WO2005100809A1 - 円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支持装置 - Google Patents

円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支持装置 Download PDF

Info

Publication number
WO2005100809A1
WO2005100809A1 PCT/JP2005/007260 JP2005007260W WO2005100809A1 WO 2005100809 A1 WO2005100809 A1 WO 2005100809A1 JP 2005007260 W JP2005007260 W JP 2005007260W WO 2005100809 A1 WO2005100809 A1 WO 2005100809A1
Authority
WO
WIPO (PCT)
Prior art keywords
crowning
tapered roller
roller bearing
roller
inner ring
Prior art date
Application number
PCT/JP2005/007260
Other languages
English (en)
French (fr)
Inventor
Hiroki Matsuyama
Hiroyuki Chiba
Masahiro Harada
Kazutoshi Toda
Kiyoshi Ogino
Koji Kawaguchi
Yuzuru Takahashi
Hirofumi Dodoro
Original Assignee
Jtekt Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jtekt Corporation filed Critical Jtekt Corporation
Priority to CN2005800114143A priority Critical patent/CN1942683B/zh
Priority to KR1020127017794A priority patent/KR101310175B1/ko
Priority to JP2006512380A priority patent/JP5113384B2/ja
Priority to US11/578,044 priority patent/US7677809B2/en
Priority to EP05730607.8A priority patent/EP1746297B1/en
Publication of WO2005100809A1 publication Critical patent/WO2005100809A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4605Details of interaction of cage and race, e.g. retention or centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/037Gearboxes for accommodating differential gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • F16C2240/34Contact angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/42Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
    • F16H2048/423Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein

