WO2005086274A2 - Leitsalze für galvanische zellen, deren herstellung und verwendung - Google Patents

Leitsalze für galvanische zellen, deren herstellung und verwendung Download PDF

Info

Publication number
WO2005086274A2
WO2005086274A2 PCT/EP2005/002439 EP2005002439W WO2005086274A2 WO 2005086274 A2 WO2005086274 A2 WO 2005086274A2 EP 2005002439 W EP2005002439 W EP 2005002439W WO 2005086274 A2 WO2005086274 A2 WO 2005086274A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
lithium
conductive salt
atoms
salts
Prior art date
Application number
PCT/EP2005/002439
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2005086274A3 (de
Inventor
Jan-Christoph Panitz
Andreas PÖTSCHKE
Rainer Dietz
Ulrich Wietelmann
Original Assignee
Chemetall Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemetall Gmbh filed Critical Chemetall Gmbh
Priority to EP05715835A priority Critical patent/EP1726061B1/de
Priority to KR1020067020829A priority patent/KR101156825B1/ko
Priority to CN2005800146854A priority patent/CN1957498B/zh
Priority to JP2007502277A priority patent/JP5150248B2/ja
Priority to DE502005003737T priority patent/DE502005003737D1/de
Priority to US10/591,509 priority patent/US8945778B2/en
Publication of WO2005086274A2 publication Critical patent/WO2005086274A2/de
Publication of WO2005086274A3 publication Critical patent/WO2005086274A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to lithium borate complex salts, their preparation and their use as electrolytes in galvanic cells, in particular as conductive salts in lithium ion batteries.
  • LiPF ⁇ lithium hexafluorophosphate
  • LiPF 6 has serious disadvantages, which can mainly be attributed to its lack of thermal stability (decomposition above approx. 130 ° C).
  • corrosive and toxic hydrogen fluoride is released on contact with moisture, which on the one hand makes handling difficult and on the other hand battery components, e.g. B. the cathode, attacks and damages.
  • lithium trifluoromethanesulfonate (“Li triflate”)
  • lithium imides lithium bis (perfluoroalkylsulfonyl) imides
  • lithium methides lithium tris (perfluoroalkylsulfonyl) methide). All of these salts require relatively complex manufacturing processes, are therefore relatively expensive and have other disadvantages, such as corrosiveness to aluminum or poor conductivity.
  • Lithium organoborates have been investigated as a further class of compounds for use as conductive salt in rechargeable lithium batteries. However, because of their low oxidation stability and safety concerns when handling triorganoboranes, they are ruled out for commercial systems.
  • the lithium complex salts of the ABL 2 type proposed in EP 698301 for use in galvanic cells represent a significant advance (where A is lithium or a quaternary ammonium ion, B boron and L is a bidentate ligand which is bonded to the boron atom via two oxygen atoms)
  • the proposed salts whose ligands contain at least one aromatic radical, only have sufficient electrochemical stability if the aromatic is substituted with electron-withdrawing radicals, typically fluorine, or has at least one nitrogen atom in the ring.
  • Such chelate compounds are not commercially available and can only be produced at high costs. The proposed products could therefore not prevail on the market.
  • the lithium bis (oxalato) borate (LiBOB) described for the first time in DE 19829030 is the first boron-centered complex salt described for use as an electrolyte, which uses a dicarboxylic acid (in this case oxalic acid) as the chelate component.
