flowing, and to take measures against temperature rise. Therefore, a ferrite core with a gap is usually used as a magnetic core in an inductance element in a filter for a power conversion circuit.
  • an inductance element has a problem in that its characteristics approach those of an air-core inductance element, and the inductance element becomes large in size to achieve desired characteristics.
  • the low-pass filter described in Japanese Patent Application Laid-Open No. 5-121988 (FIG. 1) and the filter circuit described in Japanese Patent No. 2784783 (FIG. 6) use the conventional noise reduction principle. Because it is the same as the LC filter, it has the same problems as the conventional LC filter! /
  • the present invention has been made in view of the difficult problems, and an object of the present invention is to provide a noise suppression circuit that can suppress noise over a wide frequency range and that can be downsized.
  • a noise suppressing circuit is a circuit that suppresses normal mode noise transmitted by first and second conductive lines and causing a potential difference between these conductive lines.
  • the first and second inductors inserted in series with the first conductive line and magnetically coupled to each other, a third inductor and a first capacitor connected in series, Is connected between the first inductor and the second inductor, and the other end is connected to the second conductive line. Then, provided that the coupling coefficient k of the first and second inductors is smaller than 1 and the inductance coefficient coupling coefficient k of the third inductor is smaller than 1, a desired noise attenuation characteristic is obtained. Is set to an appropriate value.
  • the first and second inductors are electromagnetically coupled to each other.
  • the first and second inductors may each be formed by separate windings, or may be formed by a single winding.
  • a connection point is provided in the middle of the single winding, and the first inductor and the other end of the winding are connected from one end of the winding to the connection point.
  • the point up to the force connection point may be used as the second inductor.
  • One end of the series circuit is connected to this connection point.
  • the inductances of the first and second inductors may have the same value. When the first and second inductors are formed by a single winding, the inductances can be made equal by providing the connection point at the midpoint of the single winding, for example.
  • one end of the series circuit is connected to a connection portion connected to the first and second inductors.
  • the other end connected to the second conductive line is called a second end.
  • An end of the first inductor opposite to the first end is called one end of the first inductor, and an end of the first inductor on the first end side is referred to as an end of the first inductor. Is called the other end of the first inductor.
  • an end of the second inductor on the first end side is referred to as one end of a second inductor, and an end of the second inductor opposite to the first end is referred to as a first end. Called the other end of inductor 2.
  • a normal mode voltage is applied between one end of the first inductor and the second end of the second conductive wire. Then, this voltage is divided by the first inductor and the series circuit, and predetermined voltages having the same direction are generated between both ends of the first inductor and between both ends of the series circuit. Since the first inductor and the second inductor are electromagnetically coupled to each other, a predetermined voltage is generated between both ends of the second inductor according to a voltage generated between both ends of the first inductor. .
  • the direction of the voltage generated between both ends of the second inductor is The directions of the generated voltages are opposite to each other, and the voltages cancel each other.
  • the voltage between the other end of the second inductor and the second end is applied between one end of the first inductor and the second end. Voltage lower than the applied voltage.
  • a normal mode voltage is applied between the other end of the second inductor and the second end of the second conductive wire.
  • the voltage between one end of the first inductor and the second end is equal to the voltage between the other end of the second inductor and the second end. It is smaller than the voltage applied between the head and the part.
  • a desired noise attenuation characteristic can be obtained on condition that the inductance of the third inductor is smaller than 1 in the coupling coefficient k.
  • LI and L2 are the same Value LO and L3 is the same value LO.
  • the noise suppression circuit in particular, when the inductance L3 of the third inductor satisfies the following condition, the noise attenuating frequency characteristic is Almost the same characteristics as in the ideal state can be obtained.
  • a noise suppression circuit is a circuit for suppressing normal mode noise transmitted by first and second conductive lines and causing a potential difference between these conductive lines. And a first and second inductors inserted in series with the first conductive line and magnetically coupled to each other, and a series circuit composed of a third inductor and a first capacitor connected in series. And fourth and fifth inductors inserted in series with the second conductive line and magnetically coupled to each other, and one end of the series circuit is connected to the first inductor. It is connected between the second inductor and the other end is connected between the fourth inductor and the fifth inductor.
  • the coupling coefficient kl of the first and second inductors and the coupling coefficient k2 of the fourth and fifth inductors are smaller than 1, and the inductance coefficient kl, k2 of the third inductor is smaller than 1.
  • the value is set so as to obtain a desired noise attenuation characteristic.
  • the first and second inductors are electromagnetically coupled to each other as in the noise suppression circuit according to the first aspect.
  • the fourth and fifth inductors can be similarly configured.
  • a connection point is provided in the middle of a single winding, and the force at one end of the winding is also adjusted to the connection point by the fourth inductor.
  • the fifth inductor may be from the other end of the winding to the connection point. The other end of the series circuit is connected to this connection point.
  • the inductances of the fourth and fifth inductors may have the same value.
  • the inductances can be made equal by providing the connection point at the midpoint of the single winding, for example.
  • a connection portion at which one end of the series circuit is connected to the first and second inductors is referred to as a first end portion, and a connection portion at the other end connected to the fourth and fifth inductors. Is called the second end.
  • An end of the first inductor opposite to the first end is called one end of the first inductor, and an end of the first inductor on the first end side is referred to as an end of the first inductor. Called the other end of the first inductor.
  • the end of the second inductor on the first end side is referred to as one end of a second inductor, and the end of the second inductor opposite to the first end is referred to as a first end. Called the other end of inductor 2.
  • An end of the fourth inductor opposite to the second end is called one end of a fourth inductor, and an end of the fourth inductor on the second end side is referred to as an end of the fourth inductor. Is called the other end of the fourth inductor.
  • the end of the fifth inductor on the side of the second end is referred to as one end of a fifth inductor, and the end of the fifth inductor on the side opposite to the second end is referred to as one end of the fifth inductor. Called the other end of the fifth inductor.
  • the noise suppression circuit when a normal mode voltage is applied between one end of the first inductor and one end of the fourth inductor, This voltage is divided by the first inductor, the series circuit, and the fourth inductor, and a predetermined voltage is applied between both ends of the first inductor, both ends of the series circuit, and both ends of the fourth inductor. Pressure develops. Since the first inductor and the second inductor are electromagnetically coupled to each other, a predetermined voltage is generated between both ends of the second inductor according to the voltage generated between both ends of the first inductor.
  • the fourth and fifth inductors are electromagnetically coupled to each other, a predetermined voltage is applied across the fifth inductor according to the voltage generated across the fourth inductor. Occurs.
  • one end of the series circuit is connected between the first inductor and the second inductor, and the other end is connected between the fourth inductor and the fifth inductor.
  • the direction of the voltage generated between both ends of the inductor 2 and the direction of the voltage generated between the ends of the fifth inductor are opposite to the direction of the voltage generated between both ends of the series circuit. Offset each other.
  • the voltage between the other end of the second inductor and the other end of the fifth inductor is equal to one end of the first inductor and one end of the fourth inductor. It becomes smaller than the voltage applied during.
  • the noise suppression circuit when a normal mode voltage is applied between the other end of the second inductor and the other end of the fifth inductor, Similarly to the above description, the voltage between one end of the first inductor and one end of the fourth inductor is equal to the other end of the second inductor and the other end of the fifth inductor. Is smaller than the voltage applied between the first and second ends.
  • a desired noise attenuation characteristic is obtained on condition that the inductance of the third inductor has a coupling coefficient kl, k2 smaller than 1. Since the value is set to a value that can be obtained, the frequency characteristics of the noise attenuation, for example, characteristics that are almost the same as the ideal state, characteristics that have a similar tendency, or characteristics that are partially better than the ideal state can get.
  • L1 and L2 and L4 and L5 have the same value LO, and L3 has a value twice as large as LO.
  • L3 has a value twice as large as LO.
  • L1 inductance of the first inductor
  • L2 inductance of the second inductor
  • L4 inductance of the fourth inductor
  • L5 inductance of the fifth inductor
  • the noise suppressing circuit suppresses normal mode noise transmitted by the first and second conductive lines and causing a potential difference between these conductive lines.
  • a circuit wherein the first and second inductors are inserted in series with the first conductive line and are magnetically coupled to each other, and the third inductor, the first capacitor, and the power connected in series.
  • a fourth and a fifth inductor inserted in series with the second conductive line and magnetically coupled to each other with the first and second inductors. Are connected between the first inductor and the second inductor, and the other end is connected between the fourth inductor and the fifth inductor.
  • the coupling coefficient kl of the first and second inductors, the coupling coefficient k2 of the fourth and fifth inductors, the coupling coefficient k3 of the first and fourth inductors, and the second and fifth inductors are all smaller than 1 and the inductance coefficient of the third inductor.
  • the values are set to obtain desired noise attenuation characteristics.
  • the first and second inductors on the first conductive line and the fourth and fifth inductors on the second conductive line are mutually magnetic.
  • the basic operation of noise suppression is the same as that of the noise suppression circuit according to the above-described second aspect, although being different from the noise suppression circuit according to the second embodiment.
  • the inductance-coupling coefficients kl, k2, k3, k4, k5, and k6 of the third inductor are all set to be / J, which is smaller than 1 by a factor of 1.
  • the noise attenuation is set to a value that provides the desired noise attenuation characteristics
  • the frequency characteristics of the noise attenuation are, for example, approximately the same as those in the ideal state, characteristics that have a similar tendency, or partial characteristics. In this case, characteristics superior to those in the ideal state can be obtained.
  • LI, L2 and L4, L5 have the same value LO, and L3 has a value four times the LO.
  • examples of the first conductive line and the second conductive line are as follows.
  • each conductive line in a single-phase two-wire power line there are two of the three single-phase three-wire power lines that are currently used for power supply.
  • noise suppression circuit According to the noise suppression circuit according to each aspect of the present invention, noise can be suppressed over a wide frequency range, and the size can be reduced.
  • the inductance L3 in the series circuit is set to an appropriate value on condition that the coupling coefficient is smaller than 1, the frequency characteristic of the noise attenuation is, for example, almost the same as the ideal state, or Characteristics with a similar tendency or partially better than ideal conditions can be obtained.
  • FIG. 1A is a circuit diagram showing a first configuration example of a noise suppression circuit according to a first embodiment of the present invention.
  • FIG. 1B is a circuit diagram showing a second configuration example of the noise suppression circuit according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of an actual configuration of first and second inductors.
  • FIG. 3 is a diagram showing a circuit configuration used in a first simulation for obtaining characteristics of the noise suppression circuit according to the first embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing a first simulation result.
  • FIG. 5 is a diagram showing a circuit configuration used in a second simulation for obtaining characteristics of the noise suppression circuit according to the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing a result of a second simulation.
  • FIG. 7 is a diagram showing a circuit configuration used in a third simulation for obtaining characteristics of the noise suppression circuit according to the first embodiment of the present invention.
  • FIG. 8 is a characteristic diagram showing a third simulation result.
  • FIG. 9A is a circuit diagram showing a first configuration example of a noise suppression circuit according to a second embodiment of the present invention.
  • FIG. 9B is a circuit diagram showing a second configuration example of the noise suppression circuit according to the second embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of an actual configuration of first and second inductors and fifth and sixth inductors.
  • FIG. 11A is a circuit diagram showing a first modification of the noise suppression circuit according to the second embodiment of the present invention.
  • FIG. 11B is a circuit diagram showing a second modification of the noise suppression circuit according to the second embodiment of the present invention.
  • FIG. 12 is a diagram showing a circuit configuration used in a simulation for obtaining characteristics of a noise suppression circuit according to a second embodiment of the present invention.
  • FIG. 13 is a characteristic diagram showing a simulation result of an attenuation characteristic in the noise suppression circuit according to the second embodiment of the present invention.
  • FIG. 14 is an explanatory diagram of a method of measuring a coupling coefficient.
  • FIG. 15A is a circuit diagram showing a first configuration example of a noise suppression circuit according to a third embodiment of the present invention.
  • FIG. 15B is a circuit diagram showing a second example of the configuration of the noise suppression circuit according to the third embodiment of the present invention.
  • FIG. 16 is an explanatory diagram of a coupling coefficient between inductors in a noise suppression circuit according to a third embodiment of the present invention.
  • FIG. 17 is a characteristic diagram showing a simulation result of an attenuation characteristic in the noise suppression circuit according to the third embodiment of the present invention.
  • FIG. 18 is a circuit diagram showing an equivalent circuit of the noise suppression circuit used in the simulation of FIG.
  • the noise suppression circuit according to the present embodiment is a circuit that suppresses normal mode (differential mode) noise transmitted by two conductive wires and causing a potential difference between these conductive wires.
  • FIGS. 1A and 1B show first and second configuration examples of the noise suppression circuit according to the present embodiment.
  • This noise suppression circuit includes a pair of terminals la and lb, another pair of terminals 2a and 2b, A first conductive line 3 connects between the terminals la and 2a, and a second conductive line 4 connects between the terminals lb and 2b.
  • the noise suppression circuit further includes first and second inductors 51 and 52 inserted in series with the first conductive line 3.
  • the noise suppression circuit also includes a series circuit 15 including a third inductor 53 and a first capacitor 14 connected in series. One end of the series circuit 15 is connected between the first inductor 51 and the second inductor 52, and the other end is connected to the second conductive line 4.
  • connection portion where one end of the series circuit 15 is connected to the first and second inductors 51 and 52 is referred to as a first end P 1 and is connected to the second conductive line 4.
  • the connection portion at the other end is referred to as a second end P2.
  • an end of the first inductor 51 opposite to the first end P1 is called one end of the first inductor 51, and the first end P1 side of the first inductor 51 is referred to as a first end. Called the other end of one inductor 51.
  • the first end P1 side of the second inductor 52 is called one end of the second inductor 52, and the end of the second inductor 52 opposite to the first end P1 is the first end. Called the other end of the second inductor 52.
  • the third inductor 53 has a winding 13a wound around the magnetic core 13b.
  • the first capacitor 14 functions as a high-pass filter that passes a normal mode signal having a frequency equal to or higher than a predetermined value.
  • FIG. 1A shows that, of the third inductor 53 and the first capacitor 14, the third inductor 53 is located closer to the first end P1, and the first capacitor 14 is the second capacitor.
  • FIG.1B conversely, the first capacitor 14 is arranged at a position closer to the first end P1, and the third inductor 53 is arranged at a position closer to the second end P2.
  • FIG.1B conversely, the first capacitor 14 is arranged at a position closer to the first end P1, and the third inductor 53 is arranged at a position closer to the second end P2.
  • the first and second inductors 51 and 52 are electromagnetically coupled to each other.
  • the first inductor 51 has a winding 11a wound around the magnetic core 12a.
  • the second inductor 52 has a winding l ib wound around the magnetic core 12b.
  • the black circles on each winding indicate the polarity and direction of winding.
  • the polarities of the first and second inductors 51 and 52 are in the same direction as illustrated.
  • the first and second inductors 51, 52 are thus separated by separate windings 11a, lib, respectively. It may be formed, but it is also possible to form it with a single winding 11 as shown in FIG. The winding 11 is wound around the magnetic core 12. In FIG. 2, circuits other than the first and second inductors 51 and 52 are not shown.
  • connection point (the first end P1) may be provided, and the one end force of the winding 11 may be the winding 11a up to the connection point and used as the first inductor 51.
  • the second inductor 52 may be formed with a winding 1 lb up to the other end force connection point of the winding 11.
  • One end of the series circuit 15 is connected to this connection point.
  • the inductances of the first and second inductors 51 and 52 have the same value.
  • the inductances can be made equal.
  • the first and second inductors 51 and 52 are electromagnetically coupled to each other, and their coupling coefficient k is ideally 1.
  • the coupling coefficient is 1, and even when the coupling state is relatively good, the coupling coefficient becomes a value such as 0.998.
  • the coupling coefficient is affected by the core material, the number of windings, the winding method, and the like.
  • the coupling coefficient is reduced to about 0.4.
  • the smaller the number of turns the smaller the coupling coefficient tends to be.
  • the magnetic permeability of the magnetic core the smaller the coupling coefficient tends to be. In this case, if the value of each circuit element is determined by regarding the coupling coefficient as 1, a problem arises that the originally expected amount of attenuation cannot be obtained.
  • the value of each circuit element be determined according to the actual value of the coupling coefficient.
  • the inductance L3 of the third inductor 53 is particularly large. Is set to a value corresponding to the actual value of the coupling coefficient k so that desired noise attenuation characteristics can be obtained, provided that the coupling coefficient k is smaller than 1.
  • the first inductor 51 and the second inductor 52 are electromagnetically coupled to each other, a predetermined voltage is applied across the second inductor 52 according to the voltage generated across the first inductor 51. Voltage is generated.
