WO2005088823A1 - 圧電アクチュエータ駆動装置、電子機器、その駆動方法、その駆動制御プログラム、そのプログラムを記録した記録媒体 - Google Patents

圧電アクチュエータ駆動装置、電子機器、その駆動方法、その駆動制御プログラム、そのプログラムを記録した記録媒体 Download PDF

Info

Publication number
WO2005088823A1
WO2005088823A1 PCT/JP2005/004768 JP2005004768W WO2005088823A1 WO 2005088823 A1 WO2005088823 A1 WO 2005088823A1 JP 2005004768 W JP2005004768 W JP 2005004768W WO 2005088823 A1 WO2005088823 A1 WO 2005088823A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
driving
piezoelectric actuator
frequency
voltage
Prior art date
Application number
PCT/JP2005/004768
Other languages
English (en)
French (fr)
Inventor
Yutaka Yamazaki
Takashi Kawaguchi
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP2005518821A priority Critical patent/JP4192949B2/ja
Priority to EP05726628A priority patent/EP1739820B1/en
Priority to DE602005014762T priority patent/DE602005014762D1/de
Priority to CN2005800015608A priority patent/CN1906843B/zh
Publication of WO2005088823A1 publication Critical patent/WO2005088823A1/ja

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/12Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by piezoelectric means; driven by magneto-strictive means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators

Definitions

  • Piezoelectric actuator drive device electronic device, drive method thereof, drive control program thereof, and recording medium storing the program
  • the present invention relates to a piezoelectric actuator driving device, an electronic device, a driving method for an electronic device, a drive control program for an electronic device, and a recording medium on which the program is recorded.
  • Piezoelectric elements are excellent in conversion efficiency from electric energy to mechanical energy and responsiveness. Therefore, in recent years, various piezoelectric actuators utilizing the piezoelectric effect of a piezoelectric element have been developed.
  • the piezoelectric actuator mainly includes a vibrating body having a piezoelectric element as a main component.
  • the vibrating body is formed by a plate-shaped reinforcing plate having a protruding portion at one end in contact with a driven body, and a reinforcing member having the same shape.
  • Some include piezoelectric elements attached to both sides of a plate, drive electrodes provided on the upper surfaces of these piezoelectric elements, and detection electrodes that are electrically insulated from the drive electrodes. Then, a predetermined AC voltage is applied to the driving electrodes of the vibrating body, and the vibrating body is excited by longitudinal vibration that expands and contracts in the longitudinal direction thereof.
  • a device for driving a piezoelectric actuator to be induced is known (for example, see Patent Document 1).
  • the piezoelectric actuator rotates so that the protrusions of the vibrating body follow an elliptical trajectory, and drives the driven body that comes into contact with the protrusions.
  • a predetermined longitudinal vibration and bending vibration are generated by applying an AC voltage having an optimal design driving frequency to the vibrating body of the piezoelectric actuator by applying a printing force tl.
  • the drive device detects a detection signal from the detection electrode provided on the piezoelectric element and implements feedback control for adjusting the drive frequency of the AC voltage applied to the drive electrode based on the detection signal. Then [0004] Specifically, the phase difference between the phase of the AC voltage applied to the driving electrode and the phase of the detection signal detected from the detection electrode, or the phase difference between the detection signals detected from the plurality of detection electrodes. Is known to depend on the drive frequency of the AC voltage applied to the drive electrode. Therefore, in this drive device, the above-described phase difference corresponding to the optimal driving frequency in the design of the piezoelectric actuator is set in advance as a target phase difference, and the detected phase difference is set to the preset target phase difference.
  • the drive frequency of the AC voltage applied to the drive electrode is adjusted so as to approach.
  • the drive frequency of the drive signal is set to the initial value when the startup of the piezoelectric actuator has failed or an abnormal drive state is detected.
  • a method of applying a drive signal while sequentially changing (sweeping) the drive frequency from this initial value until reaching an optimum drive frequency is known (for example, see Patent Document 2).
  • the drive frequency of the drive signal can be matched to the optimum drive frequency.
  • Patent Document 1 International Publication No. 02Z078165 pamphlet
  • Patent Document 2 JP-A-6-6990
  • An object of the present invention is to provide a piezoelectric actuator driving device, an electronic device, a driving method thereof, a driving control program thereof, and a recording recording the program, which are capable of optimizing a driving signal quickly and with power saving. To provide a medium. Means for solving the problem
  • a drive device for a piezoelectric actuator of the present invention is a drive device for a piezoelectric actuator that drives a piezoelectric actuator having a vibrating body that is vibrated when a drive signal having a predetermined drive frequency is applied to a piezoelectric element.
  • a driving unit that supplies the driving signal to the piezoelectric element of the vibrating body, a vibration detecting unit that detects the vibration of the vibrating body and outputs a detected detection signal, and a vibration detected from the detection signal.
  • Drive frequency changing means for changing the drive frequency of the drive signal so that the vibration state of the body approaches the target vibration state, and voltage detection for detecting at least one of a power supply voltage and a drive voltage of the piezoelectric actuator.
  • Control means for re-executing the frequency change processing.
  • the reduction speed of at least one of the power supply voltage and the drive voltage of the piezoelectric actuator may be a speed calculated based on the time of the drive frequency change process start force, or the change process may be changed.
  • the speed calculated based on the number of times may be used. That is, the decrease speed means a speed calculated by dividing the amount of decrease in the power supply voltage or the drive voltage by the time or number of times required for the decrease.
  • the driving voltage of the piezoelectric actuator may be the same voltage as the power supply voltage directly supplied from the power supply, or may be the voltage boosted via a boosting circuit or the like provided between the power supply and the piezoelectric actuator. The voltage may be lowered through a circuit or the like.
  • the piezoelectric actuator is restarted by returning to the predetermined driving frequency and re-executing (re-sweep) the force driving frequency change.
  • the startup of the piezoelectric actuator fails, such as when the startup of the piezoelectric actuator fails, as in the conventional drive control method
  • the startup fails based on the rate of decrease in the power supply voltage or drive voltage. Can be determined immediately and the time required for this determination can be shortened, so that the abnormality detection power can quickly execute the process up to the optimization of the drive signal and reduce power consumption to save power. Can be realized.
  • the driving frequency of the driving signal may be deviated from the optimum driving frequency due to some factor (temperature, driving torque, or the like) during driving. Even in such a case, if the driving efficiency is greatly reduced due to the deviation of the optimum driving frequency, the power supply voltage and the driving voltage decrease at a higher rate, and the sweep is performed again based on the decreasing speed. The piezo actuator is restarted and its drive signal can be matched to the optimal drive frequency.
  • the reference decreasing speed is set based on the required start-up time of the piezoelectric actuator, and the control unit controls the start of driving of the piezoelectric actuator.
  • the driving frequency changing means executes the driving frequency changing process based on a decreasing speed of at least one of the power supply voltage and the driving voltage of the piezoelectric actuator.
  • the required start-up time of the piezoelectric actuator means the time from when a driving signal is applied to the piezoelectric actuator to when the driven body starts driving (rotation starts), and based on a test or an experiment. It can be set in advance.
  • start-up time is defined as the vibration characteristics of each piezoelectric actuator, Depending on the resistance acting from the body (rotational torque, etc.), the time required to reach the drive speed (rotational speed, etc.) required for design may be reached. Based on the startup time defined in this way, the reference reduction speed May be set. Further, in addition to these, a time until the driven body reaches a predetermined driving state (a rotation speed or the like) may be defined as a starting time.
  • the success or failure of the activation of the piezoelectric actuator can be determined with higher accuracy, and a re-sweep in the event of a failure in the activation. The time required until can be further reduced.
  • the start-up time of the piezoelectric actuator is set to the time before the drive of the drive signal is applied, the drive can be started even when the power supply voltage or drive voltage suddenly drops.
  • the drive signal is continuously applied at the frequency can be avoided, and the power consumption can be further suppressed.
  • the driving frequency changing means includes a phase difference detecting means for detecting a phase difference between the driving signal and the detection signal, and the phase difference is set in advance. And comparing means for comparing the driving frequency of the driving signal based on the comparison result so that the phase difference approaches the target phase difference.
  • the drive frequency can be changed quickly.
  • the dependence of the phase difference between the drive signal and the detection signal on the drive frequency of the drive voltage is known, and this dependence is large in the drive frequency region across the resonance frequency.
  • the force eg, near 180 °
  • a small phase difference eg, near 0 °
  • the control means performs the drive frequency change process using the drive frequency change process with a frequency higher than the frequency for realizing the target vibration state as the start frequency.
  • the means is started.
  • the frequency higher than the frequency for realizing the target vibration state means a frequency higher than the optimal driving frequency, and the high frequency is used as a starting frequency, and the frequency is reduced in a direction in which the starting frequency force also decreases.
  • the frequency can be set as appropriate as long as it can match the optimal driving frequency even if errors due to the influence of the use environment such as the characteristics of the piezoelectric actuator, circuit characteristics, temperature, etc. are taken into account. .
  • the power consumption is increased by driving the driving frequency higher than the frequency for realizing the target vibration state, lowering the starting frequency force, which is the frequency, and decreasing (sweeping) the force toward the frequency.
  • the optimum driving frequency can be matched. That is, it is known that the power consumption of the piezoelectric actuator is maximized at the resonance frequency, and that the driving efficiency is increased by driving at a driving frequency slightly higher than the resonance frequency. Therefore, when sweeping from a low frequency to a high frequency, the resonance frequency is passed.When sweeping from a high frequency to a low frequency, the resonance frequency is not passed, so the sweep was started from a high frequency. This can reduce power consumption.
  • the control means sets a time required until at least one of the power supply voltage and the driving voltage of the piezoelectric actuator falls below a preset driving stop voltage. It is preferable to have a timer for measuring, and if the time measured by the timer is shorter than a preset reference time, it is preferable to determine that the decrease speed is faster than the reference decrease speed.
  • the relationship between the time until the voltage falls below the drive stop voltage measured by the timer and the power supply voltage, the drive voltage, and the drive stop voltage detected by the voltage detection unit is determined.
  • the rate of decrease can be calculated immediately, and it can be quickly determined whether or not the force for restarting the piezoelectric actuator is required.
  • the driving frequency changing means has an up / down counter, and changes the driving frequency of the driving signal based on a counter value of the up / down counter.
  • the control means initializes a counter value of the up / down counter when it determines that at least one of the power supply voltage and the drive voltage of the voltage actuator is lower than the reference lowering speed. It is preferable to re-execute the drive frequency changing process.
  • the drive frequency changing means has an integration circuit, and changes the drive frequency of the drive signal based on an output value of the integration circuit.
  • the control means drives the power supply voltage and the drive of the piezoelectric actuator. When it is determined that at least one of the voltage decreasing speeds is faster than the reference decreasing speed, the output value of the integrating circuit may be initialized and the driving frequency changing process may be executed again.
  • the drive frequency of the drive signal is swept based on the counter value of the up / down counter and the output value of the integration circuit, and the counter value (output value) is initialized (reset), whereby the drive is performed.
  • the frequency can be returned to the predetermined driving frequency, which is the initial value, and the piezoelectric actuator can be restarted, so that the drive control can be easily performed and the control circuit and the like can have a simple structure.
  • an electronic apparatus includes any one of the piezoelectric actuator driving apparatuses described above, a piezoelectric actuator driven by the driving apparatus, and a power supply.
  • the electronic device of the present invention is an electronic timepiece provided with a date display mechanism driven by the piezoelectric actuator.
  • the same effect as described above can be achieved in driving the date display mechanism of the electronic timepiece, and the size and thickness of the electronic timepiece can be promoted by the piezoelectric actuator.
  • the date display mechanism driven by the piezoelectric actuator is not always driven, but only needs to be driven for a limited time in a day and a predetermined drive amount (rotation amount).
  • the drive control of the present invention which can appropriately drive the piezoelectric actuator at the start of driving, is suitable.
  • a portable electronic timepiece such as a wristwatch, since the size (capacity) of a battery or a secondary battery as a power supply is limited, the effect of suppressing power consumption is great.
  • the power supply voltage and the drive voltage of the piezoelectric actuator tend to decrease.Therefore, restarting the piezoelectric actuator based on the rate of voltage decrease ensures the drive of the piezoelectric actuator. Can be implemented.
  • a method of driving an electronic device provides a piezoelectric actuator having a vibrating body that vibrates when a driving signal having a predetermined driving frequency is applied to a piezoelectric element;
  • a driving frequency changing step of increasing or decreasing the frequency from a predetermined driving frequency and a voltage decreasing rate detected in the voltage detecting step if the decreasing rate is faster than a preset reference decreasing rate, the driving is performed. And a control step of re-executing the drive frequency changing step after returning the frequency to the predetermined drive frequency.
  • a piezoelectric actuator having a vibrating body which is vibrated when a driving signal having a predetermined driving frequency is given to the piezoelectric element, and the driving signal is applied to the piezoelectric element of the vibrating body.
  • a voltage detection step of detecting at least one of the voltages and a drive for increasing or decreasing a drive frequency of the drive signal by a predetermined drive frequency so that a vibration state of the vibrating body detected from the detection signal approaches a target vibration state.
  • the drop rate is set in advance. In the case where the driving frequency is higher than the reference decreasing speed, the driving frequency may be returned to the predetermined driving frequency, and the force may be re-executed.
  • the processes from the detection of an abnormality to the optimization of the driving signal can be executed quickly, and the power consumption can be reduced to save power. Electricity can be realized.
  • the drive control program for an electronic device of the present invention includes a piezoelectric actuator having a vibrating body that vibrates when a driving signal having a predetermined driving frequency is applied to the piezoelectric element;
  • a drive control program for an electronic device that drives and controls an electronic device including a power supply that supplies power to an element comprising: A driving unit that supplies the piezoelectric element of the vibrating body, a vibration detecting unit that detects the vibration of the vibrating body and outputs a detected signal, and a vibration state of the vibrating body detected from the detection signal is a target vibration state.
  • Drive frequency changing means for changing the drive frequency of the drive signal so as to approach, a voltage detecting means for detecting at least one of a power supply voltage and a drive voltage of the piezoelectric actuator, and a drive frequency of the drive signal being predetermined.
  • the driving frequency changing unit executes the driving frequency changing process of increasing or decreasing the driving frequency force, and based on the voltage decreasing speed detected by the voltage detecting unit, the decreasing speed is faster than a preset reference decreasing speed.
  • Control means for returning the driving frequency to the predetermined driving frequency and then re-executing the driving frequency changing process; Characterized in that it functions as at least control means.
  • a drive control program for the piezoelectric actuator a drive control program for a piezoelectric actuator having a vibrating body that vibrates when a drive signal having a predetermined drive frequency is applied to the piezoelectric element is used.
  • a driving means for supplying the driving signal to the piezoelectric element of the vibrating body; a vibration detecting means for detecting the vibration of the vibrating body and outputting the detected detection signal;
  • a drive frequency changing means for changing a drive frequency of the drive signal so that a vibration state of the vibrating body to be detected approaches a target vibration state, and a voltage for detecting at least one of a power supply voltage and a drive voltage of the piezoelectric actuator.
  • Detecting means for increasing or decreasing the drive frequency of the drive signal from a predetermined drive frequency;
  • the drive frequency changing means executes the dynamic frequency change processing, and based on the rate of decrease of the voltage detected by the voltage detection means, if the rate of decrease is faster than a preset reference decrease rate, the drive frequency is changed.
  • a program that functions as at least the control means of the control means for returning to the predetermined drive frequency and for re-executing the drive frequency change processing is adopted.
  • the computer is connected to a drive unit, a vibration detection unit, a phase difference detection unit, a drive frequency change unit, a voltage detection unit, and a part of the control unit, which are drive control units of the electronic device.
  • a drive unit a vibration detection unit, a phase difference detection unit, a drive frequency change unit, a voltage detection unit, and a part of the control unit, which are drive control units of the electronic device.
  • the process from the detection of an abnormality to the optimization of the drive signal can be executed quickly, and the power consumption can be reduced. Power consumption can be reduced by reducing power consumption.
  • the recording medium of the present invention is preferably a recording medium in which the drive control program for an electronic device or the drive control program for a piezoelectric actuator is recorded so as to be readable by a computer! /.
  • the program can be easily read by the computer and the program can be updated.
  • a piezoelectric actuator drive device an electronic device, a drive method thereof, a drive control program thereof, and a program thereof capable of optimizing a drive signal quickly and with low power consumption are recorded.
  • a recording medium can be provided.
  • FIG. 1 is a view showing a schematic configuration of an electronic device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a detailed configuration of a date display mechanism in the electronic device.
  • FIG. 3 is a diagram showing a vibration state of the piezoelectric actuator of the present invention.
  • FIG. 4 is a block diagram showing a drive control device for the piezoelectric actuator.
  • FIG. 5 is a flowchart for explaining a drive control method of the piezoelectric actuator.
  • FIG. 6 is a flowchart for explaining a part of the drive control method.
  • FIG. 7 is a timing chart showing the operation of the drive control device.
  • FIG. 8 is a diagram showing a schematic configuration of an electronic device according to a second embodiment of the present invention.
  • FIG. 9 is a timing chart showing an operation in the electronic device.
  • FIG. 10 is a perspective view showing an electronic device according to a third embodiment of the present invention.
  • FIG. 11 is a detailed configuration front view showing a digit display unit in the electronic device.
  • FIG. 1 is a diagram showing a schematic configuration of an electronic timepiece 1 as an electronic device in the present embodiment.
  • FIG. 2 is a plan view showing a detailed configuration of the date display mechanism 10 in the electronic timepiece 1.
  • an electronic timepiece 1 is a wristwatch including a hand 2 for displaying time and a steering motor 3 for driving the hand 2.
  • the driving of the stepping motor 3 is controlled by the oscillation circuit 4, the frequency dividing circuit 5, and the driving circuit 6.
  • the oscillation circuit 4 has a reference oscillation source made of a crystal oscillator, and outputs a reference pulse.
  • the frequency dividing circuit 5 receives the reference pulse output from the oscillation circuit 4 and generates a reference signal (for example, a 1 Hz signal) based on the reference pulse.
  • the drive circuit 6 generates a motor drive pulse for driving the stepping motor 3 based on the reference signal output from the frequency divider 5.
  • the date display mechanism 10 of the electronic timepiece 1 includes a piezoelectric actuator A and a drive control device 100 for controlling the driving of the piezoelectric actuator A.
  • the drive control device 100 operates with a switch 8 that detects and detects the time (for example, 24:00) of the electronic timepiece 1 as a trigger, and drives the date display mechanism 10.
  • the main part of the date display mechanism 10 includes a piezoelectric actuator A, a rotor 20 driven by the piezoelectric actuator A to rotate, and a rotation of the rotor 20 while reducing the rotation of the rotor 20.
  • the transmission is substantially constituted by a reduction gear train to be transmitted and a date wheel 50 rotated by a driving force transmitted via the reduction gear train.
  • the reduction gear train includes a date driving intermediate wheel 30 and a date driving wheel 40.
  • These piezoelectric actuators, the rotor 20, the date driving intermediate wheel 30, and the date driving wheel 40 are supported by the bottom plate 11.
  • Piezoelectric actuator A is flat