Definitions

  • the present invention relates to a tapered roller bearing used for a differential gear device of an automobile or an industrial machine.
  • Tapered roller bearings have the characteristics of higher load capacity and higher rigidity than ball bearings, and therefore, vehicle pions such as differential gear devices and transaxle devices for automobiles that require such characteristics. Used in shaft support devices. However, it has been proposed to reduce the rolling friction by applying crawling to the raceway surfaces of the inner and outer rings and the rolling surface of tapered rollers (for example, See JP-A-2003-130059 and JP-A-2001-65574;
  • the performance of the tapered roller bearing has been improved by defining the crowning shape of the raceway surface or the rolling surface. Attempts have not been made to reduce the rotational torque of tapered roller bearings by focusing on the crowning as an amount while specifying the amount of crowning, while specifying the amount of crowning.
  • the main factors of the rotational torque of tapered roller bearings in differential gear devices, etc. are the rolling viscous resistance of the tapered rollers and the oil agitation resistance. The guideline on how to reduce these forces has not been clarified. .
  • the present invention has been made in view of such circumstances, and reduces the rotational torque of a tapered roller bearing.
  • the present invention relates to a tapered roller bearing including an outer ring, an inner ring, a plurality of tapered rollers interposed therebetween, and a retainer for the tapered rollers, wherein the number of rollers is z, and the effective roller length is When LWR, roller average diameter is DW and roller PCD is dm,
  • roller filling factor represented by z'DWZ (u'dm) is in the range of 0.7 to 0.92
  • the roller length with respect to the roller diameter represented by ZDW is in the range of 1.1 to 1.7, and
  • the outer ring crowning radius is RCO
  • the track length is LRO
  • the inner ring crowning radius is RCI
  • the track length is LRI
  • the agitation resistance and the rolling viscous resistance of oil are reduced by reducing the roller length Z and the roller diameter while maintaining the roller filling ratio in a small range. Further, by setting the above-mentioned crowding parameters, the rolling viscous resistance is reduced. Therefore, the rotational torque can be effectively reduced.
  • the present invention provides a tapered roller bearing including an outer ring, an inner ring, a plurality of tapered rollers interposed therebetween, and a retainer for the tapered rollers, wherein the number of rollers is z, and the roller is effective.
  • the length is LWR
  • the roller average diameter is DW
  • the roller PCD is dm
  • roller filling ratio is in the range of 0.7 to 0.92.
  • X 2) is 50 m or more
  • the agitation resistance and the rolling viscous resistance of oil are reduced by reducing the roller length Z and the roller diameter while maintaining the roller filling ratio in a small range. Further, by setting the above-mentioned crowding amount, the rolling viscous resistance is reduced.
  • the roller diameter parameter (2DWZ (D-d)) may be in the range of 0.44 to 0.52
  • an oil flow for suppressing the inflow of oil is provided at one axial end between the inner and outer rings of the tapered roller bearing.
  • You may comprise the tapered roller bearing apparatus provided with the entry suppression means.
  • the oil inflow suppressing means forms an annular portion extending radially inward from a position close to the outer ring at the small-diameter side end of the retainer, and bringing the inner peripheral end of the retainer close to the inner ring.
  • a labyrinth seal may be formed between the inner ring and the inner ring.
  • a tapered roller bearing device may be configured by providing another member that does not constitute the tapered roller bearing as oil inflow suppressing means. For example, a labyrinth should be provided in the bearing housing.
  • the outer ring contact angle may be in a range of 25 degrees to 30 degrees.
  • the pumping action is increased and the oil discharge is promoted, so that the oil stirring resistance is reduced. You. Thereby, the rotational torque is reduced.
  • the vehicle pinion shaft support device of the present invention has tapered roller bearings disposed on the pinion gear side of the pinion shaft and on the opposite side, respectively, and has oil inflow suppression means on the pinion gear side.
  • a tapered roller bearing device is provided.
  • oil inflow suppression means for example, a labyrinth seal
  • FIG. 1 is an axial sectional view of a tapered roller bearing on a head side according to an embodiment of the present invention.
  • FIG. 2 is an axial sectional view of a tapered roller bearing on a tail side according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing the contour of the inner ring and the shape of the crown jung (in the case of a composite crown).
  • FIG. 4 is a diagram schematically showing the shape of a crowding (in the case of a composite crowding) provided on a raceway surface of an inner ring.
  • FIG. 5 is a diagram showing the contour of the inner ring and the shape of the crown jung (in the case of full crown jung).
  • FIG. 6 is a diagram schematically showing the shape of a crowding (in the case of full crowding) provided on a raceway surface of an inner ring.
  • FIG. 7 is a view showing a profile of a half of a cross section of a tapered roller and a shape of crowning.
  • FIG. 8 is a view schematically showing a crowning shape provided on a rolling surface of a tapered roller.
  • FIG. 9 is a view showing a contour of an outer ring and a shape of crowning.
  • FIG. 10 is a diagram schematically showing a crowning shape provided on a raceway surface of an outer ring.
  • FIG. 11 is a scatter diagram showing the relationship between the total crowning amount and the torque ratio of tapered roller bearings.
  • FIG. 12 is a scatter diagram showing the relationship between the outer ring crowning modulus and the torque ratio of tapered roller bearings.
  • FIG. 13 is a scatter diagram showing a relationship between a roller crowning rate and a torque ratio of a tapered roller bearing.
  • FIG. 14 is a scatter diagram showing the relationship between the inner ring crowning rate and the torque ratio of tapered roller bearings.
  • FIG. 15 is a graph showing a change in rotation torque with respect to the rotation speed on the head side (Examples 1, 2 and Comparative Example 1).
  • FIG. 16 is a graph showing a change in rotation torque with respect to the rotation speed on the tail side (Examples 1, 2 and Comparative Example 1).
  • FIG. 17 is a graph showing a change in rotation torque with respect to the rotation speed (Example 3, Comparative Example 2).
  • FIG. 18 is a graph showing a change in rotation torque with respect to the rotation speed (Example 4, Comparative Example 3).
  • FIG. 19 is a sectional view of a differential gear device.
  • FIG. 19 is a cross-sectional view of a differential gear device 100 for an automobile as a vehicle pinion shaft support device using the tapered roller bearing of the present embodiment.
  • the differential gear device 100 includes a pin 110 rotatably driven by a drive shaft (not shown) in a case 110.
  • An on-shaft 120 and a differential transmission mechanism 130 are provided.
  • a pinion gear 121 is provided at the tip of the pinion shaft 120, and meshes with a ring gear 131 of the differential transmission mechanism 130.
  • Pioneer shaft 120 is provided on case 110 by a tapered roller bearing 1H on the side of a geared gear 121 (hereinafter referred to as a head side) and a tapered roller bearing 1T on the opposite side (hereinafter referred to as a tail side). Supported rotatably.
  • a lubricating oil supply passage 111 for introducing oil and lubricating the raceway surface of the bearing is formed between the pair of tapered roller bearings 1H and 1T as shown by arrows in the figure. You.
  • a lubricating oil (not shown) for lubricating the entire inside of the differential gear device 100 is stored at the bottom of the case 110.
  • the ring gear 131 of the differential transmission mechanism 130 is rotatably driven in the direction shown by the arrow in the figure when the vehicle is driven forward, and is stored in the bottom of the case 110 by the rotation of the ring gear 131. Raise the lubricating oil up.
  • the splashed-up lubricating oil passes through the lubricating oil supply passage 111, is guided between the pair of conical rolling bearings 1H, 1T, and is supplied into the bearing.
  • Lubricating oil that has passed through the tapered roller bearing 1 H on the head side is returned to the bottom of the case 110. Further, the lubricating oil that has passed through the tail-side tapered roller bearing 1T is returned to the bottom of the case 110 through a return path (not shown). Thus, the oil is circulating inside the differential gear device 100.
  • FIGS. 1 and 2 are axial sectional views of the tapered roller bearing 1H on the head side and the tapered roller bearing 1T on the tail side, respectively.
  • the tapered roller bearings 1H and 1T include an inner ring 10 having an inner raceway surface 11 formed of a conical surface on the outer periphery, an outer ring 20 having an outer raceway surface 21 formed of a conical surface on the inner periphery, and an inner and outer race.
  • the movement of the tapered roller 30 in the axial direction is restricted on the large diameter side (right side in the figure) and the small diameter side (left side in the figure) of the inner ring 10, respectively.
  • a large-diameter flange portion 12 and a small-diameter flange portion 13 are formed.
  • the tapered roller bearing 1H on the head side shown in FIG. 1 includes a circle having an outer diameter smaller than that of the small-diameter flange 13 in a portion extending from the small-diameter flange 13 to the left end of the inner ring 10.
  • a tubular portion 14 is formed.
  • annular portion 41 is formed at the small-diameter side (left side in the figure) end of the retainer 40 so that the position near the outer ring 20 also extends radially inward.
  • the inner peripheral end of the annular portion 41 is close to the outer peripheral surface of the cylindrical portion 14 of the inner race 10 and the side surface of the small-diameter flange portion 13, thereby forming a labyrinth seal S.
  • the tapered roller bearing 1H on the head side If the above-mentioned labyrinth seal S is not applied to the tapered roller bearing 1H on the head side, a large amount of oil is supplied to the tapered roller bearing 1H on the front side (the tapered roller bearing in FIG. 19).
  • the amount of oil supplied from the left side (1H of 1H) and the back side (right side of 1H) is larger in the tapered roller bearing 1H on the head side than in the tapered roller bearing 1T on the tail side. Therefore, in the tapered roller bearing 1H on the head side, the oil stirring resistance increases.
  • the tapered roller bearing 1T on the tail side has a problem that it tends to seize because it is difficult to supply oil during cold start.
  • the above-mentioned labyrinth seal S is provided on the tapered roller bearing 1H on the head side to suppress the inflow of oil to reduce the oil agitation resistance of the tapered roller bearing 1H, and if the labyrinth seal S is ineffective, the head side A part of the oil that should flow into the tapered roller bearing 1H is supplied to the tapered roller bearing 1T on the tail side. As a result, the lubrication of the tapered roller bearing 1T on the tail side is improved, and seizure can be prevented.
  • an appropriate labyrinth seal may be provided for the tapered roller bearing 1T.
  • the tapered roller bearings 1H and 1T In order to reduce the rotational torque of the tapered roller bearings 1H and 1T, it is effective to reduce the oil stirring resistance and rolling viscous resistance.
  • the oil that has flowed into the bearing may be quickly discharged. Therefore, means for promoting oil outflow is provided. Specifically, the filling rate of the tapered rollers is reduced to ensure a large circumferential gap between the tapered rollers. However, if the filling rate is reduced, the load capacity is reduced. Therefore, the diameter of the bevel roller (average diameter) to compensate for this is increased. In addition, reducing the length of the rollers reduces the area in contact with oil. Plan. Further, the pump action is promoted by increasing the outer ring contact angle.
  • a differential gear device has been described as an example of a vehicle pinion shaft support device
  • a transaxle device also having a pinion shaft support has the same configuration.
  • FIG. 3 is an exaggerated view of the contour of an axial section of the inner ring 10 in which the inner ring raceway surface 11 is subjected to the crowning, in an exaggerated manner.
  • the inner ring raceway surface 11 that comes into rolling contact with the rolling surface 31 (FIGS. 1 and 2) of the tapered roller 30 (FIGS. 1 and 2) is provided with a slightly protruding crown radially outward.
  • This crowning is a composite crowning having a trapezoidal shape with an arc at the top.
  • the width of the inner raceway surface 11 with respect to the axial direction of the inner raceway 10 is SK
  • the taper angle of the inner raceway surface 11 is j8
  • the chamfer dimensions shown at both ends of the inner raceway surface 11 are LI and L2.
  • the orbit length LRI is obtained from the following equation (1).
  • LRI ' 0.6 LRI is taken from the midpoint of the track length LRI as shown in the figure, and points on the inner ring raceway surface 11 corresponding to both ends of the dimension of LRI, are A ' And B '.
  • a 'and B' are inside the arc endpoints Ae and Be, but A 'and B' may correspond to the arc endpoints Ae and Be, respectively.
  • FIG. 4 schematically shows the cross-sectional shape of the crown Jung between the end points A and B of the track length LRI of the inner raceway surface 11 shown in FIG.
  • the length LRI A straight line M passing through the midpoint C2 'of the bowing chord G' and the center O of the crowning arc passes through the Crowjung arc center point C1 which is orthogonal to the chord G 'and of length LRI'.
  • the distance from the center point C1 of the crowning arc to the center point C2 of the chord G of the crowning in the orbit length LRI was defined as the inner ring crowning amount CRI.
  • the shape of the inner ring crowning is not limited to a trapezoidal shape with an arc as the upper base as shown in Fig. 4, but also a single arc shape, a shape formed by multiple arcs, a logarithmic crowning, an ellipse
  • the above-mentioned concept of the amount of the Crow Jung can be applied to all the Crow Jung shapes such as Crow Jung.
  • a crown formed by combining a plurality of shapes within the range of the track length (rolling surface length) is referred to as a composite crown, and a crown formed of a single arc shape within the range of the track length. With full crowning.
  • FIG. 5 is an exaggerated view of the contour of the axial cross section of the inner ring 10 in which the inner ring raceway surface 11 has been subjected to full crowning.
  • the orbit length LRI is the same as the equation (1) in the case of FIG.
  • FIG. 6 schematically shows a cross-sectional shape of the crowning between the end point A and the end point B of the track length LRI of the inner raceway surface 11 shown in FIG.
  • a straight line M passing through the midpoint C2 of the crowning chord G at the orbit length LRI and the center O of the crowning arc passes through the Crowjung arc center point C1 at the orbit length LRI orthogonal to the chord G.
  • the present inventors set the distance between the center point C1 and the middle point C2 of the Crowjung arc as the inner ring crowning amount CRI. That is, assuming that the radius of the crowning arc is RCI as shown in the figure, the inner ring crowning amount CRI can be obtained by the following equation (2).
  • FIG. 7 is a diagram showing a profile of an upper half in a cross section of the tapered roller 30 in the axial direction.
  • the outer peripheral surface of the tapered roller 30 is provided with a substantially linear rolling surface 31 and chamfered portions 32a and 33a formed so as to smoothly go down from both axial ends of the rolling surface 31. ing.
