WO2005090961A1 - 生体分子に関する形態及び情報をis−fetを利用して検出する測定法およびシステム - Google Patents

生体分子に関する形態及び情報をis−fetを利用して検出する測定法およびシステム Download PDF

Info

Publication number
WO2005090961A1
WO2005090961A1 PCT/JP2005/005289 JP2005005289W WO2005090961A1 WO 2005090961 A1 WO2005090961 A1 WO 2005090961A1 JP 2005005289 W JP2005005289 W JP 2005005289W WO 2005090961 A1 WO2005090961 A1 WO 2005090961A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
biomolecule
gate electrode
nucleic acid
substituted
Prior art date
Application number
PCT/JP2005/005289
Other languages
English (en)
French (fr)
Inventor
Toshihito Ohtake
Takeshi Uno
Chiho Hamai
Hitoshi Tabata
Tomoji Kawai
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2006511311A priority Critical patent/JP4734234B2/ja
Publication of WO2005090961A1 publication Critical patent/WO2005090961A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Definitions

  • the present invention is generally in the field of semiconductors. More specifically, the present invention relates to a method and a system for measuring a biomolecule using a semiconductor device.
  • a biospecific reaction such as hybridization is often used.
  • the hybridization process in which DNA forms double strands through precise pairing of bases, is an important reaction in the field of biotechnology. Bioinformation devices that make efficient use of this reaction are attracting attention as one of the key technologies in the post-genome sequence era. Attention has been focused on the development of a gene detection system that performs efficient molecular recognition of device functions and heterogeneous heterogeneous and hybridization reactions.
  • IS-FET is known as a device that is sensitive to changes in the surface potential of the interface near the gate insulator (insulator) Z electrode and the development of various devices has been reported (Non-patent Documents). 11-2 and Patent Documents 1-1 7). Forces reported to be applied to biomolecules Its sensitivity 'There are still many problems in handling.
  • Non-Patent Document 1 a force using an element in which a silicon surface is alkylated and DNA is used.
  • this type of element it is necessary to constantly flow a sample, which is complicated. Requires configuration.
  • Non-Patent Document 2 also uses an element using a metal for the gate electrode. In this type of device, it is necessary to keep the sample in a flowing state at all times, which requires complicated configurations and procedures.
  • Patent Document 1 also discloses a biosensor using a semiconductor in which a biomolecule is bonded to an FET using a silicon oxide. However, it has been pointed out that FETs using silicon oxide have low sensitivity.
  • Patent Document 2 discloses a nanodevice using DNA. However, the device was not used.
  • Patent Document 3 discloses an element in which metal particles having DNA bonded to the surface are bonded to a gate insulating film. However, when the metal particles are bonded to the gate insulating film, the bonding is not stable and the handling is unstable.
  • Patent Document 4 describes a circuit using a biomolecule for the FET, but the biomolecule is bonded to the silicon oxide, and the same problem as described above occurs.
  • Patent Document 5 discloses an inspection device in which a DNA probe is bonded to an electrode. However, this device is based on electrochemiluminescence detection, not current-voltage characteristics.
  • Patent Document 6 describes a technique using a field-effect transistor for nucleic acid sequencing, but only describes a structure in which a hole is formed in a gate electrode. It has been improved.
  • Patent Document 7 describes a Noo microarray using an electrochemical method. Any improvements regarding the gate electrode are described.
  • Patent Document 8 describes a system for quantifying hybridization of a molecular compound.
  • the carrier used here is a silicate such as glass. Examples are only shown.
  • Patent Document 9 discloses a semiconductor sensing device. Here, a chip in which a biomolecule is contained by placing an organic single molecule-modified surface on a silicon substrate is described. However, it is not described whether an insulator having a higher dielectric constant than that of nitric acid is used, and only an enzyme is used.
  • Patent Document 10 discloses a sensor using a low dielectric constant material called ZnO. Therefore, the use of a gate electrode using an insulator having a higher dielectric constant than silicon dioxide is not described.
  • Patent Document 11 describes a method for immobilizing a protein.
  • a gate electrode including a biomolecule and a non-silicon oxide which is an insulator having a higher dielectric constant than silicon dioxide is not described. No description is given for nucleic acids.
  • Patent Document 12 describes a method for producing an ion-sensitive field-effect transistor having a tantalum hydrogen ion sensing film for oxidation.
  • a gate electrode including a biomolecule and a non-silicon oxide which is an insulator having a higher dielectric constant than silicon dioxide has been described.
  • Patent Document 13 describes a semiconductor biosensor. However, a gate electrode including a biomolecule and a non-silicon oxide which is an insulator having a higher dielectric constant than silicon dioxide is not described.
  • Non-Patent Document 3 describes an FET sensor. However, a gate electrode including a biomolecule and a non-silicon oxide which is an insulator having a higher dielectric constant than silicon dioxide has been described.Non-Patent Document 1: Wei F. et al. , Biosensors and Bioelectronics 18 (2003) 1 157-1163
  • Non-Patent Document 2 KIM D-S. Et al., Jpn. J. Appl. Phys. Vol. 42 (2003) 4111—4115
  • Non-Patent Document 3 Electrochemistry and Industrial Physical Chemistry Vol. 50, No. 1, ⁇ 64—71. (1982)
  • Patent Document 1 JP 2003-329638
  • Patent Document 2 JP 2003-37313
  • Patent Document 3 JP 2003-322633
  • Patent Document 4 JP 2004-7572
  • Patent document 5 International publication 00Z01848 pamphlet
  • Patent Document 6 Special Table 2003-531592
  • Patent Document 7 JP 2003-90818
  • Patent Document 8 Special Table 2003—526096
  • Patent Document 9 JP 2004-4007
  • Patent document 10 International publication 03Z104789 pamphlet
  • Patent Document 11 JP-A-6-9698
  • Patent Document 12 JP-A-5-107224
  • Patent Document 13 JP-A-2003-329638
  • An object of the present invention is to develop a technique for simply and efficiently detecting an interaction with a biomolecule.
  • an object of the present invention is to develop a technique for simply and efficiently detecting nucleic acid molecules such as DNA.
  • Another object is to provide a substrate in which a metal oxide and a biomolecule are bonded.
  • the present invention has solved the above-mentioned problems by finding a technique capable of immobilizing a biomolecule on a gate electrode using a non-silicon oxide. . Accordingly, the present invention provides the following.
  • a gate electrode containing a biomolecule and a non-silicone oxidant (1) A gate electrode containing a biomolecule and a non-silicone oxidant.
  • the non-silicone oxide is tantalum oxide (Ta 2 O), calcium oxide (CaO),
  • Nii NiO
  • Bismuth Bi O
  • Samarium Sm 2 O 3
  • Nii Nii
  • the non-silicone oxide is made of tantalum oxide (Ta 2 O 3), barium monoxide (BaO),
  • ZrO zirconium oxide
  • NbO niobium oxide
  • HfO hafnium oxide
  • the non-silicon oxide and the biomolecule are O-(SiR R)-(CH) NH (CH
  • the gate electrode according to item 8 which is a substituent or a Si atom of another linker having the same structure as the above linker.
  • the biomolecules are composed of nucleic acids, proteins, sugars, lipids and complexes thereof. 2.
  • (21) A field effect transistor in which a gate electrode containing a biomolecule and a non-silicone oxide is integrated on a semiconductor element.
  • a sensor for detecting an interaction with the biomolecule comprising:
  • a method comprising:
  • the above oxidized metal is tantalum oxide (Ta 2 O 3), oxidized calcium (CaO), oxidized lead (Pb
  • cross linker includes a carbodiimide, an aldehyde or an imide ester.
  • a method comprising: (47) The method according to item 46, wherein the IV characteristic includes a static characteristic saturation current value or a transfer characteristic threshold voltage.
  • the biomolecule includes a nucleic acid
  • the sample includes a molecule that interacts with the nucleic acid
  • the field effect transistor is a p-type transistor
  • the static characteristic saturation current value of the IV characteristic is reduced or transmitted.
  • a system for detecting an interaction with a biomolecule comprising:
  • a field effect transistor can be used for the device, and a peptide nucleic acid molecule can be used for the probe molecule.
  • a peptide nucleic acid molecule is a substantially uncharged human nucleic acid molecule having a 2-aminoethyldaricin skeleton.
  • PNAZDNA is a practical molecule in the field of biotechnology because it has high base sequence selectivity and thermal stability, and has enzyme resistance that does not affect high-purity efficiency even at low salt concentrations. Attention has been paid.
  • IS-FET is known as a device that is sensitive to changes in the surface potential of the interface near the gate insulator Z electrode and can efficiently and directly detect the DNA pre-reaction by fixing the PNA to the gate. Can be expected.
  • the present invention provides a sensor in which a nucleic acid is fixed with a silane coupling agent or the like on a gate electrode of an IS-FET composed of a non-silicone oxide (eg, metal oxide) thin film, This makes it possible to detect by applying a voltage between the source and drain electrodes or the gate of the IS-FET and measuring the current flowing between the source and drain.
  • a silane coupling agent or the like on a gate electrode of an IS-FET composed of a non-silicone oxide (eg, metal oxide) thin film
  • biomolecules can be detected easily and efficiently.
  • the present invention has enabled measurement using the Notch method.
  • the sensitivity can be improved and the detection can be performed as compared with the electrode using the conventional silicon oxide.
  • PNA was used, the sensitivity of the evaluation of the electrical characteristics was significantly increased.
  • an ISFET using a gate insulator having a high dielectric constant, such as tantalum oxide, is more effective than a conventional gate insulator using a low dielectric constant such as SiO.
  • such materials exhibit ideal ISFET characteristics (eg, tantalum oxide), exhibit stable operation independent of salt concentration in aqueous solution, and exhibit very little change in measured current over time. effective.
  • an interaction for example, hybridization
  • a biomolecule such as a nucleic acid without labeling a biomolecule such as a nucleic acid in advance
  • a semiconductor such as an FET element
  • these interactions can be quickly measured as electric signals efficiently without the need for a conventional means such as a fluorescence microscope.
  • a fluorescence microscope At the floor inspection site, simple and quick measurement can be performed.
  • a nucleic acid since a nucleic acid has a negative charge, the presence or absence of hybridization or the like can be detected by fixing the nucleic acid on a gate such as an FET and detecting the amount of change in the negative charge.
  • a gate such as an FET
  • INDUSTRIAL APPLICABILITY According to the present invention, by using a semiconductor device, it is possible to detect changes in the form of biomolecules and information content, such as nucleic acid hybridization and single nucleotide polymorphism detection.
  • FIG. 1 shows a schematic example of a gate electrode of the present invention and its periphery (semiconductor element).
  • FIG. 2A shows an example of a scheme using 3′-aminopropyltriethoxysilane (APTES) for binding a biomolecule to the gate electrode of the present invention.
  • APTES 3′-aminopropyltriethoxysilane
  • FIG. 2B shows an example of a scheme in which biomolecules are bonded to the gate electrode of the present invention, using phenylenediisothiosinate.
  • FIG. 3 shows a circuit example using a transistor of the present invention.
  • FIG. 4 shows the Tm relationship between DNA and PNA.
  • FIG. 5 shows a result of a transfer characteristic threshold voltage of Example 1.
  • FIG. 6 shows the results of blanks in Example 6.
  • FIG. 7 shows the results of static characteristic saturation current values of Example 2.
  • FIG. 8 shows numerical changes after the dissociation reaction in Examples 1 and 2.
  • FIG. 9 shows the results of Example 3 using DNA as a probe instead of PNA.
  • FIG. 10 shows an example of producing a biosensor using IS-FET.
  • FIG. 11 shows an example of manufacturing a gate electrode using an IS-FET.
  • FIG. 12 shows an example of Id-Vd characteristics (comparison between ssDNA and dsDNA).
  • FIG. 13 shows the results of XPS spectrum and IS-FET characteristics performed in Example 4.
  • FIG. 14 shows an example of the preparation of an IS-FET type DNA chip.
  • SEQ ID NO: 1 is a 15-mer synthetic PNA prepared in Example 1.
  • SEQ ID NO: 2 is the 15-mer synthetic DNA prepared in Example 1.
  • SEQ ID NO: 3 is the target DNA to be detected used in Example 1 BEST MODE FOR CARRYING OUT THE INVENTION
  • biomolecule refers to a molecule associated with a living body.
  • the term “organism” refers to a biological organism, including, but not limited to, animals, plants, fungi, viruses, and the like. Therefore, in the present specification, the biomolecule includes, but is not limited to, a molecule from which biopower can be extracted, but is not limited to a molecule that can affect the living body (eg, artificial DNA, PNA, etc. (Acting molecule) is included in the definition of biomolecule. Therefore, molecules synthesized by combinatorial chemistry, small molecules that can be used as pharmaceuticals (for example, small molecule ligands that can interact with biological receptors, etc.) also have the potential to have an effect on living organisms, and the definition of biomolecules to go into.
  • biomolecules include proteins, polypeptides, oligopeptides, peptides, polynucleotides, oligonucleotides, nucleotides, nucleic acids (eg, cDNA such as cDNA, genomic DNA, RNA such as mRNA, variants). PNA), polysaccharides, oligosaccharides, lipids, small molecules (eg, hormones, ligands, signal transducers, small organic molecules, etc.), and their complex molecules (glycolipids, glycoproteins, lipoproteins, etc.). Included, but not limited to. A biomolecule can also include the cell itself, or a portion of a tissue, as long as it is intended to be introduced into the cell.
  • biomolecules can be nucleic acids, proteins, lipids, sugars, complexes thereof, and the like.
  • the biomolecule comprises a nucleic acid (DNA, RNA, PNA, etc.) or a protein.
  • the biological The molecule is a nucleic acid (eg, genomic DNA or cDNA, or DNA, PNA, etc., synthesized by PCR or the like).
  • the terms "protein”, “polypeptide”, “oligopeptide” and “peptide” are used interchangeably herein and refer to a polymer of amino acids of any length. .
  • the polymer may be linear or branched or cyclic.
  • the amino acid contained in the polypeptide may be a naturally-occurring amino acid or a non-naturally-occurring amino acid, or a modified amino acid (for example, an amino acid containing a functional group capable of binding to a sugar chain).
  • the term may also include those assembled into a complex of multiple polypeptide chains.
  • the term also embraces naturally or artificially modified amino acid polymers.
  • Such modifications include, for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification (eg, conjugation with a labeling component).
  • This definition also includes, for example, polypeptides containing one or more analogs of an amino acid (eg, including unnatural amino acids, etc.), peptide-like conjugates (eg, peptoids) and those known in the art. Other modifications are included.
  • nucleic acid or “nucleic acid molecule” is used interchangeably and refers to any length of a monomer having a base moiety (typically, a nucleotide or a variant thereof).
  • base refers to a pyrimidine nucleus of a nucleotide such as DNA or RNA, or a normally basic portion having a purine nucleus. These are called bases to distinguish them from the sugar and phosphate moieties of nucleotides. Purine bases and pyrimidine bases are broadly classified.
  • Purine bases include adenine and guanine, and pyrimidine bases include, but are not limited to, cytosine, peracyl, and thymine. Nucleic acids can typically exist in single-stranded, double-stranded, etc. forms.
  • the nucleic acid used in the present specification includes “polynucleotide”, “oligonucleotide”, “oligonucleotide derivative”, “polynucleotide derivative”, “DNA”, “RNA”, “PNA” and the like.
  • a nucleic acid can be said to be a polymer of nucleotides or nucleotide derivatives of any length.
  • nucleotide refers to a nucleoside in which a sugar moiety is converted to a phosphate ester.
  • nucleoside refers to a base and a sugar being an N-glycoside bond. This is a dangling product.
  • Nucleic acids are polymers (polynucleotides) of nucleotides X with pyrimidine or purine bases (pyrimidine nucleotides and purine nucleotides). The sugar moiety of D-ribose is called ribonucleotides!
  • nucleotide derivative or “nucleotide analog” refers to a nucleotide having a function similar to that of a nucleotide having a different force from a naturally occurring nucleotide. Such derivative nucleotides and nucleotide analogs are well known in the art.
  • nucleotides and nucleotide analogs include, but are not limited to, phosphorothioates, phosphonoreamidates, methylphosphonates, chiral methylphosphonates, 2-0-methylribonucleotides, peptide nucleic acids (PNA) .
  • PNA peptide nucleic acids
  • peptide nucleic acid or “PNA” means that the phosphate skeleton of a nucleotide is replaced by an uncharged peptide-like skeleton (typically, an N- (2-aminomethyl) glycine unit). And each unit is a nucleic acid linked by an amide bond. Typically, it has the structure of the following formula.
  • PNA refers to both monomers and polymers. The PNA may be single-stranded or double-stranded! / ,.
  • oligonucleotide derivative refers to an oligonucleotide or polynucleotide containing a derivative of a nucleotide or having an unusual linkage between nucleotides, and is interchangeable. used. Specific examples of such an oligonucleotide include 2′-O-methyl-ribonucleotide, an oligonucleotide derivative in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothioate bond, and a phosphoric acid in an oligonucleotide.
  • Oligonucleotide derivatives in which acid diester bonds have been converted to N3, -P5, and phosphoramidate bonds, and oligonucleotide derivatives in which ribose and phosphodiester bonds in oligonucleotides have been converted to peptide nucleic acid bonds (peptide nucleic acid PNA) ),
  • An oligonucleotide derivative in which peracyl in the oligonucleotide is substituted with C-5 propyl peracyl an oligonucleotide derivative in which peracyl in the oligonucleotide is substituted with C5 thiazole peracyl, and cytosine in the oligonucleotide is C 5 steps Pi - oligonucleotide derivatives substituted with Rushitoshin, Origonu Oligonucleotide derivatives in which cytosine in nucleotides is replaced by phenoxazine-modified cytosine, oli
  • nucleic acid sequence also includes conservatively modified variants thereof (eg, degenerate codon substitutions) and complementary sequences, as well as explicitly stated sequences.
  • degenerate codon substitutions create a sequence in which the third position of one or more selected (or all) codons has been replaced with a mixed base and a Z or deoxyinosine residue.
  • nucleic acid examples include, but are not limited to, cDNA, mRNA, genomic DNA, and the like.
  • Nucleic acids can be provided in circular (eg, circular vectors, plasmids, etc.) or linear (eg, PCR fragments). In the present invention, a straight chain is preferable.
  • gene refers to a factor that defines a genetic trait. Usually they are arranged in a certain order on the chromosome. Genes are usually defined by nucleic acids. Therefore, it can be said that part or all of the nucleic acid encodes a gene. Of the genes, those that define the primary structure of the protein are called structural genes! / !, and those that control their expression are called regulatory genes (eg, promoters). As used herein, a gene includes a structural gene and a regulatory gene unless otherwise specified.
  • gene refers to "polynucleotide”, “oligonucleotide”, “nucleic acid”, “nucleic acid molecule” and Z or "protein”, “polypeptide”, “oligopeptide” and “peptide”. May point.
  • the term “gene product” refers to a target protein, nucleic acid, or the like produced in the process of producing a target protein or nucleic acid such as RNA from a gene. Therefore, in the present specification, “gene product” also means “polynucleotide”, “oligonucleotide”, “nucleic acid” and “nucleic acid molecule” expressed by a gene, and Z or “tank”. It can encompass “protein”, “polypeptide”, “oligopeptide” and “peptide”. Those skilled in the art can understand what the gene product is, depending on the situation.
  • a nucleic acid molecule encoding a gene sequence also includes "splice variants (variants).” Similarly, a particular protein encoded by a nucleic acid includes any protein encoded by a splice variant of the nucleic acid. As the name suggests, "splice variants" are the products of alternative splicing of a gene. After transcription, the initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides. The mechanism of production of splice variants varies, but involves alternative splicing of exons. Other polypeptides derived from the same nucleic acid by read-through transcription are also included in this definition. Any product of a splicing reaction, including recombinant forms of the splice product, is included in this definition. As described above, it is understood that detection of a gene product is also possible in the present invention.
  • the term “homology” of a gene refers to the degree of identity between two or more gene sequences.
  • the higher the homology between two genes the higher the identity or similarity between their sequences.
  • Whether the two genes have homology can be determined by direct sequence comparison or, in the case of nucleic acids, by stringent conditions under stringent conditions.
  • the DNA sequences between the gene sequences are typically at least 50% identical, preferably at least 70% identical, more preferably at least 80%, 90% , 95%, 96%, 97%, 98% or 99% identical, the genes are homologous.
  • similarity of a gene refers to the homology of two or more gene sequences when conservative substitutions are regarded as positive (identical) in the above homology. Refers to the degree of identity to each other. Thus, if there are conservative substitutions, identity and similarity will be different depending on the existence of the conservative substitution. When there is no conservative substitution, identity and similarity show the same numerical value.
  • degrees of homology can also be detected and quantified. Quantification can be performed, for example, by measuring current-voltage (IV) characteristics and correlating with homology. Formulas that correlate such similarities, homology and IV characteristics are described herein. It is understood that a person skilled in the art can make based on the description in the book.
  • nucleic acid hybridizing under stringent conditions refers to well-known conditions commonly used in the art.
  • a nucleic acid selected from the nucleic acids of the present invention is used, for example, a hybridization method, a plaque hybridization method, or a Southern blot hybridization method.
  • a nucleic acid can be obtained. Specifically, after performing hybridization at 65 ° C.
  • a nucleic acid that can be identified by performing Hybridization Chillon is a method described in experimental books such as Molecular Cloning 2nd ed., Current Protocols in Molecular Biology, Supplement 138, DNA Cloning 1: Core Techniques, AP practical Approach, Second Edition, Oxford University Press (1995). It can be performed according to.
  • hybridizable nucleic acid refers to a nucleic acid capable of hybridizing to another nucleic acid under the above-mentioned conditions.
  • a nucleic acid capable of being hybridized specifically, a nucleic acid having at least 60% or more homology with the nucleotide sequence of DNA encoding the polypeptide having the amino acid sequence specifically shown in the present invention, preferably Nucleic acids having a homology of 80% or more, more preferably nucleic acids having a homology of 95% or more can be mentioned.
  • hybridizable nucleic acid refers to a nucleic acid that can hybridize to another nucleic acid under the above hybridization conditions. Specifically, as a nucleic acid capable of being hybridized, specifically, a nucleic acid having at least 60% or more homology with a nucleotide sequence of a DNA encoding a polypeptide having an amino acid sequence represented by the sequence listing, preferably 80% or more And nucleic acids having a homology of 95% or more. Nucleic acid sequence homology can be determined by, for example, Altschul et al. (J. Mol. Biol. 215,403-
  • highly stringent conditions enable hybridization of DNA strands having a high degree of complementarity in nucleic acid sequences, and hybridization of DNA having significant mismatches.
  • a condition designed to exclude Zession! The stringency of a hybridization is determined primarily by temperature, ionic strength, and the conditions of denaturing agents such as formamide. Examples of such “highly stringent conditions” for hybridization and washing are: 0.0015M sodium salt, 0.0015M sodium teate !; Kumu, 65-68 ° C, Or 0.015M salty Nadon !; cum, 0.005M sodium citrate, and 50% formamide at 42 ° C.
  • Hybridization experiments are usually performed at pH 6.8-7.4. Under typical ionic strength conditions, the hybridization speed is almost pH independent. See Anderson et al., Nucleic Acid Hybridization: a Practical Approach ⁇ ⁇ 4 early, IRL Press Limited (Oxford, England).
  • Factors affecting the stability of the DNA duplex include base composition, length, and degree of base pair mismatch. Hybridization conditions can be adjusted by those skilled in the art, apply these variables, and allow DNA of different sequence relatedness to form a hybrid.
  • the melting temperature of a perfectly matched DNA duplex can be estimated by the following equation:
  • N is the length of the duplex formed
  • [Na +] is the molar concentration of sodium ions in the hydridization or washing solution
  • % G + C is Percentage of (guanine + cytosine) bases in, and hybrids. For incompletely matched hybrids, the melting temperature is reduced by approximately 1 ° C for each 1% mismatch.
  • moderately stringent conditions refers to the formation of a DNA duplex having a greater or lesser degree of base pair mismatch than can occur under “highly stringent conditions”. The condition to obtain. Typical examples of “moderately stringent conditions” are: 0.015M sodium chloride, 0.10015M sodium citrate, 50-65 ° C., or 0.015M sodium chloride, 0. 0015M sodium citrate, and 20% formamide, 37-50. C. By way of example, “moderately stringent” conditions at 50 ° C. in 0.015 M sodium ion allow about 21% mismatch.
  • Tm (2 ° C per A-T base) + (4 ° C per G-C base pair)
  • the sodium ion concentration in 6X sodium citrate (SSC) was 1 M to (see Suggs et al., Developmental Biology Using Purified uenes ⁇ 683 Sada, Brown and Fox (ed.) (1981)).
  • SSC 6X sodium citrate
  • the determination can be made with reference to the correlation shown in FIG. 4, for example.
  • the percentage of "identity”, “homology”, and “similarity” of a sequence is determined by comparing two sequences that are optimally aligned in a comparison window. Can also be determined by Here, the portion of the polynucleotide or polypeptide sequence within the comparison window is the reference sequence for the optimal alignment of the two sequences (a gap may occur if additional sequences are included in the other sequences).
  • the reference sequence herein may have no additions or deletions, and may contain additions or deletions (ie, gaps).
  • the number of matching positions is determined by determining the number of positions that are also found in the same sequence, the number of matching positions is divided by the total number of positions in the comparison window, and the obtained result is multiplied by 100 to determine the percentage of identity. Is calculated.
  • homology is evaluated using an appropriate one among various sequence comparison algorithms and programs well known in the prior art. Such algorithms and programs include:
  • BLAST Search Tool
  • BLAST Altschul et al., 1990, J. Mol. Biol. 215: 403—410, Altschul et al. , 1993, Nature Genetics 3: 266-272, Altschul et al., 1997, Nuc. Acids Res. 25: 3389-3402
  • comparisons or searches can be accomplished by performing the following tasks using five specialized BLAST programs.
  • the BLAST program uses a similar sequence called a "high score segment pair" between an amino acid query sequence or a nucleic acid query sequence and, preferably, a test sequence obtained from a protein sequence database or nucleic acid sequence database.
  • the homologous sequence is identified by specifying the segment of the sequence.
  • High score segment pairs are preferably identified, ie, aligned, by a scoring matrix, many of which are well known in the art.
  • a PAM or PAM250 matrix can also be used (see, for example, Schwartzand Dayhoff, eds., 1978, Matrices for Detecting Distance Relationships: Atlas of Protein sequence and Structure, Washington: National Biomedical Research Foundation).
  • the BLAST program evaluates the statistical significance of all identified high score segment pairs and preferably identifies those segments that meet a user-defined significance threshold, such as a user-specific homology. select. It is preferable to evaluate the statistical significance of high-score segment pairs using Karlin's formula for statistical significance. (Karlinand Altschul, 1990, Proc. Natl. Acad. Sci. USA 87: 2267—2268 See). Such calculation of homology can be performed by causing a computer to execute such a calculation program.
  • the "variant" refers to a substance in which a substance such as an original polypeptide or polynucleotide is partially changed. Such variants include substitutional variants, addition variants, deletion variants, truncated variants, allelic variants, and the like. Alleles refer to genetic variants that belong to the same locus and are distinct from each other. Therefore, “allelic variant” refers to a variant that has an allelic relationship to a certain gene. Such allelic variants usually have sequences that are identical or very similar to their corresponding alleles, and usually have nearly the same biological activity, but rarely different biological activities. It may also have.
  • “Species homolog or homolog” refers to the homology (preferably 60% or more homology, more preferably 60% or more) of a certain gene at the amino acid level or nucleotide level with a certain gene. More specifically, those having a homology of 80% or more, 85% or more, 90% or more, and 95% or more). Methods for obtaining such species homologs will be apparent from the description herein.
  • the term “ortholog” refers to a gene derived from speciation from a common ancestor that has two genes, both the orthologous gene ⁇ ! ⁇ .
  • the human and mouse ⁇ -hemoglobin genes are orthologs, whereas the human a-hemoglobin gene and j8 hemoglobin gene are paralogs (genes generated by gene duplication). It is.
  • Orthologs are useful for estimating molecular phylogenetic trees. Orthologs of the present invention may also be useful in the present invention, since orthologs can usually perform the same function in another species as the original species.
  • “Conservatively (modified) variants” applies to both amino acid and nucleic acid sequences.
  • a conservatively modified variant refers to a nucleic acid that encodes the same or essentially the same amino acid sequence, and if the nucleic acid does not encode an amino acid sequence, To the same sequence. Due to the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For example, the codons GCA, GCC, GCG, and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, that codon can be changed to any of the corresponding codons described without altering the encoded polypeptide.
  • nucleic acid is a “silent modification (mutation),” a species of conservatively modified mutation.
  • Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid.
  • each codon in a nucleic acid except AUG, which is usually the only codon for methionine, and TGG, which is usually the only codon for tryptophan
  • AUG which is usually the only codon for methionine
  • TGG which is usually the only codon for tryptophan
  • each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence.
  • such modifications can be made to avoid substitution of cysteine, an amino acid that greatly affects the conformation of a polypeptide.
  • Such modifications of the base sequence include cleavage with a restriction enzyme or the like, and treatment with a DNA polymerase, Klenow fragment, DNA ligase, or the like. And site-specific base substitution using synthetic oligonucleotides (specific site-directed mutagenesis; Mark Zoller and Michael Smith, Methods in Enzymology, 100, 468-500 (1983)).
  • the modification can also be performed by a method usually used in the field of molecular biology.
  • amino acid is used in a meaning commonly used in the art, and refers to an organic compound having a carboxyl group and an amino group.
  • amino acids may be natural or unnatural amino acids.
  • Amino acids may be represented by their commonly known three letter symbols, or by IUPAC-IUB Biochemical.
  • fixation of a biomolecule can be performed by any method known in the art. Such fixation can be performed, for example, by utilizing an interaction such as a covalent bond or a hydrogen bond. It is preferable to use a covalent bond for the fixation.
  • layered refers to a structure in which atoms are strongly bonded by covalent bonds or the like and densely arranged surfaces are stacked in parallel by a weak bonding force such as van der Waalska. . It is understood that, as used herein, references to layers can include both single and multiple layers.
  • film-like refers to a structure in which atoms are strongly bonded by covalent bonds or the like and exist on a densely arranged surface
  • the term "probe” refers to a substance for detecting an object to be searched, which is used in a biological experiment such as in vitro and in a screening experiment such as Z or in vivo. Examples thereof include, but are not limited to, a nucleic acid molecule having a specific base sequence or a peptide having a specific amino acid sequence.
  • nucleic acid molecule usually used as a probe examples include those having a nucleic acid sequence having a length of at least 8 contiguous nucleotides, which is homologous or complementary to the nucleic acid sequence of the gene of interest.
  • Such a nucleic acid sequence is preferably at least 9 contiguous nucleotides in length, more preferably 10 contiguous nucleotides in length, even more preferably 11 contiguous nucleotides in length, 12 contiguous nucleotides in length, 13 contiguous nucleotides, 14 contiguous nucleotides, 15 contiguous nucleotides, 20 contiguous nucleotides, 25 contiguous nucleotides, 30 contiguous nucleotides, 4
  • the nucleic acid sequence can be 0 contiguous nucleotides in length, 50 contiguous nucleotides in length.
  • Nucleic acid sequences used as probes include nucleic acid sequences that are at least 70% homologous, more preferably at least 80% homologous, even more preferably 90% homologous, and 95% homologous to the above sequences. included.
  • the term "primer” refers to a substance necessary for initiating the reaction of a synthesized polymer compound in a polymer synthase reaction.
  • a nucleic acid molecule eg, DNA or RNA
  • complementary to a partial sequence of the polymer compound to be synthesized can be used.
  • Nucleic acid molecules that are usually used as primers include those having a nucleic acid sequence that is complementary to the nucleic acid sequence of the gene of interest and has at least 8 consecutive nucleotides in length.
  • Such a nucleic acid sequence preferably has at least 9 contiguous nucleotides in length, more preferably 10 contiguous nucleotides in length, even more preferably 11 contiguous nucleotides in length, 12 contiguous nucleotides in length, 13 consecutive nucleotides in length, 14 consecutive nucleotides in length, 15 consecutive nucleotides in length, 16 consecutive nucleotides in length, 17 consecutive nucleotides in length, 18 consecutive nucleotides in length, 19 A contiguous nucleotide length, 20 contiguous nucleotides of length, 25 contiguous nucleotides of length, 30 contiguous nucleotides of length, 40 contiguous nucleotides of length, 50 contiguous nucleotides of length,
  • Nucleic acid sequences used as probes include nucleic acid sequences that are at least 70% homologous to the above sequences, more preferably at least 80% homologous, even more preferably 90% homologous, and 95% homologous. It is.
  • a suitable sequence as a primer can vary depending on the nature of the sequence to be synthesized (amplified), but those skilled in the art can appropriately design a primer according to the intended sequence. The design of such primers is well known in the art and may be performed manually or using a computer program (eg, LASERGENE, PrimerSelect, DNAS tar).
  • epitopes refers to an antigenic determinant.
  • epitopes are required for a set of amino acid residues involved in recognition by a particular immunoglobulin or, in the case of T cells, for recognition by T cell receptor proteins and Z or major histocompatibility complex (MHC) receptors. Is encompassed. This term is also used interchangeably with "antigenic determinant” or "antigenic determinant site.”
  • epitopes are molecular features (eg, primary, secondary or tertiary peptide structures and charges), It forms sites recognized by immunoglobulins, T cell receptors or HLA molecules.
  • Epitopes containing peptides can include three or more amino acids in a spatial conformation unique to the epitope.
  • the epitope is composed of at least 5 such amino acids, and typically also at least 6, 7, 8, 9, or 10 such amino acids. Longer epitopes are generally preferred because they are more similar to the antigenicity of the original peptide, but may not always be so in view of conformation.
  • Methods for determining the spatial conformation of amino acids are known in the art and include, for example, X-ray crystallography, and two-dimensional nuclear magnetic resonance spectroscopy. Further, the identification of epitopes in a given protein is readily accomplished using techniques well known in the art. See, eg, Geysen et al. (1984) Proc. Natl.
  • epitopes containing peptides are well known in the art, and such epitopes, once provided with the primary sequence of nucleic acids or amino acids, will allow those of ordinary skill in the art to employ such well known and conventional techniques. Can be determined using