  • the vibrating body 12 has a strip-shaped vibrating body 12, and the vibrating body 12 is arranged such that the contact portion 13 at the tip thereof comes into contact with the outer peripheral surface of the rotor 20.
  • a disk-shaped dial 7 (Fig. 1) is provided above the date display mechanism 10, and a part of the outer periphery of the dial 7 is a window 7A for displaying a date.
  • the window 7A allows the date of the date indicator 50 to be displayed.
  • the secondary battery 9 is charged by the power of the generator 9A (FIG. 4), and supplies electric power to each circuit of the stepping motor 3, the piezoelectric actuator A, and the drive control device 100.
  • the generator 9A generates power using solar (solar) power or rotation of a rotating spindle, and charges the generated power to the secondary battery 9.
  • solar solar
  • AC power is generated as the generator 9A, which is desirably connected to the secondary battery 9 via a backflow prevention circuit.
  • a rotating weight spring or the like it is desirable to connect the secondary battery 9 via a rectifier circuit.
  • the power source is not limited to the secondary battery 9 charged by the generator 9A, but may be a general primary battery (for example, a lithium ion battery).
  • the date intermediate wheel 30 includes a large-diameter portion 31 and a small-diameter portion 32.
  • the small diameter portion 32 has a cylindrical shape slightly smaller in diameter than the large diameter portion 31, and a substantially square cutout 33 is formed on the outer peripheral surface thereof.
  • the small diameter portion 32 is fixed concentrically with the large diameter portion 31.
  • the gear 21 on the upper part of the rotor 20 is combined with the large diameter portion 31. Therefore, the date intermediate wheel 30 including the large-diameter portion 31 and the small-diameter portion 32 rotates in conjunction with the rotation of the rotor 20.
  • a plate panel 34 is provided on the bottom plate 11 on the side of the date turning intermediate wheel 30.
  • the base end of the plate panel 34 is fixed to the bottom plate 11, and the distal end 34A is bent in a substantially V shape. It is formed.
  • the tip 34A of the panel panel 34 is provided so as to be able to enter and exit the notch 33 of the intermediate date wheel 30.
  • a contact 35 is arranged at a position close to the panel panel 34. With this contact 35, the date turning intermediate wheel 30 rotates, and the tip 34A of the panel panel 34 enters the notch 33. Sometimes, it comes into contact with the panel panel 34.
  • a predetermined voltage is applied to the panel panel 34, and when it comes into contact with the contact 35, the voltage is also applied to the contact 35. It is. Therefore, by detecting the voltage of the contact 35, the date feeding state can be detected, and the rotation amount of the date wheel 50 for one day can be detected.
  • the amount of rotation of the date wheel 50 is not limited to that using the panel panel 34 or the contact 35, but may be a device that detects the rotation state of the rotor 20 or the date wheel intermediate wheel 30 and outputs a predetermined pulse signal.
  • various types of rotary encoders such as known photoreflectors, photointerrupters, and MR sensors can be used.
  • the date wheel 50 has a ring shape, and has an internal gear 51 formed on an inner peripheral surface thereof.
  • the date wheel 40 has a five-tooth gear, and meshes with the internal gear 51 of the date wheel 50. Further, a shaft 41 is provided at the center of the date driving wheel 40, and the shaft 41 is loosely inserted into a through hole 42 formed in the bottom plate 11. The through hole 42 is formed to be long along the rotation direction of the date indicator 50.
  • the date wheel 40 and the shaft 41 are urged rightward in FIG. 2 by a plate panel 43 fixed to the bottom plate 11. By the urging action of the plate panel 43, the swinging of the date wheel 50 is also prevented.
  • the vibrating body 12 of the piezoelectric actuator A is a rectangular plate surrounded by two long sides and two short sides.
  • the vibrating body 12 has a reinforcing plate made of stainless steel or the like, which has substantially the same shape as these piezoelectric elements and is thinner than the piezoelectric elements, is sandwiched between two rectangular and plate-shaped piezoelectric elements. It has a laminated structure.
  • Piezoelectric elements include lead zirconate titanate (PZT (trademark)), quartz, lithium niobate, barium titanate, lead titanate, lead metaniobate, polyvinylidene fluoride, lead zinc niobate, scandium niobate You can use various things such as lead!
  • the vibrating body 12 has a contact portion 13 at a substantially central portion in the width direction of one short side.
  • the contact portion 13 is obtained by a method such as cutting and forming a reinforcing plate, and a tip portion having a gentle curved surface protrudes from the piezoelectric element.
  • the vibrating body 12 keeps a posture in which the tip of the contact portion 13 contacts the outer peripheral surface of the rotor 20.
  • the supporting member 14 and the urging member 15 are provided on the piezoelectric actuator A.
  • the support member 14 of the piezoelectric actuator A is formed integrally with the reinforcing plate by a method such as cutting and forming the reinforcing plate.
  • the support member 14 is an L-shaped member, The vertical portion protrudes vertically from substantially the center of one long side, and the horizontal portion extends toward the rotor 20 side in parallel with the long side of the tip force of the vertical portion.
  • a pin protruding from the bottom plate 11 penetrates the end of the horizontal portion opposite to the vertical portion, and the support member 14 and the vibrating body 12 fixed to the support member 14 are rotatable around the pin as a rotation axis. is there.
  • One end of an urging member 15 is engaged with substantially the center of the horizontal portion of the support member 14.
  • a pin projecting from the bottom plate 11 penetrates a substantially central portion of the urging member 15, and the urging member 15 is rotatable around the pin as a rotation axis.
  • the end of the biasing member 15 opposite to the support member 14 is engaged with the bottom plate 11. By changing the position of this end, the contact portion 13 of the vibrating body 12 is moved to the outer circumferential surface of the rotor 20. The pressure applied to the can be adjusted.
  • the vibrating body 12 of the piezoelectric actuator A is driven by the drive control device 100 to apply a drive signal of a predetermined frequency to the piezoelectric element, and the longitudinal vibration in the first vibration mode and the longitudinal vibration
  • the bending vibration which is the second vibration mode, is induced by the longitudinal vibration, and the contact portion 13 moves in an elliptical orbit in a plane including the plate surface.
  • the outer peripheral surface of the rotor 20 is hit by the contact portion 13 of the vibrating body 12, and is driven to rotate clockwise as indicated by an arrow in FIG.
  • the rotation of the rotor 20 is transmitted to the date driving wheel 40 via the date driving intermediate wheel 30, and the date driving wheel 40 rotates the date wheel 50 clockwise.
  • the transmission of force from the vibrating body 12 to the rotor 20, the rotor 20 to the reduction gear train (the date dial intermediate wheel 30 and the date wheel 40), and the transmission of force from the reduction gear train to the date wheel 50 This is the transmission of force in the direction parallel to the bottom plate 11 surface.
  • the vibrating body 12 and the rotor 20 are arranged in the same plane on which coils and rotors are stacked in the thickness direction like a stepping motor, and the date display mechanism 10 can be thinned. Further, since the date display mechanism 10 can be made thin, the entire electronic timepiece 1 can be made thin.
  • FIG. 3 is a diagram showing the relationship between the driving frequency of the driving voltage signal and the vibration state of the vibrating body 12 (the phase difference between the detection signal and the driving voltage signal, the power consumption of the piezoelectric actuator A, and the driving efficiency).
  • the detection signal is a vibration signal provided on the piezoelectric element of the vibrating body 12.
  • the phase difference indicated by the solid line and the power consumption indicated by the broken line decrease with an increase in the driving frequency of the driving voltage
  • the driving efficiency indicated by the dashed line indicates the specific driving frequency ( In the present embodiment, the signal has a peak at a frequency near 276 kHz).
  • the driving efficiency of the piezoelectric actuator A depends on the driving frequency of the driving voltage, and there is an optimal driving frequency (optimal driving frequency f0, frequency for realizing the target vibration state) with excellent driving efficiency.
  • optimal driving frequency optimal driving frequency f0,
  • the piezoelectric actuator A When the piezoelectric actuator A is driven at a drive frequency lower than the optimum drive frequency f0, the power consumption sharply increases, the drive efficiency drops remarkably, and the drive frequency deviates from the optimum drive frequency f0 (in the figure, At frequencies below 274kHz and above 276.5kHz, the drive efficiency is 0 (zero), meaning that the piezoelectric actuator A cannot be driven or can be driven but does not operate as designed.
  • the numerical values in the graph of FIG. 3 exemplify actual measurement values for a specific piezoelectric actuator A, and the driving frequency, phase difference, power consumption, driving efficiency, and the like of the driving voltage signal in the piezoelectric actuator A of the present invention. Is not limited.
  • the drive control device 100 of the present embodiment is mounted as a circuit on an IC chip, and based on the relationship between the vibration state of the vibrating body 12 and the drive frequency of the drive signal as described above, the optimum drive frequency fO Is set as the target phase difference, and the drive frequency of the drive voltage signal applied to the vibrating body 12 is changed so that the piezoelectric actuator A is feedback controlled so that the phase difference detected during driving approaches the target phase difference. I do. Further, when the piezoelectric actuator A is activated, the drive control device 100 sequentially reduces the frequency sufficiently higher than the optimum drive frequency fO and the frequency (initial frequency fmax) so that the drive frequency of the drive voltage signal becomes the optimum frequency fO. It also performs sweep control for matching.
  • FIG. 4 is a block diagram showing the drive control device 100 of the present embodiment.
  • a drive control device 100 that drives and controls the piezoelectric actuator A includes a driver 110 as a driving unit that sends a drive signal to the piezoelectric actuator A, a detection signal from the piezoelectric actuator A and a drive signal from the driver 110.
  • Driving drive signal by inputting drive signal A driving frequency changing means 120 for changing the frequency, a control means 130 for controlling the operation of the driving frequency changing means 120, and a voltage detecting circuit 140 as a voltage detecting means for detecting a power supply voltage supplied from the secondary battery 9. It has.
  • a CR transmission circuit 150 outputs a basic clock drive signal (CLK) of the electronic timepiece 1 to the drive frequency changing means 120 and the control means 130, and is the same as the transmission circuit 4.
  • CLK basic clock drive signal
  • the drive frequency changing means 120 includes first and second waveform shaping circuits 121 and 122, a phase difference DC conversion circuit 123 as phase difference detection means, a phase difference comparison circuit 124 as comparison means, An up-down counter 126, a DA conversion circuit 127, and a variable frequency oscillation circuit 128 are provided. That is, the driving frequency changing means 120 outputs the driving signal output from the driver 110 to the vibrating body 12 and the driving signal output from the vibration detecting electrode due to the vibration of the vibrating body 12 as a result of applying the driving signal to the driving electrode of the vibrating body 12.
  • Detection signal the phase difference between these drive signals and the detection signal is detected, and the detected phase difference is compared with a target phase difference set based on the optimum drive frequency f0.
  • the drive frequency of the drive signal is changed based on the result, and the changed drive frequency signal is output to the driver 110.
  • the driver 110 is a circuit that is electrically connected to the driving electrode of the vibrating body 12, amplifies the output signal output from the variable frequency oscillation circuit 128, and applies the driving signal to the driving electrode of the vibrating body 12.
  • the first and second waveform shaping circuits 121 and 122 are electrically connected to the driver 110 and the vibration detection electrodes of the vibrating body 12, respectively, and drive signals output from the driver 110 and the vibration detection electrodes. This is a circuit that receives the output detection signal, shapes the waveforms of the drive signal and the detection signal, and outputs the shaped drive signal and the detection signal to the phase difference DC conversion circuit 123.
  • the phase difference DC conversion circuit 123 is a circuit that outputs a signal corresponding to the phase difference between the drive signal and the detection signal shaped by the waveform shaping circuits 121 and 122.
  • the phase difference DC conversion circuit 123 includes a phase difference detection unit (not shown) and an average voltage conversion unit.
  • the phase difference detection section generates a phase difference signal having a pulse width corresponding to the phase difference between the drive signal and the detection signal, and outputs this phase difference signal to the average voltage conversion section.
  • the average voltage converter averages the output phase difference signal and outputs the phase difference between the drive signal and the detection signal. Is output to the phase difference comparison circuit 124.
  • the phase difference comparison circuit 124 calculates a voltage value of the phase difference signal output from the phase difference DC conversion circuit 123 and a comparison voltage value corresponding to the target phase difference 125 set based on the optimal driving frequency f0. And outputs comparison information as a comparison result to the up / down counter 126.
  • the phase difference comparison circuit 124 includes, for example, a comparator and the like, and outputs a high-level signal (H) as comparison information to the up / down counter 126 when the voltage value of the phase difference signal is equal to or less than the comparison voltage value. I do.
  • a low-level signal (L) as comparison information is output to the up / down counter 126.
  • the up / down counter 126 is a circuit that causes the variable frequency oscillation circuit 128 to change the drive frequency of the drive signal based on the comparison information (H or L signal) output from the phase difference comparison circuit 124. , And two AND gates (not shown).
  • the AND gate inputs the signal (H or L) of the comparison information output from the phase difference comparison circuit 124 and the CLK signal transmitted from the CR transmission circuit 150, and according to the input timing of the CLK signal, If the comparison information is a high-level signal (H), an up-count input is performed. If the comparison information is a single-level signal (L), a down-count input is performed.
  • the up / down counter 126 is composed of, for example, a 12-bit counter or the like. The counter value is increased or decreased by an up-count input or a down-count input from an AND gate, and the 12-bit counter value is converted into a DZA conversion circuit. Output to 127.
  • a frequency control voltage value according to the counter value of the up / down counter 126 is set internally.
  • the DZA conversion circuit 127 outputs a frequency control voltage signal corresponding to a frequency control voltage value corresponding to the counter value to the variable frequency oscillation circuit 128 .
  • the variable frequency oscillation circuit 128 oscillates at a frequency corresponding to the frequency control voltage signal output from the DZA conversion circuit 127, and outputs the signal to the driver 110.
  • the driver 110 has a driving frequency corresponding to the output signal output from the variable frequency oscillation circuit 128.
  • a drive signal is applied to the drive electrode of the vibrator 12.
  • the control means 130 controls the drive frequency change processing of the drive signal by the drive frequency change means 120 based on the power supply voltage detected by the voltage detection circuit 140. That is, the control means 130 performs two types of control, that is, sweep control in a starting step of the piezoelectric actuator A, which will be described later, and intermittent drive control of the piezoelectric actuator A.
  • the control means 130 includes a control circuit 131 and a timer 132.
  • the timer 132 receives the CLK signal transmitted from the CR transmission circuit 150 and outputs time information to the control circuit 131 according to the CLK signal.
  • the control circuit 131 outputs a command to reset the time information to the timer 132 during the sweep control or the intermittent drive control.
  • a power supply voltage signal from the voltage detection circuit 140 is input to the control circuit 131, and the control circuit 131 detects the power supply voltage value of the secondary battery 9 based on the power supply voltage signal.
  • control circuit 131 outputs a control signal to up / down counter 126 or driver 110 based on the power supply voltage signal from voltage detection circuit 140 and the time information from timer 132. That is, when performing the sweep control of the piezoelectric actuator A, the control circuit 131 outputs an initialization signal to the up / down counter 126, sets the counter value to 0, and sets the drive frequency of the drive signal to the initial frequency fmax. Become Further, when performing the intermittent drive control of the piezoelectric actuator A, the control circuit 131 outputs a stop signal or a restart signal to the driver 110 and stops the output of the drive signal from the driver 110 to the piezoelectric actuator A. Or restart.
  • the control by the control circuit 131 is performed based on the power supply voltage. Specifically, when the piezoelectric actuator A is started, or when the power supply voltage decreases faster than the reference decrease rate, , Sweep control is performed. If the rate of decrease in the power supply voltage is slower than the reference rate of decrease after the activation of the piezoelectric actuator A, the intermittent drive control is performed.
  • the control circuit 131 operates with the drive start signal from the switch 8 as a trigger, and activates the piezoelectric actuator A based on the CLK signal transmitted from the CR transmission circuit 150.
  • the control circuit 131 receives a rotation detection signal from the panel panel 34 and the contact 35 as rotation detecting means of the date display mechanism 10, and based on the signal, the control circuit 13 1 sends a stop signal to the driver 110 to complete the driving of the piezoelectric actuator A.
  • the number of rotations of the date driving intermediate wheel 30 is detected from the number of contacts between the plate panel 34 of the date display mechanism 10 and the contact 35, and the detected number of rotations is input to the control circuit 131 as a rotation detection signal.
  • a predetermined drive amount of the piezoelectric actuator A that is, a rotation amount of the date wheel 50 for one day can be detected.
  • the amount of rotation of the date wheel 50 is not limited to the one using the panel panel 34 or the contact 35, but may be the one that detects the rotation state of the rotor 20 or the date wheel 30 and outputs a predetermined pulse signal.
  • Various types of rotary encoders such as known photo reflectors, photo interrupters, and MR sensors can be used.
  • the driving frequency changing means 120 may include an integrating circuit (not shown) in place of the up / down counter 126 so as to change the driving frequency of the driving signal based on the output value of the integrating circuit. It may be configured.
  • the integration circuit includes a capacitor, and outputs the amount of charge accumulated in the capacitor to the DZA conversion circuit 127 as an output value, thereby changing the drive frequency of the drive signal.
  • FIG. 5 is a flowchart for explaining a drive control method of the piezoelectric actuator A.
  • FIG. 6 is a flowchart for explaining a part of the drive control method.
  • FIG. 7 is a timing chart showing the operation of the drive control device 100.
  • the control circuit 131 that has received the drive start signal from the switch 8 outputs a drive start signal to the driver 110, and starts driving the piezoelectric actuator A (step Sl).
  • step S21 voltage detection process
  • step S21 voltage detection process
  • step S22 the control circuit 131 instructs the voltage detection circuit 140 to start measuring the power supply voltage
  • step S21 voltage detection process
  • step S22 the control circuit 131 outputs an initialization signal to the up / down counter 126, and The data value is set to 0 and the drive frequency of the drive signal is set to the initial frequency (predetermined drive frequency) fmax (step S22).
  • control circuit 131 determines whether or not the rate of decrease of the power supply voltage is faster than the reference decrease rate based on the time signal from timer 132 and the power supply voltage signal from voltage detection circuit 140.
  • the reference decrease speed is a decrease speed when the time required for the power supply voltage to decrease from the drive start voltage VI to the drive stop voltage V2 is the reference time t0.
  • the reference time t0 is set based on the activation time of the piezoelectric actuator A. For example, in the case of the piezoelectric actuator A whose activation time is about lmsec, the reference time t0 is set to about 2 msec. .
  • the time t during which the power supply voltage decreases to the drive stop voltage V2 is shorter than the reference time t0, it is determined that the power supply voltage decrease speed is faster than the reference decrease speed, and if the power supply voltage decrease time is longer than the reference time to. It is determined that the rate of decrease of the source voltage is faster than the reference rate of decrease.
  • step S23 control step
  • the rate of decrease of the power supply voltage is faster than the reference decrease rate ("Yes"), that is, as shown by the solid line in FIG. If the drive stop voltage V2 has dropped to the drive stop voltage V2 at time tl, which is shorter than the reference time t0, the process returns to step S22, and the drive frequency is swept again from the initial frequency fmax. That is, since the power supply voltage immediately decreases (drive efficiency is low), it is determined that the activation of the piezoelectric actuator A has failed, and the piezoelectric actuator A is restarted. When restarting, the piezoelectric actuator A is stopped for a predetermined time, and the apparatus waits until the power supply voltage returns to the drive start voltage VI.
