WO2005088868A1 - 電波伝搬特性推定システム及びその方法並びにプログラム - Google Patents

電波伝搬特性推定システム及びその方法並びにプログラム Download PDF

Info

Publication number
WO2005088868A1
WO2005088868A1 PCT/JP2005/004764 JP2005004764W WO2005088868A1 WO 2005088868 A1 WO2005088868 A1 WO 2005088868A1 JP 2005004764 W JP2005004764 W JP 2005004764W WO 2005088868 A1 WO2005088868 A1 WO 2005088868A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
wave propagation
area
transmission source
investigation
Prior art date
Application number
PCT/JP2005/004764
Other languages
English (en)
French (fr)
Inventor
Hiroto Sugahara
Yoshinori Watanabe
Takashi Ono
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006500612A priority Critical patent/JP4207081B2/ja
Priority to EP05726704A priority patent/EP1727300A1/en
Priority to US10/556,128 priority patent/US7634265B2/en
Publication of WO2005088868A1 publication Critical patent/WO2005088868A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region

Definitions

  • the present invention relates to a system for estimating radio wave propagation characteristics, and particularly, when a radio system to be estimated covers a wide area, the radio wave propagation characteristics in a part of a survey target area within the coverage area are increased at a high speed. Also, the present invention relates to a radio wave propagation characteristic estimation system for highly accurate estimation.
  • a radio wave propagation characteristic estimating system (a radio wave propagation simulator) is used to assist the arrangement of a base station, a parent device, and the like in a wireless communication system.
  • This radio propagation simulator evaluates the received power and delay spread at an arbitrary receiving point, determines the location of the transmitting station to be placed, and as a result, reduces the number of base stations to be deployed, etc. Efficiency is achieved.
  • Radio wave propagation simulations are roughly classified into those based on a statistical method and those based on a deterministic method.
  • the statistical method an equation for estimating propagation loss with distance, frequency, etc. as arguments is given, and when determining its parameters, multivariate analysis is performed based on a large number of data obtained by actual measurement of propagation loss. It is a method determined by the above.
  • the propagation of radio waves fluctuates in sections due to reflection or transmission from structures or indoor objects. According to the statistical method, the median of section fluctuations is given.
  • a radio wave whose antenna power is also radiated is considered as a group of a large number of radio waves (rays), and each ray propagates by repeating reflection and transmission geometrically.
  • rays reaching the observation point are combined to determine the propagation loss and the delay amount.
  • This method is called the ray tracing method.
  • the ray tracing method takes into account the effects of reflection, transmission, and diffraction on the actual structure, so that the section variation itself at the observation point can be known.
  • the ray tracing method is further roughly classified into a ray launching method and an imaging method.
  • a ray is radiated from the transmitting antenna discretely at a certain angle, the trajectory is tracked successively, and a ray passing near the receiving point is regarded as a ray arriving at the receiving point.
  • the imaging method is a method of determining a reflection / transmission path of a ray connecting transmission / reception points by obtaining a reflection point on a reflection surface. Since the reflection / transmission path is uniquely obtained when the transmission / reception point and the reflection / transmission object are specified, the imaging method can search for a strict ray propagation path.
  • the details of the relaying method and the imaging method are disclosed in, for example, Patent Document 1.
  • Patent Document 1 JP-A-9-33584
  • FIGS. Many structures, such as buildings and roads, are located in the area shown in Fig. 1.
  • many objects such as furniture and furniture are arranged inside each building.
  • the outdoor base station at the bottom of the figure is the transmission source 1 of the wireless system
  • the building at the top of the figure is the study area 2 to be subjected to propagation estimation.
  • the outdoor base station at the bottom of the figure is the transmission source 1 of the wireless system
  • the building at the top of the figure is the study area 2 to be subjected to propagation estimation.
  • the outdoor base station at the bottom of the figure is the transmission source 1 of the wireless system
  • the building at the top of the figure is the study area 2 to be subjected to propagation estimation.
  • FIG. 2 is a conceptual diagram of radio wave propagation estimation using a statistical method.
  • an equation for estimating the propagation loss is given based on the slope of the terrain from the transmission source 1 to the survey area 2 and the density of the building, and the received power in the survey area 2 is estimated using this estimation equation. It is.
  • This method is, as described above, a method for knowing the median of the interval fluctuation. Therefore, walls or indoor objects within or near the study area 2 Therefore, it is not possible to accurately reflect the influence of radio waves. In order to do so,
  • the radio wave propagation environment in 2 cannot be estimated with high accuracy.
  • FIG. 3 is a conceptual diagram of the radio wave propagation estimation using the ray launching method.
  • This method traces the path assuming that the ray radiated discretely at a certain angle at the transmission source power propagates while repeating reflection and transmission geometrically and optically in the structure.
  • This method accurately reflects the effects of each structure and indoor objects, and thus enables highly accurate radio wave propagation estimation.
  • the calculation time increases.
  • FIG. 4 is a conceptual diagram of radio wave propagation estimation using an imaging method.
  • the imaging method itself is a method of searching for rays that reach the receiving point in all combinations of the reflection surface and diffraction points of all contents, the reflection surface and diffraction points of the contents are used.
  • the computational amount increases exponentially when the number increases.
  • it is necessary to search for a ray for each receiving point if the survey target area 2 is wide to some extent, more calculation time is required. For this reason, the calculation time becomes enormous, and high-speed propagation estimation cannot be realized.
  • An object of the present invention is to provide a radio wave propagation characteristic estimation system, a method thereof, and a program.
  • the radio wave propagation characteristic estimating system provides, within a three-dimensional area where a plurality of contents are present, a transmission source and a survey target area for examining the propagation environment of radio waves radiated from the transmission source.
  • a radio propagation characteristic estimating system for estimating a radio wave propagation environment in the investigation target area, wherein the electric power in or near the investigation target area is provided.
  • the method for estimating radio wave propagation characteristics provides a method of estimating a transmission source and a propagation environment of a radio wave radiated from the transmission source in a three-dimensional area where a plurality of contents exist.
  • a radio propagation characteristic estimating method for estimating a radio wave propagation environment in the survey target area comprising: a first step of obtaining a radio wave propagation general state in or near the survey target area; A second step of preparing a finite pseudo transmission source for simulating the radio wave propagation, and a detailed radio wave propagation estimation using the finite pseudo transmission source as a new transmission source and the analysis area including the investigation target area as an analysis target. And a third step of performing the following.
  • the program according to the present invention includes, within a three-dimensional area where a plurality of contents exist, a transmission source and a survey target area for examining the propagation environment of radio waves radiated from the transmission source.
  • a transmission source and an investigation target area for examining the propagation environment of radio waves radiated from the transmission source are given.
  • obtain the radio wave propagation condition in or near the survey area prepare finite pseudo transmission sources to simulate this radio wave propagation condition, and use these finite pseudo transmission sources as new transmission sources.
  • the system is configured to perform detailed radio wave propagation estimation for the analysis area including the investigation area.
  • radio wave propagation estimation When performing detailed radio wave propagation estimation, it is preferable to perform the radio wave propagation estimation in the analysis region using a ray tracing method.
  • the ray tracing method By using the ray tracing method, the area to be investigated and the contents in the vicinity of the area to be investigated are properly considered, and highly accurate radio wave propagation estimation can be performed.
  • various methods such as a statistical method, a late tracing method, and an actual measurement can be applied as a method for obtaining an overview of radio wave propagation. For example, if the range of radio waves from the transmission source is wide and there are many contents within the range, it is preferable to use a statistical method that requires a short calculation time.
  • the actual radio wave propagation condition may be obtained by actual measurement.
  • the coverage area of the wireless system is wide, and within the area, it is possible to quickly and accurately estimate the section variation of the radio wave propagation environment for only a part of the investigation area. This has the effect.