  • the connection is easy to produce, non-toxic and electrochemically stable up to about 4.5 V, which enables it to be used in lithium-ion batteries.
  • it is disadvantageous that it can hardly be used in new battery systems with cell voltages> 3 V.
  • Such electrochemical stores require salts with stabilities> approximately 5 V.
  • Another disadvantage is that lithium bis (oxalato) borate does not allow structural variations without destroying the basic structure.
  • EP 1035612 describes additives of the formula
  • Particularly preferred additives are lithium bis [1, 2-benzenediolato (2-) O, 0 '] borate (1-), lithium bis [3-fluoro-1, 2-benzenediolato (2-) 0.0 '] borate (1-),
  • R 1 , R 2 independently of one another H, alkyl (with 1 to 5 C -Atoms), aryl, silyl or a polymer, and one of the alkyl radicals R 1 or R 2 can be linked to a further chelatoborate radical, b -
  • liquid electrolytes which contain only one of the mixed borchelate complex salts disclosed in DE 10108592 cannot be used for high-performance high-performance batteries.
  • the undesired ⁇ o / no compounds have different physicochemical properties, especially an electrochemical stability different from the mixed compound; they must therefore be separated by recrystallization or a similar purification process, which is relatively complex.
  • WO 01/99209 also discloses the preparation of mixed lithium borate salts such as lithium (malonatooxalato) borate (Examples 6 and 7). Two synthesis options are described, both of which give the desired salt as the main product, but contamination by ⁇ omo complex compounds cannot be avoided (Example 6: 4.5% lithium bis (oxalato) borate).
  • EP 1095942 describes complex salts of the formula
  • Li + B- (OR 1 ) m (OR 2 ) p described (for the meaning of R 1 , R 2 , m and p see above in EP 1035612). They serve as conductive salts in electrolytes for electrochemical cells. They can also be used in proportions between 1 and 99% in combination with other conductive salts. Conductive salts from the group LiPF 6 , LiBF 4 , LiCI0 4 , LiAsF 6 , LiCF 3 S0 3 , LiN (CF 3 S0 2 ) 2 or LiC (CF 3 S0 2 ) 3 and mixtures thereof are suitable. These are all fluorinated conductive salts.
  • the object of the present invention is to overcome the disadvantages of the prior art and in particular to find fluorine-free, simple and inexpensive to produce conductive salts for lithium ion batteries and to show their synthesis. Furthermore, the conductive salts should be able to be adapted to the material and application properties and have a formation and overload protection function.
  • LiBOB lithium bis (oxalato) borate
  • X in formula (I) is a bridge connected to two oxygen atoms to the boron, which is selected from
  • L 2 is, for example, a dicarboxylic acid (not oxalic acid), hydroxycarboxylic acid or salicylic acid (which can also be substituted at most twice). Further possibilities for the chelating agent L 2 are listed below in the description of the connecting part X.
  • the reaction is preferably carried out in such a way that the raw material components are suspended in a medium suitable for azeotropic water removal (for example toluene, xylene, methylcyclohexane, perfluorinated hydrocarbons with more than 6 C atoms) and the water is removed azeotropically in a known manner ,
  • azeotropic water removal for example toluene, xylene, methylcyclohexane, perfluorinated hydrocarbons with more than 6 C atoms