  • the driving signal is applied from the driver 110, and the driving of the piezoelectric actuator A cannot be started in spite of the fact that the piezoelectric actuator A cannot be started, or during the sweep. Due to the variation in the detection signal, the drive frequency jumps over the optimal drive frequency f0! / ⁇ It is possible that the drive signal becomes lower in frequency than the optimal drive frequency f0. In such a case, since the driving efficiency is deteriorated, the power supply voltage is sharply reduced.
  • the reasons why the piezoelectric actuator A cannot start driving or the detection signal varies include noise due to static electricity, a temporary change in the vibration state of the piezoelectric actuator A due to impact, vibration, and the like.
  • step S23 the power supply voltage lowering rate is slower than the reference lowering rate ("No"), that is, the voltage is driven for a time t2 longer than the reference time t0 as shown by a dashed line in FIG. If the voltage drops to the stop voltage V2, it is determined that the activation of the piezoelectric actuator A has been successful, and the process proceeds to the next step S24.
  • No the reference lowering rate
  • step S24 the phase difference between the drive signal whose drive frequency is sequentially reduced and the detection signal is compared with the target phase difference. Until the phase difference reaches the target phase difference, ie, in step S24, " If the determination is "No,” the drive frequency means of step S25 sweeps the frequency at which the counter value of the up-down counter 126 increases and the drive frequency sequentially decreases corresponding to the counter value (change of the drive frequency). Step), and return to step S23 to judge again the power supply voltage decreasing speed.
  • step S24 when the phase difference has reached the target phase difference (“Yes”), that is, when the phase difference comparing circuit 124 determines that the phase difference has exceeded the target phase difference, Move to step S26.
  • step S26 the drive frequency of the drive signal is locked to the frequency (optimal drive frequency f0) at the time when the target phase difference is reached, and the process proceeds to step S3 in FIG. 5 to continue driving the piezoelectric actuator A.
  • the sweep control of the piezoelectric actuator A is executed by the above steps S21 to S26.
  • the piezoelectric actuator A which has been successfully started as described above and is driven near the optimum driving frequency f0, determines that the rotation speed of the date intermediate wheel 30 has reached the predetermined rotation speed in step S3 described later. It is completed when it exceeds.
  • step S3 the power supply voltage V is compared with the minimum operating voltage V2 in step S4, and the power supply voltage V is set to the minimum operating voltage.
  • step S4 the driver 110 continues to apply the drive signal until the rotation speed of the date intermediate wheel 30 exceeds the predetermined rotation speed, and the piezoelectric actuator A Keeps working. Then, as the piezoelectric actuator A continues to operate, the battery voltage V gradually decreases as shown in FIG.
  • step S4 When the control circuit 131 determines “No” in step S4, that is, when the power supply voltage V falls below the minimum operating voltage V2, the control circuit 131 outputs a drive stop signal for instructing a drive stop to the driver 110, The driving of the piezoelectric actuator A is stopped (step S5). Then, by stopping the driving of the piezoelectric actuator A, the battery voltage V gradually recovers as shown in FIG.
  • step S6 while the power supply voltage V is lower than the drive start voltage VI, that is, when it is determined “No” in step S6, the control circuit 131 drives the piezoelectric actuator A Will be stopped, and will wait until the power supply voltage V returns to the drive start voltage VI.
  • step S6 when the power supply voltage V exceeds the drive start voltage VI, that is, when it is determined to be “ ⁇ ” in step S6, the control circuit 131 outputs a drive restart signal for instructing drive restart to the driver 110, The driving of the piezoelectric actuator A is restarted (step S7). After the driving of the piezoelectric actuator A is resumed in this manner, the process returns to step S3, and the piezoelectric actuator A is intermittently driven until the rotation speed of the date intermediate wheel 30 exceeds a predetermined rotation speed.
  • the intermittent drive control is executed by repeating the drive stop and restart of the piezoelectric actuator A in steps S4 to S7. Also, during the intermittent driving, the phase difference between the detection signal and the driving signal is compared by the phase difference comparing circuit 124 of the driving frequency changing means 120, and the count value of the up / down counter 126 is changed. Feedback control is performed to adjust the drive frequency of the drive signal so that it does not deviate from the optimum drive frequency fO.
  • step S3 the control circuit 131 determines whether the rotation speed of the date dial intermediate wheel 30 has exceeded a predetermined rotation speed based on the rotation detection signal to which the rotation detection means force has also been input, that is, the date wheel 50 Judge whether the power has been rotated for one day. If the rotation speed of the date wheel 50 is insufficient, that is, if “No” is determined in step S10, the driving of the piezoelectric actuator A is continued, and the date wheel 50 If “Yes” is determined in S3, a drive stop signal is output to the driver 110 to stop driving the piezoelectric actuator A, and drive control is completed.
  • the piezoelectric actuator A In the above drive control, if the battery voltage V does not fall below the minimum operating voltage V2 before the rotation amount of the date wheel 50 reaches the predetermined amount, the piezoelectric actuator A also increases its drive start force until the drive is completed. It will be driven without being stopped.
  • the sweep control from step S21 to step S26 is not limited to being performed only when the piezoelectric actuator A is started, but may be performed during intermittent driving. That is, even if the drive frequency of the drive signal is matched with the optimum drive frequency fO by the sweep control at the time of starting, the drive frequency may be shifted from the optimum drive frequency fO force for some reason during driving.
  • the reason why the driving frequency of the piezoelectric actuator A deviates from the optimal driving frequency fO is, for example, noise due to static electricity, a temporary change in the vibration state of the piezoelectric actuator A due to impact, vibration, or the like. .
  • the control circuit 131 monitors the rate of decrease of the power supply voltage based on the time signal from the timer 132 and the power supply voltage signal from the voltage detection circuit 140. If it is faster, the sweep control from step S21 to S26 is executed again. In this way, the driving efficiency of the piezoelectric actuator A can be constantly stabilized.
  • the driving efficiency is deteriorated, for example, when the activation of the piezoelectric actuator A has failed, the deterioration of the driving efficiency is immediately determined based on the speed of decrease of the power supply voltage, so that the driving is immediately restarted. It can be started (re-swept) and the time required for this determination is shorter than before, so that the process from abnormality detection to drive signal optimization can be performed quickly and power consumption can be reduced. And power saving can be realized.
  • the success or failure of the activation of the piezoelectric actuator A can be determined with higher accuracy, and the time required for re-sweep when the activation fails can be further reduced.
  • the phase difference comparison circuit 124 can immediately determine whether the force for increasing the drive frequency should be reduced or not. Control can be performed quickly.
  • the power consumption is reduced by reducing the initial frequency fmax from the initial frequency fmax toward the lower frequency, that is, by sweeping from the higher frequency side where the power consumption is small. It is possible to match with the optimal drive frequency f0 while suppressing.
  • the drive frequency of the drive signal is swept based on the counter value of the up / down counter 126 (or the output value of the integration circuit), and the drive frequency is initialized by resetting the counter value.
  • the piezoelectric actuator A can be restarted by returning to the initial frequency fmax, so that sweep control can be easily performed, and the circuit of the drive control device 100 can have a simple structure.
  • the date display mechanism 10 by driving the date display mechanism 10 by the piezoelectric actuator A, high-efficiency driving can be realized in a small and thin configuration, and the electronic timepiece 1 can be downsized. Further, the date display mechanism 10 driven by the piezoelectric actuator A is not always driven, but is driven only for a limited time in one day and is driven only by a predetermined drive amount (rotation amount). Therefore, it is necessary to start the piezoelectric actuator A properly at the start of driving. Sweep control is suitable.
  • the configuration of the electronic timepiece 1 as the electronic device in the present embodiment is substantially the same as in the first embodiment, and a detailed description thereof will be omitted.
  • the electronic timepiece 1 according to the present embodiment has a relationship between the power supply 9 and the time display unit and the date display mechanism 10, and the relationship between the drive timing of the time display unit (hand 2) and the drive timing of the date display mechanism 10. There are features. This feature will be described in detail below.
  • FIG. 8 is a diagram illustrating a schematic configuration of an electronic timepiece 1 as an electronic device according to the present embodiment.
  • a large-capacity capacitor (secondary battery) 9 serving as a power supply of the electronic timepiece 1 includes a booster circuit 9B, an auxiliary capacitor 9C, and a constant voltage circuit 9D.
  • the large-capacity capacitor 9 is connected to the drive control circuit 100A of the date display mechanism 10 through the same control means 130 and voltage detection circuit (voltage detection means) 140 as those shown in FIG. It is connected to the. Then, the basic clock drive signal from the transmission circuit 4 is input to the timer 132 of the control means 130.
  • the power supply voltage charged in the large-capacitance capacitor 9 is boosted by the booster circuit 9B, and the auxiliary capacitor 9C is charged and applied to the drive unit of the time display unit, thereby providing a stepping motor.
  • a stable drive voltage can be supplied to 3 and the movement of the pointer 2 can be stabilized.
  • the drive control method of the piezoelectric actuator A controls the drive of the piezoelectric actuator A at an operation timing such that the loads do not overlap according to a load other than the piezoelectric actuator A in the electronic timepiece 1. is there.
  • the loads other than the piezoelectric actuator A in the electronic timepiece 1 include a driving pulse for the stepping motor 3 in the time display section, a driving pulse for an alarm or a buzzer, a driving pulse for the vibration motor, and a moving member such as the pointer 2.
  • a driving pulse for the stepping motor 3 in the time display section a driving pulse for an alarm or a buzzer
  • a driving pulse for the vibration motor a driving pulse for the vibration motor
  • a moving member such as the pointer 2.
  • a device having a large load (heavy load) on a power supply voltage such as a drive pulse of a light emitting diode.
  • FIG. 9 is a timing chart showing the operation of the electronic timepiece 1.
  • the stepping motor 3 (second motor) is driven by the drive pulse D1 based on the 1 Hz reference signal from the frequency divider 5, the voltage drop occurs at 1-second intervals. awake. If the piezoelectric actuator A is to be started at the timing when such a voltage drop occurs, it is determined that the power supply voltage has dropped even though the actual power supply voltage has not dropped, and the drive frequency changing means The drive frequency change by 120 is frequently performed. For this reason, in the drive control method of the present embodiment, the detection timing D3 of the voltage drop by the voltage detection circuit 140 is based on the basic clock drive signal from the transmission circuit 4 and the drive pulse D1 of the stepping motor 3 (second motor). It is set to deviate from the timing.
  • voltage detection is performed by the voltage detection circuit 140 during the 1 Hz reference signal interval (approximately 1 second), and the voltage detection is performed immediately before and after the drive pulse of the stepping motor 3 is output. Is not executed. Then, the drive timing D2 of the piezoelectric actuator A is also set so as to deviate from the timing of the drive pulse D1 of the stepping motor 3, similarly to the detection timing D3.
  • the voltage drop detection timing D3 is shifted from the timing at which the drive with a large load on the power supply voltage is executed (the timing of the drive pulse D1).
  • the effects of such heavy loads can be avoided, and the power supply voltage is not
  • the drive frequency of the piezoelectric actuator A from being unnecessarily changed even though it is operating normally. Therefore, in the electronic timepiece 1, the movement of the hands of the hands 2 can be stabilized, and unnecessary power consumption can be prevented to realize further power saving.
  • the present embodiment differs from the first and second embodiments in that the drive control device 100 (drive control circuit 100A) is applied to a portable electronic device, but the configuration of the drive device of the piezoelectric actuator is as described above. Same as any of the embodiments.
  • the same components as those of the above embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the electronic device is a non-contact IC card 200 having a payment function
  • the IC card 200 is provided with a piezoelectric actuator A and a driving device 210.
  • FIG. 10 is an external perspective view of the non-contact type IC card 200.
  • a balance display counter 201 for displaying the balance is provided on the front side of the non-contact type IC card 200.
  • the balance display counter 201 displays a four-digit balance, and as shown in FIG. 11, a balance display unit 202 for displaying upper two digits and a lower digit display unit 203 for displaying lower two digits. Have.
  • the upper digit display section 202 is connected to the piezoelectric actuator A via the rotor 20A, and is driven by the driving force of the rotor 20A.
  • the main part of the upper digit display portion 202 has a feed claw, a drive gear 202A that makes one rotation when the rotor 20A rotates lZn, and a first upper digit display wheel 202B that rotates one division by one rotation of the drive gear 202A.
  • a second upper digit display wheel 202C that rotates one division with one rotation of the first upper digit display vehicle 202B, and a fixing member 202D that fixes the first upper digit display vehicle 202B when the first upper digit display vehicle 202B is not rotating.
  • the second upper digit display vehicle 202C is also not shown for fixing the second upper digit display vehicle 202C.
  • a fixing member is provided.
  • the drive gear 202A makes one rotation when the rotor 20A rotates lZn. Then, the feed claw of the drive gear 202A is engaged with the feed gear portion of the first upper digit display wheel 202B, and the first upper digit display wheel 202B rotates by one division. Further, when the first upper digit display wheel 202B rotates and makes one revolution, the feed pin provided on the first upper digit display wheel 202B rotates the feed gear and rotates the feed gear of the second upper digit display wheel 202C. As a result, the second upper digit display vehicle 202C is rotated by one division.
  • the lower digit display unit 203 is connected to the piezoelectric actuator A via the rotor 20B, and is driven by the driving force of the rotor 20B.
  • the main part of the lower digit display section 203 includes a drive gear 203A having a feed claw and rotating once when the rotor 20B rotates by lZn, a first lower digit display wheel 203B rotating one division by one rotation of the drive gear 203A, A second lower-digit display wheel 203C that rotates by one division in one rotation of the first lower-digit display wheel 203B is provided.
  • the first lower-digit display wheel 203B has a feed gear portion that engages with the feed claw of the drive gear 203A, and rotates one graduation by one rotation of the drive gear 203A.
  • the first lower-digit display wheel 203B is provided with a feed pin.
  • the feed gear is rotated, and the second lower-digit display wheel 203C is rotated by one. Rotate by the scale.
  • the fixing members (not shown) of the first lower-digit display wheel 203B and the second lower-digit display wheel 203C are engaged with the respective feed gear portions during non-rotation, so that the first lower-digit display wheel 203B and the second lower-digit display wheel 203B are not rotated. Fix the lower digit display wheel 203C.
  • the actuator A is set so as to be driven synchronously by the driving device 210, and the driving device 210 corresponds to a settlement amount by an IC card chip (not shown).
  • the drive is performed by inputting a drive control signal to be performed.
  • the specific structure of the driving device 210 is the same as that of the driving control device 100 in each of the above-described embodiments, and thus the description is omitted.
  • the remaining balance can be displayed mechanically even on a thin portable device such as a non-contact IC card, and it can be displayed without the need for a power source except during driving. Therefore, display can be performed with low commercial power, and the display can be maintained even when the power supply is lost.
  • the electronic timepiece 1 as a wristwatch and the non-contact type IC card 200 have been described.
  • the electronic timepiece is not limited to a wristwatch, but may be a table clock or a wall clock.
  • the present invention is applicable not only to electronic watches and IC cards, but also to various other electronic devices, and is particularly suitable for portable electronic devices that require miniaturization.
  • examples of various electronic devices include a telephone, a mobile phone, a personal computer, a personal digital assistant (PDA), and a camera having a clock function.
  • the present invention can be applied to electronic devices such as cameras without a clock function, digital cameras, video cameras, and mobile phones with a camera function.
  • the driving means of the present invention can be used to drive a lens focusing mechanism, a zoom mechanism, an aperture adjustment mechanism, and the like. Further, the driving means of the present invention may be used for a driving mechanism of a meter pointer of a measuring instrument, a driving mechanism of a movable toy, or the like.
  • the piezoelectric actuator A which is a driving unit, is used to drive the date display mechanism of the electronic timepiece 1.
  • the present invention is not limited to this. It may be driven by means. In this way, by replacing the stepping motor 3 for driving the hands with the piezoelectric actuator A, the electronic timepiece can be made even thinner, and the piezoelectric actuator A is less affected by magnetism than the stepping motor. Accordingly, high magnetic resistance of the electronic timepiece can be achieved.
  • each means and the like in the drive control device 100 is constituted by hardware such as various logic circuit elements, but is not limited thereto, and a CPU (central processing unit) and a memory (storage device) It is also possible to adopt a configuration in which a computer provided with the above is provided in an electronic device, and a predetermined program or data (data stored in each storage unit) is incorporated in the computer to realize each means.
  • the programs and data may be stored in a memory such as a RAM or a ROM incorporated in the electronic device in advance.
  • a predetermined control program or data is stored in a memory in an electronic device by a communication means such as the Internet, a CD-ROM, a memory card, or the like. May be installed via the recording medium described above. Then, the CPU or the like may be operated by a program stored in the memory to realize each unit.
  • a memory card or a CD-ROM or the like may be directly inserted into the watch or portable device, or a device that reads these storage media may be used. It may be connected to a watch or mobile device externally.
  • a LAN cable, a telephone line, or the like may be connected to a watch or a portable device to supply and install a program or the like by communication, or a program may be supplied and installed by wireless.
  • the phase difference between the detection signal and the drive voltage signal is detected as an indication of the vibration state of the vibrating body 12, and based on a comparison between this phase difference and the target phase difference,
  • the drive frequency of the drive signal is changed, the present invention is not limited to this.
  • the voltage value or current value of the detection signal may be used to represent the vibration state of the vibrating body 12.
  • the voltage value or current value of the detection signal may be compared with the voltage value or current value of the drive signal. Just do it.
  • the target phase difference is not limited to a predetermined constant value, and may be configured to be appropriately changeable according to the vibration state of the vibrating body 12.
  • the high frequency and the high frequency power which are the initial frequencies fmax, also reduce the driving frequency.
  • the frequency may be increased.
  • the optimum frequency f0 at the time of the previous (previous day) drive may be stored, and the previous value may be used as an initial value.
  • the rate of decrease in the power supply voltage is calculated using the timer 132.
  • the present invention is not limited to this, and the number of frequency change processing during sweep control is counted using a counter or the like. Calculate the drop rate of the power supply voltage based on the value.
  • the present invention can be used as a piezoelectric actuator driving device, an electronic device, a driving method for an electronic device, a drive control program for an electronic device, and a recording medium on which the program is recorded.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 制御回路131は、電源電圧の低下速度が基準低下速度よりも速い場合、すなわち駆動効率が悪く電力消費量が多い駆動周波数で駆動している場合や、何らかの要因によって圧電アクチュエータAが起動できない場合には、所定駆動周波数に戻してから駆動周波数変更を再実行させる。従って、起動失敗を検出するまでの時間が長期化することなく、電源電圧の低下速度に基づいて起動失敗等が即座に判断でき、この判断に要する時間が短縮化されるので、異常の検知から駆動信号の最適化までの処理を迅速に実行することができるとともに、電力消費量を低減して省電力化が実現できる。