  • the chamfered portions 32a and 33a are formed so as to be smoothly continuous with the small-diameter end surface 32 and the large-diameter end surface 33 of the tapered roller 30.
  • the rolling surface 31, which looks linear, is provided with a slightly crowded full crown protruding in the outer diameter direction.
  • FIG. 8 is a diagram schematically showing only the crowning shape between the end point A and the end point B of the effective rolling length LWR of the rolling surface 31 in FIG.
  • roller crawling amount the amount of crawling of the tapered roller 30 (hereinafter, also referred to as "roller crawling amount”) as the distance between the center point of the arc of the crawling determined by the rolling effective length LWR of the rolling surface 31 and its chord. It was defined as distance.
  • roller crawling amount the amount of crawling of the tapered roller 30
  • the width of the rolling surface 31 with respect to the center axis direction of the tapered roller 30 is L
  • the taper angle of the rolling surface 31 is ⁇
  • the curved surfaces of the chamfered portions 32a and 33a formed at both ends of the rolling surface 31 are SI and S2
  • the roller effective length LWR described above is obtained from the following equation (3).
  • SI and S2 in the above equation (3) have a fixed width depending on the size of the bearing.
  • a straight line M passing through the midpoint C2 of the Crowjung chord G of the roller effective length LWR and the arc center O of the crown is orthogonal to the chord G and the crowning at the effective roller length LWR. Pass through the arc center point C1.
  • the present inventors defined the distance between the center point C1 of the Crowjung circular arc and the middle point C2 as the roller crowning amount CR. That is, assuming that the radius of the Crowjung arc is RC as shown in the figure, the roller crowning amount CR can be obtained by the following equation (4).
  • FIG. 9 is a diagram in which the contour of the outer race 20 in which the outer raceway surface 21 is subjected to full crowning in the axial direction is exaggerated.
  • an outer raceway surface 21 that is in rolling contact with a rolling surface 31 of a tapered roller 30 is provided on an inner peripheral surface of an outer race 20.
  • the outer raceway surface 21 is provided with a full crown protruding radially inward.
  • chamfered portions 22a and 23a are provided from both ends of the outer raceway surface 21 toward the shaft end surface of the outer race 22, respectively. These chamfered portions 22a, 23a are formed so as to smoothly continue to the small-diameter side end face 22 and the large-diameter side end face 23 of the outer ring 20.
  • the present inventors set the crowning amount of the outer ring 20 (hereinafter, also referred to as the outer ring crowning amount) as the distance between the center point of the arc of the crowning determined by the track length LRO of the outer ring raceway surface 21 and its chord. It is defined as CRO.
  • the method of calculating the outer ring crowning amount CRO is described below.
  • the width of the outer raceway surface 21 with respect to the axial direction of the outer raceway 20 is SB
  • the taper angle of the outer raceway surface 21 is ⁇
  • FIG. 10 schematically shows a cross-sectional shape of the crown between the end point A and the end point B of the track length LRO of the outer raceway surface 21 shown in FIG.
  • a straight line M that passes through the midpoint C2 of the crowning chord G at the orbital length L RO and the arcing center O of the crowning is perpendicular to the chord G and passes through the crowning arc center point C1 at the orbital length LRO.
  • the present inventors defined the distance between the center point C1 of the crowning arc and the middle point C2 as the outer ring crowning amount CRO. That is, assuming that the radius of the crowning arc is RCO as shown in the figure, the outer ring crowning amount CRO is obtained by the following equation (6).
  • the crowning amounts of the tapered rollers and the inner and outer rings when full crowning is performed can be obtained.
  • the amount of crowding can be calculated for the tapered roller 30 and the inner and outer rings 10 and 20 subjected to full crowding based on the above-mentioned general idea of crowding.
  • the LWR for the LWR, and for the outer ring 20, LRO 'for the LRO are derived, and the center point of the arc may be determined to determine the force and the crowning amount.
  • the amount of crowding calculated based on the general concept of Klaujung almost coincides with the value obtained based on the concept of full crowding (Figs. 3 and 4).
  • (RCOZLRO) is defined as an outer ring crowning parameter based on the crowning radius RCO and the track length LRO of the outer ring 20 obtained as described above.
  • (RCIZLRI) is defined as an inner ring crowning parameter from the crown radius RCI and the track length LRI of the inner ring 10.
  • the present inventors calculated the total crowning amount, the outer ring crowning amount, and the outer ring crowning amount from the above roller crowning amount, inner ring crowning amount, and outer ring crowning amount based on the following equations (7), (8), (9), and (10).
  • the Jung rate, roller crowning rate, and inner ring crown Jung rate were calculated.
  • the present inventors experimentally measured the rotational torque of the tapered roller bearing according to the embodiment of the present invention, and determined the relationship between the above-mentioned crowding parameters, the total crowding amount, and each crowding rate. The following describes the results of the verification.
  • a bearing test device is used, and after installing a tapered roller bearing, which is an example product, in a test device, one of the inner and outer rings is rotated, and the other of the inner and outer rings is rotated.
  • the working torque was measured.
  • a tapered roller bearing (equivalent to JIS30306) having the configuration shown in the above embodiment was used, gear oil for a differential gear device was used as lubricating oil, an axial load of 4 kN was applied as a pseudo preload, and the rotational speed was changed.
  • the test was performed at two rotation speeds, 300 [rZmin] and 2000 [rZmin].
  • the method of supplying the lubricating oil was changed according to the number of rotations because only the required minimum amount of lubricating oil was supplied at each number of rotations, and agitation of the lubricating oil generated when the amount of lubricating oil became excessive was This is to eliminate the effect of resistance as much as possible and extract the rotational torque due to rolling friction.
  • examples were prepared in which the total crowning amount and each crowning ratio were set to various different values, and the rotational torque was measured for each. The relationship between the amount of crowning and each crowning rate and the rotational torque was grasped, and the range of values that reduced the rotational torque was specified.
  • FIG. 11 is a scatter diagram showing the relationship between the total crowning amount and the measured torque ratio of the tapered roller bearing (rotational torque Z predetermined value).
  • the torque ratio has a large dispersed force as the total crowning amount increases. The maximum value is gradually decreasing. It can be seen that when the total crowding amount is 50 / z m or more, the torque ratio is more stably distributed in a lower value range than when the total crowding amount is smaller than 50 m. If the total crowding amount is larger than 100 / z m, the behavior of the rollers becomes unstable and the torque increases. Therefore, it is desirable that the total crowding amount be 100 m or less.
  • FIG. 12 is a scatter diagram showing the relationship between the outer ring crowning rate and the torque ratio of the tapered roller bearing.
  • the outer wheel crowning power when the outer wheel crowning power is smaller than 0%, the maximum value of the torque ratio tends to gradually decrease as the outer wheel crowning ratio increases.
  • the torque ratio is more stably distributed in a lower value range than when the outer wheel crowding power is less than 0%. If the outer ring crowning rate is higher than 85%, the life will be shortened if an edge load acts between the inner ring and the roller. Therefore, the outer ring crowning rate is preferably less than 85%.
  • FIG. 13 is a scatter diagram showing the relationship between the roller crowning rate and the torque ratio of the tapered roller bearing.
  • the roller crowning rate when the roller crowning rate is greater than 20%, the maximum torque value tends to gradually decrease as the roller crowding rate decreases.
  • the roller crown Jung ratio is 20% or less, the torque value It can be seen that the Jung's modulus is higher than 20%, lower than the case, and stably distributed in the value range! / ⁇ . If the roller crowding ratio is less than 5%, the torque will increase due to an increase in the contact area, and the life will decrease due to the occurrence of edge load. Therefore, the roller crowning rate is preferably 5% or more.
  • FIG. 14 is a scatter diagram showing the relationship between the inner ring crowning rate and the torque ratio of the tapered roller bearing.
  • the torque ratio is stable within a substantially constant range with respect to the change in the inner ring crowning rate.
  • the inner ring crowning rate did not show any significant correlation with the torque ratio of the tapered roller bearing.
  • the inner ring crowning rate is set to 10% or more, it is possible to reduce the contact load near both axial ends on the contact surface between the inner ring raceway surface 11 and the rolling surface 31. Thereby, even when the edge load acts, its action can be reduced, and the reduction of the bearing life can be prevented.
  • the inner ring crowning rate is greater than 55%, the force related to the total crowning rate will also decrease the outer ring crowning rate, and the torque will increase. Therefore, the inner ring crowding rate is preferably 55% or less.
  • the total crowning amount was determined as the crowning amount. It has been found that the rotational torque of the tapered roller bearing can be reduced by satisfying the conditions that the amount is 50 ⁇ m or more, the outer ring crowning rate is 40% or more, and the roller crowning rate is 20% or less.
  • Table 1 shows data of Examples 1 and 2 (head side and tail side) and Comparative Example 1 (head side and tail side) of the tapered roller bearing in which specific numerical values were set.
  • the crowning within the range of the crowning amount and rate shown in the table, the conditions described in Example 1 were used (the total crowning amount was 50 m or more, the outer ring crowning rate was 40% or more, and the roller crowning rate was 20%). % Or less).
  • Comparative Example 1 the numerical range of Klaujung that does not satisfy this condition is set.
  • Table 2 shows data of Example 3 and Comparative Example 2 on the head side, and Data of Example 4 and Comparative Example 3 on the tail side.
  • the unit of the numerical value representing the length in Tables 1 and 2 is mm.
  • Rata 114 608 238 330 RCI / LRI
  • FIGS. 15 and 16 are shown in FIGS. 15 and 16.
  • Fig. 15 is a graph for the tapered roller bearing on the head side
  • Fig. 16 is a graph for the tapered roller bearing on the tail side.
  • the rotational torque was measured under the conditions of an axial load of 4 kN, a rotational speed of 250 to 4000 [rZmin], a gear oil of 75W-90, an oil temperature of 50 ° C, and an oil amount supplied so that the back side of the bearing was completely filled with oil. did.
  • FIG. 17 shows the results of measuring the rotational torque of Example 3 and Comparative Example 2 in Table 2.
  • FIG. 18 shows the results of measuring the rotational torque of Example 4 and Comparative Example 3 in Table 2.
  • roller length Z diameter, the roller diameter parameter, the outer ring crowning parameter, and the inner ring crowning parameter clearly show numerical differences between the embodiment and the comparative example.
  • the roller length Z diameter, the outer ring crowning parameter and the inner ring crowning parameter the difference between the embodiment and the comparative example is obvious, and it can be seen that these are the dominant factors for the reduction of the rotational torque. It is understood that rolling viscous resistance is reduced by setting the above-mentioned numerical range of the Crowjung parameter. Therefore, as described above, a viewpoint different from defining the total crowning amount, the outer ring crowning rate and the roller crowning rate, that is, defining the crowning with the outer ring crowning parameter and the inner ring crowning parameter. Therefore, the rolling viscous resistance is reduced, and the reduction of the rotation torque can be realized.
  • the outer ring crowning parameter (RCOZLRO) is 30 to 150
  • the inner ring crowning parameter (RCIZLRI) is understood to be a range that should be set to achieve a reduction in rotational torque of 50 to 260 forces.
  • the numerical range of the example includes the numerical range of the comparative example, and there is no significant difference between the two. It is obvious that the rotation torque increases. However, the filling rate has a close relationship with the roller length Z diameter, rather than simply reducing it because of the relationship with the load capacity. Therefore, reducing the roller length Z diameter while maintaining the roller filling ratio in a very small range can reduce the force rotation torque (resulting from oil stirring resistance and rolling viscous resistance). Understood.
  • the roller filling ratio (Z′DWZ ( ⁇ dm)) is preferably set to 0.7 to 0.92 as a range including the numerical range of the example in Table 3, and it is preferable that the force S be set.
  • the lower limit is set to 0.7 because the load capacity and the rigidity of the bearing become insufficient at / J below this point.
  • the upper limit is set to 0.92 because if it is larger than this, the pumping effect is insufficient and the oil discharging effect is reduced, and the oil stirring resistance and rolling viscous resistance are not sufficiently reduced.
  • roller length Z roller diameter is preferably set to 1.1 to 1.7 as a range including the numerical range of the example in Table 3.
  • the lower limit was set to 1.1 because if it is smaller than this, the roller diameter becomes large and the rolling viscous resistance becomes large.
  • the upper limit is set to 1.7 because if it is larger than this, the roller diameter becomes smaller and the load capacity becomes smaller.
  • the roller diameter parameter (2DWZ (D ⁇ d)) is preferably set to 0.44 to 0.52 as a range including the numerical range of the example in Table 3! / ⁇ .
  • the lower limit is set to 0.44 because if it is smaller than this, the free space volume inside the bearing will decrease, and the oil will flow, and the effect of reducing the oil stirring resistance will not be sufficient.
  • the upper limit is set to 0.52. If the upper limit is exceeded, the roller diameter is too large relative to the bearing size (inner and outer ring diameters), and the overall shape of the bearing is not suitable for general equipment where the lance is not preferable. It is also the power that becomes difficult.
  • the scatter diagram (Figs. 11 to 14) was used to satisfy the above-mentioned conditions (the total crowding amount was 50 m or more, the outer ring crowding ratio was 40% or more, and the roller crowding ratio was 20% or less). Since Examples 1 and 2 and Comparative Example 1 that do not satisfy the conditions have a remarkable difference in the rotational torque in FIGS. 15 and 16, by satisfying the conditions, the rotational torque can be reduced as a result. Fact S confirmed here.
  • the suppression of oil inflow by the labyrinth is also considered to have contributed to the reduction of rotational torque.
  • increasing the outer ring contact angle ⁇ to 28.811 degrees to promote oil discharge is also considered to have an effect on reducing rotational torque. The same effect can be expected when the outer ring contact angle OC is around 25 to 30 degrees before and after this value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • General Details Of Gearings (AREA)
  • Sealing Of Bearings (AREA)