  • single nucleotide polymorphism refers to a variant that can be identified only by a single nucleotide difference in a genomic sequence. SNPs usually specify the characteristics of an individual. Such characteristics include susceptibility to disease.
  • non-silicone oxide refers to a substance other than silicon oxide that can be used as an insulator (or a dielectric). Typically, oxides other than silicon oxides are exemplified, but not limited thereto. Preferred non-silicone oxidants include, but are not limited to, metal oxides.
  • an "insulator” refers to a substance that does not substantially conduct electricity. In practice, it means one with sufficiently low electrical conductivity. Therefore, the insulator has high resistance (for example, for example, a substance of 10 1 () ⁇ 'cm or more) can be used. Examples of such an insulator include, but are not limited to, silicon dioxide and non-silicone oxide. In the present invention, it is understood that any insulator used in ordinary semiconductors can be used as a material for the insulator such as the gate terminal, the drain terminal, and the source terminal.
  • metal oxide refers to any metal oxidized product.
  • the metal oxide include tantalum oxide (TaO), calcium oxide (CaO), lead oxide (PbO), and titanium oxide.
  • TiO titanium dioxide
  • TiO titanium dioxide
  • HfO hafnium oxide
  • Yb O ytterbium oxide
  • Gadolinium oxide Gadolinium oxide (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (GdO), oxidized chromium (CrO), tungsten oxide (WO), copper oxide (1) (
  • NiO bismuth oxide
  • Si O bismuth oxide
  • Sm O samarium oxide
  • Nd O neodymium oxide
  • V Vanadium oxide
  • MoO molybdenum oxide
  • CdO cadmium oxide
  • silane coupling agent refers to an organic silicon compound having a Si atom and having a functional group capable of chemically bonding to two compounds.
  • Si atom a Si atom and having a functional group capable of chemically bonding to two compounds.
  • Y—CH SIX general formula
  • X is a hydrolyzable substituent such as an alkoxy group or a halogen, and reacts with an inorganic substance
  • Y is a vinyl group, an epoxy group, an amino group, etc., which are easily reacted with an organic substance. Not done.
  • aminosilane-containing substance refers to a silane conjugate having an amino group.
  • Aminosilane-containing substances are used as silane coupling agents. Examples of such an aminosilane-containing substance include, but are not limited to, ⁇ ′-aminoalkyl trialkoxysilane (typically, 3′-aminopropyltriethoxysilane).
  • crosslinker is also referred to as a cross-linking agent, and refers to a substance that cross-links by generating a covalent bond between two molecules.
  • crosslinker examples thereof include, but are not limited to, aldehydes (for example, dataraldehyde), carposimides, and imidoesters.
  • aldehydes for example, dataraldehyde
  • carposimides for example, carposimides
  • imidoesters imidoesters.
  • an aldehyde-containing group for example, dartaldehyde.
  • the term "acid treatment” refers to immersing a certain substance in an arbitrary acid.
  • a substrate typically composed of an inorganic material
  • acid treatment is preferable.
  • ultraviolet radiation refers to irradiating a substance with ultraviolet light.
  • the term “ultraviolet light” refers to electromagnetic waves having a wavelength within a short wavelength end of about 360 to 400 wavelengths of visible light, and a wavelength range up to about 1 wavelength at the lower limit. Since the lower limit is not very clear, and several tens of nm or less overlap with soft X-rays, it is understood that in this specification, the range overlaps with X-rays.
  • the light source include, but are not limited to, a quartz mercury lamp, a carbon arc lamp, a spark discharge, a discharge of hydrogen or a rare gas, and synchrotron radiation. Ultraviolet irradiation can be measured by a light meter.
  • reduction is used in the same meaning as usually used in the art, and refers to lowering the oxidized state.
  • any reducing agent for example, any reducing agent capable of converting the double bond of a Schiff base into a single bond; for example, sodium cyanoborohydride (NaCNBH), dimethylamine borane ( (CH) HNBH), bird
  • LiAlH lithium aluminum hydride
  • CH (OH) hydroquinone
  • NaCNBH NaCNBH can be preferably used.
  • the linker used in the present invention is typically a part that has an affinity for an inorganic substance and another part is a part that has an affinity for an organic substance.
  • the moiety having affinity for such an organic substance usually has an arbitrary organic substituent.
  • alkyl refers to a monovalent group generated by the loss of one hydrogen atom in an aliphatic hydrocarbon (alkane) such as methane, ethane, and propane.
  • n 2n + l is represented by one (where n is a positive integer).
  • Alkyl can be straight or branched
  • substituted alkyl refers to an alkyl in which H of the alkyl is substituted by a substituent defined below.
  • Examples of these are C1-C2 alkyl, C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl C1 to C11 alkyl or C1 to C12 alkyl, C1 to C2 substituted alkyl, C1 to C3 substituted alkyl, C1 to C4 substituted alkyl, C1 to C5 substituted alkyl, C1 to C6 substituted Alkyl, C1-C7 substituted alkyl, C1-C8 substituted alkyl, C1-C9 substituted alkyl, C1-C10 substituted alkyl, C1-C11 substituted alkyl or C1-C12 substituted alkyl Or alkyl.
  • C 1 -C 10 alkyl means a linear or branched alkyl having 1-10 carbon atoms, such as methyl (CH—), ethyl (CH-1), n-propyl (CH 2 CH 2). CH-1), isop
  • C1-C10-substituted alkyl means C1
  • One C10 alkyl in which one or more hydrogen atoms are substituted with a substituent is substituted with a substituent.
  • optionally substituted alkyl means that “alkyl” or “substituted alkyl” as defined above may be different from the above.
  • alkylene refers to a divalent group formed by the loss of two hydrogen atoms in aliphatic hydrocarbon (alkane) power such as methylene, ethylene, and propylene.
  • alkane aliphatic hydrocarbon
  • CH is represented by one (where n is a positive integer).
  • Alkylene is straight chain or branched n 2n
  • substituted alkylene refers to an alkylene in which H of the alkylene is substituted by a substituent defined below. Examples of these are C1-C2 alkylene, C1-C3 alkylene, C1-C4 alkylene, C1-C5 alkylene, C1-C6 alkylene, C1-C7 alkylene, C1-C8 alkylene, C1-C9 alkylene, C1-C9 alkylene, 1 CIO alkylene, CI 1 CI 1 alkylene or CI 1 C12 alkylene, C1 C2 substituted alkylene, C1 C3 substituted alkylene, C1 C4 substituted alkylene, C1 C5 substituted alkylene, C1-C6 substituted alkylene, C1-C7 substituted alkylene, C1-C8 substituted alkylene, C1-C9 substituted alkylene, C1-C10 substituted alkylene,
  • C1-C10-substituted alkylene refers to C1-C10 alkylene in which one or more hydrogen atoms are substituted with a substituent.
  • alkylene includes one or more atoms that are also selected from oxygen and sulfur nuclear! / ⁇ .
  • substituted or alkylene may be a shift of "alkylene” or "substituted alkylene” defined above. means.
  • cycloalkyl refers to an alkyl having a cyclic structure. “Substituted cycloalkyl” refers to cycloalkyl in which H of cycloalkyl is replaced by a substituent defined below.
  • C3-C4 cycloalkyl C3-C5 cycloalkyl, C3-C6 cycloalkyl, C3-C7 cycloalkyl, C3-C8 cycloalkyl, C3-C9 cycloalkyl, C3-C10 cycloalkyl, C3-C11 Cycloalkyl, C3-C12 cycloalkyl, C3-C4-substituted cycloalkyl, C3-C5-substituted cycloalkyl, C3-C6-substituted cycloalkyl, C3-C7-substituted cycloalkyl, C3-C8-substituted Substituted cycloalkyl, C3-C9 substituted cycloalkyl, C3-C10 substituted cycloalkyl, C3-C11 substituted cycloalkyl or May be C3-C12 substituted cycl
  • the "optionally substituted cycloalkyl” means that the "cycloalkyl” or the “substituted cycloalkyl” as defined above may be different from the above. You.
  • alkenyl refers to a monovalent group generated by the loss of one hydrogen atom from an aliphatic hydrocarbon having one double bond in the molecule.
  • substituted alkenyl refers to an alkenyl in which H of the alkenyl is substituted by a substituent defined below.
  • substituents include C2—C3 anoreckeninole, C2—C4 anoreckeninole, C2—C5 anoreckeninole, C2—C6 alkane, C2—C7 alkenyl, C2—C8 alkenyl, C2—C9 alkane, C2—C10, C2—C11 or C2—C12, C2—C3 substituted, C2—C4 substituted, C2—C5 substituted -C2-C6 substituted alkyl, C2-C7 substituted alkyl, C2-C8 substituted alkyl, C2-C9 substituted alkyl, C2-C10 substituted alkyl Or a C2-C11 substituted alkyl or a C2-C12 substitute
  • a C2-C10 substituted alkylene refers to a C2-C10 alkylene in which one or more hydrogen atoms are substituted with a substituent.
  • substituted or substituted refers to a deviation from the above defined “alkal” or “substituted alkell”. Well, that means.
  • alkene refers to a divalent group generated by the loss of two hydrogen atoms from an aliphatic hydrocarbon having one double bond in the molecule, CH-table
  • substituted alkelenes refers to alkelenes in which H of the alkenylene is substituted by the substituents defined below. Specific examples include C2-C25alkenyl- or C2-C25 substituted alkylene.
  • C2-C10 alkyl means a straight-chain or branched alkylene having 2 to 10 carbon atoms
  • CH CH-
  • C10-substituted alkelenes are C2-C10 alkelenes in which one or more hydrogen atoms have been replaced by substituents.
  • alkylene may contain one or more selected oxygen and sulfur atoms.
  • the "optionally substituted alkenylene” may be a deviation from the above defined “alkylene” or "substituted alkenylene”.
  • cycloalkenyl refers to an alkyl having a cyclic structure.
  • substituted cycloalkyl refers to a cycloalkyl in which H of the cycloalkyl is substituted by a substituent defined below.
  • C3-C4 cycloalkyl C3-C5 cycloalkenyl, C3-C6 cycloalkyl, C3-C7 cycloalkyl, C3-C8 cycloalkyl, C3-C9 cycloalkyl, C3-C10 Cycloalkyl, C3-C11 cycloalkyl, C3-C12 cycloalkyl, C3-C4-substituted cycloalkyl, C3-C5-substituted cycloalkyl, C3-C6-substituted cycloalkyl C3-C7 substituted cycloalkyl, C3-C8 substituted cycloalkyl, C3-C9 substituted cycloalkyl, C3-C10 substituted cycloalkyl, C3-C11 substituted cycloalkyl Or a C3-C12 substituted cycloalkenyl.
  • preferred cycloalkyls include 1-cyclopentyl, 2-cyclohexenyl and the like.
  • the "optionally substituted cycloalkyl” may be a deviation from the above defined “cycloalkyl” or "substituted cycloalkyl”.
  • alkyl refers to a monovalent group such as acetylene formed by losing one hydrogen atom from an aliphatic hydrocarbon having one triple bond in a molecule. , Generally CH 1 (where n is a positive integer greater than or equal to 2). “Substituted alk n 2n— 3
  • -yl refers to an alkyl in which H of the alkyl is substituted by a substituent defined below. Specific examples include C2-C3 alkyl, C2-C4 alkyl, C2-C5 alkynyl, C2-C6 alkyl, C2-C7 alkyl, C2-C8 alkyl, C2-C9a Alkyl, C2-C10 alkyl, C2-C11 alkyl, C2-C12 alkyl, C2-C3-substituted alkyl, C2-C4-substituted alkyl, C2-C5-substituted Alkyl, C2-C6-substituted alkyl, C2-C7-substituted alkyl, C2-C8-substituted alkyl, C2-C9-substituted alkyl, C2-C10-substituted Alkyl, C2-C1-substituted alkyl or C2-C12-substituted
  • C2-C10 alkyl means, for example, a linear or branched alkyl containing 2-10 carbon atoms, such as ethynyl (CH ⁇ C—), 1-propyl (CH C ⁇ C—). Also, for example, C2-C10-substituted alkyl-
  • substituted or optionally substituted alkyl is defined as “alkyl” as defined above.
  • alkoxy refers to a monovalent group generated by losing a hydrogen atom of a hydroxy group of an alcohol, and is generally represented by CHO- (where n is an integer of 1 or more).
  • the “substituted alkoxy” refers to an alkoxy in which H of the alkoxy is substituted by a substituent defined below. Specific examples include C1-C2 alkoxy, C1-C3 alkoxy, C1-C4 alkoxy, C1-C5 alkoxy, C1-C6 alkoxy, C1-C7 alkoxy, C1-C8 alkoxy, C1-C9 alkoxy, C1-C10 alkoxy C1-C11 alkoxy, C1-C12 alkoxy, C1-C2-substituted alkoxy, C1-C3 Substituted alkoxy, C1-C4 substituted alkoxy, C1-C5 substituted alkoxy, C1-C6 substituted alkoxy, C1-C7 substituted alkoxy, C1-C8 substituted alkoxy, C1-C9 It can be a substituted alkoxy, a C1-C10 substituted alkoxy, a C1
  • optionally substituted alkoxy means that the "alkoxy” or “substituted alkoxy” defined above may be shifted.
  • heterocycle (group) refers to a group having a cyclic structure including carbon and hetero atoms.
  • the hetero atom is selected from the group consisting of 0, S, and N forces, and may be the same or different, may contain one, or may contain two or more.
  • Heterocyclic groups can be aromatic or non-aromatic, and can be monocyclic or polycyclic. Heterocyclic groups may be substituted.
  • substituted or optionally a heterocycle refers to the "heterocyclic ring (group)” or the “substituted heterocycle (group)” as defined above.
  • Base means that it may be misaligned.
  • alcohol refers to an organic compound in which one or more hydrogen atoms of an aliphatic hydrocarbon are substituted with a hydroxyl group.
  • ROH is also referred to as ROH.
  • R is an alkyl group.
  • R can be C1-C6 alkyl.
  • examples of the alcohol include, but are not limited to, methanol, ethanol, 1-propanol, 2-propanol and the like.
  • Carbocyclic group is a group containing a cyclic structure containing only carbon, and the above-mentioned “cycloalkyl”, “substituted cycloalkyl”, “cycloalkenyl” And “substituted cycloalkyl”.
  • Carbocyclic groups can be aromatic or non-aromatic, and can be monocyclic or polycyclic.
  • substituted carbocyclic group refers to a carbocyclic group in which H of the carbocyclic group is substituted by a substituent defined below.
  • C3-C4 carbocyclic group C3-C5 carbocyclic group, C3-C6 carbocyclic group, C3-C7 carbocyclic group , C3-C8 carbocycle, C3-C9 carbocycle, C3-C10 carbocycle, C3-C11 carbocycle, C3-C12 carbocycle, C3-C4 substituted carbocycle, C3-C5 substitution Carbocyclic group, C3-C6 substituted carbocyclic group, C3-C7 substituted carbocyclic group, C3-C8 substituted carbocyclic group, C3-C9 substituted carbocyclic group, C3-C10 It may be a substituted carbocyclic group, a C3-C11 substituted carbocyclic group or a C3-C12 substituted carbocyclic group.
  • the carbocyclic group can also be a C4-C7 carbocyclic group or a C4-C7 substituted carbocyclic group.
  • Examples of the carbon ring group include one in which one phenyl group hydrogen atom is deleted.
  • the hydrogen deletion position may be any position that is chemically possible, whether on an aromatic ring or on a non-aromatic ring.
  • substituted or optionally carbocyclic group refers to a deviation from the above-defined “carbocyclic group” or “substituted carbocyclic group”. It also means.
  • heterocyclic group refers to a group having a cyclic structure including carbon and hetero atoms.
  • the heteroatom is selected from the group consisting of 0, S, and N forces, and may be the same or different, and may include one or two or more.
  • Heterocyclic groups can be aromatic or non-aromatic, and can be monocyclic or polycyclic.
  • “Substituted heterocyclic group” refers to a heterocyclic group in which H of the heterocyclic group is substituted by a substituent defined below.
  • C3-C4 carbocycle C3-C5 carbocycle, C3-C6 carbocycle, C3-C7 carbocycle, C3-C8 carbocycle, C3-C9 carbocycle, C3-C10 Carbocyclic group, C3-C11 carbocyclic group, C3-C12 carbocyclic group, C3-C4 substituted carbocyclic group, C3-C5 substituted carbocyclic group, C3-C6 substituted carbocyclic group, C3 I C7-substituted carbocyclic group, C3-C8-substituted carbocyclic group, C3-C9-substituted carbon ring group, C3-C10-substituted carbocyclic group, C3-C11-substituted carbocyclic group or It may be a C3-C12 substituted carbocyclic group in which one or more carbon atoms have been substituted with a heteroatom.
  • a heterocyclic group can also be a C4-C7 carbocyclic group or a C4-C7 substituted carbocyclic group in which one or more carbon atoms have been substituted with one or more heteroatoms.
  • the heterocyclic group include a phenyl group, a pyrrolyl group, a furyl group, an imidazolyl group, and a pyridyl group.
  • the position of deletion of hydrogen may be any position that is chemically possible, and may be on an aromatic ring or on a non-aromatic ring.
  • the carbocyclic group or the heterocyclic group may be substituted with a divalent substituent in addition to being substituted with a monovalent substituent as defined below.
  • halogen refers to a monovalent group of elements such as fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) belonging to Group 7B of the periodic table.
  • hydroxy refers to a group represented by OH.
  • substituted hydroxy refers to a compound in which H of hydroxy is substituted by a substituent defined below.
  • thiol is a group in which an oxygen atom of a hydroxy group is substituted with a sulfur atom (mercapto group), and is represented by SH.
  • substituted thiol refers to a group in which H of mercapto is substituted with a substituent defined below.
  • cyano refers to a group represented by -CN.
  • Niro means -NO
  • Carboxy refers to a group represented by COOH.
  • substituted carbonyl refers to carboxy in which H is substituted with a substituent as defined below.
  • acyl refers to a monovalent group formed by removing OH from a carboxylic acid.
  • Representative examples of the acetyl group include acetyl (CH CO—) and benzoyl (CHCO—).
  • substituted acyl refers to the hydrogen of an acyl substituted with a substituent as defined below.
  • amide is a group obtained by replacing hydrogen of ammonia with an acid group (acyl group), and is preferably represented by CONH.
  • Substituted amide refers to an amide substituted
  • Thiocarbons include thioketones and thioaldehydes.
  • Substituted thiocarbol means thiocarbonyl substituted with a substituent selected below.
  • sulfol is a generic term for a substance containing -SO-, which is a characteristic group.
  • Substituted sulfonyl means sulfonyl substituted with a substituent selected as described below.
  • sulfiel refers to a generic term for a substance containing -SO-, which is a characteristic group. “Substituted sulfiel” means sulfiel substituted with a substituent selected below.
  • aryl refers to a group formed by the removal of one hydrogen atom bonded to the ring of an aromatic hydrocarbon, and is included in the present specification as a carbocyclic group.
  • substitution refers to replacing one or more hydrogen atoms in a certain organic compound or substituent with another atom or atomic group. It is also possible to remove one hydrogen atom and substitute with a monovalent substituent, and it is also possible to remove two hydrogen atoms and substitute with a divalent substituent.
  • substitution refers to replacing one or more hydrogen atoms in a certain organic compound or substituent with another atom or atomic group. It is also possible to remove one hydrogen atom and substitute with a monovalent substituent, and it is also possible to remove two hydrogen atoms and substitute with a divalent substituent.
  • substituents in the present invention include alkyl, cycloalkyl, alkenyl, cycloalkyl, alkyl, alkoxy, carbocyclic group, heterocyclic group, halogen, hydroxy, thiol, nitro nitro, Amino carboxy, carbamoyl, acyl, acylamino, thiocarboxy, amide, substituted carboyl, substituted thiocarbol, substituted sulfonyl or substituted sulfinyl, or any inorganic substituent (e.g., But is not limited thereto. In the present invention, such substituents can be appropriately used in designing linkers and biomolecules.
  • each of them may be independently a hydrogen atom or an alkyl or an arbitrary inorganic substituent (for example, a silicon-containing substituent). It cannot be a hydrogen atom. More preferably, independently, when there are a plurality of substituents, each may be independently selected from the group consisting of hydrogen and a C1-C6 alkyl group or any inorganic substituent (eg, a silicon-containing substituent). All of the substituents may have a substituent other than hydrogen, but preferably have at least one hydrogen, more preferably 2-n (where n is the number of substituents) hydrogen. Can have.
  • the number of hydrogen atoms in the substituent is large. This is because a large substituent or a polar substituent may impair the effect (binding property) of the present invention. Therefore, the substituents other than hydrogen are preferably C1 to C6 alkyl, C1 to C5 alkyl, C1 to C4 alkyl, C1 to C3 alkyl, C1 to C2 alkyl, methyl or any inorganic substituent (for example, silicon). (Containing substituent). However, it may be preferable to have a large substituent since the effect of the present invention may be enhanced.
  • Cl, C2, ..., Cn represent the number of carbon atoms. Accordingly, C1 is used to represent a substituent having one carbon atom.
  • optical isomer refers to one or a pair of a pair of compounds which cannot be superimposed because the structures of the crystals or molecules are mirror images. It is a form of stereoisomer that differs only in optical rotation, despite other properties being the same. In the present invention, those having high optical isomer purity can be preferably used.
  • protection reaction refers to a reaction in which a protecting group such as Boc is added to a functional group for which protection is desired. By protecting the functional group with the protecting group, the reaction of the functional group having higher reactivity can be suppressed, and only the functional group having lower reactivity can be reacted.
  • the protection reaction can be performed, for example, by a dehydration reaction.
  • the term "deprotection reaction” refers to a reaction for eliminating a protecting group such as Boc.
  • Examples of the deprotection reaction include a reaction such as a reduction reaction using PdZC.
  • the deprotection reaction can be performed, for example, by hydrolysis.
  • protecting group includes, for example, a fluorenylmethoxycarbol (Fmoc) group, an acetyl group, a benzyl group, a benzoyl group, a t-butoxycarbol group, Buchi Dimethyl group, silyl group, trimethylsilylethyl group, N-phthalimidyl group, trimethylsilylethyloxycarbonyl group, 2-trow 4,5-dimethoxybenzyl group, 2-trow 4,5-dimethoxybenzyl group Xycarbonyl groups, olebamate groups and the like are mentioned as typical protecting groups.
  • Fmoc fluorenylmethoxycarbol
  • Protecting groups can be used to protect portions of a biomolecule that are not involved in binding.
  • the protecting group can be used for protecting a reactive functional group such as an amino group and a carboxyl group.
  • Various protecting groups can be properly used depending on reaction conditions and purposes. Hydroxy-protecting groups include acetyl, benzyl, silyl and derivatives thereof, and amino-protecting groups include benzyloxycarbyl and t-butoxycarbol other than acetyl. Alternatively, derivatives thereof and the like can be used.
  • a trimethylsilylethyloxycarbol group, a 2-ditro-4,5-dimethoxybenzyloxycarbol group or a derivative thereof is preferable.
  • the target product is obtained by removing contaminants (unreacted weight loss, by-products, solvent, etc.) from the reaction solution by a method commonly used in the art (for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc.), it is isolated by a combination of post-treatment methods commonly used in the art (eg, adsorption, elution, distillation, precipitation, precipitation, chromatography, etc.). obtain.
  • a method commonly used in the art for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc.
  • FETs Field effect transistors
  • the source terminal (electrode) and the drain terminal (electrode) ) Is a transistor that controls the current between. Since only one type of carrier is used, it is also called a unipolar transistor.
  • the source, gate, and drain are called terminals or electrodes. Although the source and the drain are distinguished for convenience, the direction of the current can be passed in both directions due to the structure.
  • transistors are P-type and N-type
  • FETs are also p-channel and n-channel. For example, if silicon is used for the semiconductor, it becomes a p-type semiconductor by doping boron and an n-type semiconductor by doping phosphorus.
  • a "gate electrode” corresponds to a “sluice gate” in terms of the structure of a transistor. Part of the electrode.
  • the gate electrode is composed of an insulating film and an electrode part due to its structure. At present, silicon dioxide (SiO 2) is often used as an insulating film.
  • SiO 2 silicon dioxide
  • the gate electrode generates a current from the source to the drain by changing (applying) a voltage. Therefore, the gate electrode can be used for detecting a charged substance (eg, DNA) and the like.
  • a charged substance eg, DNA
  • source portion means an electrode (or terminal) serving as a source from which carriers are supplied to an element.
  • drain portion In this specification, the term “drain portion”, “drain terminal” or “drain electrode” is used interchangeably, and in a field effect transistor, an electrode (terminal) to which a source electrode force carrier is supplied. ).
  • the term “extraction electrode” refers to an electrode for extracting an electric current from the electrode force of a transistor. Depending on the structure of the transistor, the same electrode as that in the transistor can be used, but the extraction electrode may be separated from the structure. Examples of such a lead electrode include a source lead electrode, a drain lead electrode, and a gate lead electrode. When immersed in the electrolyte, the electrode can be made of a material such as AgZAgCl, but is not limited thereto.
  • carrier refers to a substance that carries charges.
  • examples of the carrier include, but are not limited to, electrons and holes in a solid that contribute to electric conduction, and ions that conduct in an ionic conductor.
  • excess electrons generated by impurities in a semiconductor or holes generated by shortage are often referred to as carriers, but are not limited thereto.
  • the "electrolyte solution” refers to a solution in which a substance that becomes electrically conductive when dissolved in a molten salt or solution (often an aqueous solution) is dissolved.
  • the solution consists of a solvent and a solute that has been ionically dissociated, and this solution carries an electric current, and the ions are separated from the charged electrode and the solution force is also separated.
  • a typical example is a metal oxide film type (Metal Oxide Semiconductor FET). It is a metal electrode on a semiconductor oxide film and is also called a MOSFET.
  • junction type Junction FET: The gate is a junction surface of a different kind of semiconductor, just like an ordinary transistor; Metal semiconductor type (MESFET): The gate part is a metal electrode and a semiconductor. Some are directly bonded.
  • a MOSFET when attention is paid to a gate portion, it is a metal, an oxide (Oxide), and a semiconductor.
  • silicon oxide if silicon is used for the p-type semiconductor, it can be oxidized to form an insulator SiO layer at the same time as the oxide.
  • Non-silicone swords other than silicates are insulators
  • the FET has three electrodes, and the central gate electrode plays an important sluice gate.
  • one of the junction surfaces of npn should be in a reverse bias state. Not flowing. This is an off state of the transistor.
  • the positive charge of the gate electrode repels holes on the upper surface of the p-type layer and drives it away.
  • a small number of conduction electrons (a small number of carriers) in the p-type layer are attracted to the positive charge of the gate electrode and gather on the upper surface. However, it cannot pass through the insulating layer.
  • an n-type channel water channel
  • n-type channel which is also called an NMOS type.
  • Some channels are ⁇ -type and are called PMOS-type.
  • the holes are carrier, and the direction of the gate voltage and current is reversed.
  • MOS FETs with both p-type and n-type structures.
  • N-channel has better performance. This is because the electron has a smaller effective mass than the hole and therefore can move quickly as a carrier.
  • the present invention is not limited to this.
  • enhancement type also called normally off type
  • depletion type normally on type
  • the enhancement type does not apply gate voltage. When there is no channel, the drain current does not flow and the drain current does not flow.
  • depletion type FET has a channel and the drain current flows when the gate voltage is not applied.
  • the term "device” refers to a part that can constitute a part or the whole of an apparatus, and includes a support (preferably a solid support, an insulating film, and the like) and the support thereof. It is composed of a target substance (biomolecule) to be carried on the substrate.
  • a support preferably a solid support, an insulating film, and the like
  • Such devices include, but are not limited to, transistors, chips, arrays, etc., as described above.
  • support or “substrate” is used interchangeably and refers to a material (preferably a solid) capable of immobilizing a substance such as a biomolecule.
  • the material of the support may be either a covalent bond or a non-covalent bond, a force having the property of binding to a substance such as a biomolecule used in the present invention, or a material derivatized to have such a property. Any solid material obtained can be mentioned.
  • any material that can form a solid surface can be used.
  • the material include glass, silicon (silicon, Si), ceramic, and dioxide. These include, but are not limited to, silicon, plastics, metals (including alloys), natural and synthetic polymers (eg, polystyrene, cellulose, chitosan, dextran, and nylon).
  • silicon silicon
  • plastics metals (including alloys)
  • natural and synthetic polymers eg, polystyrene, cellulose, chitosan, dextran, and nylon.
  • the support may be formed from multiple layers of different materials. For example, inorganic insulating materials such as glass, quartz glass, alumina, sapphire, forsterite, silicon oxide, silicon carbide, and silicon nitride can be used.
  • Polyethylene ethylene, polypropylene, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluorinated resin, polychlorinated butyl, polychlorinated biylidene, polyacetic butyl, polybutyl alcohol, polybutylacetal, acrylic resin, Polyacrylonitrile, polystyrene, acetal resin, polycarbonate, polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene'acrylonitrile copolymer, acrylonitrile butadiene styrene copolymer, silicone resin, polyphenol Lenoxide, polysulfo An organic material such as an organic material can be used.
  • a membrane used for blotting such as a nitrocellulose membrane, a nylon membrane, or a PVDF membrane, can also be used.
  • a membrane used for blotting such as a nitrocellulose membrane, a nylon membrane, or a PVDF membrane
  • solid support When the material constituting the support is a solid phase, it is particularly referred to herein as “solid support”.
  • the substrate is used as a part of a semiconductor, it is preferable to use a semiconductor such as Si or GaZAs.
  • liquid phase is used in the same meaning as usually used in the art, and usually means a state in a solution.
  • solid phase is used in the same meaning as used in the art, and usually means a solid state.
  • a liquid and a solid may be collectively referred to as a fluid.
  • the term "coating" when used for a support or a substrate refers to forming a film of a substance on the surface of the support or the substrate and to such a film. Coating may be performed for various purposes, for example, to improve the quality of the support and the substrate (for example, to increase the service life, to improve the environmental resistance such as acid resistance), the affinity of the substance to be bonded to the support or the substrate. In many cases, the purpose is to improve the insulating property and the insulating property.
  • biomolecules such as DNA, RNA, proteins, lipids, and polymers (eg, , Poly-L-lysine, MAS, hydrophobic fluoroplastics), silanes (APS (eg, ⁇ -aminopropyl silane)), aminosilane derivatives, and metals (eg, gold, etc.) can be used but are not limited thereto. Not done. The selection of such substances is within the skill of the artisan and can be selected on a case-by-case basis using techniques well known in the art.
  • a "chip” or “microchip” is used interchangeably, has various functions, and refers to a microminiature integrated circuit that becomes a part of a system. Among the chips, those to which biomolecules are bound are also called “biochips”. Examples of biochips include, but are not limited to, chips, DNA chips, and protein chips.
  • an "array” is a composition in which one or more (for example, 1000 or more) target substances (for example, biomolecules such as PNA, DNA, and protein) are arranged and arranged. A pattern or a substrate having a pattern (for example, a chip) itself. In the array
  • an array consists of a set of desired transfection mixtures that are themselves immobilized on a solid surface or membrane.
  • Array preferably comprises at least 10 two identical or different antibodies, at least 10 3 and more preferably, and more preferably at least 10 4, even more preferably at least 10 5 a. These antibodies are preferably placed on a surface force of 25 ⁇ 80 mm, more preferably 10 ⁇ 10 mm.
  • a microtiter plate such as a 96-well microtiter plate and a 384-well microtiter plate can be used, or a plate having a size similar to that of a slide glass is contemplated.
  • the composition containing the target substance to be immobilized may be one type or a plurality of types. The number of such types can be any number up to the number of individual spots. For example, a composition containing about 10, about 100, about 500, about 1000 target substances can be immobilized.
  • the solid phase surface or film such as a substrate
  • any number of target substances as described above e.g., proteins such as antibodies
  • the size of the substrate is preferably smaller.
  • the spot size of a composition containing a target substance can be as small as the size of a single biomolecule (which can be on the order of 1-2 nm) ).
  • the minimum substrate area is in some cases determined by the number of biomolecules on the substrate.
  • a composition containing a target substance to be introduced into a cell is usually immobilized by covalent bond or physical interaction in the form of a 0.01 mm to 10 mm spot.
  • spots of biomolecules may be arranged.
  • spot refers to a certain set of compositions containing a target substance.
  • spottin The term “producing” means that spots of a composition containing a certain target substance are formed on a certain substrate or plate. Spotting can be performed by any method, for example, can be achieved by pitting or the like, or can be performed by an automatic device such as a printer, and such a method is well known in the art.
  • the term "address” refers to a unique location on a substrate, which may be distinguishable from other unique locations.
  • the address is appropriate for association with the spot with that address, and takes any shape so that the entity at every each address can also identify the entity force at the other address (eg, optically). obtain.
  • the shape defining the address can be, for example, a force that can be circular, oval, square, rectangular, or an irregular shape. Therefore, “address” indicates an abstract concept, and “spot” may be used to indicate a specific concept. However, when there is no need to distinguish between the two, “address” is used in this specification. And “spot” can be used interchangeably.
  • the size defining each address may include, among other things, the size of the substrate, the number of addresses on a particular substrate, the amount of the composition containing the target substance and Z or available reagents, the size of the microparticles and the Depends on the degree of resolution required for any method in which the array is used.
  • the magnitude can be, for example, any force consistent with the application of the array, for example, a 1-2 nm force can also be in the range of a few cm.
  • the spatial arrangement and shape defining the address are designed to suit the particular application for which the microarray is used.
  • the addresses can be densely arranged and widely dispersed, or subgrouped into a desired pattern appropriate to the particular type of analyte.
  • Microarrays are widely reviewed in Genome Function Research Protocols (Experimental Medicine Separate Volume, Experimental Lectures in the Post-Genome Era 1), Genomics Medical Science and Future Genomics Medicine (Experimental Medicine Special Edition).
  • Microarray power Since the obtained data is huge, data analysis software for managing the correspondence between clones and spots and performing data analysis is important. As such software, software attached to various detection systems can be used (Ermolaeva O et al. (1998) Nat. Genet. 20: 19-23). Also, the format of the database Examples of the format include a format called GATC (genetic analysis technology consortium) proposed by Affymetrix.
  • GATC genetic analysis technology consortium
  • a “sensor” is an element that converts a physical quantity related to the state and characteristic value of a measurement target (for example, a biomolecule) into another physical quantity that is easy to transmit, record, or signal process.
  • a sensor can be said to be a device that captures some physical or chemical quantity from the outside world and converts it into an electrical signal for detection.
  • Chemical sensors include ion sensors typified by pH sensors, O, CO, H
  • microbial sensors there are various types of microbial sensors, immunosensors, etc., in addition to gas sensors that detect 222 and the like, biosensors used for biological activities, and the like.
  • the principle of these sensors consists of an element that identifies the substance to be measured and an electrochemical device that converts the chemical information obtained from the element into an electric signal.
  • the conversion method is the potential method (potent iometry) and the current method (current method). amperometry).
  • IS-FET Ion Sensitive Field-Effect Transistor
  • MOSFET MOS field-effect transistors
  • the IS-FET utilizes the gate threshold voltage shift accompanying the pH change on the gate film. Therefore, its performance greatly depends on the properties of the insulating layer.
  • SiO has been widely used, but it is advantageous to use non-silicone oxide from the viewpoint of sensitivity and the like.
  • metal oxide metal oxide
  • the IS-FET used in an aqueous solution must be completely insulated between the aqueous solution and the inside of the IS-FET.
  • oxidized metal is advantageous.
  • techniques for arranging biomolecules on non-silicon oxides such as silicon oxide have been powerful.
  • the insulating layer functions as a capacitance (Ci)
  • a uniform electric field is generated inside the insulating layer.
  • the sensitivity characteristics of the pH sensor include Al O, Ta O film, etc.
  • Non-silicone oxidants such as the 232 oxidizer metal, are superior.
  • IV characteristic refers to a relationship indicating the relationship between a current value and a voltage value for a certain electric signal.
  • the IV characteristic can be expressed using, for example, a static characteristic saturation current value, a transfer characteristic threshold voltage, and the like. Such characteristics can be calculated using ordinary calculation means.