  • FIG. 1 is a diagram for explaining a radio wave propagation estimation method.
  • FIG. 2 is a conceptual diagram of radio wave propagation estimation using a conventional statistical technique.
  • FIG. 3 is a conceptual diagram of radio wave propagation estimation using a conventional technique, the ray launching method.
  • FIG. 4 is a conceptual diagram of radio wave propagation estimation using an imaging method which is a conventional technique.
  • FIG. 5 is a schematic functional block diagram of an embodiment of the present invention.
  • FIG. 6 is a flowchart schematically showing an operation of the exemplary embodiment of the present invention.
  • FIG. 7 is a diagram for explaining the operation of the exemplary embodiment of the present invention.
  • FIG. 8 is a flowchart showing an operation of the first example of the present invention.
  • FIG. 9 is a diagram showing an analysis region and extraction of extracted observation points in the first embodiment.
  • FIG. 10 is a diagram showing an arrangement of a pseudo transmission source in the first embodiment.
  • FIG. 14 is a diagram illustrating an analysis area and extraction of extracted observation points in the second embodiment.
  • FIG. 14 is a diagram illustrating an arrangement of a pseudo transmission source in the second embodiment.
  • FIG. 15 is a diagram for explaining how to determine the transmission power of the pseudo transmission source in the second embodiment.
  • FIG. 16 is a diagram showing the radio wave propagation estimation by the ray launching method in the second embodiment.
  • FIG. 17 is a flowchart showing the operation of the third embodiment of the present invention.
  • FIG. 18 is a diagram showing an analysis region and an outer wall of a research target region divided into a plurality of blocks in the third embodiment.
  • FIG. 19 is a diagram showing extraction of observation points in the third embodiment.
  • FIG. 20 is a diagram showing an arrangement of pseudo transmission sources in the third embodiment.
  • FIG. 21 A diagram showing radio wave propagation estimation by the ray launching method in the third embodiment.
  • FIG. 22 A flowchart showing the operation of the fourth embodiment of the present invention.
  • FIG. 23 is a diagram showing extraction of observation points in the fourth embodiment.
  • FIG. 24 is a diagram showing an arrangement of a pseudo transmission source in the fourth embodiment.
  • FIG. 25 is a diagram showing radio wave propagation estimation by the ray launching method in the fourth embodiment.
  • FIG. 26 is a flowchart showing the operation of the fifth example of the present invention.
  • FIG. 27 is a diagram showing extraction of observation points in the fifth embodiment.
  • FIG. 28 is a diagram showing an arrangement of pseudo transmission sources in the fifth embodiment.
  • FIG. 29 is a diagram showing radio wave propagation estimation by the ray launching method in the fifth embodiment. [0022] 10 Radio wave propagation status acquisition means
  • FIG. 5 is a functional block diagram schematically showing an embodiment of the present invention.
  • the system according to the present embodiment is provided with a transmission source and a survey target region for examining the propagation environment of radio waves radiated from the transmission source in a three-dimensional region where a plurality of contents exist.
  • This is a radio wave propagation characteristic estimating system for estimating the radio wave propagation environment in the survey target area.As shown in FIG. 5, this system is composed of a radio wave propagation general condition acquisition means 10, a pseudo transmission source preparation means 20, a radio wave propagation It is configured to include an estimation unit 30, a control unit 40, and a memory 50.
  • the radio wave propagation condition acquiring means 10 has a function of finding a radio wave propagation condition in or near the investigation area.
  • the pseudo transmission source preparation means 20 has a function of preparing a finite pseudo transmission source for simulating the radio wave propagation condition obtained by the radio wave propagation condition acquisition means 10.
  • the radio wave propagation estimating means 30 has a function of performing a detailed radio wave propagation estimation using the finite pseudo transmission source prepared by the pseudo transmission source preparing means 20 as a new transmission source and the analysis area including the investigation area as an analysis target.
  • the control unit 40 is a CPU that controls these units 10-30, and the memory 50 functions as a working memory of the CPU and stores an operation procedure of the CPU as a program at a glance.
  • FIG. 6 is a flowchart showing the outline of the operation in FIG. 5, and FIG. 7 is a diagram for explaining the outline.
  • the outdoor base station is set as the transmission source 1 of the wireless system, and a certain building is set as the survey area 2.
  • the radio wave propagation general condition acquisition means 10 grasps a rough radio wave propagation environment in or near the investigation target area 2 (step Sl). In order to grasp the rough radio wave propagation environment, it is possible to use a method such as an actual measurement in addition to a well-known statistical method and a ray tracing method.
  • the simulated transmission source preparing means 20 prepares a simulated transmission source for simulating the radio wave propagation environment obtained in step S1 (step S2).
  • the simulated transmission source one or more simulated transmission sources 100 (see FIG. 7) are arranged outside the survey area.
  • the radio wave propagation estimating means 30 estimates the detailed radio wave propagation using the simulated transmission source 100 as a new transmission source and the analysis area 3 (see FIG. 7) including the investigation area 2 as an analysis target. (Step S3).
  • the well-known ray tracing method is used for radio wave propagation estimation at this time.
  • FIG. 8 is a flowchart showing the operation of the present embodiment.
  • FIG. 9 shows the analysis area 3 in the present embodiment.
  • the analysis area 3 also includes the investigation area 2. The method of extracting the analysis region 3 will be described later.
  • the observation point 20 is arranged in the survey target area 2 (Step Sll).
  • the observation point 20 may be placed at any position as long as it is within or near the survey area.
  • the reception power of the radio wave radiated from the transmission source 1 at the observation point 20 is calculated using a statistical method (step S12). Let the received power determined here be Pr_20.
  • the analysis area 3 is extracted (Step S13).
  • the analysis area 3 is an analysis target when performing detailed radio wave propagation estimation in a later step. How much structures other than the target area are included in the analysis is related to the improvement of estimation accuracy and the increase of calculation time. When the number of structures to be included in the analysis area is large, it takes a lot of calculation time, but the effect of radio wave reflection by the building is more accurately reflected. In the example of Fig. 9, one block including the building near the study area is used as analysis area 3.
  • FIG. 10 shows an arrangement of the pseudo transmission sources 101 to 103 in the present embodiment.
  • the pseudo transmission source is arranged near a line connecting the transmission source 1 and the observation point 20 in consideration of the arrival direction of radio waves when free space is assumed.
  • the simulated transmission source is arranged outside the analysis area 3.
  • the number of pseudo transmission sources to be arranged may be single or plural.
  • the simulated transmission source forces so that the distances to the observation point 20 are all the same.
  • three pseudo transmission sources 101 to 103 are arranged at a distance d from the observation point 20.
  • Loss (d) is a propagation loss in the propagation environment from the observation point 20 to the pseudo transmission sources 101 to 103, and is obtained by a statistical method.
  • FIG. 11 shows a conceptual diagram of the radio wave propagation estimation in step S16.
  • a ray launching method which is one of the ray tracing methods, is used to estimate the propagation environment of the investigation target area 2 with high accuracy.
  • the radiation directions of the rays radiated from the pseudo transmission sources 101 to 103 are limited to only the inside of the analysis area 3.
  • radio wave propagation estimation is performed in consideration of the layout information inside the building. As a result, high-precision radio wave propagation estimation that takes into account the walls of the survey target area 2 and indoor objects can be realized at high speed.
  • Example 2 Next, a second embodiment of the present invention will be described.
  • the area assumed in this embodiment, the transmission source of the wireless system, and the target area are the same as those shown in FIG.
  • FIG. 12 is a flowchart showing the operation of this embodiment.
  • FIG. 13 shows an analysis area 3 in the present embodiment. In this embodiment, the analysis area 3 is the same as the investigation area 2. The method of extracting the analysis region 3 will be described later.
  • steps S21 and S22 are the same as steps Sll and S12 in the first embodiment, and the observation point 20 is arranged in the investigation area 2 and the received power at that position is reduced. Estimate by statistical method. Let the received power determined here be Pr_20.
  • the analysis area 3 is extracted (step S23).
  • the same region as the investigation region 2 is extracted as the analysis region 3.
  • the analysis target in the radio wave propagation estimation in the subsequent steps can be kept to the minimum necessary, and the calculation time can be reduced.
  • the analysis target in the radio wave propagation estimation in the subsequent steps can be kept to the minimum necessary, and the calculation time can be reduced.