  • the direction of the voltage generated between both ends of the second inductor 52 is The direction of the voltage generated across both ends is opposite to the direction of the voltage generated, and these voltages cancel each other.
  • the voltage between the other end of the second inductor 52 and the second end P2 that is, the voltage Vo between the terminals 2a and 2b, is equal to the voltage between one end of the first inductor 51 and the second end.
  • the voltage VU applied between the end P2 and the end P2 also decreases.
  • the inductances LI and L2 of the first and second inductors 51 and 52 are both set to the same value L0, and the inductance L3 of the third inductor 53 is also set to the same value L0.
  • the impedance of capacitor 14 is zero.
  • the inductances LI and L2 of the first and second inductors 51 and 52 are considered. This can be achieved, for example, by making the windings 11a and 1 lb of the first and second inductors 51 and 52 and the winding 13a of the third inductor 53 equal.
  • the inductance of the winding is proportional to the square of the number of turns, the inductance of the entire winding 11 including the windings 11a and l ib is four times the inductance L3 of the third inductor 53. .
  • the inductance L3 of the third inductor 53 is / 4 of the inductance of the winding 11.
  • the third inductor 53 only needs to have a small inductance.
  • FIG. 3 shows an equivalent circuit of the noise suppression circuit used in the first simulation.
  • Ra and Rb are set as input and output impedances.
  • Ra corresponds to the input / output impedance of the power system
  • Rb corresponds to the input / output impedance of the device.
  • the Rb side is set as the measurement device side.
  • the element values of each circuit element used in the simulation are shown near each circuit symbol.
  • the inductances LI and L2 of the first and second inductors 51 and 52 and the inductance L3 of the third inductor 53 were both set to the same value (1 ⁇ ).
  • the attenuation characteristic was calculated when the value of the coupling coefficient k of the first and second inductors 51 and 52 was sequentially reduced from the ideal value of 1 to 0.8.
  • FIG. 4 shows the result of the simulation. This is a graph showing the frequency characteristic of the attenuation amount of the normal mode noise in the noise suppression circuit.
  • the horizontal axis represents frequency (Hz)
  • the vertical axis represents gain (dB). The smaller the gain, that is, the greater the absolute value of the gain in the negative direction, the greater the amount of noise attenuation.
  • the line indicated by reference numeral 64 indicates the simulation result when the coupling coefficient k is 0.9
  • the noise suppression circuit even if the coupling coefficient k is smaller than 1, the value of the inductance L3 of the third inductor 53 is adjusted according to the value of the coupling coefficient k.
  • the damping characteristics it is possible to obtain characteristics that are almost the same as those in the ideal state, or characteristics that have a similar tendency. Alternatively, by making a resonance point at an arbitrary frequency, characteristics that are partially superior to the ideal state can be obtained.
  • FIG. 5 shows an equivalent circuit of the noise suppression circuit used in the second simulation.
  • the values of the other circuit elements are the same as in the circuit of FIG.
  • the line denoted by reference numeral 70 is in the ideal state
  • the line indicated by reference numeral 79 0.
  • the simulation results for the case of .08H are shown.
  • the maximum value of the inductance L3 is determined based on the condition that the resonance frequency fO obtained by the above equation is desirably equal to or higher than the cutoff frequency in an ideal state.
  • the minimum value of the inductance L3 is calculated from the simulation as L3 ⁇ 0.9k (Ll-L2) 12 & (3a)
  • FIG. 7 shows an equivalent circuit of the noise suppression circuit used in this simulation.
  • the coupling coefficient k was set to 0.8.
  • the maximum value of the inductance L3 obtained from the above equation (2a) is
  • Equation (3a) force The minimum value of the required inductance L3 is
  • FIG. 8 shows the result of the simulation.
  • the line denoted by reference numeral 81 is in the ideal state
  • C indicates the capacitance of the first capacitor 14 of the series circuit 15. In this case as well, in a frequency band higher than the cutoff frequency and at a frequency up to the characteristic of the ideal state, a region where the attenuation characteristic is better than the characteristic of the ideal state occurs.
  • the maximum value of the inductance L3 is determined based on the condition that the resonance frequency fO obtained by the above equation is desirably equal to or higher than the cutoff frequency in an ideal state.
  • the characteristics show almost the same characteristics as the ideal state up to a certain state, and the attenuation characteristics deteriorate from a certain frequency or higher.
  • the minimum value of the inductance L3 is calculated from the simulation as follows:
  • the inductance L3 is set according to the value of the coupling coefficient k. Therefore, it is necessary to measure the value of the coupling coefficient k in advance in order to determine the value of the inductance L3. Next, a method of measuring the coupling coefficient k will be described.
  • the coupling coefficient k can be obtained.
  • FIG. 14 shows an example of a method of measuring the mutual inductance M.
  • La and Lb are measured for the case where two coils are connected in series and the case where anti-phase is connected in series.
  • the mutual inductance M can be obtained by the following equation. Note that La and Lb represent the inductance between the terminals.
  • the normal mode noise can be effectively reduced over a wide frequency range without using a coil having a large force and a relatively simple configuration. Can be suppressed.
  • the inductance L3 in the series circuit 15 is set to an appropriate value according to the value of the coupling coefficient k, the frequency characteristic of the noise attenuation is almost the same as the ideal state or similar to the ideal state. Trend characteristics or characteristics that are partially better than ideal can be obtained.
  • the noise suppression circuit according to the first embodiment is an unbalanced circuit in which an inductor is inserted only into the first conductive line 3 of the two conductive lines 3 and 4.
  • the noise suppression circuit according to the above is a balanced circuit by inserting inductors into both of the two conductive wires 3 and 4.
  • FIGS. 9A and 9B show the first and second examples of the noise suppression circuit according to the second embodiment of the present invention. Is shown.
  • the noise suppression circuits of FIGS. 9A and 9B are obtained by adding fourth and fifth inductors 54 and 55 to the configuration of the noise suppression circuit of FIGS. 1A and 1B. , 1B.
  • the fourth and fifth inductors 54 and 55 are inserted in series with the second conductive line 4.
  • a connection part where one end of series circuit 15 is connected to first and second inductors 51 and 52 is referred to as a first end P1
  • the connection portion at the other end connected to the fourth and fifth inductors 54 and 55 is called a second end P2.
  • an end of the first inductor 51 opposite to the first end P1 is called one end of the first inductor 51
  • the first end P1 of the first inductor 51 is referred to as one end. Is called the other end of the first inductor 51.
  • first end P1 side of the second inductor 52 is referred to as one end of the second inductor 52, and the end of the second inductor 52 opposite to the first end P1 is referred to as one end. Called the other end of the second inductor 52.
  • the end of the fourth inductor 54 opposite to the second end P2 is called one end of the fourth inductor 54, and the fourth end of the fourth inductor 54 on the side of the second end P2.
  • the end is referred to as the other end of the fourth inductor 54.
  • the end of the fifth inductor 55 on the second end P2 side is called one end of the fifth inductor 55, and the end of the fifth inductor 55 on the opposite side to the second end P2.
  • the end is referred to as the other end of the fifth inductor 55.
  • FIG. 9A shows that, of the third inductor 53 and the first capacitor 14, the third inductor 53 is located closer to the first end P1, and the first capacitor 14 is the second capacitor.
  • FIG. 9B shows that, of the third inductor 53 is located closer to the first end P1, and the third inductor 53 is closer to the second end P2. It is an example of the configuration provided.
  • the fourth and fifth inductors 54 and 55 are electromagnetically coupled to each other.
  • the fourth inductor 54 has a winding 21a wound around a magnetic core 22a.
  • the fifth inductor 55 has a winding 2 lb wound around the magnetic core 22b.
  • the black circles marked on each winding are the polarity and winding direction of the winding. Represents.
  • the polarities of the first and second inductors 51 and 52 and the fourth and fifth inductors 54 and 55 may be opposite to those shown in the figure as long as the relationship between the windings is maintained. good.
  • the fourth and fifth inductors 54 and 55 may be formed of separate windings 22a and 22b, like the first and second inductors 51 and 52, but as shown in FIG. It can also be formed by winding 21. The winding 21 is wound around the magnetic core 22. In FIG. 10, circuits other than the first and second inductors 51 and 52 and the fourth and fifth inductors 54 and 55 are not shown.
  • connection point (the second end P2 )
  • the one end force of the winding 21 is also used as the fourth inductor 54 with the winding 21a extending to the connection point.
  • the other end force of the winding 21 may be set to the fifth inductor 55 with the winding 21b up to the connection point.
  • the other end of the series circuit 15 is connected to this connection point.
  • the inductances of the fourth and fifth inductors 54 and 55 are preferably the same as the inductances of the first and second inductors 51 and 52. More preferably, all the inductances of the first and second inductors 51 and 52 and the fourth and fifth inductors 54 and 55 should be the same.
  • the fourth and fifth inductors 54 and 55 are formed by a single winding 21, for example, by providing the connection point at the middle point of the single winding 21, the fourth and fifth inductors 54 and 55 are formed. Each of the 55 inductances can be made equal.
  • first and second inductors 51 and 52 are electromagnetically coupled to each other, and their coupling coefficient kl is ideally 1.
  • the coupling coefficient k2 of the fourth and fifth inductors 54 and 55 is also ideally 1.
  • a coupling coefficient of 1 cannot be realized in practice.
  • the values of coupling coefficient kl of first and second inductors 51 and 52 and coupling coefficient k2 of fourth and fifth inductors 54 and 55 are actually different.
  • the inductance L3 of the third inductor 53 is smaller than 1
  • the actual noise attenuation characteristics can be obtained so that the desired noise attenuation characteristics can be obtained, provided that the inductance L3 of the third inductor 53 is smaller than 1. It is set to a value corresponding to the value of the coupling coefficient kl, k2.
  • the method of determining the value of the distance L3 will be described later in detail.
  • the first inductor 51 and the second inductor 52 are electromagnetically coupled to each other, the first inductor 51 and the second inductor 52 are connected across the second inductor 52 in accordance with the voltage generated across the first inductor 51. A predetermined voltage is generated.
  • the fourth inductor 54 and the fifth inductor 55 are electromagnetically coupled to each other, the fourth inductor 54 and the fifth inductor 55 are connected to each other in accordance with the voltage generated across the fourth inductor 54. , A predetermined voltage is generated.
  • one end of the series circuit 15 is connected between the first inductor 51 and the second inductor 52, and the other end is connected between the fourth inductor 54 and the fifth inductor 55.
  • the direction of the voltage generated between both ends of the second inductor 52 and the direction of the voltage generated between both ends of the fifth inductor 55 are the same as the direction of the voltage generated between both ends of the series circuit 15. Are in opposite directions and their voltages cancel each other. As a result, the voltage between the other end of the second inductor 52 and the other end of the fifth inductor 55, that is, the voltage Vo between the terminals 2a and 2b, is increased by one end of the first inductor 51.
  • the voltage VU applied between the second inductor 54 and one end of the fourth inductor 54 also becomes smaller.
  • the noise suppression circuit according to the present embodiment even when a normal mode voltage is applied between terminals 2a and 2b, the voltage between terminals la and lb is changed between terminals 2a and 2b in the same manner as described above. It becomes smaller than the voltage applied to.
  • the noise suppression circuit according to the present embodiment when the normal mode noise is applied to the terminals la and lb and when the normal mode noise is applied to the terminals 2a and 2b, In addition, normal mode noise can be suppressed.
  • the voltage Vo between the terminals 2a and 2b becomes the voltage lZ4Vi between both ends of the second inductor 52, the voltage lZ4Vi between both ends of the fifth inductor 55, and the voltage between both ends of the third inductor 53. Since the voltage lZ2Vi cancels out, it becomes zero in principle. Also, when a normal mode voltage Vi is applied between the terminals 2a and 2b, the voltage between the terminals la and lb is basically zero as described above.
  • the noise suppression circuit according to the present embodiment has the third inductor even if the coupling coefficients kl and k2 are smaller than 1.
  • FIGS. 11A and 11B show modifications of the balanced noise suppression circuit shown in FIGS. 9A and 9B. More specifically, the degree of balance can be further increased compared to the noise suppression circuits in Figs. 9A and 9B. This is a modified example. Note that the noise suppression circuits of FIGS. 11A and 11B are different from the noise suppression circuits of FIGS. 9A and 9B only in the part of the series circuit 15 and are not shown because other circuit parts are the same. In particular, the noise suppression circuit of FIG.11A has twice the capacity of the first capacitor 14 with respect to the series circuit 15 which is also powerful with the third inductor 53 and the first capacitor 14 shown in FIGS.9A and 9B.
  • the configuration is such that the third inductor 53 is sandwiched between the two capacitors 14a and 14b.
  • the inductance L3 of the third inductor 53 in the circuit of FIG. 11A is the same as the third inductor 53 shown in FIGS. 9A and 9B.
  • the noise suppression circuit of FIG. 11B is different from the series circuit 15 shown in FIGS. 9A and 9B in that the first capacitor 14 is used as it is and the first capacitor 14 is connected to the third inductor.
  • the configuration is such that it is sandwiched between two inductors 53a and 53b having half the inductance of 53.
  • FIG. 12 shows an equivalent circuit of the noise suppression circuit used in this simulation.
  • Ra and Rb are set as input and output impedances.
  • the attenuation characteristics when the value of the inductance L3 is variously changed were calculated.
  • the line denoted by reference numeral 91 is in the ideal state
  • the maximum value of the inductance L3 is determined based on the condition that the resonance frequency fO obtained by the above equation is desirably equal to or higher than the cutoff frequency in an ideal state.
  • the lines indicated by reference numerals 96 and 97 correspond to (L3 16 ⁇ m).
  • the attenuation characteristics shown in Fig. 13 characteristics similar to those in the ideal state are obtained.In particular, the characteristics are almost the same as those in the ideal state until a certain state, and the attenuation starts at a certain frequency. The characteristics deteriorate. For this reason, there is an advantage in setting L3 to this condition value if used in a frequency range substantially the same as the ideal state.
  • the inductor is inserted into each of first and second conductive lines 3 and 4, and first and second conductive lines 3 and 4 are inserted. , 4 are configured to be balanced, so that the degree of balance between lines can be increased.
  • the inductance L3 in the series circuit 15 is set to an appropriate value according to the values of the coupling coefficients kl and k2, the frequency characteristics of the noise attenuation are substantially the same as or similar to the ideal state. It is possible to obtain the characteristics of the tendency, or the characteristics partially better than the ideal state.
  • Other configurations, operations, and effects of the present embodiment are the same as those of the first embodiment.
  • FIGS. 15A and 15B show first and second configuration examples of the noise suppression circuit according to the third embodiment of the present invention.
  • the noise suppression circuits of FIGS. 15A and 15B are different from the configuration of the noise suppression circuits of FIGS. 9A and 9B according to the second embodiment in the first and second inductors 51 and 52 and the fourth and fifth inductors, respectively.
  • the fifth inductors 54 and 55 are magnetically coupled to each other. Except for the difference in the connection relationship, the basic configuration and the operation of noise suppression are the same as those of the noise suppression circuits in FIGS. 9A and 9B.
  • the first and second inductors 51 and 52 and the fourth and fifth inductors 54 and 55 are connected to each other, for example, by winding the respective windings around the same magnetic core 12. Magnetically coupled. However, the magnetic core 12 may be a split core. In FIGS. 15A and 15B, the black circles marked on each winding indicate the polarity of the winding and the direction of winding. First and The polarities of the second inductors 51 and 52 and the fourth and fifth inductors 54 and 55 may be reversed from the illustrated ones if the relationship between the windings is maintained, .
  • the coupling coefficient between first and second inductors 51 and 52 is kl
  • the fourth and fifth inductors are The coupling coefficient between 54 and 55 is k2
  • the coupling coefficient between first and fourth inductors 51 and 54 is k3
  • the coupling coefficient between second and fifth inductors 52 and 55 is k4
  • the first and fourth inductors are k4.
  • the coupling coefficient between the five inductors 51 and 55 is defined as k5
  • the coupling coefficient between the second and fourth inductors 52 and 54 is defined as k6.
  • the first and second inductors 51 and 52 and the fourth and fifth inductors 54 and 55 are all magnetically coupled to each other, and the value of each coupling coefficient kl-k6 is Ideally it will be 1. However, it is impossible to realize that the coupling coefficient is actually 1
  • the inductance of the third inductor 53 is particularly considered.
  • L3 is set to a value corresponding to the actual value of the coupling coefficient kl-1 k6 so that a desired noise attenuation characteristic is obtained, provided that the coupling coefficient kl-1 k6 is smaller than 1.
  • the inductances LI and L2 of the first and second inductors 51 and 52 and the inductances L4 and L5 of the fourth and fifth inductors 54 and 55 are both set to the same value LO, and the third inductor 53
  • the state in which the inductance L3 is four times the value of LO is defined as an ideal state.
  • the value of the inductance L3 of the third inductor 53 is changed to the value of the coupling coefficient kl-1 k6 even if it is smaller than the coupling coefficient kl-1 k6 force Si.
  • Figure 18 shows the noise suppression used in this simulation.
  • 2 shows an equivalent circuit of the circuit.
  • Ra and Rb are set as input and output impedances.
  • FIG. 17 shows the result of the simulation. This is a graph showing the frequency characteristics of the attenuation of the normal mode noise, as in FIG.
  • the line indicated by reference numeral 105 15.9 ⁇
  • the simulation results for 4 ⁇ m are shown.
  • the line indicated by reference numerals 101 to 103 corresponds to ( ⁇ ⁇ 3> 16 / ⁇ ). In this case, a strong resonance point appears in an ideal state. And the resonance frequency
  • the number fo is
  • f indicates taking the square root of the whole C (L3—Ml—M2—M5—M6).
  • C indicates the capacitance of the first capacitor 14 of the series circuit 15. Therefore, in this case, the resonance frequency can be moved to an arbitrary frequency by changing the value of L3.
  • a region where the attenuation characteristic is better than that in the ideal state partially occurs in a frequency region higher than the cutoff frequency. That is, as shown in FIG. 17, in a frequency band higher than the cutoff frequency and until the characteristic coincides with the characteristic in the ideal state, there is a region where the attenuation characteristic is better than the characteristic in the ideal state.
  • the maximum value of the inductance L3 is determined based on the condition that the resonance frequency fO obtained by the above equation is desirably equal to or higher than the cutoff frequency in an ideal state.
  • the noise suppression circuit includes a ripple voltage generated by the power conversion circuit.
  • a ripple voltage generated by the power conversion circuit.
  • It can be used as a means to reduce noise on power lines and to prevent communication signals on indoor power lines from leaking to outdoor power lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Filters And Equalizers (AREA)
  • Power Conversion In General (AREA)