  • static characteristic saturation current value refers to a pair of variables, such as between an electrode voltage and an electrode current, when all other operating voltages for a transistor are kept constant. The value of the saturation current in the relationship established between the drain current and the drain current.In the measurement of drain voltage characteristics (I-V), the drain current increases in proportion to the drain voltage.
  • the channel (the n-type channel between the source and drain: Since the electrical resistance of the (child carrier) increases, the gradient of the current with respect to the voltage gradually decreases.
  • the drain current shows a constant value. The current value at this pinch-off is called the saturation current, and I
  • the specific method of calculating the DS saturation current value is as follows.
  • Drain current I ⁇ CiW / L X ⁇ (V -V) VD-1 / 2V
  • e G T is the voltage at which the current begins to flow).
  • the "transfer characteristic threshold voltage” is established between the voltage of one electrode and the current flowing through another electrode under the condition that all other electrode voltages are kept constant.
  • the threshold voltage in the relationship indicates the transfer characteristic, and the transfer characteristic indicates the result of the drain current gate voltage characteristic measurement.
  • the threshold voltage indicates the gate voltage at which the drain current starts flowing. That is, the threshold voltage is the minimum voltage required to induce conduction electrons in the channel. If the gate voltage V is smaller than V, the drain current will flow.
  • V (21 L ⁇ C W) + V
  • various detection methods and detection means can be used as long as the information of the biomolecule or the information derived from the substance interacting with the biomolecule can be detected.
  • any technique may be used as a detection method and a detection means as long as the electric signal can be detected. It is understood that it is good.
  • the detection in the present invention can be performed by applying a voltage between the source and drain electrodes or the gate of the IS-FET and measuring a current flowing between the source and the drain.
  • electric signal detection means refers to any means for detecting an electric signal (for example, current).
  • Examples of the electric signal detecting means include, but are not limited to, an ammeter, a voltmeter, a current voltmeter, and a potentiometer.
  • the electric signal detection means detects an electric signal extracted from the transistor by, for example, being electrically coupled to the transistor.
  • label refers to an entity (eg, a substance, energy, an electromagnetic wave, or the like) for identifying a target molecule or substance by other means.
  • a labeling method include an RI (radioisotope) method, a fluorescence method, a biotin method, and a chemiluminescence method.
  • any fluorescent substance can be used as long as it can bind to the base moiety of the nucleic acid.
  • Cyanine dyes eg, Cy3 and Cy5 in the CyDye TM series
  • rhodamine 6G reagent N-acetoxie N2-acetyl
  • aminofluorene AAF
  • AAIF iodine derivative of AAF
  • Examples of the fluorescent substance having a difference in the maximum fluorescence emission wavelength of lOnm or more include a combination of Cy5 with rhodamine 6G reagent and a combination of Cy3 with fluorescein.
  • a combination of the rhodamine 6G reagent and fluorescein can be mentioned.
  • the target can be modified using such a label so that it can be detected by the detection means used. Such modifications are known in the art, and those skilled in the art can appropriately perform such a method depending on the label and the intended target.
  • interaction includes hydrophobic interaction, hydrophilic interaction, hydrogen bonding, van der Waals force, ionic interaction, nonionic interaction, and electrostatic interaction. And the like, but not limited thereto.
  • a nucleic acid such as PNA or DNA
  • the interaction of a complement with a hydrogen bond, an antigen-antibody reaction, and a ligand-receptor reaction are also included in the category of interaction. .
  • the level of such an interaction can be measured by methods well known in the art.
  • the level of the interaction can be expressed or calculated using a change in an electric signal, for example, a change in a current, a change in a voltage, a change in a current-voltage characteristic, or the like. From such a measured value, for example, information relating to a specific biomolecule present at a certain spot or information of a molecule interacting with the specific biomolecule (for example, information on the hybridization, etc.) can be obtained.
  • a biomolecule eg, a polynucleotide or a polypeptide
  • affinity of the biomolecule for another irrelevant molecule is unrelated.
  • Affinity for a polynucleotide or polypeptide typically is equal or higher, or is preferably significantly higher than the affinity for a polynucleotide or polypeptide That means.
  • Such an affinity can be measured by, for example, hybridization assay, binding assay, or the like.
  • the term "uncharged" of a biomolecule or the like means that there is substantially no charge. Since the electric charge of a substance can be expressed by the sum of the electric charges of constituent particles, it is possible to determine whether a biomolecule is uncharged by calculating the electric charge. . In this specification, “substantially free of charge” means that the quantity of electricity is InC (nanochrome). Iron) It means the following. , Electric energy s if this threshold is exceeded (preferably not 0)
  • the terms “display,” “display,” and “presentation” are used interchangeably and are used to describe a signal by transforming it so that it is perceived by sensory organs (eg, sight, hearing, smell, etc.). To do.
  • visual display is mentioned, and the display means a means for visually displaying a signal when used in a particularly limited sense. Therefore, “display”, “display”, and “presentation” are defined as a form in which information about the electric signal or the biomolecule produced according to the method of the present invention is directly or indirectly or information is processed. It means to embody.
  • Such display forms include, but are not limited to, various methods such as graphs, photographs, tables, and animations.
  • Real-time display and presentation can also be performed using techniques well known in the art. For example, after all images have been acquired and stored in semi-permanent memory, or substantially simultaneously with the acquisition of the images, they can be processed with appropriate application software to obtain processed data. For example, methods of processing acquired data include playing back uninterrupted sequences of images, or displaying them in real time, displaying them as ⁇ movies '' that show illumination as changes and continuations in the focal plane. Can be.
  • desired complex reaction conditions can be set by inputting conditions on the screen using a keyboard, a touch panel, a mouse, or the like.
  • conditions for interaction with biological molecules for example, various conditions such as hybridization temperature and pH
  • a keyboard, a mouse, and the like can be set using a keyboard, a mouse, and the like.
  • screening refers to selecting a target such as a target organism or substance having a certain specific property from a population including a large number by a specific operation Z evaluation method.
  • a target such as a target organism or substance having a certain specific property from a population including a large number by a specific operation Z evaluation method.
  • the method or system of the present invention can be used. In the present invention, screening can be performed based on information on the interaction.
  • diagnosis refers to identifying various indices related to a disease, disorder, or condition in a subject, and determining the current state of such disease, disorder, or condition.
  • the methods, devices, and systems of the present invention are used to analyze interactions with biomolecules and use such information to control the disease, disorder, condition, treatment or prevention to be administered to a subject.
  • indices can be selected, such as a formulation or a method for.
  • the diagnostic method of the present invention can be used industrially because, in principle, it can be used because it can exert physical strength, and can be carried out separately from medical attendants such as doctors. is there.
  • the "instruction” describes a diagnostic or therapeutic method that can be performed using the system, device, method, or the like of the present invention, for a doctor, a patient, or another person who performs administration.
  • This instruction describes a word indicating a method of operating the apparatus, device, or the like of the present invention.
  • This instruction if required, shall be prepared in accordance with the format specified by the competent authority of the country in which the invention is implemented (for example, the Ministry of Health, Labor and Welfare in Japan and the Food and Drug Administration (FDA) in the United States). , The approval has been specified by the competent authority. Instructions are so-called package inserts, which are usually not limited to those provided on paper, such as electronic media (e.g., home pages, e-mail provided on the Internet). It can also be provided in form.
  • the present invention provides a gate electrode comprising a biomolecule and a non-silicate.
  • a biomolecule may be a substance that interacts with a substance existing in a living body (for example, artificial DNA, PNA, etc.), in addition to a substance existing in the living body. it can. It is understood that organic compounds are usually used as biomolecules.
  • the biomolecule and the non-silicone oxidant may be arranged in any manner as long as the structure is such that a gate electrode is formed. Preferably, it is bonded on a non-silicon oxide.
  • the non-silicone sulfide used in the present invention an insulator having a higher dielectric constant than conventionally used dioxy sulfide is used.
  • the dielectric constant at 25 ° C. of silicon dioxide is approximately 3.9, and any substance having a dielectric constant higher than that can be used. Therefore, in a preferred embodiment, the dielectric constant at 25 ° C. of the non-silicate compound used in the present invention is at least 6 or more, more preferably 8.5 or more, and further more preferably Is 10 or more, even more preferably 15 or more, and most preferably 20 or more.
  • the non-silicone oxide is a metal oxide. This is because the coupling method disclosed in the present invention can be used and has a large dielectric constant.
  • Metal oxides that can be used include, for example, tantalum oxide (Ta 2 O 3), calcium oxide
  • the non-silicone oxide is tantalum oxide (Ta 2 O 3), barium monoxide (BaO), bismuth oxide.
  • the non-silicate is tantalum oxide (Ta 2 O 3).
  • Oxidation tantalum has a dielectric constant of about 25, and therefore has a dielectric constant 6 times or more that of a conventional silicon oxide (silicon dioxide). It has been found for the first time in the present application that even with such a dielectric constant, it can be configured as a biosensor.
  • titanium-based oxidants generally have a high dielectric constant, they are preferably used as non-silicone oxidants which are insulators in the present invention.
  • the dielectric constant (also referred to as the relative dielectric constant) of a typical oxidizing metal at 25 ° C or room temperature (exceptions are shown in parentheses) is 34 for BaO and 10 for BaO.
  • the biomolecule is immobilized on a non-silicate.
  • the fixation is achieved by a force that can be achieved using any fixation technique, preferably by covalent bonding. It is preferable to use a crosslinker for the covalent bond.
  • a crosslinker for the covalent bond.
  • binding modes are described in detail herein.
  • the coupling is achieved by a silane coupling agent.
  • the gate electrode is formed by a bonding portion (typically, a bonding reaction between a biomolecule and a non-silicone oxide) by a silane coupling agent. It is understood that it also includes the removed portion).
  • the non-silicon oxide and the biomolecule are bonded (preferably covalently) by an aminosilane conjugate.
  • a gate electrode constituted by such a coupling is not known, and the present invention provides a useful biosensor.
  • a gate electrode that can be used as a sensor.
  • such a binding moiety is
  • n, m, and k are each independently any positive integer.
  • n, m and k can be independently an integer of 16 and more preferably independently an integer of 113.
  • R and R are independently the same as any substituent or the linker
  • the non-silicone oxide of the gate electrode of the present invention is in the form of a film or a layer, and biomolecules are deposited on the non-silicone oxide film.
  • the non-silicone oxidant may have a plurality of layers laminated. In such a case, it is preferable to arrange a non-silicon oxide (preferably, a metal oxide) at the top. If multiple layers are used, the inner layers may be, for example, other insulators such as SiN and insulators such as SiO.
  • a biomolecule provided in the gate electrode of the present invention has an ability to specifically interact with another biomolecule.
  • Such interactions include, for example, hybridization between nucleic acids, interaction between proteins and nucleic acids (eg, transcription factor and transcription factor binding sequence), interaction between proteins, antigen-antibody reaction, ligand Examples include, but are not limited to, receptor reactions.
  • biomolecules used in the gate electrode of the present invention include, but are not limited to, nucleic acids, proteins, sugars, lipids, and complexes thereof.
  • the biomolecules may include nucleic acids.
  • nucleic acids include, for example, DNA, RNA, and PNA.
  • the biomolecule comprises a PNA. This is because PNA is uncharged, and it is expected that the detection sensitivity will be much higher than that of DNA having negative charge. Indeed, it was shown by the present invention that the sensitivity was increased 2-10 fold or more with PNA than with DNA.
  • the biomolecules used in the present invention may exist in a single-stranded or double-stranded form.
  • the biomolecule used in the gate electrode of the present invention has the ability to hybridize with other biomolecules under stringent hybridization conditions.
  • the design of such biomolecules capable of hybridizing can be performed using any technique known in the art. Such a design method is described herein above.
  • the biomolecule used in the gate electrode of the present invention may have the ability to interact with a ligand-receptor or react with an antigen-antibody. It is understood that such substances can be proteins, small organic molecules and the like.
  • the biomolecules used in the present invention are advantageously uncharged or almost free of charge.
  • biomolecules can include, but are not limited to, PNA. With little or no charge, the reactivity in the semiconductor is significantly increased, and the detection sensitivity is expected to be significantly increased.
  • the biomolecule disposed on the gate electrode of the present invention is a probe for diagnosing a disease or disorder.
  • the gate electrode of the present invention can be applied to a diagnostic chip or the like. It is understood that such probes can be readily designed by those skilled in the information skills known in the art.
  • the probe for example, a probe having perfect complementarity to the target nucleic acid sequence or having a difference of one base may be used.
  • the biomolecule used in the present invention can be a probe for detecting single nucleotide polymorphisms (SNPs).
  • FIG. 11 shows a schematic diagram of manufacturing a gate electrode.
  • the efficiency of hybridization is advantageously improved by providing a degree of freedom by cross-linking between an electrode and a biomolecule (for example, a nucleic acid molecule) with an aminosilane and a crosslinker. It is also possible to work.
  • a biomolecule for example, a nucleic acid molecule
  • the present invention provides a field effect transistor integrated on a gate electrode semiconductor device including a biomolecule and a non-silicone oxide.
  • a gate electrode semiconductor device including a biomolecule and a non-silicone oxide.
  • the gate electrode used individually any mode described in the above (gate electrode) in this specification can be used.
  • the semiconductor element used in the present invention usually includes a substrate, a source portion, and a drain portion, in addition to the gate electrode. It is understood that any technique used for ordinary semiconductor elements can be used for such a substrate, a source portion, a drain portion, and the like.
  • the field-effect transistor of the present invention may be a p-channel type or an n-channel type, and may be an enhancement type or a depletion type, as long as it uses a gate electrode.
  • the source part and the drain part in the semiconductor element of the present invention are advantageously covered with an insulator.
  • the gate effect of the gate electrode can be effectively used.
  • the field effect transistor of the present invention may be provided with an electrode other than the gate electrode.
  • additional electrodes include, for example, a source extraction electrode for extracting current from the source, a drain extraction electrode for extracting current from the drain, a substrate extraction electrode for extracting current from the substrate, and a current derived from the gate electrode. And a gate extraction electrode for extracting the gate electrode.
  • the gate electrode may be immersed in an electrolytic solution.
  • any electrode may be used.
  • an electrode containing AgZAgCl may be used.
  • the substrate used in the semiconductor element of the present invention can be formed from any material used in ordinary semiconductor technology, and for example, may be formed from a material containing Si. .
  • the present invention provides the following: A) a field effect transistor in which a gate electrode including a biomolecule and a non-silicone oxide is integrated on a semiconductor element; and B) an electric signal. Inspection And a sensor for detecting an interaction with the biomolecule.
  • a field effect transistor in which a gate electrode including a biomolecule and a non-silicone oxide is integrated on a semiconductor element
  • any form described in the above (gate electrode) and (transistor) can be used for the gate electrode and the field effect transistor.
  • any means can be used as long as the electric signal can be detected.
  • a voltmeter, an ammeter, a current / voltmeter, A potentiometer and the like can be exemplified.
  • the senor of the present invention may include a presentation unit such as a display. By providing such a display, a user can immediately obtain information on a biological molecule.
  • the present invention provides a method for producing a gate electrode containing a non-silicon oxide to which a biomolecule is immobilized, comprising: A) providing a gate electrode containing a non-silicon oxide B) a step of binding a coupling reagent (for example, an aminosilane-containing substance) for binding an inorganic material and an organic material to the non-silicon oxide; C) the coupling reagent; and the coupling reagent.
  • a crosslinker e.g., carbodiimides, aldehydes, imide esters, phenylene isothiocyanates, epoxysilanes, silane coupling agents
  • the gate electrode is made of an aminosilane-containing substance (for example, aminopropyltriethoxysilane or the like).
  • an aminosilane-containing substance for example, aminopropyltriethoxysilane or the like.
  • the coupling reagent used in the present invention is advantageously a net silane-containing substance.
  • the aminosilane-containing substance used in the present invention is ⁇ '-aminoalkyl trialkoxysilane, more preferably, 3'-aminopropyltriethoxysilane.
  • Including. 3′-Aminopropyltriethoxysilane allows organic substances (eg, nucleic acids) to be efficiently and reliably bonded to inorganic substances such as non-silicone oxides (especially, oxides). Has been demonstrated for the first time by the present invention.
  • the metal oxide is subjected to an acid treatment before binding of the aminosilane-containing substance.
  • the acid treatment may be an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as acetic acid.
  • the acid can be alcohol such as ethyl alcohol and methyl alcohol.
  • the non-silicone oxide used in the method for producing a gate electrode of the present invention is preferably a metal oxide, such as tantalum oxide (Ta 2 O 3), calcium oxide (CaO), or lead oxide (PbO). , Acid
  • Tan TiO
  • TiO titanium dioxide
  • HfO hafnium oxide
  • Y ytterbium oxide
  • magnesium oxide MgO
  • indium oxide In O
  • tin oxide SnO
  • Gad O gadolinium
  • Cr O sardine chromium
  • WO tungsten oxide
  • Cu oxide copper oxide
  • NiO bismuth oxide
  • Si 2 O 3 bismuth oxide
  • Sm 2 O 3 samarium oxide
  • the crosslinker used in the method of the present invention comprises: Includes carbodiimides, aldehydes, imide esters, phenylenediisothiocyanates (see Figure 2B), epoxy silanes, silane coupling agents, etc.
  • the crosslinker used in the present invention contains an aldehyde-containing group, and more preferably, the crosslinker contains daltaldehyde.
  • any technique can be used for the crosslinking treatment, and a technique that causes a radical reaction can be used.
  • a technique that causes a radical reaction include, but are not limited to, X-ray irradiation, ultraviolet irradiation, electron beam irradiation, 0-ray irradiation, thermal decomposition of molecules, photolysis, radiolysis, electron transfer, etc. Not done.
  • the biomolecule used in the present specification can also use any form described in the "gate electrode" herein.
  • the biomolecule comprises a nucleic acid, more preferably, the biomolecule comprises DNA or PNA, even more preferably, the biomolecule comprises PNA.
  • the product after the crosslink is completed it is preferable to reduce the product after the crosslink is completed.
  • the reduction is also a force that stabilizes the binding of biomolecules.
  • Such reductions can be used as long as they can be used to reduce Schiff bases, such as sodium cyanoborohydride (NaCNBH), dimethyla.
  • the reduction is preferably performed using NaCNBH.
  • the efficiency of the hybridization is advantageously improved by providing a degree of freedom between the electrode and the biomolecule (for example, a nucleic acid molecule) by crosslinking with an aminosilane and a crosslinker. It is also possible to work.
  • the method of crosslinking any method known in the art can be used as described elsewhere in this specification.
  • the invention is a method for detecting an interaction with a biomolecule.
  • detection can be performed by applying a voltage between the source and drain electrodes or the gate of the IS-FET and measuring the current flowing between the source and the drain.
  • IV characteristic can be measured by any electric signal detection means. It is understood that such detection means are described elsewhere herein, and that any of the forms described herein under “sensors” can be used.
  • the expression form of the IV characteristic used in the present invention includes, but is not limited to, a static characteristic saturation current value, a transfer characteristic threshold voltage, and the like. The difference between these values can be expressed by the increase and decrease of the current value and the shift (positive or negative) of the IV characteristic curve, respectively.
  • any biomolecule can be used as the biomolecule used in the present invention, and preferably, a nucleic acid is used.
  • the sample to be detected in the present invention may be a sample containing a molecule that interacts with a nucleic acid or predicted to contain a molecule that interacts with a nucleic acid, It is understood that blood, urine) and the like can be used.
  • the biomolecule used in the detection method of the present invention contains PNA.
  • the sample to be detected contains a force containing or predicted to contain nucleic acid, or a substance interacting with nucleic acid. It is preferred that the force be predicted to include.
  • the biomolecule used includes a nucleic acid
  • the sample to be detected includes a molecule that interacts with the nucleic acid.
  • the field-effect transistor is a p-type transistor, and the decrease in the static characteristic saturation current value of the IV characteristic or the positive shift of the transfer characteristic threshold voltage indicates that the nucleic acid and the molecule interacting with the nucleic acid are hybridized. Indicates that you have done so.
  • the correlation between the shift and the increase / decrease of the current value and the interaction can be performed by creating a standard curve once. It should be noted that in the present invention, the range of increase and decrease of the current value and the shift width of the shift are far improved compared with the case of using the conventional silicon oxide. Alternatively, it should be noted that, particularly when PNA is used, the measurement is performed in the absence of charge, and thus the measurement sensitivity of charged DNA has been dramatically increased.
  • the present invention provides: A) a field-effect transistor in which a gate electrode containing a biomolecule and a non-silicon oxide is integrated on a semiconductor element; and B) the field-effect transistor.
  • the gate electrode, the field effect transistor, and the electric signal detecting means used in this system may use any form described in detail in the “gate electrode”, “field effect transistor”, “sensor” and the like herein.
  • detection can be performed by applying a voltage between the source and drain electrodes or the gate of the IS-FET and measuring the current flowing between the source and the drain.
  • the container for accommodating the sample can be used with any container as long as it can accommodate the sample and is arranged so that the field effect transistor can be exposed.
  • the IV characteristic calculation means used in the present invention also uses a means that can calculate a current value and a voltage value from an electric signal, calculate the relationship between them, and perform mathematical processing as necessary. Any means can be used as long as it is possible.
  • a computer equipped with a CPU, input means, output means, storage means, display means, etc. can be used. It is not limited to these.
  • Such a detection system of the present invention is configured, for example, as illustrated in FIG.
  • the semiconductor element portion of the IS-FET is exemplified in the upper left.
  • a plan view of a chip in a 4 ⁇ 4 configuration is shown.
  • On the right is an example of detection at the IS-FET.
  • a schematic diagram for detecting a mismatch between a single strand (SS-DNA) and a double strand (DS-DNA) is shown. It is understood that charge transfer can be easily observed by redox of iron ferricyanide.
  • D d is the relative comparison of I-V between single and double stranded
  • Such a system further includes a means for calculating information on an interaction with a biomolecule based on the IV characteristic.
  • the present invention provides a computer program for calculating information on such an interaction with a biomolecule.
  • the methods, gate electrodes, transistors and systems of the present invention can be used, for example, in diagnostics, forensics, drug discovery (drug screening) and development, molecular biological analysis (eg, array-based nucleotide sequence analysis and array-based gene sequencing). Analysis), analysis of protein properties and function, pharmacogenomics, proteomics, environmental research, and further biological and germ analysis.
  • the method, gate electrode, transistor and system of the present invention can be used for detection of various genes, and the genes to be detected are not particularly limited.
  • Such detected genes include, for example, viral pathogens (eg, hepatitis virus (A, B, C, D, E, F, G), HIV, influenza virus, herpes group virus, adenovirus).
  • Virus human polyomavirus, human papillomavirus, human parvovirus, mumps innores, human rotavirus, enterovirus, Japanese encephalitis virus, dengue virus, rubella virus, HTLV, etc.
  • Pathogens e.g., Staphylococcus aureus, hemolytic streptococci, pathogenic Escherichia coli, Vibrio parahaemolyticus, Helicobacter pylori, Campylobacter, cholera, Shigella, Salmonella, Yersinia, Neisseria gonorrhoeae, Listeria, Leptospira, Legionella, Spirochetes, Mycoplasma pneumonia, Rickettsia, Chlamydia
  • the ⁇ (Including but not limited to), malaria, dysentery amoeba, pathogenic fungi, parasites, and fungal genes.
  • the methods, gate electrodes, transistors and systems of the present invention can also be used for inherited diseases, retinoblastoma, Wilms tumor, familial colon polyposis, neurofibromatosis, familial breast cancer, xeroderma pigmentosum , Brain tumor, P cavity cancer, esophageal cancer, stomach cancer, colon cancer, liver cancer, spleen cancer, lung cancer, thyroid tumor, breast tumor, urological tumor, male organ tumor, female organ tumor, skin tumor, bone, soft tissue tumor, leukemia , Lymphomas, solid tumors, and other neoplastic diseases.
  • the present invention can further be applied to polymorphism analysis such as RFLP and SNP analysis, analysis of base sequence, and the like.
  • polymorphism analysis such as RFLP and SNP analysis, analysis of base sequence, and the like.
  • the present invention can also be used in drug screening.
  • the present invention is also applicable to all kinds of medical examinations, such as food inspections, quarantine, pharmaceutical inspections, forensics, agriculture, livestock, fisheries, and forestry, that require biomolecule inspections.
  • medical examinations such as food inspections, quarantine, pharmaceutical inspections, forensics, agriculture, livestock, fisheries, and forestry, that require biomolecule inspections.
  • the invention also contemplates use for food safety purposes (eg, BSE testing).
  • Biochemical tests include, for example, total protein, albumin, thymol reaction, Kunkel zinc sulfate test, plasma ammonia, urea nitrogen, creatine, uric acid, total bilirubin, direct pyrilvin, GOT, GPT, cholinesterase, alkaline phosphatase, Leucine aminopeptidase, y-glutamyl transpeptidase, creatine phosphokinase, lactate dehydrogenase, amylase, sodium, potassium, chloride (chlor), total calcium, inorganic phosphorus, serum iron, unsaturated iron binding ability, serum penetration Pressure, total cholesterol, free cholesterol, HDL-cholesterol, tridalicelide, phospholipids, free fatty acids, plasma glucose, insulin, BSP retention rate, ICG disappearance rate, ICG retention rate, CSF 'total protein, CSF' sugar, Cerebrospinal fluidChlorine, urineTotal
  • the present invention can also be used for detection of a gene amplified by PCR, SDA, NASBA, or the like, in addition to a sample directly collected from a living body.
  • the target gene may be a previously electrochemically active substance, a fluorescent substance such as FITC, rhodamine, ataridine, texas red, fluorescein, an enzyme such as alkaline phosphatase, peroxidase, or glucose oxidase, a hapten, or a luminescence.
  • the sample to be examined or diagnosed by the present invention is not particularly limited, and for example, blood, serum, leukocytes, urine, stool, semen, saliva, tissue, cultured cells, sputum and the like can be used.
  • FIG. 1 shows a schematic diagram of the fabricated field-effect transistor.
  • -Aminopropyltriethoxysilane also known as APTES was purchased from Shin-Etsu Chemical (Tokyo, Japan), 25% daltaraldehyde, sodium cyanoborohydride (NaBHCN),
  • IS-FET electrodes and the like were purchased from BAS Inc. Riki.
  • a 15-mer synthetic PNA containing an ethylene glycol spacer at the N-terminus was purchased from FASMAC Co. Ltd. This PNA is NH—O— GGC AGT GCC TCA CAA
  • DNA was used as another biomolecule. This DNA is NH— (CH) GGC AG
  • the target DNA to be detected was purchased from Sigma Genosys Japan K. K. (Tokyo, Japan). This DNA had a sequence complementary to the above PNA, and the sequence was 5′-TTG TGA GGC ACT GCC (SEQ ID NO: 3).
  • This treatment mainly consists of washing, AP TES grafting, coupling reaction with glutaraldehyde and PNA fixation. This will be described in detail below.
  • the reaction schematic is shown in FIG. 2A.
  • phenylenediisothiocyanate may be used.
  • the IS-FET was immersed in an HC1: methanol (1: 2) solution for 30 minutes before the aminosilane treatment. The IS-FET was then washed with sterile deionized water.
  • this IS-FET was immersed in 10% H 2 SO 3 for 30 minutes and washed with sterile deionized water.
  • the IS-FET was immersed in boiling water for another 30 minutes.
  • the above treated IS-FET was immersed in a 1% APTES solution in 95% acetone Z water.
  • the IS-FET was washed five times with acetone and then dried at 110 ° C for 5 minutes.
  • the IS-FET treated as described above was immersed in a 5% daltaraldehyde phosphate buffer (pH 7.0, 1/15 M) at 37 ° C for 2 hours. Next, the IS-FET was washed with deionized water.
  • the IS-FET was immersed in a PNA probe solution (5 ⁇ ) at 37 ° C. for 12 hours.
  • This IS-FET with the immobilized PNA probe is transferred to a target DN with a sequence completely complementary to the PNA.
  • It was immersed in a hybridization buffer containing A (5 M) (300 mM sodium chloride, 30 mM sodium titanate ZlmM EDTA, which is referred to as 2 ⁇ SSCZEDTA buffer) at 60 ° C. for 12 hours.
  • A 5 M
  • 2 ⁇ SSCZEDTA buffer 300 mM sodium chloride, 30 mM sodium titanate ZlmM EDTA, which is referred to as 2 ⁇ SSCZEDTA buffer
  • FIG. 3 shows the schematic diagram.
  • FIG. 3 left shows a circuit diagram when the IS-FET of the present invention is used.
  • the upper right shows a real photograph of the IS-FET used.
  • a schematic diagram of the current generation of the transistor is shown.
  • a schematic diagram of shift calculation is shown.
  • FIG. 4 shows a thermal dissociation curve when equal amounts of PNA and target DNA are mixed.
  • Tm time difference
  • the PNAZ DNA Tm is presented relative to the DNA / DNA Tm. Differences due to salt concentration are also shown. 2 X SSC / lmM EDTA (NaCl: 300 mM); 0.2 X SSC / 0. ImM EDTA (NaCl: 30 mM) o
  • the Tm value is 69. C
  • the Tm value of DNA / DNA is found to be 54 ° C.
  • the Tm value decreases by 8 to 21 ° C for PNA / DNA and decreases by 4 to 16 ° C for DNAZDNA due to the mismatch. .
  • I-V characteristics which are drain-source characteristics (I-V characteristics indicate changes in sea surface potential in drain current and gate voltage measurement
  • the gate-source bias is changed from 3V to 5V, and the drain-source bias is changed from 4V to 7V by IV. Was varied.
  • 0 is the dielectric constant in a vacuum
  • is the dielectric constant of the gate insulator
  • d is the film thickness of the gate insulator.
  • SiO 3.9
  • the oxide tantalum can be efficiently dielectricized by the negative charge of the DNA.
  • ISFET using a gate insulator with a high dielectric constant like tantalum oxide is a conventional SiO
  • a gate insulator using a low dielectric constant such as 2 exhibit ideal ISFET characteristics (eg, tantalum oxide), exhibit stable operation independent of salt concentration in aqueous solution, and have very little change in measured current over time! /, Etc.
  • Electrostatic surface plasmon resonance Direct electric field— induced hybridization and denaturation in monolayer nucleic acid films and label— free discrimination oibase mismatches.
  • a DNAdiagnostic biosensor development, characterization and prefomance. Sensors and Actuators B 2000, 68, 100—108
  • FIG. 5 shows the results of the transfer characteristics obtained by evaluating the Id Vg characteristics.
  • the lower part of Fig. 5 shows the result of logarithmic representation of this and the result of plotting Id 1/2 ZA 1/2 .
  • PNA is a non-charged artificial nucleic acid molecule having a backbone of 2-aminoethyldaricin, which is more resistant to hybridization than DNA in terms of thermal stability, base sequence selectivity, and salt concentration independence. Excellent, and because the IS FET is sensitive to changes in the surface potential at the electrode Z solution interface, a biosensor that combines both the PNA and the IS-FET efficiently and directly changes before and after hybridization. Can be expected to be detected. IS-F ET gate surface After introducing the aminosilane derivative into the Ta O proton-sensitive membrane,
  • the PNA was immobilized in combination with a crosslink with a hydride. Thereafter, a hybridization reaction with the complementary strand DNA was performed, and the IV characteristics before and after the hybridization were measured. Result Hybridization The static characteristic saturation current decreases by 100 A due to the Yong reaction, and the transfer characteristic threshold voltage is 170 m.
  • Figure 7 shows the results of the static characteristics obtained by evaluating the Id-Vd characteristics.
  • the current values show the experimental results for both ssPNA and dsPNAZDNA.
  • Si Since the Si peak increases, Si is coupled to TaO by silane coupling.
  • An IS-FET device was arrayed. Elements of the same size are grouped in pairs, and 16 elements are arrayed in 8 sizes.
  • the accuracy of the measurement obtained earlier is improved. Improve. As a result, reproducibility and measurement accuracy were further improved.
  • eight types of DNA having different sequences eight types of measurement or screening can be performed at the same time.
  • the DNA is abnormally arranged to produce an IS-FET type DNA chip.
  • An example of the fabrication is shown in FIG.
  • DNA is immobilized on individual IS-FETs in an array using an inkjet device (for example, a power source such as Canon is also available).
  • an inkjet device for example, a power source such as Canon is also available.
  • the method is based on the method described above, in which a silane coupling solution is injected from inkjet onto individual IS-FETs, a crosslinker solution is injected, and finally a biological solution such as DNA is injected. I do.
  • the present invention is applicable to information devices such as sensors using biomolecules.
  • the present invention allows devices in the field of electronic information to be made using biomolecules.
  • the present invention can be applied to a diagnostic device or the like by using a molecule related to a disease as a biomolecule.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 簡便に、効率よく生体分子との相互作用を検出するための技術を開発すること。DNAなどの核酸分子を簡便に、効率よく検出する技術を開発すること。  非ケイ素酸化物を用いたゲート電極に生体分子を固定することができる技術を見出したことによって上記課題は解決された。従って、本発明は以下を提供する。生体分子と、非ケイ素酸化物とを含む、ゲート電極;生体分子が固定された、非ケイ素酸化物を含むゲート電極を作製する方法であって、A)非ケイ素酸化物を含むゲート電極を提供する工程;B)該非ケイ素酸化物にアミノシラン含有物質を結合させる工程;C)該アミノシラン含有物質と、該アミノシラン含有物質のアミノ基と反応し得るクロスリンカーを結合させて中間体を形成工程;およびD)該中間体に生体分子を結合させる工程、を包含する、方法。