  • the analysis target in the radio wave propagation estimation in the subsequent steps can be kept to the minimum necessary, and the calculation time can be reduced.
  • a pseudo transmission source for simulating the radio wave propagation environment obtained in step S22 is arranged (step S24). At this time, it is preferable to arrange the pseudo transmission source at a position where the outer wall force of the investigation target area is also separated by a certain distance.
  • FIG. 14 shows an arrangement of the pseudo transmission sources 101 to 124 in the present embodiment.
  • the transmission power of each pseudo transmission source is determined according to the arrangement state of the structures around the investigation target area 2 (step S25).
  • a parameter a_n for introducing a weight depending on the direction of the transmission source 1 and the arrangement state of the surrounding structures is introduced.
  • a_n is given an appropriate value depending on the situation based on a large number of data obtained by actual measurement.
  • radio transmission estimation is performed for the analysis area 3 using the pseudo transmission sources 101 to 124 arranged in step S24 as new transmission sources (step S26).
  • Figure 16 shows a conceptual diagram of the radio wave propagation estimation in this step.
  • a ray launching method which is one of the ray tracing methods, is used in order to estimate the propagation environment of the investigation area 2 with high accuracy.
  • the radiation direction of the ray radiated from the pseudo transmission sources 101 to 124 is limited to only the inside of the analysis region 3.
  • radio wave propagation estimation in consideration of the layout information inside the investigation area 2, high-precision radio wave propagation estimation that takes into account the walls and indoor objects of the investigation area 2 is realized at high speed. can do.
  • step S12 and step S22 when estimating the received power Pr_20 of the observation point 20, the statistical radio wave estimation method was used. However, besides this, the received power at the observation point 20 may be obtained by actual measurement.
  • Example 3
  • FIG. 17 is a flowchart showing the operation of this embodiment.
  • the analysis area 3 is the same as the investigation area 2. The method of extracting the analysis region 3 will be described later.
  • a plurality of observation points are extracted in the investigation target area 2 (step S31).
  • the method of extracting multiple observation points is shown below.
  • the outer wall of the study area 2 is divided into a plurality of blocks (outer walls 31-38).
  • one observation point is placed on each of the divided outer walls.
  • the antenna it is desirable to arrange the antenna at a position where the radio wave transmittance is high, such as a window glass part, among the outer walls.
  • FIG. 19 shows the arrangement of the observation points 21 to 28 in this embodiment.
  • the reception power of the radio wave radiated from the transmission source 1 at the observation points 21 to 28 is obtained by actual measurement (step S32).
  • the received power obtained at observation points 21-28 be Pr_21-Pr_28, respectively.
  • the extraction of the analysis area is the same as in the second embodiment, and the same area as the investigation area 2 is extracted as the analysis area 3 (step S33).
  • a pseudo transmission source for simulating the radio wave propagation environment obtained in step S32 is arranged (step S34).
  • FIG. 20 shows an arrangement of the pseudo transmission sources 101 to 108 in the present embodiment.
  • the simulated transmission sources 101 to 108 are arranged at a position separated by a certain distance d from the observation points 21 to 28 on the outer wall of the survey area.
  • Loss (d) is a propagation loss at a distance d from the observation points 21-28 to the corresponding pseudo transmission sources 101-108, and is obtained by a free space propagation loss theoretical formula.
  • the pseudo transmission sources 101-108 arranged in step S34 are used as new transmission sources, and the analysis area 3 is Radio wave propagation estimation is performed as a target (step S36).
  • Figure 21 shows a conceptual diagram of the radio wave propagation estimation in this step.
  • the ray launching method which is one of the ray tracing methods, is used in order to estimate the propagation environment of the investigation area 2 with high accuracy.
  • the radiation direction of the ray is limited to only the outer wall represented by the observation point corresponding to each pseudo transmission source.
  • the ray radiation direction of the pseudo transmission source 101 is limited to the outer wall 31 only.
  • FIG. 22 is a flowchart showing the operation of this embodiment.
  • the analysis area 3 is the same as the investigation area 2. The method of extracting the analysis region 3 will be described later.
  • the extraction of the observation points in this embodiment is the same as that in the third embodiment, and the observation points 21 to 28 are arranged for each of the divided outer walls 31 to 38 (Ste S41).
  • the arrival direction of the radio wave radiated from the transmission source 1 at the observation points 21 to 28 and the received power corresponding to the arrival direction of the radio wave are obtained by actual measurement (step S42).
  • an antenna having strong directivity such as an array antenna may be used.
  • the directions of arrival of radio waves obtained at observation points 21 and 28 are indicated by arrows, and the corresponding received power (Pr_21_l—Pr_28_2) is indicated.
  • the extraction of the analysis area is the same as in the second and third embodiments, and the same area as the investigation area 2 is extracted as the analysis area 3 (step S43).
  • a simulated transmission source 101-1 to 108-2 for simulating the radio wave propagation environment obtained in step S42 is arranged (step S44).
  • a pseudo transmission source is arranged near the line of the radio wave arrival direction from each observation point in a one-to-one correspondence with the radio wave arrival direction obtained in step S42. Further, it is preferable to dispose the pseudo transmission source at a position separated by a certain distance from the outer wall of the investigation area.
  • FIG. 24 shows an arrangement of the pseudo transmission sources 101-1 to 108-2 in the present embodiment.
  • the transmission power of the arranged pseudo transmission source is determined (step S45).
  • Loss (d) is the propagation loss at a distance d from the observation points 21-28 to the corresponding pseudo transmission sources 101-1-108--2, and is calculated by the theoretical equation for the propagation loss in free space. You.
  • step S46 is the same as step S36 in the third embodiment, in which the pseudo transmission source 101-1—108-2 is set as a new transmission source, and the analysis area 3 is used as a target by the ray-laying method.
  • FIG. 25 shows a conceptual diagram of the radio wave propagation estimation in this step.
  • the radiation direction of the ray is limited to only the outer wall represented by the observation point corresponding to each pseudo transmission source.
  • the ray emission direction of the pseudo transmission source 101-1 is limited to the outer wall 31 only.
  • actual measurements are used when estimating the received powers Pr_21—Pr_28 of the observation points 21-28 in steps S32 and S42.
  • the received power at the observation point 20 may be obtained by the ray tracing method.
  • FIG. 26 is a flowchart showing the operation of this embodiment.
  • the analysis area 3 is the same as the investigation area 2. The method of extracting the analysis region 3 will be described later.
  • step S51 of this embodiment is the same as in steps S31 and S41 in the third and fourth embodiments, and is performed for each of the plurality of divided outer walls 31-38. Place points 21-28.
  • the received power, the radio wave arrival direction, and the radio wave arrival time are determined by a ray tracing method. (Step S52).
  • Fig. 27 the directions of arrival of radio waves obtained at observation points 21-28 are indicated by arrows, and the corresponding received power is indicated.
  • the force (Pr_21_l-Pr_28_2) and the time of arrival of radio waves (Tr_101_l-Tr_108_2) are shown.
  • steps S53 and S54 are the same as steps S43 and S44 in the fourth embodiment, in which the analysis area 3 is extracted and the pseudo transmission sources 101-1 to 108-2 are arranged.
  • FIG. 28 shows the arrangement of the pseudo transmission sources 101-1 to 108-2 in the present embodiment. Further, the transmission power of each pseudo transmission source is determined by equation (5) (step S55).
  • radio transmission estimation is performed for the analysis area 3 by using the pseudo transmission sources 101-1 to 108-2 arranged in step S54 as new transmission sources.
  • a ray corresponding to the arrival delay time obtained in step S52 is given to the ray radiated from each pseudo transmission source.
  • FIG. 29 shows a conceptual diagram of the radio wave propagation estimation in this step. Similar to the relevant part in the first to fourth embodiments, in this embodiment, a ray launching method, which is one of the ray tracing methods, is used in order to estimate the propagation environment of the investigation area 2 with high accuracy.
  • the ray radiating direction is limited to only the outer wall represented by the observation point corresponding to each pseudo transmission source. You.
  • the ray radiation direction of the pseudo transmission source 101-1 is limited to only the outer wall 31.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 推定対象となる無線システムのカバー領域が広域にわたる場合に、そのカバー領域内の一部の調査対象領域における電波伝搬特性を、高速かつ高精度に推定するための電波伝搬特性推定システム及びその方法を得る。  複数の内容物が存在する3次元の領域内において、送信源と、この送信源から放射される電波の伝搬環境を調べる対象となる調査対象領域とが与えられ、この調査対象領域での電波伝搬環境を推定する場合、電波伝搬概況取得手段10において、調査対象領域内または近傍における電波伝搬概況を求める。そして、擬似送信源準備手段20により、この電波伝搬概況を模擬するための有限の擬似送信源を準備し、これら有限の擬似送信源を新たな送信源とし、調査対象領域を含む解析領域を解析対象として、電波伝搬推定手段30により、詳細な電波伝搬推定を行う。