Abstract

 ころ充填率が0.7~0.92の範囲にあり、かつ、ころ径に対するころ長さが1.1~1.7の範囲にあるようにして、油の攪拌抵抗及び転がり粘性抵抗を低減することで回転トルクを低減する。また、外輪クラウニング半径をRCO、軌道長さをLRO、内輪クラウニング半径をRCI、軌道長さをLRIとして、外輪クラウニングパラメータ(=RCO/LRO)は30~150であり、かつ、内輪クラウニングパラメータ(=RCI/LRI)は50~260であるクラウニングを施すことにより、転がり粘性抵抗を低減して、回転トルクを低減する。

Description

円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支 持装置
技術分野
[0001] 本発明は、自動車や産業機械のディファレンシャルギヤ装置等に使用される円錐こ ろ軸受に関する。
背景技術
[0002] 円錐ころ軸受は、玉軸受に比べて高負荷容量で高剛性であるという特性を有する ため、このような特性を要する自動車のディファレンシャルギヤ装置やトランスアクス ル装置等の車両用ピ-オン軸支持装置に使用されている。し力しながら、回転トルク (損失)が大きいという欠点も有するため、内外輪の軌道面や円錐ころの転動面にク ラウユングを施して転がり摩擦を低減することが提案されている(例えば、特開 2003 — 130059号公報及び特開 2001— 65574号公報参照。;)。
[0003] 上記従来例では、軌道面又は転動面のクラウニングの形状を規定することで円錐こ ろ軸受の性能向上が図られていた。し力しながら、クラウユングを量として着目し、そ のクラウ-ング量等を規定することで円錐ころ軸受の回転トルクを低減するという試み はなされていな力つた。他方、ディファレンシャルギヤ装置等における円錐ころ軸受 の回転トルクの主たる要因は、円錐ころの転がり粘性抵抗及び油の攪拌抵抗である 力 これらを如何にして低減するかの指針は明確になっていな力つた。
発明の開示
[0004] 本発明はこのような事情に鑑みてなされたものであり、円錐ころ軸受の回転トルクを
、多面的要因を考慮して効果的に低減することを目的とする。
[0005] 本発明は、外輪と、内輪と、これらの間に介在する複数の円錐ころと、当該円錐ころ の保持器とを備えた円錐ころ軸受において、ころ数を z、ころ有効長さを LWR、ころ平 均径を DW、ころ PCDを dmとするとき、
z ' DWZ ( u ' dm)で表されるころ充填率が 0. 7〜0. 92の範囲にあり、力つ、 LWR
ZDWで表されるころ径に対するころ長さが 1. 1〜1. 7の範囲にあるとともに、前記 外輪のクラウユング半径を RCO、軌道長さを LRO、前記内輪のクラウユング半径を R CI、軌道長さを LRIとするとき、外輪クラウユングパラメータ(=RCOZLRO)は 30〜 150であり、かつ、内輪クラウユングパラメータ(=RCI/LRI)は 50〜260であること を特徴とするものである。
このような円錐ころ軸受においては、ころ充填率を小さい範囲に維持しつつ、ころ長 さ Zころ径を小さくすることにより、油の攪拌抵抗及び転がり粘性抵抗が低減される。 また、上記のクラウユングパラメータの設定によって、転がり粘性抵抗が低減される。 従って、回転トルクを効果的に低減することができる。
[0006] また、本発明は、外輪と、内輪と、これらの間に介在する複数の円錐ころと、当該円 錐ころの保持器とを備えた円錐ころ軸受において、ころ数を z、ころ有効長さを LWR、 ころ平均径を DW、ころ PCDを dmとするとき、
z ' DWZ ( u - dm)で表されるころ充填率が 0. 7〜0. 92の範囲にあり、力つ、 LWR
ZDWで表されるころ径に対するころ長さが 1. 1〜1. 7の範囲にあるとともに、前記 外輪及び内輪の各軌道面及び前記円錐ころの転動面にはクラウニングが施され、 全クラウ-ング量(=外輪クラウ-ング量 +内輪クラウ-ング量 +ころクラウ-ング量
X 2)が 50 m以上、
外輪クラウニング率(=外輪クラウニング量 Z全クラウニング量)が 40%以上、 ころクラウユング率 ( = (ころクラウニング量 X 2) Z全クラウユング量)が 20%以下で あることを特徴とするものである。
このような円錐ころ軸受においては、ころ充填率を小さい範囲に維持しつつ、ころ長 さ Zころ径を小さくすることにより、油の攪拌抵抗及び転がり粘性抵抗が低減される。 また、上記のクラウユング量の設定によって、転がり粘性抵抗が低減される。
[0007] また、上記円錐ころ軸受において、内輪の内径を d、前記外輪の外径を Dとするとき
、ころ径パラメータ(2DWZ (D— d) )が 0. 44〜0. 52の範囲にあるようにしてもよい
この場合、同サイズの従来品と比較してころ径が大きいため、軸受内部の自由空間 体積が増えて、油が軸受内部を流れやすくなり、攪拌抵抗が低減される。
[0008] また、上記円錐ころ軸受の内外輪間の軸方向一端側に、油の流入を抑制する油流 入抑制手段を設けた円錐ころ軸受装置を構成してもよい。この油流入抑制手段は、 保持器の小径側端部に、外輪に近接した位置から径方向内方に延びる環状部を形 成し、その内周側端部を前記内輪に近接させることにより当該内輪との間にラビリン スシールを構成してなるものであってもよい。また、円錐ころ軸受を構成しない別部材 を油流入抑制手段として設けることにより、円錐ころ軸受装置を構成してもよい。例え ば、軸受ハウジングにラビリンスを設ければょ 、。
この場合、軸受内部への油の流入が抑制され、転がり粘性抵抗や油の攪拌抵抗が 低減される。これにより、回転トルクが低減される。
[0009] また、上記円錐ころ軸受において、外輪接触角を 25度〜 30度の範囲としてもよい この場合、ポンプ作用が増大し、油の排出が促進されるので、油の攪拌抵抗が低減 される。これにより、回転トルクが低減される。
[ooio] また、上記円錐ころ軸受において、内輪クラウ-ング率(=内輪クラウ-ング量 Z全 クラウ-ング量)を 10%以上としてもょ 、。
この場合、内輪軌道面と転動面との接触面における軸方向両端部付近の接触荷 重を減少させることができる。これにより、いわゆるエッジロードが作用した場合にもそ の作用を低減し、当該軸受寿命の低下を防止することができる。
[0011] また、本発明の車両用ピ-オン軸支持装置は、ピ-オン軸のピ-オンギヤ側及び その逆側にそれぞれ円錐ころ軸受が配置され、ピニオンギヤ側には油流入抑制手段 を有する円錐ころ軸受装置を設けたものである。
このような車両用ピ-オン軸支持装置においては、油が流入しやすいヘッド側の円 錐ころ軸受における油の流入を油流入抑制手段 (例えばラビリンスシール)によって 抑制し、回転トルクを低減することができる。
図面の簡単な説明
[0012] [図 1]本発明の一実施形態に係る、ヘッド側の円錐ころ軸受の軸方向断面図である。
[図 2]本発明の一実施形態に係る、テール側の円錐ころ軸受の軸方向断面図である
[図 3]内輪の輪郭及びクラウユング (複合クラウユングの場合)の形状を示す図である [図 4]内輪の軌道面に施されたクラウユング (複合クラウユングの場合)の形状を模式 的に示す図である。
[図 5]内輪の輪郭及びクラウユング (フルクラウユングの場合)の形状を示す図である。
[図 6]内輪の軌道面に施されたクラウユング (フルクラウユングの場合)の形状を模式 的に示す図である。
[図 7]円錐ころの断面上半分の輪郭及びクラウニングの形状を示す図である。
[図 8]円錐ころの転動面に施されたクラウニング形状を模式的に示す図である。
[図 9]外輪の輪郭及びクラウニングの形状を示す図である。
[図 10]外輪の軌道面に施されたクラウニング形状を模式的に示す図である。
[図 11]全クラウユング量と円錐ころ軸受のトルク比との関係を示した散布図である。
[図 12]外輪クラウユング率と円錐ころ軸受のトルク比との関係を示した散布図である。
[図 13]ころクラウユング率と円錐ころ軸受のトルク比との関係を示した散布図である。
[図 14]内輪クラウユング率と円錐ころ軸受のトルク比との関係を示した散布図である。
[図 15]ヘッド側における回転速度に対する回転トルクの変化を示すグラフである(実 施例 1, 2,比較例 1)。
[図 16]テール側における回転速度に対する回転トルクの変化を示すグラフである(実 施例 1, 2,比較例 1)。
[図 17]回転速度に対する回転トルクの変化を示すグラフである(実施例 3,比較例 2) [図 18]回転速度に対する回転トルクの変化を示すグラフである(実施例 4,比較例 3)
[図 19]ディファレンシャルギヤ装置の断面図である。
発明を実施するための最良の形態
次に、本発明の好ましい実施形態について添付図面を参照しながら説明する。図 1 9は、本実施形態の円錐ころ軸受を用いた、車両用ピニオン軸支持装置としての自 動車のディファレンシャルギヤ装置 100の断面図である。このディファレンシャルギヤ 装置 100は、ケース 110内に、図示しないドライブシャフトにより回転駆動されるピ- オン軸 120と、差動変速機構 130とを備えている。ピ-オン軸 120の先端にはピ-ォ ンギヤ 121が設けられ、これが、差動変速機構 130のリングギヤ 131と嚙み合ってい る。ピ-オン軸 120は、ピ-オンギヤ 121側(以下、ヘッド側という。)の円錐ころ軸受 1Hと、その逆側(以下、テール側という。)の円錐ころ軸受 1Tとによって、ケース 110 に対して回転自在に支持されている。また、ケース 110には、一対の円錐ころ軸受 1 H, 1T間に図の矢印で示すように油を導入して当該軸受の軌道面を潤滑するため の潤滑油供給路 111が形成されて ヽる。
[0014] ここで上記ディファレンシャルギヤ装置 100の潤滑動作について説明する。ケース 1 10の底部にはディファレンシャルギヤ装置 100の内部全体を潤滑するための潤滑油 (図示せず。)が貯留されている。差動変速機構 130のリングギヤ 131は、車両が前 進駆動状態において図中の矢印で示す方向に回転駆動されるようになっており、こ のリングギヤ 131の回転により、ケース 110の底部に貯留されている潤滑油を上方に 跳ね上げる。跳ね上げられた潤滑油は、潤滑油供給路 111を通って、一対の円錐転 力 ^軸受 1H, 1T間に導かれ、当該軸受内に供給される。ヘッド側の円錐ころ軸受 1 H内を通過した潤滑油は、ケース 110の底部に戻される。また、テール側の円錐ころ 軸受 1T内を通過した潤滑油は、図示しない還流路を通過してケース 110の底部に 戻される。このようにして、油は、ディファレンシャルギヤ装置 100の内部を循環して いる。
[0015] 図 1及び図 2はそれぞれ、ヘッド側の円錐ころ軸受 1H及びテール側の円錐ころ軸 受 1Tの軸方向断面図である。各図において、円錐ころ軸受 1H, 1Tは、外周に円錐 面からなる内輪軌道面 11が形成された内輪 10と、内周に円錐面からなる外輪軌道 面 21が形成された外輪 20と、内外輪間に介在し、外周に円錐面からなる転動面 31 が形成された転動自在の複数の円錐ころ 30と、これらの円錐ころ 30を周方向に所定 間隔で保持する保持器 40とを備えて ヽる。
[0016] また、円錐ころ軸受 1H, 1Tにおいて、内輪 10の大径側(図の右方)及び小径側( 図の左方)にはそれぞれ、円錐ころ 30の軸方向への移動を規制する大径鍔部 12及 び小径鍔部 13が形成されている。さらに、図 1に示すヘッド側の円錐ころ軸受 1Hに は、小径鍔部 13から内輪 10左端に至る部分に、外径が小径鍔部 13よりも小さい円 筒状部 14が形成されている。一方、保持器 40の小径側(図の左方)端部には、外輪 20に近接した位置カも径方向内方に延びる環状部 41が形成されている。この環状 部 41の内周側端部は、内輪 10の円筒状部 14の外周面及び小径鍔部 13の側面に 近接し、これによつてラビリンスシール Sが構成されている。このように保持器 40と内 輪 10との間にラビリンスシール Sが構成されていることにより、図の左方力も軸受内部 に油が流入することを抑制できる。なお、テール側の円錐ころ軸受 1Tには、このよう なラビリンスシールは設けられて ヽな 、。
[0017] 仮に、上記のようなラビリンスシール Sがヘッド側の円錐ころ軸受 1Hに設けられてい な力つたとすると、当該円錐ころ軸受 1Hには多量の油が正面側(図 19における円錐 ころ軸受 1Hの左側)及び背面側(同右側)から供給され、流入する油の量は、テール 側の円錐ころ軸受 1Tよりもヘッド側の円錐ころ軸受 1Hの方が多くなる。従って、へッ ド側の円錐ころ軸受 1Hにおいては油の攪拌抵抗が大きくなる。他方、テール側の円 錐ころ軸受 1Tは、低温始動時に油が供給されにくぐそのため、焼き付き易いという 問題がある。