Description

明 細 書
圧電ァクチユエータ駆動装置、電子機器、その駆動方法、その駆動制御 プログラム、そのプログラムを記録した記録媒体
技術分野
[0001] 本発明は、圧電ァクチユエータ駆動装置、電子機器、電子機器の駆動方法、電子 機器の駆動制御プログラム、このプログラムを記録した記録媒体に関する。
背景技術
[0002] 圧電素子は、電気エネルギーから機械エネルギーへの変換効率や、応答性に優 れている。このため、近年、圧電素子の圧電効果を利用した各種の圧電ァクチユエ一 タが開発されている。
この圧電ァクチユエータとしては、圧電素子を有する振動体を主要構成要素とする ものであり、例えば、この振動体を、一端に被駆動体と当接する突起部を有する板状 の補強板と、この補強板の両面に貼設された圧電素子と、これら圧電素子の上面に 設けられた駆動用電極およびこの駆動用電極と電気的に絶縁する検出用電極とで 構成したものがある。そして、振動体の駆動用電極に所定の交流電圧を印加し、振 動体をその長手方向に伸縮させる縦振動で励振させるとともに、この縦振動の振動 方向と直交する方向に揺動する屈曲振動を誘発させる圧電ァクチユエータの駆動装 置が知られている (例えば、特許文献 1参照)。
[0003] このような駆動装置による駆動制御により、圧電ァクチユエータは、振動体の突起部 が楕円軌道を描くように回転し、該突起部と当接する被駆動体を駆動する。ここで、 被駆動体を高効率で駆動するためには、圧電ァクチユエータの振動体に設計上の 最適な駆動周波数を有する交流電圧を印力 tlして所定の縦振動および屈曲振動を生 じさせる必要がある。し力しながら、駆動装置の回路特性や温度、駆動トルク等の影 響により、常時設計上の最適な駆動周波数を印加することは困難である。このため、 この駆動装置は、圧電素子に設けられた検出用電極から検出信号を検出し、この検 出信号に基づいて駆動用電極に印加する交流電圧の駆動周波数を調整するフィー ドバック制御を実施して 、る。 [0004] 具体的に、駆動用電極に印加される交流電圧の位相と、検出用電極から検出され る検出信号の位相との位相差、または、複数の検出用電極から検出される検出信号 間の位相差が、駆動用電極に印加される交流電圧の駆動周波数に依存することが 知られている。そこで、この駆動装置では、圧電ァクチユエータの設計上の最適な駆 動周波数に相当する前述の位相差を、目標位相差として予め設定しておき、検出し た位相差が予め設定した目標位相差に近づくように、駆動用電極に印加する交流電 圧の駆動周波数を調整する。このようなフィードバック制御を実施することにより、圧 電ァクチユエータの振動体に最適な駆動周波数を有する交流電圧を印加することが 可能となり、圧電ァクチユエータを所定の縦振動および屈曲振動で励振させ、被駆 動体を高効率で駆動させることを可能として 、る。
[0005] しかし、特許文献 1の駆動装置では、検出用電極から検出される検出信号に基づ いてフィードバック制御を実施するため、何らかの要因で圧電ァクチユエータの駆動 開始 (起動)に失敗してしまった場合や、駆動中に異常な駆動状態となってしまった 場合などには、正常な検出信号が得られずに駆動周波数の調整が適切に実行でき ない可能性がある。
このような事態を回避して圧電ァクチユエータを駆動させることができる駆動制御方 法としては、圧電ァクチユエータの起動に失敗したことや異常な駆動状態を検知した 場合に、駆動信号の駆動周波数を初期値に戻し、この初期値から最適な駆動周波 数に達するまで、駆動周波数を逐次変更 (スイープ)しながら駆動信号を印加する方 法が知られている(例えば、特許文献 2参照)。
この駆動制御方法によれば、圧電ァクチユエータの起動時において、駆動しようと する被駆動体の駆動が検出されな力つた場合に、駆動周波数を初期値である高い 周波数に戻すとともに、低い周波数に向力つてスイープし直すことで、駆動信号の駆 動周波数を最適な駆動周波数に合致させることができるようになって 、る。
特許文献 1:国際公開第 02Z078165号パンフレット
特許文献 2:特開平 6— 6990号公報
発明の開示
発明が解決しょうとする課題 [0006] し力しながら、特許文献 2の駆動制御方法では、圧電ァクチユエータが正常に起動 された力否かの判断が、被駆動体の駆動を検出することで行われるため、被駆動体 の駆動が検出されるまでの間は、起動に失敗していたとしても、駆動効率が良くない (最適でない)駆動周波数の駆動信号を印加し続けなければならない。このため、圧 電ァクチユエータの起動に失敗した場合には、再スイープを開始するか否かを判断 するまでに時間が掛かるとともに、多くの電力を消費してしまうという問題がある。
[0007] 本発明の目的は、迅速かつ省電力に駆動信号の最適化を実施することができる圧 電ァクチユエータ駆動装置、電子機器、その駆動方法、その駆動制御プログラム、そ のプログラムを記録した記録媒体を提供することにある。 課題を解決するための手段
[0008] 本発明の圧電ァクチユエータの駆動装置は、圧電素子に所定の駆動周波数を有 する駆動信号が与えられることにより振動する振動体を有した圧電ァクチユエータを 駆動する圧電ァクチユエータの駆動装置であって、前記駆動信号を前記振動体の圧 電素子に供給する駆動手段と、前記振動体の振動を検出するとともに、検出した検 出信号を出力する振動検出手段と、前記検出信号から検知される振動体の振動状 態が目標振動状態に近づくように前記駆動信号の駆動周波数を変更させる駆動周 波数変更手段と、電源電圧および前記圧電ァクチユエータの駆動電圧のうちの少な くとも一方を検出する電圧検出手段と、前記駆動信号の駆動周波数を所定駆動周波 数から増加または減少させる駆動周波数変更処理を前記駆動周波数変更手段に実 行させるとともに、前記電圧検出手段で検出した電圧の低下速度に基づき、この低 下速度が予め設定した基準低下速度よりも速 、場合には、駆動周波数を前記所定 駆動周波数に戻してから前記駆動周波数変更処理を再実行させる制御手段とを備 えたことを特徴とする。
[0009] なお、電源電圧および圧電ァクチユエータの駆動電圧のうちの少なくとも一方の低 下速度としては、駆動周波数の変更処理開始時点力 の時間に基づいて算出される 速度でもよぐまた変更処理の変更回数に基づいて算出される速度でもよい。すなわ ち、低下速度とは、電源電圧や駆動電圧が低下する低下量を、その低下に要した時 間または回数で除して算出した速度を意味する。 また、圧電ァクチユエータの駆動電圧としては、電源から直接供給される電源電圧 と同一の電圧でもよぐ電源と圧電ァクチユエータとの間に設けた昇圧回路等を介し て昇圧された電圧でもよぐさらに降圧回路等を介して降圧された電圧でもよい。
[0010] このような本発明によれば、電源電圧や駆動電圧の低下速度が基準低下速度より も速 、場合、すなわち駆動効率が悪く電力消費量が多 、駆動周波数で駆動して 、 る場合や、何らかの要因によって起動できない場合には、所定駆動周波数に戻して 力 駆動周波数変更を再実行 (再スイープ)させることで、圧電ァクチユエータの再起 動が実行される。
従って、従来の駆動制御方法のように起動失敗を検出するまでの時間が長期化す ることなく、圧電ァクチユエータの起動に失敗した場合などにおいて、電源電圧や駆 動電圧の低下速度に基づいて起動失敗が即座に判断でき、この判断に要する時間 が短縮化されるので、異常の検知力も駆動信号の最適化までの処理を迅速に実行 することができるとともに、電力消費量を低減して省電力化が実現できる。
また、圧電ァクチユエータの起動に成功した場合でも、駆動中に何らかの要因(温 度や駆動トルク等)により、駆動信号の駆動周波数が最適な駆動周波数からずれて しまうことがある。このような場合でも、最適な駆動周波数力 ずれたことにより駆動効 率が大きく低下すれば、電源電圧や駆動電圧の低下速度が大きくなるため、この低 下速度に基づいて再スイープすることで、圧電ァクチユエータが再起動され、その駆 動信号を最適な駆動周波数に合致させることができる。
[0011] この際、本発明の圧電ァクチユエータの駆動装置では、前記基準低下速度は、前 記圧電ァクチユエータの所要の起動時間に基づいて設定されており、前記制御手段 は、前記圧電ァクチユエータの駆動開始時において、前記電源電圧および前記圧電 ァクチユエータの駆動電圧のうちの少なくとも一方の低下速度に基づく前記駆動周 波数変更処理を前記駆動周波数変更手段に実行させることが好ましい。
ここで、圧電ァクチユエータの所要の起動時間とは、圧電ァクチユエータに駆動信 号を印可して力も被駆動体が駆動開始 (回転開始)されるまでの時間を意味し、試験 や実験等に基づいて予め設定しておくことができる。
なお、起動時間の定義としては、個々の圧電ァクチユエータの振動特性や、被駆動 体から作用する抵抗(回転トルク等)に応じ、設計上必要とされる駆動速度(回転速度 等)に達するまでの時間であってもよぐこのように定義した起動時間に基づいて基準 低下速度を設定してもよい。さらに、これらの他に、被駆動体が所定の駆動状態(回 転速度等)に達するまでの時間を起動時間として定義してもよ 、。
このような構成によれば、圧電ァクチユエータの所要の起動時間に基づいて基準低 下速度を設定することで、圧電ァクチユエータの起動の成否がより高精度に判断でき 、起動に失敗した場合の再スイープまでに要する時間をさらに短縮ィ匕することができ る。
さらに、圧電ァクチユエータの起動時間を、駆動信号の印可力 被駆動体が駆動 開始されるまでの時間に設定しておけば、電源電圧や駆動電圧が急激に降下したよ うな場合にも、駆動開始されな 、周波数で駆動信号を印加し続けてしまう事態を回避 でき、電力の消費をさらに抑制することができる。
[0012] また、本発明の圧電ァクチユエータの駆動装置では、前記駆動周波数変更手段は 、前記駆動信号と前記検出信号との位相差を検出する位相差検出手段と、前記位 相差と予め設定された目標位相差とを比較する比較手段とを有し、この比較結果に 基づいて前記位相差が前記目標位相差に近づくように前記駆動信号の駆動周波数 を変更させることが好ま 、。
このような構成によれば、位相差検出手段で検出した位相差と目標位相差との比 較に基づいて、駆動周波数変更手段によってフィードバック制御が実施されるので、 迅速に駆動周波数を変更することができる。すなわち、前述したように、駆動信号お よび検出信号の位相差と駆動電圧の駆動周波数との依存性が知られており、この依 存性は、共振周波数をまたぐ駆動周波数領域において、大きな位相差 (例えば、 18 0° 近く)力も小さな位相差 (例えば、 0° 近く)まで変化するものとなっている。このた め、位相差と目標位相差との大小から、駆動周波数を増カロさせる力減少させるかが 即座に決定でき、制御を迅速ィ匕させることができる。
[0013] この際、本発明の圧電ァクチユエータの駆動装置では、前記制御手段は、目標振 動状態を実現させるための周波数よりも高い周波数を開始周波数として前記駆動周 波数変更処理を前記駆動周波数変更手段に開始させることが好ましい。 ここで、目標振動状態を実現させるための周波数よりも高い周波数とは、最適な駆 動周波数よりも高い周波数を意味し、この高い周波数を開始周波数として、この開始 周波数力も減少する方向に周波数をスイープさせた場合に、圧電ァクチユエータの 特性や回路特性、温度等の使用環境などの影響による誤差を考慮しても、最適な駆 動周波数に合致させることができる範囲で適宜設定可能な周波数である。
このような構成によれば、駆動周波数を目標振動状態を実現させるための周波数よ りも高 、周波数である開始周波数力も低 、周波数に向力つて減少させ (スイープさせ )ることで、電力消費を抑制しつつ、最適な駆動周波数に合致させることができる。す なわち、圧電ァクチユエータに関して、共振周波数において消費電力が極大になり、 この共振周波数よりも若干高い駆動周波数で駆動することで駆動効率が高くなること が知られている。このため、低い周波数から高い周波数に向かってスイープさせると 共振周波数を通過することになる力 高い周波数から低い周波数に向かってスィー プさせると共振周波数を通過しないので、高い周波数からスイープを開始させた方が 電源の消費を抑制することができる。
[0014] さらに、本発明の圧電ァクチユエータの駆動装置では、前記制御手段は、前記電 源電圧および前記圧電ァクチユエータの駆動電圧のうちの少なくとも一方が予め設 定した駆動停止電圧を下回るまでの時間を計測するタイマを有し、このタイマで計測 した時間が予め設定した基準時間よりも短ければ、前記低下速度が前記基準低下 速度よりも速 、と判断することが好ま U、。
このような構成によれば、タイマで計測した駆動停止電圧を下回るまでの時間と、電 圧検出手段で検出した電源電圧や駆動電圧および駆動停止電圧との関係から、電 源電圧や駆動電圧の低下速度を即座に算出することができ、圧電ァクチユエータを 再起動させる力否かを迅速に判断することができる。
[0015] また、本発明の圧電ァクチユエータの駆動装置では、前記駆動周波数変更手段は 、アップダウンカウンタを有し、このアップダウンカウンタのカウンタ値に基づいて前記 駆動信号の駆動周波数を変更させ、前記制御手段は、前記電源電圧および前記圧 電ァクチユエータの駆動電圧のうちの少なくとも一方の低下速度が前記基準低下速 度よりも速いと判断した場合には、前記アップダウンカウンタのカウンタ値を初期化し て前記駆動周波数変更処理を再実行させることが好ましい。
また、前記駆動周波数変更手段は、積分回路を有し、この積分回路の出力値に基 づいて前記駆動信号の駆動周波数を変更させ、前記制御手段は、前記電源電圧お よび前記圧電ァクチユエータの駆動電圧のうちの少なくとも一方の低下速度が前記 基準低下速度よりも速いと判断した場合には、前記積分回路の出力値を初期化して 前記駆動周波数変更処理を再実行させるようにしてもょ ヽ。
これらの構成によれば、アップダウンカウンタのカウンタ値や積分回路の出力値に 基づいて駆動信号の駆動周波数をスイープさせるとともに、カウンタ値(出力値)を初 期化 (リセット)することで、駆動周波数を初期値である所定駆動周波数に戻して圧電 ァクチユエータを再起動させることができ、駆動制御を容易に実施できるとともに、制 御回路等を簡単な構造にすることができる。
[0016] 一方、本発明の電子機器は、前記いずれかの圧電ァクチユエータの駆動装置と、こ れにより駆動される圧電ァクチユエータと、電源とを備えたことを特徴とする。
この際、本発明の電子機器は、前記圧電ァクチユエータによって駆動される日付表 示機構を備えた電子時計であることが望まし 、。
このような構成によれば、電子時計の日付表示機構の駆動において、前述と同様 の効果を奏することができるとともに、圧電ァクチユエータによる電子時計の小型化お よび薄型化を促進させることができる。そして、圧電ァクチユエータで駆動する日付表 示機構は、常に駆動され続けるものではなぐ 1日のうちで限られた時間だけ駆動さ れ、かつ所定の駆動量(回転量)だけ駆動されればよいため、駆動開始時に適切に 圧電ァクチユエータを駆動させることのできる本発明の駆動制御が適している。 また、腕時計などの携帯用電子時計では、電源である電池や二次電池の大きさ(容 量)が限られているため、電力消費を抑制できることの効果は大きい。特に、二次電 池の放電末期などでは、電源電圧や圧電ァクチユエータの駆動電圧が低下しやすく なっているため、電圧の低下速度に基づいて再起動させることで、圧電ァクチユエ一 タの駆動を確実に実施することができる。
[0017] 一方、本発明の電子機器の駆動方法は、圧電素子に所定の駆動周波数を有する 駆動信号が与えられることにより振動する振動体を有した圧電ァクチユエータと、前 記振動体の圧電素子に電力を供給する電源とを備えた電子機器を駆動する電子機 器の駆動方法であって、前記振動体の振動を検出するとともに、検出した検出信号 を出力する振動検出工程と、電源電圧および前記圧電ァクチユエータの駆動電圧の うちの少なくとも一方を検出する電圧検出工程と、前記検出信号から検知される振動 体の振動状態が目標振動状態に近づくように前記駆動信号の駆動周波数を所定駆 動周波数から増加または減少させる駆動周波数変更工程と、前記電圧検出工程で 検出した電圧の低下速度に基づき、この低下速度が予め設定した基準低下速度より も速 、場合には、駆動周波数を前記所定駆動周波数に戻してから前記駆動周波数 変更工程を再実行させる制御工程とを備えたことを特徴とする。
[0018] さらに、圧電ァクチユエータの駆動方法として、圧電素子に所定の駆動周波数を有 する駆動信号が与えられることにより振動する振動体を有した圧電ァクチユエータを 、前記振動体の圧電素子に前記駆動信号を供給する駆動手段を用いて駆動する圧 電ァクチユエータの駆動方法であって、前記振動体の振動を検出するとともに、検出 した検出信号を出力する振動検出工程と、電源電圧および前記圧電ァクチユエータ の駆動電圧のうちの少なくとも一方を検出する電圧検出工程と、前記検出信号から 検知される振動体の振動状態が目標振動状態に近づくように前記駆動信号の駆動 周波数を所定駆動周波数力 増加または減少させる駆動周波数変更工程と、前記 電圧検出工程で検出した電圧の低下速度に基づき、この低下速度が予め設定した 基準低下速度よりも速い場合には、駆動周波数を前記所定駆動周波数に戻して力 前記駆動周波数変更工程を再実行させる制御工程とを備えた方法を採用してもよい
[0019] このような本発明によれば、前述の駆動装置と同様に、異常の検知から駆動信号の 最適化までの処理を迅速に実行することができるとともに、電力消費量を低減して省 電力化が実現できる。
[0020] また、本発明の電子機器の駆動制御プログラムは、圧電素子に所定の駆動周波数 を有する駆動信号が与えられることにより振動する振動体を有した圧電ァクチユエ一 タと、前記振動体の圧電素子に電力を供給する電源とを備えた電子機器を駆動制御 する電子機器の駆動制御プログラムであって、コンピュータを、前記駆動信号を前記 振動体の圧電素子に供給する駆動手段と、前記振動体の振動を検出するとともに、 検出した検出信号を出力する振動検出手段と、前記検出信号から検知される振動体 の振動状態が目標振動状態に近づくように前記駆動信号の駆動周波数を変更させ る駆動周波数変更手段と、電源電圧および前記圧電ァクチユエータの駆動電圧のう ちの少なくとも一方を検出する電圧検出手段と、前記駆動信号の駆動周波数を所定 駆動周波数力 増加または減少させる駆動周波数変更処理を前記駆動周波数変更 手段に実行させるとともに、前記電圧検出手段で検出した電圧の低下速度に基づき 、この低下速度が予め設定した基準低下速度よりも速い場合には、駆動周波数を前 記所定駆動周波数に戻してから前記駆動周波数変更処理を再実行させる制御手段 とのうちの少なくとも制御手段として機能させることを特徴とする。
[0021] さらに、圧電ァクチユエータの駆動制御プログラムとして、圧電素子に所定の駆動 周波数を有する駆動信号が与えられることにより振動する振動体を有した圧電ァクチ ユエータを駆動制御する圧電ァクチユエータの駆動制御プログラムであって、コンビ ユータを、前記駆動信号を前記振動体の圧電素子に供給する駆動手段と、前記振 動体の振動を検出するとともに、検出した検出信号を出力する振動検出手段と、前 記検出信号力 検知される振動体の振動状態が目標振動状態に近づくように前記 駆動信号の駆動周波数を変更させる駆動周波数変更手段と、電源電圧および前記 圧電ァクチユエータの駆動電圧のうちの少なくとも一方を検出する電圧検出手段と、 前記駆動信号の駆動周波数を所定駆動周波数から増加または減少させる駆動周波 数変更処理を前記駆動周波数変更手段に実行させるとともに、前記電圧検出手段 で検出した電圧の低下速度に基づき、この低下速度が予め設定した基準低下速度 よりも速い場合には、駆動周波数を前記所定駆動周波数に戻して力 前記駆動周波 数変更処理を再実行させる制御手段とのうちの少なくとも制御手段として機能させる プログラムを採用してちょ 、。
[0022] このような本発明によれば、コンピュータを、電子機器の駆動制御手段である駆動 手段、振動検出手段、位相差検出手段、駆動周波数変更手段、電圧検出手段、制 御手段の一部または全部として機能させることで、前述の駆動装置と同様に、異常の 検知から駆動信号の最適化までの処理を迅速に実行することができるとともに、電力 消費量を低減して省電力化が実現できる。
[0023] 一方、本発明の記録媒体は、前記した電子機器の駆動制御プログラム、または圧 電ァクチユエータの駆動制御プログラムがコンピュータにて読み取り可能に記録され たものでであることが好まし!/、。
このような構成によれば、圧電ァクチユエータまたは電子機器の駆動制御プロダラ ムを変更、改良した際にも、そのプログラムをコンピュータに容易に読み取らせて、プ ログラムをアップデートすることができる。
発明の効果
[0024] 以上の本発明によれば、迅速かつ省電力に駆動信号の最適化を実施することがで きる圧電ァクチユエータ駆動装置、電子機器、その駆動方法、その駆動制御プロダラ ム、そのプログラムを記録した記録媒体を提供することができる。
図面の簡単な説明
[0025] [図 1]本発明の第 1実施形態に係る電子機器の概略構成を示す図。
[図 2]前記電子機器における日付表示機構の詳細な構成を示す平面図。
[図 3]本発明の圧電ァクチユエータにおける振動状態を示す図。
[図 4]前記圧電ァクチユエータの駆動制御装置を示すブロック図。
[図 5]前記圧電ァクチユエータの駆動制御方法を説明するためのフローチャート。
[図 6]前記駆動制御方法の一部を説明するためのフローチャート。
[図 7]前記駆動制御装置の動作を示すタイミングチャート。
[図 8]本発明の第 2実施形態に係る電子機器の概略構成を示す図。
[図 9]前記電子機器における動作を示すタイミングチャート。
[図 10]本発明の第 3実施形態に係る電子機器を示す斜視図。
[図 11]前記電子機器における桁表示部を示す詳細構成正面図。
符号の説明
[0026] 1· ··電子時計 (電子機器)、 9· ··二次電池 (電源)、 10…日付表示機構、 12· ··振動 体、 100, 100A…駆動制御装置 (駆動制御回路)、 110· ··ドライバ (駆動手段)、 12 0…駆動周波数変更手段、 123…位相差 DC変換回路 (位相差検出手段)、 124· ·· 位相差比較回路 (比較手段)、 126· ··アップダウンカウンタ、 130…制御手段、 131 …制御回路、 132…タイマ、 A…圧電ァクチユエータ (駆動手段)。
発明を実施するための最良の形態
[0027] [1.第 1実施形態]
以下、本発明の第 1実施形態を図面に基づいて説明する。
なお、後述する第 2実施形態以降では、以下に説明する第 1実施形態での構成部 品と同じ部品および同様な機能を有する部品には同一符号を付し、説明を簡単にあ るいは省略する。
[1-1.全体構成]
図 1は、本実施形態における電子機器としての電子時計 1の概略構成を示す図で ある。図 2は、電子時計 1における日付表示機構 10の詳細な構成を示す平面図であ る。
図 1に示すように、電子時計 1は、時刻を表示する指針 2と、この指針 2を駆動するス テツビングモータ 3とを備えた腕時計である。ステッピングモータ 3の駆動は、発振回 路 4、分周回路 5、および駆動回路 6により制御される。発振回路 4は、水晶振動子か らなる基準発振源を有し、基準パルスを出力するものである。分周回路 5は、発振回 路 4から出力された基準パルスを入力し、この基準パルスに基づ 、て基準信号 (例え ば 1Hzの信号)を生成する。駆動回路 6は、分周回路 5から出力された基準信号に基 づ 、て、ステッピングモータ 3を駆動するモータ駆動パルスを発生する。