Description

明 細 書
電波伝搬特性推定システム及びその方法並びにプログラム
技術分野
[0001] 本発明は電波伝搬特性を推定するシステムに関し、特に推定対象となる無線シス テムのカバー領域が広域にわたる場合に、そのカバー領域内の一部の調査対象領 域における電波伝搬特性を高速かつ高精度に推定するための電波伝搬特性推定シ ステムに関するものである。
背景技術
[0002] 無線通信システムにおける基地局や親機等の配置を援助するために電波伝搬特 性推定システム (電波伝搬シミュレータ)が用いられる。この電波伝搬シミュレータによ つて、任意の受信点での受信電力や遅延拡がりを評価して、し力るべき送信局の設 置場所を決定し、その結果、配置すべき基地局数の削減等の効率化が達成される。
[0003] 電波伝搬シミュレーションは、大別して、統計的手法によるものと決定論的手法によ るものとがある。統計的手法では、距離や周波数などを引数とする伝搬損失の推定 式を与え、そのパラメータを決定する際に、伝搬損失の実測定で得られた多数のデ ータをもとに多変量解析等により決定する手法である。一般に、電波の伝搬は構造 物や屋内オブジェクトなどでの反射や透過により区間的に変動するが、統計論的手 法によれば、区間変動の中央値が与えられる。
[0004] 一方、決定論的手法にぉ 、ては、アンテナ力も放射される電波を多数の電波線 (レ ィ)の集まりと考え、各レイが幾何光学的に反射透過を繰り返して伝搬するものとして 、観測点に到達するレイを合成して伝搬損失や遅延量を求める手法である。本手法 はレイトレーシング法と言われている。レイトレーシング法では、実際の構造物での反 射や透過、回折の影響を考慮するので、観測点での区間変動自体を知ることができ る。
[0005] レイトレーシング法は、さらにレイラゥンチング法とイメージング法とに大別される。レ イラゥンチング法は、送信アンテナから一定角度毎に離散的にレイを放射し、その軌 跡を遂次追跡し、受信点付近を通過したレイを当該受信点に到達したレイとみなす 手法である。
[0006] 一方、イメージング法は送受信点間を結ぶレイの反射透過経路を、反射面に対す る鏡映点を求めて決定する手法である。反射透過経路は、送受信点、反射透過物が 規定された場合に一意に求まるため、イメージング法では厳密なレイの伝搬経路を 探索することができる。レイラゥンチング法ゃイメージング法の詳細に関しては、たとえ ば、特許文献 1に開示されている。
特許文献 1:特開平 9— 33584号公報
発明の開示
発明が解決しょうとする課題
[0007] 一方、近年の携帯電話の普及拡大に伴!、、セルラー系の電波伝搬状況の把握が 重要となっている。特に、最近では、企業内の内線電話に、通常の公衆回線に接続 する携帯電話端末と同じ端末を用いるというサービス形態が検討されている。このよう な状況下では、屋外の基地局からの電波が、そのカバー領域内のある建物の内部に どれ程漏れ込むかを正確に把握することが必要となる。これを電波伝搬シミュレータ により実現する場合、基地局からの電波のカバー領域内にある一部の調査対象領域 のみに対して、電波伝搬環境を高速かつ高精度に推定する技術が必要となる。しか しながら、上記した従来技術はいずれも、この要求を満たすことができない。
[0008] 図 1一図 4を参照しつつ従来技術の問題点を説明する。図 1に示した領域内には、 建物や道路など多数の構造物が配置されている。また、各建物の内部には、家具や 什器など多数のオブジェクトが配置されている。ここでは、図の下方の屋外基地局を 無線システムの送信源 1とし、図の上方の建物を伝搬推定の対象となる調査対象領 域 2とする。この際、調査対象領域 2における電波伝搬環境を高速かつ高精度に推 定するための手法について考える。
[0009] 図 2は統計的手法を用いた電波伝搬推定の概念図である。この手法では、送信源 1から調査対象領域 2までの地形の傾斜や建物の密度などに基づいて伝搬損失の 推定式が与えられ、この推定式によって調査対象領域 2での受信電力を推定するも のである。この手法は、先にも述べたように、区間変動の中央値を知るための手法で ある。したがって、調査対象領域 2内またはその近傍にある壁や屋内オブジェクトによ つて電波が被る影響を正確に反映させることはできない。そのために、調査対象領域
2での電波伝搬環境を高精度に推定することができない。
[0010] 図 3はレイラゥンチング法を用いた電波伝搬推定の概念図である。この手法では、 送信源力も一定角度毎に離散的に放射されたレイが、構造物において幾何光学的 に反射 ·透過を繰り返しながら伝搬するものとして、その経路を追跡するものである。 この手法では、各構造物や屋内オブジェクトなどの影響が正確に反映されるため、高 精度な電波伝搬推定が可能である。し力しながら、解析する領域が広い場合や、解 析する領域内に多くの内容物がある場合には、計算時間が増大してしまう。また、調 查対象領域 2の位置に関わり無くレイを放射するため、調査対象領域 2を通過しない レイまで計算してしまう。これにより、計算に大きな無駄が生じるという問題点もある。
[0011] 図 4はイメージング法を用いた電波伝搬推定の概念図である。この手法では、あら 力じめ受信点を設定した上でレイの探索を行うため、レイラゥンチング法で挙げられ ていた無駄なレイの計算という問題はない。し力しながら、イメージング法そのものが 、全ての内容物の反射面および回折点における、全ての組み合わせの中力も受信 点に到達するレイを搜索する手法であるため、内容物の反射面および回折点が増大 した場合には計算量が指数関数的に増大するという欠点がある。また、受信点ごとに レイの探索を行う必要があるため、調査対象領域 2がある程度広域の場合には、さら に多くの計算時間を要してしまう。このため、計算時間は膨大になり、やはり高速な伝 搬推定は実現できない。
[0012] 本発明の目的は、推定対象となる無線システムのカバー領域が広域にわたる場合 に、そのカバー領域内の一部の調査対象領域における電波伝搬特性を、高速かつ 高精度に推定するための電波伝搬特性推定システム及びその方法並びにプロダラ ムを提供することである。
課題を解決するための手段
[0013] 本発明による電波伝搬特性推定システムは、複数の内容物が存在する 3次元の領 域内において、送信源と、前記送信源から放射される電波の伝搬環境を調べる対象 となる調査対象領域とが与えられ、前記調査対象領域での電波伝搬環境を推定する 電波伝搬特性推定システムであって、前記調査対象領域内または近傍における電 波伝搬概況を求める第 1の手段と、前記電波伝搬概況を模擬するための有限の擬似 送信源を準備する第 2の手段と、前記有限の擬似送信源を新たな送信源とし、前記 調査対象領域を含む解析領域を解析対象として詳細な電波伝搬推定を行う第 3の 手段とを含むことを特徴とする。
[0014] 本発明による電波伝搬特性推定方法は、複数の内容物が存在する 3次元の領域 内において、送信源と、前記送信源から放射される電波の伝搬環境を調べる対象と なる調査対象領域とが与えられ、前記調査対象領域での電波伝搬環境を推定する 電波伝搬特性推定方法であって、前記調査対象領域内または近傍における電波伝 搬概況を求める第 1のステップと、前記電波伝搬概況を模擬するための有限の擬似 送信源を準備する第 2のステップと、前記有限の擬似送信源を新たな送信源とし、前 記調査対象領域を含む解析領域を解析対象として詳細な電波伝搬推定を行う第 3 のステップとを含むことを特徴とする。
[0015] 本発明によるプログラムは、複数の内容物が存在する 3次元の領域内において、送 信源と、前記送信源から放射される電波の伝搬環境を調べる対象となる調査対象領 域とが与えられ、前記調査対象領域での電波伝搬環境を推定する方法をコンビユー タにより実行させるためプログラムであって、前記調査対象領域内または近傍におけ る電波伝搬概況を求める処理と、前記電波伝搬概況を模擬するための有限の擬似 送信源を準備する処理と、前記有限の擬似送信源を新たな送信源とし、前記調査対 象領域を含む解析領域を解析対象として詳細な電波伝搬推定を行う処理とを含むこ とを特徴とする。
[0016] 本発明の作用を述べる。複数の内容物が存在する 3次元の領域内において、送信 源と、この送信源から放射される電波の伝搬環境を調べる対象となる調査対象領域 とが与えられ、この調査対象領域での電波伝搬環境を推定する場合、調査対象領域 内または近傍における電波伝搬概況を求め、この電波伝搬概況を模擬するための 有限の擬似送信源を準備し、これら有限の擬似送信源を新たな送信源とし、調査対 象領域を含む解析領域を解析対象として詳細な電波伝搬推定を行うよう構成する。
[0017] 電波伝搬概況としては、調査対象領域内または近傍に配置された観測点における 受信電力を求める場合、電波の到来方向とそれに対応する受信電力とを求める場合 、各マルチパス成分の受信電力と電波到来方向と電波到来時間とを求める場合が挙 げられる。本発明によれば、上記のそれぞれの場合に対して、擬似送信源に対して 適切なパラメータが与えられる。
[0018] 詳細な電波伝搬推定を行う場合、レイトレーシング法を用いて前記解析領域の電 波伝搬推定を行うことが好ましい。レイトレーシング法を用いることによって、調査対 象領域や調査対象領域近傍の内容物が適切に考慮され、高精度な電波伝搬推定 を行うことができる。また、電波伝搬概況を求める手法としては、統計論的手法、レイト レーシング法、実測定などさまざまな手法を適用することができる。例えば、送信源か らの電波到達範囲が広ぐその範囲内に多数の内容物がある場合には、計算時間が 少な 、統計論的手法を用いることが好まし 、。
[0019] 一方、調査対象領域における電波伝搬環境を高精度に推定したい場合には、レイ トレーシングを用いることが好ましい。また、調査対象領域内または近傍における実 測定を容易に行える場合には、実測定によって電波伝搬概況を求めても良い。
発明の効果
[0020] 本発明によれば、無線システムのカバー領域が広!、領域内で、その一部の調査対 象領域のみに関して、電波伝搬環境の区間変動を高速かつ高精度に推定すること ができるという効果がある。
図面の簡単な説明
[0021] [図 1]電波伝搬推定法を説明するための図である。
[図 2]従来の技術である統計論的手法を用いた電波伝搬推定の概念図である。
[図 3]従来の技術であるレイラゥンチング法を用いた電波伝搬推定の概念図である。
[図 4]従来の技術であるイメージング法を用いた電波伝搬推定の概念図である。
[図 5]本発明の実施の形態の概略機能ブロック図である。
[図 6]本発明の実施の形態の動作の概略を示すフローチャートである。
[図 7]本発明の実施の形態の動作を説明するための図である。
[図 8]本発明の第 1の実施例の動作を示すフローチャートである。
[図 9]第 1の実施例における解析領域と、抽出された観測点の抽出を示す図である。
[図 10]第 1の実施例における擬似送信源の配置を示す図である。 圆 11]第 1の実施例におけるレイラゥンチング法による電波伝搬推定を示す図である 圆 12]本発明の第 2の実施例の動作を示すフローチャートである。