Abstract

 広い周波数範囲においてノイズを抑制でき、かつ小型化が可能なノイズ抑制回路を実現する。ノイズ抑制回路は、第1の導電線(3)に直列的に挿入された第1および第2のインダクタ(51),(52)と、直列に接続された第3のインダクタ(53)と第1のキャパシタ(14)とからなる直列回路(15)とを備えている。直列回路(15)の一端が、第1のインダクタ(51)と第2のインダクタ(52)との間に接続され、他端が第2の導電線(4)に接続されている。第1のインダクタ(51)と第2のインダクタ(52)との結合係数kが1より小さくとも、第3のインダクタ(53)のインダクタンス(L3)の値を結合係数kの値に応じて調整することにより、減衰特性に関して、理想状態とほぼ同じ特性、もしくは似た傾向の特性が得られるようにしている。      

Description

明 細 書
ノイズ抑制回路
技術分野
[0001] 本発明は、導電線上を伝搬するノイズを抑制するノイズ抑制回路に関する。
背景技術
[0002] スイッチング電源、インバータ、照明機器の点灯回路等のパワーエレクトロニクス機 器は、電力の変換を行う電力変換回路を有している。電力変換回路は、直流を矩形 波の交流に変換するスイッチング回路を有している。そのため、電力変換回路は、ス イッチング回路のスイッチング周波数と等し 、周波数のリップル電圧や、スイッチング 回路のスイッチング動作に伴うノイズを発生させる。このリップル電圧やノイズは他の 機器に悪影響を与える。そのため、電力変換回路と他の機器あるいは線路との間に は、リップル電圧やノイズを低減する手段を設ける必要がある。
[0003] リップル電圧やノイズを低減する手段としては、インダクタンス素子 (インダクタ)とキ ャパシタとを含むフィルタ、いわゆる LCフィルタがよく用いられている。 LCフィルタに は、インダクタンス素子とキャパシタとを 1つずつ有するものの他に、 T型フィルタや π 型フィルタ等がある。また、電磁妨害 (ΕΜΙ)対策用の一般的なノイズフィルタも、 LC フィルタの一種である。一般的な ΕΜΙフィルタは、コモンモードチョークコイル、ノーマ ルモードチョークコイル、 Xコンデンサ、 Υコンデンサ等のディスクリート素子を組み合 わせて構成されている。
[0004] また、最近、家庭内における通信ネットワークを構築する際に用いられる通信技術 として電力線通信が有望視され、その開発が進められている。電力線通信は、電力 線に高周波信号を重畳して通信を行う。この電力線通信では、電力線に接続された 種々の電気 ·電子機器の動作によって、電力線上にノイズが発生し、このことが、エラ 一レートの増加等の通信品質の低下を招く。そのため、電力線上のノイズを低減する 手段が必要になる。また、電力線通信では、屋内電力線上の通信信号が屋外電力 線に漏洩することを阻止する必要がある。このような電力線上のノイズを低減したり、 屋内電力線上の通信信号が屋外電力線に漏洩することを阻止する手段としても、 L Cフィルタが用いられて!/、る。
[0005] なお、 2本の導電線を伝搬するノイズには、 2本の導電線の間で電位差を生じさせ るノーマルモード(ディファレンシャルモード)ノイズと、 2本の導電線を同じ位相で伝 搬するコモンモードノイズとがある。
[0006] 特開平 9— 102723号公報には、変圧器を用いたラインフィルタが記載されている。
このラインフィルタは、変圧器とフィルタ回路とを備えている。変圧器の 2次卷線は、 交流電源から負荷に供給する電力を輸送する 2本の導電線のうちの一方に挿入され ている。フィルタ回路の 2つの入力端は交流電源の両端に接続され、フィルタ回路の 2つの出力端は変圧器の 1次卷線の両端に接続されて ヽる。このラインフィルタでは 、フィルタ回路によって電源電圧力 ノイズ成分を抽出し、このノイズ成分を変圧器の 1次卷線に供給することによって、変圧器の 2次卷線が挿入された導電線上において 電源電圧からノイズ成分を差し引くようになつている。このラインフィルタは、ノーマル モードのノイズを低減する。
[0007] 特開平 5— 121988号公報(図 1)には、 3つのインピーダンス素子で構成されたロー パスフィルタが記載されている。このローパスフィルタは、 2本の導電線のうちの一方 に直列に挿入された 2つの高インピーダンス素子と、一端が 2つの高インピーダンス 素子の間に接続され、他端が 2本の導電線のうちの他方に接続された低インピーダ ンス素子とを備えている。 2つの高インピーダンス素子は、それぞれ、コイルと抵抗と の並列接続回路で構成され、低インピーダンス素子はキャパシタで構成されて ヽる。 このローパスフィルタは、ノーマルモードノイズを低減する。
[0008] 特許第 2784783号公報(第 6図)には、ノーマルモードノイズを低減するノーマル モードノイズ用フィルタ回路とコモンモードノイズを低減するコモンモードノイズ用フィ ルタ回路が記載されている。ノーマルモードノイズ用フィルタ回路は、 2本の導電線の それぞれに挿入された 2つのコイルと、各コイルの卷線の途中同士を接続するキャパ シタとで構成されている。コモンモードノイズ用フィルタ回路は、 2本の導電線のそれ ぞれに挿入された 2つのコイルと、各コイルの卷線の途中とアース間に設けられた 2 つのキャパシタとで構成されて 、る。
[0009] 従来の LCフィルタでは、インダクタンスおよびキャパシタンスで決まる固有の共振 周波数を有するため、所望の減衰量を狭い周波数範囲でし力得ることができないと いう問題点があった。
[0010] また、電力輸送用の導電線に挿入されるフィルタには、電力輸送用の電流が流れ ている状態で所望の特性が得られることと、温度上昇に対する対策が要求される。そ のため、通常、電力変換回路用のフィルタにおけるインダクタンス素子では、磁芯とし て、ギャップ付きのフェライト磁芯が用いられる。し力しながら、このようなインダクタン ス素子では、その特性が、空芯のインダクタンス素子の特性に近づくため、所望の特 性を実現するためにはインダクタンス素子が大型化するという問題点があった。
[0011] また、特開平 9— 102723号公報に記載されたラインフィルタでは、変圧器の結合係 数が 1であると共に、フィルタ回路がラインフィルタに影響を与えなければ、理論的に は、ノイズ成分を完全に除去することができる。し力しながら、実際には、変圧器の結 合係数を 1にすることは不可能であり、結合係数の低下に伴い、減衰特性が悪化す る。特に、キャパシタによってフィルタ回路を構成した場合には、このキャパシタと変 圧器の 1次卷線とによって直列共振回路が構成される。そのため、このキャパシタと 変圧器の 1次卷線とを含む信号の経路のインピーダンスは、直列共振回路の共振周 波数近傍の狭い周波数範囲でのみ小さくなる。その結果、このラインフィルタでは、 狭い周波数範囲でしかノイズ成分を除去することができない。これらのことから、実際 に構成されたラインフィルタでは、広 ヽ周波数範囲にぉ 、てノイズ成分を効果的に除 去することができな 、と 、う問題的がある。
[0012] また、特開平 5— 121988号公報(図 1)に記載されたローパスフィルタも、特許第 27 84783号公報 (第 6図)に記載されたフィルタ回路も、ノイズ低減の原理は従来の LC フィルタと同様であるため、従来の LCフィルタと同様の問題点を有して!/、る。
[0013] ところで、各国では、電子機器カゝら交流電源線を介して外部へ放出されるノイズ、 すなわち雑音端子電圧に関して、種々の規制を設けている場合が多い。例えば、 CI SPR (国際無線障害特別委員会)の規格では、 150kHz— 30MHzの周波数範囲で 雑音端子電圧の規格が設定されて ヽる。このような広 ヽ周波数範囲にぉ ヽてノイズを 低減する場合には、特に、 1MHz以下の低い周波数の範囲におけるノイズの低減に 関して、以下のような問題が発生する。すなわち、 1MHz以下の低い周波数の範囲 では、コイルのインピーダンスの絶対値は、コイルのインダクタンスを L、周波数を fとし て、 2 w fLで表される。したがって、一般に、 1MHz以下の低い周波数の範囲におけ るノイズを低減するには、大きなインダクタンスを有するコイルを含むフィルタが必要 になる。その結果、フィルタが大型化する。
発明の開示
[0014] 本発明は力かる問題点に鑑みてなされたもので、その目的は、広い周波数範囲に お 、てノイズを抑制でき、かつ小型化が可能なノイズ抑制回路を提供することにある
[0015] 本発明の第 1の観点に係るノイズ抑制回路は、第 1および第 2の導電線によって伝 送され、これらの導電線の間で電位差を生じさせるノーマルモードノイズを抑制する 回路であって、第 1の導電線に直列的に挿入され、かつ互いに磁気的に結合された 第 1および第 2のインダクタと、直列に接続された第 3のインダクタと第 1のキャパシタ とからなり、一端が第 1のインダクタと第 2のインダクタとの間に接続され、他端が第 2 の導電線に接続された直列回路とを備えているものである。そして、第 1および第 2の インダクタの結合係数 kが 1よりも小さぐかつ第 3のインダクタのインダクタンスカ 結 合係数 kが 1よりも小さいことを条件として、所望のノイズ減衰特性が得られるような値 に設定されて ヽるものである。
[0016] 本発明の第 1の観点に係るノイズ抑制回路において、第 1および第 2のインダクタは 、互いに電磁気的に結合されているものである。第 1および第 2のインダクタは、それ ぞれを別々の卷線で形成してもよいし、単一の卷線で形成することも可能である。単 一の卷線で形成する場合、例えば、単一の卷線の途中に接続点を設け、その卷線 の一方の端部から接続点までを第 1のインダクタ、卷線の他方の端部力 接続点まで を第 2のインダクタとすればよい。この接続点に、直列回路の一端が接続される。また 、本発明の第 1の観点に係るノイズ抑制回路において、第 1および第 2のインダクタの インダクタンスは同一の値であってもよい。第 1および第 2のインダクタを単一の卷線 で形成する場合、例えば単一の卷線の中点に上記接続点を設けることで、各インダ クタンスを等しくすることができる。
[0017] ここで、直列回路の一端が、第 1および第 2のインダクタに接続される接続部分を第 1の端部と呼び、第 2の導電線に接続される他端の接続部分を第 2の端部と呼ぶ。ま た、第 1のインダクタにおける上記第 1の端部とは逆側の端部を第 1のインダクタの一 方の端部と呼び、第 1のインダクタにおける上記第 1の端部側の端部を第 1のインダク タの他方の端部と呼ぶ。また、第 2のインダクタにおける上記第 1の端部側の端部を 第 2のインダクタの一方の端部と呼び、第 2のインダクタにおける上記第 1の端部とは 逆側の端部を第 2のインダクタの他方の端部と呼ぶ。
[0018] 本発明の第 1の観点に係るノイズ抑制回路では、第 1のインダクタの一方の端部と 第 2の導電線における上記第 2の端部との間にノーマルモードの電圧が印加されると 、この電圧が第 1のインダクタと直列回路とによって分圧され、第 1のインダクタの両端 間と直列回路の両端間とにそれぞれ同一向きの所定の電圧が発生する。第 1のイン ダクタと第 2のインダクタは互いに電磁気的に結合されているので、第 1のインダクタ の両端間に発生した電圧に応じて、第 2のインダクタの両端間に所定の電圧が発生 する。ここで、直列回路の一端は第 1のインダクタと第 2のインダクタとの間に接続され ていることから、第 2のインダクタの両端間に発生する電圧の向きは、直列回路の両 端間に発生する電圧の向きとは逆方向となり、それらの電圧が互いに相殺される。そ の結果、第 2のインダクタの他方の端部と上記第 2の端部との間の電圧は、第 1のイン ダクタの一方の端部と上記第 2の端部との間に印加された電圧よりも小さくなる。 また、本発明の第 1の観点に係るノイズ抑制回路において、第 2のインダクタの他方 の端部と第 2の導電線における上記第 2の端部との間にノーマルモードの電圧が印 カロされた場合も、上記の説明と同様にして、第 1のインダクタの一方の端部と上記第 2 の端部との間の電圧は、第 2のインダクタの他方の端部と上記第 2の端部との間に印 カロされた電圧よりも小さくなる。
[0019] ここで、本発明の第 1の観点に係るノイズ抑制回路では、第 3のインダクタのインダク タンスが、結合係数 kが 1よりも小さいことを条件として、所望のノイズ減衰特性が得ら れるような値に設定されているため、例えばノイズの減衰量の周波数特性に関して、 理想状態とほぼ同じ特性、もしくは似た傾向の特性、または部分的に理想状態よりも 優れた特性が得られる。ここで、理想状態とは、結合係数 k= lと仮定して、各インダ クタンス L1一 L3の値の最適化を図った状態のことをいう。例えば LI, L2を共に同じ 値 LOとし、 L3も同じ値 LOとした状態のことをいう。
[0020] 本発明の第 1の観点に係るノイズ抑制回路において、特に、第 3のインダクタのイン ダクタンス L3を、以下の条件を満たすようにした場合には、ノイズの減衰量の周波数 特性に関して、理想状態とほぼ同じ特性が得られる。
L3=k (Ll -L2) 1 2 …… (1)
(ただし、 L1 :第 1のインダクタのインダクタンス、 L2 :第 2のインダクタのインダクタンス )
[0021] また特に、第 3のインダクタのインダクタンス L3を、以下の条件を満たすようにした場 合には、ノイズの減衰量の周波数特性に関して、理想状態のときにはなカゝつた共振 点が得られる。これにより、カットオフ周波数より高い周波数領域において部分的に、 理想状態の場合よりも減衰特性が良くなる領域が生じる。
L3 >k (Ll -L2) 1/2であり、力つ
L3≤ (Ll + M) (L2 + M) / (L1 +L2 + 2M) +M …… (2)
(ただし、 M = k (Ll -L2) V L1 :第 1のインダクタのインダクタンス、 L2 :第 2のインダ クタのインダクタンス)
[0022] また特に、第 3のインダクタのインダクタンス L3を、以下の条件を満たすようにした場 合には、ノイズの減衰量の周波数特性に関して、理想状態のときと似た傾向の特性 が得られる。
L3<k (Ll -L2) 1/2であり、力つ
L3≥0. 9k(Ll -L2) 1 2 …… (3)
(ただし、 L1 :第 1のインダクタのインダクタンス、 L2 :第 2のインダクタのインダクタンス )
[0023] 本発明の第 2の観点に係るノイズ抑制回路は、第 1および第 2の導電線によって伝 送され、これらの導電線の間で電位差を生じさせるノーマルモードノイズを抑制する 回路であって、第 1の導電線に直列的に挿入され、かつ互いに磁気的に結合された 第 1および第 2のインダクタと、直列に接続された第 3のインダクタと第 1のキャパシタ と力 なる直列回路と、第 2の導電線に直列的に挿入され、かつ互いに磁気的に結 合された第 4および第 5のインダクタとを備え、直列回路の一端が、第 1のインダクタと 第 2のインダクタとの間に接続され、他端が第 4のインダクタと第 5のインダクタとの間 に接続されているものである。そして、第 1および第 2のインダクタの結合係数 klと第 4および第 5のインダクタの結合係数 k2とが 1よりも小さぐかつ第 3のインダクタのイン ダクタンスカ 結合係数 kl, k2が 1よりも小さいことを条件として、所望のノイズ減衰特 性が得られるような値に設定されているものである。