電子時計 1の日付表示機構 10は、圧電ァクチユエータ Aと、この圧電ァクチユエ一 タ Aを駆動制御する駆動制御装置 100とを備えて 、る。この駆動制御装置 100は、 電子時計 1の時刻(例えば、 24時)を検出して開閉するスィッチ 8をトリガーとして作 動し、 日付表示機構 10を駆動するようになっている。
[0028] 図 2に示すように、日付表示機構 10の主要部は、圧電ァクチユエータ Aと、この圧 電ァクチユエータ Aによって回転駆動される駆動対象としてのロータ 20と、ロータ 20 の回転を減速しつつ伝達する減速輪列と、減速輪列を介して伝達される駆動力によ り回転する日車 50とから大略構成されている。減速輪列は、日回し中間車 30と日回 し車 40とを備えている。これらの圧電ァクチユエ一タ八、ロータ 20、日回し中間車 30 、および日回し車 40は、底板 11に支持されている。圧電ァクチユエータ Aは、扁平な 短冊状の振動体 12を有しており、この振動体 12は、その先端の当接部 13がロータ 2 0の外周面と当接するように配置されて 、る。
[0029] 日付表示機構 10の上方には、円盤状の文字板 7 (図 1)が設けられており、この文 字板 7の外周部の一部には日付を表示するための窓部 7Aが設けられ、窓部 7Aから 日車 50の日付を覼けるようになつている。また、底板 11の下方 (裏側)には、ステツピ ングモータ 3に接続されて指針 2を駆動する運針輪列や、電源としての二次電池 9等 が設けられている。二次電池 9は、発電機 9A (図 4)力もの充電を受け、ステッピング モータ 3や圧電ァクチユエータ A、駆動制御装置 100の各回路に電力を供給する。 発電機 9Aは、ソーラー (太陽光)発電や回転錘の回転を利用した発電を行い、発電 した電力を二次電池 9に充電するものである。ここで、発電機 9Aとして直流電力を発 電する太陽電池を用いた場合には、逆流防止回路を介して二次電池 9に接続するこ とが望ましぐ発電機 9Aとして交流電力を発電する回転錘ゃゼンマイ等を用いた場 合には、整流回路を介して二次電池 9に接続することが望ましい。
なお、電源は、発電機 9Aで充電される二次電池 9に限らず、一般的な一次電池( 例えば、リチウムイオン電池)でもよい。
[0030] 日回し中間車 30は、大径部 31と小径部 32とから構成されている。小径部 32は、大 径部 31よりも若干小径の円筒形であり、その外周面には、略正方形状の切欠部 33 が形成されている。この小径部 32は、大径部 31に対し、同心をなすように固着されて いる。大径部 31には、ロータ 20の上部の歯車 21が嚙合している。したがって、大径 部 31と小径部 32とからなる日回し中間車 30は、ロータ 20の回転に連動して回転す る。
日回し中間車 30の側方の底板 11には、板パネ 34が設けられており、この板パネ 3 4の基端部が底板 11に固定され、先端部 34Aが略 V字状に折り曲げられて形成され ている。板パネ 34の先端部 34Aは、 日回し中間車 30の切欠部 33に出入可能に設 けられている。板パネ 34に近接した位置には、接触子 35が配置されており、この接 触子 35は、日回し中間車 30が回転し、板パネ 34の先端部 34Aが切欠部 33に入り 込んだときに、板パネ 34と接触するようになっている。そして、板パネ 34には、所定 の電圧が印加されており、接触子 35に接触すると、その電圧が接触子 35にも印加さ れる。従って、接触子 35の電圧を検出することによって、日送り状態を検出でき、日 車 50の 1日分の回転量が検出できる。
なお、日車 50の回転量は、板パネ 34や接触子 35を用いたものに限らず、ロータ 2 0や日回し中間車 30の回転状態を検出して所定のパルス信号を出力するものなどが 利用でき、具体的には、公知のフォトリフレクタ、フォトインタラプタ、 MRセンサ等の各 種の回転ェンコーダ等が利用できる。
[0031] 日車 50は、リング状の形状をしており、その内周面に内歯車 51が形成されている。
日回し車 40は、五歯の歯車を有しており、 日車 50の内歯車 51に嚙合している。また 、 日回し車 40の中心には、シャフト 41が設けられており、このシャフト 41は、底板 11 に形成された貫通孔 42に遊挿されている。貫通孔 42は、日車 50の周回方向に沿つ て長く形成されている。そして、 日回し車 40およびシャフト 41は、底板 11に固定され た板パネ 43によって図 2の右上方向に付勢されている。この板パネ 43の付勢作用に よって日車 50の揺動も防止される。
[0032] 圧電ァクチユエータ Aの振動体 12は、二長辺と二短辺とにより囲まれた長方形状の 板である。また、振動体 12は、 2枚の長方形かつ板状の圧電素子の間に、これらの 圧電素子と略同形状であり、かつ圧電素子よりも肉厚の薄いステンレス鋼等の補強 板を挟んだ積層構造を有している。圧電素子としては、チタン酸ジルコニウム酸鉛 (P ZT (商標))、水晶、ニオブ酸リチウム、チタン酸バリウム、チタン酸鉛、メタニオブ酸鉛 、ポリフッ化ビ-リデン、亜鉛ニオブ酸鉛、スカンジウムニオブ酸鉛等の各種のものを 用!/、ることができる。
振動体 12は、一短辺の幅方向略中央部分に当接部 13を有している。この当接部 1 3は、補強板を切断成形する等の方法により得られたものであり、緩やかな曲面を持 つた先端部分を圧電素子力 突出させている。振動体 12は、この当接部 13の先端 をロータ 20の外周面に当接させる姿勢を保っている。振動体 12にこのような姿勢を 維持させるために、支持部材 14と付勢部材 15とが圧電ァクチユエータ Aに設けられ ている。
[0033] 圧電ァクチユエータ Aの支持部材 14は、補強板の切断成形等の方法により補強板 と一体形成されたものである。この支持部材 14は、 L字状の部材であり、振動体 12の 一長辺の略中央から垂直に突出した垂直部と、この垂直部の先端力 長辺に対して 平行にロータ 20側に向けて延びた水平部とからなる。垂直部とは反対側の水平部の 端部には、底板 11から突出したピンが貫通しており、このピンを回転軸として支持部 材 14およびこれに固定された振動体 12が回転可能である。支持部材 14の水平部 の略中央には、付勢部材 15の一端が係合されている。付勢部材 15は、その略中央 部分を底板 11から突出したピンが貫通しており、このピンを回転軸として回動可能で ある。また、支持部材 14と反対側の付勢部材 15の端部は、底板 11に係合されており 、この端部の位置を変えることにより振動体 12の当接部 13をロータ 20の外周面に押 し当てる圧力が調整可能になっている。
[0034] 以上の構成において、圧電ァクチユエータ Aの振動体 12は、駆動制御装置 100か ら所定の周波数の駆動信号が圧電素子に印加されることで第 1の振動モードである 縦振動と、この縦振動に誘発されて第 2の振動モードである屈曲振動とが発生し、そ の板面を含む平面内において当接部 13が楕円軌道を描!、て運動する。ロータ 20は 、この振動体 12の当接部 13によってその外周面が叩かれ、図 2中矢印で示すように 、時計回りに回転駆動される。このロータ 20の回転は、日回し中間車 30を介して日 回し車 40に伝達され、この日回し車 40が日車 50を時計回り方向に回転させる。この ような振動体 12からロータ 20、ロータ 20から減速輪列(日回し中間車 30および日回 し車 40)、減速輪列から日車 50への力の伝達は、いずれも振動体 12の底板 11面に 平行な方向の力の伝達である。このため、ステッピングモータのようにコイルやロータ を厚さ方向に積み重ねるのではなぐ同一平面内に振動体 12およびロータ 20を配 置し、 日付表示機構 10を薄型化できる。そして、日付表示機構 10を薄型にできるた め、電子時計 1全体を薄型にできる。
[0035] [1-2.圧電ァクチユエータ Aの駆動制御装置の構成]
先ず、駆動制御装置 100の構成を説明する前に、振動体 12の振動状態と印加さ れる駆動信号の駆動周波数との関係について、図 3に基づいて説明する。
図 3は、駆動電圧信号の駆動周波数に対する、振動体 12の振動状態 (検出信号と 駆動電圧信号との位相差、圧電ァクチユエータ Aの消費電力、および駆動効率)の 関係を示す図である。ここで、検出信号は、振動体 12の圧電素子に配置された振動 検出手段としての振動検出電極 (圧電素子)から得られる信号であり、振動体 12の振 動を表すものである。同図において、実線で示された位相差、および破線で示された 消費電力は、駆動電圧の駆動周波数の増加に伴って低下し、一点鎖線で示された 駆動効率は、特定の駆動周波数 (本実施形態では、 276kHz近傍の周波数)でピー クを有するようになつている。すなわち、圧電ァクチユエータ Aの駆動効率は、駆動電 圧の駆動周波数に依存し、駆動効率に優れた最適な駆動周波数 (最適駆動周波数 f0、目標振動状態を実現させるための周波数)が存在することが分力る。
そして、最適駆動周波数 f0よりも小さ 、駆動周波数で圧電ァクチユエータ Aを駆動 した場合には、消費電力が急激に増大し、駆動効率が著しく低下するとともに、最適 駆動周波数 f0から外れた(図中、 274kHz未満や 276. 5kHzを超える範囲の)周波 数では、駆動効率が 0 (ゼロ)、すなわち圧電ァクチユエータ Aが駆動できない、ある いは駆動できても設計通りに作動しな 、ことになる。
なお、図 3のグラフにおける数値は、特定の圧電ァクチユエータ Aに関する実測値 を例示したものであって、本発明の圧電ァクチユエータ Aにおける駆動電圧信号の 駆動周波数や、位相差、消費電力、駆動効率等を限定するものではない。
[0036] 次に、本実施形態の駆動制御装置について、図 4に基づいて説明する。
本実施形態の駆動制御装置 100は、 ICチップ上に回路として実装されたものであ つて、上述のような振動体 12の振動状態と駆動信号の駆動周波数との関係から、最 適駆動周波数 fOとなる位相差を目標位相差として設定し、駆動時に検出される位相 差が目標位相差に近づくように、振動体 12に印加する駆動電圧信号の駆動周波数 を変更して圧電ァクチユエータ Aをフィードバック制御する。また、駆動制御装置 100 は、圧電ァクチユエータ Aの起動時に最適駆動周波数 fOよりも十分に高 、周波数 (初 期周波数 fmax)力も順次周波数を減少させて、駆動電圧信号の駆動周波数を最適 周波数 fOに合致させるスイープ制御を実施するものでもある。
[0037] 図 4は、本実施形態の駆動制御装置 100を示すブロック図である。
図 4に示すように、圧電ァクチユエータ Aを駆動制御する駆動制御装置 100は、圧 電ァクチユエータ Aに駆動信号を送る駆動手段としてのドライバ 110と、圧電ァクチュ エータ Aからの検出信号とドライバ 110からの駆動信号を入力して駆動信号の駆動 周波数を変更させる駆動周波数変更手段 120と、駆動周波数変更手段 120の動作 を制御する制御手段 130と、二次電池 9から供給される電源電圧を検出する電圧検 出手段としての電圧検出回路 140とを備えている。また、図 4中、 CR発信回路 150は 、駆動周波数変更手段 120および制御手段 130に電子時計 1の基本時計駆動信号 (CLK)を出力するもので、前記発信回路 4と同一のものである。
[0038] 駆動周波数変更手段 120は、第 1および第 2の波形整形回路 121, 122と、位相差 検出手段としての位相差 DC変換回路 123と、比較手段としての位相差比較回路 12 4と、アップダウンカウンタ 126と、 DA変換回路 127と、可変周波数発振回路 128とを 備えている。すなわち、駆動周波数変更手段 120は、ドライバ 110から振動体 12に 出力される駆動信号と、この駆動信号を振動体 12の駆動電極に印加した結果、振動 体 12の振動により振動検出電極から出力される検出信号とを検出し、これらの駆動 信号と検出信号との位相差を検出するとともに、検出した位相差と最適駆動周波数 f 0に基づ 、て設定した目標位相差とを比較し、比較結果に基づ 、て駆動信号の駆動 周波数を変更し、この変更された駆動周波数信号をドライバ 110に出力するものであ る。ドライバ 110は、振動体 12の駆動電極と電気的に接続され、可変周波数発振回 路 128から出力される出力信号を増幅し、駆動信号を振動体 12の駆動電極に印加 する回路である。
[0039] 第 1および第 2の波形整形回路 121, 122は、それぞれドライバ 110および振動体 12の振動検出電極と電気的に接続され、ドライバ 110から出力される駆動信号、お よび振動検出電極から出力される検出信号を入力し、これらの駆動信号および検出 信号の波形を整形し、整形した駆動信号および検出信号を位相差 DC変換回路 12 3に出力する回路である。
位相差 DC変換回路 123は、波形整形回路 121, 122にて整形された駆動信号お よび検出信号の位相差に応じた信号を出力する回路である。この位相差 DC変換回 路 123は、図示しない位相差検出部と、平均電圧変換部とを備えている。位相差検 出部は、駆動信号および検出信号の位相差に相当するパルス幅の位相差信号を生 成し、この位相差信号を平均電圧変換部に出力する。平均電圧変換部は、位相差 検出部力 出力される位相差信号を平均化し、駆動信号および検出信号の位相差 に比例したレベルの位相差信号を位相差比較回路 124に出力する。
[0040] 位相差比較回路 124は、位相差 DC変換回路 123から出力される位相差信号の電 圧値と、最適駆動周波数 f0に基づいて設定された目標位相差 125に相当する比較 電圧値とを比較して、比較結果である比較情報をアップダウンカウンタ 126に出力す る。この位相差比較回路 124は、例えば、コンパレータ等力も構成され、位相差信号 の電圧値が比較電圧値以下である場合に、比較情報としてのハイレベルの信号 (H) をアップダウンカウンタ 126に出力する。また、位相差信号の電圧値が比較電圧値よ りも大きい場合に比較情報としてのローレベルの信号 (L)をアップダウンカウンタ 126 に出力する。これにより、ドライバ 110から出力される駆動信号の駆動周波数を設計 上の最適な駆動周波数 f0近傍にロックする駆動制御を実施する。
[0041] アップダウンカウンタ 126は、位相差比較回路 124から出力される比較情報 (Hまた は Lの信号)に基づいて、可変周波数発振回路 128に駆動信号の駆動周波数を変 更させる回路であり、図示しない 2つの ANDゲートを備えている。この ANDゲートは 、位相差比較回路 124から出力される比較情報の信号 (Hまたは L)と、 CR発信回路 150から発信される CLK信号とを入力し、この CLK信号の入力タイミングに応じて、 比較情報がハイレベルの信号 (H)であればアップカウント入力を実施し、比較情報 力 一レベルの信号 (L)であればダウンカウント入力を実施する。アップダウンカウン タ 126は、例えば、 12ビットのカウンタ等から構成されており、 ANDゲートからのアツ プカウント入力またはダウンカウント入力により、カウンタ値をアップあるいはダウンし、 12ビットのカウンタ値を DZA変換回路 127に出力する。
[0042] DZ A変換回路 127は、内部にアップダウンカウンタ 126のカウンタ値に応じた周 波数制御電圧値が設定されている。そして、この DZA変換回路 127は、アップダウ ンカウンタ 126から出力されるカウンタ値を入力すると、このカウンタ値に応じた周波 数制御電圧値に相当する周波数制御電圧信号を可変周波数発振回路 128に出力 する。
可変周波数発振回路 128は、 DZA変換回路 127から出力される周波数制御電圧 信号に応じた周波数で発振し、その信号をドライバ 110に出力する。そして、ドライバ 110は、可変周波数発振回路 128から出力される出力信号に応じた駆動周波数の 駆動信号を振動体 12の駆動電極に印加する。
[0043] 制御手段 130は、電圧検出回路 140で検出した電源電圧に基づいて、駆動周波 数変更手段 120による駆動信号の駆動周波数変更処理を制御する。すなわち、制 御手段 130は、後述する圧電ァクチユエータ Aの起動工程におけるスイープ制御と、 圧電ァクチユエータ Aの間欠駆動制御の二種類の制御を実施する。
この制御手段 130は、制御回路 131と、タイマ 132とを備えている。タイマ 132は、 C R発信回路 150から発信される CLK信号とを入力し、この CLK信号に応じて時間情 報を制御回路 131に出力する。制御回路 131は、スイープ制御中や間欠駆動制御 中に、時間情報をリセットする指令をタイマ 132に出力する。また、制御回路 131には 、電圧検出回路 140からの電源電圧信号が入力し、この電源電圧信号によって制御 回路 131は、二次電池 9の電源電圧値を検知する。
[0044] そして、制御回路 131は、電圧検出回路 140からの電源電圧信号およびタイマ 13 2からの時間情報に基づいて、アップダウンカウンタ 126またはドライバ 110に制御信 号を出力する。すなわち、圧電ァクチユエータ Aのスイープ制御を実施する際には、 制御回路 131は、アップダウンカウンタ 126に初期化信号を出力し、カウンタ値を 0に して駆動信号の駆動周波数を初期周波数 fmaxに初期化する。また、圧電ァクチユエ ータ Aの間欠駆動制御を実施する際には、制御回路 131は、ドライバ 110に停止信 号または再開信号を出力し、ドライバ 110から圧電ァクチユエータ Aへの駆動信号の 出力を停止または再開させる。
このような制御回路 131による制御は、電源電圧に基づいて実施されるもので、具 体的には、圧電ァクチユエータ Aの起動時、または電源電圧の低下速度が基準低下 速度よりも早い場合には、スイープ制御が実施される。そして、圧電ァクチユエータ A の起動後で、電源電圧の低下速度が基準低下速度よりも遅い場合には、間欠駆動 制御が実施される。
[0045] また、制御回路 131は、スィッチ 8からの駆動開始信号をトリガーとして作動し、 CR 発信回路 150から発信される CLK信に基づいて、圧電ァクチユエータ Aを起動させ る。また、制御回路 131には、前記日付表示機構 10の回転検出手段である板パネ 3 4および接触子 35からの回転検出信号が入力し、この信号に基づ 、て制御回路 13 1は、ドライバ 110に停止信号を送り、圧電ァクチユエータ Aの駆動を完了させるよう になっている。
すなわち、日付表示機構 10の板パネ 34と接触子 35との接触回数から、日回し中 間車 30の回転数が検出され、検出した回転数が回転検出信号として制御回路 131 に入力する。これにより、圧電ァクチユエータ Aの所定の駆動量、つまり日車 50の 1日 分の回転量が検出できる。なお、日車 50の回転量は、板パネ 34や接触子 35を用い たものに限らず、ロータ 20や日回し中間車 30の回転状態を検出して所定のパルス 信号を出力するものなどが利用でき、具体的には、公知のフォトリフレクタ、フォトイン タラプタ、 MRセンサ等の各種の回転エンコーダ等が利用できる。
[0046] なお、駆動周波数変更手段 120は、アップダウンカウンタ 126に替えて図示しない 積分回路を備えていてもよぐこの積分回路の出力値に基づいて駆動信号の駆動周 波数を変更させるように構成されてもよい。積分回路は、コンデンサを有して構成され 、このコンデンサに蓄積された電荷の量を出力値として DZA変換回路 127に出力 することで、駆動信号の駆動周波数が変更される。そして、駆動信号の駆動周波数 を初期化する場合には、制御回路 131からの指令によりコンデンサの電荷を放電し て、電荷力^の状態に対して設定した初期周波数 fmaxに初期化するようにすればよ い。
[0047] [1-3.圧電ァクチユエータ Aの駆動制御方法]
図 5は、圧電ァクチユエータ Aの駆動制御方法を説明するためのフローチャートで ある。図 6は、駆動制御方法の一部を説明するためのフローチャートである。図 7は、 駆動制御装置 100の動作を示すタイミングチャートである。
以下に、図 5— 7を参照して、上述した駆動制御装置 100による圧電ァクチユエータ Aの駆動方法を説明する。
スィッチ 8からの駆動開始信号を受けた制御回路 131は、駆動開始信号をドライバ 110に出力し、圧電ァクチユエータ Aの駆動を開始させる (ステップ Sl)。
[0048] 次に、図 6に示すステップ S2の起動工程において、制御回路 131は、電圧検出回 路 140に指令し、電源電圧の測定を開始させる (ステップ S21、電圧検出工程)。 そして、制御回路 131は、アップダウンカウンタ 126に初期化信号を出力し、カウン タ値を 0にして駆動信号の駆動周波数を初期周波数 (所定駆動周波数) fmaxにセット する(ステップ S 22)。
[0049] 続くステップ S23において、制御回路 131は、タイマ 132からの時間信号と、電圧 検出回路 140からの電源電圧信号とに基づいて、電源電圧の低下速度が基準低下 速度よりも速いか否かを判断する。ここで、基準低下速度は、図 7に示すように、駆動 開始電圧 VIから駆動停止電圧 V2まで電源電圧が低下するのに要する時間が基準 時間 t0の場合の低下速度である。ここで、基準時間 t0は、圧電ァクチユエータ Aの起 動時間に基づいて設定されており、例えば、起動時間が lmsec程度の圧電ァクチュ エータ Aの場合に、基準時間 t0は 2msec程度に設定されている。すなわち、電源電 圧が駆動停止電圧 V2まで低下する時間 tが、基準時間 t0よりも短い場合に電源電圧 の低下速度が基準低下速度よりも速いと判断され、基準時間 toよりも長い場合に電 源電圧の低下速度が基準低下速度よりも速いと判断される。
[0050] ステップ S23 (制御工程)にお 、て、電源電圧の低下速度が基準低下速度よりも速 い(「Yes」)、つまり図 7において、実線で示すように電圧が早期に低下し、基準時間 t0よりも短 、時間 tlで駆動停止電圧 V2まで低下してしまった場合には、再度ステツ プ S22に戻り、駆動周波数を初期周波数 fmaxから再度スイープさせる。すなわち、電 源電圧がすぐに低下してしまう(駆動効率が悪い)ことから、圧電ァクチユエータ Aの 起動に失敗したと判断し、再起動させることになる。この再起動させる場合には、所定 の時間だけ圧電ァクチユエータ Aを停止させておき、電源電圧が駆動開始電圧 VIに 回復するまで待機する。ここで、圧電ァクチユエータ Aの起動に失敗したと判断される 場合としては、ドライバ 110から駆動信号を印加して 、るにも関わらず圧電ァクチユエ ータ Aが駆動開始できない場合や、スイープの途中で検出信号がばらついたことで、 駆動周波数が最適駆動周波数 f0を飛び越えてしま!/ヽ最適駆動周波数 f0よりも低 、 周波数の駆動信号になってしまう場合などが考えられる。このような場合には、駆動 効率が悪くなつてしまうため、電源電圧が急激に低下することになる。ここで、圧電ァ クチユエータ Aが駆動開始できない、あるいは検出信号がばらつく原因としては、静 電気によるノイズや、衝撃、振動などで圧電ァクチユエータ Aの振動状態が一時的に 変化することなどが挙げられる。 また、ステップ S 23において、電源電圧の低下速度が基準低下速度よりも遅い(「N o」)、つまり図 7において、一点鎖線で示すように電圧が基準時間 t0よりも長い時間 t 2で駆動停止電圧 V2まで低下する場合には、圧電ァクチユエータ Aの起動に成功し たと判断し、次のステップ S24に移行する。