Description

生体分子に関する形態及び情報を IS— FETを利用して検出する測定法お よびシステム 技術分野
[0001] 本発明は、概して、半導体の分野にある。より詳細には、本発明は、半導体素子を 用いて生体分子を測定するための方法およびシステムに関する。
背景技術
[0002] 生体分子を、半導体技術を用いて測定および検出するための技術開発が近年盛 んである。特に、 DNAデバイスなどの、バイオ技術とナノテク技術との融合技術の研 究開発が盛んに行われて 、る。
[0003] 生体分子を測定するためには、例えば、ハイブリダィゼーシヨンなどの生体特異的 反応を利用することが多 ヽ。塩基の正確な対合によって DNAが 2本鎖を形成するハ イブリダィゼーシヨンプロセスは、バイオテクノロジーの分野における重要な反応であ る。この反応を効率的に利用した生体情報デバイスは、ポストゲノムシークェンス時代 のキーテクノロジ一として注目されている。デバイスの機能および不均一系のノ、イブリ ダイゼーシヨン反応の効率的分子認識を行う遺伝子検出システムの開発に注目が集 まっている。
[0004] 従来開発されてきた遺伝子検出システムには、蛍光標識法、 QCM法(=水晶発振 子マイクロバランス測定法(Quarts Crystal Microbalance);水晶振動子の電極 表面に物質が付着するとその質量に応じて共振周波数が変動する)、 SPR法 (表面 プラズモン共鳴法)、電気化学的検出法等が挙げられる。中でも、電気化学的遺伝 子検出法は、システムが簡単であること、シグナル応答が速い、さらに低価格化が可 能であることなど力も近年実用化に向けた開発が活発になっている。
[0005] 電気化学的な手法には、酸化還元活性分子、酵素標識、金属粒子を利用した方 法などマーカー分子の電気化学シグナルを検出する方法が中心に研究が行われて いる。 DNAの構成分子そのものの酸ィ匕還元活性などを利用した方法、電極界面の 表面ポテンシャルの変化をシグナルとして捉えたダイレクトな遺伝子検出法の開発も 近年報告されている。
[0006] IS— FETは、ゲート絶縁体 (インシュレーター) Z電極近傍、界面の表面ポテンシャ ルの変化にセンシティブなデバイスとして知られており、種々のデバイスの開発が報 告されている (非特許文献 1一 2および特許文献 1一 7)。生体分子への応用が報告 されている力 その感度 '取り扱いには、まだまだ問題が多い。
[0007] 例えば、非特許文献 1では、ケィ素表面をアルキルィ匕して DNAを結合させた素子 を使用している力 この形態の素子では、サンプルを常に流しておく必要があり、複 雑な構成を必要とする。
[0008] 非特許文献 2でもまた、ゲート電極に金属を使用した素子を使用する。この形態の 素子では、サンプルを常に流動状態を維持しておく必要があり、複雑な構成、手順を 必要とする。
[0009] 特許文献 1もまた、ケィ素酸ィ匕物を使用した FETに生体分子を結合させた半導体 を利用したバイオセンサを開示する。しかし、ケィ素酸ィ匕物を用いた FETは、感度が 低いことが指摘されている。
[0010] 特許文献 2には、 DNAを利用したナノデバイスが開示されている。しかし、酸ィ匕物 を素子には使用していない。
[0011] 特許文献 3には、 DNAを表面に結合した金属粒子がゲート絶縁膜に結合した素子 が開示されている。しかし、金属粒子がゲート絶縁膜に結合する方法では、結合が安 定せず、その取り扱いも不安定である。
[0012] 特許文献 4には、 FETに生体分子を用いた回路が記載されているが、生体分子は ケィ素酸ィ匕物に結合されており、上記と同様の問題が生じる。
[0013] 特許文献 5には、電極に DNAプローブが結合した検査装置が開示されている。し かし、この装置は電気化学発光の検出に基づいており、電流電圧特性を検出するも のではない。
[0014] 特許文献 6には、核酸配列決定のために電界効果トランジスタを利用する技術が記 載されているが、ゲート電極に孔を空ける構造を記載するのみであり、ゲート電極自 体には改良がなされて ヽな ヽ。
[0015] 特許文献 7には、電気化学法を用いたノィォマイクロアレイが記載されているが、ゲ ート電極に関する改良は何ら記載されて 、な 、。
[0016] 特許文献 8には、分子化合物のハイブリダィゼーシヨンを定量ィ匕するためのシステ ムが記載されている力 ここで使用されている担体はガラスなどのケィ素酸ィ匕物が例 示されているのみである。
[0017] 特許文献 9は、半導体センシングデバイスを開示する。ここでは、シリコン基板に有 機単分子修飾表面を載せて生体分子を含ませたチップが記載されて ヽる。しかし、 ニ酸ィ匕ケィ素より誘電率の高い絶縁体が使用されているかどうか記載されておらず、 し力も、酵素が使用されているだけである。
[0018] 特許文献 10は、 ZnOという低誘電率の材料を用いたセンサを開示する。従って、 二酸化ケイ素より誘電率の高 、絶縁体を用いたゲート電極の使用は記載されて 、な い。
[0019] 特許文献 11は、タンパク質の固定方法を記載する。しかし、生体分子と、二酸化ケ ィ素より誘電率の高い絶縁体である非ケィ素酸ィ匕物とを含む、ゲート電極は記載され ていない。また、核酸については何ら記載していない。
[0020] 特許文献 12は、酸ィ匕タンタル水素イオン感知膜を有する感イオン電界効果トランジ スタの製造法を記載する。しかし、生体分子と、二酸化ケイ素より誘電率の高い絶縁 体である非ケィ素酸ィ匕物とを含む、ゲート電極は記載されて ヽな ヽ。
[0021] 特許文献 13は、半導体バイオセンサを記載する。しかし、生体分子と、二酸化ケィ 素より誘電率の高い絶縁体である非ケィ素酸ィ匕物とを含む、ゲート電極は記載されて いない。
[0022] 非特許文献 3は、 FETセンサを記載する。しかし、生体分子と、二酸化ケイ素より誘 電率の高 、絶縁体である非ケィ素酸ィ匕物とを含む、ゲート電極は記載されて 、な ヽ 非特許文献 1 : Wei F. et al. , Biosensors and Bioelectronics 18 (2003) 1 157-1163
非特許文献 2 :KIM D-S. et al. , Jpn. J. Appl. Phys. Vol. 42 (2003) 4111— 4115
非特許文献 3 :電気化学および工業物理化学 Vol. 50、 No. 1、ρρ64— 71. (1982) 特許文献 1:特開 2003—329638
特許文献 2:特開 2003— 37313
特許文献 3:特開 2003—322633
特許文献 4:特開 2004— 7572
特許文献 5:国際公開 00Z01848パンフレット
特許文献 6 :特表 2003— 531592
特許文献 7:特開 2003— 90818
特許文献 8:特表 2003— 526096
特許文献 9:特開 2004— 4007
特許文献 10 :国際公開 03Z104789パンフレット
特許文献 11:特開平 6— 9698
特許文献 12:特開平 5 - 107224
特許文献 13:特開 2003—329638
発明の開示
発明が解決しょうとする課題
[0023] 本発明は、簡便に、効率よく生体分子との相互作用を検出するための技術を開発 することを課題とする。特に、本発明は、 DNAなどの核酸分子を簡便に、効率よく検 出する技術を開発することを課題とする。また、酸化金属と生体分子とを結合させた 基板を提供することも課題とする。
課題を解決するための手段
[0024] 本発明者らが鋭意研究を重ねた結果、本発明は、非ケィ素酸化物を用いたゲート 電極に生体分子を固定することができる技術を見出したことによって上記課題が解決 された。従って、本発明は、以下を提供する。
(1)生体分子と、非ケィ素酸ィ匕物とを含む、ゲート電極。
(2)上記非ケィ素酸ィ匕物は、酸化金属である、項目 1に記載のゲート電極。
(3)上記非ケィ素酸ィ匕物は、酸化タンタル (Ta O )、酸化カルシウム (CaO)、酸ィ匕
2 5
鉛(PbO)、酸化ストロンチウム(SrO)、酸化トリウム(ThO )、酸化アンチモン(Sb O
2 2 3
)、一酸ィ匕チタン (TiO)、二酸化チタン (TiO )、酸ィ匕ハフニウム (HfO )、酸化イツテ ルビゥム(Yb O )、酸化マグネシウム(MgO)、酸化インジウム(In O )、酸化スズ(S
2 3 2 3 ηθ )、酸化ジルコニウム(ZrO )、酸化セリウム(CeO )、酸化ニオブ(Nb O )、酸化
2 2 2 2 5 亜鉛 (ZnO)、酸ィ匕ガドリニウム(Gd O )、酸ィ匕クロム(Cr O )、酸化タングステン (W
2 3 2 3
O )、酸化銅 (I) (Cu Ο)、酸化銅 (II) (CuO)、酸ィ匕鉄 (Π) (FeO)、酸ィ匕鉄 (III) (Fe
3 2 2
O )、酸ィ匕ニッケル (NiO)、酸ィ匕ビスマス(Bi O )、酸ィ匕サマリウム(Sm O )、酸ィ匕
3 2 3 2 3 ネオジム(Nd O )、酸化バナジウム (V O )、酸化モリブデン(ΜθΟ )、酸化力ドミゥ
2 3 2 5 3 ム(CdO )、酸化マンガン(MnO )、二酸化バリウム(BaO )および一酸化バリウム(
2 2 2
BaO)力もなる群より選択される、項目 1に記載のゲート電極。
(4)上記非ケィ素酸ィ匕物は、酸化タンタル (Ta O )、一酸化バリウム (BaO)、酸化ビ
2 5
スマス (Bi O )、酸化銅 (II) (CuO)、酸ィ匕鉛 (PbO)、酸化イッテルビウム (Yb O )、
2 3 2 3 酸化ジルコニウム(ZrO )、酸化ニオブ(Nb O )および酸化ハフニウム(HfO )から
2 2 5 2 なる群より選択される、項目 1に記載のゲート電極。
(5)上記非ケィ素酸ィ匕物は、酸化タンタル (Ta O )である、項目 1に記載のゲート電
2 5
極。
(6)上記生体分子は、上記非ケィ素酸化物に固定される、項目 2に記載のゲート電 極。
(7)上記非ケィ素酸ィ匕物は膜状形態をしており、上記生体分子は、上記非ケィ素酸 化物膜上に固定される、項目 6に記載のゲート電極。
(8)上記非ケィ素酸化物と、上記生体分子とは、シランカップリング剤により結合され る、項目 1に記載のゲート電極。
(9)上記非ケィ素酸化物と、上記生体分子とは O - (SiR R )-(CH ) NH (CH
1 2 2 n 2
) -NH-0-(CH ) -O-CH NH—というリンカ一で結合され、ここで、 n、 mおよ m 2 k 2
び kはそれぞれ独立して任意の正の整数であり、 Rおよび Rは、独立して、任意の
1 2
置換基または上記リンカ一と同じ構造を有する別のリンカ一の Si原子である、項目 8 に記載のゲート電極。
(10)上記生体分子は、他の生体分子と特異的相互作用をする能力を有する、項目 1に記載のゲート電極。
(11)上記生体分子は、核酸、タンパク質、糖、脂質およびそれらの複合体からなる 群より選択される、項目 1に記載のゲート電極。
(12)上記生体分子は、核酸を含む、項目 1に記載のゲート電極。
(13)上記生体分子は、 DNA、 RNAおよび PNA力 なる群より選択される少なくとも 1つの分子を含む、項目 1に記載のゲート電極。
(14)上記生体分子は、 PNAを含む、項目 1に記載のゲート電極。
(15)上記生体分子は、一本鎖または二本鎖の形態で存在する、項目 1に記載のゲ ート電極。
(16)上記生体分子は、他の生体分子とハイブリダィゼーシヨンする能力を有する、項 目 1に記載のゲート電極。
(17)上記生体分子は、リガンドーレセプター相互作用する能力または抗原抗体反応 する能力を有する、項目 1に記載のゲート電極。
(18)上記生体分子は、無電荷またはほとんど電荷がないことを特徴とする、項目 1に 記載のゲート電極。
(19)上記生体分子は、疾患または障害の診断のためのプローブである、項目 1に記 載のゲート電極。
(20)上記生体分子は、 1塩基多型(SNPs)を検出するためのプローブである、項目 1に記載のゲート電極。
(21)生体分子と、非ケィ素酸ィ匕物とを含むゲート電極が、半導体素子上に一体化さ れた、電界効果トランジスタ。
(22)上記半導体素子は、基板と、ソース部と、ドレイン部とを含む、項目 21に記載の 電界効果トランジスタ。
(23)上記トランジスタは、 pチャネル型または nチャネル型であり、そして、ェンハンス メント型またはデイブリシヨン型である、項目 21に記載の電界効果トランジスタ。
(24)上記ソース部および上記ドレイン部は、絶縁体で覆われる、項目 21に記載のト ランジスタ。
(25)さらに、電極を備える、項目 21に記載のトランジスタ。
(26)上記ソース部からの電流を引き出すソース引き出し電極、上記ドレイン部からの 電流を引き出すドレイン引き出し電極、上記基板からの電流を弓 Iき出す基板引き出し 電極、上記ゲート電極由来の電流を引き出すためのゲート引き出し電極をさらに備え る、項目 21に記載のトランジスタ。
(27)上記ゲート電極は、電解液に浸される、項目 21に記載のトランジスタ。
(28)上記ゲート引き出し電極は、 AgZAgClを含む、項目 21に記載のトランジスタ。
(29)上記基板は、 Siを含む、項目 21に記載のトランジスタ。
(30)上記ゲート電極は、項目 2— 20のいずれか 1項に記載の特徴をさらに有する、 項目 21に記載のトランジスタ。
(31)以下:
A)生体分子と、非ケィ素酸ィ匕物とを含むゲート電極が半導体素子上に一体化された 、電界効果トランジスタと、
B)電気信号検出手段
とを備える、上記生体分子との相互作用を検出するためのセンサ。
(32)生体分子が固定された、非ケィ素酸化物を含むゲート電極を作製する方法で あって、
A)非ケィ素酸ィ匕物を含むゲート電極を提供する工程;
B)上記非ケィ素酸ィ匕物にアミノシラン含有物質を結合させる工程;
C)上記アミノシラン含有物質と、上記アミノシラン含有物質のァミノ基と反応し得るク ロスリンカーを結合させて中間体を形成工程;および
D)上記中間体に生体分子を結合させる工程、
を包含する、方法。
(33)上記アミノシラン含有物質は、 ω,一アミノアルキルトリアルコキシシランを含む、 項目 32に記載の方法。
(34)上記アミノシラン含有物質は、 3'—ァミノプロピルトリエトキシシランを含む、項目 32に記載の方法。
(35)上記結合の前に、上記酸化金属を酸処理する工程をさらに包含する、項目 32 に記載の方法。
(36)上記酸ィ匕金属は、酸化タンタル (Ta O )、酸ィ匕カルシウム(CaO)、酸ィ匕鉛 (Pb
2 5
0)、酸化ストロンチウム(SrO)、酸化トリウム(ThO )、酸化アンチモン(Sb O )、一 酸化チタン (TiO)、二酸化チタン (TiO )、酸化ハフニウム(HfO )、酸化イツテルビ
2 2
ゥム(Yb O )、酸化マグネシウム(MgO)、酸化インジウム(In O )、酸化スズ(SnO
2 3 2 3 2
)、酸化ジルコニウム(ZrO )、酸化セリウム(CeO )、酸化ニオブ (Nb O )、酸化亜
2 2 2 5
鉛 (ZnO)、酸ィ匕ガドリニウム(Gd O )、酸ィ匕クロム(Cr O )、酸化タングステン (WO
2 3 2 3 3
)、酸化銅 (I) (Cu 0)、酸化銅 (Il CuO)、酸化鉄 (II) (FeO)、酸ィ匕鉄 (III) (Fe O )
2 2 3
、酸ィ匕ニッケル (NiO)、酸ィ匕ビスマス(Bi O )、酸化サマリウム(Sm O )、酸化ネオ
2 3 2 3
ジム(Nd O )、酸化バナジウム(V O )、酸化モリブデン(MoO )、酸化カドミウム(C
2 3 2 5 3
dO )、酸化マンガン(MnO )、二酸化バリウム(BaO )および一酸化バリウム(BaO)
2 2 2
力 なる群より選択される、項目 32に記載の方法。
(37)上記クロスリンカ一は、カルポジイミド類、アルデヒド類またはイミドエステル類を 含む、項目 32に記載の方法。
(38)上記クロスリンカ一は、アルデヒド含有基を含む、項目 32に記載の方法。
(39)上記クロスリンカ一は、ダルタルアルデヒドを含む、項目 32に記載の方法。
(40)上記架橋において、紫外線照射が使用される、項目 32に記載の方法。
(41)上記生体分子は、核酸を含む、項目 32に記載の方法。
(42)上記生体分子は、 DNAまたは PNAを含む、項目 32に記載の方法。
(43)上記生体分子は、 PNAを含む、項目 32に記載の方法。
(44)還元する工程をさらに包含する、項目 32に記載の方法。
(45)上記還元は、 NaCNBHを用いて行われる、項目 44に記載の方法。
3
(46)生体分子との相互作用を検出するための方法であって、
A)上記生体分子と、非ケィ素酸化物とを含む、ゲート電極が半導体素子上に一体 化された、電界効果トランジスタを提供し、電流-電圧 (I-V)特性を測定する工程;
B)上記電界効果トランジスタと、相互作用が生じるに十分な条件下でサンプルとを接 触させる工程;
C)上記接触後に、上記電界効果トランジスタの I V特性を測定する工程;および
D)上記接触前の I V特性と、上記接触後の I V特性とを比較して、上記 I V特性同 士の相違から上記生体分子との上記相互作用を算出する工程、
を包含する、方法。 (47)上記 I - V特性は、静特性飽和電流値または伝達特性閾値電圧を含む、項目 4 6に記載の方法。
(48)上記生体分子は、核酸を含み、上記サンプルは、核酸と相互作用する分子を 含む、項目 46に記載の方法。
(49)上記生体分子は、 PNAを含み、上記サンプルは、核酸を含む、項目 46に記載 の方法。
(50)上記生体分子は、核酸を含み、上記サンプルは、核酸と相互作用する分子を 含み、上記電界効果トランジスタは p型トランジスタであり、上記 I V特性の静特性飽 和電流値の減少または伝達特性閾値電圧の正シフトは、上記核酸と上記核酸と相 互作用する分子とがハイブリダィゼーシヨンしたことを示す、項目 46に記載の方法。
(51)上記検出は、遺伝子状態の異常またはそれに起因する疾患もしくは障害を検 出することを目的とする、項目 46に記載の方法。
(52) A)生体分子と、非ケィ素酸ィ匕物とを含むゲート電極が半導体素子上に一体ィ匕 された、電界効果トランジスタと、
B)上記電界効果トランジスタが露出するように配置された、サンプルを収容するため の容器と、
C)上記電界効果トランジスタと電気的に結合する電気信号検出手段と、
D)上記電気信号検出手段と電気的に結合する電流 電圧 (I V)特性を算出する手 段、
とを備える、生体分子との相互作用を検出するためのシステム。
(53)さらに、 I V特性に基づいて、上記生体分子との上記相互作用を算出する手段 を備える、項目 52に記載のシステム。
(54)上記検出は、遺伝子状態の異常またはそれに起因する疾患もしくは障害を検 出することを目的とし、上記相互作用と、上記遺伝子状態とを相関付けるための手段 を備える、項目 52に記載のシステム。
好ま ヽ実施形態では、本発明は、この電気化学的遺伝子検出法「ダイレクト遺伝 子検出法」に応用される。デバイスには電界効果トランジスタを用い、またプローブ分 子にはペプチド核酸分子を用いることができる。 [0026] ペプチド核酸分子は、 2—アミノエチルダリシン骨格を有する実質的に無電荷の人 ェ核酸分子である。 DNAZDNAの 2本鎖と比較すると、 PNAZDNAは高い塩基 配列選択性と熱安定性、さらに低塩濃度においてもハイプリ効率に影響が無ぐ酵素 耐性があることからバイオテクノロジーの分野において実用的な分子として注目され ている。 IS— FETは、ゲートインシュレーター Z電極近傍、界面の表面ポテンシャル の変化にセンシティブなデバイスとして知られており、 PNAをゲート部に固定すること により DNAのハイプリ反応を効率的かつダイレクトに検出することが期待できる。
[0027] 本発明は、非ケィ素酸ィ匕物 (例えば、酸化金属)薄膜で構成された IS— FETのゲー ト電極上に、核酸をシランカップリング剤などで固定したセンサが提供され、これによ り、 IS— FETのソース—ドレイン電極間、またはゲートに電圧を印加し、ソース'ドレイン 間に流れる電流を測定することによって検出を行うことが可能になる。
[0028] 従って、本発明のこれらおよび他の利点は、添付の図面を参照して、以下の詳細な 説明を読みかつ理解すれば、当業者には明白〖こなることが理解される。
発明の効果
[0029] 本発明によって、効率よぐ簡便に、生体分子の検出を行うことができる。特に、従 来方法では、標識を付したり、生体分子を流しながら測定することが必要であつたの に対して、本発明によって、ノツチ法で測定をすることができるようになった。また、従 来のケィ素酸ィ匕物を用いた電極に比べて、感度が良 、検出を行うことができるように なった。また、 PNAを用いた場合、電気特性の評価の感度が顕著に増加した。
[0030] 本発明によれば、酸ィ匕タンタルのように誘電率の高!、ゲート絶縁体を用いた ISFE Tは、従来の SiOなどの低い誘電率を利用したゲート絶縁体に比べて、種々な測定
2
において有利である。例えば、このような材料では、理想的な ISFET特性を示し (例 えば、酸化タンタル)、水溶液中の塩濃度に依存しない安定した動作示し、測定され る電流値の経時による変化が極めて少ないなどの効果がある。
[0031] 本発明によれば、予め核酸などの生体分子を標識することなぐ核酸などの生体分 子の相互作用(例えば、ハイブリダィゼーシヨン)を簡便に測定することができる。また 、 FET素子のような半導体を用いることにより、従来の蛍光顕微鏡などの手段を必要 とせず、効率よく電気信号としてこれらの相互作用を迅速に測定することができ、臨 床検査現場において、簡便かつ迅速な測定を行うことが可能になる。
[0032] 特に、核酸は、負電荷を有することから、核酸を FETなどのゲート上に固定して負 電荷の変化量によって、ハイブリダィゼーシヨンなどの有無の検出を行うことができる 。本発明は、半導体の素子を用いることによって、核酸のハイブリダィゼーシヨン、一 塩基多型の検出などの生体分子の形態変化および情報内容の検出を行うことができ る。
図面の簡単な説明
[0033] [図 1]本発明のゲート電極およびその周辺(半導体素子)の模式例を示す。
[図 2A]本発明のゲート電極に生体分子を結合させる、 3'—ァミノプロピルトリエトキシ シラン (APTES)を用いたスキーム例を示す。
[図 2B]本発明のゲート電極に生体分子を結合させる、フエ-レンジイソチオシァネー トを用いたスキーム例を示す。
[図 3]本発明のトランジスタを用いた場合の回路例を示す。
[図 4]DNAと PNAとの Tm関係を示す。
[図 5]実施例 1の伝達特性閾値電圧の結果を示す。
[図 6]実施例 6におけるブランクの結果を示す。
[図 7]図 7は、実施例 2の静特性飽和電流値の結果を示す。
[図 8]図 8は、実施例 1および 2の解離反応後の数値変化を示す。
[図 9]図 9は、 PNAの代わりに DNAをプローブとして用いた実施例 3の結果を示す。
[図 10]IS-FETを用いたバイオセンサの作製例を示す。
[図 11]IS— FETを用いたゲート電極の作製例を示す。
[図 12]Id— Vd特性の例(ssDNAと dsDNAとの比較)を示す。
[図 13]実施例 4において行った XPSスペクトルおよび IS— FET特性の結果を示す。
[図 14]IS— FET型 DNAチップの作製例を示す。
配列表の説明
[0034] 配列番号 1は、実施例 1で作製した 15マー合成 PNA
配列番号 2は、実施例 1で作製した 15マー合成 DNA
配列番号 3は、実施例 1で使用した、検出対象となる、標的 DNA 発明を実施するための最良の形態
[0035] 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及 しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形 の冠詞、形容詞などは、特に言及しない限り、その複数形の概念をも含むことが理解 されるべきである。また、本明細書において使用される用語は、特に言及しない限り、 当該分野で通常用いられる意味で用いられることが理解されるべきである。したがつ て、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技 術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味 を有する。矛盾する場合、本明細書 (定義を含めて)が優先する。
[0036] (用語の定義)
以下に本明細書において特に使用される用語の定義を列挙する。
[0037] 本明細書において使用される用語「生体分子」とは、生体に関連する分子をいう。
本明細書において「生体」とは、生物学的な有機体をいい、動物、植物、菌類、ウイ ルスなどを含むがそれらに限定されない。従って、本明細書では生体分子は、生体 力も抽出される分子を包含するが、それに限定されず、生体に影響を与え得る分子( 例えば、人工 DNA、 PNAなど、生体力 抽出される核酸と相互作用する分子)であ れば生体分子の定義に入る。したがって、コンビナトリアルケミストリで合成された分 子、医薬品として利用され得る低分子 (たとえば、生体レセプターと相互作用し得る 低分子リガンドなど)もまた生体への効果が意図され得る力ぎり、生体分子の定義に 入る。そのような生体分子には、タンパク質、ポリペプチド、オリゴペプチド、ペプチド 、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、 cDNA、ゲノム D NAのような DNA、 mRNAのような RNA、改変体である PNAを含む)、ポリサッカラ イド、オリゴサッカライド、脂質、低分子 (例えば、ホルモン、リガンド、情報伝達物質、 有機低分子など)、これらの複合分子 (糖脂質、糖タンパク質、リポタンパク質など)な どが包含されるがそれらに限定されない。生体分子にはまた、細胞への導入が企図 される限り、細胞自体、組織の一部も包含され得る。通常、生体分子は、核酸、タン パク質、脂質、糖、それらの複合体などであり得る。好ましくは、生体分子は、核酸 (D NA、 RNA、 PNAなど)またはタンパク質を含む。別の好ましい実施形態では、生体 分子は、核酸 (例えば、ゲノム DNAまたは cDNA、あるいは PCRなどによって合成さ れた DNA、 PNAなど)である。
[0038] 本明細書において使用される用語「タンパク質」、「ポリペプチド」、「オリゴペプチド」 および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸 のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよぐ環状であって もよい。ポリペプチドに含まれるアミノ酸は、天然アミノ酸であっても非天然アミノ酸で あってもよぐ改変されたアミノ酸 (例えば、糖鎖を結合し得る官能基を含むアミノ酸) であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとアセンブルされ たものを包含し得る。この用語はまた、天然または人工的に改変されたアミノ酸ポリマ 一も包含する。そのような改変としては、例えば、ジスルフイド結合形成、グリコシルイ匕 、脂質化、ァセチル化、リン酸ィ匕または任意の他の操作もしくは改変 (例えば、標識 成分との結合体化)。この定義にはまた、例えば、アミノ酸の 1または 2以上のアナログ を含むポリペプチド (例えば、非天然のアミノ酸などを含む)、ペプチド様ィ匕合物(例 えば、ぺプトイド)および当該分野において公知の他の改変が包含される。
[0039] 本明細書において使用される用語「核酸」または「核酸分子」は、互換可能に用い られ、塩基部分を有するモノマー(代表的には、ヌクレオチドまたはその改変体)の任 意の長さの重合体をいう。ここで、塩基とは、 DNA、 RNAなどのヌクレオチドのピリミ ジン核ある 、はプリン核をもった通常は塩基性である部分を 、う。ヌクレオチドの糖部 分および燐酸部分と区別して塩基とよぶ。プリン塩基およびピリミジン塩基に大別さ れ、プリン塩基にはアデニン、グァニンがあり、ピリミジン塩基にはシトシン、ゥラシル およびチミンなどがあるがそれに限定されない。核酸は、代表的には一本鎖、二本鎖 などの形態で存在し得る。
[0040] 本明細書において使用される核酸は、「ポリヌクレオチド」、「オリゴヌクレオチド」、「 オリゴヌクレオチド誘導体」、「ポリヌクレオチド誘導体」、「DNA」、「RNA」、「PNA」 などを含む。従って、核酸は、任意の長さのヌクレオチドまたはヌクレオチド誘導体の ポリマーであるといえる。
[0041] 本明細書にぉ 、て「ヌクレオチド」とは、糖部分がリン酸エステルになって 、るヌクレ オシドをいう。本明細書において「ヌクレオシド」とは、塩基と糖とが N—グリコシド結合 をしたィ匕合物をいう。核酸は、塩基がピリミジン塩基またはプリン塩基のヌクレオチド X ピリミジンヌクレオチドおよびプリンヌクレオチド)の重合体 (ポリヌクレオチド)である。糖 部分が D—リボースのものをリボヌクレオチドと!/ 、、 RNAの加水分解によって得られ る.糖部分が D— 2,ーデォキシリボースのものをデォキシリボヌクレオチドといい、 DNA の酵素分解によって得られる。天然のものでも非天然のものでもよい。「ヌクレオチド 誘導体」または「ヌクレオチドアナログ」とは、天然に存在するヌクレオチドとは異なる 力 Sもとのヌクレオチドと同様の機能を有するものを 、う。そのような誘導体ヌクレオチド およびヌクレオチドアナログは、当該分野において周知である。そのような誘導体ヌク レオチドおよびヌクレオチドアナログの例としては、ホスホロチォエート、ホスホノレアミ デート、メチルホスホネート、キラルメチルホスホネート、 2—0—メチルリボヌクレオチド 、ペプチド 核酸 (PNA)が含まれる力 これらに限定されない。
本明細書にぉ 、て「ペプチド核酸」または「PNA」とは、ヌクレオチドのリン酸骨格が 無電荷のペプチド様骨格 (代表的に、 N— (2—アミノメチル) グリシン単位)に置き換 えられ、各々の単位がアミド結合で結合された核酸をいう。代表的に以下のような式 の構造を有する。用語 PNAはモノマーおよびポリマーの両方を指す。 PNAは一本 鎖であっても二本鎖であってもよ!/、。
[化 1]
Figure imgf000017_0001
本明細書にぉ 、て「オリゴヌクレオチド誘導体」または「ポリヌクレオチド誘導体」とは 、ヌクレオチドの誘導体を含むか、またはヌクレオチド間の結合が通常とは異なるオリ ゴヌクレオチドまたはポリヌクレオチドをいい、互換的に使用される。そのようなオリゴ ヌクレオチドとして具体的には、例えば、 2'— O—メチルーリボヌクレオチド、オリゴヌク レオチド中のリン酸ジエステル結合がホスホロチォエート結合に変換されたオリゴヌク レオチド誘導体、オリゴヌクレオチド中のリン酸ジエステル結合が N3, -P5,ホスホロ アミデート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリボー スとリン酸ジエステル結合とがペプチド核酸結合に変換されたオリゴヌクレオチド誘導 体(ペプチド核酸 =PNAともいう)、オリゴヌクレオチド中のゥラシルが C— 5プロピ-ル ゥラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のゥラシルが C 5チアゾールゥラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中 のシトシンが C 5プロピ-ルシトシンで置換されたオリゴヌクレオチド誘導体、オリゴヌ クレオチド中のシトシンがフエノキサジン修飾シトシン(phenoxazine— modified cy tosine)で置換されたオリゴヌクレオチド誘導体、 DNA中のリボースが 2,ー0—プロピ ルリボースで置換されたオリゴヌクレオチド誘導体およびオリゴヌクレオチド中のリボ ースが 2,ーメトキシエトキシリボースで置換されたオリゴヌクレオチド誘導体などが例 示される。他にそうではないと示されなければ、特定の核酸配列はまた、明示的に示 された配列と同様に、その保存的に改変された改変体 (例えば、縮重コドン置換体) および相補配列を包含することが企図される。具体的には、縮重コドン置換体は、 1 または複数の選択された (または、すべての)コドンの 3番目の位置が混合塩基およ び Zまたはデォキシイノシン残基で置換された配列を作成することにより達成され得 る(Batzerら、 Nucleic Acid Res. 19: 5081 (1991) ; Ohtsukaら、 J. Biol. Che m. 260 : 2605— 2608 (1985) ;Rossoliniら、 Mol. Cell. Probes 8 : 91—98 (199 4) )。本発明では、このような配列も使用され得ることが理解される。
[0044] 核酸の代表例としては、例えば、 cDNA、 mRNA、ゲノム DNAなどが挙げられるが それらに限定されない。核酸は、環状 (例えば、環状ベクター、プラスミドなど)または 直鎖状 (例えば、 PCR断片)で提供され得る。本発明では直鎖であることが好ましい
[0045] 本明細書において、「遺伝子」とは、遺伝形質を規定する因子をいう。通常染色体 上に一定の順序に配列している。遺伝子は、通常、核酸によって規定される。従って 、核酸の一部または全部は、遺伝子をコードするといえる。遺伝子のうち、タンパク質 の一次構造を規定するものを構造遺伝子と!/ ヽ、その発現を左右するものを調節遺 伝子 (たとえば、プロモーター)という。本明細書では、遺伝子は、特に言及しない限 り、構造遺伝子および調節遺伝子を包含する。本明細書では、「遺伝子」は、「ポリヌ クレオチド」、「オリゴヌクレオチド」、「核酸」、「核酸分子」ならびに Zまたは「タンパク 質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」を指すことがある。
[0046] 本明細書にぉ 、て、「遺伝子産物」とは、遺伝子から目的のタンパク質または RNA などの核酸の生産過程において、生産される目的のタンパク質、核酸などを指す。従 つて、本明細書においてはまた、「遺伝子産物」は、遺伝子によって発現された「ポリ ヌクレオチド」、「オリゴヌクレオチド」「核酸」および「核酸分子」ならびに Zまたは「タン パク質」「ポリペプチド」、「オリゴペプチド」および「ペプチド」を包含し得る。当業者で あれば、遺伝子産物が何たるかはその状況に応じて理解することができる。ある遺伝 子配列をコードする核酸分子はまた、「スプライス変異体 (改変体)」を包含する。同様 に、核酸によりコードされた特定のタンパク質は、その核酸のスプライス改変体により コードされる任意のタンパク質を包含する。その名が示唆するように「スプライス変異 体」は、遺伝子のオルタナティブスプライシングの産物である。転写後、最初の核酸 転写物は、異なる(別の)核酸スプライス産物が異なるポリペプチドをコードするように スプライスされ得る。スプライス変異体の産生機構は変化するが、ェキソンのオルタナ ティブスプライシングを含む。読み過し転写により同じ核酸に由来する別のポリぺプ チドもまた、この定義に包含される。スプライシング反応の任意の産物 (組換え形態の スプライス産物を含む)がこの定義に含まれる。このように本発明では、遺伝子産物の 検出も可能であることが理解される。
本明細書にぉ 、て遺伝子 (例えば、核酸配列、アミノ酸配列など)の「相同性」とは、 2以上の遺伝子配列の、互いに対する同一性の程度をいう。従って、ある 2つの遺伝 子の相同性が高いほど、それらの配列の同一性または類似性は高い。 2種類の遺伝 子が相同性を有するか否かは、配列の直接の比較、または核酸の場合ストリンジェン トな条件下でのノ、イブリダィゼーシヨン法によって調べられ得る。 2つの遺伝子配列を 直接比較する場合、その遺伝子配列間で DNA配列が、代表的には少なくとも 50% 同一である場合、好ましくは少なくとも 70%同一である場合、より好ましくは少なくとも 80%、 90%、 95%、 96%、 97%、 98%または 99%同一である場合、それらの遺伝 子は相同性を有する。本明細書において、遺伝子 (例えば、核酸配列、アミノ酸配列 など)の「類似性」とは、上記相同性において、保存的置換をポジティブ(同一)とみな した場合の、 2以上の遺伝子配列の、互いに対する同一性の程度をいう。従って、保 存的置換がある場合は、その保存的置換の存在に応じて同一性と類似性とは異なる 。また、保存的置換がない場合は、同一性と類似性とは同じ数値を示す。本発明の 技術を用いれば、このような相同性の程度も検出および定量することができる。定量 は、例えば、電流 電圧 (I V)特性の測定および相同性との相関付けによって実行 することができる。そのような類似性、相同性と I V特性とを相関付ける式は、本明細 書の記載に基づいて、当業者は作成することができることが理解される。
[0048] 人工的に合成した遺伝子を作製するための DNA合成技術および核酸ィ匕学にっ ヽ ては、例えば、 Gait, M. J. (1985) . Oligonucleotide Synthesis : A Practical Approach, IRLPress ; Gait, M. J. (1990) . Oligonucleotide Synthesis : A Practical Approach, IRL Press ; Eckstein, F. 、上 991) . Oligonucleotides and Analogues : A Practical Approac, IRL Press ; Adams, R. L. et al. "992) . The Biochemistry of the Nucleic Acids, Chapman&Hall; Sha barova, Z. et al. (1994) . Advanced Organic Chemistry of Nucleic A cids, Weinheim ; Blackburn, G. M. et al. (1996) . Nucleic Acids in Che mistry and Biology, Oxford University Press; Hermanson, G. T. (1996 ) . Bioconjugate Techniques, Academic Pressなどに, d載されており、これら は本明細書において関連する部分が参考として援用される。
[0049] PNAについては、 P. E. Nielsen, M. Egholm, R.H. Berg, and O. Buchardt Science
1991, 254, 1497— 1500 ; P. E. Nielsen, M. Egholm, in Peptide Nucleic Acids:
Protocols andApplications., Horizon Scientific Press, Norfolk, UK, 1999 ; Hiroshi Aoki, andYosnio Umezawa Trace analysis of an oligonucleotide with a specific sequenceusing PNA— based ion— channel sensors Analysts 2003, 128, 681— 685なと 参酌することができる。これらの文献は、それらすべてが本明細書において参考とし て援用される。
[0050] 本明細書にぉ 、て、「ストリンジェントな条件でハイブリダィズする核酸」とは、当該 分野で慣用される周知の条件をいう。本発明の核酸中から選択された核酸をプロ一 ブとして、コ口-一'ハイブリダィゼーシヨン法、プラーク 'ハイブリダィゼーシヨン法ある いはサザンブロットハイブリダィゼーシヨン法等を用いることにより、そのような核酸を 得ることができる。具体的には、核酸を固定した支持体、デバイスなどを用いて、 0. 7 一 1. 0Mの NaCl存在下、 65°Cでハイブリダィゼーシヨンを行った後、 0. 1— 2倍濃 度の SSC (saline— sodium citrate)溶液(1倍濃度の SSC溶液の組成は、 150m M 塩化ナトリウム、 15mM クェン酸ナトリウムである)を用い、 65°C条件下で支持 体、デバイスなどを洗浄することにより同定できる核酸を意味する。ハイブリダィゼー シヨンは、 Molecular Cloning 2nd ed. , Current Protocols in Molecular Biology, Supplement 1一 38、 DNA Cloning 1: Core Techniques, A P ractical Approach, Second Edition, Oxford University Press (1995)等 の実験書に記載されている方法に準じて行うことができる。ここで、ストリンジヱントな 条件下でノ、イブリダィズする配列からは、好ましくは、 A配列のみまたは T配列のみを 含む配列が除外される。「ハイブリダィズ可能な核酸」とは、上記ノ、イブリダィズ条件 下で別の核酸にハイブリダィズすることができる核酸を 、う。ノ、イブリダィズ可能な核 酸として具体的には、本発明で具体的に示されるアミノ酸配列を有するポリペプチド をコードする DNAの塩基配列と少なくとも 60%以上の相同性を有する核酸、好まし くは 80%以上の相同性を有する核酸、さらに好ましくは 95%以上の相同性を有する 核酸を挙げることができる。
[0051] 本明細書にぉ 、て「ハイブリダィズ可能な核酸」とは、上記ハイブリダィズ条件下で 別の核酸にハイブリダィズすることができる核酸を 、う。ノ、イブリダィズ可能な核酸とし て具体的には、配列表で表されるアミノ酸配列を有するポリペプチドをコードする DN Aの塩基配列と少なくとも 60%以上の相同性を有する核酸、好ましくは 80%以上の 相同性を有する核酸、さらに好ましくは 95%以上の相同性を有する核酸を挙げること ができる。核酸配列の相同性は、たとえば Altschulら(J.Mol.Biol.215,403—
410(1990))が開発したアルゴリズムを使用した検索プログラム BLASTを用いることに より、 scoreで類似度が示される。
[0052] 本明細書において「高度にストリンジェントな条件」は、核酸配列において高度の相 補性を有する DNA鎖のハイブリダィゼーシヨンを可能にし、そしてミスマッチを有意 に有する DNAのハイブリダィゼーシヨンを除外するように設計された条件を!、う。ハイ ブリダィゼーシヨンのストリンジエンシーは、主に、温度、イオン強度、およびホルムァ ミドのような変性剤の条件によって決定される。このようなハイブリダィゼーシヨンおよ び洗浄に関する「高度にストリンジェントな条件」の例は、 0. 0015M塩ィ匕ナトリウム、 0. 0015Mタエン酸ナ卜!;クム、 65— 68°C、または 0. 015M塩ィ匕ナ卜!;クム、 0. 00 15Mクェン酸ナトリウム、および 50%ホルムアミド、 42°Cである。このような高度にス トリンジェントな条件については、 Sambrook et al., Molecular Cloning: A Laboratory ManuaU 第 2版、 ColdSpring Harbor Laboratory(Cold Spring Harbor,N,Y.1989)、同 ¾¾ύ¾χ (2001);および Anderson etal.、 Nucleic Acid Hybridization: A Practical approach^ IV、 IRL Press Limited(Oxford, England). Limited, Oxford, Englandを参照 のこと。必要により、よりストリンジェントな条件 (例えば、より高い温度、より低いイオン 強度、より高いホルムアミド、または他の変性剤)を、使用してもよい。他の薬剤が、非 特異的なノ、イブリダィゼーシヨンおよび Zまたはバックグラウンドのハイブリダィゼーシ ヨンを減少する目的で、ハイブリダィゼーシヨン緩衝液および洗浄緩衝液に含まれ得 る。そのような他の薬剤の例としては、 0. 1%ゥシ血清アルブミン、 0. 1%ポリビュル ピロリドン、 0. 1%ピロリン酸ナトリウム、 0. 1%ドデシル硫酸ナトリウム(NaDodSOま
4 たは SDS)、 Ficoll、 Denhardt溶液、超音波処理されたサケ精子 DNA (または別の 非相補的 DNA)および硫酸デキストランであるが、他の適切な薬剤もまた、使用され 得る。これらの添加物の濃度および型は、ハイブリダィゼーシヨン条件のストリンジェ ンシ一に実質的に影響を与えることなく変更され得る。ハイブリダィゼーシヨン実験は 、通常、 pH6. 8-7. 4で実施される力 代表的なイオン強度条件において、ハイプリ ダイゼーシヨンの速度は、ほとんど pH独立である。 Andersonet al.、 Nucleic Acid Hybridization: a Practical Approach^ ¾¾4早、 IRL Press Limited(Oxford, England) 参照のこと。
[0053] DNA二本鎖の安定性に影響を与える因子としては、塩基の組成、長さおよび塩基 対不一致の程度が挙げられる。ハイブリダィゼーシヨン条件は、当業者によって調整 され得、これらの変数を適用させ、そして異なる配列関連性の DNAがハイブリッドを 形成するのを可能にする。完全に一致した DNA二本鎖の融解温度は、以下の式に よって概算され得る。
Tm (°C) =81.5+16.6(log[Na1)+0.41(%G+C)-600/N-0.72 (%ホルムアミド)
ここで、 Nは、形成される二重鎖の長さであり、 [Na+]は、ノ、イブリダィゼーシヨン溶 液または洗浄溶液中のナトリウムイオンのモル濃度であり、%G + Cは、ノ、イブリツド 中の(グァニン +シトシン)塩基のパーセンテージである。不完全に一致したノヽイブリ ッドに関して、融解温度は、各 1%不一致 (ミスマッチ)に対して約 1°Cずつ減少する。
[0054] PNAを使用した場合は、例えば、図 4に記載される相互関係を参照しながら決定 することができる。
[0055] 本明細書において「中程度にストリンジェントな条件」とは、「高度にストリンジェント な条件」下で生じ得るよりも高 、程度の塩基対不一致を有する DNA二重鎖が、形成 し得る条件をいう。代表的な「中程度にストリンジヱントな条件」の例は、 0. 015M塩 ィ匕ナ卜リクム、 0. 0015Mクェン酸ナトリウム、 50— 65°C、または 0. 015M塩ィ匕ナ卜 リウム、 0. 0015Mクェン酸ナトリウム、および 20%ホルムアミド、 37— 50。Cである。 例として、 0. 015Mナトリウムイオン中、 50°Cの「中程度にストリンジェントな」条件は 、約 21%の不一致を許容する。
[0056] 本明細書において「高度」にストリンジェントな条件と「中程度」にストリンジェントな条 件との間に完全な区別は存在しないことがあり得ることが、当業者によって理解される 。例えば、 0. 015Mナトリウムイオン (ホルムアミドなし)において、完全に一致した長 い DNAの融解温度は、約 71°Cである。 65°C (同じイオン強度)での洗浄において、 これは、約 6%不一致を許容にする。より離れた関連する配列を捕獲するために、当 業者は、単に温度を低下させ得るか、またはイオン強度を上昇し得る。
[0057] 約 20ヌクレオチドまでのオリゴヌクレオチドプローブについて、 lMNaClにおける融 解温度の適切な概算は、