  • reaction media It is also possible to carry out the synthesis in aqueous solution.
  • the components are introduced into water in any order and evaporated with stirring, preferably under reduced pressure. After removal of the main amount of water, a solid reaction product forms which, depending on the specific product properties, is finally dried at temperatures between 100 and 180 ° C and reduced pressure (e.g. 10 mbar).
  • reduced pressure e.g. 10 mbar
  • alcohols and other polar organic solvents are also suitable as reaction media.
  • the product can also be produced without the addition of any solvent, ie the commercially available raw materials are mixed and then heated by the application of heat and dewatered under preferably reduced pressure. - y -
  • the resulting conductive salt mixture has the advantage over pure LiBOB that a decomposition reaction occurs at the cathode when it is overloaded, which slows down the increase in cell voltage. In this way, dangerous subsequent reactions of the cathode material with constituents of the electrolyte can be avoided or reduced.
  • Preferred examples of the connecting part X are 1, 3-dicarboxylic acids, such as malonic acid and alkylmalonic acids (malonic acid, substituted by an alkyl group having preferably 1 to 5 carbon atoms) reduced by two OH groups.
  • malonic acid substituted by an alkyl group having preferably 1 to 5 carbon atoms
  • alkyl group having preferably 1 to 5 carbon atoms reduced by two OH groups.
  • the O atoms binding to the boron are already contained in formula (I), which corresponds to 1, 3 dicarboxylic acids L 2.
  • connecting part X are 1, 2- or 1, 3-hydroxycarboxylic acids, such as glycolic acid or lactic acid, which are formally reduced by two OH groups.
  • the 1, 2- or 1, 3-hydroxycarboxylic acids correspond to L 2.
  • the connecting part X can also preferably be formed by saturated C 2 or C 3 chains, which is formally reduced from 1, 2- by two OH groups or 1, 3-diols can be derived.
  • the 1, 2- or 1, 3-diols correspond to L 2.
  • connecting part X is 1, 2-bisphenols (such as pyrocatechol) or 1, 2-
  • Carboxyphenols such as salicylic acid
  • aromatic or heteroaromatic aromatic acids such as salicylic acid
  • the remaining solid was comminuted with a nickel spatula under a protective gas atmosphere (argon) and finely ground in a porcelain mortar.
  • the powder was then poured back into a round glass flask and finally dried on a rotary evaporator at 150 ° C. and finally 13 mbar.
PCT/EP2005/002439 2004-03-08 2005-03-08 Leitsalze für galvanische zellen, deren herstellung und verwendung WO2005086274A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05715835A EP1726061B1 (de) 2004-03-08 2005-03-08 Leitsalze fur galvanische zellen, deren herstellung und verwendung
KR1020067020829A KR101156825B1 (ko) 2004-03-08 2005-03-08 직류 전지용 전도성 염, 이의 제조방법 및 용도
CN2005800146854A CN1957498B (zh) 2004-03-08 2005-03-08 用于原电池的导电盐、其制备及应用
JP2007502277A JP5150248B2 (ja) 2004-03-08 2005-03-08 ガルヴァーニ電池用の導電性塩、その製造及び使用
DE502005003737T DE502005003737D1 (de) 2004-03-08 2005-03-08 Leitsalze fur galvanische zellen, deren herstellung und verwendung
US10/591,509 US8945778B2 (en) 2004-03-08 2005-03-08 Conducting salts for galvanic cells, the production thereof and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004011522.2 2004-03-08
DE102004011522A DE102004011522A1 (de) 2004-03-08 2004-03-08 Leitsalze für Lithiumionenbatterien und deren Herstellung