[0024] 本発明の第 2の観点に係るノイズ抑制回路において、第 1および第 2のインダクタは 、上記第 1の観点に係るノイズ抑制回路と同様、互いに電磁気的に結合されているも のであり、それぞれを別々の卷線で形成してもよいし、単一の卷線で形成することも 可能である。第 4および第 5のインダクタも、同様に構成することができる。第 4および 第 5のインダクタを単一の卷線で形成する場合、例えば、単一の卷線の途中に接続 点を設け、その卷線の一方の端部力も接続点までを第 4のインダクタ、卷線の他方の 端部から接続点までを第 5のインダクタとすればよい。この接続点に、直列回路の他 端が接続される。本発明の第 2の観点に係るノイズ抑制回路において、第 4および第 5のインダクタのインダクタンスが同一の値であってもよい。第 4および第 5のインダク タを単一の卷線で形成する場合、例えば単一の卷線の中点に上記接続点を設ける ことで、各インダクタンスを等しくすることができる。
[0025] ここで、直列回路の一端が、第 1および第 2のインダクタに接続される接続部分を第 1の端部と呼び、第 4および第 5のインダクタに接続される他端の接続部分を第 2の端 部と呼ぶ。また、第 1のインダクタにおける上記第 1の端部とは逆側の端部を第 1のィ ンダクタの一方の端部と呼び、第 1のインダクタにおける上記第 1の端部側の端部を 第 1のインダクタの他方の端部と呼ぶ。また、第 2のインダクタにおける上記第 1の端 部側の端部を第 2のインダクタの一方の端部と呼び、第 2のインダクタにおける上記 第 1の端部とは逆側の端部を第 2のインダクタの他方の端部と呼ぶ。また、第 4のイン ダクタにおける上記第 2の端部とは逆側の端部を第 4のインダクタの一方の端部と呼 び、第 4のインダクタにおける上記第 2の端部側の端部を第 4のインダクタの他方の端 部と呼ぶ。また、第 5のインダクタにおける上記第 2の端部側の端部を第 5のインダク タの一方の端部と呼び、第 5のインダクタにおける上記第 2の端部とは逆側の端部を 第 5のインダクタの他方の端部と呼ぶ。 [0026] 本発明の第 2の観点に係るノイズ抑制回路では、第 1のインダクタの一方の端部と 第 4のインダクタの一方の端部との間にノーマルモードの電圧が印加されると、この電 圧が第 1のインダクタと直列回路と第 4のインダクタとによって分圧され、第 1のインダ クタの両端間と直列回路の両端間と第 4のインダクタの両端間とにそれぞれ所定の電 圧が発生する。第 1のインダクタと第 2のインダクタは互いに電磁気的に結合されてい るので、第 1のインダクタの両端間に発生した電圧に応じて、第 2のインダクタの両端 間に所定の電圧が発生する。同様に、第 4のインダクタと第 5のインダクタは互いに電 磁気的に結合されているので、第 4のインダクタの両端間に発生した電圧に応じて、 第 5のインダクタの両端間に所定の電圧が発生する。ここで、直列回路の一端は第 1 のインダクタと第 2のインダクタとの間に接続されると共に、他端が第 4のインダクタと 第 5のインダクタとの間に接続されていることから、第 2のインダクタの両端間に発生 する電圧の向きと第 5のインダクタの両端間に発生する電圧の向きとが、直列回路の 両端間に発生する電圧の向きとは逆方向となり、それらの電圧が互いに相殺される。 その結果、第 2のインダクタの他方の端部と第 5のインダクタの他方の端部との間の電 圧は、第 1のインダクタの一方の端部と第 4のインダクタの一方の端部との間に印加さ れた電圧よりも小さくなる。
また、本発明の第 2の観点に係るノイズ抑制回路において、第 2のインダクタの他方 の端部と第 5のインダクタの他方の端部との間にノーマルモードの電圧が印加された 場合も、上記の説明と同様にして、第 1のインダクタの一方の端部と第 4のインダクタ の一方の端部との間の電圧は、第 2のインダクタの他方の端部と第 5のインダクタの 他方の端部との間に印加された電圧よりも小さくなる。
[0027] ここで、本発明の第 2の観点に係るノイズ抑制回路では、第 3のインダクタのインダク タンスが、結合係数 kl, k2が 1よりも小さいことを条件として、所望のノイズ減衰特性 が得られるような値に設定されて 、るので、ノイズの減衰量の周波数特性に関して、 例えば理想状態とほぼ同じ特性、もしくは似た傾向の特性、または部分的に理想状 態よりも優れた特性が得られる。ここで、理想状態とは、結合係数 kl = l, k2= lと仮 定して、各インダクタンス L1一 L5の値の最適化を図った状態のことをいう。例えば L1 , L2および L4, L5を共に同じ値 LOとし、 L3を LOの 2倍の値とした状態のことをいう。 [0028] 本発明の第 2の観点に係るノイズ抑制回路において、特に、第 3のインダクタのイン ダクタンス L3を、以下の条件を満たすようにした場合には、ノイズの減衰量の周波数 特性に関して、理想状態とほぼ同じ特性が得られる。
L3 = M1+M2であり、かつ
Ml=kl(Ll-L2) 12 ……(4—1)
M2=k2(L4-L5)12 ……(4—2)
(ただし、 L1:第 1のインダクタのインダクタンス、 L2:第 2のインダクタのインダクタンス 、 L4:第 4のインダクタのインダクタンス、 L5:第 5のインダクタのインダクタンス)
[0029] また特に、第 3のインダクタのインダクタンス L3を、以下の条件を満たすようにした場 合には、ノイズの減衰量の周波数特性に関して、理想状態のときにはなカゝつた共振 点が得られる。これにより、共振点より高い周波数領域において部分的に、理想状態 の場合よりも減衰特性が良くなる領域が生じる。
L3>M1+M2であり、かつ
L3≤ (L1+L4 + M1 + M2) (L2 + L5 + Ml + M2)/{Ll+L2 + L4 + L5 + 2( M1 + M2)}+M1 + M2 ……(5)
(ただし、 Ml=kl(Ll-L2)12, M2=k2(L4'L5)1/2、 LI:第 1のインダクタのインダ クタンス、 L2:第 2のインダクタのインダクタンス、 L4:第 4のインダクタのインダクタンス
、 L5:第 5のインダクタのインダクタンス)
[0030] また特に、第 3のインダクタのインダクタンス L3を、以下の条件を満たすようにした場 合には、ノイズの減衰量の周波数特性に関して、理想状態のときと似た傾向の特性 が得られる。
L3<M1+M2であり、かつ
L3≥0.9(M1 + M2) …… (6)
(ただし、 Ml=kl(Ll-L2)12, M2=k2(L4'L5)1/2、 LI:第 1のインダクタのインダ クタンス、 L2:第 2のインダクタのインダクタンス、 L4:第 4のインダクタのインダクタンス
、 L5:第 5のインダクタのインダクタンス)
[0031] 本発明の第 3の観点に係るノイズ抑制回路は、第 1および第 2の導電線によって伝 送され、これらの導電線の間で電位差を生じさせるノーマルモードノイズを抑制する 回路であって、第 1の導電線に直列的に挿入され、かつ互いに磁気的に結合された 第 1および第 2のインダクタと、直列に接続された第 3のインダクタと第 1のキャパシタ と力 なる直列回路と、第 2の導電線に直列的に挿入され、かつ第 1および第 2のイン ダクタと共に互いに磁気的に結合された第 4および第 5のインダクタとを備え、直列回 路の一端が、第 1のインダクタと第 2のインダクタとの間に接続され、他端が第 4のイン ダクタと第 5のインダクタとの間に接続されているものである。そして、第 1および第 2 のインダクタの結合係数 klと、第 4および第 5のインダクタの結合係数 k2と、第 1およ び第 4のインダクタの結合係数 k3と、第 2および第 5のインダクタの結合係数 k4と、第 1および第 5のインダクタの結合係数 k5と、第 2および第 4のインダクタの結合係数 k6 とがすベて 1よりも小さぐかつ第 3のインダクタのインダクタンスカ 結合係数 kl, k2 , k3, k4, k5,および k6がすべて 1よりも小さいことを条件として、所望のノイズ減衰 特性が得られるような値に設定されているものである。
[0032] 本発明の第 3の観点に係るノイズ抑制回路は、第 1の導電線上の第 1および第 2の インダクタと第 2の導電線上の第 4および第 5のインダクタとが相互に磁気的に結合さ れていることが異なるものの、ノイズ抑制の基本的な動作は上記第 2の観点に係るノ ィズ抑制回路と同様である。
[0033] この第 3の観点に係るノイズ抑制回路では、第 3のインダクタのインダクタンスカ 結 合係数 kl, k2, k3, k4, k5,および k6力すべて 1よりも/ J、さいことを条件として、所 望のノイズ減衰特性が得られるような値に設定されて ヽるので、ノイズの減衰量の周 波数特性に関して、例えば理想状態とほぼ同じ特性、もしくは似た傾向の特性、また は部分的に理想状態よりも優れた特性が得られる。ここで、理想状態とは、結合係数 kl一 k6 = lと仮定して、各インダクタンス L1一 L5の値の最適化を図った状態のこと をいう。例えば LI, L2および L4, L5を共に同じ値 LOとし、 L3を LOの 4倍の値とした 状態のことをいう。
[0034] 本発明の第 3の観点に係るノイズ抑制回路において、特に、第 3のインダクタのイン ダクタンス L3を、以下の条件を満たすようにした場合には、ノイズの減衰量の周波数 特性に関して、理想状態とほぼ同じ特性が得られる。
L3 = M1 +M2 + M5 + M6であり、かつ Ml=kl(Ll-L2) 12 ……(7—1)
M2=k2(L4-L5)12 ……(7— 2)
M5=k5 (Ll-L5)12 ……(7—3)
M6=k6 (L2-L4) 12 ……(7—4)
(ただし、 LI:第 1のインダクタのインダクタンス、 L2:第 2のインダクタのインダクタンス 、 L4:第 4のインダクタのインダクタンス、 L5:第 5のインダクタのインダクタンス)
[0035] また特に、第 3のインダクタのインダクタンス L3を、以下の条件を満たすようにした場 合には、ノイズの減衰量の周波数特性に関して、理想状態のときにはなカゝつた共振 点が得られる。これにより、共振点より高い周波数領域において部分的に、理想状態 の場合よりも減衰特性が良くなる領域が生じる。
L3>M1+M2 + M5 + M6であり、かつ
L3≤ (L1+L4 + M1 + M2 + 2M3 + M5 + M6) (L2+L5 + M1 + M2 + 2M4 + M5 + M6)/{L1+L2 + L4 + L5 + 2(M1 + M2 + M3 + M4 + M5 + M6)}+M1 + M2 + M5 + M6 …… (8)
(ただし、 Ml=kl(Ll'L2)1/2, M2=k2(L4-L5)12, M5=k5 (Ll-L5)12, M6 = k6 (L2-L4) 1/2、、 LI:第 1のインダクタのインダクタンス、 L2:第 2のインダクタのイン ダクタンス、 L4:第 4のインダクタのインダクタンス、 L5:第 5のインダクタのインダクタン ス)
[0036] また特に、第 3のインダクタのインダクタンス L3を、以下の条件を満たすようにした場 合には、ノイズの減衰量の周波数特性に関して、理想状態のときと似た傾向の特性 が得られる。
L3<M1+M2 + M5 + M6であり、かつ
L3≥0.9(M1 + M2 + M5 + M6) …… (9)
(ただし、 Ml=kl(Ll'L2)1/2, M2=k2(L4-L5)12, M5=k5 (Ll-L5)12, M6 = k6 (L2-L4) 1/2、、 LI:第 1のインダクタのインダクタンス、 L2:第 2のインダクタのイン ダクタンス、 L4:第 4のインダクタのインダクタンス、 L5:第 5のインダクタのインダクタン ス)
[0037] なお、各観点に係るノイズ抑制回路において、第 1の導電線、第 2の導電線の例と しては、単相 2線式電力線における各導電線がある他、現在、電力供給のために多く 用いられて 、る単相 3線式電力線における 3線のうちの 2線がある。
[0038] 本発明の各観点に係るノイズ抑制回路によれば、広い周波数範囲においてノイズ を抑制でき、かつ小型化が可能となる。特に、直列回路におけるインダクタンス L3を 、結合係数が 1よりも小さいことを条件として適切な値に設定するようにしたので、ノィ ズの減衰量の周波数特性に関して、例えば理想状態とほぼ同じ特性、もしくは似た 傾向の特性、または部分的に理想状態よりも優れた特性を得ることができる。
図面の簡単な説明
[0039] [図 1A]本発明の第 1の実施の形態に係るノイズ抑制回路の第 1の構成例を示す回路 図である。
[図 1B]本発明の第 1の実施の形態に係るノイズ抑制回路の第 2の構成例を示す回路 図である。
[図 2]第 1および第 2のインダクタの実際の構成例を示す図である。
[図 3]本発明の第 1の実施の形態に係るノイズ抑制回路の特性を求めるための第 1の シミュレーションに用いた回路構成を示す図である。
[図 4]第 1のシミュレーション結果を示す特性図である。
[図 5]本発明の第 1の実施の形態に係るノイズ抑制回路の特性を求めるための第 2の シミュレーションに用いた回路構成を示す図である。
[図 6]第 2のシミュレーション結果を示す特性図である。
[図 7]本発明の第 1の実施の形態に係るノイズ抑制回路の特性を求めるための第 3の シミュレーションに用いた回路構成を示す図である。
[図 8]第 3のシミュレーション結果を示す特性図である。
[図 9A]本発明の第 2の実施の形態に係るノイズ抑制回路の第 1の構成例を示す回路 図である。
[図 9B]本発明の第 2の実施の形態に係るノイズ抑制回路の第 2の構成例を示す回路 図である。
[図 10]第 1および第 2のインダクタ、ならびに第 5および第 6のインダクタの実際の構成 例を示す図である。 [図 11A]本発明の第 2の実施の形態に係るノイズ抑制回路の第 1の変形例を示す回 路図である。
[図 11B]本発明の第 2の実施の形態に係るノイズ抑制回路の第 2の変形例を示す回 路図である。
[図 12]本発明の第 2の実施の形態に係るノイズ抑制回路の特性を求めるためのシミュ レーシヨンに用いた回路構成を示す図である。
[図 13]本発明の第 2の実施の形態に係るノイズ抑制回路における減衰特性のシミュ レーシヨン結果を示す特性図である。
[図 14]結合係数の測定方法についての説明図である。
[図 15A]本発明の第 3の実施の形態に係るノイズ抑制回路の第 1の構成例を示す回 路図である。
[図 15B]本発明の第 3の実施の形態に係るノイズ抑制回路の第 2の構成例を示す回 路図である。
[図 16]本発明の第 3の実施の形態に係るノイズ抑制回路における各インダクタ間の結 合係数についての説明図である。
[図 17]本発明の第 3の実施の形態に係るノイズ抑制回路における減衰特性のシミュ レーシヨン結果を示す特性図である。
[図 18]図 17のシミュレーションに用いたノイズ抑制回路の等価回路を示す回路図で ある。
発明を実施するための最良の形態
[0040] 以下、本発明の実施の形態について図面を参照して詳細に説明する。
[0041] [第 1の実施の形態]
まず、本発明の第 1の実施の形態に係るノイズ抑制回路について説明する。本実 施の形態に係るノイズ抑制回路は、 2本の導電線によって伝送され、これらの導電線 の間で電位差を生じさせるノーマルモード(ディファレンシャルモード)ノイズを抑制す る回路である。
[0042] 図 1A, 1Bは、本実施の形態に係るノイズ抑制回路の第 1および第 2の構成例を示 している。このノイズ抑制回路は、一対の端子 la, lbと、他の一対の端子 2a, 2bと、 端子 la, 2a間を接続する第 1の導電線 3と、端子 lb、 2b間を接続する第 2の導電線 4とを備えている。ノイズ抑制回路はさらに、第 1の導電線 3に直列的に挿入された第 1および第 2のインダクタ 51, 52を備えている。ノイズ抑制回路はまた、直列に接続さ れた第 3のインダクタ 53と第 1のキャパシタ 14とからなる直列回路 15を備えている。 直列回路 15の一端は、第 1のインダクタ 51と第 2のインダクタ 52との間に接続され、 他端が第 2の導電線 4に接続されている。