Tm= (1つの A— T塩基につき 2°C) + (1つの G—C塩基対につき 4°C)
によって提供される。なお、 6 Xクェン酸ナトリウム塩 (SSC)におけるナトリウムイオン 濃度は、 1Mで to (Suggsら、 Developmental Biology Using Purified uenes^ 683貞、 Brown andFox (編) (1981)を参照のこと)。 PNAを使用した場合は、例えば、図 4に記 載される相互関係を参照しながら決定することができる。
[0058] 本明細書において配列(アミノ酸または核酸など)の「同一性」、「相同性」および「 類似性」のパーセンテージは、比較ウィンドウで最適な状態に整列された配列 2つを 比較することによって求めることも可能である。ここで、ポリヌクレオチド配列またはポリ ペプチド配列の比較ウィンドウ内の部分には、 2つの配列の最適なァライメントについ ての基準配列 (他の配列に付加が含まれて 、ればギャップが生じることもある力 ここ での基準配列は付加も欠失もな ヽものとする)と比較したときに、付加または欠失 (す なわちギャップ)が含まれる場合がある。同一の核酸塩基またはアミノ酸残基がどちら の配列にも認められる位置の数を求めることによって、マッチ位置の数を求め、マツ チ位置の数を比較ウィンドウ内の総位置数で割り、得られた結果に 100を掛けて同一 性のパーセンテージを算出する。検索において使用される場合、相同性については 、従来技術にぉ 、て周知のさまざまな配列比較アルゴリズムおよびプログラムの中か ら、適当なものを用いて評価する。このようなアルゴリズムおよびプログラムとしては、
TBLASTN、 BLASTPゝ FASTAゝ TFASTAおよび CLUSTALW (Pearsonand Lipman, 1988, Proc. Natl. Acad. Sci. USA 85(8): 2444— 2448、 Altschul et al., 1990, J. Mol. Biol. 215 (3): 403—410、 Thompsonet al, 1994, Nucleic Acids Res. 22(2): 4673—4680、 Higgins et al., 1996, MethodsEnzymol. 266: 383—402 、 Altschul et al., 1990, J. Mol. Biol. 215(3): 403—410、 Altschulet al., 1993, Nature Genetics 3: 266-272)があげられるが、何らこれに限定されるものではない。 特に好ましい実施形態では、従来技術において周知の Basic Local Alignment
Search Tool (BLAST) (たとえば、 Karlinand Altschul, 1990, Proc. Natl. Acad. Sci. USA 87: 2267—2268、 Altschul et al., 1990, J. Mol. Biol. 215: 403— 410、 Altschul et al., 1993, Nature Genetics 3: 266—272、 Altschul et al., 1997, Nuc. Acids Res. 25: 3389— 3402を参照のこと)を用いてタンパク質および核酸配列 の相同性を評価する。特に、 5つの専用 BLASTプログラムを用いて以下の作業を実 施することによって比較または検索が達成され得る。
(1) BLASTPおよび BLAST3でアミノ酸のクエリー配列をタンパク質配列データ ベースと比較;
(2) BLASTNでヌクレオチドのクエリー配列をヌクレオチド配列データベースと比 較;
(3) BLASTXでヌクレオチドのクエリー配列(両方の鎖)を 6つの読み枠で変換し た概念的翻訳産物をタンパク質配列データベースと比較;
(4) TBLASTNでタンパク質のクエリー配列を 6つの読み枠(両方の鎖)すべてで 変換したヌクレオチド配列データベースと比較;
(5) TBLASTXでヌクレオチドのクエリ配列を 6つの読み枠で変換したものを、 6 つの読み枠で変換したヌクレオチド配列データベースと比較。 [0060] BLASTプログラムは、アミノ酸のクエリ配列または核酸のクエリ配列と、好ましくはタ ンパク質配列データベースまたは核酸配列データベース力 得られた被検配列との 間で、「ハイスコアセグメント対」と呼ばれる類似のセグメントを特定することによって相 同配列を同定するものである。ハイスコアセグメント対は、多くのものが従来技術にお V、て周知のスコアリングマトリックスによって同定 (すなわち整列化)されると好ま U、。
1992, Science 256: 1443—1445、 Henikoff and Henikoff, 1993, Proteins 17: 49 61)を使用する。このマトリックスほど好ましいものではないが、 PAMまたは PAM250 マトリックスも使用できる(たとえば、 Schwartzand Dayhoff, eds., 1978, Matrices for Detecting Distance Relationships: Atlasof Protein sequence and Structure, Washington: National Biomedical ResearchFoundationを参照のこと)。 BLASTプロ グラムは、同定されたすベてのハイスコアセグメント対の統計的な有意性を評価し、 好ましくはユーザー固有の相同率などのユーザーが独自に定める有意性の閾値レ ベルを満たすセグメントを選択する。統計的な有意性を求める Karlinの式を用いて ハイスコアセグメント対の統計的な有意性を評価すると好まし 、 (Karlinand Altschul, 1990, Proc. Natl. Acad. Sci. USA 87: 2267— 2268を参照のこと)。このような相 同性の計算は、そのような計算プログラムをコンピュータに実施させることによって実 行することができる。
[0061] 本明細書において、「改変体」とは、もとのポリペプチドまたはポリヌクレオチドなどの 物質に対して、一部が変更されているものをいう。そのような改変体としては、置換改 変体、付加改変体、欠失改変体、短縮 (truncated)改変体、対立遺伝子変異体な どが挙げられる。対立遺伝子 (allele)とは、同一遺伝子座に属し、互いに区別される 遺伝的改変体のことをいう。従って、「対立遺伝子変異体」とは、ある遺伝子に対して 、対立遺伝子の関係にある改変体をいう。そのような対立遺伝子変異体は、通常そ の対応する対立遺伝子と同一または非常に類似性の高い配列を有し、通常はほぼ 同一の生物学的活性を有するが、まれに異なる生物学的活性を有することもある。「 種相同体またはホモログ (homolog)」とは、ある種の中で、ある遺伝子とアミノ酸レべ ルまたはヌクレオチドレベルで、相同性 (好ましくは、 60%以上の相同性、より好まし くは、 80%以上、 85%以上、 90%以上、 95%以上の相同性)を有するものをいう。 そのような種相同体を取得する方法は、本明細書の記載から明らかである。「オルソ ログ(ortholog)」とは、オノレソロガス遺伝子(orthologous gene)とも ヽ!ヽ、二つの 遺伝子がある共通祖先からの種分化に由来する遺伝子をいう。例えば、多重遺伝子 構造をもつヘモグロビン遺伝子ファミリーを例にとると、ヒトおよびマウスの αへモグロ ビン遺伝子はオルソログであるが,ヒトの aヘモグロビン遺伝子および j8ヘモグロビン 遺伝子はパラログ (遺伝子重複で生じた遺伝子)である。オルソログは、分子系統樹 の推定に有用である。オルソログは、通常別の種においてもとの種と同様の機能を果 たしていることがあり得ることから、本発明のオルソログもまた、本発明において有用 であり得る。
「保存的(に改変された)改変体」は、アミノ酸配列および核酸配列の両方に適用さ れる。特定の核酸配列に関して、保存的に改変された改変体とは、同一のまたは本 質的に同一のアミノ酸配列をコードする核酸をいい、核酸がアミノ酸配列をコードしな い場合には、本質的に同一な配列をいう。遺伝コードの縮重のため、多数の機能的 に同一な核酸が任意の所定のタンパク質をコードする。例えば、コドン GCA、 GCC、 GCG、および GCUはすべて、アミノ酸ァラニンをコードする。したがって、ァラニンが コドンにより特定される全ての位置で、そのコドンは、コードされたポリペプチドを変更 することなぐ記載された対応するコドンの任意のものに変更され得る。このような核 酸の変動は、保存的に改変された変異の 1つの種である「サイレント改変(変異)」で ある。ポリペプチドをコードする本明細書中のすべての核酸配列はまた、その核酸の 可能なすべてのサイレント変異を記載する。当該分野において、核酸中の各コドン( 通常メチォニンのための唯一のコドンである AUG、および通常トリプトファンのための 唯一のコドンである TGGを除く)が、機能的に同一な分子を産生するために改変され 得ることが理解される。したがって、ポリペプチドをコードする核酸の各サイレント変異 は、記載された各配列において暗黙に含まれる。好ましくは、そのような改変は、ポリ ペプチドの高次構造に多大な影響を与えるアミノ酸であるシスティンの置換を回避す るようになされ得る。このような塩基配列の改変法としては、制限酵素などによる切断 、 DNAポリメラーゼ、 Klenowフラグメント、 DNAリガーゼなどによる処理等による連 結等の処理、合成オリゴヌクレオチドなどを用いた部位特異的塩基置換法 (特定部 位指向突然変異法; Mark Zoller and Michael Smith, Methods in Enzy mology, 100, 468—500 (1983) )が挙げられるが、この他にも通常分子生物学の 分野で用いられる方法によって改変を行うこともできる。
[0063] 本明細書において「アミノ酸」とは、当該分野において通常用いられる意味で用いら れ、カルボキシル基とアミノ基とを有する有機化合物をいう。本明細書においてァミノ 酸は、天然アミノ酸であっても非天然アミノ酸であっても良い。
[0064] アミノ酸は、その一般に公知の 3文字記号力、または IUPAC— IUB Biochemical
Nomenclature Commissionにより推奨される 1文字記号のいずれかにより、本 明細書中で言及され得る。ヌクレオチドも同様に、一般に認知された 1文字コードによ り言及され得る。
[0065] その文字コードは以下のとおりである。
塩基
記号 意味
a アデニン
g グァニン
c シトシン
t チミン
U ゥラシル
r グァニン又はアデニンプリン m アデニン又はシトシンアミノ基
k グァニン又はチミン Zゥラシノレケト基
s グァニン又はシトシン
w アデニン又はチミン Zゥラシル
b グァニン又はシトシン又はチミン Zゥラシノレ
d アデニン又はグァニン又はチミン Zゥラシル
h アデニン又はシトシン又はチミン Zゥラシル V アデニン又はグァニン又はシトシン
n アデニン又はグァニン又はシトシン又はチミン Zゥラシル、不明、または他の塩 基
3文字記号 1文字記号 意味
Ala A ァラニン
Cys C システィン
Asp D ァスノ ラギン酸
Glu E グルタミン酸
Phe F フエ-ルァラニン
Gly G グリシン
His H ヒスチジン
He I イソロイシン
Lys K リジン
Leu L ロイシン
Met M メチォニン
Asn N ァスノ ラギン
Pro P プロリン
Gin Q グルタミン
Arg R ァノレギニン
Ser S セリン
Thr T トレオニン
Val V パリン
Trp w トリブトファン
Tyr Y チロシン
Asx ァスパラギン又はァスパラギン酸
Glx グルタミン又はグルタミン酸
Xaa 不明又は他のアミノ酸。 [0066] 本明細書では、アミノ酸配列および塩基配列の類似性、同一性および相同性の比 較は、配列分析用ツールである BLASTを用いてデフォルトパラメータを用いて算出 される。
[0067] 本明細書において生体分子の「固定」は、当該分野において周知の任意の方法に よって実施することができる。そのような固定は、例えば、共有結合、水素結合などの 相互作用を利用することによって行うことができる。固定には、共有結合を用いること が好ましい。
[0068] 本明細書において「層状」の形態とは、原子が共有結合などによって強く結合して 密に配列した面がファン ·デル 'ワールスカなど弱い結合力によって平行に積み重な つた構造をいう。本明細書では、層というときは、単層および多層の両方を含み得るこ とが理解される。
[0069] 本明細書にぉ 、て「膜状」の形態とは、原子が共有結合などによって強く結合して 密に配列した面で存在する構造を!ヽぅ。
[0070] 本明細書にぉ 、て「プローブ」とは、インビトロおよび Zまたはインビボなどのスクリ 一ユングなどの生物学的実験において用いられる、検索の対象を検出するための物 質をいい、例えば、特定の塩基配列を含む核酸分子または特定のアミノ酸配列を含 むペプチドなどが挙げられるがそれに限定されない。
[0071] 通常プローブとして用いられる核酸分子としては、 目的とする遺伝子の核酸配列と 相同なまたは相補的な、少なくとも 8の連続するヌクレオチド長の核酸配列を有するも のが挙げられる。そのような核酸配列は、好ましくは、少なくとも 9の連続するヌクレオ チド長の、より好ましく 10の連続するヌクレオチド長の、さらに好ましくは 11の連続す るヌクレオチド長の、 12の連続するヌクレオチド長の、 13の連続するヌクレオチド長の 、 14の連続するヌクレオチド長の、 15の連続するヌクレオチド長の、 20の連続するヌ クレオチド長の、 25の連続するヌクレオチド長の、 30の連続するヌクレオチド長の、 4 0の連続するヌクレオチド長の、 50の連続するヌクレオチド長の、核酸配列であり得る 。プローブとして使用される核酸配列には、上述の配列に対して、少なくとも 70%相 同な、より好ましくは、少なくとも 80%相同な、さらに好ましくは、 90%相同な、 95% 相同な核酸配列が含まれる。 [0072] 本明細書における「プライマー」とは、高分子合成酵素反応において、合成される 高分子化合物の反応の開始に必要な物質をいう。核酸分子の合成反応では、合成 されるべき高分子化合物の一部の配列に相補的な核酸分子 (例えば、 DNAまたは RNAなど)が用いられ得る。
[0073] 通常プライマーとして用いられる核酸分子としては、 目的とする遺伝子の核酸配列 と相補的な、少なくとも 8の連続するヌクレオチド長の核酸配列を有するものが挙げら れる。そのような核酸配列は、好ましくは、少なくとも 9の連続するヌクレオチド長の、よ り好ましく 10の連続するヌクレオチド長の、さらに好ましくは 11の連続するヌクレオチ ド長の、 12の連続するヌクレオチド長の、 13の連続するヌクレオチド長の、 14の連続 するヌクレオチド長の、 15の連続するヌクレオチド長の、 16の連続するヌクレオチド 長の、 17の連続するヌクレオチド長の、 18の連続するヌクレオチド長の、 19の連続 するヌクレオチド長の、 20の連続するヌクレオチド長の、 25の連続するヌクレオチド 長の、 30の連続するヌクレオチド長の、 40の連続するヌクレオチド長の、 50の連続 するヌクレオチド長の、核酸配列であり得る。プローブとして使用される核酸配列には 、上述の配列に対して、少なくとも 70%相同な、より好ましくは、少なくとも 80%相同 な、さらに好ましくは、 90%相同な、 95%相同な核酸配列が含まれる。プライマーと して適切な配列は、合成 (増幅)が意図される配列の性質によって変動し得るが、当 業者は、意図される配列に応じて適宜プライマーを設計することができる。そのような プライマーの設計は当該分野において周知であり、手動でおこなってもよくコンビュ ータプログラム(例えば、 LASERGENE, PrimerSelect, DN AS tar)を用いて行つ てもよい。
[0074] 本明細書において、「ェピトープ」とは、抗原決定基をいう。従って、ェピトープには 特定の免疫グロブリンによる認識に関与するアミノ酸残基のセット、または、 T細胞の 場合は、 T細胞レセプタータンパク質および Zもしくは主要組織適合性複合体 (MH C)レセプターによる認識について必要であるアミノ酸残基のセットが包含される。この 用語はまた、「抗原決定基」または「抗原決定部位」と交換可能に使用される。免疫系 分野において、インビボまたはインビトロで、ェピトープは、分子の特徴 (例えば、一 次ペプチド構造、二次ペプチド構造または三次ペプチド構造および電荷)であり、免 疫グロブリン、 T細胞レセプターまたは HLA分子によって認識される部位を形成する 。ペプチドを含むェピトープは、ェピトープに独特な空間的コンフオメーシヨン中に 3 つ以上のアミノ酸を含み得る。一般に、ェピトープは、少なくとも 5つのこのようなァミノ 酸からなり、代表的には少なくとも 6つ、 7つ、 8つ、 9つ、または 10のこのようなァミノ 酸力もなる。ェピトープの長さは、より長いほど、もとのペプチドの抗原性に類似する ことから一般的に好ましいが、コンフオメーシヨンを考慮すると、必ずしもそうでないこ とがある。アミノ酸の空間的コンフオメーシヨンを決定する方法は、当該分野で公知で あり、例えば、 X線結晶学、および 2次元核磁気共鳴分光法を含む。さらに、所定のタ ンパク質におけるェピトープの同定は、当該分野で周知の技術を使用して容易に達 成される。例えば、 Geysenら(1984) Proc. Natl. Acad. Sci. USA 81 : 3998 ( 所定の抗原における免疫原性ェピトープの位置を決定するために迅速にペプチドを 合成する一般的な方法);米国特許第 4, 708, 871号 (抗原のェピトープを同定し、 そして化学的に合成するための手順);および Geysenら(1986) Molecular Immu nology 23: 709 (所定の抗体に対して高 、親和性を有するペプチドを同定するた めの技術)を参照されたい。同じェピトープを認識する抗体は、単純な免疫アツセィ において同定され得る。このように、ペプチドを含むェピトープを決定する方法は、当 該分野において周知であり、そのようなェピトープは、核酸またはアミノ酸の一次配列 が提供されると、当業者はそのような周知慣用技術を用いて決定することができる。
[0075] 本明細書において「1塩基多型」(SNPs)とは、ゲノム配列において、 1塩基の違い によってのみ識別可能な改変体 (variant)をいう。 SNPsは、通常、個人の特性を規 定する。そのような特性には、疾患罹患感受性などが含まれている。
[0076] (化合物)
本明細書にぉ 、て「非ケィ素酸ィ匕物」とは、絶縁体 (または誘電体)として用いられ 得る、ケィ素酸化物以外の物質を指す。代表的には、ケィ素酸化物以外の酸化物が 挙げられるがそれらに限定されない。好ましい非ケィ素酸ィ匕物には、酸化金属を上 げることができるがそれに限定されない。
[0077] 本明細書において「絶縁体」とは、実質的に電気を伝えない物質をいう。実際上, 電気伝導率が十分小さいものをさす。従って、絶縁体としては、抵抗が大きな (例え ば、 101() Ω 'cm以上)の物質を使用することができる。そのような絶縁体としては、二 酸化ケィ素、非ケィ素酸ィ匕物などを挙げる事ができるがそれらに限定されない。本発 明では、ゲート端子、ドレイン端子、ソース端子などの絶縁体の材料としては、通常の 半導体において使用される任意の絶縁体が使用され得ることが理解される。
[0078] 本明細書にぉ 、て「酸化金属」とは、任意の金属の酸ィ匕物を!、う。酸化金属として は、例えば、酸化タンタル (Ta O )、酸化カルシウム(CaO)、酸化鉛(PbO)、酸化ス
2 5
トロンチウム(SrO)、酸化トリウム (ThO )、酸化アンチモン(Sb O )、一酸化チタン(
2 2 3
TiO)、二酸化チタン (TiO )、酸化ハフニウム(HfO )、酸化イッテルビウム(Yb O )
2 2 2 3
、酸ィ匕マグネシウム(MgO)、酸化インジウム (In O )、酸化スズ (SnO )、酸化ジル
2 3 2
コニゥム(ZrO )、酸化セリウム(CeO )、酸化ニオブ (Nb O )、酸化亜鉛 (ZnO)、酸
2 2 2 5
化ガドリニウム(Gd O )、酸ィ匕クロム(Cr O )、酸化タングステン (WO )、酸化銅(1) (
2 3 2 3 3
Cu O)、酸化銅 (II) (CuO)、酸ィ匕鉄(II) (FeO)、酸ィ匕鉄(III) (Fe O )、酸化ニッケ
2 2 3
ル(NiO)、酸化ビスマス(Bi O )、酸化サマリウム(Sm O )、酸化ネオジム(Nd O )
2 3 2 3 2 3
、酸化バナジウム (V O )、酸化モリブデン(MoO )、酸化カドミウム(CdO )、酸化マ
2 5 3 2 ンガン(MnO )、一酸化バリウム(BaO)、二酸化バリウム(BaO )などを挙げることが
2 2 できるがそれらに限定されない。
[0079] 本明細書において「シランカップリング剤」とは、 Si原子を有する、 2つの化合物と化 学結合できる官能基をもつ有機ケィ素化合物をいう。通常、 Y— CH SIXの一般式
2 3 を有する。 Xはアルコキシ基、ハロゲンなどの加水分解性の置換基で無機質などと反 応し、 Yとしては有機物質と反応しやすいビニル基、エポキシ基、アミノ基などが代表 例として挙げられるがそれらに限定されない。
[0080] 本明細書にお!、て「アミノシラン含有物質」とは、アミノ基を有するシランィ匕合物を 、 う。アミノシラン含有物質は、シランカップリング剤として使用される。そのようなアミノシ ラン含有物質としては、例えば、 ω '—ァミノアルキルトリアルコキシシラン (代表的には 、 3'—ァミノプロピルトリエトキシシラン)を挙げることができるがそれらに限定されない
[0081] 本明細書において「クロスリンカ一」とは、架橋剤とも呼ばれ、 2つの分子の間に共 有結合を生成することによって架橋する物質を ヽぅ。そのようなクロスリンカ一としては 、例えば、アルデヒド類 (例えば、ダルタルアルデヒド)、カルポジイミド類、イミドエステ ル類など挙げることができるがそれらに限定されない。アミノ基含有物質を架橋する 場合、アルデヒド含有基、例えば、ダルタルアルデヒドを用いることが好ましい。
[0082] 本明細書にぉ 、て「酸処理」とは、任意の酸に、ある物質を浸すことを 、う。アミノシ ラン含有物質などを基板 (代表的には、無機材料で構成される)に結合させる場合、 このような酸処理をすることが好まし 、ことが知られる。
[0083] 本明細書にぉ 、て「紫外線照射」とは、ある物質を紫外線に照射することを 、う。本 明細書において「紫外線」とは、可視光線の短波長端約 360— 400應を上限とし,下 限は約 1應までの波長範囲の電磁波をいう。下限はあまり明確でなく,数十 nm以下 は軟 X線と重なることから、本明細書では、 X線と重複する範囲をさすことが理解され る。光源にとしては、例えば、石英水銀灯、炭素アーク灯、火花放電、水素または希 ガスの放電、シンクロトロン放射などが用いられ得るがそれらに限定されない。紫外線 照射は、光量計による測定などによって測量することができる。
[0084] 本明細書において「還元」とは、当該分野において通常使用されるのと同じ意味で 使用され、酸ィ匕状態を低くすることをいう。そのような還元には、任意の還元剤(例え ば、シッフ塩基の二重結合を単結合にすることができる任意の還元剤;例えば、水素 化シァノホウ素ナトリウム(NaCNBH )、ジメチルァミンボラン((CH ) HNBH )、トリ
3 3 2 3 メチルァミンボラン((CH ) NBH )、水素化ホウ素ナトリウム(NaBH )、ボラン(BH
3 3 4 4 3
)、ァ-リン(C H NH )、ヒドラジン(N H )、クェン酸(C H O )、シユウ酸((COO
6 5 2 2 4 6 8 7
H) )、水素化リチウムアルミニウム (LiAlH )、ヒドロキノン (C H (OH) )など)を用
2 4 6 4 2 いることができるが、好ましくは、 NaCNBHを用いることができる。
3
[0085] 本発明で使用されるリンカ一は、代表的に、一部が無機物と親和性がある部分であ り、他の一部が有機物と親和性がある部分である。そのような有機物と親和性がある 部分は、通常、任意の有機置換基を有する。以下に本発明のリンカ一において含有 され得る有機置換基を説明する。
[0086] 本明細書にぉ 、て「アルキル」とは、メタン、ェタン、プロパンのような脂肪族炭化水 素(アルカン)力も水素原子が一つ失われて生ずる 1価の基をいい、一般に C H
n 2n+ l 一で表される(ここで、 nは正の整数である)。アルキルは、直鎖または分枝鎖であり得 る。本明細書において「置換されたアルキル」とは、以下に規定する置換基によって アルキルの Hが置換されたアルキルをいう。これらの具体例は、 C1一 C2アルキル、 C1一 C3アルキル、 C1一 C4アルキル、 C1一 C5アルキル、 C1一 C6アルキル、 C1 一 C7アルキル、 C1一 C8アルキル、 C1一 C9アルキル、 C1一 C10アルキル、 C1一 C11アルキルまたは C1一 C12アルキル、 C1一 C2置換されたアルキル、 C1一 C3置 換されたアルキル、 C1一 C4置換されたアルキル、 C1一 C5置換されたアルキル、 C 1一 C6置換されたアルキル、 C1一 C7置換されたアルキル、 C1一 C8置換されたァ ルキル、 C1一 C9置換されたアルキル、 C1一 C10置換されたアルキル、 C1一 C11 置換されたアルキルまたは C1一 C 12置換されたアルキルであり得る。ここで、例えば C 1一 C 10アルキルとは、炭素原子を 1一 10個有する直鎖または分枝状のアルキル を意味し、メチル(CH—)、ェチル(C H一)、 n プロピル(CH CH CH一)、イソプ
3 2 5 3 2 2 口ピル((CH ) CH—)、 n ブチル(CH CH CH CH一)、 n ペンチル(CH CH C
3 2 3 2 2 2 3 2
H CH CH -)、 n—へキシル(CH CH CH CH CH CH -)、 n—ヘプチル(CH C
2 2 2 3 2 2 2 2 2 3
H CH CH CH CH CH -)、 n—ォクチル(CH CH CH CH CH CH CH CH
2 2 2 2 2 2 3 2 2 2 2 2 2 2
)、 n—ノ-ル(CH CH CH CH CH CH CH CH CH -)
3 2 2 2 2 2 2 2 2 、 n—デシル(CH CH C
3 2
H CH CH CH CH CH CH CH一)、 C (CH ) CH CH CH (CH ) CH C
2 2 2 2 2 2 2 2 3 2 2 2 3 2 2
H (CH ) などが例示される。また、例えば、 C1一 C10置換されたアルキルとは、 C1
3 2
一 C10アルキルであって、そのうち 1または複数の水素原子が置換基により置換され ているものをいう。
[0087] 本明細書において「置換されていてもよいアルキル」とは、上で定義した「アルキル」 または「置換されたアルキル」の 、ずれであってもよ 、ことを意味する。
[0088] 本明細書にぉ 、て「アルキレン」とは、メチレン、エチレン、プロピレンのような脂肪 族炭化水素 (アルカン)力も水素原子が二つ失われて生ずる 2価の基を 、 、、一般に — C H 一で表される(ここで、 nは正の整数である)。アルキレンは、直鎖または分枝 n 2n
鎖であり得る。本明細書において「置換されたアルキレン」とは、以下に規定する置換 基によってアルキレンの Hが置換されたアルキレンをいう。これらの具体例は、 C1一 C2アルキレン、 C1一 C3アルキレン、 C1一 C4アルキレン、 C1一 C5アルキレン、 C1 一 C6アルキレン、 C1一 C7アルキレン、 C1一 C8アルキレン、 C1一 C9アルキレン、 C 1一 CIOアルキレン、 CI一 CI 1アルキレンまたは CI一 C12アルキレン、 C1一 C2置 換されたアルキレン、 C1一 C3置換されたアルキレン、 C1一 C4置換されたアルキレ ン、 C1一 C5置換されたアルキレン、 C1一 C6置換されたアルキレン、 C1一 C7置換 されたアルキレン、 C1一 C8置換されたアルキレン、 C1一 C9置換されたアルキレン、 C1一 C10置換されたアルキレン、 C1一 C11置換されたアルキレンまたは C1一 C12 置換されたアルキレンであり得る。ここで、例えば C1一 C10アルキレンとは、炭素原 子を 1一 10個有する直鎖または分枝状のアルキレンを意味し、メチレン (一 CH—)、
2 エチレン(一 C H一)、 n プロピレン (一 CH CH CH一)、イソプロピレン (一(CH ) C
2 4 2 2 2 3 2 一)、 n—ブチレン (一 CH CH CH CH一)、 n ペンチレン (一 CH CH CH CH CH
2 2 2 2 2 2 2 2 2 一)、 n—へキシレン (一 CH CH CH CH CH CH一)、 n 一 CH CH C
2 2 2 2 2 2 —へプチレン (
2 2
H CH CH CH CH -)、 n—オタチレン (― CH CH CH CH CH CH CH CH -)
2 2 2 2 2 2 2 2 2 2 2 2 2
、 n—ノニレン (一 CH CH CH CH CH CH CH CH CH一)、 n—デシレン (一 CH C
2 2 2 2 2 2 2 2 2 2
H CH CH CH CH CH CH CH CH )、一 CH C (CH )—などが例示される。
2 2 2 2 2 2 2 2 2 2 3 2
また、例えば、 C1一 C10置換されたアルキレンとは、 C1一 C10アルキレンであって、 そのうち 1または複数の水素原子が置換基により置換されているものをいう。本明細 書において「アルキレン」は、酸素原子および硫黄原子力も選択される原子を 1また はそれ以上含んで!/ヽてもよ!/ヽ。
[0089] 本明細書にぉ 、て「置換されて 、てもよ 、アルキレン」とは、上で定義した「アルキレ ン」または「置換されたアルキレン」の 、ずれであってもよ 、ことを意味する。
[0090] 本明細書にお!、て「シクロアルキル」とは、環式構造を有するアルキルを 、う。「置換 されたシクロアルキル」とは、以下に規定する置換基によってシクロアルキルの Hが置 換されたシクロアルキルをいう。具体例としては、 C3— C4シクロアルキル、 C3— C5 シクロアルキル、 C3— C6シクロアルキル、 C3— C7シクロアルキル、 C3— C8シクロ アルキル、 C3— C9シクロアルキル、 C3— C10シクロアルキル、 C3— C11シクロアル キル、 C3— C12シクロアルキル、 C3— C4置換されたシクロアルキル、 C3— C5置換 されたシクロアルキル、 C3— C6置換されたシクロアルキル、 C3— C7置換されたシク 口アルキル、 C3— C8置換されたシクロアルキル、 C3— C9置換されたシクロアルキ ル、 C3— C10置換されたシクロアルキル、 C3— C11置換されたシクロアルキルまた は C3— C12置換されたシクロアルキルであり得る。例えば、シクロアルキルとしては、 シクロプロピル、シクロへキシルなどが例示される。
[0091] 本明細書において「置換されていてもよいシクロアルキル」とは、上で定義した「シク 口アルキル」または「置換されたシクロアルキル」の 、ずれであってもよ 、ことを意味す る。
[0092] 本明細書において「ァルケニル」とは、分子内に二重結合を一つ有する脂肪族炭 化水素から水素原子が一つ失われて生ずる 1価の基を 、 、、一般に C H 一で表
n 2n-l される(ここで、 nは 2以上の正の整数である)。「置換されたァルケニル」とは、以下に 規定する置換基によってァルケ-ルの Hが置換されたァルケ-ルを!、う。具体例とし ては、 C2— C3ァノレケニノレ、 C2— C4ァノレケニノレ、 C2— C5ァノレケニノレ、 C2— C6ァ ルケ-ル、 C2— C7アルケ-ル、 C2— C8アルケ-ル、 C2— C9アルケ-ル、 C2— C 10ァルケ-ル、 C2— C11ァルケ-ルまたは C2— C12ァルケ-ル、 C2— C3置換さ れたァルケ-ル、 C2— C4置換されたァルケ-ル、 C2— C5置換されたァルケ-ル、 C2— C6置換されたァルケ-ル、 C2— C7置換されたァルケ-ル、 C2— C8置換され たァルケ-ル、 C2— C9置換されたァルケ-ル、 C2— C10置換されたァルケ-ル、 C2— C11置換されたァルケ-ルまたは C2— C12置換されたァルケ-ルであり得る。 ここで、例えば C2— C10アルキルとは、炭素原子を 2— 10個含む直鎖または分枝状 のァルケ-ルを意味し、ビュル(CH =CH— )、ァリル(CH =CHCH―)、 CH CH
2 2 2 3
=CH—などが例示される。また、例えば、 C2— C 10置換されたァルケ-ルとは、 C2 一 C 10ァルケ-ルであって、そのうち 1または複数の水素原子が置換基により置換さ れているものをいう。
[0093] 本明細書にぉ 、て「置換されて 、てもよ 、ァルケ-ル」とは、上で定義した「ァルケ -ル」または「置換されたァルケ-ル」の 、ずれであってもよ 、ことを意味する。
[0094] 本明細書において「ァルケ-レン」とは、分子内に二重結合を一つ有する脂肪族炭 化水素から水素原子が二つ失われて生ずる 2価の基を 、 、、一般に - C H -で表
n 2n-2 される(ここで、 nは 2以上の正の整数である)。「置換されたァルケ-レン」とは、以下 に規定する置換基によってァルケ-レンの Hが置換されたァルケ-レンを!、う。具体 例としては、 C2— C25ァルケ-レンまたは C2— C25置換されたァルケ-レンが挙げ られ、なかでも特に C2— C3アルケ-レン、 C2— C4アルケ-レン、 C2— C5アルケ- レン、 C2一 C6アルケニレン、 C2一 C7アルケニレン、 C2一 C8アルケニレン、 C2一 C 9ァルケ-レン、 C2— C10ァルケ-レン、 C2— C11ァルケ-レンまたは C2— C12ァ ルケ-レン、 C2— C3置換されたァルケ-レン、 C2— C4置換されたァルケ-レン、 C 2— C5置換されたァルケ-レン、 C2— C6置換されたァルケ-レン、 C2— C7置換さ れたァルケ-レン、 C2— C8置換されたァルケ-レン、 C2— C9置換されたァルケ- レン、 C2— C10置換されたァルケ-レン、 C2— C11置換されたァルケ-レンまたは C2— C12置換されたァルケ-レンが好ましい。ここで、例えば C2— C10アルキルと は、炭素原子を 2— 10個含む直鎖または分枝状のァルケ-レンを意味し、 CH = C H -、 -CH = CHCH -
2 、— (CH ) C = CH-などが例示される。また、例えば、 C2—
3
C 10置換されたァルケ-レンとは、 C2— C10ァルケ-レンであって、そのうち 1また は複数の水素原子が置換基により置換されて 、るものを 、う。本明細書にぉ 、て「ァ ルケ-レン」は、酸素原子および硫黄原子力 選択される原子を 1またはそれ以上含 んでいてもよい。
[0095] 本明細書において「置換されていてもよいァルケ-レン」とは、上で定義した「アル ケ-レン」または「置換されたァルケ-レン」の 、ずれであってもよ 、ことを意味する。
[0096] 本明細書にぉ 、て「シクロアルケ-ル」とは、環式構造を有するァルケ-ルを 、う。「 置換されたシクロアルケ-ル」とは、以下に規定する置換基によってシクロアルケ-ル の Hが置換されたシクロアルケ-ルをいう。具体例としては、 C3— C4シクロアルケ- ル、 C3— C5シクロアルケ-ル、 C3— C6シクロアルケ-ル、 C3— C7シクロアルケ- ル、 C3— C8シクロアルケ-ル、 C3— C9シクロアルケ-ル、 C3— C10シクロアルケ -ル、 C3— C 11シクロアルケ-ル、 C3— C 12シクロアルケ-ル、 C3— C4置換され たシクロアルケ-ル、 C3— C5置換されたシクロアルケ-ル、 C3— C6置換されたシク ロアルケ-ル、 C3— C7置換されたシクロアルケ-ル、 C3— C8置換されたシクロアル ケ -ル、 C3— C9置換されたシクロアルケ-ル、 C3— C10置換されたシクロアルケ- ル、 C3— C11置換されたシクロアルケ-ルまたは C3— C12置換されたシクロアルケ -ルであり得る。例えば、好ましいシクロアルケ-ルとしては、 1ーシクロペンテ-ル、 2 —シクロへキセニルなどが例示される。 [0097] 本明細書において「置換されていてもよいシクロアルケ-ル」とは、上で定義した「シ クロアルケ-ル」または「置換されたシクロアルケ-ル」の 、ずれであってもよ 、ことを 意味する。
[0098] 本明細書において「アルキ -ル」とは、アセチレンのような、分子内に三重結合を一 つ有する脂肪族炭化水素から水素原子が一つ失われて生ずる 1価の基を 、い、一 般に C H 一で表される(ここで、 nは 2以上の正の整数である)。「置換されたアルキ n 2n— 3
-ル」とは、以下に規定する置換基によってアルキ-ルの Hが置換されたアルキ-ル をいう。具体例としては、 C2— C3アルキ-ル、 C2— C4アルキ-ル、 C2— C5アルキ ニル、 C2— C6アルキ-ル、 C2— C7アルキ-ル、 C2— C8アルキ-ル、 C2— C9ァ ルキ -ル、 C2— C10アルキ-ル、 C2— C11アルキ-ル、 C2— C12アルキ-ル、 C2 一 C3置換されたアルキ-ル、 C2— C4置換されたアルキ-ル、 C2— C5置換された アルキ -ル、 C2— C6置換されたアルキ-ル、 C2— C7置換されたアルキ-ル、 C2 一 C8置換されたアルキ-ル、 C2— C9置換されたアルキ-ル、 C2— C10置換され たアルキ-ル、 C2— CI 1置換されたアルキ-ルまたは C2— C12置換されたアルキ -ルであり得る。ここで、例えば、 C2— C10アルキ-ルとは、例えば炭素原子を 2— 1 0個含む直鎖または分枝状のアルキ-ルを意味し、ェチニル(CH≡C—)、 1 プロピ -ル(CH C≡C— )などが例示される。また、例えば、 C2— C10置換されたアルキ-
3
ルとは、 C2— C10アルキ-ルであって、そのうち 1または複数の水素原子が置換基 により置換されて 、るものを 、う。
[0099] 本明細書にぉ 、て「置換されて 、てもよ 、アルキ -ル」とは、上で定義した「アルキ
-ル」または「置換されたアルキ-ル」の 、ずれであってもよ 、ことを意味する。
[0100] 本明細書において「アルコキシ」とは、アルコール類のヒドロキシ基の水素原子が失 われて生ずる 1価の基をいい、一般に C H O—で表される(ここで、 nは 1以上の整
n 2n+ l
数である)。「置換されたアルコキシ」とは、以下に規定する置換基によってアルコキシ の Hが置換されたアルコキシをいう。具体例としては、 C1一 C2アルコキシ、 C1一 C3 アルコキシ、 C1一 C4アルコキシ、 C1一 C5アルコキシ、 C1一 C6アルコキシ、 C1一 C 7アルコキシ、 C1一 C8アルコキシ、 C1一 C9アルコキシ、 C1一 C10アルコキシ、 C1 一 C11アルコキシ、 C1一 C12アルコキシ、 C1一 C2置換されたアルコキシ、 C1一 C3 置換されたアルコキシ、 C1一 C4置換されたアルコキシ、 C1一 C5置換されたアルコ キシ、 C1一 C6置換されたアルコキシ、 C1一 C7置換されたアルコキシ、 C1一 C8置 換されたアルコキシ、 C1一 C9置換されたアルコキシ、 C1一 C10置換されたアルコキ シ、 C1一 C11置換されたアルコキシまたは C1一 C12置換されたアルコキシであり得 る。ここで、例えば、 C1一 C10アルコキシとは、炭素原子を 1一 10個含む直鎖または 分枝状のアルコキシを意味し、メトキシ(CH O—)、エトキシ(C H O—)、 n プロポキ
3 2 5
シ(CH CH CH 0-)などが例示される。
3 2 2
[0101] 本明細書において「置換されていてもよいアルコキシ」とは、上で定義した「アルコキ シ」または「置換されたアルコキシ」の 、ずれであってもよ 、ことを意味する。
[0102] 本明細書にぉ 、て「ヘテロ環 (基)」とは、炭素およびへテロ原子をも含む環状構造 を有する基をいう。ここで、ヘテロ原子は、 0、 Sおよび N力もなる群より選択され、同 一であっても異なっていてもよぐ 1つ含まれていても 2以上含まれていてもよい。へテ 口環基は、芳香族系または非芳香族系であり得、そして単環式または多環式であり 得る。ヘテロ環基は置換されていてもよい。
[0103] 本明細書にぉ 、て「置換されて 、てもよ 、ヘテロ環 (基)」とは、上で定義した「へテ 口環 (基)」または「置換されたへテロ環 (基)」の 、ずれであってもよ 、ことを意味する
[0104] 本明細書において「アルコール」とは、脂肪族炭化水素の 1または 2以上の水素原 子をヒドロキシル基で置換した有機化合物をいう。本明細書においては、 ROHとも表 記される。ここで、 Rは、アルキル基である。好ましくは、 Rは、 C1一 C6アルキルであり 得る。アルコールとしては、例えば、メタノール、エタノール、 1 プロパノール、 2—プロ パノールなどが挙げられるがそれらに限定されない。
[0105] 本明細書にぉ 、て「炭素環基」とは、炭素のみを含む環状構造を含む基であって、 前記の「シクロアルキル」、「置換されたシクロアルキル」、「シクロアルケ-ル」、「置換 されたシクロアルケ-ル」以外の基を 、う。炭素環基は芳香族系または非芳香族系で あり得、そして単環式または多環式であり得る。「置換された炭素環基」とは、以下に 規定する置換基によって炭素環基の Hが置換された炭素環基を 、う。具体例として は、 C3— C4炭素環基、 C3— C5炭素環基、 C3— C6炭素環基、 C3— C7炭素環基 、 C3— C8炭素環基、 C3— C9炭素環基、 C3— C10炭素環基、 C3— C11炭素環基 、 C3— C12炭素環基、 C3— C4置換された炭素環基、 C3— C5置換された炭素環 基、 C3— C6置換された炭素環基、 C3— C7置換された炭素環基、 C3— C8置換さ れた炭素環基、 C3— C9置換された炭素環基、 C3— C10置換された炭素環基、 C3 一 C11置換された炭素環基または C3— C12置換された炭素環基であり得る。炭素 環基はまた、 C4一 C7炭素環基または C4一 C7置換された炭素環基であり得る。炭 素環基としては、フエニル基力 水素原子が 1個欠失したものが例示される。ここで、 水素の欠失位置は、化学的に可能な任意の位置であり得、芳香環上であってもよぐ 非芳香環上であってもよ 、。
[0106] 本明細書にぉ 、て「置換されて 、てもよ 、炭素環基」とは、上で定義した「炭素環基 」または「置換された炭素環基」の 、ずれであってもよ ヽことを意味する。
[0107] 本明細書にぉ 、て「ヘテロ環基」とは、炭素およびへテロ原子をも含む環状構造を 有する基をいう。ここで,ヘテロ原子は、 0、 Sおよび N力もなる群より選択され、同一 であっても異なっていてもよく、 1つ含まれていても 2以上含まれていてもよい。ヘテロ 環基は、芳香族系または非芳香族系であり得、そして単環式または多環式であり得 る。「置換されたへテロ環基」とは、以下に規定する置換基によってへテロ環基の Hが 置換されたへテロ環基をいう。具体例としては、 C3— C4炭素環基、 C3— C5炭素環 基、 C3— C6炭素環基、 C3— C7炭素環基、 C3— C8炭素環基、 C3— C9炭素環基 、 C3— C10炭素環基、 C3— C11炭素環基、 C3— C12炭素環基、 C3— C4置換さ れた炭素環基、 C3— C5置換された炭素環基、 C3— C6置換された炭素環基、 C3 一 C7置換された炭素環基、 C3— C8置換された炭素環基、 C3— C9置換された炭 素環基、 C3— C10置換された炭素環基、 C3— C11置換された炭素環基または C3 一 C 12置換された炭素環基の 1つ以上の炭素原子をへテロ原子で置換したものであ り得る。ヘテロ環基はまた、 C4一 C7炭素環基または C4一 C7置換された炭素環基 の炭素原子を 1つ以上へテロ原子で置換したものであり得る。ヘテロ環基としては、 チェニル基、ピロリル基、フリル基、イミダゾリル基、ピリジル基などが例示される。水 素の欠失位置は、化学的に可能な任意の位置であり得、芳香環上であってもよぐ非 芳香環上であってもよい。 [0108] 本明細書において、炭素環基またはへテロ環基は、下記に定義されるように 1価の 置換基で置換され得ることに加えて、 2価の置換基で置換され得る。そのような二価 の置換は、ォキソ置換 ( = O)またはチォキソ置換( = S)であり得る。
[0109] 本明細書において「ハロゲン」とは、周期表 7B族に属するフッ素 (F)、塩素(Cl)、 臭素(Br)、ヨウ素(I)などの元素の 1価の基をいう。
[0110] 本明細書において「ヒドロキシ」とは、 OHで表される基をいう。「置換されたヒドロキ シ」とは、ヒドロキシの Hが下記で定義される置換基で置換されて 、るものを 、う。
[0111] 本明細書にぉ 、て「チオール」とは、ヒドロキシ基の酸素原子を硫黄原子で置換し た基 (メルカプト基)であり、 SHで表される。「置換されたチオール」とは、メルカプト の Hが下記で定義される置換基で置換されて 、る基を 、う。
[0112] 本明細書において「シァノ」とは、—CNで表される基をいう。「ニトロ」とは、 -NOで
2 表される基をいう。「ァミノ」とは、 NHで表される基をいう。「置換されたァミノ」とは、
2
ァミノの Hが以下で定義される置換基で置換されたものをいう。
[0113] 本明細書において「カルボキシ」とは、 COOHで表される基をいう。「置換された力 ルボキシ」とは、カルボキシの Hが以下に定義される置換基で置換されたものをいう。
[0114] 本明細書において「チォカルボキシ」とは、カルボキシ基の酸素原子を硫黄原子で 置換した基をいい、 -C ( = S) OH、 -C ( = 0) SHまたは- CSSHで表され得る。「置 換されたチォカルボキシ」とは、チォカルボキシの Hが以下に定義される置換基で置 換されたものをいう。
[0115] 本明細書において「ァシル」とは、カルボン酸から OHを除いてできる 1価の基をいう 。ァシル基の代表例としては、ァセチル(CH CO— )、ベンゾィル(C H CO—)などが
3 6 5
挙げられる。「置換されたァシル」とは、ァシルの水素を以下に定義される置換基で置 換したものをいう。
[0116] 本明細書において「アミド」とは、アンモニアの水素を酸基 (ァシル基)で置換した基 であり、好ましくは、 CONHで表される。「置換されたアミド」とは、アミドが置換され
2
たものをいう。
[0117] 本明細書において「カルボ-ル」とは、アルデヒドおよびケトンの特性基である (C
=〇)—を含むものを総称したものをいう。「置換されたカルボ-ル」は、下記において 選択される置換基で置換されているカルボ-ル基を意味する。
[0118] 本明細書において「チォカルボ-ル」とは、カルボニルにおける酸素原子を硫黄原 子に置換した基であり、特性基 (C = S)—を含む。チォカルボ-ルには、チオケトン およびチォアルデヒドが含まれる。「置換されたチォカルボ-ル」とは、下記において 選択される置換基で置換されたチォカルボニルを意味する。