そこで、ヘッド側の円錐ころ軸受 1Hに上記ラビリンスシール Sを設け、油の流入を 抑制して当該円錐ころ軸受 1Hの油の攪拌抵抗を低減するとともに、ラビリンスシール Sが無力つたならばヘッド側の円錐ころ軸受 1Hに流入するはずの油の一部をテール 側の円錐ころ軸受 1Tに供給する。これにより、テール側の円錐ころ軸受 1Tの潤滑が 向上し、焼き付きに《することができる。なお、テール側の円錐ころ軸受 1Tへの油の 供給度合いが過度のときは、当該円錐ころ軸受 1Tにも適度なラビリンスシールを設 ければよい。
[0018] 次に、具体的な設計指針について説明する。
円錐ころ軸受 1H, 1Tの回転トルクを低減するには、油の攪拌抵抗及び転がり粘性 抵抗を低減することが有効である。まず、攪拌抵抗を低減するには、軸受内部に流 入した油を速やかに排出すればよい。そこで、油の流出を促進する手段を設ける。具 体的には、円錐ころの充填率を小さくして、円錐ころ間の周方向隙間を大きく確保す る。しかし、充填率を小さくすれば負荷容量が低下するので、これを補うベぐころ径( 平均径)を大きくする。また、ころの長さを短くすることにより、油に触れる面積の低減 を図る。さらに、外輪接触角を大きくしてポンプ作用を促進させる。一方、油の流入そ のものを抑制することが攪拌抵抗の低減に寄与すると考えられるので、少なくともへッ ド側の円錐ころ軸受 1Hには、流入抑制手段として上述のようにラビリンスシール Sを 設ける。
また、上記の充填率を小さくすること、及び、ころ径を大きくして長さを短くすること( すなわち太短くすること)は、いずれも転動面積の削減につながるので、転がり粘性 抵抗の低減が期待される。さらに、クラウニングを軌道面や転動面に施すことにより転 力 Sり粘性抵抗が低減されると考えられる。
[0019] なお、車両用ピ-オン軸支持装置の一例としてディファレンシャルギヤ装置につい て説明したが、同じくピ-オン軸支持であるトランスアクスル装置の場合も、同様な構 成である。
[0020] ここで、一般的なクラウユングの考え方について、内輪を例に説明する。図 3は、内 輪軌道面 11にクラウユングを施した内輪 10の軸方向の断面における輪郭を、クラウ ユングを誇張して示した図である。図中、円錐ころ 30 (図 1,図 2)の転動面 31 (図 1, 図 2)と転がり接触する内輪軌道面 11には、径方向外方にわずかに突出したクラウ- ングが施されている。このクラウニングは、円弧を上底とする台形的形状の複合クラウ ニングである。
[0021] 以下に、内輪 10のクラウニング量 (以下、内輪クラウニング量ともいう。)の算出方法 について説明する。図 3において、内輪 10の軸方向に対する内輪軌道面 11の幅を SK、内輪軌道面 11のテーパ角度を j8、内輪軌道面 11の両端部に形成されている 図示の面取り寸法を LI, L2したとき、軌道長さ LRIは、下記式(1)より得られる。
LRI = SK/cos j8 - (L1 +L2) · · · (1)
ここで、 LRI' =0. 6LRIとなる長さ LRI'を、軌道長さ LRIの中間点から図示のように とり、 LRI,の寸法両端に対応する内輪軌道面 11上の点を、 A'及び B'とする。なお、 この場合 A'、 B 'は円弧の端点 Ae、 Beより内側にあるが、 A'、 B 'がそれぞれ円弧の 端点 Ae、 Beと一致してもよい。
[0022] 図 4は、図 3に示す内輪軌道面 11の軌道長さ LRIの端点 Aと端点 Bとの間のクラウ ユングの断面形状を模式的に示したものである。図 4において、長さ LRI,におけるク ラウニングの弦 G'の中点 C2'とクラウニングの円弧中心 Oとを通過する直線 Mは、弦 G'と直交しかつ長さ LRI'におけるクラウユング円弧中心点 C1を通過する。そして、 このクラウニング円弧中心点 C1から、軌道長さ LRIにおけるクラウニングの弦 Gの中 点 C2までの距離を、内輪クラウユング量 CRIとした。
なお、内輪クラウニングの形状は、図 4に示すような円弧を上底とする台形的形状の みならず、単一の円弧形状の他、複数の円弧で形成される形状や、対数クラウニング 、楕円クラウユング等、各種のクラウユング形状であってもよぐこれらの全てのクラウ ユング形状において上述のクラウユング量の考え方が適用できる。
[0023] また、上記クラウユングの考え方やクラウユング量の定義は、ころや外輪に対しても 同様に適用することができる。
なお、軌道長さ(転動面長さ)の範囲において複数の形状を組み合わせてなるクラ ゥユングを複合クラウユングと 、、軌道長さの範囲にお!、て単一の円弧形状からな るクラウニングをフルクラウニングと 、う。
[0024] 次に、フルクラウニングの場合のクラウニングの考え方と、これに基づくクラウニング 量の考え方について説明する。
図 5は、内輪軌道面 11にフルクラウユングを施した内輪 10の軸方向の断面におけ る輪郭を、クラウニングを誇張して示した図である。図において、軌道長さ LRIは、図 3の場合における式(1)と同様であり、
Figure imgf000010_0001
である。
[0025] 一方、図 6は、図 5に示す内輪軌道面 11の軌道長さ LRIの端点 Aと端点 Bとの間の クラウ-ングの断面形状を模式的に示したものである。図 6において、軌道長さ LRIに おけるクラウニングの弦 Gの中点 C2とクラウニングの円弧中心 Oとを通過する直線 M は、弦 Gと直交しかつ軌道長さ LRIにおけるクラウユング円弧中心点 C1を通過する。 本発明者らは、このクラウユング円弧中心点 C1と中点 C2との距離を内輪クラウニン グ量 CRIとした。すなわち、図示のようにクラウニング円弧の半径を RCIとすると、内 輪クラウ-ング量 CRIは、下記式(2)により求められる。
CRI=RCI— {RCI2- (LRI/2) 2}1/2 · · · (2) [0026] 図 7は、円錐ころ 30の軸方向の断面における上半分の輪郭を示す図である。図 7 において、円錐ころ 30の外周面には、ほぼ直線状の転動面 31と、転動面 31の軸方 向両端から滑らかに下がるように形成された面取り部 32a, 33aとが設けられている。 面取り部 32a, 33aは円錐ころ 30の小径側端面 32及び大径側端面 33に対しても、 滑らかに連続するように形成されている。直線状に見える転動面 31には、ごく僅かに 外径方向に突出したフルクラウユングが施されている。図 8は、図 7における転動面 3 1のころ有効長さ LWRの端点 Aと端点 Bとの間のクラウユング形状のみを模式的に示 す図である。
[0027] 本発明者らは、円錐ころ 30のクラウユング量 (以下、ころクラウユング量とも ヽぅ。)を 、転動面 31のころ有効長さ LWRより定まるクラウユングの円弧中心点とその弦との距 離と規定した。以下、ころクラウニング量の算出方法について説明する。
図 7において、円錐ころ 30の中心軸方向に対する転動面 31の幅を L、転動面 31の テーパ角度を γ、転動面 31の両端部に形成されている面取り部 32a, 33aの曲面の 図示の寸法を SI, S2としたとき、上述のころ有効長さ LWRは、下記式(3)より得られ る。
LWR = L/cos ( y /2) - (S1 + S2) …(3)
[0028] 上記式(3)における SI, S2は、軸受のサイズによって一定の幅が定められる。
図 8において、ころ有効長さ LWRにおけるクラウユングの弦 Gの中点 C2とクラウ- ングの円弧中心 Oとを通過する直線 Mは、弦 Gと直交し、かつ、ころ有効長さ LWRに おけるクラウニング円弧中心点 C1を通過する。
本発明者らは、このクラウユング円弧中心点 C1と中点 C2との距離を、ころクラウ二 ング量 CRとした。すなわち、図示のようにクラウユング円弧の半径を RCとすると、ころ クラウニング量 CRは、下記式 (4)により求められる。
CR=RC- {RC2- (LWR/2) 2}1/2 · · · (4)
[0029] 次に、図 9は、外輪軌道面 21にフルクラウユングを施した外輪 20の軸方向の断面 における輪郭を、クラウユングを誇張して示した図である。図 9において、外輪 20の内 周面には、円錐ころ 30の転動面 31と転がり接触する外輪軌道面 21が設けられてい る。この外輪軌道面 21には径方向内方に突出したフルクラウユングが施されて 、る。 また、外輪軌道面 21の両端部から外輪 22の軸端面に向かって、それぞれ面取り部 2 2a, 23aが設けられている。これらの面取り部 22a, 23aは、外輪 20の小内径側端面 22及び大内径側端面 23に対して滑らかに連続するように形成されている。
[0030] 本発明者らは、外輪 20のクラウユング量 (以下、外輪クラウユング量とも 、う。)を、 外輪軌道面 21の軌道長さ LROより定まるクラウニングの円弧中心点とその弦との距 離である CROと規定した。以下、外輪クラウユング量 CROの算出方法について説明 する。
図 9において、外輪 20の軸方向に対する外輪軌道面 21の幅を SB、外輪軌道面 2 1のテーパ角度を α、外輪軌道面 21の両端部に形成されている面取り部 22a, 23a の曲面の図示の寸法を C7, CLOとしたとき、上述の軌道長さ LROは、下記式(5)よ り得られる。
LRO = SB/cos a - (C7 + CL0) …(5)
なお、上式(5)において C7, CL0は、軸受のサイズによって一定の値が定められる
[0031] 一方、図 10は、図 9に示す外輪軌道面 21の軌道長さ LROの端点 Aと端点 Bとの間 のクラウ-ングの断面形状を模式的に示したものである。図 10において、軌道長さ L ROにおけるクラウニングの弦 Gの中点 C2とクラウニングの円弧中心 Oとを通過する 直線 Mは、弦 Gと直交しかつ軌道長さ LROにおけるクラウユング円弧中心点 C1を通 過する。
本発明者らは、このクラウユング円弧中心点 C1と中点 C2との距離を、外輪クラウ- ング量 CROとした。すなわち、図示のようにクラウニング円弧の半径を RCOとすると、 外輪クラウユング量 CROは、下記式 (6)により求められる。
CRO =RCO— {RCO2— (LRO/2) 2} 1/2 · · · (6)
[0032] 以上のようにして、フルクラウユングを施した場合の円錐ころ及び内外輪のクラウ- ング量を求めることができる。
なお、フルクラウユングを施した円錐ころ 30及び内外輪 10, 20に対して、上述した 一般的なクラウユングの考え方に基づきクラウユング量を算出することができるのはも ちろんである。すなわち、図 3において長さ LRI'を求めたのと同様に、円錐ころ 30の 場合は LWRに対する LWR,を、また、外輪 20の場合は、 LROに対する LRO'を、そ れぞれ導出し、円弧中心点を求めて力もクラウニング量を求めればよい。このようにし て一般的なクラウユングの考え方に基づき求めたクラウユング量は、フルクラウユング の考え方(図 3,図 4)に基づき求めた値とほぼ一致する。
[0033] 次に、以上のようにして求めた外輪 20のクラウユング半径 RCO,軌道長さ LROより 、(RCOZLRO)を外輪クラウユングパラメータと定義する。また、内輪 10のクラウ- ング半径 RCI,軌道長さ LRIより、(RCIZLRI)を内輪クラウユングパラメータと定義 する。
そして、本発明者らは、上記のころクラウユング量、内輪クラウユング量、外輪クラウ ニング量から、下記式(7) , (8) , (9) , (10)に基づいて全クラウニング量、外輪クラウ ユング率、ころクラウニング率、内輪クラウユング率を算出した。
全クラウニング量 =外輪クラウニング量 +内輪クラウニング量 +ころクラウニング量
X 2 · ' · (7)
外輪クラウニング率 =外輪クラウニング量 Ζ全クラウニング量 · · ·(8) ころクラウユング率 =ころクラウユング量 X 2) Ζ全クラウユング量 · · ·(9) 内輪クラウユング率 =内輪クラウユング量 Ζ全クラウユング量 · · ·(10) [0034] 次に、本発明者らが本発明の実施形態による円錐ころ軸受の回転トルクを実験的 に測定し、上記クラウユングパラメータ、全クラウユング量及び各クラウユング率との関 係にっ 、て検証した結果にっ 、て説明する。
まず、円錐ころ軸受の回転トルクの測定方法としては、例えば軸受試験装置を用い 、実施例品である円錐ころ軸受を試験装置に設置した後、内外輪の一方を回転させ 、内外輪の他方に作用する回転トルクを測定した。試験条件として、上記実施形態で 示した構成の円錐ころ軸受 (JIS30306相当品)を用い、潤滑油にはディファレンシャ ルギヤ装置用ギヤオイルを用い、擬似的な予圧負荷としてアキシャル荷重 4kNを与 え、回転速度 300[rZmin] , 2000 [rZmin]の 2種類の回転速度で行った。