Publications (2)

Publication Number Publication Date
WO2005086274A2 true WO2005086274A2 (de) 2005-09-15
WO2005086274A3 WO2005086274A3 (de) 2006-08-10

Family

ID=34895092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002439 WO2005086274A2 (de) 2004-03-08 2005-03-08 Leitsalze für galvanische zellen, deren herstellung und verwendung

Country Status (8)

Country Link
US (1) US8945778B2 (pt-PT)
EP (1) EP1726061B1 (pt-PT)
JP (1) JP5150248B2 (pt-PT)
KR (1) KR101156825B1 (pt-PT)
CN (1) CN1957498B (pt-PT)
AT (1) ATE392723T1 (pt-PT)
DE (2) DE102004011522A1 (pt-PT)
WO (1) WO2005086274A2 (pt-PT)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842853A4 (en) * 2005-01-24 2011-02-09 Central Glass Co Ltd METHOD FOR SYNTHETIZING ION COMPLEXES

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785740B2 (en) * 2004-04-09 2010-08-31 Air Products And Chemicals, Inc. Overcharge protection for electrochemical cells
JP5200330B2 (ja) * 2006-04-07 2013-06-05 ソニー株式会社 非水電解質二次電池
JP4725594B2 (ja) 2008-04-04 2011-07-13 トヨタ自動車株式会社 リチウム二次電池の製造方法
DE102010008331A1 (de) 2009-02-18 2010-08-19 Chemetall Gmbh Galvanische Zelle mit einer Lithiummetall oder eine lithiummetallhaltigen Legierung als Anodenmaterial
CA2856123C (en) * 2011-11-14 2020-07-21 Rockwood Lithium GmbH Process for preparing metal difluorochelatoborates, and use as battery electrolytes or additives in electrochemical cells
CN104037452B (zh) * 2014-06-18 2016-05-18 厦门首能科技有限公司 一种锂离子二次电池及含有该电解液的锂离子电池
CN112038700B (zh) * 2020-08-07 2022-06-03 合肥国轩高科动力能源有限公司 一种低温电解液及包括该低温电解液的锂离子电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829030C1 (de) * 1998-06-30 1999-10-07 Metallgesellschaft Ag Lithium-bisoxalatoborat, Verfahren zu dessen Herstellung und dessen Verwendung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19633027A1 (de) * 1996-08-16 1998-02-19 Merck Patent Gmbh Verfahren zur Herstellung von neuen Lithium-Borat-Komplexen
FR2766969B1 (fr) 1997-08-04 1999-09-24 Alsthom Cge Alcatel Liant pour electrode de systeme electrochimique a electrolyte non aqueux
DE19910968A1 (de) 1999-03-12 2000-11-09 Merck Patent Gmbh Anwendung von Additiven in Elektrolyten für elektrochemische Zellen
DE19932317A1 (de) * 1999-07-10 2001-01-11 Merck Patent Gmbh Verfahren zur Herstellung von Lithiumkomplexsalzen zur Anwendung in elektrochemischen Zellen
DE19951804A1 (de) 1999-10-28 2001-05-03 Merck Patent Gmbh Komplexsalze zur Anwendung in elektrochemischen Zellen
DE19959722A1 (de) * 1999-12-10 2001-06-13 Merck Patent Gmbh Alkylspiroboratsalze zur Anwendung in elektrochemischen Zellen
JP2004511879A (ja) * 2000-06-16 2004-04-15 アリゾナ ボード オブ リージェンツ, ア ボディ コーポレイト アクティング オン ビハーフ オブ アリゾナ ステート ユニバーシティ リチウム電池用伝導性ポリマー組成物
JP2002175836A (ja) * 2000-12-06 2002-06-21 Japan Storage Battery Co Ltd 非水電解質電池
US20020192549A1 (en) * 2000-12-07 2002-12-19 Tdk Corporation Electrode composition, and lithium secondary battery
DE10108608C2 (de) * 2001-02-22 2003-01-23 Chemetall Gmbh Verfahren zur Herstellung von Hydrogen-bis(chelato)boraten und Alkalimetall-bis(chelato)boraten und deren Verwendung
DE10108592C1 (de) * 2001-02-22 2002-08-14 Chemetall Gmbh Borchelatkomplexe, Verfahren zu deren Herstellung sowie deren Verwendung
DE10111410C1 (de) * 2001-03-08 2002-07-25 Chemetall Gmbh Elektrolyt, enthaltend Lithium-bis(oxalato)borat und dessen Verwendung
JP4175792B2 (ja) * 2001-08-27 2008-11-05 セントラル硝子株式会社 電気化学ディバイス用電解液またはゲル電解質並びに電池
DE10240032A1 (de) * 2002-08-27 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Ionenleitender Batterieseparator für Lithiumbatterien, Verfahren zu deren Herstellung und die Verwendung derselben
US7238453B2 (en) * 2005-04-25 2007-07-03 Ferro Corporation Non-aqueous electrolytic solution with mixed salts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829030C1 (de) * 1998-06-30 1999-10-07 Metallgesellschaft Ag Lithium-bisoxalatoborat, Verfahren zu dessen Herstellung und dessen Verwendung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842853A4 (en) * 2005-01-24 2011-02-09 Central Glass Co Ltd METHOD FOR SYNTHETIZING ION COMPLEXES