[0119] 本明細書において「スルホ -ル」とは、特性基である— SO—を含むものを総称した
2
ものをいう。「置換されたスルホニル」とは、下記において選択される置換基で置換さ れたスルホニルを意味する。
[0120] 本明細書にぉ 、て「スルフィエル」とは、特性基である— SO—を含むものを総称した ものをいう。「置換されたスルフィエル」とは、下記において選択される置換基で置換 されて!/、るスルフィエルを意味する。
[0121] 本明細書において「ァリール」とは、芳香族炭化水素の環に結合する水素原子が 1 個離脱して生ずる基をいい、本明細書において、炭素環基に包含される。
[0122] 本明細書においては、特に言及がない限り、置換は、ある有機化合物または置換 基中の 1または 2以上の水素原子を他の原子または原子団で置き換えることをいう。 水素原子を 1つ除去して 1価の置換基に置換することも可能であり、そして水素原子 を 2つ除去して 2価の置換基に置換することも可能である。
[0123] 本明細書においては、特に言及がない限り、置換は、ある有機化合物または置換 基中の 1または 2以上の水素原子を他の原子または原子団で置き換えることをいう。 水素原子を 1つ除去して 1価の置換基に置換することも可能であり、そして水素原子 を 2つ除去して 2価の置換基に置換することも可能である。
[0124] 本発明における置換基としては、アルキル、シクロアルキル、ァルケ-ル、シクロア ルケ-ル、アルキ -ル、アルコキシ、炭素環基、ヘテロ環基、ハロゲン、ヒドロキシ、チ オール、シァ入ニトロ、アミ入カルボキシ、力ルバモイル、ァシル、ァシルァミノ、チォ カルボキシ、アミド、置換されたカルボ-ル、置換されたチォカルボ-ル、置換された スルホニルまたは置換されたスルフィニル、あるいは任意の無機置換基 (例えば、ケ ィ素含有置換基)が挙げられるがそれらに限定されない。このような置換基は、本発 明において、リンカ一、生体分子の改変の設計のときに、適宜利用することができる。 [0125] 好ましくは、置換基は、複数存在する場合それぞれ独立して、水素原子またはアル キルあるいは任意の無機置換基 (例えば、ケィ素含有置換基)であり得るが、複数の 置換基全てが水素原子であることはない。より好ましくは、独立して、置換基は、複数 存在する場合それぞれ独立して、水素および C1一 C6アルキル力もなる群あるいは 任意の無機置換基 (例えば、ケィ素含有置換基)より選択され得る。置換基は、すべ てが水素以外の置換基を有していても良いが、好ましくは、少なくとも 1つの水素、よ り好ましくは、 2— n (ここで nは置換基の個数)の水素を有し得る。置換基のうち水素 の数が多!ヽことが好ましくあり得る。大きな置換基または極性のある置換基は本発明 の効果 (結合特性)に障害を有し得るからである。従って、水素以外の置換基として は、好ましくは、 C1一 C6アルキル、 C1一 C5アルキル、 C1一 C4アルキル、 C1一 C3 アルキル、 C1一 C2アルキル、メチルあるいは任意の無機置換基 (例えば、ケィ素含 有置換基)などであり得る。ただし、本発明の効果を増強し得ることもあることから、大 きな置換基を有することもまた好ましくあり得る。
[0126] 本明細書において、 Cl、 C2、、、 Cnは、炭素数を表す。従って、 C1は炭素数 1個 の置換基を表すために使用される。
[0127] 本明細書において、「光学異性体」とは、結晶または分子の構造が鏡像関係にあつ て、重ねあわせることのできない一対の化合物の一方またはその組をいう。立体異性 体の一形態であり、他の性質は同じであるにもかかわらず、旋光性のみが異なる。本 発明では、好ましくは、光学異性体の純度が高いものが使用され得る。
[0128] 本明細書において「保護反応」とは、 Bocのような保護基を、保護が所望される官能 基に付加する反応をいう。保護基により官能基を保護することによって、より反応性の 高い官能基の反応を抑制し、より反応性の低い官能基のみを反応させることができる 。保護反応は、例えば、脱水反応により行うことができる。
[0129] 本明細書にぉ ヽて「脱保護反応」とは、 Bocのような保護基を脱離させる反応を ヽぅ 。脱保護反応としては、 PdZCを用いる還元反応のような反応が挙げられる。脱保護 反応は、例えば、加水分解により行うことができる。
[0130] 本明細書にぉ 、て「保護基」としては、例えば、フルォレニルメトキシカルボ-ル(F moc)基、ァセチル基、ベンジル基、ベンゾィル基、 t ブトキシカルボ-ル基、 tーブチ ルジメチル基、シリル基、トリメチルシリルェチル基、 N フタルイミジル基、トリメチルシ リルェチルォキシカルボ-ル基、 2—-トロー 4, 5—ジメトキシベンジル基、 2—-トロー 4 , 5—ジメトキシベンジルォキシカルボニル基、力ルバメート基などが代表的な保護基 として挙げられる。保護基は、生体分子において結合に関与しない部分を保護する ために用いることができる。保護基は、例えば、アミノ基、カルボキシル基などの反応 性の官能基を保護するために用いることができる。反応の条件や目的に応じ、種々 の保護基を使い分けることができる。ヒドロキシ基の保護基にはァセチル基、ベンジ ル基、シリル基またはそれらの誘導体などが、ァミノ基の保護基にはァセチル基のほ かべンジルォキシカルボ-ル基、 t ブトキシカルボ-ル基またはそれらの誘導体など を使用することができる。アミノォキシ基および N アルキルアミノォキシ基の保護基と して、トリメチルシリルェチルォキシカルボ-ル基、 2—二トロー 4, 5—ジメトキシベンジ ルォキシカルボ-ル基またはそれらの誘導体が好ましい。
[0131] 本発明の各方法において、 目的とする生成物は、反応液から夾雑物 (未反応減量 、副生成物、溶媒など)を、当該分野で慣用される方法 (例えば、抽出、蒸留、洗浄、 濃縮、沈澱、濾過、乾燥など)によって除去した後に、当該分野で慣用される後処理 方法 (例えば、吸着、溶離、蒸留、沈澱、析出、クロマトグラフィーなど)を組み合わせ て処理して単離し得る。
[0132] (デバイス ·電極 ·素子)
電界効果トランジスタ(Field effect transistor、 FET)とは、ゲート電極に電圧 をかけ、チャネルの電界により電子または正孔の流れに関門(ゲート)を設ける原理で 、ソース端子 (電極)とドレイン端子 (電極)との間の電流を制御するトランジスタである 。一種類のキャリアしか用いないことから、ュニポーラトランジスタとも呼ばれる。ソース 、ゲート、およびドレインを端子または電極と呼ぶ。便宜的にソースとドレインとを区別 しているが、構造上電流の向きは双方向通過可能である。トランジスタに P型と N型が あるように、 FETにも pチャネルおよび nチャネルのものがある。例えば、半導体にシリ コンが使われている場合は、ホウ素をドープすることで p型半導体に、リンをドープす ることで n型半導体になる。
[0133] 従って、本明細書において「ゲート電極」とは、トランジスタの構造上、「水門」にあた る部分の電極をいう。ゲート電極は、その構造上、絶縁膜と電極部分とから構成され る。現在は、二酸化ケイ素(SiO )を絶縁膜として使用することが多い。半導体部分の
2
表面を酸ィ匕することによって簡便に作製することができる力もである。ゲート電極は、 電圧の変化(印加)によって、ソースからドレインへの電流を発生させる。従って、ゲー ト電極は、電荷のある物質 (例えば、 DNA)などの検出に使用可能である。
[0134] 本明細書において「ソース部」、「ソース端子」または「ソース電極」とは、互換可能に 使用され、電界効果トランジスタにおいて、キャリアが素子に供給される源となる電極 (または端子)をいう。
[0135] 本明細書にぉ 、て「ドレイン部」、「ドレイン端子」または「ドレイン電極」とは、互換可 能に使用され、電界効果トランジスタにおいて、ソース電極力 キャリアが供給される 電極 (端子)をいう。
[0136] 本明細書において「引き出し電極」とは、トランジスタの電極力も電流を引き出すた めの電極をいう。トランジスタの構造によっては、トランジスタ内の電極と同一のものを 使用できるが、構造上、引き出し電極が分離していてもよい。そのような引き出し電極 としては、例えば、ソース引き出し電極、ドレイン引き出し電極、ゲート引き出し電極な どを挙げることができる。電解液に浸されている場合には、電極は、 AgZAgClのよう な物質を用いることができるがそれらに限定されない。
[0137] 本明細書にぉ 、て「キャリア」とは、電荷を担うものを 、う。キャリアとしては、例えば 、電気伝導に寄与する固体中の電子、ホール、イオン伝導体での伝導するイオンな どが挙げられるがそれらに限定されない。特に、半導体中の不純物等によって生じる 余剰な電子、または不足によって生じるホールのことをキャリアと呼ぶことが多いがそ れに限定されない。
[0138] 本明細書において「電解液」とは、溶融塩または溶液 (多くの場合水溶液)にすると 電気伝導性となる物質が溶解された溶液をいう。溶媒とイオン的に解離した溶質とか らなり、この溶液が電流を伝え、イオンは荷電電極に析出することにより溶液力も分離 される。
[0139] FETのうち、ゲート接合部の構造による分類を行うとすると、代表的なものに、金属 酸化膜形(Metal Oxide Semiconductor FET)があり、この型は、ゲート部分が 半導体の酸ィ匕皮膜上の金属電極になっており、 MOSFETともいう。このほか、接合 形 (Junction FET):普通のトランジスタと同じように、ゲートが異種半導体の接合面 になっているもの;金属半導体形(Metal Semiconductor FET; MESFET): ゲート部分が金属電極と半導体の直接接合になっているものが存在する。
[0140] 例えば、 MOSFETの構造において、ゲートの部分に注目すると、金属(Metal)、 酸化物(絶縁体)(Oxide)、半導体(Semiconductor)となっている。酸化物につい ては、 p型半導体にシリコンを使っていれば酸化させてやることで、酸化物と同時に絶 縁体の SiO層をつくることができる。ケィ素酸ィ匕物以外の非ケィ素酸ィ匕物を絶縁体
2
に用いる場合は、接合させる必要がある。金属に該当する部分には、通常、アルミ- ゥム、ポリシリコンなどが使われている。このように、 FETには三つの電極がある力 中 央のゲート電極が重要な水門の役割を果たす。
[0141] ゲート電極に電圧をかけないで、両端の電極だけに電圧をかけた場合、 npnの接 合面のうちどちらかは逆バイアスの状態になっているはずであるから、トランジスタに 電流は流れない。これは、トランジスタのオフの状態であるという。
[0142] ゲート電極に正の電圧をかけた場合、ゲート電極の正の電荷が p型層の上面にある 正孔をはねのけて奥の方へ追いやることになる。 p型層の少数の伝導電子 (少数キヤ リア)はゲート電極の正の電荷に引き寄せられて、上面に集まる。ただし絶縁層を通り ぬけることはできない。こうして p型層の上面に n型のチャンネル (水路)ができあがる。 これは反転層と呼ばれている。この層ができあがることによって電子は、逆バイアスの pn接合を通ることなぐソース力もゲートへと移動することができる。こうしてトランジス タを電流が流れる。
[0143] 上記例示は、チャンネルが n型であるものの説明であり、 NMOS型とも呼ばれてい る。チャンネルが ρ型で PMOS型と呼ばれるものもある。 PMOS型では正孔がキヤリ ァになっており、ゲート電圧や電流の向きが逆になる。 p型、 n型のどちらの構造でも MOS FETをつくることは可能だ力 一般に Nチャンネルの方が性能がよい。なぜな ら、電子のほうが正孔よりも有効質量が小さいためキャリアとしてすばやく動くことが可 能だ力もである力 本発明はそれに限定されない。
[0144] FETには、大ま力〖こ分けて、 2種類のゲート—ドレイン関係が存在し、ェンハンスメン ト型 (enhancement type ;ノーマリーオフ开 (normally off type)とも呼ばれる )とディプリシヨン型(depletion type =ノーマリーオン开 (normally on type)と も呼ばれる)があり、エンハンスメント型は、ゲート電圧をかけないときはチャネルが存 在せずドレイン電流が流れない FETであり、ディプリシヨン型は、ゲート電圧をかけな いときにチャネルが存在しドレイン電流が流れる FETである。
[0145] 本明細書にぉ 、て「デバイス」とは、装置の一部または全部を構成することができる 部分をいい、支持体 (好ましくは固相支持体、絶縁膜など)およびその支持体に担持 されるべき標的物質 (生体分子)など力 構成される。そのようなデバイスとしては、上 記のようなトランジスタ、チップ、アレイなどが挙げられるがそれらに限定されない。
[0146] 本明細書において使用される「支持体」または「基板」は、互換可能に用いられ、生 体分子のような物質を固定することができる材料 (好ましくは固体)を 、う。支持体の 材料としては、共有結合かまたは非共有結合のいずれかで、本発明において使用さ れる生体分子のような物質に結合する特性を有する力またはそのような特性を有する ように誘導体化され得る、任意の固体材料が挙げられる。
[0147] 支持体、基板などとして使用するためのそのような材料としては、固体表面を形成し 得る任意の材料が使用され得るが、例えば、ガラス、シリコン (ケィ素、 Si)、セラミック 、二酸化珪素、プラスチック、金属 (合金も含まれる)、天然および合成のポリマー(例 えば、ポリスチレン、セルロース、キトサン、デキストラン、およびナイロン)などが挙げ られるがそれらに限定されない。本明細書において半導体材料として使用される場 合、半導体を使用することが好ましい。支持体は、複数の異なる材料の層から形成さ れていてもよい。例えば、ガラス、石英ガラス、アルミナ、サファイア、フォルステライト、 酸化珪素、炭化珪素、窒化珪素などの無機絶縁材料を使用することができる。ポリエ チレン、エチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、不飽 和ポリエステル、含フッ素榭脂、ポリ塩化ビュル、ポリ塩ィ匕ビユリデン、ポリ酢酸ビュル 、ポリビュルアルコール、ポリビュルァセタール、アクリル榭脂、ポリアクリロニトリル、ポ リスチレン、ァセタール榭脂、ポリカーボネート、ポリアミド、フエノール榭脂、ユリア榭 脂、エポキシ榭脂、メラミン榭脂、スチレン'アクリロニトリル共重合体、アクリロニトリル ブタジエンスチレン共重合体、シリコーン榭脂、ポリフエ-レンオキサイド、ポリスルホ ンなどの有機材料を用いることができる。本発明においてはまた、ニトロセルロース膜 、ナイロン膜、 PVDF膜など、ブロッテイングに使用される膜を用いることもできる。支 持体を構成する材料が固相である場合、本明細書において特に「固相支持体」という
[0148] 基板は、半導体の一部として使用されることから、 Si、 GaZAsなどの半導体を使用 することが好ましい。
[0149] 本明細書において「液相」とは、当該分野において通常用いられる意味と同じ意味 で用いられ、通常、溶液中での状態をいう。
[0150] 本明細書において「固相」とは、当該分野において用いられる意味と同じ意味で用 いられ、通常、固体の状態をいう。本明細書において液体および固体を総合して流 体ということがある。
[0151] 本明細書において「コーティング」とは、支持体または基板について用いられるとき 、その支持体または基板の表面上にある物質の膜を形成させることおよびそのような 膜をいう。コーティングは種々の目的で行われ、例えば、支持体および基板の品質向 上 (例えば、寿命の向上、耐酸性などの耐環境性の向上)、支持体または基板に結 合されるべき物質の親和性の向上、絶縁性の向上などを目的とすることが多い。その ようなコーティングのための物質としては、種々の物質が用いられ得、上述の支持体 および基板自体に使用される物質のほか、 DNA、 RNA、タンパク質、脂質などの生 体分子、ポリマー(例えば、ポリ- L-リジン、 MAS,疎水性フッ素榭脂)、シラン (APS (例えば、 γ—ァミノプロビルシラン) )、アミノシラン誘導体、金属(例えば、金など)が 使用され得るがそれらに限定されない。そのような物質の選択は当業者の技術範囲 内にあり、当該分野において周知の技術を用いて場合ごとに選択することができる。
[0152] 本明細書において「チップ」または「マイクロチップ」は、互換可能に用いられ、多様 の機能をもち、システムの一部となる超小型集積回路をいう。チップのうち、生体分子 が結合したものを「バイオチップ」とも呼び、バイオチップとしては、例えば、 ΡΝΑチッ プ、 DNAチップ、プロテインチップなどが挙げられるがそれらに限定されない。
[0153] 本明細書において「アレイ」とは、 1以上 (例えば、 1000以上)の標的物質 (例えば 、 PNA、 DNA、タンパク質などの生体分子)を含む組成物が整列されて配置された パターンまたはパターンを有する基板 (例えば、チップ)そのものをいう。アレイの中で
、小さな基板(例えば、 10 X 10mm上など)上にパターン化されているものはマイクロ アレイというが、本明細書では、マイクロアレイとアレイとは互換可能に使用される。従 つて、上述の基板より大きなものにパターンィ匕されたものでもマイクロアレイと呼ぶこと がある。例えば、アレイはそれ自身固相表面または膜に固定されている所望のトラン スフェクト混合物のセットで構成される。アレイは好ましくは同一のまたは異なる抗体 を少なくとも 102個、より好ましくは少なくとも 103個、およびさらに好ましくは少なくとも 104個、さらにより好ましくは少なくとも 105個を含む。これらの抗体は、好ましくは表面 力 25 X 80mm、より好ましくは 10 X 10mm上に配置される。形式としては、 96ゥェ ノレマイクロタイタープレート、 384ウエノレマイクロタイタープレートなどのマイクロタイタ 一プレートの大きさのものから、スライドグラス程度の大きさのものが企図される。固定 される標的物質を含む組成物は、 1種類であっても複数種類であってもよい。そのよ うな種類の数は、 1個一スポット数までの任意の数であり得る。例えば、約 10種類、約 100種類、約 500種類、約 1000種類の標的物質を含む組成物が固定され得る。
[0154] 基板のような固相表面または膜には、上述のように任意の数の標的物質 (例えば、 抗体のようなタンパク質)が配置され得るが、通常、基板 1つあたり、 108個の生体分 子まで、他の実施形態において 107個の生体分子まで、 106個の生体分子まで、 105 個の生体分子まで、 104個の生体分子まで、 103個の生体分子まで、または 102個の 生体分子までの個の生体分子が配置され得るが、 108個の生体分子を超える標的物 質を含む組成物が配置されていてもよい。これらの場合において、基板の大きさはよ り小さいことが好ましい。特に、標的物質を含む組成物(例えば、抗体のようなタンパ ク質)のスポットの大きさは、単一の生体分子のサイズと同じ小さくあり得る(これは、 1 — 2nmの桁であり得る)。最小限の基板の面積は、いくつかの場合において基板上の 生体分子の数によって決定される。本発明では、細胞への導入が企図される標的物 質を含む組成物は、通常、 0. 01mm— 10mmのスポット状に共有結合あるいは物 理的相互作用によって配列固定されている。
[0155] アレイ上には、生体分子の「スポット」が配置され得る。本明細書において「スポット」 とは、標的物質を含む組成物の一定の集合をいう。本明細書において「スポッティン グ」とは、ある標的物質を含む組成物のスポットをある基板またはプレートに作製する ことをいう。スポッティングはどのような方法でも行うことができ、例えば、ピぺッティン グなどによって達成され得、あるいはプリンターなどの自動装置で行うこともでき、そ のような方法は当該分野において周知である。
[0156] 本明細書において使用される用語「アドレス」とは、基板上のユニークな位置をいい 、他のユニークな位置から弁別可能であり得るものをいう。アドレスは、そのアドレスを 伴うスポットとの関連づけに適切であり、そしてすベての各々のアドレスにおける存在 物が他のアドレスにおける存在物力も識別され得る(例えば、光学的)、任意の形状 を採り得る。アドレスを定める形は、例えば、円状、楕円状、正方形、長方形であり得 る力、または不規則な形であり得る。したがって、「アドレス」は、抽象的な概念を示し 、 「スポット」は具体的な概念を示すために使用され得るが、両者を区別する必要がな い場合、本明細書においては、「アドレス」と「スポット」とは互換的に使用され得る。
[0157] 各々のアドレスを定めるサイズは、とりわけ、その基板の大きさ、特定の基板上のァ ドレスの数、標的物質を含む組成物の量および Zまたは利用可能な試薬、微粒子の サイズおよびそのアレイが使用される任意の方法のために必要な解像度の程度に依 存する。大きさは、例えば、 1— 2nm力も数 cmの範囲であり得る力 そのアレイの適用 に一致した任意の大きさが可能である。
[0158] アドレスを定める空間配置および形状は、そのマイクロアレイが使用される特定の 適用に適合するように設計される。アドレスは、密に配置され得、広汎に分散され得 る力、または特定の型の分析物に適切な所望のパターンへとサブグループィ匕され得 る。
[0159] マイクロアレイについては、ゲノム機能研究プロトコール(実験医学別冊 ポストゲノ ム時代の実験講座 1)、ゲノム医科学とこれからのゲノム医療 (実験医学増刊)などに 広く概説されている。
[0160] マイクロアレイ力 得られるデータは膨大であることから、クローンとスポットとの対応 の管理、データ解析などを行うためのデータ解析ソフトウェアが重要である。そのよう なソフトウェアとしては、各種検出システムに付属のソフトウェアが利用可能である(Er molaeva Oら(1998) Nat. Genet. 20 : 19— 23)。また、データベースのフォーマ ットとしては、例えば、 Affymetrixが提唱している GATC (genetic analysis tech nology consortium)と呼ばれる形式が挙げられる。
[0161] 微細加工については、例えば、 Campbell, S. A. ( 1996) . The Science and
Engineering of Microelectronic Fabrication, Oxford University Pres s ; Zaut, P. V. (, 1996) . Micromicroarray Fabrication: a Practical Guide to Semiconductor Processing, Semiconductor Services ; Madou, M. J. ( 1997) . Fundamentals of Microfabrication, CRC1 5 Press ;Rai—Choud hury, P. ( 1997) . Handbook of Microlithography, Micromachining , & Microfabrication : Microlithographyなどに記載されており、これらは本明細書に おいて関連する部分が参考として援用される。
[0162] 本明細書において、「センサ」とは、計測対象 (例えば、生体分子)の状態および特 性値などに関する物理量を、伝送、記録または信号処理しやすいような別の物理量 に変換する素子をいう。従って、センサは、外界からの何らかの物理量や化学量をと らえて、電気的信号に変換して検知するデバイスであるといえる。
[0163] このうち、特に、生体分子を含む、特定の化学物質に応答を示し、その種類や濃度 を電気的信号に変換表示するものは化学センサと呼ばれる。化学センサには、 pHセ ンサに代表されるイオンセンサ、 O、 CO、 H
2 2 2などを検出するガスセンサ、生体活動 に利用されるバイオセンサの他、各種微生物センサ、免疫センサなどがある。これら のセンサの原理は、被測定物質を識別する素子と、そこから得られる化学情報を電 気信号に変換する電気化学デバイスから構成され、その変換方式は電位法 (potent iometry)と電流法 (amperometry)とに大別される。
[0164] 本明細書において「IS— FET (Ion Sensitive Field-Effect Transistor ;ィォ ン感受性電界効果トランジスタ)」とは、ゲート電極が電解液中のある種のイオンに対 して感受性をもつ電界効果トランジスタをいう。代表的には、 IS— FETは、 MOS電界 効果トランジスタ(MOSFET) をイオンセンサとして応用して作製される(Bergveld , Development of an Ion— sensitive Solid— state Device lor Neurop hysiological Measurements, IEEE Trans. Biomed. Eng. BME— 19 ( 19 70) 70)。溶液と感応膜との界面電位の分だけゲート閾値電圧が変化することを利 用したセンサで、プロトン感応膜として、絶縁体である SiO、 Si N、 Al O、 Ta Oな
2 3 4 2 3 2 5 どを用いることによって pHセンサとして作動する。ガラス電極と比較すると、半導体技 術の利用によって小型化ができ、ゲート部分の化学修飾によって様々なイオンの検 出が可能となる。 IS-FETは、ゲート膜上の pH変化に伴うゲート閾値電圧シフトを利 用しているといえる。従って、絶縁層の性質にその性能が大きく依存する。従来は、 S iOが汎用されているが、感度などの点から、非ケィ素酸ィ匕物を用いることが有利で
2
あるとされており、特に酸化金属を用いると、感度が顕著に増加することが知られてい る(Schoening MJ et al.Sensots and Actuators B35(1996)228- 233)。酸化金属(金属 酸ィ匕物)を利用することの利点としてはまた、水溶液中で使用される IS— FETは、水 溶液と、 IS— FET内部との間に完全な絶縁が保たれなければならないという背景に おいて、水溶液中へのリーク電流を防ぐという効果があり、耐水浸入性を考慮すると、 酸ィ匕金属が有利であることが挙げられる。しかし、生体分子を酸ィ匕金属などの非ケィ 素酸化物に配置する技術はこれまでな力つた。
[0165] 絶縁層はキャパシタンス(Ci)の働きをしているので、その内部では一様な電界が生 じている。溶液と接するセンサ表面には窒化膜 (Si N )を用いている力 これは、酸
3 4
化物(SiO )に比べて溶液の pHに対する感度特性がよぐ溶液に対する保護作用が
2
強いためであり、表面に SiO膜を用いると、膨潤するために非常に大きなドリフトを引
2
き起こすことが知られている。 pHセンサの感度特性としては、 Al O、 Ta O膜など
2 3 2 5 の酸ィ匕金属のような非ケィ素酸ィ匕物の方が優れている。
[0166] 本明細書にぉ 、て「電流 電圧特性」または「I V特性」とは、ある電気信号につ!/ヽ て、電流値と電圧値との関係を示す関係をいう。 I - V特性は、例えば、静特性飽和電 流値、伝達特性閾値電圧などを用いて表現することができる。このような特性は、通 常の計算手段を用いて算出することができる。
[0167] 本明細書において「静特性飽和電流値」とは、トランジスタに対するすべての他の 動作電圧が一定に保たれた状態において,電極電圧と電極電流との間のような 1対 の変数の間に成り立つ関係における、飽和電流値をいい、ドレイン電流 ドレイン電 圧特性 (I -V )測定において、ドレイン電流は、ドレイン電圧に比例して増加するが
D D
、電圧が増すと、それに従って、チャンネル(ソース Zドレイン間の n型チャンネル:電 子キャリア)の電気抵抗が大きくなるため、電圧に対する電流の傾きは次第に小さくな る。さらに電圧を大きくすると、ピンチオフ状態となり、ドレイン電流は、一定値を示す ようになる。このピンチオフにおける電流値を飽和電流といい、 I
DSで表す。 I
DS飽和電 流値の具体的な計算方法は以下のとおりである。
[0168] ドレイン電流 I = μ CiW/L X { (V -V ) VD - 1/2V
D e G T D 1 この I値で最大となる V =v ·νの点がピンチオフとなる飽和ドレイン電流値とな
D D G Τ
る。
[0169] I = μ CiW/2L X (V -V ) 2
DS e G T ここで、 μ :キャリア濃度、 Ci :絶縁体容量、 V :ゲート電圧、 V:閾値点圧(ドレイン
e G T 電流が流れ始める電圧)である。
[0170]
という式で算出する。この電流値の減少は、 p型トランジスタの場合、負の物質がゲ ート電極に相互作用していることを示す。
[0171] 本明細書において「伝達特性閾値電圧」とは、他の電極電圧をすベて一定に保つ た条件のもとで、ある電極の電圧ともう一つの電極に流れる電流の間に成り立つ関係 における閾値電圧をいい、伝達特性は、ドレイン電流 ゲート電圧特性測定の結果を 示すもので、閾値電圧(threshold voltage)は、ドレイン電流が流れ始めるゲート電 圧を示している。すなわち、閾値電圧は、チャネル内に伝導電子を誘起するために 必要な最小の電圧である。ゲート電圧 Vが Vより小さな場合は、ドレイン電流は流れ
G T
ない。この電圧(グラフ)の正シフトは、 p型トランジスタの場合、負の物質がゲート電極 に相互作用して 、ることを示す。
[0172]
本明細書では、
V = (21 L μ C W) +V
G DS e i ' ここで、 μ :キャリア濃度、 Ci :絶縁体容量、 V:閾値点圧(ドレイン電流が流れ始め る電圧) という式で算出する。
[0173]
(検出)
本発明の方法では、生体分子の情報またはそれに相互作用する物質に起因する 情報を検出することができる限り、種々の検出方法および検出手段を用いることがで きる。本発明では、生体分子の他の分子との相互作用を電気信号に変換することか ら、検出方法および検出手段としては、電気信号を検出することができる限り、どのよ うな技術を用いてもよいことが理解される。本発明における検出は、 IS— FETのソー スードレイン電極間、またはゲートに電圧を印加し、ソース'ドレイン間に流れる電流を 測定することによって検出を行うことができる。
[0174] 本明細書において「電気信号検出手段」とは、電気信号 (例えば、電流)を検出す る任意の手段をいう。電気信号検出手段としては、例えば、電流計、電圧計、電流電 圧計、ポテンシォメーターなどを挙げることができるがそれらに限定されない。電気信 号検出手段は、例えば、トランジスタと電気的に結合することによって、そのトランジス タカゝら引き出される電気信号を検出する。
[0175] 本明細書において「標識」とは、目的となる分子または物質を他力も識別するため の存在 (たとえば、物質、エネルギー、電磁波など)をいう。そのような標識方法として は、 RI (ラジオアイソトープ)法、蛍光法、ピオチン法、化学発光法等を挙げることがで きる。上記の核酸断片および相補性を示すオリゴヌクレオチドを何れも蛍光法によつ て標識する場合には、蛍光発光極大波長が互いに異なる蛍光物質によって標識を 行う。蛍光発光極大波長の差は、 lOnm以上であることが好ましい。蛍光物質として は、核酸の塩基部分と結合できるものであれば何れも用いることができる力 シァニン 色素(例えば、 CyDye™シリーズの Cy3、 Cy5等)、ローダミン 6G試薬、 N—ァセトキ シー N2—ァセチルァミノフルオレン (AAF)、 AAIF (AAFのヨウ素誘導体)等を使用 することが好ましい。蛍光発光極大波長の差が lOnm以上である蛍光物質としては、 例えば、 Cy5とローダミン 6G試薬との組み合わせ、 Cy3とフルォレセインとの組み合 わせ、ローダミン 6G試薬とフルォレセインとの組み合わせ等を挙げることができる。本 発明では、このような標識を利用して、使用される検出手段に検出され得るように目 的とする対象を改変することができる。そのような改変は、当該分野において公知で あり、当業者は標識におよび目的とする対象に応じて適宜そのような方法を実施する ことができる。
[0176] 本明細書において「相互作用」には、疎水性相互作用、親水性相互作用、水素結 合、ファンデルワールス力、イオン性相互作用、非イオン性相互作用、静電的相互作 用などが挙げられるがそれらに限定されない。例えば、 PNA、 DNAなどの核酸が用 いられる場合、相補体が水素結合によってノ、イブリダィズすること、抗原抗体反応、リ ガンドーレセプター反応などもまた、相互作用の範疇に入ることが理解される。
[0177] 本明細書において「相互作用のレベル」とは、 2つの物質 (例えば、生体分子)の間 の相互作用について言及する場合、その 2つの物質の間の相互作用の程度または 頻度をいう。そのような相互作用のレベルは、当該分野において周知の方法によって 測定することができる。特に、本発明では、電気信号の変化、例えば、電流の変化、 電圧の変化、電流 電圧特性の変化などを用いて相互作用のレベルを表現または 算出することができることが理解される。このような測定値から、例えば、あるスポットに おいて存在する特定の生体分子に関連する情報またはそれと相互作用する分子の 情報 (例えば、ノ、イブリダィゼーシヨン情報)を得ることができる。
[0178] 本明細書にぉ 、て、生体分子 (例えば、ポリヌクレオチドまたはポリペプチドなど)に 対して「特異的に相互作用する」とは、その生体分子に対する親和性が、他の無関連 の(特に、ポリヌクレオチド、ポリペプチドなどであれば、例えば、同一性が 30%未満 の)ポリヌクレオチドまたはポリペプチドに対する親和性よりも、代表的には同等また はより高いか、好ましくは有意に高いことをいう。そのような親和性は、例えば、ハイブ リダィゼーシヨンアツセィ、結合アツセィなどによって測定することができる。
[0179] 本明細書において生体分子などが「無電荷」であるとは、電荷が実質的にないこと をいう。電荷は、物質のもつ電気量は構成素粒子の電気量の総和で表すことができ ることからその電気量を計算することによって、生体分子が無電荷であるかどうかを判 定することができる。本明細書では、実質的に電荷がないとは、電気量が InC (ナノク 一ロン)以下のことをいう。、電気量力 sこの閾値以上の場合 (好ましくは 0でないとき)に
、その物質は、帯電しているという。本明細書において、「ほとんど電荷がない」とは、 生体分子の検出に影響がな 、程度に電荷が低!、ことを ヽぅ。
[0180] (提示、表示、入力)
本明細書において「表示」、「ディスプレイ」および「提示」とは、交換可能に用いられ 、ある信号を感覚器官 (例えば、視覚、聴覚、嗅覚など)によって知覚されるように変 換して表現することをいう。代表的には、視覚的に表示することが挙げられ、ディスプ レイとは、特に限定的な意味で用いる場合、視覚的に信号を表示する手段をさす。 従って、「表示」、「ディスプレイ」および「提示」とは、本発明の方法に従って得られた 電気信号またはそれ力 作製した生体分子に関する情報を直接または間接的にある いは情報処理をした形態で具現ィ匕することをいう。そのような表示の形態としては、グ ラフ、写真、表、アニメーションなど種々の方法があるが、それらに限定されない。
[0181] リアルタイムの表示および提示もまた、当該分野において周知の技術を用いて行う ことができる。例えば、全てのイメージが取得され、半永久的メモリに格納された後、 あるいはイメージの取得と実質的に同時に、適切なアプリケーションソフトウェアで処 理し、処理されたデータを得ることができる。例えば、取得されたデータを処理する方 法は、画像が中断されないシーケンスをプレイバックする、あるいは、リアルタイムで 表示する、焦点面における変化および連続として、照射光を示す「ムービー」として表 示することができる。
[0182] 指標設定画面では、キーボード、タツチパネルまたはマウスなどを用いて画面上で 条件を入力することにより、所望の複雑な反応条件の設定が可能である。その他、生 体分子との相互作用条件 (例えば、ハイブリダィゼーシヨンの温度、 pHなどの諸条件 )の設定をキーボード、マウスなどを用いて行うことができる。
[0183] 表示画面では、生体分子力 検出された情報をリアルタイムでまたは記録後に表示 する。記録情報の表示とともに、記録時の測定指標 (刺激条件、記録条件、表示条件 、処理条件、細胞の諸条件、温度、 pH等)もまたリアルタイムで表示することができる 。温度または pHが許容範囲を外れたときの警報機能も備えられて 、てもよ 、。
[0184] データ解析画面では、種々の数理解析、フーリエ変換、クラスター解析、 FFT解析 、コヒーレンス解析、コリレーション解析などの条件を設定することが可能である。一時 的なプロファイル表示機能、トポグラフィー表示機能、も備えていてもよい。これらの 解析結果は、記録媒体に保存されている情報とともに表示することができる。
[0185] (スクリーニング)
本明細書において「スクリーニング」とは、目的とするある特定の性質をもつ生物ま たは物質などの標的を、特定の操作 Z評価方法で多数を含む集団の中から選抜す ることをいう。スクリーニングのために、本発明の方法またはシステムを使用することが できる。本発明では、相互作用に関する情報に基づいてスクリーニングを行うことがで きる。
[0186] (診断)
本明細書において「診断」とは、被検体における疾患、障害、状態などに関連する 種々の指標を同定し、そのような疾患、障害、状態の現状を判定することをいう。本発 明の方法、装置、システムを用いることによって、生体分子との相互作用を分析し、そ のような情報を用いて、被検体における疾患、障害、状態、投与すべき処置または予 防のための処方物または方法などの種々の指標を選定することができる。
[0187] 本発明の診断方法は、原則として、身体力も出たものを利用することができることか ら、医師などの医療従こと者の手を離れて実施することができることから、産業上有用 である。
[0188] 本明細書において「指示書」は、本発明のシステム、デバイス、方法などを用いて実 施できる診断'治療方法などを医師、患者など投与を行う人に対して記載したもので ある。この指示書は、本発明の装置、デバイスなどを操作する方法を指示する文言が 記載されている。この指示書は、必要に応じて、本発明が実施される国の監督官庁( 例えば、 日本であれば厚生労働省、米国であれば食品医薬品局 (FDA)など)が規 定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指 示書は、いわゆる添付文書 (package insert)であり、通常は紙媒体で提供される 力 それに限定されず、例えば、電子媒体 (例えば、インターネットで提供されるホー ムページ、電子メール)のような形態でも提供され得る。
[0189] (好ましい実施形態の説明) 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本 発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に 限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参 酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。
[0190] (ゲート電極)
1つの局面において、本発明は、生体分子と、非ケィ素酸ィ匕物とを含む、ゲート電 極を提供する。ここで、生体分子は、本明細書において上記されるように、生体に存 在する物質の他、生体に存在する物質と相互作用する物質 (例えば、人工 DNA、 P NAなど)を用いることができる。通常、生体分子としては、有機化合物が使用される ことが理解される。生体分子と、非ケィ素酸ィ匕物とは、ゲート電極が形成されるように 構成される限り、どのように配置されていても良い。好ましくは、非ケィ素酸化物上に 結合される。
[0191] 本発明において使用される非ケィ素酸ィ匕物としては、従来使用されていた二酸ィ匕 ケィ素より誘電率の高い絶縁体が使用される。ニ酸ィ匕ケィ素の 25°Cでの誘電率は、 およそ 3. 9であることから、それより大きな誘電率を有する物質であれば、どのような ものでも使用することができる。従って、好ましい実施形態では、本発明において使 用される非ケィ素酸ィ匕物の 25°Cでの誘電率は、少なくとも 6以上であり、より好ましく は、 8. 5以上であり、さらに好ましくは 10以上であり、さらにより好ましくは 15以上であ り、最も好ましくは 20以上である。
[0192] 好ましい実施形態において、非ケィ素酸ィ匕物は、酸化金属である。本発明におい て開示された結合方法を使用することができ、おおむね大きな誘電率を有するから である。使用され得る酸化金属としては、例えば、酸化タンタル (Ta O )、酸化カル
2 5
シゥム(CaO)、酸ィ匕鉛 (PbO)、酸化ストロンチウム(SrO)、酸化トリウム (ThO )、酸
2 化アンチモン(Sb O )、一酸化チタン (TiO)、二酸化チタン (TiO )、酸化ハフニゥ
2 3 2
ム(HfO )、酸化イツテノレビゥム (Yb O )、酸化マグネシウム(MgO)、酸化インジゥ
2 2 3
ム(In O )、酸化スズ(SnO )、酸化ジルコニウム(ZrO )、酸化セリウム(CeO )、酸
2 3 2 2 2 ィ匕ニオブ (Nb O )、酸ィ匕ガドリニウム(Gd O )、酸ィ匕クロム(Cr O )、酸化タンダステ
2 5 2 3 2 3
ン (WO )、酸化銅 (I) (Cu O)、酸化銅 (II) (CuO)、酸ィ匕鉄 (Π) (FeO)、酸ィ匕鉄 (III) ( Fe O )、酸化ニッケル(NiO)、酸化ビスマス(Bi O )、酸化サマリウム(Sm O )、酸
2 3 2 3 2 3 化ネオジム(Nd O )、酸化バナジウム (V O )、酸化モリブデン(MoO )、酸化カドミ
2 3 2 5 3
ゥム(CdO )、酸化マンガン(MnO )、二酸化バリウム(BaO )および一酸化バリウム
2 2 2
(BaO)などを挙げることができるがそれらに限定されな 、。好ま 、実施形態では、 この非ケィ素酸ィ匕物は、酸化タンタル (Ta O )、一酸化バリウム (BaO)、酸化ビスマ
2 5
ス (Bi O )、酸化銅 (II) (CuO)、酸化鉛 (PbO)、酸化イッテルビウム (Yb O )、酸ィ匕
2 3 2 3 ジルコニウム ば) )、酸化ニオブ(Nb O )および酸化ハフニウム(HfO )などを挙
2 2 5 2 げることができる。最も好ましくは、非ケィ素酸ィ匕物は、酸化タンタル (Ta O )である。
2 5 酸ィ匕タンタルはおよそ 25の誘電率を有して 、ることから、従来のケィ素酸化物(二酸 化ケィ素)の 6倍以上の誘電率を有する。このような誘電率を有していても、バイオセ ンサとして構成することができることが本願において初めて見出された。このほかにも 、チタン系の酸ィ匕物は、概して高い誘電率を有していることから、本発明における絶 縁体である非ケィ素酸ィ匕物として好まし、。代表的な酸ィ匕金属の 25°Cまたは室温( 例外は括弧で示す。)での誘電率 (比誘電率ともいう)は、 BaOが 34、 BaO力 lO. 7
2
、 Bi Oカ 18. 2、 CaO力 11. 8 (10°C) , Cr Oカ 12. 0、 CuOカ 18. 1、 Cu Oカ 12
2 3 2 3 2
. 0、 FeOカ 14. 2、 PbOカ 25. 9、 MgOカ 9. 65、 SrOカ 13. 3、 SrTiOカ 332、 T
3 hO力 ^IO. 6
2 、ZrOである。
2
[0193] 好ましくは、生体分子は、非ケィ素酸ィ匕物に固定される。固定は、任意の固定技術 を用いて実現することができる力 好ましくは、共有結合させることによって実現される 。共有結合には、クロスリンカ一を用いることが好ましい。このような結合様式につい ては、本明細書において詳述される。代表的には、結合は、シランカップリング剤によ つて実現されることが理解される。従って、好ましい実施形態では、このゲート電極は 、生体分子と、非ケィ素酸ィ匕物とがシランカップリング剤による結合による結合部分( 代表的には、シランカップリング剤カゝら結合反応によって除去された残留部分)をも 含むことが理解される。
[0194] 好ましい実施形態では、本発明のゲート電極において、非ケィ素酸化物と生体分 子とは、アミノシランィ匕合物によって (好ましくは共有結合)結合される。従来このよう な結合によって構成されたゲート電極は知られておらず、本発明は、有用なバイオセ ンサとして使用可能なゲート電極を提供する。
[0195] 1つの好ましい実施形態では、このような結合部分は、
— O— (SiR R )— (CH )— NH (CH ) — NH— O— (CH )— O— CH— NH—
1 2 2 n 2 m 2 k 2
で示される。ここで、 n、 mおよび kはそれぞれ独立して任意の正の整数である。好ま しくは、 n、 mおよび kは、独立して 1一 6の整数、より好ましくは独立して 1一 3の整数 であり得る。ここで、 Rおよび Rは、独立して、任意の置換基または該リンカ一と同じ
1 2
構造を有する別のリンカ一の Si原子であり得る。従って、別のリンカ一である場合は、 非ケィ素酸ィ匕物面上に層状に生体分子を結合させることができる。
[0196] 好ましい実施形態において、本発明のゲート電極の非ケィ素酸ィ匕物は膜状形態ま たは層状形態をしており、生体分子は、この非ケィ素酸ィ匕物膜上に固定される。非ケ ィ素酸ィ匕物は、複数の層が積層していてもよい。そのような場合、最も上には非ケィ 素酸化物 (好ましくは、酸化金属)を配置することが好ましい。複数層が使用される場 合は、中の層としては、例えば、 Si Nなどの他の絶縁体および SiOのような絶縁体
3 4 2
を配置することができる。
[0197] 好ましい実施形態において、本発明のゲート電極に備えられる生体分子は、他の 生体分子と特異的相互作用をする能力を有する。そのような相互作用は、例えば、 核酸同士のハイブリダィゼーシヨン、タンパク質と核酸との相互作用(例えば、転写因 子と転写因子結合配列など)、タンパク質同士の相互作用、抗原抗体反応、リガンド レセプター反応などを挙げることができるがそれらに限定されない。
[0198] 本発明のゲート電極で使用される生体分子としては、核酸、タンパク質、糖、脂質 およびそれらの複合体などを挙げることができるがそれらに限定されない。
[0199] 好ま 、実施形態では、生体分子は、核酸を含み得る。このような核酸としては、例 えば、 DNA、 RNAおよび PNAを含む。より好ましくは、生体分子は、 PNAを含む。 PNAは、無電荷であり、マイナスの電荷を有する DNAに比べて、検出感度が格段 に上昇することが期待されるからである。実際に、 PNAを用いた場合には、 DNAを 用いた場合よりも 2— 10倍またはそれ以上に感度が上昇したことが本発明によって 示された。
[0200] 本発明にお 、て用いられる生体分子は、一本鎖または二本鎖の形態で存在し得る [0201] 好ましくは、本発明のゲート電極において用いられる生体分子は、ストリンジェントな ハイブリダィゼーシヨン条件他の生体分子とハイブリダィゼーシヨンする能力を有する 。そのようなハイブリダィゼーシヨンする能力を有する生体分子の設計は、当該分野 において公知の任意の技術を用いて実施することができる。そのような設計方法につ いては、本明細書において、上記されている。