[0035] また、試験時の潤滑条件としては、回転速度 300[rZmin]の際には、常温の潤滑 油を試験前に適量塗布するのみで以後給油を行わずに試験した。一方、回転速度 2 000[rZmin]の際には、油温 323K(50°C)の潤滑油を毎分 0. 5リットルで循環供 給しつつ試験を行った。潤滑油の供給方法を回転数に応じて異なる方法にしたのは 、それぞれの回転数における必要最小限の潤滑油量だけ供給し、潤滑油が過剰供 給になる場合に発生する潤滑油の攪拌抵抗の影響をできるだけ無くし、転がり摩擦 による回転トルクを抽出するためである。本試験に供した上記円錐ころ軸受には、そ の全クラウ-ング量及び各クラウ-ング率が種々異なる値に設定された実施例品を 用意し、それぞれについて回転トルクを測定して、全クラウニング量及び各クラウニン グ率と回転トルクとの関係を把握し、回転トルクを低減させる値の範囲を特定した。
[0036] 図 11は、全クラウニング量と、測定した円錐ころ軸受のトルク比(回転トルク Z所定 値)との関係を示した散布図である。この図から明らかなように、全クラウユング量が 5 O /z mより小さい場合では、トルク比は大きな幅をもって分散している力 全クラウニン グ量が増加するに従って、分散しているトルク比の中の最大値が序々に低下する傾 向を示している。そして、全クラウユング量が 50 /z m以上の場合、トルク比は、全クラ ゥユング量が 50 mより小さい場合と比較して、より低い値の範囲に安定して分布し ていることが判る。なお、全クラウユング量が 100 /z mより大きくなると、ころの挙動が 不安定となってトルクが増加する。従って、全クラウユング量は 100 m以下が望まし い。
[0037] 次に図 12は、外輪クラウユング率と円錐ころ軸受のトルク比との関係を示した散布 図である。この図から明らかなように、外輪クラウユング率力 0%より小さい場合では 、外輪クラウユング率が増加するに従ってトルク比の中の最大値が序々に低下する 傾向を示している。そして、外輪クラウユング率力 0%以上の場合では、トルク比は、 外輪クラウユング率力 0%より小さい場合と比較して、より低い値の範囲に安定して 分布していることが判る。なお、外輪クラウユング率が 85%より大きくなると、内輪とこ ろとの間にエッジロードが作用した場合に寿命低下を招く。従って、外輪クラウユング 率は 85%以下が望ましい。
[0038] 図 13は、ころクラウユング率と円錐ころ軸受のトルク比との関係を示した散布図であ る。この図から明らかなように、ころクラウユング率が 20%より大きい場合では、ころク ラウ-ング率が減少するに従ってトルク値の中の最大値が序々に低下する傾向を示 している。そして、ころクラウユング率が 20%以下の場合では、トルク値は、ころクラウ ユング率が 20%より大き 、場合と比較して、より低 、値の範囲に安定して分布して!/ヽ ることが判る。なお、ころクラウユング率が 5%より小さくなると、接触面積増加によるト ルクの増加や、エッジロード発生による寿命低下を招く。従って、ころクラウ-ング率 は 5%以上が望ましい。
[0039] 図 14は、内輪クラウユング率と円錐ころ軸受のトルク比との関係を示した散布図で ある。この図から明らかなように、内輪クラウニング率の変化に対して、トルク比は略一 定の範囲で安定している。すなわち内輪クラウユング率は、円錐ころ軸受のトルク比 に対して、顕著な相関が認められな力つた。但し、内輪クラウユング率は、これを 10 %以上に設定することによって、内輪軌道面 11と、転動面 31との接触面における軸 方向両端部付近の接触荷重を減少させることができる。これにより、エッジロードが作 用した場合にもその作用を低減し、当該軸受寿命の低下を防止することができる。な お、内輪クラウユング率を 55%より大きくすると、全クラウユング量との関係力も外輪ク ラウ-ング率を小さくすることになり、トルクが増加する。従って、内輪クラウユング率は 55%以下が望ましい。
[0040] 以上のように、円錐ころ軸受のトルク比すなわち回転トルクと、全クラウユング量及び 各クラウ-ング率との関係について実験的に測定し検証した結果、クラウ-ング量とし て、全クラウユング量は 50 μ m以上、外輪クラウユング率は 40%以上、ころクラウニン グ率は 20%以下という条件を満たすことで、円錐ころ軸受の回転トルクを低減させる ことができる、との知見を得た。
[0041] 次に、具体的な数値を設定した円錐ころ軸受の実施例 1, 2 (それぞれヘッド側及 びテール側)及び比較例 1 (ヘッド側及びテール側)のデータを表 1に示す。クラウ- ングに関しては、表に示したクラウユング量 ·率の範囲内で、実施例 1では前述の条 件 (全クラウユング量は 50 m以上、外輪クラウユング率は 40%以上、ころクラウニン グ率は 20%以下)を満足させる。一方、比較例 1はこの条件を満たさないクラウユング の数値範囲が設定されている。さらに、ヘッド側に関しての実施例 3及び比較例 2、テ ール側に関しての実施例 4及び比較例 3のデータを表 2にそれぞれ示す。なお、表 1 , 2中の、長さを表す数値の単位は mmである。
また、表 1及び 2において、実施例 1は、内外輪共にフルクラウユング (軌道面の断 面形状が円弧のみ)が施されたものであり、他の実施例及び比較例は、外輪のみフ ルクラウニングで内輪は複合クラウニング(円弧を上底とする台形的形状)が施されて いる。
[0042] [表 1]
Figure imgf000016_0001
[0043] [表 2] 難例 3 J±WJ2
ヘッド側 側
Figure imgf000017_0001
内径: d [mm] 35 35 33. 338 33. 338 外径: D [nm] 89 89 68. 263 68. 263 組幅: T [mm] 38 38 22. 225 22. 225 角: m 25. 000 22. 500 25. 000 20. 000 ころ ¾JI$ : z . DW/(7r - dm) 0. 87 0. 85 0. 83 0. 83 ころ長さ Z径: LWR/DW 1. 67 2. 38 1. 48 2. 07 ころ 、。ラメ-タ: 2DW/ (D-d) 0. 46 0. 41 0. 44 0. 42 外輪クラウニンク ラメ-タ: 88 247 147 342 RCO/LRO
内輪クラウニンク♦/、。ラ タ: 114 608 238 330 RCI/LRI
全クラウニンゲ量 [mm] 0. 066 0. 031 0. 027 0. 023 外輪クラウニンゲ率 48% 46% 43% 27% 内輪クラウニンク *率 45% 35% . 41% 47% ころクラウニンク'率 6% 19% 15% 26% 外輪謹長さ: LRO [mm] 22. 694 28. 366 13. 580 16. 984 内輪 長さ: LRI [画] 19. 048 25. 049 10. 128 13. 833 ころ有効長さ: LWR [mm] 20. 511 26. 263 11. 499 15. 128 油 ¾ 卬制漏 あり なし なし なし (ラビリンス構造)
内輪クラウニンク '觀 複合 複合 複合 複合
[0044] また、表 1の実施例 1, 2及び比較例 1について、回転トルクを測定した結果を図 15 ,図 16に示す。図 15はヘッド側、図 16はテール側の円錐ころ軸受についてのグラフ である。回転トルク測定条件としては、アキシャル荷重 4kN、回転速度 250〜4000 [ rZmin]、潤滑油はギヤオイル 75W— 90、油温 50°C、油量は、軸受背面側が油で 完全に満たされるように供給した。
[0045] また、表 2の実施例 3及び比較例 2について、回転トルクを測定した結果を図 17に 示す。
また、表 2の実施例 4及び比較例 3について、回転トルクを測定した結果を図 18に 示す。
[0046] 図 15,図 16より、ヘッド側の回転トルクは、 250〜4000[rZmin]の回転速度全範 囲にわたって、比較例 1に対して実施例 1, 2では著しく低減された。また、テール側 の回転トルクに関しても、比較例 1に対して実施例 1, 2は低減され、特に油流入抑制 機構を設けた実施例 1では著しく低減された。
また、図 17においても、ヘッド側の回転トルクは、 500〜3000[rZmin]の回転速 度全範囲にわたって、比較例 2に対して実施例 3では著しく低減されている。
また、図 18においても、テール側の回転トルクは、 500〜3000[rZmin]の回転速 度全範囲にわたって、比較例 3に対して実施例 4ではかなり低減されている。
[0047] 以上のように、実施例 1〜4のすベてにおいて、比較例に対して、回転トルクの低減 が実現されている。そこで、表 1及び表 2のデータのうち、所定の項目について実施 例と比較例との数値範囲を比較してみると、以下の表 3のようになる。
[0048] [表 3]
Figure imgf000018_0001
[0049] 表 3より、ころ長さ Z径、ころ径パラメータ、外輪クラウユングパラメータ及び内輪クラ ゥユングパラメータについては、実施例と比較例との数値差が明確に出ている。特に
、ころ長さ Z径、外輪クラウユングパラメータ及び内輪クラウユングパラメータについて は、実施例と比較例との差が歴然としており、回転トルク低減に対する支配的な要因 であることがわかる。このうち、クラウユングパラメータの上記数値範囲の設定によって は、転がり粘性抵抗が低減されると解される。従って、前述のように全クラウユング量、 外輪クラウニング率及びころクラウニング率を規定することとは別の視点、すなわち、 クラウ-ングを外輪クラウ-ングパラメータ及び内輪クラウ-ングパラメータで規定する こと〖こよって、転がり粘性抵抗が低減され、それによる回転トルクの低減が実現できる 但し、上記クラウユングパラメータに関しては、上記数値範囲に若干の上下の許容 範囲や、比較例との数値差を考慮して、外輪クラウユングパラメータ (RCOZLRO) は 30〜150、内輪クラウ-ングパラメータ(RCIZLRI)は 50〜260力 回転トルク低 減を実現するために設定されるべき範囲であると解される。
[0050] 一方、表 3において、ころ充填率に関しては、実施例の数値範囲が比較例の数値 範囲を包含しており、両者に有意な差はないが、一般に、充填率を大きくすることが 回転トルクの増大を招くことは自明である。しかし、充填率は負荷容量との関係もあつ て単に小さくすればよいというものではなぐころ長さ Z径と密接な関係を有する。従 つて、ころ充填率をなるベく小さい範囲に維持しつつ、ころ長さ Z径を小さくすること 力 回転トルク (油の攪拌抵抗及び転がり粘性抵抗に起因するもの)の低減効果をも たらすと解される。
[0051] 具体的には、ころ充填率 (Z'DWZ( -dm))は、表 3の実施例の数値範囲を含む 範囲として、 0. 7〜0. 92とすること力 S好ましい。下限を 0. 7としたのは、これより/ J、さく なると軸受の負荷容量や剛性が不足するからである。また、上限を 0. 92としたのは、 これより大きくなるとポンプ作用が不足して油の排出効果が低下し、油の攪拌抵抗と 転がり粘性抵抗とが十分に低減されないからである。
また、ころ長さ Zころ径 (LWRZDW)は、表 3の実施例の数値範囲を含む範囲とし て、 1. 1〜1. 7とすることが好ましい。下限を 1. 1としたのは、これより小さくなると、こ ろ径が大きくなり転がり粘性抵抗が大きくなるからである。上限を 1. 7としたのは、これ より大きくなると、ころ径カ 、さくなり、負荷容量が小さくなるからである。
一方、ころ径パラメータ(2DWZ (D— d) )に関しては、表 3の実施例の数値範囲を 含む範囲として、 0. 44〜0. 52とすること力好まし!/ヽ。下限を 0. 44としたのは、これ より小さくなると、軸受内部の自由空間体積が減り、油が流れに《なって、油の攪拌 抵抗の低減効果が十分でなくなるからである。また、上限を 0. 52としたのは、これよ り大きくなると軸受サイズ(内外輪径)に対してころ径が大きすぎて、軸受全体の形状 ノ《ランスが好ましくなぐ一般機器への適用が困難になる力もである。
[0052] また、散布図(図 11〜図 14)力も知得した前述の条件(全クラウユング量は 50 m 以上、外輪クラウユング率は 40%以上、ころクラウユング率は 20%以下)を満たす実 施例 1及び 2と、条件を満たさない比較例 1とは、図 15,図 16において回転トルクに 歴然たる差を生じていることから、当該条件を満たすことにより結果的に回転トルクが 低減できる事実力 Sここでも確認された。
さらに、ラビリンスにより油の流入を抑制したことも、回転トルク低減に寄与していると 考えられる。また、外輪接触角 αを 28. 811度と大きくして油の排出促進を図ったこと も、回転トルク低減に効果をもたらすものと考えられる。なお、この外輪接触角 OCは、 この値の前後の 25度〜 30度で同様の効果が期待できる。