圆 13]第 2の実施例における解析領域と、抽出された観測点の抽出を示す図である 圆 14]第 2の実施例における擬似送信源の配置を示す図である。
圆 15]第 2の実施例における擬似送信源の送信電力の決定を解説するための図で ある。
[図 16]第 2の実施例におけるレイラゥンチング法による電波伝搬推定を示す図である 圆 17]本発明の第 3の実施例の動作を示すフローチャートである。
[図 18]第 3の実施例における解析領域と、複数のブロックに分割された調査対象領 域の外壁を示す図である。
圆 19]第 3の実施例における観測点の抽出を示す図である。
圆 20]第 3の実施例における擬似送信源の配置を示す図である。
[図 21]第 3の実施例におけるレイラゥンチング法による電波伝搬推定を示す図である 圆 22]本発明の第 4の実施例の動作を示すフローチャートである。
圆 23]第 4の実施例における観測点の抽出を示す図である。
圆 24]第 4の実施例における擬似送信源の配置を示す図である。
[図 25]第 4の実施例におけるレイラゥンチング法による電波伝搬推定を示す図である
[図 26]本発明の第 5の実施例の動作を示すフローチャートである。
圆 27]第 5の実施例における観測点の抽出を示す図である。
圆 28]第 5の実施例における擬似送信源の配置を示す図である。
[図 29]第 5の実施例におけるレイラゥンチング法による電波伝搬推定を示す図である 符号の説明 [0022] 10 電波伝搬概況取得手段
20 擬似送信源準備手段
30 電波伝搬推定手段
40 制御部(CPU)
50 メモリ
発明を実施するための最良の形態
[0023] 以下に、図面を参照しつつ本発明の実施の形態について説明する。図 5は本発明 の実施の形態の概略を示す機能ブロック図である。本実施の形態のシステムは、複 数の内容物が存在する 3次元の領域内において、送信源と、この送信源から放射さ れる電波の伝搬環境を調べる対象となる調査対象領域とが与えられ、当該調査対象 領域での電波伝搬環境を推定する電波伝搬特性推定システムであり、本システムは 、図 5に示すように、電波伝搬概況取得手段 10と、擬似送信源準備手段 20と、電波 伝搬推定手段 30と、制御部 40と、メモリ 50とを含んで構成される。
[0024] 電波伝搬概況取得手段 10は、調査対象領域内または近傍における電波伝搬概況 を求める機能を有する。擬似送信源準備手段 20は、電波伝搬概況取得手段 10によ り求められた電波伝搬概況を模擬するための有限の擬似送信源を準備する機能を 有する。電波伝搬推定手段 30は、擬似送信源準備手段 20により準備された有限の 擬似送信源を新たな送信源とし、調査対象領域を含む解析領域を解析対象として詳 細な電波伝搬推定を行う機能を有する。制御部 40は、これら各手段 10— 30を制御 する CPUであり、メモリ 50は、この CPUの作業用メモリとして機能する共に、 CPUの 動作手順をあら力じめプログラムとして格納したものである。
[0025] 図 6は図 5の動作の概略を示すフローチャートであり、図 7はその概要を説明するた めの図である。図 1に示したような、建物や道路など多数の構造物が配置された領域 において、屋外基地局を無線システムの送信源 1とし、ある建物を調査対象領域 2と する。先ず、電波伝搬概況取得手段 10において、調査対象領域 2内またはその近 傍における大まかな電波伝搬環境を把握する (ステップ Sl)。この大まかな電波伝搬 環境の把握には、周知の統計論的手法やレイトレーシング法などの他に、実測定な どの手法を用いることができる。 [0026] 次に、擬似送信源準備手段 20にお ヽて、ステップ S1で得られた電波伝搬環境を 模擬するための模擬送信源を準備する (ステップ S2)。この模擬送信源として、調査 対象領域の外側に、一つまたは複数の模擬送信源 100 (図 7参照)が配置される。し かる後に、電波伝搬推定手段 30において、模擬送信源 100を新たな送信源として、 調査対象領域 2を含む解析領域 3 (図 7参照)を解析対象として、詳細な電波伝搬を 推定することになる (ステップ S3)。このときの電波伝搬推定には、周知のレイトレーシ ング法を用いる。
[0027] 上述した実施の形態をより良く理解するために、以下に具体的例を参照しつつ実 施例を説明する。
実施例 1
[0028] 本発明の第 1の実施例を説明する。本実施例において想定する領域、無線システ ムの送信源、調査対象領域は図 1に示したものと同じものとする。図 8は本実施例の 動作を示すフローチャートであり、図 9は本実施例における解析領域 3を表しており、 解析領域 3の内部には、調査対象領域 2も含まれている。解析領域 3の抽出方法に 関しては後述する。
[0029] 本実施例では、まず、調査対象領域 2内に観測点 20を配置する (ステップ Sl l)。
観測点 20は、調査対象領域内または近傍であれば、どの位置に配置されても構わ ない。次に、統計論的手法を用いて、送信源 1から放射される電波の観測点 20にお ける受信電力を求める (ステップ S12)。ここで求まった受信電力を Pr_20とする。
[0030] そして、解析領域 3を抽出する (ステップ S13)。本実施例においては、解析領域 3と して、調査対象領域 2と、調査対象領域 2の近傍の建物や道路とを合わせて抽出す る。解析領域は、後のステップにおいて、詳細な電波伝搬推定を行う際の解析対象と なる。解析対象として、調査対象領域以外の構造物をどれ程含めるかは、推定精度 の向上と計算時間の増大に係る。解析領域に含める構造物の数が多い場合、多くの 計算時間を要すが、建物による電波の反射の影響はより正確に反映される。図 9の 例では、調査対象領域の近傍の建物を含む 1ブロック分を、解析領域 3として採用し ている。
[0031] 次に、ステップ S 12で求めた電波伝搬環境を模擬するための擬似送信源を配置す る (ステップ S14)。図 10に、本実施例における擬似送信源 101— 103の配置を示す 。本実施例のように、擬似送信源は、自由空間を仮定した場合の電波の到来方向を 考慮して、送信源 1と観測点 20とを結ぶ線上付近に配置することが好ましい。また擬 似送信源は、解析領域 3の外側に配置することが好ましい。一方、配置する擬似送 信源の数は、単一であっても、複数であっても構わない。複数の擬似送信源を配置 する場合には、各擬似送信源力も観測点 20までの距離がすべて同じ距離となるよう に配置することが好ましい。本実施例では、図 10に示すように 3個の擬似送信源 101 一 103を、観測点 20から距離 dの位置に配置している。
[0032] 次に、配置した擬似送信源の送信電力を決定する (ステップ S15)。擬似送信源 10 1一 103の送信電力(Pt_n; n= 101、 102、 103)は、以下の式で与えられる。
Pt_n =Pr— 20Z{N * Loss(d) }…… (1)
ここで、 Nは、配置する擬似送信源の総数で、本実施例では N = 3である。また、 Los s(d)は、観測点 20から擬似送信源 101— 103までの間の伝搬環境における伝搬損 失であり、統計論的手法により求まる。
[0033] 次に、ステップ S 14で配置した擬似送信源 101— 103を新たな送信源とし、解析領 域 3を対象として電波伝搬推定を行う(ステップ S 16)。図 11に、本ステップ S16での 電波伝搬推定の概念図を示す。本実施例では、調査対象領域 2の伝搬環境を高精 度に推定するため、レイトレーシング法の一つであるレイラゥンチング法を用いる。ま た、擬似送信源 101— 103から放射されるレイの放射方向を、解析領域 3内のみに 限定する。
[0034] さらに、調査対象領域 2以外は、建物の内部に配置されたオブジェクトは無視し、建 物の外壁による反射のみを考慮する。調査対象領域 2以外の建物内部にあるォブジ ェクトは、調査対象領域 2内の電波伝搬特性にほとんど影響を与えないので、推定精 度を犠牲にすることなぐ計算時間の高速ィ匕が実現できる。一方、調査対象領域 2内 に関しては、建物内部のレイアウト情報も考慮して電波伝搬推定を行う。これにより、 調査対象領域 2の壁や屋内オブジェクトまで考慮された高精度な電波伝搬推定を高 速に実現することができる。
実施例 2 [0035] 本発明の第 2の実施例を説明する。本実施例において想定する領域、無線システ ムの送信源、調査対象領域は図 1に示したものと同じものとする。図 12は本実施例の 動作を示すフローチャートである。図 13は、本実施例における解析領域 3を表してい る。本実施例においては、解析領域 3は、調査対象領域 2と同一である。解析領域 3 の抽出方法に関しては後述する。
[0036] 本実施例でステップ S21, S22は、第 1の実施例におけるステップ Sl l, S12と同 様であり、調査対象領域 2内に観測点 20を配置し、その位置での受信電力を統計論 的手法により推定する。ここで求まった受信電力を Pr_20とする。
[0037] 次に、解析領域 3を抽出する (ステップ S23)。本実施例においては、解析領域 3と して、調査対象領域 2と同一の領域を抽出する。本実施例のように、解析領域 3を調 查対象領域 2と同一とすることにより、以降のステップでの電波伝搬推定における解 析対象が必要最小限にとどめられるため、計算時間は少なくてすむ。一方で、調査 対象領域 2の近傍の建物や道路による反射や回折の効果を正しく反映させるために は、擬似送信源の配置や、それらの送信電力決定を工夫する必要がある。
[0038] 次に、ステップ S22で求めた電波伝搬環境を模擬するための擬似送信源を配置す る (ステップ S24)。この際、調査対象領域の外壁力も一定の距離だけ離した位置に 擬似送信源を配置することが好ましい。図 14に、本実施例における擬似送信源 101 一 124の配置を示す。
[0039] 続 、て、調査対象領域 2の周辺の構造物の配置状況に応じて、それぞれの擬似送 信源の送信電力を決定する (ステップ S 25)。擬似送信源 101— 124の送信電力(P t_n; n= 101— 124)は、以下の式で与えられる。
Pt_n =a_n * Pr— 20Z{N * Loss(d) }…… (2)
ここで、(2)式の右辺の後半部分は、第 1の実施例における(1)式の右辺と同様であ る。これに対し、本実施例では、送信源 1の方向や、周辺の構造物の配置状況によつ て重み付けを与えるパラメータ a_nが導入される。 a_nは、実測定で得られた多数の データをもとに、状況に応じて適当な数値が与えられる。
[0040] 図 15を用いて、パラメータ a_nの決定法の一例を述べる。一般に、伝搬推定の統計 論的手法では、送信源と観測点とを結ぶ方向に平行な道路と、送信源と観測点とを 結ぶ方向に直角な道路に対し、それぞれ縦コース補正値 K_al [dB]と横コース補正 値 K_ac [dB]とが与えられている。これらの差分を Kとする。一方、調査対象領域の重 心 41から擬似送信源 nへの方向と、送信源と観測点とを結ぶ方向との間の角度を Θ _nとすると、 a_nは以下の式で近似できる。