[0043] ここで、直列回路 15の一端が、第 1および第 2のインダクタ 51, 52に接続される接 続部分を第 1の端部 P1と呼び、第 2の導電線 4に接続される他端の接続部分を第 2 の端部 P2と呼ぶ。また、第 1のインダクタ 51における第 1の端部 P1とは逆側の端部を 第 1のインダクタ 51の一方の端部と呼び、第 1のインダクタ 51における第 1の端部 P1 側を第 1のインダクタ 51の他方の端部と呼ぶ。また、第 2のインダクタ 52における第 1 の端部 P1側を第 2のインダクタ 52の一方の端部と呼び、第 2のインダクタ 52における 第 1の端部 P1とは逆側の端部を第 2のインダクタ 52の他方の端部と呼ぶ。
[0044] 直列回路 15において、第 3のインダクタ 53は、磁芯 13bに巻かれた卷線 13aを有し ている。直列回路 15において、第 1のキャパシタ 14は、周波数が所定値以上のノー マルモード信号を通過させるハイパスフィルタとして機能する。
[0045] なお、直列回路 15内において、第 3のインダクタ 53と第 1のキャパシタ 14の位置関 係は、特に限定されない。図 1Aは、第 3のインダクタ 53と第 1のキャパシタ 14のうち、 第 3のインダクタ 53の方が第 1の端部 P1に近い位置に配置され、第 1のキャパシタ 1 4の方が第 2の端部 P2に近い位置に配置されている構成例である。図 1Bは、逆に、 第 1のキャパシタ 14の方が第 1の端部 P1に近い位置に配置され、第 3のインダクタ 5 3の方が第 2の端部 P2に近い位置に配置されている構成例である。
[0046] 第 1および第 2のインダクタ 51, 52は、互いに電磁気的に結合されている。第 1のィ ンダクタ 51は、磁芯 12aに卷かれた卷線 11aを有している。第 2のインダクタ 52は、 磁芯 12bに巻かれた卷線 l ibを有している。なお、図において各卷線に記した黒い 丸印はその卷線の極性、巻き方の向きを表す。第 1および第 2のインダクタ 51, 52の 極性は図示したように同一方向となっている。
第 1および第 2のインダクタ 51, 52は、このようにそれぞれ別々の卷線 11a, l ibで 形成してもよいが、図 2に示したように単一の卷線 11で形成することも可能である。卷 線 11は、磁芯 12に巻かれている。なお、図 2では、第 1および第 2のインダクタ 51, 5 2以外の回路は図示を省略している。
[0047] 第 1および第 2のインダクタ 51, 52を単一の卷線で形成する場合、図 2に示したよう に例えば、単一の卷線 11の途中に接続点(第 1の端部 P1)を設け、その卷線 11の 一方の端部力も接続点までを卷線 11aとして第 1のインダクタ 51とすればよい。同様 に、卷線 11の他方の端部力 接続点までを卷線 1 lbとして第 2のインダクタ 52とすれ ばよい。この接続点に、直列回路 15の一端を接続する。
[0048] 第 1および第 2のインダクタ 51, 52のインダクタンスは同一の値であることが好まし い。第 1および第 2のインダクタ 51, 52を単一の卷線 11で形成する場合、例えば単 一の卷線 11の中点に上記接続点を設けることで、各インダクタンスを等しくすることが できる。
[0049] ここで、上述したように第 1および第 2のインダクタ 51, 52は、互いに電磁気的に結 合されており、その結合係数 kは理想的には 1となる。しカゝしながら、実際には結合係 数が 1というのは実現できず、結合状態が比較的良い状態でも、 0. 998などの値とな る。さらに、コアの材質、巻き数、巻き方などにより結合係数は影響され、結合状態が 悪い場合には 0. 4位にまで低下してしまう。例えば巻き数が少ないほど、結合係数が 小さくなりやすい。また磁心の透磁率が小さいほど、結合係数が小さくなりやすい。こ の場合、結合係数を 1とみなして各回路素子の値を決定すると、当初期待していた減 衰量を得ることができな 、と 、つた問題が生じる。
[0050] したがって、各回路素子の値は、実際の結合係数の値に応じて決定することが好ま しい。本実施の形態に係るノイズ抑制回路では、第 1および第 2のインダクタ 51, 52 の結合係数 kの値が実際には 1よりも小さくなることを考慮し、特に第 3のインダクタ 53 のインダクタンス L3が、結合係数 kが 1よりも小さいことを条件として、所望のノイズ減 衰特性が得られるよう、実際の結合係数 kの値に応じた値に設定されている。なお、 結合係数の低下による減衰特性の変化、およびそれを考慮したインダクタンス L3の 値の決定方法にっ 、ては後に詳述する。
[0051] 次に、本実施の形態に係るノイズ抑制回路の作用について説明する。ここでは、図 1Aの構成例を基本にして説明する。始めに、図 1Aに示したように、端子 la, lb間に ノーマルモードの電圧 Viが印加された場合について説明する。この場合には、第 1 のインダクタ 51の一方の端部と第 2の端部 P2との間に電圧 Viが印加される。この電 圧 Viは、第 1のインダクタ 51と直列回路 15とによって分圧され、第 1のインダクタ 51 の両端間と直列回路 15の両端間とにそれぞれ同一向きの所定の電圧が発生する。 なお、図中の矢印は、その先の方が高い電位であることを表している。第 1のインダク タ 51と第 2のインダクタ 52は互いに電磁気的に結合されているので、第 1のインダク タ 51の両端間に発生した電圧に応じて、第 2のインダクタ 52の両端間に所定の電圧 が発生する。ここで、直列回路 15の一端は第 1のインダクタ 51と第 2のインダクタ 52と の間に接続されていることから、第 2のインダクタ 52の両端間に発生する電圧の向き は、直列回路 15の両端間に発生する電圧の向きとは逆方向となり、それらの電圧が 互いに相殺される。その結果、第 2のインダクタ 52の他方の端部と第 2の端部 P2との 間の電圧、すなわち端子 2a, 2b間の電圧 Voは、第 1のインダクタ 51の一方の端部と 第 2の端部 P2との間に印加された電圧 VUりも小さくなる。
[0052] また、本実施の形態において、端子 2a, 2b間にノーマルモードの電圧が印加され た場合も、上記の説明と同様にして、端子 la, lb間の電圧は、端子 2a, 2b間に印加 された電圧よりも小さくなる。このように、本実施の形態に係るノイズ抑制回路によれ ば、端子 la, lbにノーマルモードノイズが印加された場合と、端子 2a, 2bにノーマル モードノイズが印加された場合の 、ずれの場合にも、ノーマルモードノイズを抑制す ることがでさる。
[0053] 次に、特に、理想状態での作用につ 、て説明する。ここで、本実施の形態に係るノ ィズ抑制回路において、理想状態とは、第 1および第 2のインダクタ 51, 52の結合係 数 k= lと仮定して、各素子値の最適化を図った状態のことをいう。ここでは特に、第 1 および第 2のインダクタ 51, 52のインダクタンス LI, L2を共に同じ値 L0とし、第 3のィ ンダクタ 53のインダクタンス L3も同じ値 L0とする。キャパシタ 14のインピーダンスは ゼロであると仮定する。
[0054] この場合、端子 la, lb間にノーマルモードの電圧 Viが印加されると、この電圧 Viは 、第 1のインダクタ 51と第 3のインダクタ 53とによって分圧され、第 1のインダクタ 51の 両端間と第 3のインダクタ 53の両端間とにそれぞれ同一向きの l/2Viの電圧が発 生する。第 1のインダクタ 51の両端間に発生した電圧 l/2Viに応じて、第 2のインダ クタ 52の両端間にも電圧 l/2Viが発生する。その結果、端子 2a, 2b間の電圧 Voは 、第 2のインダクタ 52の両端間の電圧 l/2Viと第 3のインダクタ 53の両端間の電圧 1 Z2Viとが互いに逆向きであることから相殺され、原理的にはゼロとなる。また、端子 2 a, 2b間にノーマルモードの電圧 Viが印加された場合も、上記の説明と同様にして、 端子 la, lb間の電圧は、原理的にはゼロとなる。
[0055] ここで、上述のように第 1および第 2のインダクタ 51, 52のインダクタンス LI, L2、お 合について考える。これは、例えば第 1および第 2のインダクタ 51, 52の卷線 11a, 1 lb、および第 3のインダクタ 53の卷線 13aの各卷線を等しくすることで実現することが できる。この場合、卷線のインダクタンスは卷数の二乗に比例することから、卷線 11a , l ibを合わせた全体の卷線 11のインダクタンスは、第 3のインダクタ 53のインダクタ ンス L3の 4倍となる。言い換えると、第 3のインダクタ 53のインダクタンス L3は、卷線 1 1のインダクタンスの 1/4となる。このように、理想状態では、第 3のインダクタ 53は、 インダクタンスの小さなもので済む。
[0056] 次に、結合係数の低下による減衰特性の変化を、以下の第 1のシミュレーションの 結果により具体的に説明する。図 3は、第 1のシミュレーションに用いたノイズ抑制回 路の等価回路を示している。なお、 Ra, Rbは、入出力インピーダンスとして設定した ものである。例えば、 Raが電源系統側の入出力インピーダンス、 Rbが機器側の入出 力インピーダンスに相当する。このシミュレーションでは、 Rb側を測定機器側として設 定している。図 3において、各回路記号の近傍にはシミュレーションに用いた各回路 素子の素子値を記す。図示したように、第 1および第 2のインダクタ 51, 52のインダク タンス LI, L2、ならびに第 3のインダクタ 53のインダクタンス L3を共に、同じ値(1 μ Η)に設定した。このような回路において、第 1および第 2のインダクタ 51, 52の結合 係数 kの値を、理想値の 1から 0. 8まで順次低下させた場合の減衰特性を計算した。
[0057] 図 4は、そのシミュレーション結果を示している。これは、ノイズ抑制回路におけるノ 一マルモードノイズの減衰量の周波数特性をグラフ化して示したものである。なお、 図 4において、横軸は周波数 (Hz)を表し、縦軸は利得 (ゲイン)(dB)を表している。 ゲインが小さいほど、すなわち、マイナス方向のゲインの絶対値が大きいほど、ノイズ の減衰量は大きい。図 4において、符号 61で示した線は結合係数 k= lとした場合、 符号 62で示した線は結合係数 k=0. 998とした場合、符号 63で示した線は結合係 数 k=0. 98とした場合、符号 64で示した線は結合係数 k=0. 9とした場合、符号 65 で示した線は結合係数 k=0. 8とした場合のシミュレーション結果を示して 、る。
[0058] 図 4から、理想状態 (k= l)では、減衰極のない減衰特性が得られるのに対し、 kが 1よりも小さい場合では減衰極 62A— 65Aが生じている。この減衰極は、第 1および 第 2のインダクタ 51, 52の相互インダクタンスと第 3のインダクタ 53と第 1のキャパシタ 14とで形成される共振点に相当する。この共振点は、結合係数 kの値が低下するほ ど、低周波側に移動している。これにより、結合係数 kの値が低下するほど、共振点よ り高周波側で、理想状態に比べて当初期待していた減衰量を得ることができなくなる といった問題が生じる。
[0059] そこで、本実施の形態に係るノイズ抑制回路では、結合係数 kが 1より小さくとも、第 3のインダクタ 53のインダクタンス L3の値を結合係数 kの値に応じて調整することによ り、減衰特性に関して、理想状態とほぼ同じ特性、もしくは似た傾向の特性が得られ るようにしている。または、任意の周波数に共振点を作ることで、部分的に理想状態よ りも優れた特性が得られるようにして 、る。
[0060] 次に、このインダクタンス L3の値による減衰特性の変化を、以下の第 2のシミュレ一 シヨンの結果により具体的に説明する。図 5は、第 2のシミュレーションに用いたノイズ 抑制回路の等価回路を示している。この回路において、結合係数 k=0. 8として、ィ ンダクタンス L3の値を種々変化させた場合の減衰特性を計算した。その他の回路素 子の値は、図 3の回路と同様である。
[0061] 図 6は、そのシミュレーション結果を示している。これは、図 4と同様、ノーマルモード ノイズの減衰量の周波数特性をグラフ化して示したものである。図 6には、比較のた め理想状態 (k= l, L3 = : H)での計算結果も示す。図 6において、符号 70で示し た線は理想状態の場合、符号 71で示した線は L3 = 8. 0 Hとした場合、符号 72で 示した線は L3 = 0. 81 μ Ηとした場合、符号 73で示した線は L3 = 0. 801 μ Ηとした 場合、符号 74で示した線は L3 = 0. 8001 μ Ηとした場合、符号 75で示した線は L3 =0. 8 μ Hとした場合、符号 76で示した線は L3 = 0. 7999 μ Hとした場合、符号 77 で示した線は L3 = 0. 799 Hとした場合、符号 78で示した線は L3 = 0. 79 Hとし た場合、符号 79で示した線は L3 = 0. 08 Hとした場合のシミュレーション結果を示 している。
[0062] 図 6のシミュレーション結果から、インダクタンス L3の値とその減衰特性との関係に 関して以下のことが言える。まず、 L1 =L2=L0の場合について述べる。インダクタン ス L3の値により、おおきく以下の 3つの条件 (A)—(C)に分けられる。
[0063] (A) L3=k'LOのとき。
図 6のシミュレーションでは、符号 75で示した線が該当する(L3 = 0. 8 X 1. O ^ H =0. 8 /ζ Η)。この場合、 kが 1未満であっても、減衰特性に関して理想状態 (k= l . 0, L3 =LO)とほぼ同じ特性が得られる。
[0064] (B) L3 >k'LOのとき。
図 6のシミュレーションでは、符号 71— 74で示した線が該当する(L3 >0. 8 /ζ Η)。 この場合、理想状態のときにはなカゝつた共振点が現れる。そして、その共振周波数 fO は、
f0= l/2 π C (L3— k'LO)
と求められる。 は、 C (L3— k'LO)全体の平方根を取ることを示す。 Cは、直列回路 15の第 1のキャパシタ 14のキャパシタンスを示す。したがってこの場合、 L3の値を変 えることにより、共振周波数を任意の周波数に移動できる。この共振点を設けた場合 、カットオフ周波数より高い周波数領域において部分的に、理想状態の場合よりも減 衰特性が良くなる領域が生じる。すなわち、図 6からも分力るようにカットオフ周波数よ り高い周波数でかつ理想状態の特性と一致するまでの周波数帯では、理想状態の 特性よりも減衰特性が良くなる領域が生じる。
この場合において、インダクタンス L3の最大値としては、上式で求められる共振周 波数 fOが理想状態のカットオフ周波数以上であることが望ましいという条件より、
L3≤ (l/2 + 3/2k) -L0 …… (2a)
であることが望ましい。図 6のシミュレーションでは、符号 72— 74で示した線力 この 望ましい条件を満たしている(L3≤l. 7μΗ)。
[0065] (C) L3<k'LOのとき。
図 6のシミュレーションでは、符号 76— 79で示した線が該当する(L3く 0. 8/ζΗ)。 この場合、図 6の減衰特性からも分力るように、理想状態のときと似た傾向の特性が 得られ、特に、ある状態までは理想状態とほぼ同じ特性を示し、ある周波数以上から 減衰特性が悪化する。このため、理想状態とほぼ同じ周波数範囲で使用するならば 、 L3をこの条件値にすることにメリットがある。
この場合にお 、て、インダクタンス L3の最小値としてはシミュレーションから、 L3≥0. 9k(Ll-L2) 12 …… (3a)
であることが望ましい。図 6のシミュレーションでは、符号 76— 78で示した線力 この 望ましい条件を満たしている(L3≥0. 72^Η)0