Claims

請求の範囲
[1] 外輪と、内輪と、これらの間に介在する複数の円錐ころと、当該円錐ころの保持器と を備えた円錐ころ軸受において、
ころ数を z、ころ有効長さを LWR、ころ平均径を DW、ころ PCDを dmとするとき、 z ' DWZ ( u - dm)で表されるころ充填率が 0. 7〜0. 92の範囲にあり、力つ、 LWR
ZDWで表されるころ径に対するころ長さが 1. 1〜1. 7の範囲にあるとともに、 前記外輪のクラウユング半径を RCO、軌道長さを LRO、前記内輪のクラウユング半 径を RCI、軌道長さを LRIとするとき、外輪クラウユングパラメータ(=RCO/LRO) は 30〜150であり、かつ、内輪クラウユングパラメータ(=RCI/LRI)は 50〜260で あることを特徴とする円錐ころ軸受。
[2] 外輪と、内輪と、これらの間に介在する複数の円錐ころと、当該円錐ころの保持器と を備えた円錐ころ軸受において、
ころ数を z、ころ有効長さを LWR、ころ平均径を DW、ころ PCDを dmとするとき、 z ' DWZ ( u - dm)で表されるころ充填率が 0. 7〜0. 92の範囲にあり、力つ、 LWR
ZDWで表されるころ径に対するころ長さが 1. 1〜1. 7の範囲にあるとともに、 前記外輪及び内輪の各軌道面及び前記円錐ころの転動面にはクラウニングが施さ れ、
全クラウ-ング量(=外輪クラウ-ング量 +内輪クラウ-ング量 +ころクラウ-ング量 X 2)が 50 m以上、
外輪クラウニング率(=外輪クラウニング量 Z全クラウニング量)が 40%以上、 ころクラウユング率 ( = (ころクラウニング量 X 2) Z全クラウユング量)が 20%以下で あることを特徴とする円錐ころ軸受。
[3] 前記内輪の内径を d、前記外輪の外径を Dとするとき、ころ径パラメータ(2DWZ (
D-d) ) ^o. 44〜0. 52の範囲にある請求項 1又は 2に記載の円錐ころ軸受。
[4] 請求項 1又は 2に記載の円錐ころ軸受の内外輪間の軸方向一端側に、油の流入を 抑制する油流入抑制手段を設けた円錐ころ軸受装置。
[5] 前記油流入抑制手段は、前記保持器の小径側端部に、前記外輪に近接した位置 力 径方向内方に延びる環状部を形成し、その内周側端部を前記内輪に近接させ ることにより当該内輪との間にラビリンスシールを構成してなるものである請求項 4記 載の円錐ころ軸受装置。
[6] 外輪接触角が 25度〜 30度の範囲である請求項 1又は 2に記載の円錐ころ軸受。
[7] 内輪クラウユング率(=内輪クラウユング量 Z全クラウユング量)が 10%以上である 請求項 1又は 2に記載の円錐ころ軸受。
[8] ピニオン軸のピニオンギヤ側及びその逆側にそれぞれ円錐ころ軸受が配置され、 ピニオンギヤ側には請求項 4記載の円錐ころ軸受装置が設けられている車両用ピニ オン軸支持装置。
[9] ピニオン軸のピニオンギヤ側及びその逆側にそれぞれ円錐ころ軸受が配置され、 ピニオンギヤ側には請求項 5記載の円錐ころ軸受装置が設けられている車両用ピニ オン軸支持装置。
PCT/JP2005/007260 2004-04-14 2005-04-14 円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支持装置 WO2005100809A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800114143A CN1942683B (zh) 2004-04-14 2005-04-14 圆锥滚子轴承、圆锥滚子轴承装置、及采用了它的车辆用小齿轮轴支撑装置
KR1020127017794A KR101310175B1 (ko) 2004-04-14 2005-04-14 원뿔 롤러 베어링, 원뿔 롤러 베어링 장치 및 이를 이용한 차량용 피니언 축 지지 장치
JP2006512380A JP5113384B2 (ja) 2004-04-14 2005-04-14 円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支持装置
US11/578,044 US7677809B2 (en) 2004-04-14 2005-04-14 Tapered roller bearing, a tapered roller bearing assembly and a pinion-shaft supporting assembly using the same
EP05730607.8A EP1746297B1 (en) 2004-04-14 2005-04-14 Tapered roller bearing, tapered roller bearing assembly, and pinion shaft supporting device with the tapered roller bearing assembly for a vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-119283 2004-04-14
JP2004119283 2004-04-14
JP2004-208265 2004-07-15
JP2004208265 2004-07-15

Publications (1)

Publication Number Publication Date
WO2005100809A1 true WO2005100809A1 (ja) 2005-10-27

Family

ID=35150066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007260 WO2005100809A1 (ja) 2004-04-14 2005-04-14 円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支持装置

Country Status (6)

Country Link
US (1) US7677809B2 (ja)
EP (2) EP2369190A1 (ja)
JP (2) JP5113384B2 (ja)
KR (2) KR20070002086A (ja)
CN (1) CN101900162B (ja)
WO (1) WO2005100809A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754902A2 (en) * 2005-08-18 2007-02-21 Jtekt Corporation Tapered roller bearing, tapered roller bearing apparatus, and automotive pinion shaft support system with such bearing apparatus
EP1754901A2 (en) 2005-08-18 2007-02-21 Jtekt Corporation Tapered roller bearing with crowned rolling contact surfaces for the support of an automotive pinion shaft
JP2007138992A (ja) * 2005-11-15 2007-06-07 Jtekt Corp 液体潤滑式円錐ころ軸受装置
US7484894B2 (en) 2005-08-18 2009-02-03 Jtekt Corporation Tapered roller bearing an automotive pinion shaft supporting apparatus utilizing same tapered roller bearing
US7484895B2 (en) 2005-08-18 2009-02-03 Jtekt Corporation Tapered roller bearing and automotive pinion shaft supporting apparatus utilizing same tapered roller bearing
JP2010286120A (ja) * 2010-08-17 2010-12-24 Jtekt Corp 円錐ころ軸受の設計方法
US7874737B2 (en) 2005-08-18 2011-01-25 Jtekt Corporation Tapered roller bearing and automotive pinion shaft supporting apparatus utilizing same tapered roller bearing
JP2013019461A (ja) * 2011-07-11 2013-01-31 Jtekt Corp 回転軸装置
CN108825650A (zh) * 2018-09-06 2018-11-16 洛阳智多鑫机械科技有限公司 一种轧机用承重轴承