[0202] 本発明のゲート電極において用いられる生体分子は、リガンドーレセプター相互作 用または抗原抗体反応する能力を有していてもよい。このような物質は、タンパク質、 有機低分子などであり得ることが理解される。
[0203] 好ましくは、本発明において用いられる生体分子は、無電荷またはほとんど電荷が ないことが有利である。そのような生体分子としては、 PNAなどを挙げることができる がそれらに限定されない。電荷がないかまたはほとんどないことによって、半導体に おける反応性が格段に上昇するため、検出感度が格段に上昇することが期待される
[0204] 好ま 、実施形態では、本発明のゲート電極に配置される生体分子は、疾患また は障害の診断のためのプローブである。このようなプローブを配置することによって、 本発明のゲート電極は、診断チップなどに応用することが可能である。そのようなプロ ーブは、当該分野において公知の情報力 当業者は容易に設計することができるこ とが理解される。プローブは、例えば、対象となる核酸配列に対してパーフェクトマツ チの相補性を有していてもよぐあるいは、 1塩基違うものを用いてもよい。 1つの実施 形態では、本発明において用いられる生体分子は、 1塩基多型 (SNPs)を検出する ためのプローブであり得る。
[0205] 図 11には、ゲート電極の作製模式図を示す。このように、 Siの上に、 SiO膜、 Si N
2 3 膜を積層し、その上に Ta Oが積層される。
4 2 5
[0206] 別の好ましい実施形態では、電極と生体分子 (例えば、核酸分子)との間に、ァミノ シランとクロスリンカ一で架橋して、自由度を持たせることによって、ハイブリダィゼー シヨンの効率を有利に働かせることも可能である。
[0207] (電界効果トランジスタ) 1つの局面において、本発明は、生体分子と、非ケィ素酸ィ匕物とを含むゲート電極 力 半導体素子上に一体化された、電界効果トランジスタを提供する。個々で使用さ れるゲート電極は、本明細書において上記 (ゲート電極)において説明される任意の 形態を用いることができる。
[0208] 本発明において用いられる半導体素子は、通常、ゲート電極の他、基板と、ソース 部と、ドレイン部とを含む。このような基板、ソース部、ドレイン部などは、通常の半導 体素子に用いられる任意の技術を用いることができることが理解される。
[0209] 本発明の電界効果トランジスタは、ゲート電極を用いるものである限り、 pチャネル型 または nチャネル型であり、そして、エンハンスメント型またはディプリシヨン型であり得 る。
[0210] 好ましい実施形態では、本発明の半導体素子におけるソース部およびドレイン部は 、絶縁体で覆われていることが有利である。ゲート電極のゲート効果を有効に活用す ることがでさるカゝらである。
[0211] 本発明の電界効果トランジスタは、ゲート電極以外の電極が備えられていてもよい。
そのようなさらなる電極の例としては、例えば、ソース部からの電流を引き出すソース 引き出し電極、ドレイン部からの電流を引き出すドレイン引き出し電極、基板からの電 流を引き出す基板引き出し電極、ゲート電極由来の電流を引き出すためのゲート引 き出し電極などを挙げることができる。
[0212] 本発明の電界効果トランジスタにおいてゲート電極は、電解液に浸されていてもよ い。
[0213] 引き出し電極には、どのようなものを使用しても良いが、例えば、 AgZAgClを含む 電極が使用されても良い。
[0214] 本発明の半導体素子に使用される基板は、通常の半導体技術において用いられ る任意の材料カゝら形成され得ることが理解され、例えば、 Siを含む材料から形成され ていてもよい。
[0215] (センサ)
別の局面において、本発明は、以下: A)生体分子と、非ケィ素酸ィ匕物とを含むゲ ート電極が半導体素子上に一体化された、電界効果トランジスタと、 B)電気信号検 出手段とを備える、該生体分子との相互作用を検出するためのセンサを提供する。こ こで、ゲート電極、電界効果トランジスタには、上述の(ゲート電極)および(トランジス タ)に記載される任意の形態を用いることができることが理解される。
[0216] 本発明のセンサにおいて使用される電気信号検出手段は、電気信号を検出するこ とができる限り、どのような手段でも用いることができ、例えば、電圧計、電流計、電流 電圧計、ポテンシォメーターなどが例示され得る。
[0217] 好ま ヽ実施形態では、本発明のセンサは、ディスプレイのような提示手段を備え ていてもよい。そのようなディスプレイを備えることによって、使用者は、即座に生体分 子に関する情報を得ることができる。
[0218] (ゲート電極作製法)
別の局面において、本発明は、生体分子が固定された、非ケィ素酸化物を含むゲ ート電極を作製する方法であって、 A)非ケィ素酸化物を含むゲート電極を提供する 工程; B)該非ケィ素酸化物に無機材料と有機材料とをィ匕学的に結合させるカツプリ ング試薬 (例えば、アミノシラン含有物質)を結合させる工程; C)該カップリング試薬と 、該カップリング試薬と反応し得るクロスリンカ一(例えば、カルポジイミド類、アルデヒ ド類、イミドエステル類、フエ-レンイソチオシァネート類、エポキシシラン類、シラン力 ップリング剤)を結合させて中間体を形成工程;および D)該中間体に生体分子を結 合させる工程、を包含する、方法を提供する。従来非ケィ素酸化物、特に酸化金属 に、 DNAのような生体分子を結合させることができるようになつたことは、従来達成さ れていな力つた。従来の技術では、ケィ素酸ィ匕物に生体分子を結合させて、電極を 作製する試みがなされているが、そのようなゲート電極およびそのゲート電極を使用 した半導体素子、システム、センサーなどを実現することができな力つた。酸化金属 のような非ケィ素酸ィ匕物を使用することで、ゲート電極の感度が格段に上昇すること が知られている。本発明は、生体分子をゲート電極に結合させることによって、生体 分子による高感度センサなどを作製することができるという利点も有する。本発明で は、非ケィ素酸ィ匕物を含むゲート電極 (好ましくは、ケィ素で作製される)を提供した 後、そのゲート電極をアミノシラン含有物質 (例えば、ァミノプロピルトリエトキシシラン など)などを結合させた後に、生体分子をそのアミノシラン含有物質などに直接また はクロスリンカ一(例えば、ダルタルアルデヒドなど)を用いて間接的に結合させること によって、本発明のゲート電極を作製することができることが実証されたという点で評 価されるべさである。
[0219] 好ましい実施形態では、本発明において用いられるカップリング試薬は、網のシラ ン含有物質が有利である。
[0220] より好まし 、実施形態にぉ 、て、本発明にお 、て使用されるアミノシラン含有物質 は、 ω '—アミノアルキルトリアルコキシシラン、より好ましくは、 3'—ァミノプロピルトリエ トキシシランを含む。 3'—ァミノプロピルトリエトキシシランによって、効率よぐ確実に、 有機物質 (例えば、核酸)を、非ケィ素酸ィ匕物 (特に、酸ィ匕金属)のような無機物質に 結合させることが可能になったことが本発明によって初めて実証された。
[0221] 好ましい実施形態では、本発明において、アミノシラン含有物質の結合の前に、酸 化金属は、酸処理されることが有利である。酸処理によって、非ケィ素酸化物におけ る酸素含有基が水酸基に一部置換されることによって、アミノシラン含有物質との結 合が促進されるからである。ここで、酸処理に使用する酸は、塩酸、硫酸などの無機 酸、または酢酸などの有機酸であり得ることが理解される。酸には、ェチルアルコー ル、メチルアルコールなどのアルコールをカ卩えることができることが理解される。
[0222] 本発明のゲート電極作製法において使用される非ケィ素酸ィ匕物は、好ましくは、酸 化金属であり、酸化タンタル (Ta O )、酸化カルシウム(CaO)、酸化鉛(PbO)、酸
2 5
化ストロンチウム(SrO)、酸化トリウム (ThO )、酸化アンチモン(Sb O )、一酸化チ
2 2 3
タン (TiO)、二酸化チタン (TiO )、酸化ハフニウム(HfO )、酸化イッテルビウム (Y
2 2 2
O )、酸ィ匕マグネシウム(MgO)、酸化インジウム (In O )、酸化スズ (SnO )、酸化ジ
3 2 3 2 ルコニゥム(ZrO )、酸化セリウム(CeO )、酸化ニオブ(Nb O )、酸化亜鉛(ZnO)、
2 2 2 5
酸ィ匕ガドリニウム (Gd O )、酸ィ匕クロム(Cr O )、酸化タングステン (WO )、酸化銅(
2 3 2 3 3
I) (Cu 0)、酸化銅 (Il CuO)、酸ィ匕鉄 (II) (FeO)、酸ィ匕鉄 (III) (Fe O )、酸化ニッ
2 2 3 ケル(NiO)、酸化ビスマス(Bi O )、酸化サマリウム(Sm O )、および酸化ネオジム
2 3 2 3
(Nd O )などの、本明細書において「ゲート電極」の節に記載される任意の形態を採
2 3
り得ることが理解される。
[0223] 好ましい実施形態において、本発明の方法において用いられるクロスリンカ一は、 カルボジイミド類、アルデヒド類、イミドエステル類、フエ-レンジイソチオシァネート( 図 2Bを参照)、エポキシシラン、シランカップリング剤などを含む。
[0224] より好ましい実施形態では、本発明において使用されるクロスリンカ一は、アルデヒ ド含有基を含み、さらに好ましくは、クロスリンカ一は、ダルタルアルデヒドを含む。
[0225] 本発明において、架橋処理には、任意の技術が用いられ得、ラジカル反応を生じさ せる技術などを用いることができる。そのような技術としては、例えば、 X線照射、紫外 線照射、電子線照射、 0線照射、分子の熱分解、光分解、放射線分解、電子授受反 応などを挙げることができるがそれらに限定されない。
[0226] 本明細書において使用される生体分子もまた、本明細書において「ゲート電極」に おいて記載される任意の形態を用いることができることが理解される。好ましくは、生 体分子は、生体分子は、核酸を含み、より好ましくは、生体分子は、 DNAまたは PN Aを含み、さらに好ましくは、生体分子は、 PNAを含む。
[0227] 本発明の好ましい実施形態において、クロスリンクが終わった後、生成物を還元す ることが好ましい。還元することによって、生体分子の結合が安定ィ匕する力もである。 そのような還元は、シッフ塩基の還元に用いることができる限り、そのようなものでも用 いる琴ができる力 例えば、水素化シァノホウ素ナトリウム(NaCNBH )、ジメチルァ
3
ミンボラン((CH ) HNBH )、トリメチルァミンボラン((CH ) NBH )、水素化ホウ素
3 2 3 3 3 4
ナトリウム(NaBH )、ボラン(BH )、ァ-リン(C H NH )、ヒドラジン(N H )、タエン
4 3 6 5 2 2 4 酸(C H O )、シユウ酸((COOH) )、水素化リチウムアルミニウム(LiAlH )、ヒドロ
6 8 7 2 4 キノン (C H (OH) )などを用いることができるがそれらに限定されない。好ましくは、
6 4 2
還元は、 NaCNBHを用いて行われることが好ましい。
3
[0228] 別の好ましい実施形態では、電極と生体分子 (例えば、核酸分子)との間に、ァミノ シランとクロスリンカ一で架橋して、 自由度を持たせることによって、ハイブリダィゼー シヨンの効率を有利に働かせることも可能である。架橋の方法は、本明細書において 別の箇所にぉ 、て記載されて 、るように、当該分野にぉ 、て公知の任意の方法を利 用することが可能である。
[0229] (生体分子に関する情報検出法)
別の局面において、本発明は、生体分子との相互作用を検出するための方法であ つて、 A)該生体分子と、非ケィ素酸ィ匕物とを含む、ゲート電極が半導体素子上に一 体化された、電界効果トランジスタを提供し、電流-電圧 (I-V)特性を測定する工程; B)該電界効果トランジスタと、相互作用が生じるに十分な条件下でサンプルとを接触 させる工程; C)該接触後に、該電界効果トランジスタの ι-ν特性を測定する工程;お よび D)該接触前の I V特性と、該接触後の I V特性とを比較して、該 I V特性同士 の相違から該生体分子との該相互作用を算出する工程、を包含する、方法を提供す る。
[0230] 本発明では、 IS— FETのソース—ドレイン電極間、またはゲートに電圧を印加し、ソ ース 'ドレイン間に流れる電流を測定することによって検出を行うことが可能になる。
[0231] ここで、ゲート電極、電界効果トランジスタについては、本明細書において、それぞ れ「ゲート電極」、「電界効果トランジスタ」に記載される任意の形態を用いることがで きることが理解される。
[0232] I V特性は、任意の電気信号検出手段によって測定することができることが理解さ れる。そのような検出手段は、本明細書において他の場所において記載されており、 本明細書にぉ 、て「センサ」に記載される任意の形態を用いることができることが理解 される。
[0233] 本発明にお 、て利用される I V特性の表現形としては、静特性飽和電流値、伝達 特性閾値電圧などを挙げることができるがそれらに限定されな 、。これらの値の相違 は、それぞれ、電流値の増減、 IV特性曲線のシフト (正負)などによって表現すること ができる。
[0234] 本発明において用いられる生体分子は、任意の生体分子を用いることができるが、 好ましくは、核酸が用いられる。このような場合、本発明の検出対象となるサンプルは 、核酸と相互作用する分子を含む力または含むと予測されるか、あるいは核酸と相互 作用する物質を含む力または含むと予測されるサンプル (例えば、血液、尿)などを 用いることができることが理解される。
[0235] 本発明の検出方法において用いられる生体分子は、 PNAを含み、この場合検出 対象とされるサンプルは、核酸を含む力または含むと予測される力、あるいは核酸と 相互作用する物質を含む力または含むと予測されることが好ましい。 [0236] 本発明の検出方法では、使用される生体分子は、核酸を含み、検出対象となるサ ンプルは、核酸と相互作用する分子を含む。この場合、電界効果トランジスタは、 p型 トランジスタであり、 I V特性の静特性飽和電流値の減少または伝達特性閾値電圧 の正シフトは、核酸と、核酸と相互作用する分子とがハイブリダィゼーシヨンしたことを 示す。シフトおよび電流値の増減と、相互作用との相関付けは、一度標準曲線を作 成すること〖こよって実施することができることが理解される。本発明では、この電流値 の増減の幅、およびシフトの移動幅力 従来のケィ素酸ィ匕物を用いた場合よりも、は るかに改善したことが留意されるべきである。あるいは、特に、 PNAを用いた場合は、 電荷がない状態で測定されることから、電荷を有する DNAの測定感度が飛躍的に 上昇したことに留意すべきである。
[0237] (検出システム)
別の局面において、本発明は、 A)生体分子と、非ケィ素酸ィ匕物とを含むゲート電 極が半導体素子上に一体化された、電界効果トランジスタと、 B)該電界効果トランジ スタが露出するように配置された、サンプルを収容するための容器と、 C)該電界効果 トランジスタと電気的に結合する電気信号検出手段と、 D)該電気信号検出手段と電 気的に結合する電流 -電圧 (I - V)特性を算出する手段、とを備える、生体分子との 相互作用を検出するためのシステムを提供する。このシステムにおいて使用されるゲ ート電極、電界効果トランジスタ、電気信号検出手段は、本明細書において「ゲート 電極」、「電界効果トランジスタ」、 「センサ」などにおいて詳述される任意の形態を用 いることができることに留意すべきである。本発明では、 IS— FETのソース一ドレイン電 極間、またはゲートに電圧を印加し、ソース'ドレイン間に流れる電流を測定すること によって検出を行うことが可能になる。ここで、サンプルを収容するための容器は、サ ンプルを収容することができ、電界効果トランジスタが露出することができるように配 置される限り、どのような容器を用いることでも用いることができることが理解される。本 発明において使用される I V特性の算出手段もまた、電気信号から電流値および電 圧値を算出し、その関係を算出し、必要に応じて数学的処理を行うことができるような 手段を用いることができる限りどのような手段を用いてもよい。通常、 CPU、入力手段 、出力手段、格納手段、表示手段などを備えたコンピュータを用いることができるがそ れらに限定されない。
[0238] 本発明のこのような検出システムは、例えば、図 10に例示されるように構成される。
ここでは、 IS— FETの半導体素子部分が左上に例示される。左下には、 4 X 4で構成 した場合のチップの平面図を示す。右側には、 IS— FETにおける検出を例示する。こ こでは、一本鎖(SS— DNA)の場合と、二本鎖(DS— DNA)の場合とで、ミスマッチを 検出する模式図を示す。フェリシアン化鉄の酸化還元によって簡単に電荷の移動を 観察することができることが理解される。一本鎖と二本鎖との I -Vの相対的比較図を d d
図 12に示す。
[0239] このようなシステムは、さらに、 I V特性に基づいて、生体分子との相互作用に関す る情報を算出する手段を備える。
[0240] 別の局面において、本発明は、そのような生体分子との相互作用に関する情報を 算出するためのコンピュータプログラムを提供することが理解される。
[0241] (本発明の用途)
本発明の方法、ゲート電極、トランジスタおよびシステムは、例えば、診断、法医学 、薬物探索(医薬品のスクリーニング)および開発、分子生物学的分析 (例えば、ァレ ィベースのヌクレオチド配列分析およびアレイベースの遺伝子配列分析)、タンパク 質特性および機能の分析、薬理ゲノム学、プロテオミタス、環境調査ならびにさらなる 生物学的およびィ匕学的な分析において使用され得る。
[0242] 本発明の方法、ゲート電極、トランジスタおよびシステムは、種々の遺伝子の検出に 使用することができ、検出する遺伝子は特に限定されない。そのような検出される遺 伝子としては、例えば、ウィルス病原体 (たとえば、肝炎ウィルス (A、 B、 C、 D、 E、 F 、 G型)、 HIV、インフルエンザウイルス、ヘルぺス群ウィルス、アデノウイルス、ヒトポリ ォーマウィルス、ヒトパピローマウィルス、ヒトパルボウイルス、ムンプスゥイノレス、ヒトロ タウィルス、ェンテロウィルス、 日本脳炎ウィルス、デングウィルス、風疹ウィルス、 HT LVを含むがそれらに限定されな 、)の遺伝子;細菌病原体 (たとえば、黄色ブドウ球 菌、溶血性連鎖球菌、病原性大腸菌、腸炎ビブリオ菌、へリコパクターピロリ菌、カン ピロパクター、コレラ菌、赤痢菌、サルモネラ菌、エルシニア、淋菌、リステリア菌、レ プトスビラ、レジオネラ菌、スピロヘータ、肺炎マイコプラズマ、リケッチア、クラミジァを 含むがそれらに限定されない)の遺伝子、マラリア、赤痢アメーバ、病原真菌、寄生 虫、真菌の遺伝子の検出に用いることができる。
[0243] 本発明の方法、ゲート電極、トランジスタおよびシステムはまた、遺伝性疾患、網膜 芽細胞腫、ウィルムス腫瘍、家族性結腸ポリープ症、神経腺維腫症、家族性乳癌、 色素性乾皮症、脳腫瘍、 P腔癌、食道癌、胃癌、結腸癌、肝臓癌、脾臓癌、肺癌、 甲状腺腫瘍、乳腺腫瘍、泌尿器腫瘍、男性器腫瘍、女性器腫瘍、皮膚腫瘍、骨,軟 部腫瘍、白血病、リンパ腫、固形腫瘍、等の腫瘍性疾患を検査および診断するため に使用され得る。
[0244] 本発明はさらに、 RFLP、 SNP解析等の多型解析、塩基配列の解析等にも適応する ことが可能である。本発明はまた、医薬品のスクリーニングにおいて使用することがで きる。
[0245] 本発明はまた、医療以外にも、食品検査、検疫、医薬品検査、法医学、農業、畜産 、漁業、林業などで、生体分子の検査が必要なものに全て適応可能である。本発明 においては特に、食料の安全目的のための(たとえば、 BSE検査)使用も企図される
[0246] 本発明はまた、生化学検査データを検出するために用いられ得る。生化学検査の 項目としては、たとえば、総蛋白、アルブミン、チモール反応、クンケル硫酸亜鉛試験 、血漿アンモニア、尿素窒素、クレアチュン、尿酸、総ビリルビン、直接ピリルビン、 G OT、 GPT、コリンエステラーゼ、アルカリホスファターゼ、ロイシンアミノぺプチターゼ 、 yーグルタミルトランスぺプチターゼ、クレアチュンフォスキナーゼ、乳酸デヒドロゲ ナーゼ、アミラーゼ、ナトリウム、カリウム、塩素イオン(クロール)、総カルシウム、無機 リン、血清鉄、不飽和鉄結合能、血清浸透圧、総コレステロール、遊離コレステロ一 ル、 HDL-コレステロール、トリダリセライド、リン脂質、遊離脂肪酸、血漿グルコース、 インシュリン、 BSP停滞率、 ICG消失率、 ICG停滞率、髄液'総蛋白、髄液'糖、髄液 •塩素、尿 ·総蛋白、尿 *ブドウ糖、尿,アミラーゼ、尿 ·尿酸、尿 ·尿素窒素、尿,クレア チュン、尿'カルシウム、尿'浸透圧、尿 ·無機リン、尿 'ナトリウム、尿'カリウム、尿'ク ロール、尿中 Nァセチルダルコサミニダーゼ、 1時間クレアチニンクレアランス、 24時 間クレアチュンクレアランス、フエノールスルホンフタレイン、 C-反応性タンパクなどが 挙げられるがそれらに限定されない。このような検査項目を測定する方法および原理 は当該分野において周知慣用されている。
[0247] 本発明はまた、生体から直接採取したサンプル以外に、 PCR、 SDA、 NASBA法 等で増幅した遺伝子の検出に対しても用いることは可能である。本発明はさらに、標 的遺伝子は予め電気化学的に活性な物質や、 FITC、ローダミン、アタリジン、 Texa s Red,フルォレセインなどの蛍光物質、アルカリホスファターゼ、ペルォキシダーゼ 、グルコースォキシダーゼなどの酵素、ハプテン、発光物質、抗体、抗原、金コロイド などのコロイド粒子、金属、金属イオン、およびトリスビピリジン、トリスフエナント口リン、 へキサァミンなどとの金属キレートなどで標識しておくことも可能である。
[0248] 本発明が検査または診断目的とする試料は特に限定されず、例えば、血液、血清 、白血球、尿、便、精液、唾液、組織、培養細胞、喀痰等を用いることができる。
[0249] 以下に、実施例に基づいて本発明を説明するが、以下の実施例は、例示の目的の みに提供される。従って、本発明の範囲は、上記発明の詳細な説明にも下記実施例 にも限定されるものではなぐ特許請求の範囲によってのみ限定される。
実施例
[0250] (実施例 1 :ペプチド核酸分子と電界効果トランジスタを組み合わせた生体情報デ バイスの作製)
生体分子の代表例としてペプチド核酸分子と、電界効果トランジスタとを組み合わ せた生体情報デバイスを作製し、遺伝子検出の可能性について評価した。作製した 電界効果トランジスタの模式図を図 1に示す。
[0251] (実験方法)
以下にこの手順の詳細を示す。
[0252] (材料)
3, -ァミノプロピルトリエトキシシラン (APTESとも 、う)を信越化学 (東京、日本)か ら購入した、 25%ダルタルアルデヒド、水素化シァノホウ素ナトリウム(NaBH CN)、
3
20 X SSC、0. 5M EDTA溶液およびリン酸緩衝液(pH7. 0, 1Z15M)は、和 光純薬 (大阪、 日本)から購入した。
[0253] IS— FETの電極などは、 BAS Inc.力ら購入した。 [0254] N末端にエチレングリコールスぺーサ一を含む 15マー合成 PNAは、 FASMAC Co. Ltd.力ら購入した。この PNAは、 NH— O— GGC AGT GCC TCA CAA
2
(配列番号 1)を有した。ここで、 oはエチレングリコールを示す。
[0255] 別の生体分子としては、 DNAを用いた。この DNAは、 NH— (CH ) GGC AG
2 2 6
T GCC TCA CAA (配列番号 2)という配列を有した。
[0256] サンプルの代わりとして、検出対象となる、標的 DNAは、 Sigma Genosys Japa n K. K. (東京、 日本)から購入した。この DNAは、上記 PNAとは相補的な配列を 有しており、その配列は、 5'— TTG TGA GGC ACT GCC (配列番号 3)であつ た。
[0257] (PNA固定)
IS— FETゲート電極の表面処理を、以下の手順で行った。この処理は、洗浄、 AP TESグラフト処理、グルタルアルデヒドとのカップリング反応および PNA固定から主 に構成される。以下に詳細に説明する。その反応模式図は、図 2Aに示す。図 2Bの ように、フエ-レンジイソチオシァネートを用いてもよ ヽ。
[0258] A) IS— FETの洗浄
アミノシランィ匕の処理前に IS— FETを HC1:メタノール(1: 2)溶液に 30分浸した。そ の後、滅菌脱イオン水でこの IS— FETを洗浄した。
[0259] 次に、この IS— FETを、 10% H SO〖こ 30分間浸し、滅菌脱イオン水で洗浄した。
2 4
IS— FETを、さらに 30分間沸騰水に浸した。
[0260] 2) 3,ーァミノプロピルトリエトキシシラン (APTES)グラフト処理
上記処理した IS— FETを、 95%アセトン Z水中の 1%APTES溶液中に浸した。こ の IS— FETは、アセトンで 5回洗浄し、その後 110°Cで 5分間乾燥させた。
[0261] 3)グルタルアルデヒドとのカップリング反応
上記処理した IS— FETを、 5%ダルタルアルデヒドリン酸緩衝液 (pH7. 0、 1/15 M)中に 37°Cで 2時間浸した。ついで、この IS— FETを脱イオン水で洗浄した。
[0262] 4) PNA固定
この IS— FETを、 PNAプローブ溶液(5 μ Μ)中に 37°Cで 12時間浸した。 PNAプ ローブが固定されたこの IS— FETを、 PNAと完全に相補的な配列を有する標的 DN A (5 M)を含むハイブリダィゼーシヨン緩衝液 (300mM塩化ナトリウム、 30mMタエ ン酸ナトリウム ZlmM EDTA、これは、 2 X SSCZEDTA緩衝液という)に、 60°C で 12時間浸した。ハイブリダィゼーシヨン反応後、この IS— FETを、 2 X SSCZEDT Aで洗浄し、 5分間浸して非特異的に結合した DNAを取り除 、た。
[0263] (I V特性の測定)
I— V特性の測定は、 KEITHLEY 4200 (KEITHLEY Instruments, Inc. Cleveland, OH, USA)を用いて、室温でソース端子、ドレイン端子、ゲート端子 を含む 3つの端子を用いた半導体特徴づけシステムを用いて行った。その模式図を 図 3に示す。図 3左には、本発明の IS— FETを用いたときの回路図を示す。右上には 、使用した IS— FETの実物写真を示す。右中には、トランジスタの電流発生模式図を 示す。右下には、シフトの算出模式図を示す。
[0264] DNAと PNAとのハイブリダィゼーシヨン曲線は、図 4に示す。図 4では、等量の PN Aと標的 DNAとを混合したときの、熱解離曲線が示される。また、 DNAと PNAとを用 V、た場合の Tmの比較を以下に示す。
[0265] [表 1]
Figure imgf000072_0001
表 1では、 PNAZDNAの Tmを、 DNA/DNAの Tmと比較して提示している。ま た、塩濃度による相違も示した。 2 X SSC/lmM EDTA(NaCl: 300mM) ;0. 2 X SSC/0. ImM EDTA(NaCl: 30mM) o
[0266] これにより、 PNAZDNAは、 15マーの場合、 Tm値は 69。C、 DNA/DNAの Tm 値は 54°Cであることが分かる。また、塩基配列中に 1塩基配列置換があった場合、そ のミスマッチにより、 Tm値は、 PNA/DNAの場合で、 8— 21°C減少し、 DNAZD NAの場合 4一 16°C減少する。
[0267] 電解液には、 0. 2 X SSC/0. ImM EDTA(30mM塩化ナトリウムを含む)を用 いた。標準的な AgZAgClを標準電極として用いた。 I-V特性を測定する前に、 IS- FETを、 30分間喑条件下に置き、測定は、暗条件ですベて行った。半導体電極に おける電荷キャリアが光生成するのを避けるためである。ドレインにおける I -V特性
D D
(Dはドレインを示す。 I -V特性は、飽和電流値の定義にもあるように、ドレイン電流
D D
ドレイン電圧測定における飽和電流値の変化を測定するものである。ゲート面に固 定された DNA、 PNAなどの生体分子に対して、相補的な標的 DNA (ポリア-オン 性 DNA)がノ、イブリダィゼーシヨンしたときに生じる飽和電流値の変化を測定すること になる)を測定するために、ドレイン ソースバイアスを、 OVから 7Vまで変動させ、ゲ ートバイアスは、 IVおきに OV力も 4Vにまで変動させた。ドレイン ソース特性である I -V特性 (I -V特性は、ドレイン電流 ゲート電圧測定における海面電位の変化
D G D G
を測定するものであり、ドレイン電流が流れ始める閾値電圧の確認のために必要な測 定である)では、ゲートソースバイアスを 3Vから 5Vに変動させ、ドレイン ソースバイ ァスは、 IVずつ 4Vから 7Vに変動させた。
[0268] 飽和電流値は以下のように算出した。
[0269] [数 1]
B3和 J. i r μ
― ' 'ひ、、: ν \ Υ τ ' つ
j · Ϊ J ― J 广
i . 1! L - 、 t '
ここで、 C = ε · ε /ά= ε Zdであり、 ε は、ゲート絶縁体の比誘電率であり、 ox r 0 r
ε
0は真空中の誘電率であり、 εはゲート絶縁体の誘電率であり、 dはゲート絶縁体 の膜厚である。
[0270] ゲートに使用される絶縁体特性として、高い誘電率をもつことが本明細書において 好ましい。酸ィ匕タンタルの誘電率は約 25であることから、ゲートの絶縁体としてよく用 いられる SiOの誘電率( ε = 3. 9)のおよそ 6倍である。本発明の場合、このように誘
2
電率の高いゲート絶縁体を利用することによって、 DNAの負電荷で効率よく酸ィ匕タ ンタルを誘電させることができ、このとき測定される電流値は上記より SiOの場合に
2 比べて 6倍増加することになる。このように、本発明では、高い誘電率を有する材料で もバイオセンサを構成することができることを見出したという点で従来にないゲート電 極を提供することになる。
[0271] 酸化タンタルのように誘電率の高!、ゲート絶縁体を用いた ISFETは、従来の SiO
2 などの低い誘電率を利用したゲート絶縁体に比べて、種々な測定において有利であ る。例えば、このような材料では、理想的な ISFET特性を示し (例えば、酸化タンタル )、水溶液中の塩濃度に依存しない安定した動作示し、測定される電流値の経時に よる変化が極めて少な!/、などの効果がある。
[0272] 以下に、本実施例において使用した技術についての参考文献を列挙する。
[0273] (QCM法)
丄 .Yoshio〇kaaa,Kenichi Niikura, Yukio Sugiura, Mamoru Sugiura, and Takashi Morn Kinetic Studiesof Sequence— Specific Binding of GCN4— Bzip Peptides to DNA Strands Immobilizedon a 27— MHz Quartz— Crystal Microbalance. Biochemistry 1998, 37, 5666-5672
(SPR法)
l.Sawata S,Kaji E, Ikebukuro K, Iida T, Honda T and Karube I
Application oipeptide nucieic aci to the direct detection of deoxyribonucleic acid amplifiedby polymerase cahin reaction. Biosens. Bioelectron. 1999, 14, 397—404
2. Nakatani K,Sando S and Saito I
Scanning ofguanine— guanine mismatches DNA by synthetic ligands using surface plasmon resonance. NatureBiotechnology 2001,19, 51—55
3. Richard J. Heaton, Alexander W. Peterson, and Rosina M, Georgiadis
Electrostaticsurface plasmon resonance: Direct electric field— induced hybridization anddenaturation in monolayer nucleic acid films and label— free discrimination oibase mismatches.
PNASMarch27,2001, 98, 3701-3704
4. Alexander W. Peterson, Lauren K. Wolf, and Rosina M, Georgiadis
Hybridizationof Mismatched or Partially Matched DNA at Surfaces. J. AM. CEHM. S〇C. 2002, 124,14601-14607 (酸化還元活性分子)
1. KojiHashimoto, Keiko Ito, and Yoshio Ishimori
Microfabricateddisposable DNA sensor for detection of hepatitis B virus DNA. Sensor andActuators B. 1998, 46, 220-225
2. KojiHashimoto, Keiko Ito, and Yoshio Ishimori
Seqence— SpecificGene Detection with a Gold Electrode Modified with DNA Probes and anElectrochemically Active Dye. Anal. Chem. 1994, 66, 3830—3833
3. ShigeoriTakenaka, Kenichi Yamashita, Makoto Takagi, Yoshihiro Uto, and Hiroki
Kondo
DNA Sensing ona DNA Probe— Modified Electrode Using Ferrocenylnaphtalene Diimide as theElectrochemically Active Ligand. Anal. Chem. 2000, 72, 1334—1341
4. ToshihiroIhara, Masamichi Nkayama, Mitsuru Murata, Koji Nakano, and Mizuo Maeda
Gene Sensorusing ferocenyl oligonucleotide. Chem. Commun., 1997, 19, 1609
5. C.J.Yu,Yanjian Wan, Handy Yowanto, Jie Li, Chunlin Tao, Matthew D. James, ChristineL.Tan, Gary F.Blackburn, and Thomas J, Meade
ElectronicDetection of Single— Base Mismatches in DNA with Ferrocene— Modified Probes. J.Am.Cem.Soc. 2001,123, 11155— 11161
(酵素標識)
l.de Lumley— WoodyearT, Campbell C N, Freeman E, Freman A, Georgiou G, and Heller A
Rapidamperometic verification of PCR amplification of DNA. Anal. Chem. 1999, 71 535-8
(金属粒子)
1. T.AndrewTaton, Chad A Mirkin, Robert L.Letsinger
Scanometric DNAArray Detection with Nanoparticle Probes. Science 2000, 289, 1757-1760
2. So— Jung Park, T.Andrew Taton, Chad A Mirkin Array— BasedElectrical Detection of DNA with Nanoparticle Probes. Science 2002, 295, 15031506
(DNAの構成分子そのものの酸ィ匕還元活性などを利用した方法)
1. MaryE.Napier, and H.Holden Thorp
Modincation ofblectrodes with Dicarboxylate Selr— Assembled Monolayers for Attachment andDeteciton of Nucleic Acids. Langmuir 1997, 13, 6342—6344
2. H.HoldenThorp
Cutting out themiddleman: DNA bionsensors based on electrochemical oxidation. TIBTECH 1998,16, 117—121
(電極界面の表面ポテンシャルの変化をシグナルとして捉えたダイレクトな遺伝子検 出法)
Figure imgf000076_0001
J.R.Martin,し. Wilson, I.Lawrence, S.Mikkelesen, and M.F.Lawrene
DirectDetecition of the Hybridization of Synthetic Homo— Oligomer DNA Sequences byField Effect. J.Phys.Chem.B 1997, 101, 2980—2985
2. H. Berney, J. West,E. Haefele, J. Aledrman, W. Lane, J.K. Collins
A DNAdiagnostic biosensor: development, characterization and prefomance. Sensors andActuators B 2000, 68, 100—108
3. Dong— Sun Kim, Yong— Taek Jeong, Hong— Kun Lyu, Hey— Jung Park, Hyoung Sik Kim, Jang— Kyoo Shin,Pyung Choi, Jong— Hyun Lee, Geunbae Lim, and Makoto Ishida
Fabrication andCharacteristics of a rield Effect Transistor^Type Charge Sensor for DetectingDeoxyribonucleic Acid Sequence. Jpn. J.Appl. Phys. 2003, 42, 4111—4115
4. Jurgen Fritz, Emily B. Cooper, Suzanne Gaudet, Peter K. Sorger, and Scott R. Manalils
Electronicdetection of DNA by its intrinsic molecular charge. PNAS 2002, 99, 14142-14146
(ペプチド核酸分子) 1. P. E. Nielsen, M. Egholm, R.H. Berg, and O. Buchardt
Science 1991,254, 1497—1500
2. P. E. Nielsen, M. Egholm, in Peptide Nucleic Acids: Protocols and Applications., HorizonScientific Press, Norfolk, UK, 1999
3. Hiroshi Aoki'and Yoshio Umezawa
Trace analysis ofan oligonucleotide with a specific sequence using PNA— based ion- channel sensors
Analysts 2003, 128, 681—685
(結果)
図 5上に、 Id Vg特性評価による伝達特性の結果を示す。図 5下には、これを対数 表示した結果および Id1/2ZA1/2をプロットした結果を示す。ブランクの Id Vg特性評 価による伝達特性の結果を図 6に示す。伝達特性の結果、 Vds=4Vにおいて閾値電 圧力^ 70mV正シフトすることが観察された。
[0274] ハイブリダィゼーシヨン後 95°C、 1時間滅菌水中で解離反応を行い再度伝達特性 評価を行なった結果、解離反応により伝達特性閾値電圧の負シフト (約 60mV)が観 察された(図 8左)。同時に PNA— IS— FETのハイブリダィゼーシヨンブランク実験を行 なったが、 I V特性における界面電位の正シフトは観察されな力 た。
[0275] 上記同条件において再現実験を行なった結果、上記結果と同様の傾向は示される ことが明らかになった。従って、本発明のゲート電極およびそれを使用したシステム は、リサイクルして使用できることが明らかになった。
[0276] PNAは、 2 アミノエチルダリシンを骨格とする無電荷の人工核酸分子で熱安定性 、塩基配列選択性、塩濃度非依存性などにおいて、 DNAよりもハイブリダィゼーショ ン反応に優れ、また IS FETは電極 Z溶液界面の表面ポテンシャルの変化に対しセ ンシティブである為、 PNA、 IS— FET両者を組み合わせたバイオセンサは効率的か つダイレクトにハイブリダィゼーシヨン前後の変化を検出することが期待できる。 IS-F ETゲート面 Ta Oプロトン感受性膜にアミノシラン誘導体を導入後、ダルタルアルデ
2 5
ヒドによる架橋を組み合わせ PNAを固定した。その後相補鎖 DNAとのハイブリダィ ゼーシヨン反応を行い、ノ、イブリ前後の I V特性を測定した。結果ハイブリダィゼーシ ヨン反応により静特性飽和電流値が 100 A減少、また伝達特性閾値電圧が 170m
V— 200mV正シフトすることが確認され、 PNA— IS— FET型デバイスのバイオセンサ としての可能性を確認することができた。
[0277] (実施例 2:静特性飽和電流値)
次に、実施例 1に記載される実験において、静特性飽和電流値を測定した。その結 果である Id— Vd特性評価による静特性の結果を、図 7に示す。電流値は、 ssPNAお よび dsPNAZDNAの両方の実験結果を示す。
[0278] 静特性の結果、ゲート電圧 Vg = 0— 4V何れの電圧においても DNAのハイブリダィ ゼーシヨンにより飽和電流値が 100 A (Vg = OV)力 200 A (Vg=4V)減少する ことが確認された。
[0279] ハイブリダィゼーシヨン後 95°C、 1時間滅菌水中で解離反応を行い再度静特性を 行なった結果、解離反応により静特性飽和電流値の上昇 (約 70 μ Α)が観察された ( 図 8右)。同時に PN A— IS— FETのハイブリダィゼーシヨンブランク実験を行なったが 、 I V特性における界面電位の正シフトは観察されな力つた。
[0280] 上記同条件において再現実験を行なった結果、上記結果と同様の傾向は示される ことが明らかになった。従って、本発明のゲート電極およびそれを使用したシステム は、リサイクルして使用できることが明らかになった。
[0281] 実施例 1および 2の結果から、静特性において飽和電流値が減少することおよび伝 達特性にぉ 、て界面電位の正シフトが誘起された現象は、ポリア-オン性 DNAのハ イブリダィゼーシヨンにより正のゲート電圧が相殺されたことに起因する現象と考えら れる。従って IS— FETと PNAを組み合わせたセンサーデバイスを作製することにより、 ダイレクトな遺伝子検出ができることが示された。
[0282] (実施例 3: DN Aをプローブとして用いた場合)
次に、 DNAをプローブとして用いた場合の実験を行った。 PNAの代わりに DNAを 用いた以外は実施例 1に記載されるように行った。
[0283] その結果を図 9に示す。図 9左には Id— Vd特性評価による静特性の結果を示し、右 には Id-Vg特性評価による伝達特性の結果を示す。
[0284] 示されるように、ハイブリダィゼーシヨン後、電流値は約 100 A減少し、電圧は、約 30mV正にシフトしていた。従って、 DNAを用いた場合でも、本発明の効果が示され ることが明らかになった。ただし、感度は、 PNAの方が 5倍程度よいことも明らかにな つた o
[0285] (実施例 4 :XPSと IS— FET特性)
上記実施例によって DNAが Ta O上に固定されているかどうかを、 XPSによって
2 5
測定した。シランカップリング剤の導入前後では、 Si のピークに着目すると、導入前
2p
では、 Ta O薄膜基板である Si に起因するピークが見られた。導入後では、さらに
2 5 2p
、 Si のピークが増加することから、 Ta O上にシランカップリングによる Siが結合され
2p 2 5
たことが明らかになった。
[0286] IS— FET素子のアレイ化を行った。同じサイズの素子が 2個 1組になっており、 8サ ィズ全 16素子アレイ化されている。 2個 1組の同じサイズ素子それぞれに、核酸を固 定した素子と固定しないで標準として作動させる素子とを組み合わせ、差動増幅回 路によって測定することで、先に得られた測定における精度の向上を図る。これによ り、さらなる再現性および測定精度の向上を得た。また、異なる配列を持つ 8種類の DNAをそれぞれ固定することで、同時に 8種類の測定または検診をおこなうことがで きる。
[0287] (実施例 5 : DNAチップの作製)
次に、本発明の仕組みを活力して、 DNAをあれ異常に配置して、 IS-FET型 DN Aチップを作製する。その作製例は、図 14に示す。
[0288] これは、以下のように作製する。
[0289] インクジェット装置(例えば、 Canonなど力も入手可能)を利用して、アレイ化された 個々の IS— FET上へ DNAの固定を行う。その方法は、先に述べた後に、シランカツ プリング溶液をインクジェットより個々の IS— FET上に射出し、続いてクロスリンカ一溶 液を射出し、最後に DNAなどの生体溶液を射出することによって作製する。
[0290] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求 の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に 基づいて等価な範囲を実施することができることが理解される。本明細書において引 用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載さ れているのと同様にその内容が本明細書に対する参考として援用されるべきであるこ とが理解される。
産業上の利用可能性
本発明は、生体分子を用いたセンサなどの情報機器に応用可能である。従って、 本発明は、電子情報分野の機器を、生体分子を用いて作製することを可能にする。 さらに、本発明は、生体分子として疾患に関連する分子を用いることによって、診断 デバイスなどに応用することも可能である。