[0066] ここで、上記式(2a) , (3a)によって求められるインダクタンス L3の最大値、最小値 での特性をシミュレーションによって計算した。図 7は、このシミュレーションに用いた ノイズ抑制回路の等価回路を示している。この等価回路において、第 1および第 2の インダクタ 51, 52のインダクタンス LI, L2は共に、 LO = 10 Hに設定した。また結 合係数 kは 0. 8とした。この場合、上記式(2a)カゝら求められるインダクタンス L3の最 大値は、
L3=(l/2 + 3/2Xk) XL0=17uH
となる。また、式(3a)力 求められるインダクタンス L3の最小値は、
L3 = 0. 9kXLO = 7. 2μΗ
となる。インダクタンス L3の値を、これら最大値、最小値に設定した場合の減衰特性 を計算した。
[0067] 図 8は、そのシミュレーション結果を示している。比較のため、理想状態 (k=l.0,
Figure imgf000022_0001
= 8/ζΗ)とにつ いてもシミュレーションを行った。また、インダクタンス L3を上記最小値よりも若干小さ めの値の 7. に設定した場合についてもシミュレーションを行った。図 8におい て、符号 81で示した線は理想状態の場合、符号 82で示した線は L3 = 17 Ηとした 場合、符号 83で示した線は L3 = 8 Hとした場合、符号 84で示した線は L3 = 7. 2 μ Hとした場合、符号 85で示した線は L3 = 7.1 μ Ηとした場合のシミュレーション結 果を示している。図 8の結果から、上記最大値、最小値の妥当性が確認できた。
[0068] 以上、 L1=L2の場合について述べた力 L1と L2が異なる場合についても、以下 で説明するように同様のことがいえる。おおきく以下の 3つの条件 (A-1), (B-1), (
C-1)〖こ分けられる。
[0069] (A— 1) L3=k(Ll-L2) 12……(1)のとき。
この場合には、上記条件 (A)のときと同様、 kが 1未満であっても、減衰特性に関し て k=l.0のときとほぼ同じ特性が得られる。
[0070] (B— 1) L3>k(Ll'L2)V2のとき
この場合には、上記条件 (B)のときと同様、 k=l.0のときにはな力つた共振点が現 れ、上記条件 (B)のときと同様の減衰特性が得られる。そして、その共振周波数 fOは
Figure imgf000023_0001
ただし、 M = k(Ll-L2) 12
と求められる。 は、 C(L3— M)全体の平方根を取ることを示す。 Cは、直列回路 15 の第 1のキャパシタ 14のキャパシタンスを示す。この場合にも、カットオフ周波数より 高 、周波数でかつ理想状態の特性と一致するまでの周波数帯では、理想状態の特 性よりも減衰特性が良くなる領域が生じる。
この場合において、インダクタンス L3の最大値としては、上式で求められる共振周 波数 fOが理想状態のカットオフ周波数以上であることが望ましいという条件より、
L3≤ (Ll + M) (L2 + M)/(L1+L2 + 2M) +M …… (2)
であることが望ましい。
[0071] (C-1) L3<k(Ll'L2)1/2のとき。
この場合には、上記条件 (C)のときと同様、ある状態までは理想状態とほぼ同じ特 性を示し、ある周波数以上から減衰特性が悪化する。
この場合にお 、て、インダクタンス L3の最小値としてはシミュレーションから、
L3≥0.9k(Ll-L2) 12 …… (3)
であることが望ましい。 [0072] 以上のように、インダクタンス L3は、結合係数 kの値に応じて設定される。このため、 インダクタンス L3の値を決定するために結合係数 kの値をあら力じめ測定しておく必 要がある。次に、この結合係数 kの測定方法について説明する。
[0073] 一般に、 2つのコイルの自己インダクタンス LI, L2、および相互インダクタンス Mに は次の関係がある。
M = k(Ll -L2) 1 2
したがって、この式から 2つのコイルの自己インダクタンス LI, L2、および相互イン ダクタンス Mを測定することにより、結合係数 kを求めることができる。
[0074] 図 14は、相互インダクタンス Mの測定方法の一例を示している。図 14に示したよう に、 2つのコイルを同相直列接続した場合と逆相直列接続した場合とについて、それ ぞれ La, Lbを測定する。この場合、相互インダクタンス Mは次の式で求めることがで きる。なお、 La, Lbは、端子間のインダクタンスを表している。
M= (La-Lb) /4
なお、これらの測定方法に関しては、例えば Ajilent Technologiesの出版物「インピ 一ダンス測定ノヽンドブック」に掲載されている。
[0075] 以上説明したように、本実施の形態に係るノイズ抑制回路によれば、比較的簡単な 構成で、し力も大きなインダクタンスを有するコイルを用いることなぐ広い周波数範囲 において効果的にノーマルモードノイズを抑制することが可能になる。特に、結合係 数 kの値に応じて、直列回路 15におけるインダクタンス L3が適切な値に設定されて いるため、ノイズの減衰量の周波数特性に関して、理想状態とほぼ同じ特性、もしく は似た傾向の特性、または部分的に理想状態よりも優れた特性を得ることができる。
[0076] [第 2の実施の形態]
次に、本発明の第 2の実施の形態に係るノイズ抑制回路について説明する。上記 第 1の実施の形態に係るノイズ抑制回路は、 2本の導電線 3, 4のうち第 1の導電線 3 にのみインダクタが挿入された不平衡型の回路であった力 本実施の形態に係るノィ ズ抑制回路は、 2本の導電線 3, 4の双方にインダクタを挿入することにより、平衡型 の回路にしたものである。
[0077] 図 9A, 9Bは、本発明の第 2の実施の形態に係るノイズ抑制回路の第 1および第 2 の構成例を示している。図 9A, 9Bのノイズ抑制回路は、図 1A, 1Bのノイズ抑制回 路の構成に対して、第 4および第 5のインダクタ 54, 55が追加されたものであり、その 他の構成は図 1A, 1Bのノイズ抑制回路と同様である。第 4および第 5のインダクタ 54 , 55は、第 2の導電線 4に直列的に挿入されている。
[0078] ここで、本実施の形態に係るノイズ抑制回路において、直列回路 15の一端が、第 1 および第 2のインダクタ 51, 52に接続される接続部分を第 1の端部 P1と呼び、第 4お よび第 5のインダクタ 54, 55に接続される他端の接続部分を第 2の端部 P2と呼ぶ。ま た、第 1のインダクタ 51における第 1の端部 P 1とは逆側の端部を第 1のインダクタ 51 の一方の端部と呼び、第 1のインダクタ 51における第 1の端部 P1側の端部を第 1のィ ンダクタ 51の他方の端部と呼ぶ。また、第 2のインダクタ 52における第 1の端部 P1側 を第 2のインダクタ 52の一方の端部と呼び、第 2のインダクタ 52における第 1の端部 P 1とは逆側の端部を第 2のインダクタ 52の他方の端部と呼ぶ。また、第 4のインダクタ 5 4における第 2の端部 P2とは逆側の端部を第 4のインダクタ 54の一方の端部と呼び、 第 4のインダクタ 54における第 2の端部 P2側の端部を第 4のインダクタ 54の他方の 端部と呼ぶ。また、第 5のインダクタ 55における第 2の端部 P2側の端部を第 5のイン ダクタ 55の一方の端部と呼び、第 5のインダクタ 55における第 2の端部 P2とは逆側 の端部を第 5のインダクタ 55の他方の端部と呼ぶ。
[0079] 本実施の形態に係るノイズ抑制回路においても、直列回路 15内において、第 3の インダクタ 53と第 1のキャパシタ 14の位置関係は、特に限定されない。図 9Aは、第 3 のインダクタ 53と第 1のキャパシタ 14のうち、第 3のインダクタ 53の方が第 1の端部 P1 に近い位置に配置され、第 1のキャパシタ 14の方が第 2の端部 P2に近い位置に配 置されている構成例である。図 9Bは、逆に、第 1のキャパシタ 14の方が第 1の端部 P 1に近 、位置に配置され、第 3のインダクタ 53の方が第 2の端部 P2に近 、位置に配 置されている構成例である。
[0080] 第 4および第 5のインダクタ 54, 55は、第 1および第 2のインダクタ 51, 52と同様、 互いに電磁気的に結合されている。第 4のインダクタ 54は、磁芯 22aに巻かれた卷 線 21aを有している。第 5のインダクタ 55は、磁芯 22bに巻かれた卷線 2 lbを有して いる。なお、図において各卷線に記した黒い丸印はその卷線の極性、巻き方の向き を表す。第 1および第 2のインダクタ 51, 52と第 4および第 5のインダクタ 54, 55の極 性は、各卷線同士の関係を維持していれば図示したものとはすべて逆になつていて も良い。
第 4および第 5のインダクタ 54, 55は、第 1および第 2のインダクタ 51, 52と同様、 別々の卷線 22a, 22bで形成してもよいが、図 10に示したように単一の卷線 21で形 成することも可能である。卷線 21は、磁芯 22に巻かれている。なお、図 10では、第 1 および第 2のインダクタ 51, 52、ならびに第 4および第 5のインダクタ 54, 55以外の 回路は図示を省略している。
[0081] 第 4および第 5のインダクタ 54, 55を単一の卷線で形成する場合、図 10に示したよ うに例えば、単一の卷線 21の途中に接続点(第 2の端部 P2)を設け、その卷線 21の 一方の端部力も接続点までを卷線 21aとして第 4のインダクタ 54とすればょ 、。同様 に、卷線 21の他方の端部力も接続点までを卷線 21bとして第 5のインダクタ 55とすれ ばよい。この接続点に、直列回路 15の他端を接続する。
[0082] 第 4および第 5のインダクタ 54, 55のインダクタンスは、第 1および第 2のインダクタ 5 1, 52のインダクタンスと同様、同一の値であることが好ましい。より好ましくは、第 1お よび第 2のインダクタ 51, 52、ならびに第 4および第 5のインダクタ 54, 55のすベての インダクタンスを同一の値にするとよい。第 4および第 5のインダクタ 54, 55を単一の 卷線 21で形成する場合、例えば単一の卷線 21の中点に上記接続点を設けることで 、第 4および第 5のインダクタ 54, 55の各インダクタンスを等しくすることができる。
[0083] ここで、上述したように第 1および第 2のインダクタ 51, 52は、互いに電磁気的に結 合されており、その結合係数 klは理想的には 1となる。第 4および第 5のインダクタ 54 , 55の結合係数 k2も、理想的には 1となる。しカゝしながら、実際には結合係数が 1と いうのは実現できない。
[0084] そこで、本実施の形態に係るノイズ抑制回路では、第 1および第 2のインダクタ 51, 52の結合係数 kl、および第 4および第 5のインダクタ 54, 55の結合係数 k2の値が 実際には 1よりも小さくなることを考慮し、特に第 3のインダクタ 53のインダクタンス L3 力 結合係数 kl, k2が 1よりも小さいことを条件として、所望のノイズ減衰特性が得ら れるよう、実際の結合係数 kl, k2の値に応じた値に設定されている。なお、インダク タンス L3の値の決定方法にっ 、ては後に詳述する。
[0085] 次に、本実施の形態に係るノイズ抑制回路の作用について説明する。ここでは、図 9Aの構成例を基本にして説明する。始めに、図 1Aに示したように、端子 la, lb間に ノーマルモードの電圧 Viが印加された場合について説明する。この場合には、第 1 のインダクタ 51の一方の端部と第 4のインダクタ 54の一方の端部との間に電圧 Viが 印加される。この電圧 Viは、第 1のインダクタ 51と直列回路 15と第 4のインダクタ 54と によって分圧され、第 1のインダクタ 51の両端間と直列回路 15の両端間と第 4のイン ダクタ 54の両端間とにそれぞれ同一向きの所定の電圧が発生する。なお、図中の矢 印は、その先の方が高 、電位であることを表して 、る。
[0086] 第 1のインダクタ 51と第 2のインダクタ 52は互いに電磁気的に結合されているので、 第 1のインダクタ 51の両端間に発生した電圧に応じて、第 2のインダクタ 52の両端間 に所定の電圧が発生する。同様に、第 4のインダクタ 54と第 5のインダクタ 55は互い に電磁気的に結合されているので、第 4のインダクタ 54の両端間に発生した電圧に 応じて、第 5のインダクタ 55の両端間に所定の電圧が発生する。ここで、直列回路 15 の一端は第 1のインダクタ 51と第 2のインダクタ 52との間に接続されると共に、他端が 第 4のインダクタ 54と第 5のインダクタ 55との間に接続されていることから、第 2のイン ダクタ 52の両端間に発生する電圧の向きと第 5のインダクタ 55の両端間に発生する 電圧の向きとが、直列回路 15の両端間に発生する電圧の向きとは逆方向となり、そ れらの電圧が互いに相殺される。その結果、第 2のインダクタ 52の他方の端部と第 5 のインダクタ 55の他方の端部との間の電圧、すなわち端子 2a, 2b間の電圧 Voは、 第 1のインダクタ 51の一方の端部と第 4のインダクタ 54の一方の端部との間に印加さ れた電圧 VUりも小さくなる。
[0087] また、本実施の形態において、端子 2a, 2b間にノーマルモードの電圧が印加され た場合も、上記の説明と同様にして、端子 la, lb間の電圧は、端子 2a, 2b間に印加 された電圧よりも小さくなる。このように、本実施の形態に係るノイズ抑制回路によれ ば、端子 la, lbにノーマルモードノイズが印加された場合と、端子 2a, 2bにノーマル モードノイズが印加された場合の 、ずれの場合にも、ノーマルモードノイズを抑制す ることがでさる。 [0088] 次に、特に、理想状態での作用につ 、て説明する。ここで、本実施の形態に係るノ ィズ抑制回路において、理想状態とは、第 1および第 2のインダクタ 51, 52の結合係 数 kl = l、第 4および第 5のインダクタ 54, 55の結合係数 k2= lと仮定して、各素子 値の最適化を図った状態のことをいう。ここでは特に、第 1および第 2のインダクタ 51 , 52のインダクタンス LI, L2、および第 4および第 5のインダクタ 54, 55のインダクタ ンス L4, L5の各インダクタンスを共に同じ値 LOとし、第 3のインダクタ 53のインダクタ ンス L3を、 LOの 2倍の値とする。キャパシタ 14のインピーダンスはゼロであると仮定 する。
[0089] この場合、端子 la, lb間にノーマルモードの電圧 Viが印加されると、この電圧 Viは 、第 1のインダクタ 51と直列回路 15と第 4のインダクタ 54とによって分圧され、第 1の インダクタ 51の両側間および第 4のインダクタ 54の両端間にそれぞれ 1 /4Viの電圧 が発生し、直列回路 15の両端間に lZ2Viの電圧が発生する。第 1のインダクタ 51 の両端間に発生した電圧 l/4Viに応じて、第 2のインダクタ 52の両端間にも電圧 1 /4Viが発生する。同様に、第 4のインダクタ 54の両端間に発生した電圧 l/4Viに 応じて、第 5のインダクタ 55の両端間にも電圧 l/4Viが発生する。その結果、端子 2 a, 2b間の電圧 Voは、第 2のインダクタ 52の両端間の電圧 lZ4Viと、第 5のインダク タ 55の両端間の電圧 lZ4Viと、第 3のインダクタ 53の両端間の電圧 lZ2Viとが相 殺されることにより、原理的にはゼロとなる。また、端子 2a, 2b間にノーマルモードの 電圧 Viが印加された場合も、上記の説明と同様にして、端子 la, lb間の電圧は、原 理的にはゼロとなる。