Also Published As

Publication number Publication date
US20070269715A1 (en) 2007-11-22
JP5150248B2 (ja) 2013-02-20
EP1726061B1 (de) 2008-04-16
EP1726061A2 (de) 2006-11-29
JP2007528109A (ja) 2007-10-04
US8945778B2 (en) 2015-02-03
ATE392723T1 (de) 2008-05-15
KR101156825B1 (ko) 2012-06-18
CN1957498B (zh) 2010-05-05
DE102004011522A1 (de) 2005-09-29
KR20060128044A (ko) 2006-12-13
DE502005003737D1 (de) 2008-05-29
CN1957498A (zh) 2007-05-02
WO2005086274A3 (de) 2006-08-10

Similar Documents

Publication Publication Date Title
EP0922049B1 (de) Verfahren zur herstellung von lithium-borat-komplexen
EP1091963B1 (de) Lithium-bisoxalatoborat, herstellung und verwendung als leitsalz
EP1726061B1 (de) Leitsalze fur galvanische zellen, deren herstellung und verwendung
EP3772129A1 (de) Auf so2-basierender elektrolyt für eine wiederaufladbare batteriezelle und wiederaufladbare batteriezelle denselben umfassend
EP0698301B1 (de) Elektrolyt zur anwendung in einer galvanischen zelle
EP1379532B1 (de) Borchelatkomplexe
EP2907189B1 (de) Additive für galvanische zellen
DE102015106453A1 (de) Chloridfreies Elektrolyt für eine Magnesium-Batterie und Verfahren zur Umwandlung eines Magnesiumelektrolyts in ein chloridfreies Elektrolyt
WO2023001671A1 (de) Flüssige elektrolytzusammensetzung sowie eine elektrochemische zelle mit der elektrolytzusammensetzung
EP1088814A1 (de) Fluorierte Sulfonamide als schwer entflammbare Lösungsmittel zum Einsatz in elektrochemischen Zellen
DE10103189A1 (de) Boratsalze zur Anwendung in elektrochemischen Zellen
DE19959722A1 (de) Alkylspiroboratsalze zur Anwendung in elektrochemischen Zellen
EP4037056A1 (de) Auf so2-basierender elektrolyt für eine wiederaufladbare batteriezelle und wiederaufladbare batteriezelle
EP2491013B1 (de) Lithiumsalze von Pentafluorphenylamid-Anionen, ihre Herstellung und ihre Verwendung
EP1187244A2 (de) Organische Amine als Additive in elektrochemischen Zellen
WO2013135824A2 (de) Ionenleitende polymere verbindung für elektrochemische zellen
EP2399318B1 (de) Galvanische zelle mit einem lithiummetall oder einer lithiummetallhaltigen legierung als anodenmaterial und einem elekrtolyten mit lithium bis(oxalato)borat sowie mindestens einem weiteren lithiumkomplexsalz
EP1081129A2 (de) Stabile (CF3)2N-Salze, ein Verfahren zu deren Herstellung und ihre Verwendung bei der Synthese von Flüssigkristallverbindungen
DE19932317A1 (de) Verfahren zur Herstellung von Lithiumkomplexsalzen zur Anwendung in elektrochemischen Zellen
DE102014108012B4 (de) Substituierte Pyrazole und deren Verwendung als Leitsalz für Lithium-basierte Energiespeicher
EP1048648A1 (de) Verfahren zur Aufreinigung von Methanid-Elektrolyten (I)
EP4037051A1 (de) Wiederaufladbare batteriezelle
EP1173416A1 (de) Verfahren zur aufreinigung von methanid-elektrolyten (ii)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 3255/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007502277

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005715835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067020829

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580014685.4

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2005715835

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020829

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10591509

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10591509

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005715835

Country of ref document: EP