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183998B2 (ja) * 2007-08-02 2013-04-17 Ntn株式会社 円すいころ軸受
US7955001B2 (en) * 2008-10-20 2011-06-07 Amsted Rail Company, Inc. Tapered roller bearing with improved cage
DE102009031068A1 (de) * 2009-06-30 2011-01-05 Aktiebolaget Skf Lageranordnung und gelagertes Bauteil für ein Differentialgetriebe
WO2013162436A1 (en) * 2012-04-23 2013-10-31 Aktiebolaget Skf Bearing arrangement
JP6212862B2 (ja) * 2012-12-27 2017-10-18 株式会社ジェイテクト 液体潤滑式軸受および車両用ピニオン軸支持装置
JP2014159872A (ja) * 2013-01-25 2014-09-04 Nsk Ltd 円すいころ軸受
JP6442837B2 (ja) * 2014-03-10 2018-12-26 株式会社ジェイテクト 円錐ころ軸受
JP6852260B2 (ja) * 2016-01-18 2021-03-31 株式会社ジェイテクト ころ軸受
DE102016201955A1 (de) * 2016-02-10 2017-08-10 Schaeffler Technologies AG & Co. KG Reibungsarmes Kegelrollenlager
KR101956483B1 (ko) * 2017-12-19 2019-03-08 한국철도기술연구원 대차의 메인프레임과 가이드암이 일체로 형성된 모노레일 차량용 대차
US10641334B1 (en) 2018-10-22 2020-05-05 Schaeffler Technologies AG & Co. KG Tapered roller bearing with cage for lubricant control
DE102019110299A1 (de) * 2019-04-18 2020-10-22 Schaeffler Technologies AG & Co. KG Kegelrollenlager
IT202200000059A1 (it) * 2022-01-04 2023-07-04 Skf Ab Gabbia di trattenimento per corpi volventi di cuscinetti di rotolamento, in particolare per impieghi ferroviari, e cuscinetto di rotolamento associato

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312015U (ja) * 1988-08-10 1991-02-07
JPH0495318U (ja) * 1991-01-14 1992-08-18
JPH08177851A (ja) * 1994-12-26 1996-07-12 Koyo Seiko Co Ltd 円すいころ軸受及び円すいころ軸受の組立方法
JPH11210765A (ja) * 1998-01-26 1999-08-03 Ntn Corp デファレンシャルギヤのピニオン軸支持用円すいころ軸受
JP2001065574A (ja) * 1999-08-31 2001-03-16 Nsk Ltd ころ軸受
JP2003130059A (ja) * 2001-10-19 2003-05-08 Koyo Seiko Co Ltd 円錐ころ軸受
JP2003343552A (ja) * 2002-05-27 2003-12-03 Koyo Seiko Co Ltd 円錐ころ軸受

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1282450A (en) * 1918-01-25 1918-10-22 Gilliam Mfg Company Roller-bearing.
US1736037A (en) * 1927-06-04 1929-11-19 Timken Roller Bearing Co Roller bearing
US3744863A (en) * 1971-09-10 1973-07-10 Rollway Bearing Co Inc Cylindrical roller conical bearing
US4877340A (en) * 1988-06-16 1989-10-31 The Timken Company Process for deriving the contact geometry for raceways and rollers of a roller bearing
JPH03113U (ja) * 1989-05-22 1991-01-07
JP3359501B2 (ja) * 1995-07-24 2002-12-24 日本精工株式会社 デファレンシャルギヤのピニオン軸支持用円錐ころ軸受
US5711738A (en) * 1995-07-24 1998-01-27 Nsk Ltd. Conical roller bearing for supporting a pinion shaft of differential gear
JP3011093B2 (ja) * 1996-04-05 2000-02-21 日本精工株式会社 自動車用円すいころ軸受
CN1165725A (zh) * 1996-05-22 1997-11-26 马纯 滚子轴承滚道凸度的磨削工艺
JP4031073B2 (ja) * 1996-09-19 2008-01-09 株式会社ジェイテクト 円すいころ軸受
SE511031C2 (sv) * 1997-04-24 1999-07-26 Skf Ab Rullager med symmetriskt tunnformade rullar
US6086261A (en) 1998-01-14 2000-07-11 Ntn Corporation Tapered roller bearing
JPH11201151A (ja) * 1998-01-14 1999-07-27 Ntn Corp 円すいころ軸受
JP2000161348A (ja) * 1998-11-27 2000-06-13 Ntn Corp 円錐ころ軸受および車両用歯車軸支持装置
US6328477B1 (en) * 1998-11-27 2001-12-11 Ntn Corporation Tapered roller bearings and gear shaft support devices
JP2000220647A (ja) * 1999-01-29 2000-08-08 Ntn Corp 円すいころ軸受
JP4465895B2 (ja) * 2000-05-22 2010-05-26 日本精工株式会社 ころ軸受
US6502996B2 (en) * 2001-05-11 2003-01-07 The Timken Company Bearing with low wear and low power loss characteristics
JP2003042148A (ja) * 2001-07-27 2003-02-13 Nsk Ltd 転がり軸受
JP2003097567A (ja) * 2001-09-27 2003-04-03 Koyo Seiko Co Ltd 車軸用軸受装置
JP4314430B2 (ja) * 2003-08-27 2009-08-19 株式会社ジェイテクト 円すいころ軸受
KR20120091470A (ko) * 2004-02-19 2012-08-17 가부시키가이샤 제이텍트 원뿔 롤러 베어링
JP2005273796A (ja) * 2004-03-25 2005-10-06 Koyo Seiko Co Ltd ピニオン軸支持用軸受装置
JP2006177441A (ja) * 2004-12-22 2006-07-06 Jtekt Corp 車両用ピニオン軸支持装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312015U (ja) * 1988-08-10 1991-02-07
JPH0495318U (ja) * 1991-01-14 1992-08-18
JPH08177851A (ja) * 1994-12-26 1996-07-12 Koyo Seiko Co Ltd 円すいころ軸受及び円すいころ軸受の組立方法
JPH11210765A (ja) * 1998-01-26 1999-08-03 Ntn Corp デファレンシャルギヤのピニオン軸支持用円すいころ軸受
JP2001065574A (ja) * 1999-08-31 2001-03-16 Nsk Ltd ころ軸受
JP2003130059A (ja) * 2001-10-19 2003-05-08 Koyo Seiko Co Ltd 円錐ころ軸受
JP2003343552A (ja) * 2002-05-27 2003-12-03 Koyo Seiko Co Ltd 円錐ころ軸受

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754901A3 (en) * 2005-08-18 2009-03-18 Jtekt Corporation Tapered roller bearing with crowned rolling contact surfaces for the support of an automotive pinion shaft
EP1754901A2 (en) 2005-08-18 2007-02-21 Jtekt Corporation Tapered roller bearing with crowned rolling contact surfaces for the support of an automotive pinion shaft
US7484894B2 (en) 2005-08-18 2009-02-03 Jtekt Corporation Tapered roller bearing an automotive pinion shaft supporting apparatus utilizing same tapered roller bearing
US7484895B2 (en) 2005-08-18 2009-02-03 Jtekt Corporation Tapered roller bearing and automotive pinion shaft supporting apparatus utilizing same tapered roller bearing
EP1754902A3 (en) * 2005-08-18 2009-03-11 Jtekt Corporation Tapered roller bearing, tapered roller bearing apparatus, and automotive pinion shaft support system with such bearing apparatus
US8480308B2 (en) 2005-08-18 2013-07-09 Jtekt Corporation Tapered roller bearing, tapered roller bearing apparatus, and automotive pinion shaft supporting apparatus utilizing same tapered roller bearing apparatus
EP1754902A2 (en) * 2005-08-18 2007-02-21 Jtekt Corporation Tapered roller bearing, tapered roller bearing apparatus, and automotive pinion shaft support system with such bearing apparatus
US7871201B2 (en) 2005-08-18 2011-01-18 Jtekt Corporation Tapered roller bearing, tapered roller bearing apparatus, and automotive pinion shaft supporting apparatus utilizing same tapered roller bearing apparatus
US7874737B2 (en) 2005-08-18 2011-01-25 Jtekt Corporation Tapered roller bearing and automotive pinion shaft supporting apparatus utilizing same tapered roller bearing
JP2007138992A (ja) * 2005-11-15 2007-06-07 Jtekt Corp 液体潤滑式円錐ころ軸受装置
EP1785638A3 (en) * 2005-11-15 2010-03-10 JTEKT Corporation Liquid lubricated tapered roller bearing device
JP4635838B2 (ja) * 2005-11-15 2011-02-23 株式会社ジェイテクト 液体潤滑式円錐ころ軸受装置
US8876397B2 (en) 2005-11-15 2014-11-04 Jtekt Corporation Liquid lubricating tapered roller bearing device
JP2010286120A (ja) * 2010-08-17 2010-12-24 Jtekt Corp 円錐ころ軸受の設計方法
JP2013019461A (ja) * 2011-07-11 2013-01-31 Jtekt Corp 回転軸装置
CN108825650A (zh) * 2018-09-06 2018-11-16 洛阳智多鑫机械科技有限公司 一种轧机用承重轴承
CN108825650B (zh) * 2018-09-06 2024-02-13 山东黑石轴承科技有限公司 一种轧机用承重轴承

Also Published As

Publication number Publication date
EP1746297A4 (en) 2010-09-08
KR101310175B1 (ko) 2013-09-24
CN101900162B (zh) 2013-10-02
CN101900162A (zh) 2010-12-01
EP1746297A1 (en) 2007-01-24
EP1746297B1 (en) 2018-11-14
US20070230851A1 (en) 2007-10-04
JP5168402B2 (ja) 2013-03-21
JP2012047342A (ja) 2012-03-08
JPWO2005100809A1 (ja) 2008-03-06
KR20070002086A (ko) 2007-01-04
KR20120082040A (ko) 2012-07-20
JP5113384B2 (ja) 2013-01-09
EP2369190A1 (en) 2011-09-28
US7677809B2 (en) 2010-03-16

Similar Documents

Publication Publication Date Title
WO2005100809A1 (ja) 円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支持装置
JP2007051715A (ja) 円錐ころ軸受、円錐ころ軸受装置及びこれを用いた車両用ピニオン軸支持装置
EP1754901B1 (en) Tapered roller bearing with crowned rolling contact surfaces for the support of an automotive pinion shaft
WO2005080813A1 (ja) 円錐ころ軸受
EP2711571A2 (en) Rolling bearing with lubricant pockets in the raceway
US9435372B2 (en) Tapered roller bearing and power transmission device
JP2007051716A (ja) 円錐ころ軸受、及びこれを用いた車両用ピニオン軸支持装置
JP6458458B2 (ja) 円すいころ軸受
JP2007051703A (ja) 円錐ころ軸受、及びこれを用いたトランスミッション用軸受装置
JP2009068592A (ja) 保持器付自動調心ころ軸受及び自動調心ころ軸受用保持器の製造方法
JP2010286120A (ja) 円錐ころ軸受の設計方法
US20180128316A1 (en) Tapered roller bearing and power transmission device
US9133879B2 (en) Turning bearing with rollers between outer ring and inner ring
JP2007085542A (ja) 保持器付自動調心ころ軸受及び自動調心ころ軸受用保持器の製造方法
KR101885140B1 (ko) 저 토크 테이퍼 롤러 베어링
JP2007051701A (ja) 円錐ころ軸受
US9752619B2 (en) Double row ball bearing and shaft support device
JP2008169974A (ja) 円錐ころ軸受
JP2005308074A (ja) 円錐ころ軸受
JP2008223847A (ja) 複列玉軸受

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512380

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580011414.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067023327

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005730607

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067023327

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005730607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11578044

Country of ref document: US

Ref document number: 2007230851

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11578044

Country of ref document: US