[0090] ここで、実際には結合係数 kl, k2の値は 1よりも小さくなるので、本実施の形態に 係るノイズ抑制回路では、結合係数 kl, k2が 1より小さくとも、第 3のインダクタ 53のィ ンダクタンス L3の値を結合係数 kl, k2の値に応じて調整することにより、減衰特性に 関して、理想状態とほぼ同じ特性、もしくは似た傾向の特性が得られるようにしている 。または、任意の周波数に共振点を作ることで、部分的に理想状態よりも優れた特性 が得られるようにしている。
[0091] 図 11A, 11Bは、図 9A, 9Bに示した平衡型のノイズ抑制回路の変形例を示してい る。具体的には、図 9A, 9Bのノイズ抑制回路よりも平衡度をさらに上げることのでき る変形例である。なお、図 11A, 11Bのノイズ抑制回路は、図 9A, 9Bのノイズ抑制 回路に対して直列回路 15の部分のみが異なっており、他の回路部分は同様なので 図示を省略している。特に図 11Aのノイズ抑制回路は、図 9A, 9Bに示された第 3の インダクタ 53と第 1のキャパシタ 14と力もなる直列回路 15に対して、第 1のキャパシタ 14の 2倍の容量を有する 2つのキャパシタ 14a, 14bで第 3のインダクタ 53を挟んだ 構成となっている。この場合、図 11Aの回路における第 3のインダクタ 53のインダクタ ンス L3は、図 9A, 9Bに示された第 3のインダクタ 53と同じである。また、図 11Bのノ ィズ抑制回路は、図 9A, 9Bに示された直列回路 15に対して、第 1のキャパシタ 14を そのままの容量として、その第 1のキャパシタ 14を、第 3のインダクタ 53の半分のイン ダクタンスを有する 2つのインダクタ 53a, 53bで挟んだ構成となっている。これらの構 成をとることで、図 9A, 9Bのノイズ抑制回路よりもさらに平衡度を上げることが可能で ある。
[0092] 次に、このインダクタンス L3の値による減衰特性の変化を、以下のシミュレーション の結果により具体的に説明する。図 12は、このシミュレーションに用いたノイズ抑制 回路の等価回路を示している。なお、 Ra, Rbは、入出力インピーダンスとして設定し たものである。この回路において、結合係数 kl =k2 = 0. 8として、インダクタンス L3 の値を種々変化させた場合の減衰特性を計算した。第 1および第 2のインダクタ 51, 52のインダクタンス LI, L2、ならびに第 4および第 5のインダクタ 54, 55のインダクタ ンス L4, L5は共に、同じ値(Ι^Ο= 10 /ζ Η)に設定した。
[0093] 図 13は、そのシミュレーション結果を示している。これは、図 6と同様、ノーマルモー ドノイズの減衰量の周波数特性をグラフ化して示したものである。図 13には、比較の ため理想状態(k= l, Ι^3 = 2Ι^0 = 20 /ζ Η)での計算結果も示す。図 13において、 符号 91で示した線は理想状態の場合、符号 92で示した線は L3 = 34 Ηとした場 合、符号 93で示した線は L3 = 20 μ Ηとした場合、符号 94で示した線は L3 = 16. 1 μ Ηとした場合、符号 95で示した線は L3 = 16 μ Ηとした場合、符号 96で示した線 は L3 = 15. とした場合、符号 97で示した線は L3 = 14. 4 Ηとした場合のシ ミュレーシヨン結果を示して 、る。
[0094] 図 13のシミュレーション結果から、インダクタンス L3の値とその減衰特性との関係に 関して以下のことが言える。インダクタンス L3の値により、おおきく以下の 3つの条件( A)—(C)に分けられる。
[0095] (A) L3 = M1 + M2のとき。
ただし、 Ml=kl(Ll'L2)1/2 …… (4-1)
M2=k2(L4-L5)12 ……(4—2)
図 13のシミュレーションでは、符号 95で示した線が該当する(L3 = 16 μ Η)。
この場合、 kが 1未満であっても、減衰特性に関して理想状態 (k=l.0, L3 = 2LO) とほぼ同じ特性が得られる。
[0096] (B) L3>M1 + M2のとき。
図 13のシミュレーションでは、符号 92— 94で示した線が該当する(L3>16 μ Η)。 この場合、理想状態のときにはなカゝつた共振点が現れる。そして、その共振周波数 fO は、
f0=l/2 π C (L3-M1-M2)
と求められる。 は、 C(L3— Ml— M2)全体の平方根を取ることを示す。 Cは、直列 回路 15の第 1のキャパシタ 14のキャパシタンスを示す。したがってこの場合、 L3の値 を変えることにより、共振周波数を任意の周波数に移動できる。この共振点を設けた 場合、カットオフ周波数より高い周波数領域において部分的に、理想状態の場合より も減衰特性が良くなる領域が生じる。すなわち、図 13からも分力るようにカットオフ周 波数より高い周波数でかつ理想状態の特性と一致するまでの周波数帯では、理想 状態の特性よりも減衰特性が良くなる領域が生じる。
この場合において、インダクタンス L3の最大値としては、上式で求められる共振周 波数 fOが理想状態のカットオフ周波数以上であることが望ましいという条件より、
L3≤ (L1+L4 + M1 + M2) (L2 + L5 + Ml + M2)/{Ll+L2 + L4 + L5 + 2( M1 + M2)}+M1 + M2 ……(5)
であることが望ましい。図 13のシミュレーションでは、符号 92で示した線力 この式か ら求められる最大値での特性を示して 、る (L3 = 34 H)。
[0097] (C) L3<M1 + M2のとき。
図 13のシミュレーションでは、符号 96, 97で示した線が該当する(L3く 16 μ Η)。 この場合、図 13の減衰特性からも分力るように、理想状態のときと似た傾向の特性が 得られ、特に、ある状態までは理想状態とほぼ同じ特性を示し、ある周波数以上から 減衰特性が悪化する。このため、理想状態とほぼ同じ周波数範囲で使用するならば 、 L3をこの条件値にすることにメリットがある。
この場合にお 、て、インダクタンス L3の最小値としてはシミュレーションから、 L3≥0. 9 (M1 + M2) …… (6)
であることが望ましい。図 13のシミュレーションでは、符号 97で示した線力 この式か ら求められる最小値での特性を示して 、る(L3 = 14. 4 H)。
[0098] 以上説明したように、本実施の形態に係るノイズ抑制回路によれば、第 1および第 2 の導電線 3, 4のそれぞれにインダクタを挿入し、第 1および第 2の導電線 3, 4のイン ピーダンス特性が平衡になるように構成されて ヽるので、ライン間の平衡度を高くす ることができる。特に、結合係数 kl, k2の値に応じて、直列回路 15におけるインダク タンス L3が適切な値に設定されているため、ノイズの減衰量の周波数特性に関して 、理想状態とほぼ同じ特性、もしくは似た傾向の特性、または部分的に理想状態より も優れた特性を得ることができる。本実施の形態におけるその他の構成、作用および 効果は、第 1の実施の形態と同様である。
[0099] [第 3の実施の形態]
次に、本発明の第 3の実施の形態に係るノイズ抑制回路について説明する。図 15 A, 15Bは、本発明の第 3の実施の形態に係るノイズ抑制回路の第 1および第 2の構 成例を示している。図 15A, 15Bのノイズ抑制回路はそれぞれ、上記第 2の実施の形 態に係る図 9A, 9Bのノイズ抑制回路の構成に対して、第 1および第 2のインダクタ 5 1, 52と第 4および第 5のインダクタ 54, 55とを相互に磁気的に結合したものである。 結合関係の違いを除いて基本的な構成、およびそのノイズ抑制の動作は図 9A, 9B のノイズ抑制回路と同様である。
[0100] 第 1および第 2のインダクタ 51, 52と第 4および第 5のインダクタ 54, 55は、それらを 構成する各卷線が例えば互 ヽに同一の磁芯 12に巻かれることにより、相互に磁気的 に結合している。ただし、磁芯 12を分割コアとしても良い。なお、図 15A, 15Bにお いて各卷線に記した黒い丸印はその卷線の極性、巻き方の向きを表す。第 1および 第 2のインダクタ 51, 52と第 4および第 5のインダクタ 54, 55の極性は、各卷線同士 の関係を維持して ヽれば図示したものとはすべて逆になつて 、ても良 、。
[0101] ここで、図 16に示したように、本実施の形態に係るノイズ抑制回路について、第 1お よび第 2のインダクタ 51, 52間の結合係数を kl、第 4および第 5のインダクタ 54, 55 間の結合係数を k2、第 1および第 4のインダクタ 51, 54間の結合係数を k3、第 2およ び第 5のインダクタ 52, 55間の結合係数を k4、第 1および第 5のインダクタ 51, 55間 の結合係数を k5、第 2および第 4のインダクタ 52, 54間の結合係数を k6と定義する 。このノイズ抑制回路では、第 1および第 2のインダクタ 51, 52と第 4および第 5のイン ダクタ 54, 55とが、すべて互いに磁気的に結合されており、各結合係数 kl一 k6の値 は理想的には 1となる。し力しながら、実際には結合係数が 1というのは実現できない
[0102] そこで、本実施の形態に係るノイズ抑制回路では、各インダクタ間の結合係数 kl一 k6の値が実際には 1よりも小さくなることを考慮し、特に第 3のインダクタ 53のインダク タンス L3が、結合係数 kl一 k6が 1よりも小さいことを条件として、所望のノイズ減衰特 性が得られるよう、実際の結合係数 kl一 k6の値に応じた値に設定されている。
[0103] ここで、本実施の形態に係るノイズ抑制回路にぉ 、て、理想状態とは、各インダクタ 間の結合係数 kl一 k6 = 1と仮定して、各素子値の最適化を図った状態のことをいう 。ここでは、第 1および第 2のインダクタ 51, 52のインダクタンス LI, L2、および第 4 および第 5のインダクタ 54, 55のインダクタンス L4, L5の各インダクタンスを共に同じ 値 LOとし、第 3のインダクタ 53のインダクタンス L3を、 LOの 4倍の値とした状態を理想 状態とする。
[0104] 本実施の形態に係るノイズ抑制回路では、以下で説明するように結合係数 kl一 k6 力 Siより小さくとも、第 3のインダクタ 53のインダクタンス L3の値を結合係数 kl一 k6の 値に応じて調整することにより、減衰特性に関して、理想状態とほぼ同じ特性、もしく は似た傾向の特性が得られる。または、任意の周波数に共振点を作ることで、部分的 に理想状態よりも優れた特性が得られる。
[0105] 次に、このインダクタンス L3の値による減衰特性の変化を、以下のシミュレーション の結果により具体的に説明する。図 18は、このシミュレーションに用いたノイズ抑制 回路の等価回路を示している。なお、 Ra, Rbは、入出力インピーダンスとして設定し たものである。この回路において、結合係数 kl一 k6 = 0. 8として、上記第 2の実施の 形態と同様、インダクタンス L3の値を種々変化させた場合の減衰特性を計算した。 第 1および第 2のインダクタ 51, 52のインダクタンス LI, L2、ならびに第 4および第 5 のインダクタ 54, 55のインダクタンス L4, L5は共に、同じ値(LI, L2, L4, L5=LO = 5 ^ Η)に設定した。
[0106] 図 17は、そのシミュレーション結果を示している。これは、図 6と同様、ノーマルモー ドノイズの減衰量の周波数特性をグラフ化して示したものである。図 17において、符 号 101で示した線は L3 = 34 μ Ηとした場合、符号 102で示した線は L3 = 20 μ Ηと した場合、符号 103で示した線は L3 = 16. 1 μ Ηとした場合、符号 104で示した線 は L3 = 16 μ Ηとした場合、符号 105で示した線は L3 = 15. 9 μ Ηとした場合、符号 106で示した線は L3 = 14. 4 μ Ηとした場合のシミュレーション結果を示している。
[0107] 図 17のシミュレーション結果から、上記第 2の実施の形態と同様、インダクタンス L3 の値とその減衰特性との関係に関して以下のことが言える。インダクタンス L3の値に より、おおきく以下の 3つの条件 (Α)—(C)に分けられる。
[0108] (A) L3 = M1 + M2 + M5 + M6のとき。
ただし、 Ml =kl (Ll 'L2) 1/2 …… (7-1)
M2=k2 (L4-L5) 1 2 ……(7— 2)
M5=k5 (Ll -L5) 1 2 ……(7—3)
M6=k6 (L2-L4) 1 2 ……(7—4)
図 17のシミュレーションでは、符号 104で示した線が該当する(L3 = 16 H)。この 場合、 kが 1未満であっても、減衰特性に関して理想状態とほぼ同じ特性が得られる 。理想状態の減衰特性は図示していないが、符号 104で示した線とほぼ重なる。ここ での理想状態とは、図 18の等価回路にお!/、て、 kl一 k6 = l. 0,し3=4し0 = 20 Hとした場合のことをいう。
[0109] (B) L3 >M1 + M2 + M5 + M6のとき。
図 17のシミュレーションでは、符号 101— 103で示した線が該当する(Ι^3 > 16 /ζ Η )。この場合、理想状態のときにはな力つた共振点が現れる。そして、その共振周波 数 foは、
f0= 1,2 π C (L3-M1-M2-M5-M6)
と求められる。 fは、 C (L3— Ml— M2— M5— M6)全体の平方根を取ることを示す。 Cは、直列回路 15の第 1のキャパシタ 14のキャパシタンスを示す。したがつてこの場 合、 L3の値を変えることにより、共振周波数を任意の周波数に移動できる。この共振 点を設けた場合、カットオフ周波数より高い周波数領域において部分的に、理想状 態の場合よりも減衰特性が良くなる領域が生じる。すなわち、図 17からも分力るように カットオフ周波数より高い周波数でかつ理想状態の特性と一致するまでの周波数帯 では、理想状態の特性よりも減衰特性が良くなる領域が生じる。
この場合において、インダクタンス L3の最大値としては、上式で求められる共振周 波数 fOが理想状態のカットオフ周波数以上であることが望ましいという条件より、
L3≤ (L1 +L4 + M1 + M2 + 2M3 + M5 + M6) (L2+L5 + M1 + M2 + 2M4 + M5 + M6) /{L1 +L2 + L4 + L5 + 2 (M1 + M2 + M3 + M4 + M5 + M6) } +M1 + M2 + M5 + M6 …… (8)
であることが望ましい。図 17のシミュレーションでは、符号 101で示した線力 この式 力も求められる最大値での特性を示して 、る(L3 = 33 H)。
[0110] (C) L3< M1 + M2 + M5 + M6のとき。
図 17のシミュレーションでは、符号 105, 106で示した線が該当する(L3く 16 H )。この場合、図 17の減衰特性からも分力るように、理想状態のときと似た傾向の特性 が得られ、特に、ある状態までは理想状態とほぼ同じ特性を示し、ある周波数以上か ら減衰特性が悪ィ匕する。このため、理想状態とほぼ同じ周波数範囲で使用するなら ば、 L3をこの条件値にすることにメリットがある。
この場合にお 、て、インダクタンス L3の最小値としてはシミュレーションの結果を考 慮すると、
L3≥0. 9 (M1 + M2 + M5 + M6) …… (9)
であることが望ましい。図 17のシミュレーションでは、符号 106で示した線力 この式 力 求められる最小値での特性を示して!/、る(L3 = 14. 4 H)。
[0111] なお、各実施の形態に係るノイズ抑制回路は、電力変換回路が発生するリップル電 圧やノイズを低減する手段や、電力線通信にお!ヽて電力線上のノイズを低減したり、 室内電力線上の通信信号が屋外電力線に漏洩することを防止する手段として利用 することができる。