[0051] ステップ S24において、駆動周波数が逐次減少される駆動信号と検出信号との位 相差を目標位相差と比較し、位相差が目標位相差に達するまでの間、すなわちステ ップ S24で「No」と判定した場合には、ステップ S25の駆動周波数手段において、ァ ップダウンカウンタ 126のカウンタ値が増加し、カウンタ値に対応して駆動周波数が 逐次減少させる周波数のスイープを行い(駆動周波数変更工程)、ステップ S23に戻 つて再度電源電圧の低下速度を判断する。
一方、ステップ S24にお 、て、位相差が目標位相差に達した場合 (「Yes」 )、つまり 位相差比較回路 124にて位相差が目標位相差を上回ったと判断した場合には、次 のステップ S 26に移行する。
ステップ S26において、目標位相差に達した時点の周波数 (最適駆動周波数 f0)に 駆動信号の駆動周波数をロックして、図 5のステップ S3に移行して圧電ァクチユエ一 タ Aの駆動を継続させる。
以上のステップ S21— S26によって圧電ァクチユエータ Aのスイープ制御が実行さ れる。
[0052] 以上のようにして起動に成功し、最適駆動周波数 f0近傍で駆動されている圧電ァク チユエータ Aは、後述するステップ S3において、日回し中間車 30の回転数が所定の 回転数を上回った場合に完了される。
また、所定の回転数に達するまでの間、つまりステップ S3で「No」と判定した場合 には、ステップ S4において、電源電圧 Vと最低動作電圧 V2とを比較し、電源電圧 V が最低動作電圧 V2を上回っている間、圧電ァクチユエータ Aの駆動を継続する。つ まりステップ S4において、「Yes」と判定した場合に、日回し中間車 30の回転数が所 定の回転数を上回るまでの間、ドライバ 110は、駆動信号を印加し続け、圧電ァクチ ユエータ Aが作動し続ける。そして、圧電ァクチユエータ Aが作動し続けることで、図 7 に示すように、電池電圧 Vは、徐々に低下することになる。 制御回路 131は、ステップ S4において、「No」と判定した場合、すなわち、電源電 圧 Vが最低動作電圧 V2を下回った場合には、駆動停止を指令する駆動停止信号を ドライバ 110に出力し、圧電ァクチユエータ Aの駆動を停止させる (ステップ S5)。そし て、圧電ァクチユエータ Aの駆動を停止させることで、図 7に示すように、電池電圧 V は、徐々に回復することになる。
[0053] これに続いてステップ S6において、電源電圧 Vが駆動開始電圧 VIを下回っている 間、つまりステップ S6において、「No」と判定した場合には、制御回路 131は、圧電 ァクチユエータ Aの駆動を停止させた状態を維持し、電源電圧 Vが駆動開始電圧 VI に回復するまで待機することになる。
そして、電源電圧 Vが駆動開始電圧 VIを上回った場合、つまりステップ S6におい て、「丫 」と判定した場合に、制御回路 131は、駆動再開を指令する駆動再開信号 をドライバ 110に出力し、圧電ァクチユエータ Aの駆動を再開させる (ステップ S7)。こ のように圧電ァクチユエータ Aの駆動を再開した後にステップ S3に戻り、日回し中間 車 30の回転数が所定の回転数を上回るまでの間、圧電ァクチユエータ Aが間欠駆 動される。
以上のように、ステップ S4— S7で圧電ァクチユエータ Aの駆動停止および再開を 繰り返すことで、間欠駆動制御が実行される。また間欠駆動中においては、駆動周 波数変更手段 120の位相差比較回路 124で検出信号と駆動信号との位相差が比較 されるとともに、アップダウンカウンタ 126のカウント値が変更され、これに基づいて駆 動信号の駆動周波数が最適駆動周波数 fOから外れな 、ように調整されるフィードバ ック制御が実行されている。
[0054] そして、制御回路 131は、ステップ S3において、回転検出手段力も入力した回転 検出信号に基づき、日回し中間車 30の回転数が所定の回転数を上回った力どうか、 つまり日車 50が 1日分だけ回転した力どうかを判断する。 日車 50の回転数が不足し ている場合、つまりステップ S 10において、「No」と判定した場合には、圧電ァクチュ エータ Aの駆動を継続し、日車 50が所定量だけ回転してステップ S3で「Yes」と判定 した場合には、駆動停止信号をドライバ 110に出力して圧電ァクチユエータ Aの駆動 を停止させ、駆動制御を完了する。 なお、以上の駆動制御において、日車 50の回転量が所定量に達するまでに、電池 電圧 Vが最低動作電圧 V2を下回ることがなければ、圧電ァクチユエータ Aは、その駆 動開始力も駆動完了まで停止されることなく駆動されることになる。
[0055] また、前述のステップ S21— S26までのスイープ制御は、圧電ァクチユエータ Aの 起動時のみに実行されるものに限らず、間欠駆動中に実行するようにしてもよい。 すなわち、起動時にスイープ制御により駆動信号の駆動周波数を最適駆動周波数 fOに合致させたとしても、駆動中に何らかの理由で駆動周波数が最適駆動周波数 fO 力もずれてしまう場合がある。ここで、圧電ァクチユエータ Aの駆動周波数が最適駆 動周波数 fOからずれてしまう原因としては、静電気によるノイズや、衝撃、振動などで 圧電ァクチユエータ Aの振動状態が一時的に変化することなどが挙げられる。また、 駆動周波数が最適駆動周波数 fOからずれるのではなぐ温度や駆動トルクの変動な どにより、最適駆動周波数 fO自体の周波数が変動してしまう場合がある。このような場 合には、駆動信号の駆動周波数をフィードバック制御により調整したとしても、駆動効 率が悪化するために消費電力が大きくなつてしまい、電源電圧が低下しやすくなる。 このため、間欠駆動中においても、制御回路 131は、タイマ 132からの時間信号と、 電圧検出回路 140からの電源電圧信号とに基づいて電源電圧の低下速度を監視し 、低下速度が基準低下速度よりも速くなつた場合には、ステップ S21— S26までのス ィープ制御を再度実行する。このようにすることで、圧電ァクチユエータ Aの駆動効率 を常時安定させることができる。
[0056] [1-4.第 1実施形態の効果]
上述した実施形態では、以下のような効果がある。
(1)すなわち、圧電ァクチユエータ Aの起動に失敗した場合などの駆動効率が悪ィ匕 した場合に、電源電圧の低下速度に基づいて駆動効率の悪化を即座に判断するこ とで、すぐに再起動 (再スイープ)させることができ、この判断に要する時間が従来より も短縮化されるので、異常の検知から駆動信号の最適化までの処理を迅速に実行 することができるとともに、電力消費量を低減して省電力化が実現できる。
[0057] (2)また、圧電ァクチユエータ Aの駆動中に何らかの要因により駆動信号の駆動周波 数が最適駆動周波数 fOからずれてしまった場合でも、最適駆動周波数 fOからずれた ことにより駆動効率が大きく低下すれば、電源電圧の低下速度が大きくなるため、こ の低下速度に基づ 、て再スイープすることで、圧電ァクチユエータ Aの駆動信号を最 適な駆動周波数に合致させることができる。
[0058] (3)さらに、圧電ァクチユエータ Aの起動時間に基づいて基準低下速度 (基準時間 t0
)を設定することで、圧電ァクチユエータ Aの起動の成否がより高精度に判断でき、起 動に失敗した場合の再スイープまでに要する時間をさらに短縮ィ匕することができる。
[0059] (4)また、位相差の比較に基づいてフィードバック制御するようにしたので、位相差 D
C変換回路 123で検出した検出信号および駆動電圧信号の位相差と、目標位相差 との大小から、位相差比較回路 124において、駆動周波数を増加させる力減少させ るかが即座に決定でき、駆動制御を迅速ィ匕することができる。
[0060] (5)また、スイープ制御において、初期周波数 fmaxから低い周波数に向力つて減少 させる、すなわち消費電力が小さい高い周波数側からスイープさせることで、共振周 波数を通過しないために電力消費を抑制しつつ、最適駆動周波数 f0に合致させるこ とがでさる。
[0061] (6)また、タイマ 132で計測した駆動停止電圧 V2を下回るまでの時間と、電圧検出 回路 140で検出した電源電圧との関係から、電源電圧の低下速度を即座に算出す ることができ、圧電ァクチユエータ Aを再起動させる力否かを迅速に判断することがで きる。
[0062] (7)アップダウンカウンタ 126のカウンタ値 (または、積分回路の出力値)に基づいて 駆動信号の駆動周波数をスイープさせるとともに、カウンタ値を初期化 (リセット)する ことで、駆動周波数を初期周波数 fmaxに戻して圧電ァクチユエータ Aを再起動させる ことができ、スイープ制御を容易に実施できるとともに、駆動制御装置 100の回路を 簡単な構造にすることができる。
[0063] (8)また、圧電ァクチユエータ Aにより日付表示機構 10を駆動することで、小型薄型 の構成でありながら、高効率の駆動を実現でき、電子時計 1の小型化が実現できる。 さらに、圧電ァクチユエータ Aで駆動する日付表示機構 10は、常時駆動され続けるも のではなぐ 1日のうちで限られた時間だけ駆動され、かつ所定の駆動量(回転量)だ け駆動されればよいため、駆動開始時に適切に圧電ァクチユエータ Aを起動させるこ とのできるスイープ制御が適して 、る。
[0064] (9)さらに、腕時計である電子時計 1では、電源である二次電池 9の大きさ (容量)が 限られているため、電力消費を抑制できることの効果は大きい。特に、二次電池 9の 放電末期などでは、電源電圧が低下しやすくなつているため、電圧の低下速度に基 づ 、て再起動させることで、圧電ァクチユエータ Aの駆動を確実に実施することがで きる。
[0065] [2.第 2実施形態]
次に、本発明の第 2実施形態を図 8、図 9に基づいて説明する。
本実施形態における電子機器としての電子時計 1の構成は、前記第 1実施形態と 略同様であり、その詳細説明を省略する。そして、本実施形態の電子時計 1は、電源 9と時刻表示部および日付表示機構 10との関係、および時刻表示部 (指針 2)の駆 動タイミングと日付表示機構 10の駆動タイミングとの関係に特徴がある。この特徴部 分について、以下に詳しく説明する。
[0066] [2-1.電源および圧電ァクチユエータ Aの駆動制御装置の構成]
図 8は、本実施形態における電子機器としての電子時計 1の概略構成を示す図で ある。
図 8において、電子時計 1の電源である大容量コンデンサ(二次電池) 9は、昇圧回 路 9B、補助コンデンサ 9C、および定電圧回路 9Dを介して時刻表示部の駆動部で ある発振回路 4、分周回路 5、駆動回路 6、およびステッピングモータ 3に接続されて いる。一方、大容量コンデンサ 9は、前記第 1実施形態における図 4に示したものと同 様の制御手段 130および電圧検出回路 (電圧検出手段) 140を介して日付表示機 構 10の駆動制御回路 100Aに接続されている。そして、発信回路 4からの基本時計 駆動信号が制御手段 130のタイマ 132に入力するようになって 、る。以上のように、 大容量コンデンサ 9に充電された電源電圧を昇圧回路 9Bで昇圧し、かつ補助コンデ ンサ 9Cにー且充電してから時刻表示部の駆動部に印加することで、ステッピングモ ータ 3に安定した駆動電圧を供給することができ、指針 2の運針を安定化させることが できる。
[0067] [2-2.圧電ァクチユエータ Aの駆動制御方法] 本実施形態における圧電ァクチユエータ Aの駆動制御方法は、電子時計 1におけ る圧電ァクチユエータ A以外の負荷に応じて、負荷が重ならな 、ような動作タイミング で圧電ァクチユエータ Aの駆動を制御するものである。
ここで、電子時計 1における圧電ァクチユエータ A以外の負荷としては、時刻表示部 のステッピングモータ 3の駆動パルスや、アラームやブザー等の駆動パルス、振動モ ータの駆動パルス、指針 2等の移動部材の位置検出用光学位置検出装置における 発光ダイオードの駆動パルス等、電源電圧への負荷が大きい (重負荷な)ものが例示 される。そして、以下では、重負荷なものの代表としてステッピングモータ 3 (秒モータ )を駆動する駆動パルスのタイミングに基づいて、圧電ァクチユエータ Aの駆動および 圧電ァクチユエータ Aの駆動制御における電圧検出のタイミングを制御する制御方 法について説明する。
[0068] 図 9は、電子時計 1における動作を示すタイミングチャートである。
図 9において、ステッピングモータ 3 (秒モータ)は、分周回路 5からの 1Hzの基準信 号に基づ 、た駆動パルス D1で駆動されて 、るため、 1秒間隔のタイミングで電圧降 下が起きて 、る。このような電圧降下が起きたタイミングで圧電ァクチユエータ Aを起 動させようとすると、実際の電源電圧は低下していないにもかかわらず、電源電圧が 低下したものと判定され、前記駆動周波数変更手段 120による駆動周波数変更が頻 繁に実行されてしまう。このため、本実施形態の駆動制御方法では、発信回路 4から の基本時計駆動信号に基づいて、電圧検出回路 140による電圧低下の検出タイミン グ D3が、ステッピングモータ 3 (秒モータ)の駆動パルス D1のタイミングからずれるよう に設定されている。つまり、 1Hzの基準信号の間隔 (略 1秒間)の間に電圧検出回路 140による電圧の検出が実行され、ステッピングモータ 3の駆動パルスが出力される 直前から直後までの間には、電圧の検出が実行されないようになっている。そして、 圧電ァクチユエータ Aの駆動タイミング D2も検出タイミング D3と同様に、ステッピング モータ 3の駆動パルス D1のタイミングからずれるように設定されて!、る。
[0069] 以上のような本実施形態によれば、電圧低下の検出タイミング D3が、電源電圧へ の負荷が大きい駆動が実行されるタイミング (駆動パルス D1のタイミング)からずらさ れていることで、このような重負荷による影響を回避でき、電源電圧が低下しておらず 正常動作しているにもかかわらず、不必要に圧電ァクチユエータ Aの駆動周波数の 変更が実行されることを防止できる。従って、電子時計 1において、指針 2の運針を安 定化させることができるとともに、無駄な電力消費を防止してさらなる省電力化が実現 できる。
[0070] [3.第 3実施形態]
次に、本発明の第 3実施形態を図 10、 11に基づいて説明する。
本実施形態は駆動制御装置 100 (駆動制御回路 100A)を携帯型の電子機器に適 用した点で第 1、第 2実施形態と相違するものであるが、圧電ァクチユエータの駆動 装置の構成は前記実施形態のいずれかと同じである。ここで、第 3実施形態の説明 中、前記実施形態と同一の構成要素は同一符号を付して説明を省略もしくは簡略に する。
[0071] [3— 1.電子機器の構成]
本実施形態において、電子機器 (携帯機器)は、決済機能を有する非接触型 IC力 ード 200であり、この ICカード 200に圧電ァクチユエータ Aおよび駆動装置 210が設 けられている。
図 10は、非接触型 ICカード 200の外観斜視図である。
図 10において、非接触型 ICカード 200の表面側には、残金表示を行う残金表示力 ゥンタ 201が設けられている。
残金表示カウンタ 201は、 4桁の残金を表示するものであり、図 11に示される通り、 上位 2桁を表示する上位桁表示部 202と、下位 2桁を表示する下位桁表示部 203と を備えている。
[0072] 上位桁表示部 202は、ロータ 20Aを介して圧電ァクチユエータ Aに連結されており 、ロータ 20Aの駆動力によって駆動される。上位桁表示部 202の主要部は、送り爪を 有し、ロータ 20Aが lZn回転すると 1回転する駆動ギア 202Aと、駆動ギア 202Aの 1回転で 1目盛分回転する第 1上位桁表示車 202Bと、第 1上位桁表示車 202Bの 1 回転で 1目盛分回転する第 2上位桁表示車 202Cと、第 1上位桁表示車 202Bの非 回転時に第 1上位桁表示車 202Bを固定する固定部材 202Dとを備えている。なお、 第 2上位桁表示車 202Bについても、第 2上位桁表示車 202Cを固定する図示しない 固定部材が設けられている。
駆動ギア 202Aは、ロータ 20Aが lZn回転すると 1回転する。そして、駆動ギア 20 2Aの送り爪は、第 1上位桁表示車 202Bの送りギア部に嚙合しており、第 1上位桁表 示車 202Bは 1目盛分回転することとなる。さらに、第 1上位桁表示車 202Bが回転し 、 1回転すると、第 1上位桁表示車 202Bに設けられている送りピンが送りギアを回転 させ、第 2上位桁表示車 202Cの送りギアを回転させ、第 2上位桁表示車 202Cを 1 目盛分回転させることとなる。
[0073] 下位桁表示部 203は、ロータ 20Bを介して圧電ァクチユエータ Aに連結されており 、ロータ 20Bの駆動力によって駆動される。下位桁表示部 203の主要部は、送り爪を 有しロータ 20Bが lZn回転すると 1回転する駆動ギア 203Aと、駆動ギア 203Aの 1 回転で 1目盛分回転する第 1下位桁表示車 203Bと、第 1下位桁表示車 203Bの 1回 転で 1目盛分回転する第 2下位桁表示車 203Cとを備えている。
第 1下位桁表示車 203Bは、駆動ギア 203Aの送り爪に嚙合する送りギア部を有し ており、駆動ギア 203Aの 1回転で 1目盛分回転する。そして、第 1下位桁表示車 20 3Bには、送りピンが設けられており、第 1下位桁表示車 203Bが 1回転する毎に、送り ギアを回転させ、第 2下位桁表示車 203Cを 1目盛分回転させる。この場合において 、第 1下位桁表示車 203Bおよび第 2下位桁表示車 203Cの固定部材 (不図示)は、 非回転時にそれぞれの送りギア部に嚙合して第 1下位桁表示車 203Bおよび第 2下 位桁表示車 203Cを固定する。
[0074] 以上の非接触型 ICカード 200において、ァクチユエータ Aは、駆動装置 210により 同期して駆動されるように設定されており、駆動装置 210は、図示しない ICカードチ ップにより決済金額に相当する駆動制御信号が入力されることにより駆動されている 。この駆動装置 210の具体的な構造は前記各実施形態における駆動制御装置 100 と同じであるため、説明を省略する。
以上のような構成により、非接触 ICカードのような薄型の携帯機器においても、機 械的に残金額表示を行うことができ、駆動時以外は、電源を必要とせずに、表示を行 えるので、低商品電力で表示を行えると共に、電源が無くなった場合においても、そ れまでの表示を保持することができる。 [0075] [4.実施形態の変形]
なお、本発明は、前記実施形態に限定されるものではなぐ以下に示すような変形 をも含むものである。
例えば、前記各実施形態では、腕時計である電子時計 1および非接触型 ICカード 200について説明したが、電子時計としては腕時計に限定されず、置時計や柱時計 等でもよい。また、電子機器としては、電子時計や ICカードに限らず、各種の電子機 器に本発明が適用可能であり、特に小型化が要求される携帯用の電子機器に好適 である。ここで、各種の電子機器としては、時計機能を備えた電話、携帯電話、バソコ ン、携帯情報端末 (PDA)、カメラ等が例示できる。また、時計機能を備えないカメラ、 ディジタルカメラ、ビデオカメラ、カメラ機能付き携帯電話等の電子機器にも適用可能 である。これらカメラ機能を備えた電子機器に適用する場合には、レンズの合焦機構 や、ズーム機構、絞り調整機構等の駆動に本発明の駆動手段を用いることができる。 さらに、計測機器のメータ指針の駆動機構や、可動玩具の駆動機構等に本発明の 駆動手段を用いてもよい。
また、前記実施形態では、電子時計 1の日付表示機構の駆動に駆動手段である圧 電ァクチユエータ Aを用いたが、これに限らず、電子時計 1の時刻表示針 (指針)を本 発明の駆動手段で駆動してもよい。このようにすれば、指針を駆動するステッピング モータ 3を圧電ァクチユエータ Aに置き換えることで、電子時計の一層の薄型化が実 現できるとともに、圧電ァクチユエータ Aがステッピングモータよりも磁性の影響を受け にくいことから、電子時計の高耐磁ィ匕をも図ることができる。
[0076] さらに、本発明では、駆動制御装置 100内の各手段等を各種論理回路素子等のハ 一ドウエアで構成したが、これに限らず、 CPU (中央処理装置)、メモリ(記憶装置)等 を備えたコンピュータを電子機器内に設け、このコンピュータに所定のプログラムや データ(各記憶部に記憶されたデータ)を組み込んで各手段を実現させるように構成 したちのでもよい。
ここで、前記プログラムやデータは、電子機器内に組み込まれた RAMや ROM等 のメモリに予め記憶しておけばよい。また、例えば、電子機器内のメモリに所定の制 御プログラムやデータをインターネット等の通信手段や、 CD— ROM、メモリカード等 の記録媒体を介してインストールしてもよい。そして、メモリに記憶されたプログラムで CPU等を動作させて、各手段を実現させればよい。なお、時計や携帯機器に所定の プログラム等をインストールするには、その時計や携帯機器にメモリカードや CD— RO M等を直接差し込んで行ってもょ 、し、これらの記憶媒体を読み取る機器を外付け で時計や携帯機器に接続してもよい。さらには、 LANケーブル、電話線等を時計や 携帯機器に接続して通信によってプログラム等を供給しインストールしてもよいし、無 線によってプログラムを供給してインストールしてもよい。
[0077] また、前記実施形態では、振動体 12の振動状態を表すものとして検出信号と駆動 電圧信号との位相差を検出し、この位相差と目標位相差との比較に基づ!ヽて駆動信 号の駆動周波数を変更するようにしたが、これに限定されない。すなわち、振動体 12 の振動状態を表すものとしては、検出信号の電圧値や電流値を用いてもよぐこれら 検出信号の電圧値や電流値と、駆動信号の電圧値や電流値とを比較するようにして ちょい。
さらに、目標位相差は予め設定された一定値に限らず、振動体 12の振動状態に応 じて、適宜変更可能に構成されていてもよい。
[0078] また、前記実施形態では、スイープ制御の際に、初期周波数 fmaxである高 、周波 数力も駆動周波数を減少させたが、これに限らず、低い周波数を初期値として、この 初期値力も周波数を増カロさせてもよい。さらに、前回 (前日)駆動時の最適周波数 f0 を記憶させておき、この前回値を初期値として用いてもょ 、。
さらに、前記実施形態では、タイマ 132を用いて電源電圧の低下速度を算出するよ うにしたが、これに限らず、カウンタ等を用いてスイープ制御中の周波数変更処理回 数をカウントし、このカウント値に基づいて電源電圧の低下速度を算出するようにして ちょい。
産業上の利用可能性
[0079] 本発明は、圧電ァクチユエータ駆動装置、電子機器、電子機器の駆動方法、電子 機器の駆動制御プログラム、このプログラムを記録した記録媒体として利用で きる。