a— n =Kcos、 θ— n) {3)
[0041] また、電波伝搬の性質を考えると、調査対象領域 2の周辺に構造物が近接している 場合、その構造物方向からの電波は、構造物にブロックされて調査対象領域 2に到 達しに《なる。このことを考慮するため、調査対象領域 2の外壁に近接している構造 物がある場合、その近接構造物の方向にある擬似送信源 (本実施例では、擬似送信 源 108— 117)に対しては、近接する建物を貫通する分の損失を統計的手法により 算出し、その分の損失を a_nに付加する。
[0042] a nの決定方法としては、上記以外にもいくつかの手法が考えられる。例えば、送 信源から調査対象領域が離れており、調査対象領域の周辺に伝搬特性に大きな影 響を与える建物が存在しない場合などは、調査対象領域に向力う電波の到来方向が どの方向力もも一定とみなすことができる。このような場合には、簡単に a_n = 1として も差し支えない。
[0043] 次に、ステップ S24で配置した擬似送信源 101— 124を新たな送信源とし、解析領 域 3を対象として電波伝搬推定を行う(ステップ S 26)。図 16に、本ステップでの電波 伝搬推定の概念図を示す。第 1の実施例と同様に、本実施例でも、調査対象領域 2 の伝搬環境を高精度に推定するため、レイトレーシング法の一つであるレイラゥンチ ング法を用いる。また、擬似送信源 101— 124から放射されるレイの放射方向を、解 析領域 3内のみに限定する。
[0044] 一方、調査対象領域 2内部のレイアウト情報も考慮して電波伝搬推定を行うことによ り、調査対象領域 2の壁や屋内オブジェクトまで考慮された高精度な電波伝搬推定 を高速に実現することができる。
[0045] なお、上述した第 1の実施例ならびに第 2の実施例では、ステップ S 12およびステツ プ S22で、観測点 20の受信電力 Pr_20を推定する際に統計論的電波推定法を用い たが、これ以外にも、実測定によって観測点 20の受信電力を求めても構わない。 実施例 3
[0046] 本発明の第 3の実施例を説明する。本実施例にお!、て想定する領域、無線システ ムの送信源、調査対象領域は図 1に示したものと同じものとする。図 17は本実施例の 動作を示すフローチャートである。本実施例においては、解析領域 3は、調査対象領 域 2と同一である。解析領域 3の抽出方法に関しては後述する。
[0047] まず、調査対象領域 2内に複数の観測点を抽出する (ステップ S31)。複数の観測 点の抽出方法は以下に示すとおりである。はじめに、図 18に示すように、調査対象 領域 2の外壁を複数のブロック(外壁 31— 38)に分割する。次に、分割されたそれぞ れの外壁に対し観測点 1点を配置する。この際、各外壁の中でも、窓ガラス部など、 電波の透過率が大きい位置に配置することが望ましい。図 19に、本実施例における 観測点 21— 28の配置を示す。
[0048] 次に、観測点 21— 28のそれぞれにおいて、送信源 1から放射される電波の観測点 21— 28における受信電力を実測定により求める (ステップ S32)。観測点 21— 28で 求まった受信電力を、それぞれ Pr_21— Pr_28とする。
[0049] 解析領域の抽出に関しては、第 2の実施例と同様であり、解析領域 3として、調査対 象領域 2と同一の領域を抽出する (ステップ S33)。次に、ステップ S32で求めた電波 伝搬環境を模擬するための擬似送信源を配置する (ステップ S34)。この際、第 1のス テツプで設定した観測点に対して 1対 1に対応するように、擬似送信源を配置すること が好ましい。また、調査対象領域の外壁から一定の距離だけ離した位置に擬似送信 源を配置することが好ましい。図 20に、本実施例における擬似送信源 101— 108の 配置を示す。本実施例では、調査対象領域の外壁上にある観測点 21— 28から一定 の距離 dだけ離した位置に、擬似送信源 101— 108を配置した。
[0050] 次に、配置した擬似送信源の送信電力を決定する (ステップ S35)。擬似送信源 10 1一 108の送信電力(Pt_n; n= 101— 108)は、以下の式で与えられる。
Pt_n =Pr_20/Loss(d)……(4)
ここで、 Loss(d)は、観測点 21— 28から、それぞれ対応する擬似送信源 101— 108 までの距離 dにおける伝搬損失であり、自由空間の伝搬損失理論式により求まる。
[0051] ステップ S34で配置した擬似送信源 101— 108を新たな送信源とし、解析領域 3を 対象として電波伝搬推定を行う(ステップ S 36)。図 21に、本ステップでの電波伝搬 推定の概念図を示す。第 1の実施例または第 2の実施例における当該部分と同様に 、本実施例でも、調査対象領域 2の伝搬環境を高精度に推定するため、レイトレーシ ング法の一つであるレイラゥンチング法を用いる。この際、レイの放射方向としては、 それぞれの擬似送信源に対応する観測点が代表して ヽる外壁のみに限定する。例 えば、擬似送信源 101のレイ放射方向は、外壁 31のみに限定する。
実施例 4
[0052] 本発明の第 4の実施例を説明する。本実施例において想定する領域、無線システ ムの送信源、調査対象領域は図 1に示したものと同じものとする。図 22は本実施例の 動作を示すフローチャートである。本実施例においては、解析領域 3は、調査対象領 域 2と同一である。解析領域 3の抽出方法に関しては後述する。
[0053] 本実施例の観測点の抽出に関しては、第 3の実施例における当該部分と同様であ り、複数に分割された外壁 31— 38のそれぞれに対し観測点 21— 28を配置する (ス テツプ S41)。次に、観測点 21— 28のそれぞれにおいて、送信源 1から放射される電 波の観測点 21— 28における電波到来方向と、前記電波到来方向に対応する受信 電力を実測定により求める (ステップ S42)。電波の到来方向までを測定するために は、アレイアンテナなど指向性の強いアンテナを用いればよい。図 23に、観測点 21 一 28で求まった電波到来方向を矢印で示し、対応する受信電力(Pr_21_l— Pr_28_2 )を示す。
[0054] 解析領域の抽出に関しては、第 2、第 3の実施例と同様であり、解析領域 3として、 調査対象領域 2と同一の領域を抽出する (ステップ S43)。次に、ステップ S42で求め た電波伝搬環境を模擬するための擬似送信源 101-1— 108— 2を配置する (ステツ プ S44)。この際、ステップ S42で求めた電波到来方向に対して 1対 1に対応させ、各 観測点から電波到来方向の線上付近に、擬似送信源を配置する。また、調査対象 領域の外壁から一定の距離だけ離した位置に擬似送信源を配置することが好ましい 。図 24に、本実施例における擬似送信源 101— 1— 108— 2の配置を示す。このよう に擬似送信源を配置することにより、調査対象領域への電波の到達方向を高精度に 模擬することができる。 [0055] 次に、配置した擬似送信源の送信電力を決定する (ステップ S45)。擬似送信源 10 1— 1一 108— 2の送信電力(Pt_n_m; n= 101— 108、 m= l、 2)は、以下の式で与え られる。
Pt_n_m = Pr_n_m ZLoss、a) (5)
ここで、 Loss(d)は、観測点 21— 28から、それぞれ対応する擬似送信源 101— 1一 1 08— 2までの距離 dにおける伝搬損失であり、自由空間の伝搬損失理論式により求ま る。
[0056] そして、次のステップ S46は第 3の実施例におけるステップ S36と同様であり、擬似 送信源 101-1— 108— 2を新たな送信源とし、解析領域 3を対象としてレイラゥンチン グ法により電波伝搬推定を行う。図 25に、本ステップでの電波伝搬推定の概念図を 示す。この際、レイの放射方向としては、それぞれの擬似送信源に対応する観測点 が代表している外壁のみに限定する。例えば、擬似送信源 101— 1のレイ放射方向 は、外壁 31のみに限定する。
[0057] なお、第 3の実施例ならびに第 4の実施例では、ステップ S32、 S42で観測点 21— 28の受信電力 Pr_21— Pr_28を推定する際に実測定を用いたが、これ以外にも、レイ トレーシング法によって観測点 20の受信電力を求めても構わない。
実施例 5
[0058] 本発明の第 5の実施例を説明する。本実施例において想定する領域、無線システ ムの送信源、調査対象領域は図 1に示したものと同じものとする。図 26は本実施例の 動作を示すフローチャートである。本実施例においては、解析領域 3は、調査対象領 域 2と同一である。解析領域 3の抽出方法に関しては後述する。
[0059] 本実施例のステップ S51における観測点の抽出に関しては、第 3、第 4の実施例に おけるステップ S31、 S41と同様であり、複数に分割された外壁 31— 38のそれぞれ に対し観測点 21— 28を配置する。次に、観測点 21— 28のそれぞれにおいて、送信 源 1から観測点 21— 28に到来する電波のマルチパス成分ごとに、受信電力と、電波 到来方向と、電波到来時間をレイトレーシング法の一種であるイメージング法により求 める(ステップ S 52)。
[0060] 図 27に、観測点 21— 28で求まった電波到来方向を矢印で示し、対応する受信電 力(Pr_21_l— Pr_28_2)と電波到来時間(Tr_101_l— Tr_108_2 )を示す。
[0061] 次のステップ S53、 S54は第 4の実施例におけるステップ S43、 S44と同様であり、 解析領域 3の抽出と、擬似送信源 101-1— 108— 2の配置を行う。図 28に、本実施 例における擬似送信源 101— 1一 108— 2の配置を示す。さらに、各擬似送信源の送 信電力を(5)式により決定する (ステップ S55)。
[0062] 次のステップ S56では、ステップ S54で配置した擬似送信源 101— 1— 108— 2を新 たな送信源とし、解析領域 3を対象として電波伝搬推定を行う。この際、各擬似送信 源カゝら放射されるレイは、ステップ S52で得られた到来遅延時間に対応する遅延が 与えられる。図 29に、本ステップでの電波伝搬推定の概念図を示す。第 1一第 4の実 施例における当該部分と同様に、本実施例でも、調査対象領域 2の伝搬環境を高精 度に推定するため、レイトレーシング法の一つであるレイラゥンチング法を用いる。
[0063] また、第 3、第 4の実施例におけるステップ S36、 S46と同様に、レイの放射方向とし ては、それぞれの擬似送信源に対応する観測点が代表している外壁のみに限定す る。例えば、擬似送信源 101-1のレイ放射方向は、外壁 31のみに限定する。
[0064] 上述した各実施例における動作フローは、プログラムとして、予め ROMなどの記録 媒体(図 5のメモリ 50)に記憶しておき、これをコンピュータである CPUに読み取らせ て実行させるようにすることができることは勿論である。