Claims

請求の範囲
[1] 第 1および第 2の導電線によって伝送され、これらの導電線の間で電位差を生じさ せるノーマルモードノイズを抑制する回路であって、
前記第 1の導電線に直列的に挿入され、かつ互いに磁気的に結合された第 1およ び第 2のインダクタと、
直列に接続された第 3のインダクタと第 1のキャパシタとからなり、一端が前記第 1の インダクタと前記第 2のインダクタとの間に接続され、他端が前記第 2の導電線に接続 された直列回路と
を備え、
前記第 1および第 2のインダクタの結合係数 kが 1よりも小さぐかつ前記第 3のイン ダクタのインダクタンスカ 前記結合係数 kが 1よりも小さいことを条件として、所望のノ ィズ減衰特性が得られるような値に設定されている
ことを特徴とするノイズ抑制回路。
[2] 前記第 3のインダクタのインダクタンス L3が、
L3=k (Ll -L2) 1 2 …… (1)
の条件を満たす
ことを特徴とする請求の範囲第 1項に記載のノイズ抑制回路。
ただし、
L1:第 1のインダクタのインダクタンス
L2:第 2のインダクタのインダクタンス
[3] 前記第 3のインダクタのインダクタンス L3が、
L3 >k (Ll -L2) 1/2であり、力つ
L3≤ (Ll + M) (L2 + M) / (L1 +L2 + 2M) +M …… (2)
の条件を満たす
ことを特徴とする請求の範囲第 1項に記載のノイズ抑制回路。
ただし、
M = k(Ll -L2) 1 2
L1:第 1のインダクタのインダクタンス L2:第 2のインダクタのインダクタンス
[4] 前記第 3のインダクタのインダクタンス L3が、
L3<k (Ll -L2) 1/2であり、力つ
L3≥0. 9k(Ll -L2) 1 2 …… (3)
の条件を満たす
ことを特徴とする請求の範囲第 1項に記載のノイズ抑制回路。
ただし、
L1:第 1のインダクタのインダクタンス
L2:第 2のインダクタのインダクタンス
[5] 第 1および第 2の導電線によって伝送され、これらの導電線の間で電位差を生じさ せるノーマルモードノイズを抑制する回路であって、
前記第 1の導電線に直列的に挿入され、かつ互いに磁気的に結合された第 1およ び第 2のインダクタと、
直列に接続された第 3のインダクタと第 1のキャパシタとからなる直列回路と、 前記第 2の導電線に直列的に挿入され、かつ互いに磁気的に結合された第 4およ び第 5のインダクタと
を備え、
前記直列回路の一端が、前記第 1のインダクタと前記第 2のインダクタとの間に接続 され、他端が前記第 4のインダクタと前記第 5のインダクタとの間に接続されており、 前記第 1および第 2のインダクタの結合係数 klと前記第 4および第 5のインダクタの 結合係数 k2とが 1よりも小さぐかつ前記第 3のインダクタのインダクタンスが、前記結 合係数 kl, k2が 1よりも小さいことを条件として、所望のノイズ減衰特性が得られるよ うな値に設定されている
ことを特徴とするノイズ抑制回路。
[6] 前記第 3のインダクタのインダクタンス L3が、
L3 = M1 +M2であり、かつ
Ml =kl (Ll -L2) 1 2 ……(4—1)
M2=k2 (L4-L5) 1 2 ……(4—2) の条件を満たす
ことを特徴とする請求の範囲第 5項に記載のノイズ抑制回路。
ただし、
L1:第 1のインダクタのインダクタンス
L2:第 2のインダクタのインダクタンス
L4:第 4のインタ "クタのインダクタンス
L5:第 5のインダクタのインダクタンス
[7] 前記第 3のインダクタのインダクタンス L3が、
L3>M1+M2であり、かつ
L3≤ (L1+L4 + M1+M2) (L2 + L5 + Ml + M2)/{Ll+L2 + L4 + L5 + 2( M1 + M2)}+M1 + M2 …… (5)
の条件を満たす
ことを特徴とする請求の範囲第 5項に記載のノイズ抑制回路。
ただし、
Ml=kl(Ll'L2)1/2, M2=k2(L4-L5)12
LI:第 1のインタ"クタのインダクタンス
L2:第 2のインタ "クタのインダクタンス
L4:第 4のインタ "クタのインダクタンス
L5:第 5のインダクタのインダクタンス
[8] 前記第 3のインダクタのインダクタンス L3が、
L3<M1+M2であり、かつ
L3≥0.9(M1+M2) …… (6)
の条件を満たす
ことを特徴とする請求の範囲第 5項に記載のノイズ抑制回路。
ただし、
Ml=kl(Ll-L2)1/2, M2=k2(L4-L5)1/2
LI:第 1のインダクタのインダクタンス
L2:第 2のインダクタのインダクタンス L4:第 4のインダクタのインダクタンス
L5:第 5のインダクタのインダクタンス
[9] 第 1および第 2の導電線によって伝送され、これらの導電線の間で電位差を生じさ せるノーマルモードノイズを抑制する回路であって、
前記第 1の導電線に直列的に挿入され、かつ互いに磁気的に結合された第 1およ び第 2のインダクタと、
直列に接続された第 3のインダクタと第 1のキャパシタとからなる直列回路と、 前記第 2の導電線に直列的に挿入され、かつ前記第 1および第 2のインダクタと共 に互 ヽに磁気的に結合された第 4および第 5のインダクタと
を備え、
前記直列回路の一端が、前記第 1のインダクタと前記第 2のインダクタとの間に接続 され、他端が前記第 4のインダクタと前記第 5のインダクタとの間に接続されており、 前記第 1および第 2のインダクタの結合係数 klと、前記第 4および第 5のインダクタ の結合係数 k2と、前記第 1および第 4のインダクタの結合係数 k3と、前記第 2および 第 5のインダクタの結合係数 k4と、前記第 1および第 5のインダクタの結合係数 k5と、 前記第 2および第 4のインダクタの結合係数 k6とがすベて 1よりも小さぐかつ前記第 3のインダクタのインダクタンス力 前記結合係数 kl, k2, k3, k4, k5,お Jび k6力 S すべて 1よりも小さいことを条件として、所望のノイズ減衰特性が得られるような値に設 定されている
ことを特徴とするノイズ抑制回路。
[10] 前記第 3のインダクタのインダクタンス L3が、
L3 = M1 +M2 + M5 + M6であり、かつ
Ml =kl (Ll -L2) 1 2 ……(7—1)
M2=k2 (L4-L5) 1 2 ……(7— 2)
M5=k5 (Ll -L5) 1 2 ……(7—3)
M6=k6 (L2-L4) 1 2 ……(7—4)
の条件を満たす
ことを特徴とする請求の範囲第 9項に記載のノイズ抑制回路。 ただし、
LI:第 1のインダ'クタのインダクタンス
L2:第 2のインダクタのインダクタンス
L4:第 4のインダクタのインダクタンス
L5:第 5のインダクタのインダクタンス
[11] 前記第 3のインダクタのインダクタンス L3が、
L3>M1+M2 + M5 + M6であり、かつ
L3≤ (L1 + L4 + M1 + M2 + 2M3 + M5 + M6) (L2 + L5 + M1 + M2 + 2M4 + M5 + M6)/{L1+L2+L4+L5 + 2(M1 + M2 + M3 + M4 + M5 + M6)}+M1 + M2 + M5 + M6 …… (8)
の条件を満たす
ことを特徴とする請求の範囲第 9項に記載のノイズ抑制回路。
ただし、
Ml=kl(Ll-L2) 1/2 , M2=k2(L4-L5)12, M5=k5 (LI -L5) 12, M6=k6(L2 •L4)1/2
LI:第 1のインダ'クタのインダクタンス
L2:第 2のインダクタのインダクタンス
L4:第 4のインダクタのインダクタンス
L5:第 5のインダクタのインダクタンス
[12] 前記第 3のインダクタのインダクタンス L3が、
L3<M1+M2 + M5 + M6であり、かつ
L3≥0.9(M1 + M2 + M5 + M6) …… (9)
の条件を満たす
ことを特徴とする請求の範囲第 9項に記載のノイズ抑制回路。
ただし、
Ml=kl(Ll-L2)1/2, M2=k2(L4-L5)1/2, M5=k5 (LI -L5) 1/2, M6=k6 (L2 •L4)1/2
LI:第 1のインダクタのインダクタンス L2:第 2のインダクタのインダクタンス L4:第 4のインタ "クタのインダクタンス L5:第 5のインダクタのインダクタンス
PCT/JP2005/001364 2004-03-31 2005-01-31 ノイズ抑制回路 WO2005101626A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/594,460 US7459995B2 (en) 2004-03-31 2005-01-31 Noise suppression circuit
JP2006512266A JP4483863B2 (ja) 2004-03-31 2005-01-31 ノイズ抑制回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-106098 2004-03-31
JP2004106098 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005101626A1 true WO2005101626A1 (ja) 2005-10-27

Family

ID=35150298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001364 WO2005101626A1 (ja) 2004-03-31 2005-01-31 ノイズ抑制回路

Country Status (4)

Country Link
US (1) US7459995B2 (ja)
JP (1) JP4483863B2 (ja)
CN (1) CN1938925A (ja)
WO (1) WO2005101626A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208919A1 (ja) * 2016-06-01 2017-12-07 株式会社村田製作所 フィルタ回路およびコネクタ
US11309859B2 (en) 2018-07-17 2022-04-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Noise filter

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231825B2 (ja) * 2004-08-20 2009-03-04 Tdk株式会社 ノイズ抑制回路
US7423490B2 (en) * 2006-03-31 2008-09-09 Rockwell Scientific Licensing, Llc Wideband high frequency chokes
US7623001B2 (en) * 2008-01-16 2009-11-24 Universal Scientific Industrial Co., Ltd. Electromagnetic interference eliminating apparatus
US8115571B2 (en) * 2008-11-28 2012-02-14 Schaffner Emv Ag Harmonic filter
US8212416B2 (en) * 2008-12-24 2012-07-03 Synergy Energy Inc. Device for filtering harmonics
US8670250B2 (en) * 2010-09-13 2014-03-11 Futurewei Technologies, Inc. Common mode noise reduction apparatus and method
JP5120434B2 (ja) * 2010-09-30 2013-01-16 株式会社デンソー 帯域阻止フィルタ
DE102011007833A1 (de) * 2011-04-21 2012-10-25 Robert Bosch Gmbh Auslöschung parasitärer Induktivitäten in zu elektrischen Wandlern parallel geschalteten Filterkondensatoren in einem Bordnetz für ein Fahrzeug
JP5595617B2 (ja) * 2012-03-12 2014-09-24 三菱電機株式会社 電力変換装置
JP6108690B2 (ja) * 2012-06-06 2017-04-05 キヤノン株式会社 差動伝送回路及び電子機器
US9257894B2 (en) * 2013-10-01 2016-02-09 Tci, Llc Reconfigurable passive filter
US20160285360A1 (en) * 2015-03-24 2016-09-29 Ford Global Technologies, Llc Method and apparatus for electromagnetic interference reduction
CN106067778A (zh) * 2015-04-23 2016-11-02 松下知识产权经营株式会社 磁气部件及电气电路
EP3320610B1 (en) * 2015-07-09 2019-08-28 Constructions Electroniques + Telecommunications High power density inverter (i)
US10491181B2 (en) * 2016-10-07 2019-11-26 Murata Manufacturing Co., Ltd. High-frequency filter and high-frequency module
JP6812911B2 (ja) * 2017-06-22 2021-01-13 Tdk株式会社 電力変換装置
US10608313B2 (en) 2018-01-08 2020-03-31 Linear Technology Holding Llc Wilkinson combiner with coupled inductors
US11005442B2 (en) 2019-05-23 2021-05-11 Analog Devices International Unlimited Company Artificial transmission line using t-coil sections
TWI718029B (zh) * 2020-03-17 2021-02-01 宏碁股份有限公司 加速放電裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364446A (en) * 1976-11-22 1978-06-08 Matsushita Electric Works Ltd Filter electric wire
JPS562632U (ja) * 1979-06-15 1981-01-10
JPS57117822U (ja) * 1981-01-14 1982-07-21
JPH1013180A (ja) * 1996-06-18 1998-01-16 Taiyo Yuden Co Ltd 積層型lc複合部品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7904580A (nl) 1979-06-12 1980-12-16 Philips Nv Inrichting voor het schrijven van patronen in een laag op een substraat met een bundel elektrisch geladen deeltjes.
JPS57117822A (en) 1981-01-14 1982-07-22 Olympus Optical Co Suction switching apparatus of endoscope
JP2784783B2 (ja) 1989-01-31 1998-08-06 ソニー株式会社 フイルタ回路
JPH05121988A (ja) 1991-10-24 1993-05-18 Matsushita Electric Ind Co Ltd 電力線搬送通信用ローパスフイルタ
DE19611879A1 (de) * 1995-05-15 1996-11-21 Charles Machine Works Bandpaßfilter für Vorverstärker
JPH09102723A (ja) 1995-10-04 1997-04-15 Nariisa Imoto ラインフィルター
DE69737805T2 (de) * 1996-10-14 2008-02-07 Mitsubishi Materials Corp. LC-Kompositbauteil
JP4231825B2 (ja) * 2004-08-20 2009-03-04 Tdk株式会社 ノイズ抑制回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364446A (en) * 1976-11-22 1978-06-08 Matsushita Electric Works Ltd Filter electric wire
JPS562632U (ja) * 1979-06-15 1981-01-10
JPS57117822U (ja) * 1981-01-14 1982-07-21
JPH1013180A (ja) * 1996-06-18 1998-01-16 Taiyo Yuden Co Ltd 積層型lc複合部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208919A1 (ja) * 2016-06-01 2017-12-07 株式会社村田製作所 フィルタ回路およびコネクタ
US11309859B2 (en) 2018-07-17 2022-04-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Noise filter

Also Published As

Publication number Publication date
US20070241838A1 (en) 2007-10-18
JP4483863B2 (ja) 2010-06-16
CN1938925A (zh) 2007-03-28
JPWO2005101626A1 (ja) 2008-03-06
US7459995B2 (en) 2008-12-02

Similar Documents

Publication Publication Date Title
WO2005101626A1 (ja) ノイズ抑制回路
US7193869B2 (en) Noise suppressor
US7199692B2 (en) Noise suppressor
US7423520B2 (en) Noise suppressing circuit
JP4219907B2 (ja) ノイズ抑制回路
TWI497908B (zh) 改善濾波器性能的方法及功率變換裝置
US20070252664A1 (en) Noise Suppression Circuit
JP4400557B2 (ja) ノイズ抑制回路
US7256662B2 (en) Common mode signal suppressing circuit and normal mode signal suppressing circuit
US20110215893A1 (en) Planar audio amplifier output inductor with current sense
US7116203B2 (en) Circuit using choke coil and choke coil
JP2006100465A (ja) コイル及びこれを用いたフィルタ回路
JP4424476B2 (ja) ノイズ抑制回路
JP2006287577A (ja) ノイズ抑制回路
JP2006186620A (ja) ラインフィルタ
JP4290644B2 (ja) フィルタ回路
JP2004356918A (ja) ノイズ抑制回路
JP4275034B2 (ja) ノイズ抑制回路
JP4290643B2 (ja) フィルタ回路
JP2005117218A (ja) ノイズ抑制回路
WO2004095697A1 (ja) ノーマルモードノイズ抑制回路
TW202221739A (zh) 混成式電感裝置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512266

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580010056.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10594460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10594460

Country of ref document: US