Claims

請求の範囲
[1] 圧電素子に所定の駆動周波数を有する駆動信号が与えられることにより振動する 振動体を有した圧電ァクチユエータを駆動する圧電ァクチユエータの駆動装置であ つて、
前記駆動信号を前記振動体の圧電素子に供給する駆動手段と、
前記振動体の振動を検出するとともに、検出した検出信号を出力する振動検出手 段と、
前記検出信号力 検知される振動体の振動状態が目標振動状態に近づくように前 記駆動信号の駆動周波数を変更させる駆動周波数変更手段と、
電源電圧および前記圧電ァクチユエータの駆動電圧のうちの少なくとも一方を検出 する電圧検出手段と、
前記駆動信号の駆動周波数を所定駆動周波数から増加または減少させる駆動周 波数変更処理を前記駆動周波数変更手段に実行させるとともに、前記電圧検出手 段で検出した電圧の低下速度に基づき、この低下速度が予め設定した基準低下速 度よりも速い場合には、駆動周波数を前記所定駆動周波数に戻して力 前記駆動周 波数変更処理を再実行させる制御手段と
を備えたことを特徴とする圧電ァクチユエータの駆動装置。
[2] 請求項 1に記載の圧電ァクチユエータの駆動装置にお 、て、
前記基準低下速度は、前記圧電ァクチユエータの所要の起動時間に基づいて設 定されており、
前記制御手段は、前記圧電ァクチユエータの駆動開始時において、前記電源電圧 および前記圧電ァクチユエータの駆動電圧のうちの少なくとも一方の低下速度に基 づく前記駆動周波数変更処理を前記駆動周波数変更手段に実行させることを特徴 とする圧電ァクチユエータの駆動装置。
[3] 請求項 1または請求項 2に記載の圧電ァクチユエータの駆動装置において、
前記駆動周波数変更手段は、前記駆動信号と前記検出信号との位相差を検出す る位相差検出手段と、前記位相差と予め設定された目標位相差とを比較する比較手 段とを有し、この比較結果に基づ 、て前記位相差が前記目標位相差に近づくように 前記駆動信号の駆動周波数を変更させることを特徴とする圧電ァクチユエ一タの駆 動装置。
[4] 請求項 1から請求項 3のいずれかに記載の圧電ァクチユエータの駆動装置におい て、
前記制御手段は、目標振動状態を実現させるための周波数よりも高 、周波数を開 始周波数として前記駆動周波数変更処理を前記駆動周波数変更手段に開始させる ことを特徴とする圧電ァクチユエータの駆動装置。
[5] 請求項 1から請求項 4のいずれかに記載の圧電ァクチユエータの駆動装置におい て、
前記制御手段は、前記電源電圧および前記圧電ァクチユエータの駆動電圧のうち の少なくとも一方が予め設定した駆動停止電圧を下回るまでの時間を計測するタイ マを有し、このタイマで計測した時間が予め設定した基準時間よりも短ければ、前記 低下速度が前記基準低下速度よりも速いと判断することを特徴とする圧電ァクチユエ ータの駆動装置。
[6] 請求項 1から請求項 5のいずれかに記載の圧電ァクチユエータの駆動装置におい て、
前記駆動周波数変更手段は、アップダウンカウンタを有し、このアップダウンカウン タのカウンタ値に基づいて前記駆動信号の駆動周波数を変更させ、
前記制御手段は、前記電源電圧および前記圧電ァクチユエータの駆動電圧のうち の少なくとも一方の低下速度が前記基準低下速度よりも速いと判断した場合には、前 記アップダウンカウンタのカウンタ値を初期化して前記駆動周波数変更処理を再実 行させることを特徴とする圧電ァクチユエータの駆動装置。
[7] 請求項 1から請求項 5のいずれかに記載の圧電ァクチユエータの駆動装置におい て、
前記駆動周波数変更手段は、積分回路を有し、この積分回路の出力値に基づい て前記駆動信号の駆動周波数を変更させ、
前記制御手段は、前記電源電圧および前記圧電ァクチユエータの駆動電圧のうち の少なくとも一方の低下速度が前記基準低下速度よりも速いと判断した場合には、前 記積分回路の出力値を初期化して前記駆動周波数変更処理を再実行させることを 特徴とする圧電ァクチユエータの駆動装置。
[8] 請求項 1から請求項 7のいずれかに記載の圧電ァクチユエータの駆動装置と、これ により駆動される圧電ァクチユエータと、電源とを備えたことを特徴とする電子機器。
[9] 請求項 8に記載の電子機器において、
前記圧電ァクチユエータによって駆動される日付表示機構を備えた電子時計であ ることを特徴とする電子機器。
[10] 圧電素子に所定の駆動周波数を有する駆動信号が与えられることにより振動する 振動体を有した圧電ァクチユエータと、前記振動体の圧電素子に電力を供給する電 源とを備えた電子機器を駆動する電子機器の駆動方法であって、
前記振動体の振動を検出するとともに、検出した検出信号を出力する振動検出ェ 程と、
電源電圧および前記圧電ァクチユエータの駆動電圧のうちの少なくとも一方を検出 する電圧検出工程と、
前記検出信号力 検知される振動体の振動状態が目標振動状態に近づくように前 記駆動信号の駆動周波数を所定駆動周波数から増加または減少させる駆動周波数 変更工程と、
前記電圧検出工程で検出した電圧の低下速度に基づき、この低下速度が予め設 定した基準低下速度よりも速い場合には、駆動周波数を前記所定駆動周波数に戻 して力 前記駆動周波数変更工程を再実行させる制御工程と
を備えたことを特徴とする電子機器の駆動方法。
[11] 圧電素子に所定の駆動周波数を有する駆動信号が与えられることにより振動する 振動体を有した圧電ァクチユエータと、前記振動体の圧電素子に電力を供給する電 源とを備えた電子機器を駆動制御する電子機器の駆動制御プログラムであって、 コンピュータを、
前記駆動信号を前記振動体の圧電素子に供給する駆動手段と、
前記振動体の振動を検出するとともに、検出した検出信号を出力する振動検出手 段と、 前記検出信号力 検知される振動体の振動状態が目標振動状態に近づくように前 記駆動信号の駆動周波数を変更させる駆動周波数変更手段と、
電源電圧および前記圧電ァクチユエータの駆動電圧のうちの少なくとも一方を検出 する電圧検出手段と、
前記駆動信号の駆動周波数を所定駆動周波数から増加または減少させる駆動周 波数変更処理を前記駆動周波数変更手段に実行させるとともに、前記電圧検出手 段で検出した電圧の低下速度に基づき、この低下速度が予め設定した基準低下速 度よりも速い場合には、駆動周波数を前記所定駆動周波数に戻して力 前記駆動周 波数変更処理を再実行させる制御手段と
のうちの少なくとも制御手段として機能させることを特徴とする電子機器の駆動制御 プログラム。
請求項 11に記載の電子機器の駆動制御プログラムがコンピュータにて読み取り可 能に記録されたことを特徴とする記録媒体。
PCT/JP2005/004768 2004-03-17 2005-03-17 圧電アクチュエータ駆動装置、電子機器、その駆動方法、その駆動制御プログラム、そのプログラムを記録した記録媒体 WO2005088823A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005518821A JP4192949B2 (ja) 2004-03-17 2005-03-17 圧電アクチュエータ駆動装置、電子機器、その駆動方法、その駆動制御プログラム、そのプログラムを記録した記録媒体
EP05726628A EP1739820B1 (en) 2004-03-17 2005-03-17 Apparatus, method and program for driving a piezoelectric actuator and electronic device comprising the same
DE602005014762T DE602005014762D1 (de) 2004-03-17 2005-03-17 Vorrichtung, methode und programm zur ansteuerung eines piezoelektrischen aktors und elektronisches bauelement mit einem solchen
CN2005800015608A CN1906843B (zh) 2004-03-17 2005-03-17 压电致动器驱动装置、电子设备、其驱动方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-076507 2004-03-17
JP2004076507 2004-03-17

Publications (1)

Publication Number Publication Date
WO2005088823A1 true WO2005088823A1 (ja) 2005-09-22

Family

ID=34975924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004768 WO2005088823A1 (ja) 2004-03-17 2005-03-17 圧電アクチュエータ駆動装置、電子機器、その駆動方法、その駆動制御プログラム、そのプログラムを記録した記録媒体

Country Status (6)

Country Link
US (1) US7339305B2 (ja)
EP (1) EP1739820B1 (ja)
JP (1) JP4192949B2 (ja)
CN (1) CN1906843B (ja)
DE (1) DE602005014762D1 (ja)
WO (1) WO2005088823A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062936A (ja) * 2016-10-13 2018-04-19 研能科技股▲ふん▼有限公司 圧電ポンプの駆動システム
JP2019215365A (ja) * 2013-04-23 2019-12-19 マイクロ モーション インコーポレイテッド 振動式センサ用に駆動信号を生成する方法
WO2020080193A1 (ja) * 2018-10-15 2020-04-23 キヤノン株式会社 振動型アクチュエータから安定した出力を得ることを可能とする駆動制御装置と駆動制御方法、振動型アクチュエータを備える振動型駆動装置及び装置
JP2020098966A (ja) * 2018-12-17 2020-06-25 株式会社デンソー 位相差調整回路

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553295B2 (en) * 2002-06-17 2009-06-30 Iradimed Corporation Liquid infusion apparatus
JP2007215390A (ja) * 2006-01-10 2007-08-23 Seiko Epson Corp 圧電アクチュエータの駆動制御方法、圧電アクチュエータの駆動制御装置、および電子機器
US8105282B2 (en) 2007-07-13 2012-01-31 Iradimed Corporation System and method for communication with an infusion device
US8454817B2 (en) * 2008-07-14 2013-06-04 Wisconsin Alumni Research Foundation Mechanism for direct-water-splitting via piezoelectrochemical effect
CN102782593B (zh) * 2010-02-15 2014-04-09 西铁城控股株式会社 电子计时装置
JP5792951B2 (ja) * 2010-12-16 2015-10-14 キヤノン株式会社 振動型アクチュエータの制御装置
JP5884303B2 (ja) 2011-06-07 2016-03-15 セイコーエプソン株式会社 圧電アクチュエーター、ロボットハンド、及びロボット
JP5799596B2 (ja) * 2011-06-10 2015-10-28 セイコーエプソン株式会社 圧電アクチュエーター、ロボットハンド、及びロボット
US9520813B2 (en) 2011-10-27 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Actuator drive device
TWI605681B (zh) * 2016-10-13 2017-11-11 研能科技股份有限公司 壓電泵浦之驅動系統
US11268506B2 (en) 2017-12-22 2022-03-08 Iradimed Corporation Fluid pumps for use in MRI environment
US11533011B2 (en) * 2020-03-04 2022-12-20 Qualcomm Incorporated Actuator driver circuit with self-resonance tracking
DE102020135100B4 (de) * 2020-12-30 2022-08-11 Realization Desal Ag Armbanduhr

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184171A (ja) * 1992-01-08 1993-07-23 Canon Inc 振動波モータ駆動制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628230Y2 (ja) * 1989-05-30 1994-08-03 スタンレー電気株式会社 超音波振動子の振動制御装置
JP3169421B2 (ja) * 1992-03-13 2001-05-28 キヤノン株式会社 振動波モータの駆動制御装置
JP2872862B2 (ja) * 1992-06-12 1999-03-24 キヤノン株式会社 振動型モータの駆動装置
JP3315525B2 (ja) * 1994-05-19 2002-08-19 キヤノン株式会社 振動駆動装置
DE69838595T2 (de) * 1997-12-12 2008-07-24 Canon K.K. Antriebsvorrichtung für einen Vibrationsaktor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184171A (ja) * 1992-01-08 1993-07-23 Canon Inc 振動波モータ駆動制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215365A (ja) * 2013-04-23 2019-12-19 マイクロ モーション インコーポレイテッド 振動式センサ用に駆動信号を生成する方法
JP2018062936A (ja) * 2016-10-13 2018-04-19 研能科技股▲ふん▼有限公司 圧電ポンプの駆動システム
US10883485B2 (en) 2016-10-13 2021-01-05 Microjet Technology Co., Ltd. Driving system for piezoelectric pump
WO2020080193A1 (ja) * 2018-10-15 2020-04-23 キヤノン株式会社 振動型アクチュエータから安定した出力を得ることを可能とする駆動制御装置と駆動制御方法、振動型アクチュエータを備える振動型駆動装置及び装置
JP2020065321A (ja) * 2018-10-15 2020-04-23 キヤノン株式会社 振動型駆動装置、振動型アクチュエータの駆動制御装置と駆動制御方法及び装置
JP7191635B2 (ja) 2018-10-15 2022-12-19 キヤノン株式会社 振動型駆動装置、振動型アクチュエータの駆動制御装置と駆動制御方法及び装置
US11664748B2 (en) 2018-10-15 2023-05-30 Canon Kabushiki Kaisha Drive control device and drive control method that enable stable output to be obtained from vibration type actuator, vibration type drive device including vibration type actuator, and apparatus
JP2020098966A (ja) * 2018-12-17 2020-06-25 株式会社デンソー 位相差調整回路
JP7206882B2 (ja) 2018-12-17 2023-01-18 株式会社デンソー 位相差調整回路

Also Published As

Publication number Publication date
EP1739820B1 (en) 2009-06-03
CN1906843B (zh) 2010-09-29
US20050231069A1 (en) 2005-10-20
EP1739820A4 (en) 2008-08-20
DE602005014762D1 (de) 2009-07-16
CN1906843A (zh) 2007-01-31
US7339305B2 (en) 2008-03-04
JP4192949B2 (ja) 2008-12-10
JPWO2005088823A1 (ja) 2007-08-09
EP1739820A1 (en) 2007-01-03

Similar Documents

Publication Publication Date Title
JP4192949B2 (ja) 圧電アクチュエータ駆動装置、電子機器、その駆動方法、その駆動制御プログラム、そのプログラムを記録した記録媒体
EP1737114B1 (en) Piezoelectric actuator drive device, electronic device, and drive method thereof
USRE40709E1 (en) Piezoactuator and drive circuit therefor
US7439650B2 (en) Piezoactuator drive detection device and electronic device
US7119475B2 (en) Driving method of piezoelectric actuator, driving apparatus of piezoelectric actuator, electronic watch, electronics, control program of piezoelectric actuator, and storage medium
WO2000038309A1 (fr) Actionneur piezo-electrique, compteur de temps et dispositif portable
WO2006004108A1 (ja) 圧電アクチュエータおよび機器
JP4192989B2 (ja) 駆動制御装置、電子機器、電子機器の駆動制御方法、電子機器の駆動制御プログラム、記録媒体
JP4265493B2 (ja) 圧電アクチュエータの駆動装置、電子機器
JP3767388B2 (ja) 圧電調速機およびこの圧電調速機を用いた電子機器
JP2010252471A (ja) 圧電駆動装置、圧電駆動装置の制御方法および電子機器
JP4265255B2 (ja) 圧電アクチュエータの駆動装置、駆動方法、時計、および電子機器
JP2009219212A (ja) 圧電アクチュエータの駆動制御装置、圧電アクチュエータの駆動制御方法および電子機器
JP2000188882A (ja) 駆動装置、カレンダー表示装置、携帯機器および時計
JP2009213330A (ja) 圧電駆動装置、圧電駆動装置の駆動方法および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001560.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005518821

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005726628

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005726628

Country of ref document: EP