Claims

請求の範囲
[1] 複数の内容物が存在する 3次元の領域内において、送信源と、前記送信源から放 射される電波の伝搬環境を調べる対象となる調査対象領域とが与えられ、前記調査 対象領域での電波伝搬環境を推定する電波伝搬特性推定システムであって、 前記調査対象領域内または近傍における電波伝搬概況を求める第 1の手段と、前 記電波伝搬概況を模擬するための有限の擬似送信源を準備する第 2の手段と、前 記有限の擬似送信源を新たな送信源とし、前記調査対象領域を含む解析領域を解 析対象として詳細な電波伝搬推定を行う第 3の手段とを含むことを特徴とする無線通 信システムにおける電波伝搬特性推定システム。
[2] 前記第 1の手段は、前記電波伝搬概況として、前記調査対象領域内または近傍に 配置された観測点における受信電力を求めることを特徴とする請求項 1に記載の電 波伝搬特性推定システム。
[3] 前記解析領域は、前記調査対象領域のほか、前記調査対象領域の周りの複数の 内容物が含まれるように設定され、前記擬似送信源は、前記解析領域の外側で、前 記送信源と前記調査対象領域とを結ぶ線上付近に準備されることを特徴とする請求 項 2に記載の電波伝搬推定システム。
[4] 前記解析領域は、前記調査対象領域と同一に設定され、前記擬似送信源は、前 記調査対象領域の周囲に準備され、前記調査対象領域周辺の内容物の配置状況 によって、前記擬似送信源の送信電力を決定することを特徴とする請求項 2に記載 の電波伝搬推定システム。
[5] 前記第 1の手段は、前記電波伝搬概況として、前記調査対象領域内または近傍に 配置された観測点において、電波到来方向と、前記電波到来方向に対応する受信 電力とを求めることを特徴とする請求項 1に記載の電波伝搬特性推定システム。
[6] 前記解析領域は、前記調査対象領域と同一に設定され、前記擬似送信源は、前 記観測点から前記電波到来方向へと延びる線上付近に準備されることを特徴とする 請求項 5に記載の電波伝搬特性推定システム。
[7] 前記第 1の手段は、前記電波伝搬概況として、前記調査対象領域内または近傍に 配置された観測点にぉ 、て、各マルチパス成分の受信電力と電波到来方向と電波 到来時間とを求めることを特徴とする請求項 1に記載の電波伝搬特性推定システム。
[8] 前記解析領域は、前記調査対象領域と同一に設定され、前記擬似送信源は、前 記観測点から前記電波到来方向へと延びる線上付近に準備し、前記第 3の手段に おいて電波伝搬推定を行う際に、前記電波到来時間に相当する遅延を考慮すること を特徴とする請求項 7に記載の電波伝搬特性推定システム。
[9] 前記第 3の手段における電波伝搬推定に、レイトレーシング法を用いることを特徴と する請求項 1に記載の電波伝搬特性推定システム。
[10] 前記第 1の手段において電波伝搬概況を求めるために、統計論的手法を用いるこ とを特徴とする請求項 1に記載の電波伝搬特性推定システム。
[11] 前記第 1の手段において電波伝搬概況を求めるために、レイトレーシング法を用い ることを特徴とする請求項 1に記載の電波伝搬特性推定システム。
[12] 前記第 1の手段において電波伝搬概況を求めるために、実測定を用いることを特 徴とする請求項 1に記載の電波伝搬特性推定システム。
[13] 複数の内容物が存在する 3次元の領域内において、送信源と、前記送信源から放 射される電波の伝搬環境を調べる対象となる調査対象領域とが与えられ、前記調査 対象領域での電波伝搬環境を推定する電波伝搬特性推定方法であって、
前記調査対象領域内または近傍における電波伝搬概況を求める第 1のステップと、 前記電波伝搬概況を模擬するための有限の擬似送信源を準備する第 2のステップと
、前記有限の擬似送信源を新たな送信源とし、前記調査対象領域を含む解析領域 を解析対象として詳細な電波伝搬推定を行う第 3のステップとを含むことを特徴とする 無線通信システムにおける電波伝搬特性推定方法。
[14] 前記第 1のステップにお!/、て、前記電波伝搬概況として、前記調査対象領域内また は近傍に配置された観測点における受信電力を求めることを特徴とする請求項 13に 記載の電波伝搬特性推定方法。
[15] 前記解析領域は、前記調査対象領域のほか、前記調査対象領域の周りの複数の 内容物が含まれるように設定され、前記擬似送信源は、前記解析領域の外側で、前 記送信源と前記調査対象領域とを結ぶ線上付近に準備されることを特徴とする請求 項 14に記載の電波伝搬推定方法。
[16] 前記解析領域は、前記調査対象領域と同一に設定され、前記擬似送信源は、前 記調査対象領域の周囲に準備され、前記調査対象領域周辺の内容物の配置状況 によって、前記擬似送信源の送信電力を決定することを特徴とする請求項 14に記載 の電波伝搬推定方法。
[17] 前記第 1のステップにお!/、て、前記電波伝搬概況として、前記調査対象領域内また は近傍に配置された観測点において、電波到来方向と、前記電波到来方向に対応 する受信電力とを求めることを特徴とする請求項 13に記載の電波伝搬特性推定方 法。
[18] 前記解析領域は、前記調査対象領域と同一に設定され、前記擬似送信源は、前 記観測点から前記電波到来方向へと延びる線上付近に準備されることを特徴とする 請求項 17に記載の電波伝搬特性推定方法。
[19] 前記第 1のステップにお!/、て、前記電波伝搬概況として、前記調査対象領域内また は近傍に配置された観測点にぉ 、て、各マルチパス成分の受信電力と電波到来方 向と電波到来時間とを求めることを特徴とする請求項 13に記載の電波伝搬特性推定 方法。
[20] 前記解析領域は、前記調査対象領域と同一に設定され、前記擬似送信源は、前 記観測点から前記電波到来方向へと延びる線上付近に準備し、前記第 3の手段に おいて電波伝搬推定を行う際に、前記電波到来時間に相当する遅延を考慮すること を特徴とする請求項 19に記載の電波伝搬特性推定方法。
[21] 前記第 3のステップにおける電波伝搬推定に、レイトレーシング法を用いることを特 徴とする請求項 13に記載の電波伝搬特性推定方法。
[22] 前記第 1のステップにおいて電波伝搬概況を求めるために、統計論的手法を用い ることを特徴とする請求項 13に記載の電波伝搬特性推定方法。
[23] 前記第 1のステップにおいて電波伝搬概況を求めるために、レイトレーシング法を 用いることを特徴とする請求項 13に記載の電波伝搬特性推定方法。
[24] 前記第 1のステップにおいて電波伝搬概況を求めるために、実測定を用いることを 特徴とする請求項 13に記載の電波伝搬特性推定方法。
[25] 複数の内容物が存在する 3次元の領域内において、送信源と、前記送信源から放 射される電波の伝搬環境を調べる対象となる調査対象領域とが与えられ、前記調査 対象領域での電波伝搬環境を推定する方法をコンピュータにより実行させるための プログラムであって、
前記調査対象領域内または近傍における電波伝搬概況を求める処理と、前記電 波伝搬概況を模擬するための有限の擬似送信源を準備する処理と、前記有限の擬 似送信源を新たな送信源とし、前記調査対象領域を含む解析領域を解析対象として 詳細な電波伝搬推定を行う処理とを含むことを特徴とするコンピュータ読み取り可能 なプログラム。
PCT/JP2005/004764 2004-03-17 2005-03-17 電波伝搬特性推定システム及びその方法並びにプログラム WO2005088868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006500612A JP4207081B2 (ja) 2004-03-17 2005-03-17 電波伝搬特性推定システム及びその方法並びにプログラム
EP05726704A EP1727300A1 (en) 2004-03-17 2005-03-17 Electric wave propagation characteristic estimation system, method thereof, and program
US10/556,128 US7634265B2 (en) 2004-03-17 2005-03-17 Radio wave propagation characteristic estimation system, and its method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004075477 2004-03-17
JP2004-075477 2004-03-17

Publications (1)

Publication Number Publication Date
WO2005088868A1 true WO2005088868A1 (ja) 2005-09-22

Family

ID=34975945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004764 WO2005088868A1 (ja) 2004-03-17 2005-03-17 電波伝搬特性推定システム及びその方法並びにプログラム

Country Status (5)

Country Link
US (1) US7634265B2 (ja)
EP (1) EP1727300A1 (ja)
JP (1) JP4207081B2 (ja)
CN (1) CN100553177C (ja)
WO (1) WO2005088868A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287685A (ja) * 2005-04-01 2006-10-19 Hitachi Ltd 電波伝搬の推定プログラム、電波伝搬の推定方法、この方法を実行する装置
WO2009069507A1 (ja) * 2007-11-28 2009-06-04 Nec Corporation 電波伝搬シミュレータ及びそれに用いる電波伝搬特性推定方法並びにそのプログラム
WO2009075282A1 (ja) * 2007-12-10 2009-06-18 Nec Corporation 電波伝搬解析結果表示システム
US20100081390A1 (en) * 2007-02-16 2010-04-01 Nec Corporation Radio wave propagation characteristic estimating system, its method , and program
JP2010074729A (ja) * 2008-09-22 2010-04-02 Kddi Corp 電波伝搬特性推定装置及びコンピュータプログラム
JP2010219918A (ja) * 2009-03-17 2010-09-30 Nec Corp 無線基地局、無線基地局監視システム、無線基地局の送信電力設定方法、プログラム及び記録媒体
JP5234291B2 (ja) * 2007-09-07 2013-07-10 日本電気株式会社 電波到達状態推定システムと、その方法及びプログラム
WO2020195296A1 (ja) * 2019-03-28 2020-10-01 パナソニック株式会社 電波環境解析装置および電波環境解析方法
WO2023162649A1 (ja) * 2022-02-25 2023-08-31 株式会社日立システムズ 電波伝搬シミュレーションシステム、及び電波伝搬シミュレーション方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7962102B2 (en) * 2006-11-30 2011-06-14 Motorola Mobility, Inc. Method and system for adaptive ray launching
US8332196B2 (en) * 2007-11-30 2012-12-11 Motorola Mobility Llc Method and apparatus for enhancing the accuracy and speed of a ray launching simulation tool
US20090167756A1 (en) * 2007-12-31 2009-07-02 Motorola, Inc. Method and apparatus for computation of wireless signal diffraction in a three-dimensional space
JP5509666B2 (ja) * 2008-05-08 2014-06-04 日本電気株式会社 電波伝搬特性推測支援システム、電波伝搬特性推測支援方法及び電波伝搬特性推測支援装置
US8457644B2 (en) * 2008-09-04 2013-06-04 Spectrum Bridge Inc. System and method for planning a wireless network
WO2010067560A1 (ja) * 2008-12-09 2010-06-17 日本電気株式会社 電波環境データ補正システム、方法およびプログラム
JP5493447B2 (ja) * 2009-04-21 2014-05-14 日本電気株式会社 電波伝搬特性推定装置及び方法並びにコンピュータプログラム
KR101205719B1 (ko) * 2009-10-29 2012-11-28 한국전자통신연구원 광선의 경로추적을 위한 3차원 전처리 방법
US8208916B2 (en) * 2009-12-16 2012-06-26 Electronics And Telecommunications Research Institute Apparatus and method of predicting radio wave environment
KR101260558B1 (ko) 2009-12-16 2013-05-06 한국전자통신연구원 전파 환경 예측 장치 및 방법
WO2012011147A1 (ja) * 2010-07-21 2012-01-26 ソフトバンクBb株式会社 通信特性解析システム、通信特性解析方法、及び通信特性解析プログラム
US9318799B2 (en) * 2013-03-29 2016-04-19 Broadcom Corporation Wireless communication apparatus and method for controlling antenna radiation patterns based on fading conditions
WO2016021253A1 (ja) * 2014-08-08 2016-02-11 株式会社Jvcケンウッド 受信強度算出装置、受信強度算出方法、プログラム
KR102661600B1 (ko) * 2016-11-17 2024-04-30 삼성전자 주식회사 실재 환경관련 정보를 고려한 통신 채널 분석과 무선 망 설계 방법 및 장치
KR102531023B1 (ko) 2016-11-17 2023-05-15 삼성전자 주식회사 무선 통신 시스템에서 물체의 특성 정보에 기반하여 통신 환경을 분석하는 방법 및 장치
KR102355301B1 (ko) 2017-09-29 2022-01-25 삼성전자 주식회사 무선 통신 시스템에서 통신 환경을 분석하는 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094809A1 (en) * 2001-01-17 2002-07-18 Nec Corporation Method and system for radio wave propagation characteristics estimation and ray spatial resolution control
JP2003318811A (ja) * 2002-04-26 2003-11-07 Nippon Telegr & Teleph Corp <Ntt> 受信電界強度推定計算装置及び方法並びにプログラム及び記録媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623429A (en) * 1994-04-06 1997-04-22 Lucent Technologies Inc. Techniques for expeditiously predicting electromagnetic wave propagation
DE19680108T1 (de) * 1995-01-23 1997-05-22 Advantest Corp Funkausbreitungs-Simulationsverfahren, Wellen-Feldstärken-Ableitungsverfahren und dreidimensionales Verzögerungssteuerungs-Ableitungsverfahren
JP3092651B2 (ja) 1995-07-14 2000-09-25 株式会社エヌ・ティ・ティ・ドコモ 電界強度計算装置
JP3307309B2 (ja) 1997-12-24 2002-07-24 三菱電機株式会社 無線端末用試験装置および無線端末用電波環境試験装置
JP4257040B2 (ja) 2000-06-30 2009-04-22 日本電気株式会社 無線通信システムにおける伝搬環境通知方法及び通知システム並びに制御プログラムを記録した記録媒体
US6625454B1 (en) * 2000-08-04 2003-09-23 Wireless Valley Communications, Inc. Method and system for designing or deploying a communications network which considers frequency dependent effects
JP3465683B2 (ja) 2000-10-30 2003-11-10 三菱電機株式会社 電波発射制御システム
US6865394B2 (en) * 2001-01-31 2005-03-08 Hitachi, Ltd Location detection method, location detection system and location detection program
JP3654197B2 (ja) * 2001-02-07 2005-06-02 日本電気株式会社 電波伝搬特性予測システム及びその方法並びにプログラム
JP2002333459A (ja) 2001-05-08 2002-11-22 Rikogaku Shinkokai 空間フェージング模擬装置
JP4304367B2 (ja) * 2003-03-26 2009-07-29 日本電気株式会社 電波伝搬特性予測システム及びその方法並びにプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094809A1 (en) * 2001-01-17 2002-07-18 Nec Corporation Method and system for radio wave propagation characteristics estimation and ray spatial resolution control
JP2003318811A (ja) * 2002-04-26 2003-11-07 Nippon Telegr & Teleph Corp <Ntt> 受信電界強度推定計算装置及び方法並びにプログラム及び記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANABE Y. ET AL: "Kaisoka Jushin Hantei ni yoru Kosoku Ray Launching-ho", 2004 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGA TAIKAI, 8 March 2004 (2004-03-08), XP002998412 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287685A (ja) * 2005-04-01 2006-10-19 Hitachi Ltd 電波伝搬の推定プログラム、電波伝搬の推定方法、この方法を実行する装置
JP4530898B2 (ja) * 2005-04-01 2010-08-25 株式会社日立製作所 電波伝搬の推定プログラム、電波伝搬の推定方法、この方法を実行する装置
US20100081390A1 (en) * 2007-02-16 2010-04-01 Nec Corporation Radio wave propagation characteristic estimating system, its method , and program
US8666320B2 (en) * 2007-02-16 2014-03-04 Nec Corporation Radio wave propagation characteristic estimating system, its method, and program
US9002388B2 (en) 2007-09-07 2015-04-07 Nec Corporation Radio wave arrival status estimating system, its method and program
JP5234291B2 (ja) * 2007-09-07 2013-07-10 日本電気株式会社 電波到達状態推定システムと、その方法及びプログラム
WO2009069507A1 (ja) * 2007-11-28 2009-06-04 Nec Corporation 電波伝搬シミュレータ及びそれに用いる電波伝搬特性推定方法並びにそのプログラム
US8355680B2 (en) 2007-12-10 2013-01-15 Nec Corporation Radio wave propagation analysis result display system
JPWO2009075282A1 (ja) * 2007-12-10 2011-04-28 日本電気株式会社 電波伝搬解析結果表示システム
JP5392094B2 (ja) * 2007-12-10 2014-01-22 日本電気株式会社 電波伝搬解析結果表示システム
WO2009075282A1 (ja) * 2007-12-10 2009-06-18 Nec Corporation 電波伝搬解析結果表示システム
JP2010074729A (ja) * 2008-09-22 2010-04-02 Kddi Corp 電波伝搬特性推定装置及びコンピュータプログラム
JP2010219918A (ja) * 2009-03-17 2010-09-30 Nec Corp 無線基地局、無線基地局監視システム、無線基地局の送信電力設定方法、プログラム及び記録媒体
WO2020195296A1 (ja) * 2019-03-28 2020-10-01 パナソニック株式会社 電波環境解析装置および電波環境解析方法
JPWO2020195296A1 (ja) * 2019-03-28 2021-12-23 パナソニック株式会社 電波環境解析装置および電波環境解析方法
JP7251610B2 (ja) 2019-03-28 2023-04-04 パナソニックホールディングス株式会社 電波環境解析装置および電波環境解析方法
WO2023162649A1 (ja) * 2022-02-25 2023-08-31 株式会社日立システムズ 電波伝搬シミュレーションシステム、及び電波伝搬シミュレーション方法

Also Published As

Publication number Publication date
CN100553177C (zh) 2009-10-21
US7634265B2 (en) 2009-12-15
EP1727300A1 (en) 2006-11-29
JP4207081B2 (ja) 2009-01-14
JPWO2005088868A1 (ja) 2008-01-31
CN1806403A (zh) 2006-07-19
US20070093212A1 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
WO2005088868A1 (ja) 電波伝搬特性推定システム及びその方法並びにプログラム
US8131312B2 (en) Method and system for construction of radio environment model
CN103856272B (zh) Mimo无线终端的无线性能测试方法
Rautiainen et al. Verifying path loss and delay spread predictions of a 3D ray tracing propagation model in urban environment
KR20060047566A (ko) 임의의 장소에서 액세스 포인트에 대한 신호 세기 모델을발생하는 방법 및 장치
Hoppe et al. Advanced ray‐optical wave propagation modelling for urban and indoor scenarios including wideband properties
JP2010147519A (ja) 無線通信システム
Nurminen et al. Statistical path loss parameter estimation and positioning using RSS measurements
Aomumpai et al. Optimal placement of reference nodes for wireless indoor positioning systems
Liechty Path loss measurements and model analysis of a 2.4 GHz wireless network in an outdoor environment
Triki et al. Mobile terminal positioning via power delay profile fingerprinting: Reproducible validation simulations
Yeong et al. Indoor WLAN monitoring and planning using empirical and theoretical propagation models
Stéphan et al. Increased reliability of outdoor millimeter-wave link simulations by leveraging lidar point cloud
Lai et al. On the use of an intelligent ray launching for indoor scenarios
Xu et al. Performance analysis for matched-field source localization: Simulations and experimental results
Poutanen et al. Development of measurement-based ray tracer for multi-link double directional propagation parameters
US8436773B2 (en) Method for leveraging diversity for enhanced location determination
JP2005229453A (ja) 伝搬モデルをチューニングする方法および装置
CN115173962A (zh) 面向典型场景的v2x信道模型交叉测试验证方法
CN102638810A (zh) 基于多维信道分量功率谱密度的信道建模仿真平台
Ryzhov Robust Outdoor Positioning via Ray Tracing
Fugen et al. Verification of 3D ray-tracing with non-directional and directional measurements in urban macrocellular environments
Nicolás et al. Investigation of diffraction effects in GNSS using ray tracing channel modelling: Preliminary results
Vuokko et al. Analysis of propagation mechanisms based on direction-of-arrival measurements in urban environments at 2 GHz frequency range
Fugen et al. A 3-D ray tracing model for macrocell urban environments and its verification with measurements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006500612

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007093212

Country of ref document: US

Ref document number: 10556128

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005726704

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005800450X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005726704

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10556128

Country of ref document: US