Claims

請求の範囲
[1] 生体分子と、二酸化ケイ素より誘電率の高 、絶縁体である非ケィ素酸ィヒ物とを含む、 ゲート電極。
[2] 前記非ケィ素酸化物は、酸化金属を含む、請求項 1に記載のゲート電極。
[3] 前記非ケィ素酸化物は、酸ィ匕タンタル (Ta O )、酸ィ匕カルシウム (CaO)、酸ィ匕鉛 (P
2 5
bO)、酸化ストロンチウム(SrO)、酸化トリウム(ThO )、酸化アンチモン(Sb O )、一
2 2 3 酸化チタン (TiO)、二酸化チタン (TiO )、酸化ハフニウム(HfO )、酸化イツテルビ
2 2
ゥム(Yb O )、酸化マグネシウム(MgO)、酸化インジウム(In O )、酸化スズ(SnO
2 3 2 3 2
)、酸化ジルコニウム(ZrO )、酸化セリウム(CeO )、酸化ニオブ (Nb O )、酸化ガド
2 2 2 5 リュウム(Gd O )、酸ィ匕クロム(Cr O )、酸化タングステン (WO )、酸化銅(I) (Cu O
2 3 2 3 3 2
)、酸化銅 (II) (CuO)、酸ィ匕鉄(Π) (FeO)、酸ィ匕鉄(III) (Fe O )、酸ィ匕ニッケル (Ni
2 3
O)、酸化ビスマス(Bi O )、酸化サマリウム(Sm O )、酸化ネオジム (Nd O )、酸ィ匕
2 3 2 3 2 3 バナジウム (V O )、酸化モリブデン(MoO )、酸化カドミウム(CdO )、酸化マンガン
2 5 3 2
(MnO )、二酸化バリウム(BaO )および一酸化バリウム (BaO)力 なる群より選択さ
2 2
れる酸化物を含む、請求項 1に記載のゲート電極。
[4] 前記非ケィ素酸化物は、酸ィ匕タンタル (Ta O )、一酸化バリウム(BaO)、酸化ビスマ
2 5
ス (Bi O )、酸化銅 (II) (CuO)、酸化鉛 (PbO)、酸化イッテルビウム (Yb O )、酸ィ匕
2 3 2 3 ジルコニウム(ZrO )、酸化ニオブ(Nb O )および酸化ハフニウム(HfO )力 なる群
2 2 5 2 より選択される、請求項 1に記載のゲート電極。
[5] 前記非ケィ素酸化物の 25°Cでの誘電率は、約 10以上である、請求項 1に記載のゲ ート電極。
[6] 前記非ケィ素酸化物は、酸ィ匕タンタル (Ta O )である、請求項 1に記載のゲート電極
2 5
[7] 前記生体分子は、前記非ケィ素酸化物に固定される、請求項 1に記載のゲート電極
[8] 前記非ケィ素酸化物は膜状形態をしており、前記生体分子は、該非ケィ素酸化物膜 上に固定される、請求項 7に記載のゲート電極。
[9] 前記非ケィ素酸化物と、前記生体分子とは、シランカップリング剤により結合される、 請求項 1に記載のゲート電極。
[10] 前記非ケィ素酸化物は、前記生体分子と、アミノシランィ匕合物により結合される、請求 項 1に記載のゲート電極。
[11] 前記非ケィ素酸化物と、前記生体分子とは O - (SiR R )-(CH ) NH (CH ) -
1 2 2 n 2 m
NH— O— (CH ) -O-CH NH—というリンカ一で結合され、ここで、 n、 mおよび kは
2 k 2
それぞれ独立して任意の正の整数であり、 Rおよび Rは、独立して、任意の置換基
1 2
または該リンカ一と同じ構造を有する別のリンカ一の Si原子である、請求項 8に記載 のゲート電極。
[12] 前記生体分子は、他の生体分子と特異的相互作用をする能力を有する、請求項 1に 記載のゲート電極。
[13] 前記生体分子は、核酸、タンパク質、糖、脂質およびそれらの複合体からなる群より 選択される、請求項 1に記載のゲート電極。
[14] 前記生体分子は、核酸を含む、請求項 1に記載のゲート電極。
[15] 前記生体分子は、 DNA、 RNAおよび PNA力 なる群より選択される少なくとも 1つ の分子を含む、請求項 1に記載のゲート電極。
[16] 前記生体分子は、 PNAを含む、請求項 1に記載のゲート電極。
[17] 前記生体分子は、一本鎖または二本鎖の形態で存在する、請求項 1に記載のゲート 電極。
[18] 前記生体分子は、ストリンジェントなハイブリダィゼーシヨン条件下で他の生体分子と ハイブリダィゼーシヨンする能力を有する、請求項 1に記載のゲート電極。
[19] 前記生体分子は、リガンドーレセプター相互作用する能力または抗原抗体反応する 能力を有する、請求項 1に記載のゲート電極。
[20] 前記生体分子は、無電荷またはほとんど電荷がないことを特徴とする、請求項 1に記 載のゲート電極。
[21] 前記生体分子は、疾患または障害の診断のためのプローブである、請求項 1に記載 のゲート電極。
[22] 前記生体分子は、 1塩基多型(SNPs)を検出するためのプローブである、請求項 1に 記載のゲート電極。
[23] 生体分子と、二酸化ケイ素より誘電率の高 、絶縁体である非ケィ素酸ィヒ物とを含む ゲート電極が、半導体素子上に一体化された、電界効果トランジスタ。
[24] 前記半導体素子は、基板と、ソース部と、ドレイン部とを含む、請求項 23に記載の電 界効果トランジスタ。
[25] 前記トランジスタは、 pチャネル型または nチャネル型であり、そして、エンハンスメント 型またはデイブリシヨン型である、請求項 23に記載の電界効果トランジスタ。
[26] 前記ソース部および前記ドレイン部は、絶縁体で覆われる、請求項 23に記載のトラン ジスタ。
[27] さらに、電極を備える、請求項 23に記載のトランジスタ。
[28] 前記ソース部からの電流を引き出すソース引き出し電極、前記ドレイン部からの電流 を引き出すドレイン引き出し電極、前記基板力 の電流を引き出す基板引き出し電極 、前記ゲート電極由来の電流を引き出すためのゲート引き出し電極をさらに備える、 請求項 23に記載のトランジスタ。
[29] 前記ゲート電極は、電解液に浸される、請求項 23に記載のトランジスタ。
[30] 前記ゲート引き出し電極は、 AgZAgClを含む、請求項 23に記載のトランジスタ。
[31] 前記基板は、 Siを含む、請求項 23に記載のトランジスタ。
[32] 前記ゲート電極は、請求項 2— 22のいずれか 1項に記載の特徴をさらに有する、請 求項 23に記載のトランジスタ。
[33] 以下:
A)生体分子と、二酸化ケイ素より誘電率の高 、絶縁体である非ケィ素酸ィ匕物とを含 むゲート電極が半導体素子上に一体化された、電界効果トランジスタと、
B)電気信号検出手段
とを備える、該生体分子との相互作用を検出するためのセンサ。
[34] 生体分子が固定された、非ケィ素酸ィ匕物を含むゲート電極を作製する方法であって
A)非ケィ素酸ィ匕物を含むゲート電極を提供する工程;
B)該非ケィ素酸化物にアミノシラン含有物質を結合させる工程;
C)該アミノシラン含有物質と、該アミノシラン含有物質のァミノ基と反応し得るクロスリ ンカーを結合させて中間体を形成工程;および
D)該中間体に生体分子を結合させる工程、
を包含する、方法。
[35] 前記アミノシラン含有物質は、 ω,一アミノアルキルトリアルコキシシランを含む、請求 項 34に記載の方法。
[36] 前記アミノシラン含有物質は、 3'—ァミノプロピルトリエトキシシランを含む、請求項 34 に記載の方法。
[37] 前記結合の前に、前記酸化金属を酸処理する工程をさらに包含する、請求項 34に 記載の方法。
[38] 前記非ケィ素酸化物は、ニ酸ィ匕ケィ素より誘電率の高い絶縁体である、請求項 34に 記載の方法。
[39] 前記酸化金属は、酸化タンタル (Ta O )、酸化カルシウム(CaO)、酸化鉛 (PbO)、
2 5
酸化ストロンチウム(SrO)、酸化トリウム (ThO )、酸化アンチモン(Sb O )、一酸ィ匕
2 2 3 チタン (TiO)、二酸化チタン (TiO )、酸化ハフニウム(HfO )、酸化イッテルビウム(
2 2
Yb O )、酸化マグネシウム(MgO)、酸化インジウム(In O )、酸化スズ(SnO )、酸
2 3 2 3 2 化ジルコニウム(ZrO )、酸化セリウム(CeO )、酸化ニオブ(Nb O )、酸化亜鉛(Zn
2 2 2 5
0)、酸化ガドリニウム(Gd O )、酸化クロム(Cr O )、酸化タングステン (WO )、酸
2 3 2 3 3 ィ匕銅 (I) (Cu 0)、酸化銅 (Il CuO)、酸ィ匕鉄 (Π) (FeO)、酸ィ匕鉄 (III) (Fe O )、酸
2 2 3 化ニッケル (NiO)、酸化ビスマス(Bi O )、酸化サマリウム(Sm O )、酸化ネオジム(
2 3 2 3
Nd O )、酸化バナジウム(V O )、酸化モリブデン(MoO )、酸化カドミウム(CdO )
2 3 2 5 3 2
、酸化マンガン(MnO )、二酸化バリウム(BaO )および一酸化バリウム(BaO)から
2 2
なる群より選択される、請求項 34に記載の方法。
[40] 前記クロスリンカ一は、カルポジイミド類、アルデヒド類またはイミドエステル類を含む、 請求項 34に記載の方法。
[41] 前記クロスリンカ一は、アルデヒド含有基を含む、請求項 34に記載の方法。
[42] 前記クロスリンカ一は、ダルタルアルデヒドを含む、請求項 34に記載の方法。
[43] 前記架橋において、紫外線照射が使用される、請求項 34に記載の方法。
[44] 前記生体分子は、核酸を含む、請求項 34に記載の方法。
[45] 前記生体分子は、 DNAまたは PNAを含む、請求項 34に記載の方法。
[46] 前記生体分子は、 PNAを含む、請求項 34に記載の方法。
[47] 前記結合により得られた生成物を還元する工程をさらに包含する、請求項 34に記載 の方法。
[48] 前記還元は、 NaCNBHを用いて行われる、請求項 47記載の方法。
3
[49] 生体分子との相互作用を検出するための方法であって、
A)該生体分子と、二酸化ケイ素より誘電率の高 、絶縁体である非ケィ素酸ィ匕物とを 含む、ゲート電極が半導体素子上に一体化された、電界効果トランジスタを提供し、 電流 電圧 (I V)特性を測定する工程;
B)該電界効果トランジスタと、相互作用が生じるに十分な条件下でサンプルとを接触 させる工程;
C)該接触後に、該電界効果トランジスタの I V特性を測定する工程;および
D)該接触前の I V特性と、該接触後の I V特性とを比較して、該 I V特性同士の相 違力 該生体分子との該相互作用を算出する工程、
を包含する、方法。
[50] 前記 I - V特性は、静特性飽和電流値または伝達特性閾値電圧を含む、請求項 49に 記載の方法。
[51] 前記生体分子は、核酸を含み、前記サンプルは、核酸と相互作用する分子を含む、 請求項 49に記載の方法。
[52] 前記生体分子は、 PNAを含み、前記サンプルは、核酸を含む、請求項 49に記載の 方法。
[53] 前記生体分子は、核酸を含み、前記サンプルは、核酸と相互作用する分子を含み、 前記電界効果トランジスタは P型トランジスタであり、前記 I V特性の静特性飽和電流 値の減少または伝達特性閾値電圧の正シフトは、該核酸と該核酸と相互作用する分 子とがハイブリダィゼーシヨンしたことを示す、請求項 49に記載の方法。
[54] 前記検出は、遺伝子状態の異常またはそれに起因する疾患もしくは障害を検出する ことを目的とする、請求項 49に記載の方法。
[55] A)生体分子と、二酸化ケイ素より誘電率の高 、絶縁体である非ケィ素酸ィ匕物とを含 むゲート電極が半導体素子上に一体化された、電界効果トランジスタと、
B)該電界効果トランジスタが露出するように配置された、サンプルを収容するための 容器と、
C)該電界効果トランジスタと電気的に結合する電気信号検出手段と、
D)該電気信号検出手段と電気的に結合する電流 電圧 (I V)特性を算出する手段 とを備える、生体分子との相互作用を検出するためのシステム。
[56] さらに、 I V特性に基づいて、該生体分子との該相互作用を算出する手段を備える、 請求項 55に記載のシステム。
[57] 前記検出は、遺伝子状態の異常またはそれに起因する疾患もしくは障害を検出する ことを目的とし、前記相互作用と、該遺伝子状態とを相関付けるための手段を備える
、請求項 55に記載のシステム。
PCT/JP2005/005289 2004-03-24 2005-03-23 生体分子に関する形態及び情報をis−fetを利用して検出する測定法およびシステム WO2005090961A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511311A JP4734234B2 (ja) 2004-03-24 2005-03-23 生体分子に関する形態及び情報をis−fetを利用して検出する測定法およびシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-088133 2004-03-24
JP2004088133 2004-03-24

Publications (1)

Publication Number Publication Date
WO2005090961A1 true WO2005090961A1 (ja) 2005-09-29

Family

ID=34993826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005289 WO2005090961A1 (ja) 2004-03-24 2005-03-23 生体分子に関する形態及び情報をis−fetを利用して検出する測定法およびシステム

Country Status (2)

Country Link
JP (1) JP4734234B2 (ja)
WO (1) WO2005090961A1 (ja)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232683A (ja) * 2006-03-03 2007-09-13 Univ Waseda 半導体dnaセンシングデバイス及びdnaセンシング方法
JP2007303938A (ja) * 2006-05-10 2007-11-22 Kobe Univ 標的分子のセンサー素子およびその製造方法
JP2008039773A (ja) * 2006-07-13 2008-02-21 Toyama Univ 定量・定性分析方法
JP2010133948A (ja) * 2008-12-05 2010-06-17 Korea Electronics Telecommun バイオセンサ及びこれを利用したバイオ分子検出方法
JP2013064744A (ja) * 2006-12-14 2013-04-11 Life Technologies Corp 大規模fetアレイを用いた分析物測定のための方法および装置
US8742469B2 (en) 2009-05-29 2014-06-03 Life Technologies Corporation Active chemically-sensitive sensors with correlated double sampling
US8772698B2 (en) 2010-06-30 2014-07-08 Life Technologies Corporation CCD-based multi-transistor active pixel sensor array
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8796036B2 (en) 2010-09-24 2014-08-05 Life Technologies Corporation Method and system for delta double sampling
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8890216B2 (en) 2006-12-14 2014-11-18 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8936763B2 (en) 2008-10-22 2015-01-20 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
JP2015503729A (ja) * 2011-12-22 2015-02-02 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 感染性微生物の迅速な検出のための方法及び装置
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9128044B2 (en) 2013-03-15 2015-09-08 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US9194000B2 (en) 2008-06-25 2015-11-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
WO2016100049A1 (en) * 2014-12-18 2016-06-23 Edico Genome Corporation Chemically-sensitive field effect transistor
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
JP2017058320A (ja) * 2015-09-18 2017-03-23 Nltテクノロジー株式会社 バイオセンサ及び検出装置
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9857328B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10494670B2 (en) 2014-12-18 2019-12-03 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10811539B2 (en) 2016-05-16 2020-10-20 Nanomedical Diagnostics, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
CN112442526A (zh) * 2019-08-29 2021-03-05 罗伯特·博世有限公司 使用固定的易位蛋白的edge测序
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
TWI757792B (zh) * 2019-07-17 2022-03-11 台灣積體電路製造股份有限公司 偵測器、偵測裝置及其使用方法
CN114174815A (zh) * 2019-07-26 2022-03-11 浜松光子学株式会社 气味检测装置和气味检测方法
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US20220280935A1 (en) * 2021-03-05 2022-09-08 Taiwan Semiconductor Manufacturing Company Ltd. System and method for detecting biomolecules
US11782057B2 (en) 2014-12-18 2023-10-10 Cardea Bio, Inc. Ic with graphene fet sensor array patterned in layers above circuitry formed in a silicon based cmos wafer
US11921112B2 (en) 2014-12-18 2024-03-05 Paragraf Usa Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019944B2 (ja) * 2011-12-28 2016-11-02 逢坂 哲彌 糖化合物固定化半導体センシングデバイス及び生物学的物質の検出方法
US11905552B2 (en) 2017-08-04 2024-02-20 Keck Graduate Institute Of Applied Life Sciences Immobilized RNPs for sequence-specific nucleic acid capture and digital detection
ES2938687T3 (es) * 2019-04-03 2023-04-13 Mecwins S A Procedimiento de detección óptica de biomarcadores

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052097A1 (en) * 2001-12-19 2003-06-26 Hitachi High-Technologies Corporation Potentiometric dna microarray, process for producing the same and method of analyzing nucleic acid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0105831D0 (en) * 2001-03-09 2001-04-25 Toumaz Technology Ltd Method for dna sequencing utilising enzyme linked field effect transistors
JP3883512B2 (ja) * 2001-04-23 2007-02-21 三星電子株式会社 微細流路の側壁に形成されたmosfetよりなる物質検出用チップ、これを含む物質検出装置、及び物質検出装置を利用した物質検出方法
DE10163557B4 (de) * 2001-12-21 2007-12-06 Forschungszentrum Jülich GmbH Transistorbasierter Sensor mit besonders ausgestalteter Gateelektrode zur hochempfindlichen Detektion von Analyten
JP2003246794A (ja) * 2002-02-26 2003-09-02 Matsushita Kotobuki Electronics Industries Ltd ヌクレオチド鎖修飾方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052097A1 (en) * 2001-12-19 2003-06-26 Hitachi High-Technologies Corporation Potentiometric dna microarray, process for producing the same and method of analyzing nucleic acid

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232683A (ja) * 2006-03-03 2007-09-13 Univ Waseda 半導体dnaセンシングデバイス及びdnaセンシング方法
JP2007303938A (ja) * 2006-05-10 2007-11-22 Kobe Univ 標的分子のセンサー素子およびその製造方法
JP2008039773A (ja) * 2006-07-13 2008-02-21 Toyama Univ 定量・定性分析方法
US9989489B2 (en) 2006-12-14 2018-06-05 Life Technnologies Corporation Methods for calibrating an array of chemically-sensitive sensors
US9023189B2 (en) 2006-12-14 2015-05-05 Life Technologies Corporation High density sensor array without wells
JP2013081464A (ja) * 2006-12-14 2013-05-09 Life Technologies Corp 大規模fetアレイを用いた分析物測定のための方法および装置
US10502708B2 (en) 2006-12-14 2019-12-10 Life Technologies Corporation Chemically-sensitive sensor array calibration circuitry
US8764969B2 (en) 2006-12-14 2014-07-01 Life Technologies Corporation Methods for operating chemically sensitive sensors with sample and hold capacitors
US10415079B2 (en) 2006-12-14 2019-09-17 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US10633699B2 (en) 2006-12-14 2020-04-28 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10203300B2 (en) 2006-12-14 2019-02-12 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10816506B2 (en) 2006-12-14 2020-10-27 Life Technologies Corporation Method for measuring analytes using large scale chemfet arrays
US20220340965A1 (en) * 2006-12-14 2022-10-27 Life Technologies Corporation Methods and Apparatus for Measuring Analytes Using Large Scale FET Arrays
US9134269B2 (en) 2006-12-14 2015-09-15 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9269708B2 (en) 2006-12-14 2016-02-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8890216B2 (en) 2006-12-14 2014-11-18 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11732297B2 (en) * 2006-12-14 2023-08-22 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11435314B2 (en) 2006-12-14 2022-09-06 Life Technologies Corporation Chemically-sensitive sensor array device
JP2013064744A (ja) * 2006-12-14 2013-04-11 Life Technologies Corp 大規模fetアレイを用いた分析物測定のための方法および装置
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9194000B2 (en) 2008-06-25 2015-11-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11137369B2 (en) 2008-10-22 2021-10-05 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9944981B2 (en) 2008-10-22 2018-04-17 Life Technologies Corporation Methods and apparatus for measuring analytes
US11448613B2 (en) 2008-10-22 2022-09-20 Life Technologies Corporation ChemFET sensor array including overlying array of wells
US8936763B2 (en) 2008-10-22 2015-01-20 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US11874250B2 (en) 2008-10-22 2024-01-16 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
JP2010133948A (ja) * 2008-12-05 2010-06-17 Korea Electronics Telecommun バイオセンサ及びこれを利用したバイオ分子検出方法
US8912580B2 (en) 2009-05-29 2014-12-16 Life Technologies Corporation Active chemically-sensitive sensors with in-sensor current sources
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US10451585B2 (en) 2009-05-29 2019-10-22 Life Technologies Corporation Methods and apparatus for measuring analytes
US10809226B2 (en) 2009-05-29 2020-10-20 Life Technologies Corporation Methods and apparatus for measuring analytes
US11692964B2 (en) 2009-05-29 2023-07-04 Life Technologies Corporation Methods and apparatus for measuring analytes
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US8742469B2 (en) 2009-05-29 2014-06-03 Life Technologies Corporation Active chemically-sensitive sensors with correlated double sampling
US10718733B2 (en) 2009-05-29 2020-07-21 Life Technologies Corporation Methods and apparatus for measuring analytes
US11768171B2 (en) 2009-05-29 2023-09-26 Life Technologies Corporation Methods and apparatus for measuring analytes
US10481123B2 (en) 2010-06-30 2019-11-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
US8772698B2 (en) 2010-06-30 2014-07-08 Life Technologies Corporation CCD-based multi-transistor active pixel sensor array
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US9164070B2 (en) 2010-06-30 2015-10-20 Life Technologies Corporation Column adc
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US8823380B2 (en) 2010-06-30 2014-09-02 Life Technologies Corporation Capacitive charge pump
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9958415B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation ChemFET sensor including floating gate
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9958414B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation Apparatus for measuring analytes including chemical sensor array
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US8796036B2 (en) 2010-09-24 2014-08-05 Life Technologies Corporation Method and system for delta double sampling
US8912005B1 (en) 2010-09-24 2014-12-16 Life Technologies Corporation Method and system for delta double sampling
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10365321B2 (en) 2011-12-01 2019-07-30 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10598723B2 (en) 2011-12-01 2020-03-24 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
JP2015503729A (ja) * 2011-12-22 2015-02-02 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 感染性微生物の迅速な検出のための方法及び装置
US9985624B2 (en) 2012-05-29 2018-05-29 Life Technologies Corporation System for reducing noise in a chemical sensor array
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US10404249B2 (en) 2012-05-29 2019-09-03 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9852919B2 (en) 2013-01-04 2017-12-26 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US10436742B2 (en) 2013-01-08 2019-10-08 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9128044B2 (en) 2013-03-15 2015-09-08 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US10422767B2 (en) 2013-03-15 2019-09-24 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US11028438B2 (en) 2013-05-09 2021-06-08 Life Technologies Corporation Windowed sequencing
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10655175B2 (en) 2013-05-09 2020-05-19 Life Technologies Corporation Windowed sequencing
US11774401B2 (en) 2013-06-10 2023-10-03 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US11499938B2 (en) 2013-06-10 2022-11-15 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10816504B2 (en) 2013-06-10 2020-10-27 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US11536688B2 (en) 2014-12-18 2022-12-27 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9857328B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
US11921112B2 (en) 2014-12-18 2024-03-05 Paragraf Usa Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US10429342B2 (en) 2014-12-18 2019-10-01 Edico Genome Corporation Chemically-sensitive field effect transistor
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US11782057B2 (en) 2014-12-18 2023-10-10 Cardea Bio, Inc. Ic with graphene fet sensor array patterned in layers above circuitry formed in a silicon based cmos wafer
US10767224B2 (en) 2014-12-18 2020-09-08 Life Technologies Corporation High data rate integrated circuit with power management
US10494670B2 (en) 2014-12-18 2019-12-03 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10429381B2 (en) 2014-12-18 2019-10-01 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
WO2016100049A1 (en) * 2014-12-18 2016-06-23 Edico Genome Corporation Chemically-sensitive field effect transistor
US10607989B2 (en) 2014-12-18 2020-03-31 Nanomedical Diagnostics, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US11536722B2 (en) 2014-12-18 2022-12-27 Cardea Bio, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11732296B2 (en) 2014-12-18 2023-08-22 Cardea Bio, Inc. Two-dimensional channel FET devices, systems, and methods of using the same for sequencing nucleic acids
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
JP2017058320A (ja) * 2015-09-18 2017-03-23 Nltテクノロジー株式会社 バイオセンサ及び検出装置
US10811539B2 (en) 2016-05-16 2020-10-20 Nanomedical Diagnostics, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US11674919B2 (en) 2019-07-17 2023-06-13 Taiwan Semiconductor Manufacturing Company Ltd. Detector, detection device and method of using the same
TWI757792B (zh) * 2019-07-17 2022-03-11 台灣積體電路製造股份有限公司 偵測器、偵測裝置及其使用方法
CN114174815A (zh) * 2019-07-26 2022-03-11 浜松光子学株式会社 气味检测装置和气味检测方法
CN112442526A (zh) * 2019-08-29 2021-03-05 罗伯特·博世有限公司 使用固定的易位蛋白的edge测序
US20220280935A1 (en) * 2021-03-05 2022-09-08 Taiwan Semiconductor Manufacturing Company Ltd. System and method for detecting biomolecules

Also Published As

Publication number Publication date
JPWO2005090961A1 (ja) 2008-02-07
JP4734234B2 (ja) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4734234B2 (ja) 生体分子に関する形態及び情報をis−fetを利用して検出する測定法およびシステム
ES2385341T3 (es) Detección de hibridación de ácidos nucleicos electrocatalítica
CN104703700B (zh) 用于核酸测序的方法和试剂盒
US7923237B2 (en) Method and apparatus for combined electrochemical synthesis and detection of analytes
US7829275B2 (en) Light addressable electrochemical detection of duplex structures
US8999724B2 (en) Method and apparatus for match quality analysis of analyte binding
US7361470B2 (en) Electrocatalytic nucleic acid hybridization detection
US8614086B2 (en) Quality control methods for the manufacture of polymer arrays
CN1916630A (zh) 基于功能化电极上具体结合事件的电读数来分析分子和纳米材料的方法和基于cmos的装置
GB2456669A (en) Assay ligates random primers to microarray probes to increase efficiency
JP4301941B2 (ja) 核酸プローブ固定化基体
JP4706074B2 (ja) 生体分子固定化用の三脚型機能性界面分子とこれを用いた遺伝子検出デバイス
JP4324707B2 (ja) Dnaチップおよびそれを用いたバイオセンサー
JP4561478B2 (ja) 多型検出方法、多型検出用キット
JP3917640B2 (ja) 核酸プローブ固定化基体を用いた標的核酸の存在を検出する方法
JP3790194B2 (ja) 核酸プローブ固定化基体
Miyahara et al. Microbial genetic analysis based on field effect transistors
JP4561451B2 (ja) 多型検出方法および多型検出用キット
Chen et al. Capillary electrophoresis for analysis of deletion and duplication in exon 44–55 of D uchenne muscular dystrophy gene
JP2007267644A (ja) 単位塩基の繰り返し回数の測定方法
Perera The study of DNA dynamics on glassy carbon electrode surfaces
JP2009031164A (ja) 一本鎖ヌクレオチド多量体の伸張固定化基板およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006511311

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase